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Preface

Mathematical models and concepts have been important in ecology since its incep-
tion as a discipline. However, symbiosis between the disciplines of mathematics and
ecology on any appreciable scale is a far more recent phenomenon. Fortunately, in
the last few decades, there has been a growing recognition among many theoreti-
cal and empirical ecologists and mathematical scientists that they can and should
work together to the benefit of both disciplines, science more broadly, and society
at large. Promoting this kind of interaction and integration was the theme of a con-
ference we helped organize here at the University of Miami in January 2005, along
with colleagues from the Department of Biology and the Rosenstiel School of Ma-
rine and Atmospheric Sciences. The title of the meeting was “Workshop in Spatial
Ecology.” The choice of topic was deliberate and two-fold. First of all, space and spa-
tial features are now solidly established as essential considerations in ecology, both
in terms of theory and practice. Second, the mathematical challenges in advancing
understanding of the role of space in ecology are substantial and mathematically se-
ductive. We believed that the benefits of bringing together a select group of top-flight
ecologists and mathematicians, many of whom would not have heretofore met each
other, would be enormous, and if the atmosphere at the meeting is any indication, we
were correct. Not long into our interactions, the suggestion arose for some kind of a
follow-up volume to the workshop; not a conference proceedings per se, but some-
thing more substantial, more thoughtful, that would promote the kind of interplay
between mathematics and ecology, and between theory and data, that we so enjoyed
during the workshop. We immediately thought of two volumes of essays on ecolog-
ical theory that have greatly influenced our development as mathematical scientists
interested in serious ecological questions: Perspectives in Ecological Theory, edited
by J. Roughgarden, R. M. May, and S. A. Levin, Princeton University Press, 1989;
and Spatial Ecology: The Role of Space in Population Dynamics and Interspecific
Interactions, edited by D. Tilman and P. Kareiva, Princeton University Press, 1997.
We thought that a volume along those lines that considered emerging challenges in
spatial ecology could be highly valuable to a new generation of mathematical scien-
tists and ecologists, especially if the choice of contributors to the volume reflected
the current trend toward increased interaction of mathematical and ecological scien-
tists and the resulting trend toward integration of the two disciplines. It was in that
spirit that we arrived at the current volume.

We have identified emergent challenges in spatial ecology: understanding the impact
of space on community structure, incorporating the scale and structure of landscapes

xiii



xiv PREFACE

into mathematical models, and developing the connections between spatial ecology
and the three other disciplines of evolutionary theory, epidemiology, and economics.
This volume is divided into sections focused on those topics. Many of the authors of
essays in this volume spoke at the Workshop in Spatial Ecology, but quite a number
did not attend. Nevertheless, all of them share a commitment to the advancement
of ecology as a truly quantitative science, particularly as it touches upon the role of
space.

One of the fundamental problems in spatial ecology is to understand how spatial
effects influence the dynamics of populations and the structure of communities.
There has been significant progress in recent years on developing and analyzing
spatial models for a single population in a temporally constant environment, and
at least some on models for two competitors or a predator and its prey, but there has
been much less work on models for spatial effects in communities involving sev-
eral species or trophic levels or environmental variability in both space and time.
On the mathematical side, much of the progress on understanding spatial models
has been related to the development of a theory that can give criteria for uncondi-
tional persistence or extinction, that is, determining when a model has some sort
of globally attracting set with certain species present and others absent. There has
been some progress, but not as much, on methods for treating models that have mul-
tiple attracting sets so that their predictions are conditional on factors such as the
initial state of the system. The chapter by DeAngelis et al. describes how models
and simulations can provide insight into community and food chain structure in as-
semblages of fish species in wetland environments where the area of fish habitat
is seasonally fluctuating. The chapter by Amarasekare presents results from models
that illuminate how dispersal and spatial heterogeneity influence the mechanisms and
patterns of species coexistence in multi-trophic communities with intraguild preda-
tion or predator-mediated coexistence. The chapter by Jiang and Shi describes recent
progress on the mathematical theory for treating models where Allee effects, strong
competition, or other mechanisms give rise to “bistability,” that is, to multiple stable
equilibria.

Classical modeling approaches in spatial ecology typically treat space as homoge-
neous and isotropic. For example, most spatially explicit models based on partial dif-
ferential equations envision that organisms disperse through a uniform environment
via simple diffusion. However, many ecological processes occur in spatial structures
that display various sorts of heterogeneity and/or directionality at various scales, and
the nature of the spatial structure of populations themselves is not always obvious.
Organisms may disperse via nonrandom mechanisms that arise directly from the
physical environment, for example by advection, and may decide whether or how
to move in nonrandom ways based on environmental cues. The idea of connecting
spatial scale and structure and dispersal behavior to phenomena in population dy-
namics, evolution, epidemiology, and economics is a recurring theme that is present
in many of the chapters in this collection, and it is the specific focus of several of
them. The chapter by Ovaskainen and Crone discusses how diffusion models can be
extended and refined to describe dispersal in heterogeneous landscapes consisting of
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patches and corridors of various types, and to account for dispersal behavior that may
involve effects such as habitat preferences. The next three chapters are motivated or
partly motivated by the problem of understanding ecological processes in river sys-
tems. Those systems present a branching spatial structure that is different from that
of typical terrestrial environments, and dispersal in them is influenced by physical
advection. The chapter by Fagan et al. addresses the issue of formulating metapopu-
lation models for river networks and examines the effects of the “branchiness” of the
network on metapopulations inhabiting it. The chapter by Hadeler et al. treats a vari-
ety of effects related to models for populations with quiescent phases. One particular
problem that is discussed in that chapter is the “drift paradox,” that is, the problem of
understanding how populations in streams can resist being washed out by advection.
Shifting into a quiescent phase is one possible mechanism by which a population
can resist washout. The chapter by Nisbet et al. treats population dynamics in ad-
vective media, reviews the drift paradox, and identifies characteristic length scales
related to population dynamics in such media. The final chapter in this section, by
Hinrichsen and Holmes, addresses the problem of determining the spatial structure
(or absence thereof) of a population from measurements at different sites. Specifi-
cally, it treats the application of state-space models to the problem of determining
whether multi-site data correspond to independent populations with independent en-
vironmental drivers, independent populations with a shared environmental driver, a
collection of populations with the same growth rate but independent environmental
drivers, or a single population. Each of those cases would call for a distinct modeling
approach, so determining which one represents the actual situation is important for
connecting models with data.

