THE PHYSICAL CHEMISTRY OF MATERIALS

ENERGY AND ENVIRONMENTAL APPLICATIONS

ROLANDO M.A. ROQUE-MALHERBE

THE PHYSICAL CHEMISTRY OF MATERIALS

ENERGY AND ENVIRONMENTAL APPLICATIONS

THE PHYSICAL CHEMISTRY OF MATERIALS

ENERGY AND ENVIRONMENTAL APPLICATIONS

ROLANDO M.A. ROQUE-MALHERBE

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2010 by Taylor and Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1

International Standard Book Number: 978-1-4200-8272-2 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http:// www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Roque-Malherbe, Rolando M. A.
The physical chemistry of materials : energy and environmental applications / Rolando M.A.
Roque-Malherbe.
p. cm.
Includes bibliographical references and index.
ISBN 978-1-4200-8272-2 (hardcover : alk. paper)
1. Materials science. 2. Chemistry, Physical and theoretical. I. Title.

TA403.R567 2010 620.1'1--dc22

2009034795

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

To the loving memory of my mother, Silvia Malherbe; my father, Rolando Roque; my grandmothers, Maria Fernandez and Isidra Peña; my grandfathers, Herminio Roque and Diego Malherbe; and my favorite pets, Zeolita and Trosia

Contents

Preface				xix				
Author				xxi				
Characters 1	Мал	1. DI		1				
Chapter I	Materials Physics							
	1.1	Introd	uction	1				
	1.2	Crysta	llography	1				
		1.2.1	Crystalline Structure	1				
		1.2.2	Crystallographic Directions and Planes	5				
		1.2.3	Octahedral and Tetrahedral Sites in the FCC Lattice	5				
		1.2.4	Reciprocal Lattice	6				
	1.3	Bloch	Theorem	7				
	1.4	Lattice	e Vibrations					
		1.4.1	Phonons					
		1.4.2	Bose–Einstein Distribution	13				
		1.4.3	Heat Capacity of Solids	14				
	1.5	Electro	ons in Crystalline Solid Materials	17				
		1.5.1	Electron Gas	17				
		1.5.2	Fermi–Dirac Distribution	19				
		1.5.3	Density of States for the Electron Gas					
		1.5.4	Energy Band Model					
		1.5.5	Molecular Orbital Approach for the Formation					
			of Energy Bands					
	1.6	X-Ray	Diffraction					
		1.6.1	General Introduction					
		1.6.2	X-Ray Scattering					
		1.6.3	Diffraction Conditions					
		1.6.4	Powder Diffraction Method					
		1.6.5	Other Factors Affecting the Scattering Intensity					
			of a Powdered Sample					
			1.6.5.1 Multiplicity Factor					
			1.6.5.2 Lorentz Factor					
			1.6.5.3 Absorption Factor					
			1.6.5.4 Temperature Factor					
		1.6.6	Intensity of a Diffraction Peak					
	1.7	Dielec	tric Phenomena in Materials					
		1.7.1	Introduction					
			1.7.1.1 Electronic Polarization					
			1.7.1.2 Ionic Polarization					
			1.7.1.3 Dipolar (or Orientation) Polarization	40				
			1.7.1.4 Hopping of Charge Carriers' Polarization	40				
			1.7.1.5 Interfacial Polarization	40				
		1.7.2	Susceptibility and Dielectric Constant	40				
		1.7.3	Complex Permittivity	41				
		1.7.4	Dielectric Relaxation					
		1.7.5	Debye Relaxation Model for the Dipolar Mechanism	44				

	1.7.6	Model to Describe Dielectric Relaxation for a Charge	
		Hopping Process	46
1.8	Nuclea	ar Magnetic Resonance	52
	1.8.1	Introduction	52
	1.8.2	Nuclear Zeeman Effect	53
	1.8.3	Magnetization and Time Evolution of the Magnetization	54
	1.8.4	Nuclear Magnetic Resonance Experiment	
	1.8.5	Spin-Lattice Relaxation Time (T_1) , Spin–Spin Relaxation	
		Time (T_2) , and the Bloch Equations	
1.9	Mösst	bauer Effect	58
	1.9.1	Introduction	58
	1.9.2	Mössbauer Effect	58
Refe	rences		60

Chapter 2	Structure of Adsorbents, Ion Exchangers, Ion Conductors,					
-	Cata	lysts, and	d Permeable Materials	63		
	21	2.1 Introduction				
	$\frac{2.1}{2.2}$	Transi	tion Metal Catalysts			
	2.2	2.2.1	Metallic Catalysts' Performance	63		
		2.2.2	Band Structure of Transition Metals	64		
		2.2.3	Body-Centered Cubic Iron as a Catalyst	64		
		2.2.4	Face-Centered Cubic Platinum as a Catalyst			
		2.2.5	Hexagonal Close-Packed Cobalt as a Catalyst			
		2.2.6	Balandin Volcano Plot			
	2.3	Nonm	etallic Catalysts			
		2.3.1	Simple Oxides			
		2.3.2	Rock-Salt-Structure Catalysts			
		2.3.3	Rutile-Type Catalyst			
		2.3.4	Corundum-Type Catalysts	69		
		2.3.5	Wurtzite-Type Catalysts	71		
		2.3.6	Fluorite-Type Catalysts	71		
		2.3.7	Spinel-Type Catalysts	71		
		2.3.8	Zinc Blende–Type Structure	72		
	2.4	Perme	able Materials	73		
		2.4.1	Introduction	73		
		2.4.2	Palladium: A Hydrogen Permeable Material	73		
		2.4.3	Yttrium Oxide (Y ₂ O ₃)-Stabilized Zirconium			
			Oxide (ZrO ₂)	74		
		2.4.4	Hydrogen-Permeable Perovskites	74		
		2.4.5	Silver Iodide: A Fast Ion Conductor	75		
	2.5	Crysta	Illine and Ordered Nanoporous Adsorbents and Catalysts			
		2.5.1	Zeolite Adsorbents	76		
		2.5.2	Mesoporous Molecular Sieve Adsorbents	78		
		2.5.3	Zeolite Catalysts	79		
		2.5.4	Pillared Clay Catalysts	79		
	2.6	Ion-Ex	change Crystalline Materials			
		2.6.1	Zeolites	80		
		2.6.2	Hydrotalcites	81		

		2.6.3	Titanates	82			
			2.6.3.1 Alkali Metal Titanates	82			
			2.6.3.2 Titanium Silicates	82			
		2.6.4	Zirconium Phosphates	83			
	2.7	Amor	phous Silica Adsorbents and Catalytic Supports	84			
		2.7.1	Amorphous Silica	84			
		2.7.2	Amorphous Silica as Adsorbents and				
			Catalytic Supports	86			
	2.8	2.8 Active Carbon and Other Carbon Forms as Adsorbents					
	and Catalytic Supports						
	2.9	Polym	Polymers				
		2.9.1	Introduction	88			
		2.9.2	Polymer Structure	89			
			2.9.2.1 Linear or Chain Polymers	89			
			2.9.2.2 Branched Polymers	93			
			2.9.2.3 Cross-Linked Polymers	93			
		2.9.3	Furfural Resins	95			
		2.9.4	Coordination Polymers	95			
	Refe	rences		97			
Chapter 3	Svnt	hesis Me	thods of Catalyst Adsorbents. Ion Exchangers.				
	and Permeable Materials						
		.		100			
	3.1	Introd	uction	103			
		3.1.1	Nucleation and Growth: Johnson–Mehl–Avrami Equation	103			
	3.2	Metho	ds for the Preparation of Metallic-Supported Catalysts	105			
		3.2.1	Deposition of the Active Component	105			
			3.2.1.1 Impregnation	105			
			3.2.1.2 Grafting	106			
			3.2.1.3 Precipitation	106			
			3.2.1.4 Bifunctional Zeolite Catalysts	107			
			3.2.1.5 Chemical vapor Deposition	107			
			5.2.1.0 Case Study: Preparation of Ni Bilunctional Catalysis				
			Supported on Homotonic: Na, K, Ca, and Mg	100			
	2.2	South	Chilophionie	110			
	5.5		Solid State Depation Mathed	110			
		222	Solid-State Reaction Method	111			
		5.5.2	3 2 2 1 Introduction	111 111			
			3.3.2.2 Dechini Method	111 112			
		222	Solgal Pouta Based on the Hydrolysis Condensation	112			
		5.5.5	of Metal Alkovides	112			
		331	Of Metal Alkoxides	112 115			
	3 /	Synthe	Actiate recipitation	115 116			
	5.4	2 / 1	A luminociliaeta Sunthosis	110			
		3.4.1	High Silice All Silice and Non Aluminosilicete Zeelites	110			
		3.4.2	Suppose	114			
		2/2	Syllucons and Transformation of Clinentiality to Dreduce	110			
		5.4.5	Zeolites No X and No X	117			
				11/			

		3.4.4	Synthesis of MeAPO Molecular Sieves	121		
		3.4.5	Synthesis of Pillared, Layered Crystalline			
			Microporous Materials	122		
	3.5	Synthe	esis of Ordered Silica Mesoporous Materials	124		
	3.6 Active Carbon and Carbon Nanotube Preparation Methods					
	3.7	Memb	rane Preparation Methods	126		
		3.7.1	Ceramic Method	126		
		3.7.2	Template Leaching	127		
		3.7.3	Composite Membranes	128		
	3.8	Polym	er Synthesis	129		
		3.8.1	Step-Growth Polymerization	129		
		3.8.2	Chain Reaction or Addition Polymerization	130		
	Refe	rences		130		
Chapter 4	Mate	erial Cha	racterization Methods	137		
-	4 1	Interal		127		
	4.1		uction	137		
	4.2	Applic 4.2.1	Program District Constant Characterization	137		
		4.2.1	Bragg-Brentano Geometry Powder Diffractometer	137		
		4.2.2	Intensity of a Diffraction Peak of a Powdered Sample	138		
		4.2.3	Qualitative Identification of Phases	138		
		4.2.4	Rietveld Method	139		
		4.2.5	Quantitative Phase Analysis	141		
		4.2.6	Lattice Parameter Determination	144		
			4.2.6.1 Examples of the Use of Lattice Parameter	1.47		
		407	Determination in the Study of Materials	147		
		4.2.7	Scherrer–Williamson–Hall Methodology for Crystallite Size	1.47		
	4.2	T 1	Determination	147		
	4.3	Electro	on Microscopy	148		
		4.3.1	Introduction	148		
		4.3.2	Transmission Electron Microscope	149		
		4.3.3	Scanning Electron Microscope	150		
		4.3.4	SEM Applications	153		
	4.4	Energ	y-Dispersive Analysis of X-Rays	154		
		4.4.1	X-Ray Emission	154		
		4.4.2	Applications of Energy-Dispersive Analysis of X-Rays	156		
	4.5	Infrare	ed and Raman Spectrometries	157		
		4.5.1	Introduction	157		
		4.5.2	Differences and Similarities between IR and Raman	150		
		152	Moleculer Vibrations	130		
		4.5.5	Dirale Moment and Delerization	138		
		4.5.4	Tipole Mollient and Polarization	139		
		4.3.3	IN and Daman Transition Drababilities	160		
		4.3.0	IK and Kaman Transition Probabilities	162		
		4.5.7	Selection Kules	163		
		4.5.8	Simplification of the Molecular Vibration Analysis	165		
		4.5.9	Instrumentation	166		
			4.5.9.1 Fourier Transform Infrared Spectrometer	166		
			4.5.9.2 Conventional Raman Spectrometer	167		
			4.5.9.3 Fourier Transform Raman Spectrometer	167		

