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Preface

This book is about measurement error, which includes misclassification. This
occurs when some variables in a statistical model of interest cannot be observed
exactly, usually due to instrument or sampling error. It describes the impacts of
these errors on “naive” analyses that ignore them and presents ways to correct
for them across a variety of statistical models, ranging from the simple (one-
sample problems) to the more complex (some mixed and time series models)
with a heavy focus on regression models in between.

The consequences of ignoring measurement error, many of which have been
known for some time, can range from the nonexistent to the rather dramatic.
Throughout the book attention is given to the effects of measurement error on
analyses that ignore it. This is mainly because the majority of researchers do
not account for measurement error, even if they are aware of its presence and
potential impact. In part, this is due to a historic lack of software, but also
because the information or extra data needed to correct for measurement error
may not be available. Results on the bias of naive estimators often provide the
added bonus of suggesting a correction method.

The more dominant thread of the book is a description of methods to correct
for measurement error. Some of these methods have been in use for a while,
while others are fairly new. Both misclassification and the so-called “errors-in-
variables” problem in regression have a fairly long history, spanning statistical
and other (e.g., econometrics and epidemiology) literature. Over the last 20
years comprehensive strategies for treating measurement error in more com-
plex models and accounting for the use of extra data to estimate measurement
error parameters have emerged. This book provides an overview of some of
the main techniques and illustrates their application across a variety of models.
Correction methods based on the use of known measurement error parameters,
replication, internal or external validation data, or (in the case of linear models)
instrumental variables are described. The emphasis in the book is on the use of
some relatively simple methods: moment corrections, regression calibration,
SIMEX, and modified estimating equation methods. Likelihood techniques are
described in general, but only implemented in some of the examples.

There are a number of excellent books on measurement error, including

xix
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Fuller’s seminal 1987 book, mainly focused on linear regression models, and
the second edition of Carroll et al. (2006). The latter provides a comprehen-
sive treatment of many topics, some of which overlap with the coverage in this
book. Other, more specialized books include Cheng and Van Ness (1999) and
Gustafson (2004). The latter provides Bayesian approaches for dealing with
measurement error and misclassification in numerous settings. This book (i.e.,
the one in your hands), which is all non-Bayesian, differs from these others
both in the choice of topics and in being more applied. The goal is to provide
descriptions of the basic models and methods, and associated terminology, and
illustrate their use. The hope is that this will be a book that is accessible to
a broad audience, including applied statisticians and researchers from other
disciplines with prior exposure to statistical techniques, including regression
analysis. There are a few places (e.g., the last two chapters and parts of Chap-
ters 5 and 6) where the presentation is a bit more advanced out of necessity.

Except for Chapter 6, the book is structured around the model for the true
values. In brief, the strategy is to first discuss some simpler problems including
misclassification in estimating a proportion and in two-way tables, as well as
additive measurement error in simple and multiple regression. We then move
to a broad treatment of measurement error in Chapter 6, and return to specific
models for true values in the later chapters. A more detailed overview of the
chapters and the organization of the book is given in Section 1.5. The layout
is designed to allow a reader to easily locate a specific problem of interest.
A limited number of mathematical developments, based on relatively basic
theory, are isolated into separate sections for interested readers. However, I
have made no attempt to duplicate the excellent theoretical coverage of certain
topics in the aforementioned texts.

The measurement error literature has been growing at a tremendous rate re-
cently. I have read a large number of other papers that have influenced my
thinking but do not make their way explicitly into this book. I have tried to
be careful to provide a direct reference whenever I use a result from another
source. Still, given the more applied focus of the book, the desire to limit the
coverage in certain areas, and size restrictions, means that many important pa-
pers are left unrecognized. I apologize beforehand to anyone who may feel
slighted in any way by my omission of their work. In addition, while some
very recent work is referenced in certain places, since parts of the book were
completed up to two years before publication date, I have not tried to incorpo-
rate recent developments associated with certain topics. I also recognize that
in the later stages of the book the coverage is based heavily on my own work
(with colleagues). This is especially true in the last two chapters of the book.
This is largely a matter of writing about what I know best, but it also happens to
coincide with coverage of some of the more basic settings within some broader
topics. When I set out, I had planned to provide more discussion about the con-
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nections between measurement error models and structural equation and latent
variable models, as well as related issues with missing data and omitted co-
variates. There are a few side comments on this, but a fuller discussion was
omitted for reasons of both time and space.

In a way this book began in the spring of 1989, when I was on my first
sabbatical. In the years right before that I had wandered into the “errors-in-
variables”, or measurement error, world through an interest in calibration and
ratios. Being a bit frustrated by the disconnect between much of the traditional
statistics literature and that from other areas, especially econometrics, I began
to build a systematic review and a bibliography. Fortuitously, around this time
Jim Ware invited me to attend a conference held at NIH in the fall of 1989 on
measurement error problems in epidemiology. I also had the opportunity to at-
tend the IMS conference on measurement error at Humboldt State University
the following summer and listen to many of the leading experts in the field.
This period marked the beginning of an explosion of new work on measure-
ment error that continues to this day. I am extremely grateful to Jim for the
invitation to the NIH conference, getting me involved with the measurement
error working group at Harvard and supporting some of my early work in this
area through an EPA-SIMS (Environmental Protection Agency and the Societal
Institute of the Mathematical Sciences) grant. I benefited greatly from interac-
tions with some of the core members of the Harvard working group including
Ernst Linder, Bernie Rosner, Donna Spiegelman and Tor Tosteson. This led to
an extensive and fruitful collaboration with Tor and Eugene Demidenko (and
many pleasant rides up the Connecticut River Valley to Dartmouth to work
with them, and sometimes Jeff Buzas from the University of Vermont).

By the early 90s I had a preliminary set of notes and programs, portions of
which were used over a number of years as part of a topics in regression course
at the University of Massachusetts. The broader set became the basis for a
short course taught for the Nordic Region of the Biometrics Society in Ås,
Norway in 1998. These were updated and expanded for a short course taught
in 2005 at the University of Oslo Medical School, and then a semester long
course at the University of Massachusetts in the fall of 2007. I appreciate the
feedback from the students in those various courses. The material from those
courses made up the core of about half of the book. I am extremely grateful to
Petter Laake for helping to arrange support for my many visits to the Medical
School at the University of Olso. I have enjoyed my collaborations with him,
Magne Thoresen, Marit Veirod and Ingvild Dalen and greatly appreciate the
hospitality shown by them and the others in the biostatistics department there.

I’m also grateful to Ray Carroll for sharing some of the Framingham Heart
Study data with me, Walt Willet for generously allowing me access to the the
external validation data from the Nurses Health Study, Rob Greenberg for use
of the beta-carotene data, Sandy Liebhold for the egg mass defoliation data, Joe
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Elkinton for the mice density data, Paul Godfrey and the Acid Rain monitoring
project for the pH and alkalinity data, and Matthew DiFranco for the urinary
neopterin/HIV data.

A number of other people contributed to this book, directly or indirectly.
Besides sharing some data, Ray Carroll has always been willing over the years
to answer questions and he also looked over a portion of Chapter 10. My mea-
surement error education owes a lot to reading the works of, listening to many
talks by, and having conversations with Ray, Len Stefanski, and David Ruppert.
After years of a lot of traveling to collaborate with others, I certainly appreciate
having John Staudenmayer, and his original thinking, here at the University of
Massachusetts. Our joint work forms the basis of much of Chapter 12. I can’t
thank Meng-Shiou Shieh enough for her reading of the manuscript, double
checking many of the calculations, picking up notational inconsistencies and
helping me clean up the bibliography. Magne Thoresen generously provided
comments on the first draft of Chapter 7 and Donna Spiegelman advised on
the use of validation data. I am grateful to Graham Dunn for his reviews of
Chapters 2–5 and Gene Buonaccorsi for his assistance with creating the index.
Of course, none of those mentioned are in any way responsible for remaining
shortcomings or errors. I want to thank Hari Iyer for being my adviser, mentor,
collaborator, and friend over the years. On the lighter side, the Coffee Cake
Club helped keep me sane (self report) over the years with the Sunday long
runs.

Over the years I have been fortunate to receive support for some of my mea-
surement error work from a number of sources. In addition to EPA-SIMS, men-
tioned earlier, this includes the National Cancer Institute, the U.S. Department
of Agriculture and the Division of Mathematical Sciences at the NSF. The Uni-
versity of Massachusetts, in general, and the Department of Mathematics and
Statistics in particular, has provided continuing support over the years, includ-
ing in the computational area. I especially appreciate the assistance of the staff
in the departmental RCF (research computing facility). Finally, I am extremely
grateful to the Norwegian Research Council for supporting my many visits to
collaborate with my colleagues in the Medical School at the University of Oslo.

I appreciate the guidance and patience of Rob Calver of Taylor & Francis
throughout this project as well as the production assistance from Karen Si-
mon and Marsha Pronin. I am grateful to John Wiley and Sons, the American
Statistical Association, the Biometrics Society, Blackwell Publishing, Oxford
University Press, Elsevier Publishing and Taylor & Francis for permissions to
use tables and figures from earlier publications. Finally, I want to thank my
wife, Elaine Puleo, for her constant support, editing Chapter 1 and serving as
a sounding board for my statistical ideas throughout the process of writing of
the book.
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Computing

Computing was occasionally an obstacle. While there are a number of pro-
grams, described below, which handle certain models and types of measure-
ment errors, there were many techniques that I wanted to implement in the
examples for which programs were not available. While I had built up some
SAS programs to handle measurement error over the years, many of the ex-
amples in the book required new, and extensive, programming. There are still
examples where I would have liked to have illustrated more methods, but I
needed to stop somewhere.

The software used in the book, and some associated programs, include:

• STATA routines rcal (regression calibration) and simex. These, along with
the related qvf routine, are available through http://www.stata.
com/merror/.

• STATA gllamm routines based on Skrondal and Rabe-Hesketh (2004).
Available at http://www.gllamm.org/. This includes the cme com-
mand for parametric maximum likelihood used in a couple of places in the
book, as well as some other measurement error related programs.

• SAS macro Blinplus from Spiegelman and colleagues at Harvard Uni-
versity. Available at http://www.hsph.harvard.edu/faculty/
spiegelman/blinplus.html. This corrects for measurement error
using external and internal validation data, based on a linear Berkson model.

• SAS macro from Spiegelman and colleagues at Harvard University which
correct for measurement error under additive error with the use of repli-
cate values. This is available at http://www.hsph.harvard.edu/
faculty/spiegelman/relibpls8.html. This was not used in the
book, since the rcal command in STATA was used instead.

The remainder of the computing was carried out using my own SAS pro-
grams. Any of these available for public use can be found at
http://www.math.umass.edu/˜johnpb/meprog.html.

Although not spelled out in any real detail in the book (except for a few
comments here and there), there are other programs within the standard soft-
ware packages that will handle certain analyses involving measurement errors.
This includes programs that treat structural equation or latent variables models,
instrumental variables and mixed models.

John Buonaccorsi
Amherst, Massachusetts
November, 2009
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CHAPTER 1

Introduction

1.1 What is measurement error?

This is a book about measurement error in statistical analyses; what it is, how
to model it, what the effects of ignoring it are and how to correct for it. In
some sense, all statistical problems involve measurement error. For the pur-
poses here, measurement error occurs whenever we cannot exactly observe one
or more of the variables that enter into a model of interest. There are many rea-
sons such errors occur, the most common ones being instrument error and sam-
pling error. In this chapter we provide a collection of examples of potentially
mismeasured variables, followed by a brief overview of the general structure
and objectives in a measurement error problem, along with some basic termi-
nology that appears throughout the book. Finally, we provide a road map for
the rest of the book.