Contents

		4.5.10	Applications of Fourier Transform Infrared Spectroscopy	
			and Raman Spectroscopy in Materials Science	168
	4.6	Nuclea	r Magnetic Resonance Spectrometry	173
		4.6.1	Introduction	173
		4.6.2	NMR Spectra	173
		4.6.3	Chemical Shift	175
		4.6.4	Spin–Spin Coupling	176
		4.6.5	Magic Angle Spinning-Nuclear Magnetic Resonance	176
		4.6.6	Applications of MAS-NMR	177
	4.7	Therm	al Methods of Analysis	179
		4.7.1	Differential Thermal Analysis	180
		4.7.2	Thermal Gravimetric Analysis	181
		4.7.3	Differential Scanning Calorimetry	182
		4.7.4	Temperature-Programmed Reduction	182
		4.7.5	Temperature-Programmed Desorption	183
		4.7.6	Fourier Transform Infrared-Temperature	
			Programmed Desorption	184
	4.8	Dielect	tric Analysis Methods	187
		4.8.1	Introduction	187
		4.8.2	Thermodielectric Analyzer	189
		4.8.3	Thermodielectric Analysis	191
			4.8.3.1 First Effect in TDA	191
			4.8.3.2 Second Effect in TDA	194
			4.8.3.3 Third Effect in TDA	194
		4.8.4	Dielectric Spectroscopy	196
	4.9 I	Mössb	auer Spectrometry	201
		4.9.1	Introduction	201
		4.9.2	Mössbauer Spectrometer	201
		4.9.3	Hyperfine Interactions	
			4.9.3.1 Chemical or Isomer Shift	
			4.9.3.2 Quadrupole Splitting	
			4.9.3.3 Magnetic Splitting	
		4.9.4	Applications of ⁵⁷ Fe Mössbauer Spectrometry	
	4.10	Mercu	ry Porosimetry	211
	4.11	Magne	tic Force in Nonuniform Fields: Phase Analysis Method	
	Refer	ences		214
Chapter 5	Diffu	ision in I	Materials	219
•	5 1	Introdu	action	210
	5.1	Fick's	I awa	
	5.2	Thorm	advnamics of Irreversible Processes	219 220
	5.5	Diffusi	ion Coefficients	,220 222
	5.4	5 4 1	Trager Diffusion Coofficient and Salf Diffusion	,
		5.4.1	Coefficient	222
		5 4 0	Lucinicicili	
		5.4.2	Internet Diffusion of Chemical Diffusion Coefficient	
	55	5.4.5 Miana	Interditusion or Chemical Diffusion Coefficient	
	5.5	IVIICTOS	Introduction	
		5.5.1	Introduction	
		3.3.2	Kanuoni waiker ni One Dimension	

		5.5.3	Fokker–Planck Equation	228		
		5.5.4	Diffusion Mechanisms in Crystalline Solids	229		
			5.5.4.1 Vacancy Mechanism	230		
			5.5.4.2 Interstitial Mechanism	231		
		5.5.5	Random Walker in a Cubic Crystalline Structure	232		
	5.6	Some	Diffusion Processes in Metals	234		
		5.6.1	Hydrogen Diffusion in Metals	234		
		5.6.2	Formation of a Surface Fe–Ni Alloy	235		
		5.6.3	Effect of the Diffusion of Fe in a Fe-Ni Alloy during the			
			Oxidation of the Alloy with Nitric Oxide	239		
	5.7	Diffus	ion in Oxides	240		
		5.7.1	Defect Chemistry of Oxides	240		
		5.7.2	Oxygen Transport in Oxides	243		
		5.7.3	Defect Chemistry in Proton-Conducting Perovskites	245		
		5.7.4	Proton Transport Mechanisms	246		
		5.7.5	Band Structure of Proton-Conducting Perovskites	247		
		5.7.6	Proton Transport Mechanism in Oxides	247		
		5.7.7	Absorption and Diffusion of Hydrogen in Nanocrystals of the			
			$BaCe_{0.95}Yb_{0.05}O_{3-\delta}$ Proton-Conducting Perovskite	249		
	5.8	Diffus	ion in Porous Media	254		
		5.8.1	Transport Mechanisms in Porous Media	254		
		5.8.2	Viscous versus Knudsen Flows	256		
		5.8.3	Viscous Flow in a Straight Cylindrical Pore	257		
		5.8.4	Knudsen Flow in a Straight Cylindrical Pore	257		
	5.9 D	Diffus	Diffusion in Micropores			
		5.9.1	Mechanism of Diffusion in Zeolites	258		
		5.9.2	Single-Component Diffusion in Zeolites			
		5.9.3	Two-Component Diffusion in Zeolites	269		
	Refe	rences	-	271		
Chapter 6	Adsorption in Nanoporous Materials					
-	6.1	Turkun di		075		
	0.1	Definit	uction	213		
	0.2		Come Definitions	213		
		0.2.1	6.2.1.1 Advantian and Decomption	275		
			6.2.1.2 Adsorption and Desorption	273		
			6.2.1.2 Pole Size	270		
			6.2.1.4 Demonstration	270		
			6.2.1.4 Dynamic Adsorption	270		
			6.2.1.6 Dhysical and Chamical Advantions	270		
			6.2.1.7 Mobile and Immobile Adsorptions	270		
			6.2.1.9 Monologies and Multilogers	270		
			6.2.1.0 Degementary Characterizing Degeus	270		
			0.2.1.9 Parameters Characterizing Porous	276		
		622	Ausorotical Advantian	270		
	62	0.2.2	Magnitude of Adsorption	211		
	0.5	Aasorj	puon interaction Fields	278		
	0.4	Measu	rement of Adsorption isotnerms by the	202		
	65	volum		282		
	6.5	I herm	loaynamics of Adsorption	283		
		0.5.1	isosteric and Differential Heats of Adsorption	283		
		0.5.2	Calorimetry of Adsorption	285		

		6.5.3	Some Re	elations between Macroscopic and Microscopic	288			
	66	System	Systems for the Automatic Measurement of Surface Area					
	0.0	and Po	rosity by t	he Volumetric Method	290			
		661	Equipme	ant	290			
		662	Dorous N	Asterial Characterization by Adsorption Methods	200			
	67	0.0.2	$\frac{101000}{1000}$	valitas	290			
	0.7	671	Juon In Zo	tion	201			
		672	Sama Er	uoni	202			
		0.7.2	Some Ex	amples of Adsorption Systems in Zeoffies	292			
		6.7.3	Determi	nation of the Micropore volume	292			
			6.7.3.1	Dubinin Adsorption Isotherm Equation	292			
			6.7.3.2	Osmotic Adsorption Isotherm Equation	294			
			6.7.3.3	Langmuir-Type and Fowler–Guggenheim-Type				
				Adsorption Isotherm Equations	295			
	6.8	Adsorp	ption in Na	anoporous-Ordered and Amorphous Materials	297			
		6.8.1	Mesopor	ous Molecular Sieves	297			
		6.8.2	Amorph	ous Silica	298			
		6.8.3	Adsorpti	on in Active Carbon and Carbon Nanotubes	300			
		6.8.4	Determi	nation of the Specific Surface of Materials	301			
	6.9	.9 Howarth–Kawazoe Approach for the Description of Adsorption i						
		Micror	Aicroporous Materials for the Slit, Cylindrical, and Spherical Pore					
		Geome	etries	· · · · ·	303			
	6.10	Adsorr	otion from	Liquid Solutions	310			
		6.10.1	Introduc	tion				
		6 10 2	Isotherm	s for the Description of Adsorption from Liquid Phase	310			
	611	Dynam	nic Adsorr	tion: The Plug-Flow Adsorption Reactor	312			
	0.11	6 11 1	Dynami	Advoration	312			
		6 11 2	Dynami Dlug Elo	w Adsorption Pagetor Model	312			
	6 1 2	0.11.2 Some (Themical	Sustainable Energy and Pollution Abstement	314			
	0.12	Annlia	chemical,	Sustainable Energy, and Fonution Abatement	217			
		Applic	ations of I	vanoporous Adsorbents	317			
		6.12.1	Gas Sep	aration and Cleaning	317			
		6.12.2	Hydroge	n Storage	321			
			6.12.2.1	Hydrogen Storage in Zeolites	321			
			6.12.2.2	Hydrogen Storage in Mesoporous Molecular				
				Sieves and Pillared Clays	322			
			6.12.2.3	Hydrogen Storage in Silica	322			
			6.12.2.4	Hydrogen Storage in Carbon-Based Adsorbents	324			
		6.12.3	Methane	Storage in Adsorbents	325			
			6.12.3.1	Introduction	325			
			6.12.3.2	Methane Storage in Carbonaceous Adsorbents	326			
		6.12.4	Water C	leaning	327			
	6.13	Porous	Polymers	as Adsorbents	329			
		6.13.1	Porous a	nd Coordination Polymers	329			
		6132	Applicat	ions of Porous Polymers and Coordination Polymers in				
		0.15.2	Adsorpti	on Processes	331			
	Refer	ences			333			
					220			
Chapter 7	Ion E	xchange	······		339			
	7.1	Introdu	iction		339			
	7.2	Alumi	nosilicate	Zeolite Ion Exchangers	339			
	7.3	Some I	Definition	s and Terms	340			

	7.4	Therm	odynamic	s of Ion Exchange	342	
	7.5	Rules (Governing	the Ion-Exchange Equilibrium in Zeolites	344	
		7.5.1	Regular	Systems	344	
		7.5.2	Space Li	mitations and Molecular Sieving		
		7.5.3	Irregula	Systems	345	
		7.5.4	Systems	with Phase Transformations		
		7.5.5	Electrose	electivity	345	
		7.5.6	Effect of	pH of the Electrolytic Solution on the		
			Ion-Excl	ange Process	345	
	7.6	Ion-Ex	change He	eat		
		7.6.1	Ion-Exch	ange Heat Measurement		
	7.7	Ion-Ex	change Se	lectivity in Zeolites		
	7.8	Ion-Exchange Kinetics				
		7.8.1	Interdiff	usion in the Adhering Liquid Thin Layer as the		
			Limiting	Step	350	
		7.8.2	Interdiff	usion of A and B in Zeolite Crystals		
			as the Li	miting Step	352	
		7.8.3	Experim	ental Results	353	
	7.9	Plug-F	low Ion-E	xchange Bed Reactors	353	
		7.9.1	Introduc	tion	353	
		7.9.2	Paramete	ers for the Design of a Laboratory PFIER	355	
	7.10	Chemi	hemical and Pollution Abatement Applications of Ion Exchange			
		in Zeol	lites		355	
		7.10.1	Introduc	tion	355	
		7.10.2	Heavy M	letal Removal from Wastewater	356	
		7.10.3	Recovery	v of Ni ²⁺ from the Waste Liquors		
			of a Nick	xel Production Plant		
		7.10.4	Municip	al Wastewater Treatment		
		7 10 5	Radioact	ive Wastewater Treatment	362	
		7 10 6	Catalytic	Effect of Proton Exchange in Natural Zeolites		
		/.10.0	in Bioga	s Production During Anaerobic Digestion	363	
		7 10 7	Zeolite N	Ja-A as Detergent Builder	364	
		7 10 8	Aquacult	fure	364	
	7 1 1	Applic	ations of ()ther Crystalline Inorganic Ion Exchangers	365	
	,	7 11 1	Hydrotal	cites	365	
		7 11 2	Sodium '	Titanates	366	
		7.11.2	Titanium	silicates		
		7.11.5	Zirconiu	m Phoenhates		
	7 1 2	Jon Ev	change Po	lumeric Resins		
	1.12	7 12 1	General	Characteristics of Ion-Exchange Resins		
		7.12.1	Jon Evel	ange Resin Swelling		
		7.12.2	Applicat	ions of Ion Exchange Polymeric Desins		
	Dafa	7.12.3	Аррпса	ions of Ion-Exchange Polymene Resins		
	Kelei	ences	•••••			
Chapter 8	Solid	-State El	lectrochen	nistry	375	
	8.1	Introdu	ction		375	
		8.1.1	Batteries	and Fuel Cells	375	
		8.1.2	Types of	Fuel Cells	375	
			8.1.2.1	Polymer Electrolyte Fuel Cell	376	
			8.1.2.2	Alkaline Fuel Cell		
			8.1.2.3	Phosphoric Acid Fuel Cell	378	