1.2 Some examples

Measurement error occurs in nearly every discipline. A number of examples
are given here to illustrate the variety of contexts where measurement error
can be a concern. Some of these examples appear later in the book. Any of
the variables described below could play the role of either an outcome or a
predictor, but there is no need for notational distinctions at this point. Where
any notation is used here, the true value is denoted x and the variable observed
in place of x, by w. The latter can go by many names, including the observed or
measured value, the error-prone measurement, a proxy variable or a surrogate
measure. The term surrogate will carry a more precise meaning later. When the
true and observed values are both categorical then measurement error is more
specifically referred to as misclassification. Our first set of examples fall under
this heading.

1
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Misclassification examples

• Disease status. In epidemiology, the outcome variable is often presence or
absence of a disease, such as AIDS, breast cancer, hepatitis, etc. This is
often assessed through an imperfect diagnostic procedure, such as a blood
test or an imaging technique, which can lead to either false positives or false
negatives.

• Exposure. The other primary variable of interest in epidemiologic studies
is “exposure,” used in a broad sense. This is typically measured with self
report or in some other manner which is subject to error. Potentially mis-
classified categorical values of this type include antibiotic use during preg-
nancy or not, whether an individual is a heavy smoker or not, a categorized
measure of physical activity, dietary intake, tanning activity level (used in
skin cancer studies), drug use, adherence to prescribed medication, etc.

• Acceptance Sampling. In quality control, a product can be classified by
whether it meets a certain standard or tolerance. Obtaining an error-free de-
termination can be an expensive proposition and cheaper/faster tests, subject
to inspection errors, may be used instead.

• Auditing can involve assessing whether a transaction/claim is fraudulent or
contains a mistake of some type. The item of interest may be complex and
misclassification can occur from making a decision on partial information
(e.g., sampling) or simply from errors of judgment in the evaluation.

• Satellite images are now routinely used for categorizing land usage or habi-
tat type. These categorizations are often prone to some errors, but with some
validation data available based on determining the truth on the ground.

Mismeasurement of a quantitative variable

• Measuring water or blood chemistry values typically involves some error.
Laboratories routinely calibrate their measuring instruments using standards
and values are returned based on the use of the resulting calibration curve.
These will still contain some errors unless there is a deterministic relation-
ship between the true and measured values, rarely the case. Examples in
Chapters 8 and 10 use some of the data from the acid rain monitoring project
(Godfrey et al., 1985). This involved water samples from approximately
1800 water bodies with analyses for ph, alkalinity and other quantities car-
ried out by 73 laboratories. In this case, each lab here was calibrated by
being sent blind samples with “known” values.
Another application of this type is with immunoassays which measure con-
centrations of antigens or antibodies. The measured value is a radioactive
count, or standardized count. Similar to the water chemistry examples, the
assay is calibrated using standards and the resulting curve here is usually
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nonlinear. One of the examples in Chapter 10 utilizes a four-parameter lo-
gistic model for measuring urinary neopterin with a radioimmunoassay.

• The Harvard Six Cities Study (see Section 7.3.1) examined the impact of
exposure to certain pollutants on a child’s respiratory status. An individ-
ual’s actual exposure was difficult to measure. In its place observations were
made in the home, in different rooms at different times of year. These values
served as surrogates for exposure. The measures were validated in studies
where individuals wore a lapel monitor that measures exposure continu-
ously.

• Instead of categorized exposure, as discussed in the misclassification exam-
ples, quantitative measures of “exposure” are often preferred. The notion of
true exposure can be a bit elusive here, especially when it is a dietary intake,
but could be defined as a total or average intake over a certain time period. In
that case, the measurement error can come from two sources: sampling over
time and/or from the use of a fallible instrument, such as a food frequency
questionnaire. The same comments apply in measuring physical activity and
other quantities.

• In many designed experiments, there is some target value that an experi-
menter wants to apply to a “unit,” but the actual delivered “dose” may dif-
fer from the target value. Examples include temperature and pressure in
industrial experiments, fertilizer or watering levels in agricultural settings,
protein levels in a diet in balance/intake studies to determine nutritional re-
quirements, speed on a tread mill, etc. In this case the “measured” value is
the fixed target dose, but the true value of interest is random.

• Many ecological problems strive to model the relationship among variables,
over different spatial locations. Costs often make it impossible to measure
the variables of interest exactly and instead some spatial sampling is used
to obtain estimated values. An example of this appears in Chapters 4 and
5, where gypsy moth egg mass densities and defoliation rates are estimated
over stands 60 hectares in size, based on sampling a small fraction of the
total area.

• Many financial and economic variables, whether measured at an individual,
company or other aggregate level (e.g., state, country, etc.), are subject to
measurement error. The error may be due to self-reporting, sampling (sim-
ilar to the ecological problems in the previous item), the construction of
variables from other data, etc.

• The U.S. and many other governments carry out continuous surveys to mea-
sure unemployment, wages, and other labor and health variables. These are
often then modeled over time. The measurement error here is sampling er-
ror arising from estimation using a subsample of individuals, households,
etc. An interesting feature of these problems is that the measurement errors
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can be correlated as a result of block resampling, in which individuals or
households stay in the survey for some amount of time and are then rotated
out.

• Another important ecological problem is the modeling of population abun-
dance over time and exploring the relationship of abundance to other factors
such as weather or food abundance. It is impossible to ever obtain an exact
abundance, or population density, but instead it is estimated. This is well
known to be a challenging problem, especially for mobile populations, and
can involve the use of capture/recapture methods or other techniques, such
as aerial surveillance. Once again the measurement error here is sampling
error with the added complication that the accuracy and precision of the es-
timate may be changing over time as a result of changes in the population
being sampled and/or changes in the sampling effort or technique. These
same issues arise in modeling temperature and its relationship to human ac-
tivities. In this latter application the quality of the data (i.e., the nature of the
measurement error) has changed considerably over time, with both changes
in instruments and enlargement of the grid of monitoring stations.