			8.1.2.4	Molten Carbonate Fuel Cell			
			8.1.2.5	Solid Oxide Fuel Cell			
	8.2	Solid I	Electrolyte	'S			
		8.2.1	Defect C	Concentration in Ionic Compounds			
		8.2.2	Unipola	r Ionic Conductivity in Solids			
		8.2.3	Example	es of Unipolar Cationic Conductors			
		8.2.4	Anionic	Conductors			
		8.2.5	Proton C	Conductors			
			8.2.5.1	Introduction			
			8.2.5.2	Conductivity in Proton Conductors			
		8.2.6	Oxide C	onduction			
			8.2.6.1	Oxygen Conductors			
			8.2.6.2	Conductivity in Oxygen Conductors			
		8.2.7	Zeolite l	Electrolyte			
	8.3	Therm	odynamic	s of Electrochemical Processes			
	8.4	Kineti	cs of Elect	rochemical Processes			
		8.4.1	Overpot	ential			
		8.4.2	Activati	on Polarization			
		- · ·	8.4.2.1	Tafel Equation			
			8.4.2.2	Calculation of the Transference Coefficient			
		8.4.3	Ohmic F	Polarization	398		
		844	Concent	ration Polarization	398		
	8.5	Fuel C	Cell Efficie	ncv			
	0.0	851	Polariza	tion Curve	398		
		852	Thermo	dynamic Efficiency of a Fuel Cell	399		
		853	Electroc	hemical Efficiency of a Fuel Cell	400		
		854	Efficient	ry of an Internal Combustion Engine	401		
	86	Flectro	ochemical	Impedance Spectroscopy	401		
	0.0	8.6.1	Impedar	nce Analysis	401		
		862	Dielectr	ic Spectroscopy and Impedance Spectroscopy	402		
		863	Equival	ant Circuits for Electrochemical Cells	404		
		8.0.5	Methoda	for the Representation of Impedance			
		0.0.4	Spectros	acopy Data	405		
	87	Suctor	Sustainable Energy and Environmental Sensing Technology				
	0.7	Applic	nations of 9	Solid State Electrochemistry	407		
		8 7 1	Solid Or	vide Eucl Coll Materials and Derformance	407		
		0.7.1	8 7 1 1	Flastrolyte	407		
			0./.1.1 9 7 1 2	Electrolyte	407		
			0.7.1.2 9.7.1.2	SOFC Canode Materials and Performance	400		
			0.7.1.3	SOFC Alloue Materials and Performance			
			8.7.1.4	Interconnects			
		077	8./.1.3 Delaura au	SOFC Fuel Processing			
		8.7.2	Polymer	Electrolyte Fuel Cells			
			8.7.2.1	Electrolyte			
		070	8.7.2.2				
		8.7.3	Zeolites	as Solid Electrolytes in Batteries			
	Ъſ	8.7.4	Sensors				
	References						
Chapter 9	Hete	rogeneou	us Catalys	is and Surface Reactions	421		
	9.1	Introd	uction				
	9.2	Genera	al Properti	es of Catalysts			
			1 '				

9.3	Crysta	lline and Ordered Nanoporous Heterogeneous Catalysts	423
	9.3.1	Acid Zeolite Catalysts: Brönsted Type	423
	9.3.2	Bifunctional Zeolite Catalysts	425
	9.3.3	Acid Zeolite Catalysts: Lewis Type	425
	9.3.4	Basic Zeolite Catalysts	425
	9.3.5	Catalysts Obtained by the Isomorphous Substitution	10.0
	0.0.6	of Ti in Zeolites	426
	9.3.6	Pillared Clays	426
<u> </u>	9.3.7	Mesoporous Molecular Sieves	428
9.4	Amorp	phous, Porous Heterogeneous Catalysts and Supports	428
	9.4.1	Amorphous Acid Silica–Alumina	428
~ ~	9.4.2	Metallic Catalysts Supported on Amorphous Materials	429
9.5	Photoc	catalysts	430
	9.5.1	Introduction	430
	9.5.2	Titanium Oxide	430
	9.5.3	Other Photocatalysts	431
9.6	Kineti	cs of Surface Reactions	431
	9.6.1	Steps in a Heterogeneous Catalytic Reaction	431
	9.6.2	Reaction Rate	432
	9.6.3	Unimolecular Decomposition	433
	9.6.4	Calculation of the Adsorption Enthalpy of <i>n</i> -Paraffins in	
		Nanoporous Crystalline and Ordered Acid Catalysts, and Its	
		Relation with the Activation Energy of the Monomolecular	
		Catalytic Cracking Reaction	435
		9.6.4.1 Introduction	435
		9.6.4.2 Unimolecular Catalytic Cracking	436
		9.6.4.3 Calculation of the Adsorption Enthalpy	436
		9.6.4.4 Calculation of the Activation Energy	438
		9.6.4.5 Numerical Evaluation of the Model	440
	9.6.5	Bimolecular Reaction	441
		9.6.5.1 Langmuir–Hinshelwood Mechanism	441
		9.6.5.2 Eley–Rideal Mechanism	442
	9.6.6	Composite Mechanism Reactions	443
9.7	Examp	bles of Surface Reactions	444
	9.7.1	Reaction between Nitric Oxide and the Surface of Iron	444
	9.7.2	Reaction between Carbon Monoxide and the Surface	
		of Nickel	447
9.8	Packed	l Bed Plug-Flow Catalytic Reactor	449
	9.8.1	Laboratory Scale Reactor	449
	9.8.2	Equations Governing the Plug-Flow Packed Bed Reactor	450
	9.8.3	Solution of the Governing Equation for the First-Order	
		Chemical Reaction	451
	9.8.4	Steps in a Catalytic Reaction in a Packed-Bed Reactor	452
9.9	Chemi	cal, Sustainable Energy, and Pollution Abatement Applications	
	of Hete	erogeneous Catalysts	453
	9.9.1	Ammonia Synthesis	453
	9.9.2	Catalytic Cracking of Hydrocarbons	454
	9.9.3	Decomposition of Ammonia for Hydrogen Production	
		and Other Applications	454
	9.9.4	Fischer–Tropsch Synthesis	455

		9.9.5	Water–Gas Shift Reaction for Hydrogen Production	
			and Other Applications	455
		9.9.6	Ethanol Dehydration	456
		9.9.7	Oxidation of CO	458
		9.9.8	Water Treatment by Heterogeneous Photocatalysis	459
		9.9.9	Other Sources of Activation of a Photocatalyst	
			Mechanical Activation	459
		9.9.10	Hydrogen Production by Photocatalytic Water Splitting	460
			9.9.10.1 Solar Water Splitting with Quantum Boost	460
		9.9.11	Hydrogen Production by Steam-Reforming of Ethanol	461
		9.9.12	Porous Polymers as Catalysts	462
	Refer	ences		462
Chapter 10	Men	nbranes		467
	10.1	Introd	uction	467
	10.2	Defini	tions and Nomenclature	467
		10.2.1	Some Definitions	467
		10.2.2	Membrane Unit	
		10.2.3	Permeance and Permeability	
		10.2.4	Selectivity	
	10.3	Perme	ability in Dense Membranes	470
		10.3.1	Hydrogen Transport in Metallic Dense Membranes	470
		10.3.2	Hydrogen Permeation in Oxide Ceramic Membranes	471
		10.3.3	Permeation in Dense Oxide Membranes	473
	10.4	Perme	ation in Porous Membranes	474
		10.4.1	Introduction	474
		10.4.2	Transport Mechanisms in Porous Membranes	474
		10.4.3	Viscous and Knudsen Flows	475
		10.4.4	Darcy's Law for Viscous Flow	475
		10.4.5	Darcy's Law for Knudsen Flow	477
		10.4.6	Transport in Zeolite Membranes	477
		10.4.7	Zeolite-Based Membranes	478
		10.4.8	Permeation Flow in Zeolite Membranes	478
	10.5	Zeolite	e-Based Ceramic Porous Membrane	
		10.5.1	Carbon Dioxide Permeation in a Zeolite-Based	
			Ceramic Porous Membrane	
		10.5.2	In Situ Synthesis of an AlPO ₄ –5 Zeolite over a Ceramic	
			Porous Membrane	482
	10.6	Chemi	ical, Sustainable Energy, and Pollution Abatement Applications	
		of Inorganic Membranes		
		10.6.1	Hydrogen and Oxygen Separations	483
			10.6.1.1 Hydrogen Separations	483
			10.6.1.2 Oxygen Separations	484
		10.6.2	Catalytic Membrane Reactors	484
	10.7	Exam	bles of Polymeric Membranes	485
	Refe	rences		487
Index				491

Preface

Since ancient times, the development and use of materials has been one of the basic objectives of mankind. Eras, that is, the Stone Age, the Bronze Age, and the Iron Age, have been named after the fundamental material used by mankind to construct their tools. Materials science is the modern activity that provides the raw material for this endless need, demanded by the progress in all fields of industry and technology, of new materials for the development of society.

Metallurgy was one of the first fields where material scientists worked toward developing new alloys for different applications. During the first years, a large number of studies were carried out on the austenite–martensite–cementite phases achieved during the phase transformations of the iron–carbon alloy, which is the foundation for steel production, later the development of stainless steel, and other important alloys for industry, construction, and other fields was produced.

Later, the evolution of the electronic industry initiated the development of an immense variety of materials and devises based, essentially, on the properties of semiconductor, dielectric, ferromagnetic, superconductor, and ferroelectric materials.

In addition, until the second half of the twentieth century, the term ceramic was related to the traditional clays, that is, pottery, bricks, tiles, and cements and glass; however, during the last 50 years, the field of technical ceramics has been rapidly developed, and firmly established.

At the beginning of the twentieth century, the first synthetic polymer, bakelite, was obtained and later, after the First World War, it was proposed that polymers consisted of long chains of atoms held together by covalent bonds. The Second World War gave a huge stimulus to the creation of polymers, which firmly established the field of polymers.

However, important groups of materials cannot be studied in a single volume materials science book. These materials include adsorbents, ion exchangers, ion conductors, catalysts, and permeable materials. Examples of these types of materials are perovskites, zeolites, mesoporous molecular sieves, silica, alumina, active carbons, titanium dioxide, magnesium oxide, clays, pillared clays, hydrotalcites, alkali metal titanates, titanium silicates, polymers, and coordination polymers. These materials have applications in many fields, among others, adsorption, ion conduction, ion exchange, gas separation, membrane reactors, catalysts, catalytic supports, sensors, pollution abatement, detergents, animal nutrition, agriculture, and sustainable energy applications.

The author of this book has been permanently active during his career in the field of materials science, studying diffusion, adsorption, ion exchange, cationic conduction, catalysis and permeation in metals, zeolites, silica, and perovskites. From his experience, the author considers that during the last years, a new field in materials science, that he calls the "physical chemistry of materials," which emphasizes the study of materials for chemical, sustainable energy, and pollution abatement applications, has been developed. With regard to this development, the aim of this book is to teach the methods of syntheses and characterization of adsorbents, ion exchangers, cationic conductors, catalysts, and permeable porous and dense materials and their properties and applications.

Rolando M.A. Roque-Malherbe Las Piedros, PR, USA January, 2009

Author

Dr. Rolando M. A. Roque-Malherbe was born in 1948 in Güines, Havana, Cuba. He graduated with a BS in physics from the University of Havana (1970), summa cum laude, specialized (MS equivalent degree) in surface physics at the National Center for Scientific Research, Technical University of Dresden, Germany (1972), magna cum laude, and obtained his PhD in physics (solid state physics) from the Moscow Institute of Steel and Alloys, Russia (1978), magna cum laude. He completed postdoctoral stints at the Technical University of Dresden, Germany; Moscow State University, Russia; the Technical University of Budapest, Hungary;

the Institute of Physical Chemistry and Chemical Physics, Russian Academy of Science, Moscow; and the Central Research Institute for Chemistry, Hungarian Academy of Science, Budapest (1978–1984). The group led by him at the National Center for Scientific Research, Higher Pedagogical Institute, Varona, Havana, Cuba (1980–1992), was one of the world leaders in the study and applications of natural zeolites. During this period, he was possibly the only Cuban scientist to receive most awards. In 1993, after a political confrontation with the Cuban regime, he left Cuba with his family as a political refugee. From 1993 to 1999, he worked at various institutions like the Institute of Chemical Technology, Valencia, Spain; at Clark Atlanta University, Atlanta, Georgia; and at Barry University, Miami, Florida. From 1999 to 2004, he was dean and full professor at the School of Sciences in the University of Turabo, Gurabo, Puerto Rico, and currently he is the director of the Institute of Physical and Chemical Applied Research. He has published 121 papers, 5 books, 6 chapters, 30 abstracts, has 15 patents, and made more than 200 presentations at scientific conferences. He is currently an American citizen.

1 Materials Physics

1.1 INTRODUCTION

We discuss briefly some basic topics in materials physics such as crystallography, lattice vibrations, band structure, x-ray diffraction, dielectric relaxation, nuclear magnetic resonance and Mössbauer effects in this chapter. These topics are an important part of the core of this book. Therefore, an initial analysis of these topics is useful, especially for those readers who do not have a solid background in materials physics, to understand some of the different problems that are examined later in the rest of the book.

1.2 CRYSTALLOGRAPHY

1.2.1 CRYSTALLINE STRUCTURE

An unit cell is a regular repeating pattern that pervades the whole crystal lattice. It is described [1–6] by three vectors: \overline{a} , \overline{b} , and \overline{c} (Figure 1.1), that outline a parallelepiped, characterized by six parameters. These parameters are the length of the three vectors (*a*, *b*, and *c*) and the angles between them (α , β , and γ). Consequently, all the points that constitute the lattice sites are given by a set of points, which starting from a reference point, are given by

$$\overline{R} = n_1 \overline{a} + n_2 \overline{b} + n_3 \overline{c} \tag{1.1}$$

where n_1 , n_2 , n_3 , are integers running from $-\infty$ to ∞ , for a limitless crystal. As a result of this, the lattice is a set of points in space, distinguished by a space periodicity or a translational symmetry. This means that under a translation defined by Equation 1.1, the lattice remains invariant.