• As a final illustration, we consider an example discussed by Tosteson et al.
(2005). The goal was to use vascular area, obtained from an image, to clas-
sify breast disease. One measure of the effectiveness of a classification tech-
nique is the receiver operating characteristic (ROC) curve. This depends on
the distribution of the variable in each of the disease and nondisease groups
or, under normality, the mean and variance. There is measurement error at
the individual level however as the image has to be spatially subsampled and
the vascular area for the whole image estimated. The induced measurement
error will distort the estimated ROC curve.

1.3 The main ingredients

There are typically three main ingredients in a measurement error problem.

1. A Model for the True Values.
This can be essentially any statistical model. See the overview below for
where the emphasis is in this book.

2. A Measurement Error Model.
This involves specification of the relationship between the true and observed
values. This can be done in a couple of different ways as outlined in the next
section and described in fuller detail in later chapters.

3. Extra data, information or assumptions that may be needed to correct for
measurement error. This may not always be available, in which case one
has to be satisfied with an assessment of the impacts of the measurement
error. This extra “information” is typically:
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(a) Knowledge about some of the measurement error parameters or func-
tions of them.

(b) Replicate values. This is used mainly, but not exclusively, for additive
error in quantitative variables.

(c) Estimated standard errors attached to the error prone variables.
(d) Validation data (internal or external) in which both true and mismeasured

values are obtained on a set of units.
(e) Instrumental variables.

Some discussion of validation data and replication appear throughout Chap-
ters 2 to 5, and instrumental variables are discussed in Section 5.7 in the
context of multiple linear regression. A broader discussion of extra data is
given in Section 6.5.

There are two general objectives in a measurement error problem.

• What are the consequences for naive analyses which ignore the measure-
ment error?

• How, if at all, can we correct for measurement error?
With some exceptions (see parts of Chapters 11 and 12), correcting for mea-
surement error requires information or data as laid out in item 3 above.
Myriad approaches to carrying out corrections for measurement error have
emerged, a number of which will be described in this book. These include
direct bias corrections, moment based approaches, likelihood based tech-
niques, “regression calibration,” SIMEX and techniques based on modify-
ing estimating equations.

1.4 Some terminology

This section provides a brief introduction to measurement error models and
some associated terminology. These models are revisited and expanded on in
later chapters. Chapters 2 and 3 spell out misclassification models while ad-
ditive error models arise in treating linear regression problems in Chapters 4
and 5. Section 6.4 then provides a more comprehensive and in depth look at
these and other models. Still, a preliminary overview is helpful at this point.
For convenience the discussion here is in terms of a univariate true value and its
mismeasured version, but this can, and will be, extended to handle multivariate
measures later.

In some places it is necessary to distinguish a random variable from its real-
ized value. When necessary, we follow the usual convention of a capital letter
(e.g., X) for the random variable and a small letter (e.g., x) for the realized
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value. Throughout the notation |x is a shorthand for the more precise |X = x
which is read “given X is equal to x.”

When the x is a predictor in a regression type problem a distinction is made
between the functional case where the x’s are treated as fixed values and the
structural case where X’s are random. This distinction, and its implications,
is spelled out carefully in Chapters 4 and 5, with that discussion carrying over
into later chapters. Some authors use structural to refer just to the case where
a distribution is specified for a random X . The term functional model has also
sometimes been used to refer to the case where there is a deterministic rela-
tionship among true variables. Our usage of the terminology will be as defined
above. We also note that a combination of fixed and random predictors is pos-
sible. Chapter 5 illustrates this and adopts a strategy that handles these mixed
cases.

1.4.1 Measurement versus Berkson error models

A fundamental issue in specifying a measurement error model is whether we
make an assumption about the distribution of the observed values given the true
values or vice versa. The classical measurement error model specifies the
former, while the latter will be referred to as Berkson error model. The latter
was initially introduced by Berkson (1950) in cases where an experimenter is
trying to achieve a target value w but the true value achieved is X . Examples
of this were presented earlier. In this case there is no random variable W but
just a targeted fixed value w. In other problems X and W can both be random
and the phrase “Berkson error model” has been broadened to include referring
to the conditional distribution of X |w.

If the x’s are fixed or we condition on them, the model for W |x should be
used. If the observed w is fixed then the Berkson model applies. With random
X and random W given x, then a choice can sometimes be made between
which model to use. This choice will depend in part on the nature of the main
study (are the X’s a random sample?) and the nature of any validation data. See
Heid et al. (2004) for an example discussing the use of classical and Berkson
error models in the measurement of radon exposure.

A special case is when both X and W are categorical. For classical mea-
surement error, the model is given by the probability function P (W = w|x)
and these quantities are referred to as misclassification probabilities or mis-
classification rates. The Berkson error model, on the other hand, specifies
P (X = x|w), which we refer to as reclassification probabilities or reclas-
sification rates. Both of these are discussed in Chapters 2 and 3.
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1.4.2 Measurement error models for quantitative values

For a quantitative variable, any type of regression model can be used for how
W and X are related. Historically, the most commonly used model is the ad-
ditive measurement error model where

W |x = x + u (1.1)

where u is a random variable with E(u|x) = 0. Equivalently E(W |x) = x, so
W is unbiased for the unobserved x.

Nonadditive measurement error includes everything else, where E(W |x) =
g(θθθ, x) �= x. This means there is some form of bias present. Examples include
constant bias, E(W |x) = θ+x and linear measurement error, E(W |x) = θ0+
θ1x, while with nonlinear measurement error models g(x, θθθ) is nonlinear in the
θ’s. Nonadditive models are particularly prevalent when the measurement error
is instrument error.

A constant variance/homoscedastic measurement error model refers to the
case where the variance of W given x is constant. A heteroscedastic model
allows the measurement error variance to possibly change. While historically,
constant measurement error variance has been used, there are many situations
where changing variances need to be allowed. This is discussed in some de-
tail in Section 6.4.5. Heteroscedastic measurement error models are accommo-
dated throughout many parts of this book.

1.4.3 Nondifferential/differential measurement error, conditional
independence and surrogacy

To this point the discussion has been limited to how a single measured W
relates to a true value x. More generally, we need to accommodate the fact
that the measurement error may depend on other variables, which themselves
may or may not be measured with error. General developments of this type
are accommodated in Chapter 6. Here we introduce a few important concepts
where W (measured) and X (true) are both univariate as is a third variable Y ,
which is, usually, a response variable. That designation is not essential to the
discussion below, nor is the fact that W and X are univariate.

• The measurement error model for W given x is said to be nondifferential
(with respect to Y ) if the distribution of W |x, y (W given X = x and
Y = y) equals the distribution of W |x. That is, the measurement error
model does not depend on the value y.
The measurement error model is said to be differential if the distribution of
W |x, y changes with y.
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• W is a surrogate for X (with respect to Y ) if the distribution of Y |x, w
equals that of Y |x. This says that given x, W contains no information about
the distribution of Y beyond that which is contained in x.

• Conditional independence states that Y and W are independent given
X = x. Mathematically, f(y, w|x) = f(y|x)f(w|x), where we have used
the convenient, but obviously imprecise, device of denoting the distribution
of interest by the symbols in the argument. So f(y|x) is the conditional
density or mass function of Y given X = x, f(w|x) is that of W given
X = x, and f(y, w|x) is the joint density or mass function of Y and W
given X = x.

An interesting, and very useful, result is the following:

The three concepts of surrogacy, conditional independence and nondifferen-
tial measurement error are equivalent. That is, any one implies the other two.

1.5 A look ahead

The guiding principles in laying out the book were 1) have it be introductory
and cover some of the more basic statistical models in detail and 2) to allow
the reader who is interested in a particular type of problem to jump into the
book at various places and be able to at least get a feel for how to handle that
particular problem. The second emphasis means the book is based primarily
around the model for the true values, rather than around the measurement error
correction technique. The exception to this is the somewhat monolithic Chap-
ter 6. This chapter provides a fairly wide ranging overview and details on the
various components of the problem: models for true values, various measure-
ment error models, types of additional data and correction techniques. Rather
than jump into this first, which would make for fairly boring reading without a
lot of excursions into particular problems, some simple problems are discussed
first.

Misclassification of categorical data is treated first in the contexts of estimat-
ing a single proportion and in two-way tables, Chapters 2 and 3, respectively.
This provides a good look in particular at the various uses of validation data.
We then consider additive error, in the predictor(s) and/or the response, for sim-
ple and multiple linear regression. This is in Chapters 4 and 5. Once again, we
follow the principle of looking at a simple setting first (simple linear models) in
which to illustrate a number of basic ideas in explicit detail before moving on
to the more complex setting of multiple predictors. To a large extent, these four
chapters go over somewhat old ground, but hopefully in a way that provides a
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unified summary in an applied manner. The multiple linear regression chapter
has a few useful features, including allowing error in either predictors or re-
sponse with possibly changing measurement error variances or (if applicable)
covariances, from the beginning, and a formulation within which a number of
results can be expressed which cover random or fixed predictors, or a combi-
nation thereof.

After this is the aforementioned Chapter 6. Some readers may chose a selec-
tive read through this depending on what they are after, and return to it later as
needed. It does contain all of the key concepts and methods used elsewhere in
the book. At the least, it is suggested that the reader look over the descriptions
of measurement error models, the use of extra data, the descriptions of regres-
sion calibration, SIMEX and modified estimating equation correction methods
(which are used in most examples), as well as the overviews on using validation
data and bootstrapping.

The subsequent chapters cover specific models. Chapter 7 illustrates most
of the key elements of Chapter 6 in the context of binary regression. This pro-
vides an important setting in which to examine many of the correction tech-
niques for nonlinear models in general, and generalized linear models, in par-
ticular. Chapter 8 then returns to linear models but now with nonadditive error
in certain predictors or functions of them. Among other things, this chapter
includes how to handle quadratic and interaction terms as well as the use of
external validation data for measurement error models that have systematic bi-
ases. Chapter 9, which is fairly short, reinforces a few ideas from the binary
chapter and expands a bit on handling nonlinear models that are not general-
ized linear models. Chapter 10 isolates some additional questions when deal-
ing with error in the response only. Among other things, this chapter includes
some discussion of nonparametric estimation of a distribution in the presence
of measurement error and fitting mean-variance relationships. Finally, the last
two chapters cover mixed/longitudinal and time-series models. These are a bit
different than the earlier chapters in a couple of ways. They both provide fairly
general surveys and then focus on a few specific problems within the much
larger class of problems. They also assume more prior knowledge of the topics
than some of the earlier chapters.

See the preface for additional comments about coverage, emphasis and com-
putational aspects.





CHAPTER 2

Misclassification in Estimating a
Proportion

This chapter treats the problem of estimating a proportion when the true value
is subject to misclassification. After some motivating examples, Sections 2.2 -
2.4 examine the problem under the assumption that the true values are a random
sample in the sense of having independent observations. We first examine bias
in the naive estimator which ignore the misclassification and then show how
to correct for the misclassification using both internal and external validation
data or with known misclassification probabilities. As part of this discussion,
Section 2.3 delineates the difference between misclassification and reclassifi-
cation probabilities. Section 2.5 extends the results to allow for sampling from
a finite population, while Section 2.6 provides some brief comments on how to
account for misclassification with repeated or multiple measures without vali-
dation data. Finally, Section 2.7 provides an overview of the case where there
are more than two categories for the true values and Section 2.8 provides a few
mathematical developments.