If all the lattice points are positioned in the eight corners of a unit cell, then the unit cell is called a primitive unit cell. However, often, for convenience, larger unit cells, which are not primitives, are selected for the description of a particular lattice, as will be explained later.

It is possible, as well, to define the primitive unit cell, by surrounding the lattice points, by planes perpendicularly intersecting the translation vectors between the enclosed lattice point and its nearest neighbors [2,3]. In this case, the lattice point will be included in a primitive unit cell type, which is named the Wigner–Seitz cell (see Figure 1.2).

A concrete building procedure in three dimensions of the Wigner–Seitz cell can be achieved by representing lines from a lattice point to others in the lattice and then drawing planes that cut in half each of the represented lines, and finally taking the minimum polyhedron enclosing the lattice point surrounded by the constructed planes.

Till now, we have only considered a mathematical set of points. However, a material, in reality, is not merely an array of points, but the group of points is a lattice. A real crystalline material is constituted of atoms periodically arranged in the structure, where the condition of periodicity implies a translational invariance with respect to a translation operation, and where a lattice translation operation, \overline{T} , is defined as a vector connecting two lattice points, given by Equation 1.1 as

$$\overline{T} = n_1 \overline{a} + n_2 \overline{b} + n_3 \overline{c} \tag{1.2}$$

FIGURE 1.1 Unit cell geometrical representation.

Until now, we have considered an infinite lattice, but a real material has limited dimensions, that is, n_1 , n_2 , n_3 has boundaries. However, an infinite array of unit cells is a good approximation for regions relatively far from the surface, which constitutes the major part of the whole material [5]. At this point, it is necessary to recognize that a real crystal has imperfections, such as vacancies, dislocations, and grain boundaries.

Since a lattice is just a set of points, we will need another entity to describe the real crystal. That is, it is required to locate a set of atoms named "basis" in the vicinity of the lattice sites. Therefore, a crystal will be a combination of a lattice and a basis of atoms. In Figure 1.3, a representation of the operation

lattice + basis = crystal

FIGURE 1.2 Wigner–Seitz cell in two dimensions.

is given.

In order to systematize in a logical form the lattices that are compatible with a periodicity condition, the French physicist Auguste Bravais, in 1845, demonstrated that the lattice points in three dimensions, congruent with the periodicity requirement, are the roots of the following trigonometric equation [2]:

FIGURE 1.3 Representation of the operation: lattice + basis = crystal.

TADIE 1 1

Description of the Seven Crystalline Systems							
System	Parameters Describing the Unit Cell						
Cubic	$a = b = c; \alpha = \beta = \gamma = 90^{\circ}$						
Hexagonal	$a = b \neq c$; $\alpha = \beta = 90^{\circ}$; $\gamma = 120^{\circ}$						
Rhombohedral or trigonal	$a = b = c$; $\alpha = \beta = \gamma \neq 90^{\circ}$ and $< 120^{\circ}$						
Tetragonal	$a = b \neq c$; $\alpha = \beta = \gamma = 90^{\circ}$						
Orthorhombic	$a \neq b \neq c$; $\alpha = \beta = \gamma = 90^{\circ}$						
Monoclinic	$a \neq b \neq c$; $\alpha = \beta = 90^{\circ} \neq \gamma$						
Triclinic	$a \neq b \neq c$; $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$						

$$\sin^{2}\left[\frac{\pi\xi}{a}\right] + \sin^{2}\left[\frac{\pi\eta}{b}\right] + \sin^{2}\left[\frac{\pi\zeta}{c}\right] = 0$$
(1.3)

where

 ξ , η , and ζ are spatial coordinates related with an oblique three-coordinate axis system

 \overline{a} , \overline{b} , and \overline{c} (see Figure 1.1) are the unit vectors of the coordinate system

Bravais then showed that in three dimensions, there are only 14 different lattice types, currently named the Bravais lattices, which are grouped in seven crystal systems [1–3] (see Table 1.1).

Each lattice has an inversion center, a unique set of axes and symmetry planes, and there are possible operations like rotation, reflection, and its combinations [1]. In a case where some symmetry operations leave unchanged a particular point of the fixed lattice, they form a group called the crystallographic point groups. In this regard, there are 32 point groups in three dimensions. Besides, the combination of the point group symmetry operations with the translation symmetry gives rise to the crystallographic space groups. In relation with these operations, there are 230 space groups in three dimensions [1].

Each crystal system is related with a parallelepiped whose vertices are compatible with the sites of the corresponding Bravais lattice (see Figure 1.4) [1–3]. The parallelepiped is described with six parameters, as was previously stated for the unit cell. The most symmetrical crystal system has an essential symmetry, 4 threefold axes, and is named the cubic system. A hexagonal lattice is characterized completely by a regular hexahedral prism, having a sixfold axes as the essential symmetry. This crystal system is named the hexagonal system. The Bravais trigonal lattice is characterized by a geometrical figure that results when a cube is stretched along one of its diagonals (see Figure 1.4). In addition, a rectangular prism with at least one square face has a tetragonal system. Stretching the tetragonal prism along one of the axes produces the orthorhombic prism, having three orthogonal twofold axes as the essential symmetry, and is the origin of the orthorhombic system. To complete the seven crystal systems, it is necessary to include the monoclinic system, which has only a twofold axes as the essential symmetry, and the triclinic system, which has only an inversion center.

Within a given crystal system, a supplementary subdivision is necessary to be made, in order to produce the 14 Bravais lattices. In this regard, it is necessary to make a distinction between the following types of Bravais lattices, that is, primitive (P) or simple (S), base-centered (BC), face-centered (FC), and body-centered (BoC) lattices [1–3].

In Table 1.2, the subtypes corresponding to each crystal system are listed and in Figure 1.4, the 14 Bravais lattices in three dimensions are illustrated.

Among the 14 cells that generate the Bravais lattices (see Figure 1.4), only the P-type cells are considered primitive unit cells. It is possible to generate the other Bravais lattices with primitive unit cells. However, in practice, only unit cells that possess the maximum symmetry are chosen (see Figure 1.4 and Table 1.2) [1–6].

FIGURE 1.4 Bravais lattices.

TABLE 1.2Subtypes of Lattices in the Seven Crystalline Systems

System	Lattice Types		
Cubic	Simple cubic (SC), body-centered cubic (BCC), and face-centered cubic (FCC)		
Hexagonal	Simple hexagonal (SH)		
Rhombohedral or trigonal	Simple rhombohedral (SR)		
Tetragonal	Simple tetragonal (ST) and body-centered tetragonal (BCT)		
Orthorhombic	Simple orthorhombic (SO), body-centered orthorhombic (BoCO), face-centered orthorhombic (FCO), and base-centered orthorhombic (BCO)		
Monoclinic	Simple monoclinic (SM) and base-centered monoclinic (BCM)		
Triclinic	Simple triclinic (STr)		
Sources: Schwarzenbach. 1997; Kittel, Cl Wiley & Sons,	varzenbach, D., <i>Crystallography</i> , John Wiley & Sons, New York, ; Kittel, Ch., <i>Introduction to Solid State Physics</i> , 8th edn., John y & Sons, New York, 2004; Myers, H.P., <i>Introduction to Solid</i>		

State Physics, 2nd edn., CRC Press, Boca Raton, FL, 1997.

1.2.2 CRYSTALLOGRAPHIC DIRECTIONS AND PLANES

The following steps must be followed in order to specify a crystallographic direction:

- 1. The vector that defines the crystallographic direction should be situated in such a way that it passes through the origin of the lattice coordinate system.
- 2. The projections of this vector on each of the three axis is determined and measured in terms of the unit cell dimensions, *a*, *b*, *c*, obtaining three integer numbers, n_1 , n_2 , n_3 .
- 3. These numbers are reduced to smallest integers, u, v, w.
- 4. These three numbers, enclosed in square brackets and not separated with commas, [*uvw*], denote the crystallographic direction.

For example, the direction of the positive x-axis is denoted by [100], the direction of the positive y-axis is denoted by [010], and the direction of the positive z-direction is denoted by [001] (see Figure 1.1).

For a crystal having a hexagonal symmetry, a set of four numbers, [uvtw], named the Miller– Bravais coordinate system (see Figure 1.5), is used to describe the crystallographic directions, where the first three numbers, that is, u, v, t, are projections along the axes a_1 , a_2 , and a_3 , describing the basal plane of the hexagonal structure, and w is the projection in the z-direction [2,3].

The following steps should be followed in order to specify a crystallographic plane:

- 1. The plane ought to be located in such a way that it does not pass through the origin of the lattice coordinate system.
- 2. After this, the interceptions of the plane on each of the three axis is determined in terms of the unit cell dimensions, *a*, *b*, *c*, and then obtaining three integer numbers p_1 , p_2 , p_3 .
- 3. The reciprocals of these numbers are then taken and thereafter reduced to smallest integers *h*, *k*, *l*.
- 4. These three numbers enclosed in parentheses and not separated with commas, that is, *(hkl)*, named the Miller indexes, denote the crystallographic plane.

For example, the plane perpendicular to the x-axis is denoted by (100), the plane perpendicular to the y-axis is denoted by (010), and the plane perpendicular to the positive z-direction is denoted by (001).

For a crystal exhibiting a hexagonal symmetry, a set of four numbers, (hkil), (see Figure 1.5) is used to describe the crystallographic planes, where the first three numbers, that is, h, k, i, are the intercepts of the plane on each of the three axis measured in terms of the unit cell dimensions along the axes a_1 , a_2 , and a_3 , describing the basal plane of the hexagonal structure, and l is the projection in the z-direction.

FIGURE 1.5 Miller–Bravais coordinate system.

The position of a point inside the primitive unit cell is determined by a fraction of the axial length, *a*, *b*, *c*. For example, in a body-centered structure, the position of the central point is $\frac{1}{2}\frac{1}{2}\frac{1}{2}$.

1.2.3 Octahedral and Tetrahedral Sites in the FCC Lattice

In the FCC lattice, two types of interstitial sites can be recognized: octahedral sites (O-sites) and tetrahedral sites (T-sites). The O-sites are those which are enclosed by six nearest neighbor atoms at the same distances (see Figure 1.6).

On the other hand, a T-site is the geometric place that is formed when three spheres are in contact with each other, and a fourth sphere is placed in the depression created by the first three. In this case, a tetrahedral site is formed in between the four spheres. That is, if we join three small black spheres located in the centers of the faces (see Figure 1.7), surrounding the diagonal of the cube, we will construct a triangle.

FIGURE 1.7 Tetrahedral sites.

1.2.4 RECIPROCAL LATTICE

A unit cell in the reciprocal lattice is described by the vectors $\overline{a^*}$, $\overline{b^*}$, $\overline{c^*}$, which are defined as follows [2,3,5,6]:

$$\overline{a^*} = 2\pi \frac{\overline{b} \times \overline{c}}{V}, \quad \overline{b^*} = 2\pi \frac{\overline{c} \times \overline{a}}{V}, \quad \text{and} \quad \overline{c^*} = 2\pi \frac{\overline{a} \times \overline{b}}{V}$$
 (1.4)

where $V = \overline{a} \cdot (\overline{b} \times \overline{c})$ Hence,

$$\overline{a} \cdot \overline{a^*} = \overline{b} \cdot \overline{b^*} = \overline{c} \cdot \overline{c^*} = 2\pi \tag{1.5a}$$

and

$$\overline{a} \bullet \overline{b^*} = \overline{a} \bullet \overline{c^*} = \overline{b} \bullet \overline{a^*} = \overline{b} \bullet \overline{c^*} = \overline{c} \bullet \overline{a^*} = \overline{c} \bullet \overline{b^*} = 0$$
(1.5b)

This means that $\overline{a^*}$ is perpendicular to both \overline{b} and \overline{c} , $\overline{b^*}$ is perpendicular to both \overline{a} and \overline{c} , and $\overline{c^*}$ is perpendicular to both \overline{b} and \overline{a} .