2.1 Motivating examples

Example 1. Knowing the prevalence of the HIV virus in a population is critical
from a public health perspective. This is of special interest for the population
of women of child bearing age. For example, Mali et al. (1995) estimated the
prevalence of women with HIV-1 attending a family planning clinic in Nairobi
to be 4.9% from a sample of 4404 women. Assays that test for the presence
or absence of the virus are often subject to misclassification. What effect do
the misclassification errors have on the estimated prevalence of 4.9%? If we
had estimates of the misclassification rates how can we correct for the mis-
classification? As an example of validation data, Table 2.1 shows some data,
based on Weiss et al. (1985) and also used by Gastwirth (1987), for an HIV
test on 385 individuals. The error-prone w is based on ELISA (enzyme-linked
immuonabsorbent assay). There are two false negatives. If what Weiss et al.

11
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(1985) considered borderline are classified as negative then there are only 4
false positives, while if they are considered positive there are 22 false posi-
tives. The latter case is given by the parenthetical values in the first line of
the table. Later, for illustration, we use this data as external validation data in
analyzing the data from Mali et al. (1995).

Table 2.1 External validation data for the ELISA test for presence of HIV. x is the true
value, with indicating being HIV positive, and w is the error prone measure from the
assay.

ELISA(w)
0 1

Truth(x) 0 293 (275) 4 (22) 297
1 2 86 88

Example 2. Here we use an example from Fleiss (1981, p. 202) where the
goal was to estimate the proportion of heavy smokers in a population. The
“truth” is determined by a blood test while the error-prone measure w is based
on a self assessment by the individual. Some level of misclassification is often
present with self reporting. Table 2.2 shows data for a random sample of 200
individuals of which 88 reported themselves to be heavy smokers. A random
subsample of 50 from the 200 were subjected to a blood test which determined
the true x. The values of w and x for these 50 subjects are given in the top
portion of the table. The other 150 have a self reported value (w), but the truth
is unknown. This differs from the first example in that the individuals for which
we obtain true values are a subset of the main study. This is an example of
internal validation.

Table 2.2 Smoking example: x = true status with w = self assessment. From Fleiss
(1981). Used with permission of John Wiley and Sons.

w
0 1

x = 0 24 2 26
1 6 18 24

30 20 50

? 82 68 150

112 88 200
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Example 3. Lara et al. (2004) use what is known as a randomized response
technique to estimate the proportion of induced abortions in Mexico. In their
implementation, with probability 1/2 the woman answered the question “Did
you ever interrupt a pregnancy?” and with probability 1/2 answered the ques-
tion “Were you born in April?” Only the respondent knew which question they
answered. Of 370 women interviewed, 56 answered yes. The objective is to
estimate the proportion of women who interrupted a pregnancy. The random-
ized response technique (RRT) intentionally introduces misclassification but
with known misclassification probabilities. In this example, the sensitivity and
specificity (defined in the next section) are 13/24 and 23/24, respectively. See
Lara et al. (2004) and van den Hout and van der Heijden (2002) for further
discussion of the RRT method. The latter paper also describes the situation
where misclassification is intentionally introduced to protect privacy, again
with known probabilities.

Example 4. The use of satellite imagery to classify habitat types has become
widespread. Table 2.3 shows validation data taken from an online document
at the Canada Centre for Remote Sensing for five classes of land-use/land-
cover maps produced from a Landsat Thematic Mapper image of a rural area
in southern Canada. In this case, each unit is a pixel. The goal would be to
use this validation data to obtain corrected estimates for the proportions for an
area on which only the Landsat classifications are available. This is an example
with multiple categories, which is touched on in Section 2.7.

Table 2.3 Validation data for remote sensing.
LANDSAT

Water BareGround Deciduous Coniferous Urban

TRUTH
Water 367 2 4 3 6
BareGround 2 418 8 9 17
Deciduous 3 14 329 24 25
Coniferous 12 5 26 294 23
Urban 16 26 29 43 422

There are two questions considered in the following sections.

• What if we ignore the misclassification?
• How do we correct for the bias induced by misclassification and obtain cor-

rected standard error and/or confidence intervals for the proportion of inter-
est?
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2.2 A model for the true values

We begin by assuming that we have a “random sample” of size n where each
observation falls into one of two categories. In terms of random variables,
X1, . . . , Xn are assumed to be independent and identically distributed (i.i.d.),
where Xi = 1 if the ith observation is a “success” and = 0 if a “failure,” and

π = P (Xi = 1).

The objective is estimation of π, which can be the proportion of successes
in a finite population or, as above, the probability of success on repeated trials.
The assumption of independence is only approximately true when sampling
from a finite population, but generally acceptable unless the sample size is
“large” relative to the population size. Explicit modifications for sampling from
a finite population appear in Section 2.5.

With no measurement error, T =
∑n

i=1 Xi = number of successes in the
sample is distributed Binomial(n, π) and

p = T/n,

the proportion of successes in the sample, is an unbiased estimator of π, with
E(p) = π and V (p) = π(1 − π)/n. The estimated standard error of p is
SE(p) = [p(1−p)/n]1/2. An approximate large sample confidence interval for
π is given by p±zα/2SE(p) and approximate large sample tests of hypotheses
about π, such as H0 : π = π0, are based on either Z = (p − π0)/SE(p) or
(p−π0)/(π0(1−π0)/n)1/2. These large sample inferences for a proportion can
be found in most introductory statistics books. For small to moderate samples,
“exact” confidence intervals and test of hypotheses are available based on the
Binomial distribution; see for example Agresti and Coull (1998) or Casella and
Berger (2002, Exercise 9.21).