Materials Physics

Similar to the direct lattice, all the possible points that lie at the reciprocal lattice can be represented as follows:

$$\overline{G_{hkl}} = h\overline{a^*} + k\overline{b^*} + l\overline{c^*}$$
(1.6)

Now, since the Miller indices of a plane implies that the plane intercepts the base vectors at the point $\frac{\overline{a}}{h}, \frac{\overline{b}}{k}, \frac{\overline{c}}{l}$, a triangular portion of the plane has sides

$$\left(\frac{\overline{a}}{h} - \frac{\overline{b}}{k}\right), \left(\frac{\overline{b}}{k} - \frac{\overline{c}}{l}\right), \left(\frac{\overline{c}}{l} - \frac{\overline{a}}{h}\right)$$

Considering Equations 1.5, it is possible to show that

$$\left(\frac{\overline{a}}{h} - \frac{\overline{b}}{k}\right) \bullet \overline{G_{hkl}} = \left(\frac{\overline{b}}{k} - \frac{\overline{c}}{l}\right) \bullet \overline{G_{hkl}} = \left(\frac{\overline{c}}{l} - \frac{\overline{a}}{h}\right) \bullet \overline{G_{hkl}} = 0$$

Consequently, the vector $\overline{G_{hkl}} = \overline{G}_{hkl}$ is perpendicular to the plane (*hkl*). Then, it is possible to calculate $|\overline{G_{hkl}}|$, that is, the vector modulus. To perform this calculation, we must define the unit vector in the direction of the vector $\overline{G_{hkl}}$ as follows:

$$\overline{n}_{hkl} = \frac{\overline{G_{hkl}}}{|\overline{G_{hkl}}|}$$

Subsequently, since by definition the interplanar distance, that is, the distance between the (hkl) planes, is

$$d_{hkl} = \frac{\overline{a}}{h} \bullet \overline{n}_{hkl} = \frac{\overline{a}}{h} \bullet \frac{G_{hkl}}{|\overline{G}_{hkl}|} = \frac{2\pi}{|\overline{G}_{hkl}|}$$

Consequently,

$$d_{hkl} = \frac{2\pi}{|G_{hkl}|} \tag{1.7}$$

1.3 BLOCH THEOREM

The Bloch theorem is one of the tools that helps us to mathematically deal with solids [5,6]. The mathematical condition behind the Bloch theorem is the fact that the equations which governs the excitations of the crystalline structure such as lattice vibrations, electron states and spin waves are periodic. Then, to solve the Schrödinger equation for a crystalline solid where the potential is periodic, $\{V(\overline{r} + \overline{R}) = V(\overline{r})\}$, this theorem is applied [5,6].

If $V(\overline{r})$ is the potential "seen" by an electron belonging to the solid, then the one electron wave function, $\psi(\overline{r})$, satisfies the Schrödinger equation:

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\bar{r}) + V(\bar{r})\psi(\bar{r}) = E\psi(\bar{r})$$
(1.8)

In the case of lattice waves and spin waves, the procedure is different but the principle is the same. The periodic potential is represented with the help of a Fourier series

$$V(\overline{r}) = \sum_{\overline{G}_{hkl}} V_{\overline{G}_{hkl}} e^{i\overline{G}_{hkl} \cdot \overline{r}}$$

where $\overline{G_{hkl}} = \overline{d_{hkl}^*} = h\overline{a^*} + k\overline{b^*} + l\overline{c^*}$ is the reciprocal lattice vector. Since V(r) is a real function, it is necessary that

$$V_{\overline{G}_{hkl}}^* = V_{-\overline{G}_{hkl}}$$

since

$$V^*(\bar{r}) = \sum_{\overline{G}_{hkl}} V_{\overline{G}_{hkl}} e^{-i\overline{G}_{hkl}\cdot\bar{r}} = \sum_{\overline{G}_{hkl}} V_{-\overline{G}_{hkl}} e^{i\overline{G}_{hkl}\cdot\bar{r}} = V(\bar{r})$$

Given that the Schrödinger equation

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V(\bar{r}) - E\right)\psi(\bar{r}) = (\hat{H}(r) - E)\psi(\bar{r})$$

is periodic, that is,

$$(\hat{H}(r) - E)\psi(\bar{r}) = (\hat{H}(r + \bar{R}) - E)\psi(\bar{r} + \bar{R})$$

Then, the wave function $\psi(\overline{r})$ and the wave function $\psi(\overline{r} + \overline{R})$ must differ only in a constant, then

$$\Psi(\bar{r}+R) = \vartheta_{\bar{R}}\Psi(\bar{r})$$

where the condition of normalization required by all the wave functions requires that

$$\left|\vartheta_{\overline{R}}\right|^2 = 1$$

Consequently,

$$\vartheta_{\overline{R}} = \mathrm{e}^{-i.\alpha(R)}$$

where $\alpha(\overline{R})$ is a real number. Besides, since

$$\vartheta_{\overline{R}_1}\vartheta_{\overline{R}_2} = \vartheta_{\overline{R}_1+\overline{R}_2}$$

Materials Physics

we will then have that

$$\alpha(\overline{R}_1) + \alpha(\overline{R}_2) = \alpha(\overline{R}_1 + \overline{R}_2)$$

Subsequently,

$$\alpha(\overline{R}) = \overline{k} \bullet \overline{R}$$

 $\vartheta_{\overline{R}} = \mathrm{e}^{-i.\overline{k} \cdot \overline{R}}$

 $\Psi(\bar{r} + \bar{R}) = e^{-i\bar{k}\cdot\bar{R}}\Psi(\bar{r})$

and

Therefore, the periodic function

$$u(\bar{r}) = e^{-ik \cdot \bar{r}} \Psi(\bar{r})$$

Have the correct form to be a solution of Equation 1.8. As a result, the Bloch theorem affirms that the solution to the Schrödinger equation may be a plane wave multiplied by a periodic function, that is [5,6],

$$\Psi_{\bar{k}}(\bar{r}) = e^{i\bar{k}\cdot\bar{r}}u_{\bar{k}}(\bar{r}) \tag{1.9a}$$

where the periodic function is given by

$$u_{\overline{k}}(\overline{r}) = \sum_{\overline{G}_{hkl}} u_{\overline{G}_{hkl}}(\overline{k}) e^{i\overline{G}_{hkl} \cdot \overline{r}}$$
(1.9b)

It is necessary to state now that the rigorous fulfillment of the Bloch theorem needs an infinity lattice. In order to calculate the number of states in a finite crystal, a mathematical requirement named the Born–Karman cyclic boundary condition is introduced. That is, if we consider that a crystal with dimensions $N_1\overline{a}$, $N_2\overline{b}$, $N_3\overline{c}$ is cyclic in three dimensions, then [5]

$$\psi(\overline{r}+N_1\overline{a}) = \psi(\overline{r}), \quad \psi(\overline{r}+N_2b) = \psi(\overline{r}), \text{ and } \psi(\overline{r}+N_3\overline{c}) = \psi(\overline{r})$$

For a Bloch state, the above conditions mean that

$$e^{-i.\overline{k}\bullet N_1\overline{a}} = e^{-i.\overline{k}\bullet N_2\overline{b}} = e^{-i.\overline{k}\bullet N_3\overline{c}}$$

This condition can be satisfied only if

$$\overline{k} = \frac{2\pi m_1}{N_1} \overline{a^*} + \frac{2\pi m_2}{N_2} \overline{b^*} + \frac{2\pi m_3}{N_3} \overline{c^*}$$

where

 $\frac{m_1}{a^*}, \frac{m_2}{b^*}, \frac{m_3}{c^*}$ are integers

The allowed values of m_1 , m_2 , and m_3 must run through the values:

 $0 \le m_1 \le N_1$, $0 \le m_2 \le N_2$, and $0 \le m_3 \le N_3$

However, this is not the proper range, and the appropriate extent is

$$-\frac{N_1}{2} \le m_1 \le \frac{N_1}{2}, \quad -\frac{N_2}{2} \le m_2 \le \frac{N_2}{2}, \text{ and } -\frac{N_3}{2} \le m_3 \le \frac{N_3}{2}$$

which will give a cell centered in origin, as was previously observed for the Wigner–Seitz in real space, but now in the \overline{k} space. This cell is named the Brilloin zone, which is the Wigner–Seitz cell in the \overline{k} space or inverse space.

The number of allowed states is then $N_1 \times N_2 \times N_3 = M$, which is the number of cells in a real macroscopic finite crystal. That is, the number of allowed wave vectors in a Brilloin zone is exactly the number of unit cells in the crystal under consideration.

1.4 LATTICE VIBRATIONS

1.4.1 PHONONS

Lattice vibrations are fundamental for the understanding of several phenomena in solids, such as heat capacity, heat conduction, thermal expansion, and the Debye–Waller factor. To mathematically deal with lattice vibrations, the following procedure will be undertaken [7]: the solid will be considered as a crystal lattice of atoms, behaving as a system of coupled harmonic oscillators. Thereafter, the normal oscillators of this system can be found, where the normal modes behave as uncoupled harmonic oscillators, and the number of normal vibration modes will be equal to the degrees of freedom of the crystal, that is, 3nM, where n is the number of atoms in the unit cell and M is the number of units cell in the crystal [8].

In order to solve this problem, it is possible to use the Hamiltonian procedure of classical mechanics [8]. Hence, the classical Hamiltonian of a system of coupled harmonic oscillators can be written as follows [7]:

$$H = \sum_{i} \frac{(p_{i}')^{2}}{2m_{i}} + \sum_{i,j} \frac{1}{2} C_{i,j}' q_{i}' q_{j}'$$
(1.10)

where

 q'_i are the coordinates of displacement from the equilibrium position $p'_i = m_i \frac{dq'_i}{dt}$ are the impulses $C'_{ii} = C'_{ii}$ are constants

The Hamiltonian can be simplified if we made the following substitutions in order to eliminate the constant

$$q_i = q_i' \sqrt{m_i}$$

Materials Physics

and

And finally,

$$p_i = \frac{\partial L}{\partial \dot{q}_i} = \frac{p'_i}{\sqrt{m_i}}$$

 $C_{i,j} = \frac{C'_{i,j}}{\sqrt{m_i m_j}}$

where L is the Lagrangian function. Consequently, the Hamiltonian can be written as follows:

$$H = \sum_{i} \frac{(p_i)^2}{2} + \sum_{i,j} \frac{1}{2} C_{i,j} q_i q_j$$
(1.11)

Following the rules of the Hamiltonian method, the equations of motion can be written as follows:

$$\dot{p}_i = -\frac{\partial H}{\partial q_i} = -\sum_i C_{i,j} q_j \quad \text{and} \quad \dot{q}_i = \frac{\partial H}{\partial p_i} = p_i$$
(1.12)

Equation 1.12 is a system of linear differential equations with constant coefficients. Then, following the rules for solving this type of an equation, its solution can be written in the following form [7]:

$$q_i^{\beta} = \mathrm{e}^{-i\omega\beta t} c_i^{\beta}$$

where

 $\omega_{\beta} = 2\pi v_{\beta}$ are the angular frequencies v_{β} are frequencies

The condition for solving this system is [9]

$$|C_{i,j} - \omega^2 \delta_{i,j}| = 0 \tag{1.13}$$

which gives an equation that allows us to get the values of ω_{β} and the corresponding orthogonal vectors c_i^{β}

$$\sum_{i} c_{i}^{\beta} c_{i}^{\delta} = \delta_{\beta\delta}$$

where the general solution for q_i has the following form:

$$q_i = \sum_{\beta} L_{\beta} q_i^{\beta} \tag{1.14}$$

where L_{β} are constants. In essence, during the previous procedure we have separated the motion of the system in normal vibration modes, where each one has a frequency ω_{β} . Thereafter, the motion of the system is described as a sum of normal vibration modes.

Now making the following substitution [7]

$$Q_{\beta} = L_{\beta} \mathrm{e}^{-i\omega_{\beta}t}$$

it is then possible to make the following variable substitution:

$$q_i = \sum_{\beta} Q_{\beta} c_i^{\beta}$$

And then get [10]

$$H = \sum_{i} h_{\beta} \tag{1.15}$$

where

$$h_{\beta} = \frac{1}{2} p_{\beta}^2 + \frac{1}{2} \omega_{\beta}^2 Q_{\beta}^2$$
(1.16)

If we now change the coordinates and the momentum by their quantum mechanical corresponding operators, we will get

$$\hat{H} = \sum_{i} \hat{h}_{\beta}$$

in which

$$\hat{h}_{\beta} = -\frac{\hbar^2}{2} \frac{\partial^2}{\partial Q_{\beta}^2} + \frac{1}{2} \omega_{\beta}^2 Q_{\beta}^2$$

where

$$\hbar = \frac{h}{2\pi}$$

and *h* is the Planck's constant. This is the Schrödinger equation for a quantum harmonic oscillator of frequency ω_{B} . Therefore, the energy of the system will be

$$E = \sum_{\beta} \left(N_{\beta} + \frac{1}{2} \right) \hbar \omega_{\beta} \tag{1.17}$$

where

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega\tag{1.18}$$

are the energy levels of a quantum harmonic oscillator. Consequently, we have reduced the lattice energy to the summation of the energy of different noncoupled harmonic oscillators.