2.3 Misclassification models and naive analyses

The fallible/error-prone measure is W , which is assumed to also be binary. It
is the outcome of W , denoted by w, that is obtained on the n observations
making up the main study. The measurement error model, which specifies the
behavior of W given X = x (x = 0 or 1), is specified by the misclassification
probabilities,

θw|x = P (W = w|X = x),

with

sensitivity: P (W = 1|X = 1) = θ1|1
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specificity: P (W = 0|X = 0) = θ0|0.

We only need to specify two probabilities since P (W = 0|X = 1) = θ0|1 =
1 − θ1|1 (the probability of a false negative) and P (W = 1|X = 0) = θ1|0 =
1 − θ0|0 (the probability of a false positive).

Since X is random, if we specify the distribution of W |x we can also derive
a model for the distribution of X given w. This is given by

λx|w = P (X = x|W = w).

We refer to these as reclassification probabilities, but they are also known as
predictive probabilities. Again, we need just two probabilities

λ1|1 = P (X = 1|W = 1) and λ0|0 = P (X = 0|W = 0).

The reclassification model is a special case of a Berkson model (see Chapter 1)
in that it models the truth given the observed. The reclassification and misclas-
sification rates are related via λx|w = θw|xP (X = x)/(θw0(1 − π) + θw1π).

Naive inferences are based on use of the W ’s rather than the possibly unob-
servable X’s. The naive estimator of π is

pW = the proportion of the sample with W = 1.

The Wi’s are a random sample with (see Section 2.8)

πW = P (Wi = 1) = π(θ1|1 + θ0|0 − 1) + 1 − θ0|0. (2.1)

We can also reverse the roles of X and W , leading to

π = πW (λ1|1 + λ0|0 − 1) + 1 − λ0|0. (2.2)

Since E(pW ) = πW rather than π, the naive estimator has a bias of

BIAS(pw) = πW − π = π(θ1|1 + θ0|0 − 2) + (1 − θ0|0).

For a simple problem the nature of the bias can be surprisingly complex. Fig-
ure 2.3 illustrates the bias for π = .01 and .5, displaying the bias as a function
of sensitivity for different levels of specificity. Notice that the absolute bias
can actually increase as the sensitivity or specificity increases with the other
held fixed. For example, consider the case with π = .5 and specificity .90. At
sensitivity .9, the bias is 0 with the bias then increasing as sensitivity increases
with a bias of .05 at sensitivity = 1. With a rarer event (π = .01), the bias is
insensitive to the level of sensitivity, but heavily sensitive to specificity with
severe relative bias even at specificity of .95 where the bias is approximately
.05, when estimating a true value of .01.

We could also evaluate the naive performance through the behavior of the
naive confidence interval. Using the standard normal based confidence interval
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Figure 2.1 Plot of bias in naive proportion plotted versus sensitivity for different values
of specificity (dotted line = .85; solid line = .90; dashed line = .95).
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the probability that the naive interval contains an arbitrary value c is approxi-
mately

P

[
c − πw

(πW (1 − πW )/n)1/2
− zα/2 ≤ Z ≤ c − πW

(πW (1 − πW )/n)1/2
+ zα/2

]

,

where Z is distributed as a standard normal. With c = π this gives the coverage
rate of the naive interval.

2.4 Correcting for misclassification

Equation (2.1) can be used to correct for misclassification using known or esti-
mated misclassification rates. For convenience these are denoted θ̂0|0 and θ̂1|1,
even if they are known. Inverting (2.1) leads to the corrected estimator

π̂ =
pW − (1 − θ̂0|0)

θ̂0|0 + θ̂1|1 − 1
. (2.3)

It is possible for this estimate to be less than 0 or greater than 1. If it is, then
from the point estimation perspective, the estimate would be set to 0 or 1,
respectively. Notice that the estimated specificity is particularly important in
this regard since if the estimated probability of a false positive, 1 − θ̂0|0, is
bigger than pw then the corrected estimate is negative (assuming θ̂0|0 + θ̂1|1 −
1 is positive, which is essentially always the case). Certain of the intervals
presented later bypass this problem since they don’t use a point estimate.

If the sensitivity and specificity are known, then π̂ is unbiased for π. Other-
wise the corrected estimator is consistent but biased with decreasing bias as the
size of the validation sample increases. In practice the bias of the corrected es-
timator could be an issue with small validation studies. This can be investigated
through the bootstrap.

2.4.1 Ignoring uncertainty in the misclassification rates

As noted in the introduction, there are cases where the misclassification rates
are known exactly. This happens with randomized response techniques and
with intentional misclassification to protect privacy. In other cases, previously
reported sensitivity and specificity may be treated as known. In this case, the
estimated standard error of π̂ is

SE(π̂) =
[

pW (1 − pW )
n(θ1|1 + θ0|0 − 1)2

]1/2

and an approximate large sample confidence interval for π is

π̂ ± zα/2SE(π̂). (2.4)



18 MISCLASSIFICATION IN ESTIMATING A PROPORTION

As an alternative to the Wald interval in (2.4), an exact confidence interval
can be obtained. First, an exact confidence interval (LW , UW ) can be obtained
for πW using the error-prone values. This would be based on the Binomial
distribution. Then, assuming θ̂1|1 + θ̂0|0−1 is positive ( it usually is) and using
the fact that π is a monotonic function of πW , a confidence interval for π is
given by

[L, U ] =

[
(LW − (1 − θ̂0|0))

(θ̂1|1 + θ̂0|0 − 1)
,
(UW − (1 − θ̂0|0))

(θ̂1|1 + θ̂0|0 − 1)

]

. (2.5)

If θ̂1|1+θ̂0|0−1 is not positive then some modification is needed, but this would
almost never occur. The value of this approach is that it allows one to handle
small sample problems exactly, while at the same time bypassing any potential
problems with point estimates of π that are outside of the interval [0, 1]. The
same approach could be carried out by constructing the interval (LW , UW )
with the method proposed by Agresti and Coull (1998) as an alternative to the
binomial based interval.