It is very well known that Einstein, developing Planck's ideas, quantized the electromagnetic field by introducing a quantum particle named the photon. Consequently, each mode or state of a classical electromagnetic field is characterized by an angular frequency, ω , and a wave vector, $\bar{k} = \frac{2\pi}{\lambda}\bar{s}$, in which \bar{s} is a unit vector normal to the wave fronts. Then, the modes or states are replaced by the photon that carries energy

$$E = \hbar \omega$$

and momentum

$$\overline{p} = \hbar \overline{k}$$

where

$$\hbar = \frac{h}{2\pi}$$

$$\omega = 2\pi v \text{ is the } a$$

 $\omega = 2\pi v$ is the angular frequency v is the frequency of the electromagnetic radiation λ is the wavelength of the electromagnetic radiation

Similarly, during their effort to understand the thermal energy of solids, Einstein and Debye quantized the lattice waves and the resulting quantum was named phonon. Consequently, it is possible to consider the lattice waves as a gas of noninteracting quasiparticles named phonons, which carries energy, $E = \hbar \omega$, and momentum, $\overline{p} = \hbar \overline{k}$. That is, each normal mode of oscillation, which is a one-dimensional harmonic oscillator, can be considered as a one-phonon state.

1.4.2 Bose–Einstein Distribution

It is possible to calculate the average energy for a single oscillation mode, following the canonical ensemble methodology [6,11] as

$$\langle E \rangle = \frac{\sum_{0}^{\infty} \left(n + \frac{1}{2} \right) \hbar \omega e^{-\frac{\left(n + \frac{1}{2} \right) \hbar \omega}{kT}}}{\sum_{0}^{\infty} e^{-\frac{\left(n + \frac{1}{2} \right) \hbar \omega}{kT}}} = \frac{\hbar \omega}{2} + \frac{\sum_{0}^{\infty} n \hbar \omega e^{-\frac{\left(n + \frac{1}{2} \right) \hbar \omega}{kT}}}{\sum_{0}^{\infty} e^{-\frac{\left(n + \frac{1}{2} \right) \hbar \omega}{kT}}}$$

where k is the Boltzmann constant. It is easy to show that

$$\langle E \rangle = \frac{\hbar\omega}{2} - \frac{\partial}{\partial \left(\frac{1}{kT}\right)} \ln \left(\sum_{0}^{\infty} e^{-\frac{\hbar\omega}{kT}}\right) = \left(\frac{e^{-\frac{\hbar\omega}{kT}}}{1 - e^{-\frac{\hbar\omega}{kT}}} + \frac{1}{2}\right) \hbar\omega = \left(n(\omega, T) + \frac{1}{2}\right) \hbar\omega$$

Consequently,

$$n(\omega,T) = \frac{1}{e^{\frac{\hbar\omega}{kT}} - 1}$$
(1.19)

which is the Bose–Einstein distribution function. Consequently, phonons behave as bosons [12]. If we use Equation 1.19 to describe each vibration mode, then

$$n_{\beta}(\omega_{\beta},T) = \frac{1}{e^{\frac{\hbar\omega_{\beta}}{kT}} - 1}$$
(1.20)

Then, Equation 1.20 tells us that there are on average $n_{\beta}(\omega_{\beta}, T)$ phonons in the β mode, where this mode contributes energy

$$\langle E_{\beta} \rangle = \left(n_{\beta}(\omega_{\beta}, T) + \frac{1}{2} \right) \hbar \omega_{\beta}$$

1.4.3 HEAT CAPACITY OF SOLIDS

The average energy in the canonical ensemble of the whole system is

$$U = \langle E_T \rangle = E_0 + \sum_{\beta} \hbar \omega_{\beta} \left(\frac{1}{e^{\beta \hbar \omega_{\beta}} - 1} \right)$$
(1.21)

Besides, the canonical partition function [11] of the system of oscillators is [13]

$$Z = e^{-\frac{E_0}{kT}} \prod_{\beta} \frac{1}{1 - e^{-\frac{\hbar\omega_{\beta}}{kT}}}$$

Then,

$$\ln Z = \frac{E_0}{kT} - \sum_{\beta} \ln \left(1 - e^{-\frac{\hbar\omega_{\beta}}{kT}} \right)$$
(1.22)

We will now attempt an analysis of Equation 1.21 for n mol of a metallic, ionic, or covalent crystal, with 1 ion per lattice site, that is, for an Avogadro number, N_A , of ions at a high temperature. At these conditions, $kT \gg \hbar \omega_{\beta}$, and, consequently,

$$\langle E_T \rangle = E_0 + \sum_{\beta} \hbar \omega_{\alpha} \left(\frac{1}{e^{\frac{\hbar \omega_{\beta}}{kT}} - 1} \right) = E_0 + \sum_{\alpha} kT = E_0 + 3NkT = E_0 + 3nRT$$
(1.23)

where *n* is the number of moles.

Since the heat capacity at constant volume is defined as

14

$$C_{\rm V} = \left(\frac{\partial U}{\partial T}\right)_{\rm V} = \left(\frac{\partial \langle E_T \rangle}{\partial T}\right)_{\rm V} \tag{1.24}$$

then with the help of Equations 1.23 and 1.24, we can obtain, for n = 1

$$C_{\rm V} = 3R$$

which is the Dulong–Petit law, where $R = kN_A$ is the ideal gas constant. The same result can as well be obtained with the following argument: a classical harmonic oscillator included in a system of harmonic oscillators (as is the proposed model of a solid) in thermal equilibrium at a temperature *T* has an average energy equal to kT, since the number of normal modes is 3N, where $N = nN_A$ is the number of atoms in the solid, N_A is the Avogadro number, and *n*, the number of moles. Then, the average classical internal energy of a solid for n = 1 is 3RT and $C_V = 3R$.

However, we need to know the behavior of solids at all temperatures. Einstein, in 1907, to deal with the problem, assumed that all the normal vibration modes have the same angular frequency ω_E . As a result, Equation 1.21 will take the following form [12]:

$$\langle E_T \rangle = E_0 + \frac{3N_A \hbar \omega_E}{e^{\frac{\hbar \omega_E}{kT}} - 1} = E_0 + \frac{3N_A k \Theta_E}{e^{\frac{\Theta_E}{T}} - 1}$$

where

 $k\Theta_E = \hbar \omega_E$ Θ_E is a characteristic temperature of the system

Consequently, the heat capacity at a constant volume will be

$$C_{\rm V} = 3N_{\rm A}k \left(\frac{\Theta_E}{T}\right)^2 \frac{{\rm e}^{\frac{\Theta_E}{T}}}{\left({\rm e}^{\frac{\Theta_E}{T}} - 1\right)^2}$$

where the limit for the high temperature is $C_V = 3R$

Debye, in 1912, made more realistic assumptions in order to deal with the lattice vibration problem. He considered that because of the large number of atoms in the crystal the number of normal vibration modes is very high, and it is possible to consider that the vibrations are continuously distributed over a specified range of frequencies, $0 < v < v_m$, where the distribution is such that the number of normal vibration modes in the interval from v to v + dv is g(v)dv. Consequently, in Equation 1.22, it is possible to substitute the summation for the integration. Therefore [13],

$$\ln Z = -\frac{E_0}{kT} - \int_0^{v_m} \ln \left(1 - e^{-\frac{hv_\alpha}{kT}} \right) g(v) dv$$
(1.25)

The density of elastic standing waves in a continuous solid is given by [14]

$$g(\mathbf{v}) = \frac{12\pi V \mathbf{v}^2}{V_s^3}$$
(1.26a)

where

 $V_{\rm s}$ is the average speed of sound waves in the solid

v is the frequency of the standing wave

V is the volume of the solid

The derivation of Equation 1.26a is carried out by calculating the number of standing waves in a cubic cavity of volume *V*, and follows a process similar to that applied in Section 1.5.3 for calculating the density of states for an electron gas [14].

Now, since

$$\int_{0}^{v_{\rm m}} g(v) \, \mathrm{d}v = \int_{0}^{v_{\rm m}} \frac{12\pi v^2}{V_{\rm s}^3} \, \mathrm{d}v = 3N_{\rm A}$$

then

$$\mathbf{v}_{\mathrm{m}} = \left(\frac{3N_{\mathrm{A}}V_{\mathrm{s}}^3}{4\pi V}\right)^{\frac{1}{3}}$$

 $g(\mathbf{v}) = \frac{9N_{\rm A}}{v_{\rm m}^3} v^2$

and

$$\ln Z = -\frac{E_0}{kT} - \frac{9N_A}{v_m^3} \int_0^{\omega_m} v^2 \ln\left(1 - e^{-\frac{hv}{kT}}\right) dv$$

$$U = kT^2 \left(\frac{\partial \ln Z}{\partial V}\right)$$
 and $C_V = \left(\frac{\partial U}{\partial T}\right)_V = \left(\frac{\partial \langle E_T \rangle}{\partial T}\right)_V$

we will get (Figure 1.8).

$$C_{\rm V} = 9N_{\rm A}k \left(\frac{T}{\Theta_{\rm D}}\right) \int_{0}^{\frac{\Theta_{\rm D}}{T}} \frac{y^4 {\rm e}^y}{{\rm e}^y - 1} {\rm d}y$$
(1.27)

(1.26b)

where

 $k\Theta_{\rm D} = hv_{\rm m}$ defines the Debye temperature, $\Theta_{\rm D}$ $y = \frac{hv}{kT}$ is an integration variable

The integral in Equation 1.27 cannot be analytically solved; however, for a high temperature, $\frac{T}{\Theta_{\rm D}} \gg 1$,

FIGURE 1.8 Graphic representation of the Debye law of specific heat.

$$C_{\rm V} = 9N_{\rm A}k \left(\frac{T}{\Theta_{\rm D}}\right) \int_{0}^{\frac{\Theta_{\rm D}}{T}} y^4 dy = 9N_{\rm A}k \left(\frac{T}{\Theta_{\rm D}}\right)^3 \left(\frac{1}{3}\right) \left(\frac{\Theta_{\rm D}}{T}\right)^3 = 3N_{\rm A}k$$

On the other hand, the integral in Equation 1.27 for a low temperature, $\frac{T}{\Theta_{\rm D}} \ll 1$, can be written as follows:

$$C_{\rm V} = 9N_{\rm A}k \left(\frac{T}{\Theta_{\rm D}}\right) \int_{0}^{\frac{\Theta_{\rm D}}{T}} \frac{y^4 e^y}{e^y - 1} dy \approx 9N_{\rm A}k \left(\frac{T}{\Theta_{\rm D}}\right) \int_{0}^{\infty} \frac{y^4 e^y}{e^y - 1} dy \qquad (1.28)$$

Then, the integral in the right of Equation 1.28 can be integrated as follows:

$$C_{\rm V} = \frac{12\pi^4}{5} N_{\rm A} k \left(\frac{T}{\Theta_{\rm D}}\right)^3$$

1.5 ELECTRONS IN CRYSTALLINE SOLID MATERIALS

1.5.1 ELECTRON GAS

In a free atom of a metallic element, the valence electron moves in an orbital around the ion formed by the nucleus and the core electrons. When a solid metal is formed, these external orbitals overlap and interact. Subsequently, the outer electrons do not belong anymore to the atom. In this case, the wave function describing the state of these electrons is a solution of the Schrödinger equation for the motion in the potential of all the ions. As a consequence, in a metal, the bonding is carried out by the conduction electrons that form a cloud of electrons, which fills the space between the metal ions and mutually joins the ions throughout the Coulombic attraction between the electron gas and positive metal ions [14–16]. In this regard, the metallic crystal is held together by electrostatic forces of attraction between the positively charged metal ions and the nonlocalized, negatively charged electrons, that is, the electron gas. In the framework of the electron gas model or the Drude model, the system is formed by the cations plus a free electron gas. The premises behind the Drude model are [14–16]

- Electrons collide with positive ions.
- Collisions are instantaneous events.
- Electrons lose all extra energy gained from the external electric field during a collision.
- Between collisions the electrons moves freely.
- Mutual repulsion between electrons is ignored.
- Finally, it is possible to state that the electron is confined to an energy band, named the conduction band, as will be explained later.

Now, if free electrons are influenced by an external electric field, \overline{E}_x , then a net electron drift in the *x*-direction is produced (see Figure 1.9). This net drift, along the force, which is created by the electric field, is superimposed on the chaotic motion of the electron gas. The end result of this process is that, following numerous scattering episodes, the electron has moved by a net distance, Δx , from its initial position in the direction of the positive terminal.

Following these assumptions, the Newton motion equation, along the *x*-axis, for the electrons in the free electron gas is given by

$$m_{\rm e} \frac{{\rm d}v_x}{{\rm d}t} = {\rm e} E_x - m_{\rm e} \frac{v_x}{\tau}$$

where

 τ is the time between collisions

 $m_{\rm e}$ and e are the mass and charge of the electron

Then, the steady-state solution of the Newton equation for the electron in the electron gas under the influence of an external electric field is given by

$$v_x^{\text{drift}} = \frac{\mathrm{e}\tau}{m_{\mathrm{e}}} E_z$$

Now,

$$J_x = \sigma E_z$$

FIGURE 1.9 Electron trajectories in the electron gas or Drude model.

where

 J_x is the current density σ is the conductivity

And with the help of the definition of mobility, *M*,

 $v_x^{\text{drift}} = ME_x$

It is possible to show that

$$\sigma = \frac{ne^2\tau}{m_e} = neM \tag{1.29}$$

The previously described theory in its original form assumes that the classical kinetic theory of gases is applicable to the electron gas, that is, electrons are expected to have velocities that are temperature dependent according to the Maxwell–Boltzmann distribution law. But, the Maxwell–Boltzmann energy distribution has no restrictions to the number of species allowed to have exactly the same energy. However, in the case of electrons, there are restrictions to the number of electrons with identical energy, that is, the Pauli exclusion principle; consequently, we have to apply a different form of statistics, the Fermi–Dirac statistics.

1.5.2 FERMI-DIRAC DISTRIBUTION

One of the simplest procedures to get the expression for the Fermi–Dirac (F–D) and the Bose– Einstein (B–E) distributions, is to apply the grand canonical ensemble methodology for a system of noninteracting indistinguishable particles, that is, fermions for the Fermi–Dirac distribution and bosons for the Bose–Einstein distribution. For these systems, the grand canonical partition function can be expressed as follows [12]:

$$\Theta = \sum_{N=0}^{\infty} \lambda^{N} \sum_{\{N_{k}\}} e^{\frac{-\sum_{k} N_{k} \varepsilon_{k}}{kT}}$$
(1.30)

where

 ε_k are the energy states of the individual particles is the number of particles in the system

 $\lambda = e^{-\frac{F}{kT}}$, in which μ is the chemical potential of the system of N indistinguishable noninteracting particles

The summation over $\{N_k\}$ means that we are summing the particle distributions in the energy states accessible to the system where

$$N = \sum_{k} N_{k}$$

and

$$E_j = \sum_k N_k \varepsilon_k$$

is the energy of the particle system; then, rearranging Equation 1.30 leads to

$$\Theta = \sum_{N=0}^{\infty} \lambda^N \sum_{\{N_k\}} e^{\frac{-\sum_k N_k \varepsilon_k}{kT}} = \sum_{N=0}^{\infty} \sum_{\{N_k\}} \lambda^{\sum_i N_i} e^{-\frac{\sum_k N_k \varepsilon_k}{kT}} = \sum_{N=0}^{\infty} \sum_{\{N_k\}} \prod_k \left(\lambda e^{-\frac{\varepsilon_k}{kT}} \right)^{N_k}$$
(1.31)

And continuing with the rearrangement of Equation 1.31, we will get

$$\Theta = \sum_{N_1}^{N_1^{\max}} \sum_{N_2}^{N_2^{\max}} \cdots \prod_k \left(\lambda e^{-\frac{\varepsilon_k}{kT}} \right)^{N_k} = \sum_{N_1=0}^{N_1^{\max}} \lambda e^{-\frac{\varepsilon_1}{kT}} \sum_{N_2=0}^{N_2^{\max}} \lambda e^{-\frac{\varepsilon_2}{kT}} \cdots = \prod_k \sum_{N_k=0}^{N_k^{\max}} \left(\lambda e^{-\frac{\varepsilon_k}{kT}} \right)^{N_k}$$
(1.32)

We know from the Pauli principle that for fermions $N_k = 0$ and $N_k = 1$. Consequently,

$$\Theta = \prod_{k} \left(1 + \lambda e^{-\frac{\varepsilon_{k}}{kT}} \right)^{N_{k}} = \prod_{k} \left(1 + e^{-\frac{\varepsilon_{k} - \mu}{kT}} \right)^{N_{k}}$$

Since [11,12]

$$\overline{N} = kT \left(\frac{\partial \ln \Theta(V, T, \mu)}{\partial \mu} \right)_{V, T} = \sum_{k} \frac{\lambda e^{-\frac{\varepsilon_{k}}{kT}}}{1 + \lambda e^{-\frac{\varepsilon_{k}}{kT}}}$$
(1.33)

the average number of particles in the state k in the Fermi–Dirac distribution is

$$\overline{N}_{k} = \frac{\lambda e^{-\frac{\varepsilon_{k}}{kT}}}{1 + \lambda e^{-\frac{\varepsilon_{k}}{kT}}}$$
(1.34)

As a corollary, in the case of bosons, since $N_k = 0, 1, 2, 3, ..., \infty$, then

$$\overline{N}_{k} = \frac{\lambda e^{\frac{\varepsilon_{k}}{kT}}}{1 - \lambda e^{\frac{\varepsilon_{k}}{kT}}}$$
(1.35)

which is equivalent to the previously obtained Bose–Einstein distribution, since in the case of bosons, there is no restriction on the total number of particles, and $\mu = 0$ [17].

In this regard, the probability of finding an electron in a state with energy E is given by the Fermi–Dirac distribution function, f(E), which is expressed as follows (Figure 1.10):

$$f_{\rm FD}(E) = \frac{1}{e^{\frac{E-\mu}{kT}} + 1} = \frac{1}{e^{\frac{E-E_{\rm F}}{kT}} + 1}$$

where

E is the state energy $\mu = E_F$ is the Fermi energy level

FIGURE 1.10 (a) Fermi–Dirac distribution for T = 0 K and (b) Fermi–Dirac distribution for T > 0 K.

k is the Boltzmann constant

T is the absolute temperature

The Fermi–Dirac distribution describes the statistics of electrons in the conduction band of a solid when the electrons interact with each other and the environment, so that they obey the Pauli exclusion principle.

In Figure 1.10, it is shown that the Fermi level is the energy of the highest occupied quantum state in a system of fermions at 0K, and that above 0K, because of thermal excitation, some of the electrons are at energies above $E_{\rm F}$.

1.5.3 DENSITY OF STATES FOR THE ELECTRON GAS

We will now calculate the density of electron states in the case of the electron gas. In this model, the core electrons are considered as nearly localized, and must be distinguished from the conduction electrons, which are supposed to freely move in Bloch states throughout the whole crystal [5]. Because of the fact that the potential is constant, the single-particle Hamiltonian is merely the kinetic energy of the electron, that is,

$$\hat{H} = -\frac{\hbar^2}{2m}\nabla^2 \tag{1.36}$$

Then, the conduction electron states are plane waves, that is,

$$\Psi_{\bar{k}} = \mathrm{e}^{i\bar{k}\cdot\bar{r}} \tag{1.37}$$

But, the real wave function must include the spin coordinate, then [6]

$$\Psi_{\bar{k},s} = \mathrm{e}^{i\bar{k}\cdot\bar{r}}\chi(s) \tag{1.38}$$

where

\sim	$(\underline{1})$	_	(1)
λ	(2)	_	(0)

and

$$\chi\left(-\frac{1}{2}\right) = \begin{pmatrix} 0\\1 \end{pmatrix}$$

FIGURE 1.11 Box of volume V = abc where the electrons are confined.

Substituting Equation 1.38 in Equation 1.36, we will get the energy of the electrons that is independent of the spin state [12,15]

$$E^{0}(k) = \frac{\hbar^{2}k^{2}}{2m_{e}}$$
(1.39)

where $k = |\overline{k}|$. Then, the system in consideration is equivalent to a quantum system of noninteracting electrons in the three-dimensional potential box (see Figure 1.11) [11,17]. In this case, the possible energies for electrons confined in a cubic box of volume, V = abc, are given by

$$E(n_1, n_2, n_3) = \frac{h^2}{8m_{\rm e}} \left(\frac{n_1^2}{a^2} + \frac{n_2^2}{b^2} + \frac{n_3^2}{c^2}\right)$$

where n_1 , n_2 , and n_3 are quantum numbers, each of which can be any integer number except 0. For a square box, where a = b = c = L, we will have

$$E(n_1, n_2, n_3) = \frac{h^2}{8L^2 m_e} (n_1^2 + n_2^2 + n_3^2) = \frac{h^2 R^2}{8m_e L^2}$$
(1.40)

where we have defined the sphere of radius

$$R^{2} = (n_{1}^{2} + n_{2}^{2} + n_{3}^{2}) = \frac{E}{A}$$

in which

$$A = \frac{h^2}{8L^2m_e}$$

Consequently, the number of states that can be accommodated in the space defined by $\overline{n} = n_1 \overline{i} + n_2 \overline{j} + n_3 \overline{k}$ (see Figure 1.12) is

FIGURE 1.12 $\overline{n} = n_1 \overline{i} + n_2 \overline{j} + n_3 \overline{k}$, space.

$$\eta = 2\left(\frac{1}{8}\right)\left(\frac{4}{3}\pi R^{3}\right) = \frac{1}{3}\pi \left(\frac{E}{A}\right)^{\frac{3}{2}}$$
(1.41)

where the factor 2 is due to the two spin states and the factor 1/8 is because only positive numbers of the quantum states are allowed. Then the density of states can be defined as follows:

$$g(E) = \frac{\mathrm{d}\eta}{\mathrm{d}E} = \frac{\pi}{2} \left(\frac{\sqrt{E}}{A^{3/2}} \right) \tag{1.42}$$

In this regard, if the probability of occupancy of a state at an energy E is $f_{FD}(E)$, in agreement with the Fermi–Dirac distribution, we are dealing with electrons, which are fermions. Then, the product $f_{FD}(E)g(E)$ is the number of electrons per unit energy per unit volume. Consequently, the area under the curve with the energy axis gives

$$N = \int_{0}^{\infty} g(E) f_{\rm FD}(E) dE$$
(1.43)

which is the number of free electrons in volume V.

We can now calculate the value of the Fermi energy level, because as the electrons fulfill the Pauli exclusion principle, only two electrons can occupy one energy state thereafter, since at T = 0 [K], $f_{\text{FD}}(E) = 1$, for $E < E_{\text{F}}(0)$ and $f_{\text{FD}}(E) = 0$; for $E > E_{\text{F}}(0)$, then

$$N = \int_{0}^{E_{\rm F}(0)} g(E) \, \mathrm{d}E = \frac{\pi}{2A^{3/2}} \int_{0}^{E_{\rm F}(0)} \sqrt{E} \, \mathrm{d}E = \frac{\pi}{3A^{3/2}} \left[E_{\rm F}(0) \right]^{3/2}$$

And as a result

$$E_{\rm F}(0) = \frac{h^2}{8m_{\rm e}} \left(\frac{3N}{\pi L^3}\right)^{2/3} = \frac{h^2}{8m_{\rm e}} \left(\frac{3n}{\pi}\right)^{2/3}$$
(1.44)

where
$$n = \left(\frac{N}{V}\right)$$
 and $V = L^3$

It is easy now to calculate the mean energy of an electron in a solid, $\overline{\varepsilon}_{average}$, at T = 0 [K], as follows:

$$\overline{\varepsilon}_{\text{average}}(0) = \frac{1}{N} \int_{0}^{\infty} Eg(E) f_{\text{FD}}(E) dE = \frac{1}{N} \int_{0}^{E_{\text{F}}(0)} Eg(E) dE = \left(\frac{3}{5}\right) E_{\text{F}}(0)$$

Above absolute zero, the average energy is approximately [2,15]

$$\overline{\varepsilon}_{\text{average}}(T) = \left(\frac{3}{5}\right) E_{\text{F}}(0) \left[1 + \frac{5\pi^2}{12} \left(\frac{kT}{E_{\text{F}}(0)}\right)^2\right]$$

Since $E_{\rm F}(0) \gg kT$

$$\overline{\varepsilon}_{\text{average}}(T) \approx \overline{\varepsilon}_{\text{average}}(0) = \frac{1}{2} m(\overline{\nu}_{\text{F}})^2$$

where \overline{v}_F is the root mean-square speed of the electrons in the valence band of a solid around the Fermi level. Then

$$\overline{\nu}_{\rm F} = \left(\frac{6E_{\rm F}(0)}{5m}\right)^{1/2} \tag{1.45}$$

This velocity of the electron is independent of temperature, in contradiction to the Maxwell-Boltzmann statistic, which states that

$$\left(\frac{1}{2}\right)m\langle v_e^2\rangle = \frac{3}{2}kT$$

1.5.4 ENERGY BAND MODEL

The electron gas model adequately describes the conduction of electrons in metals; however, it has a problem, that is, the electrons with energy near the Fermi level have wavelength values comparable to the lattice parameters of the crystal. Consequently, strong diffraction effects must be present (see below the diffraction condition (Equation 1.47). A more realistic description of the state of the electrons inside solids is necessary. This more accurate description is carried out with the help of the Bloch and Wilson band model [18].