Hypothesis tests about π can be carried out using confidence intervals for
π. Alternatively, an hypothesis about π can be expressed in terms of πW and
tested directly based on the W data.

Example 3 (continued). Table 2.4 provides the analysis for the third exam-
ple in the introduction, estimating the proportion of interrupted unwanted preg-
nancies, using a randomized response technique, which has known sensitivity
θ1|1 = 13/24 and specificity θ0|0 = 23/24. Lara et al. (2004) were interested in
comparing the RRT method to other techniques, rather than in providing infer-
ences for the population proportion, as we do here. The naive pW , which is the
proportion that answered yes to whichever question they received, is approxi-
mately .15. The corrected estimate is π̂ = (.22−(1/24))/((36/24)−1) = .22
with standard errors and confidence intervals calculated as described above.
The correction is about 50 percent of the original estimate and the corrected
confidence intervals are wider and shifted towards larger values, with fairly
close agreement between the Wald and exact intervals.

Table 2.4 Analysis of abortion example

Method Estimate SE Wald Interval Exact Interval

Naive .1514 .0186 (.1148, .1878) (.1161, .1920)
Corrected .2194 .0373 (.1463, .2924) (.1488, .3007)
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2.4.2 Using external validation data and misclassification rates

Here we account for uncertainty from estimating the misclassification rates as-
suming those estimates come from external validation data, represented gener-
ically in Table 2.5.

Table 2.5 Representation of external validation data
W

0 1

X 0 nV 00 nV 01 nV 0.

1 nV 10 nV 11 nV 1.

nV.0 nV.1 nV

There are nV observations for which W and X are both observed. The . no-
tation indicates summation over the missing index; e.g., nV 0. = nV 00 + nV 01.
These data are assumed to be independent of the main body of data. The W ’s
entering into the external validation study also must be random (so we can
estimate the probabilities for W given X) and therefore the validation study
can’t be obtained using stratification based on W . To illustrate this point, sup-
pose we are validating reported smoking status versus true smoking status. If
this external validation design used stratified sampling from reported smokers
and non-smokers then this data only allows estimation of reclassification rates
and so could not be used in the manner described in this section. The other
important assumption is that the misclassification model is assumed to be the
same for this data as the main data; that is, the measurement error model is
exportable from the validation data to the main study. It is less common to use
the reclassification rates from external validation data. If, however, this is done
then the estimation would proceed as when using internal validation; see (2.7)
and the discussion following it.

The validation data yields estimated specificity and sensitivity

θ̂0|0 = nV 00/nV 0. and θ̂1|1 = nV 11/nV 1.

leading to π̂ as in (2.3). If we condition on the x values in the external valida-
tion data, this is in fact the maximum likelihood estimator (MLE) of π, as long
as 0 ≤ π̂ ≤ 1.

Delta and Fieller intervals.

The estimate π̂ is a ratio Z1/Z2, where Z1 = pW − (1 − θ̂0|0) and Z2 =
θ̂0|0 + θ̂1|1 − 1. The estimated variances of Z1 and Z2 and their covariance are
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given by

V̂1 =
pW (1 − pW )

n
+

θ̂0|0(1 − θ̂0|0)
nV 0.

, V̂2 =
θ̂0|0(1 − θ̂0|0)

nV 0.
+

θ̂1|1(1 − θ̂1|1)
nV 1.

and V̂12 = θ̂0|0(1 − θ̂0|0)/nV 0., respectively.

Using the approximate variance of a ratio and estimating it (see Section 2.8)
leads to an estimated standard error SE(π̂) = V̂ (π̂)1/2, where

V̂ (π̂) =
1

(θ̂0|0 + θ̂1|1 − 1)2

[
V̂1 − 2π̂V̂12 + π̂2V̂2

]
(2.6)

=
pW (1 − pW )

n(θ̂0|0 + θ̂1|1 − 1)2
+

1

(θ̂0|0 + θ̂1|1 − 1)2

[
θ̂0|0(1 − θ̂0|0)

nV 0.
− 2π̂V̂12 + π̂2V̂2

]

.

The expression for the estimated variance following (2.6) is written as the vari-
ance if the misclassification parameters are assumed known plus a piece which
accounts for estimation from the validation data. Notice that as the validation
sample sizes (nV 0. and nV 1.) increase the second term goes to 0.

An approximate Wald confidence interval for π, based on the delta method
approximation to the variance of π̂, is given by π̂ ± zα/2SEEV (π̂).

A better option when working with ratios is to use Fieller’s method, which
is discussed in Section 13.5. The use of this method in the current context was
recently investigated by Shieh (2009) and Shieh and Staudenmayer (2009).
With the definitions above the Fieller interval for π can be calculated using
(13.1) in Section 13.5. This interval holds as long as Z-test of θ0|0+θ1|1−1 = 0
is signficant at size α. This is almost always the case unless the error-prone
measure is particularly bad. When this test is highly significant, the Fieller and
Wald intervals are very similar.

Bootstrapping.

Another approach to inference is to use the bootstrap, discussed in a bit more
detail in Section 6.16. Here, this is implemented as follows:

For the bth bootstrap sample, b = 1, . . . , B, where B is large:

1. Generate pwb = Tb/n, θ̂0|0b = nV 00b/nV 0. and θ̂1|1b = nV 11b/nV 1., where
Tb, nV 00b and nV 11b are generated independently as Binomial(n, pw),
Binomial(nV 0., θ̂0|0) and Binomial (nV 1., θ̂1|1), respectively.

2. Use the generated quantities to obtain π̂b = (pwb − (1 − θ̂0|0b))/(θ̂0|0b +
θ̂1|1b − 1) (truncated to 0 or 1 if necessary).