If the problem is mathematically treated as a perturbation of the free-electron gas energy states caused by the presence of the periodic potential, $V(\overline{r})$, in the Schrödinger equation, then

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\bar{r}) + V(\bar{r})\psi(\bar{r}) = E\psi(\bar{r})$$

Then [5],

$$E(\bar{k}) = E^{0}(k) + \int \Psi_{\bar{k}}(\bar{r})V(\bar{r})\Psi_{\bar{k}}(\bar{r})d^{3}\bar{r} + \sum_{\bar{k}'} \frac{\int \Psi_{\bar{k}}(\bar{r})V(\bar{r})\Psi_{\bar{k}'}(\bar{r})d^{3}\bar{r}}{E^{0}(\bar{k}) - E^{0}(\bar{k}')}$$
(1.46)

Materials Physics

where

$$E^0(k) = \frac{\hbar^2 k^2}{2m}$$

Since diffraction is an effect linked to scattering, if a beam of fast electrons is being directed into a crystal, its scattering process will be described by the Born approximation where the rate of transition between the initial state, $\Psi_{\bar{k}}$, and the final state, $\Psi_{\bar{k}}$, is given by [10]

$$P_{\overline{k},\overline{k}'} = \int \Psi_{\overline{k}} V(\overline{r}) \Psi_{\overline{k}'} d^3 \overline{r}$$

 $V(\bar{r}) = \sum_{\overline{G}_{hkl}} V_{\overline{G}_{hkl}} e^{i\overline{G}_{hkl} \cdot \bar{r}}$

and

then

where

If the diffraction condition for electrons in a crystal (Equation 1.47)

is fulfilled, then

Subsequently, introducing the diffraction condition in Equation 1.46, we will get [5]

$$E(\bar{k}) = \frac{\hbar^2 k^2}{2m} + V_0 + \sum_{\overline{G}_{hkl} \neq 0} \frac{|V_{\overline{G}_{hkl}}|^2}{E^0(\bar{k}) - E^0(\bar{k}' - \overline{G}_{hkl})}$$

Consequently, the periodicity condition of the potential produces the segmentation in the energy bands.

$$P_{\overline{k},\overline{k}'} = \sum_{G_{hkl}} \int e^{i(\overline{k}+\overline{G}_{hkl}-\overline{k}')} d^3\overline{r}$$

$$P_{\overline{k},\overline{k}'} = V_{\overline{G}_{hkl}}$$

$$\sum_{i,\overline{k}'} = \sum_{G_{hkl}} \int e^{i(\overline{k}+\overline{G}_{hkl}-\overline{k}')} d^2$$

 $\Psi_{\overline{k}} = \mathrm{e}^{i\overline{k}.\overline{r}}$

25

(1.47)

$$P_{\overline{k}\ \overline{k}'} = 0$$

 $\overline{k} - \overline{k}' = \overline{G}_{hkl}$

A more exact treatment is made using the Bloch theorem. In this sense, the solution of the Schrödinger equation may be a plane wave multiplied by a periodic function, that is,

$$\Psi_{\bar{k}}(\bar{r}) = \mathrm{e}^{-k \cdot \bar{r}} u_{\bar{k}}(\bar{r})$$

where

$$u_{\overline{k}}(\overline{r}) = \sum_{\overline{G}_{hkl}} u_{\overline{G}_{hkl}}(\overline{k}) e^{i\overline{G}_{hkl} \cdot \overline{r}}$$
(1.48)

Due to the periodicity of $u_{\bar{k}}(\bar{r})$, if we insert Equation 1.48 in the Schrödinger equation [6]

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + \sum_{\overline{G}'_{hkl}} V_{\overline{G}'_{hkl}} e^{i\overline{G}'_{hkl}\bullet\overline{r}} - E\right) \sum_{\overline{G}_{hkl}} u_{\overline{G}_{hkl}} e^{i\overline{G}_{hkl}\bullet\overline{r}} = 0$$

Then

$$\left(\frac{\hbar^2}{2m}(\bar{k}+\bar{G})^2 - E\right)u_{\bar{G}_{hkl}}(\bar{k}) + \sum_{\bar{G}'_{hkl}}V_{\bar{G}'_{hkl}}u_{\bar{G}_{hkl}-\bar{G}'_{hkl}} = 0$$
(1.49)

This equation is named the Bloch difference equation and is a set of coupled linear equations whose nontrivial solution conditions are

$$\left(\frac{\hbar^2}{2m}(\bar{k}+\bar{G})^2 - E\right)\delta_{\bar{G}_{hkl},\bar{G}_{hkl}'} + V_{\bar{G}_{hkl}-\bar{G}_{hkl}'} = 0$$
(1.50)

This is named the Hill determinant. After solving, the resulting secular determinant for the root of $E_n(\overline{k})$ provides a more accurate method for calculating the band structure of solids, where n = 1 refers to the first band, n = 2 to the second, and so on.

1.5.5 MOLECULAR ORBITAL APPROACH FOR THE FORMATION OF ENERGY BANDS

1.2

A crystalline solid can be considered as a huge, single molecule; subsequently, the electronic wave functions of this giant molecule can be constructed with the help of the molecular orbital (MO) methodology [19]. That is, the electrons are introduced into crystal orbitals, which are extended along the entire crystal, where each crystal orbital can accommodate two electrons with opposite spins. A good approximation for the construction of a crystal MO is the linear combination of atomic orbitals (LCAO) method, where the MOs are constructed as a LCAO of the atoms composing the crystal [19].

For example, in metals, because of their large electrical conductivity, it seems that at least some of the electrons can move freely through the bulk of the metal, while the core electrons remain in their atomic orbital, similar to the isolated atoms forming the metal. For example, let us take into account the formation of a linear array of lithium atoms from individual lithium atoms: Li–Li; Li–Li–Li, Li–Li–Li.... Then, the first stage is the formation of a lithium molecule, Li₂. This molecule is analogous to the hydrogen molecule, H₂ [15,19]. In the formation of the H₂ molecule, two MOs are formed, that is, the bonding MO

$$\Psi_{\sigma} = \Psi_{1s}(\bar{r}_{A}) + \Psi_{1s}(\bar{r}_{B})$$

and the antibonding MO

 $\Psi_{\sigma} = \Psi_{1s}(\bar{r}_{A}) - \Psi_{1s}(\bar{r}_{B})$

where the two electrons pair their spins and occupy the bonding orbital. Then the two lithium atoms are bound together by a pair of valence electrons, where each lithium atom supplies its 2s electron to form a covalent molecular bond (see Figure 1.13). In this case, the molecule formed occurs in lithium vapor.

We will now take into account the hypothetical linear molecule, Li₃. The valence electron cloud is spherical; then, in the course of the linear combination of atomic orbitals, the three atomic valence electron clouds overlap to form one continuous distribution, and two distributions with nodes, that is, three MOs (see Figure 1.14). While the length of the chain is augmented, the number of electronic states, into which the atomic 2s state splits during the linear combination of atomic orbitals, increases. In this regard, the number of states equals the number of atoms.

A similar situation takes place when lithium chains are placed side by side or stacked on top of each other, so that finally the space lattice of the lithium crystal is obtained. In this case, the electronic states have energies that are bounded by an upper and lower limiting value, forming an energy band of closely spaced values (see Figure 1.14). Similarly, energy bands can also result from overlapping p and d orbitals.

FIGURE 1.13 Energy of the states formed during the establishment of a Li₂ molecule.

FIGURE 1.14 Band formation process.

FIGURE 1.15 Band formation process for a Li crystalline solid.

The electronic states within an energy band are filled progressively by pairs of electrons in the same way that the orbitals of an atom are filled in accordance with the Pauli principle. This means that for lithium, the electronic states of the 2s band will be exactly half filled (Figure 1.15).

To summarize, the formation of a 2s-energy band from the 2s orbitals when N Li atoms are gathered together to form the Li crystal is shown in Figure 1.15. There are, N 2s-electrons but there are 2N states in the band, therefore the 2s band is only half full. Besides, the atomic 1s orbital, which is close to the Li nucleus, that is, is the two 1s electrons which are the core electrons, remains undisturbed in the solid, that is, each Li atom has a closed K-shell, specifically a full 1s orbital. Consequently, in general, when a solid metal is formed, the external orbitals overlap. As a consequence of this process, the outer electrons move without restraint through the metal, while the core electrons remains in their atomic orbital.

On the other hand, in covalently bonded materials like carbon, silicon, and germanium, the formation of energy bands first involves the hybridization of the outer s- and p-orbitals to form four identical orbitals, ψ_{hyb} , which form an angle of 109.5° with each other, that is, each C, Si, and Ge atom is tetrahedrally coordinated with the other C, Si, and Ge atom, respectively (Figure 1.16), resulting in a diamond-type structure.

FIGURE 1.16 Tetrahedral bonding of atoms in a diamond-type structure of C, Si, and Ge crystals.

When these atoms are close enough, the ψ_{hyb} orbitals on two neighboring atoms can overlap to form a bonding orbital and an antibonding orbital [13,15]. In the crystal, the bonding orbital overlap to give the valence band, which is full of electrons, while the antibonding orbital overlap to give the conduction band, which is empty (see Figure 1.17). Since the conduction band is empty in the case of intrinsic semiconductors and insulators, these materials only conduct by the thermal excitation of electrons to the conduction band and by the formation of holes in the valence band (see Figure 1.18).

This excitation process is an activated process of electron jumps through the band gap, E_g . If the energy gap is low as in the case of semiconductors, the conductivity is low but noticeable. However, in the case of insulators, since the energy gap is high, the conductivity is very low.

Similarly, the covalent compound ZnS (zinc blende) is a semiconductor that has a structure similar to diamond, where the Zn atoms occupy the FCC lattice sites, and the S atoms occupy four of the eight tetrahedral sites of the FCC lattice (see Section 1.2.2). Analogous semiconducting properties are obtained when elements from the IIIA and VA columns of the periodic table are formed, for example, InAs, GaAs, and InP and also in the case when elements from the IIB and VIA columns of the periodic table are created, for instance, ZnTe and ZnSe.

FIGURE 1.17 Band formation process for a C, Si, Ge, or α-Sn crystal.

FIGURE 1.18 Formation of holes in the valence band by thermal excitation of electrons to the conduction band.

1.6 X-RAY DIFFRACTION

1.6.1 GENERAL INTRODUCTION

X-ray diffraction [20–26] is the most powerful method for the study of crystalline materials. The effect of x-ray generation during a glow discharge was casually discovered in 1895 by Wilhelm Röntgen at the University of Würtzburg in Germany. Some years later, in 1912, at the University of Munich, Max von Laue and collaborators carried out one of the most important experiments of modern physics, the Laue–Knipping–Friedrich experiment, which established that x-radiation consisted of electromagnetic waves. Additionally, the experiment clearly showed that the crystals were composed of atoms arranged on a space lattice, since the electromagnetic x-ray radiation was interfering during its scattering by the crystal atoms.

To generate an x-ray beam, a vacuum tube is needed where an electron beam, produced by a heated filament, is collimated and accelerated by an electric potential of several kilovolts, that is, from 20 to 45 kV (Figure 1.19). This beam is directed to a metallic anode (Figure 1.19). The electrons hitting the anode will convey a fraction of their energy to the electrons of the target material, a process resulting in the electronic excitation of the atoms composing the metallic anode. The x-ray tube has to be evacuated to allow electron movement. Finally, in order to dissipate the heat produced by this process in the metallic anode, it is normally water cooled.

The x-ray tube produces two kinds of radiations: the continuous spectrum (Figure 1.20) and the characteristic spectrum (Figure 1.21). The continuous spectrum is a plot of the intensity of the x-ray

FIGURE 1.19 Schematic representation of an x-ray tube.

FIGURE 1.20 Schematic representation of a continuous spectrum.