The remaining chapters in the collection treat topics related to space and ecology,
but do so relative to the perspectives of evolutionary theory, epidemiology, or eco-
nomics. These areas are related to ecology by both direct connections among the
phenomena they examine and philosophical similarities in the issues they address.
Ecology describes the framework in which the natural selection that drives evolution
occurs. In a sense, epidemiology describes the population interactions between mi-
crobes and other organisms, and may involve other aspects of ecology in the contexts
of vector-borne or zoonotic diseases. The economics of harvesting resources such as
fish or forests are tied to the ecology of those resources. More broadly, all of these
disciplines aim to describe the large-scale emergent behavior of systems consisting
of many interacting independent agents that may cooperate, compete, or exploit each
other. For that reason modeling ideas and approaches that have worked well in the
context of one of them may be relevant to others. Finding unifying approaches to
these disciplines may be one of the grand intellectual challenges of current scientific
thought.

At our present level of understanding, the conclusions about spatial aspects of evolu-
tion that can be drawn from models seem to depend to a considerable extent on the
detailed assumptions built into the models. The chapters on topics related to evolu-
tion in this volume provide a guided tour through a number of scenarios and mod-
eling approaches that represent active areas of current research, and suggest some
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paths toward conceptual unification. The chapter by Hanski discusses how realistic
metapopulation models may provide a unifying approach to ecological and evolu-
tionary theory in fragmented habitats. Those models account for the areas of patches
and the connectivity among patches. Hanski discusses how metapopulation models
can be used to study the evolution of migration rates in fragmented environments.
The chapter by Holt and Barfield also connects metapopulation theory to evolution.
It specifically addresses the problem of understanding how environmental hetero-
geneity influences the evolution of species’ niches. The chapters by Cantrell et al.
and Bolker, in contrast, treat problems related to the evolution of dispersal in contin-
uous environments. Both of those chapters take the viewpoint of adaptive dynamics
as a starting point. The key assumption behind adaptive dynamics is that the strate-
gies which can be expected to be successful in an evolutionarily sense are those that
allow populations using them to successfully invade resident populations using other
strategies. Although Cantrell et al. and Bolker use similar philosophical approaches
based on adaptive dynamics, they use different types of models to study different
scenarios. Cantrell et al. use reaction-advection-diffusion models in spatially het-
erogeneous environments to examine the evolution of dispersal mechanisms arising
from local movement behavior that may be responsive to environmental conditions.
Bolker uses spatial moment equations to examine how the nature and scale of spa-
tial autocorrelation in environmental suitability influence the evolution of the shape
of nonlocal dispersal kernels. Taken together the chapters treating spatial aspects of
evolutionary theory show how strongly assumptions about the nature of dispersal
and the scale and structure of the environment influence the conclusions that can be
drawn about the evolutionary causes and effects of dispersal.

Recent concerns about the emergence or resurgence and global spread of infectious
diseases have motivated renewed interest in epidemiology. Many potentially danger-
ous pathogens are zoonotic or vector-borne and thus have aspects that are directly
related to ecology. Some similar problems arise in both disciplines, and often these
can be addressed by similar modeling approaches. That point is well illustrated by
the chapters on epidemiology. The chapter by Lloyd and Sattenspiel uses a metapop-
ulation approach to examine how nonlinear disease dynamics interact with seasonal
forcing to determine spatiotemporal patterns in disease dynamics. The chapter by
Potts and Kimbrell describes how simulation models can be used to compare differ-
ent control strategies for vector-borne diseases. The chapter by Ruan and Wu reviews
a selection of reaction-diffusion models for the spread of diseases with animal hosts.
In each case the modeling approach is reminiscent of ideas that are widely used in
ecology, but is modified by the specific features of the epidemiological system it
describes.

As human populations increase they put increased pressure on natural resources,
which makes it crucial that we learn how to use them in sustainable ways and if
possible to optimize the benefits derived from them. To do that it is necessary to
understand how economics interacts with ecology and then apply ideas from opti-
mal control theory. The chapter by Sanchirico and Wilen addresses the problem of
optimal fisheries management from the viewpoint of metapopulation modeling. The
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chapter by Olson explores the general issue of constructing models that describe the
dynamics of resources, human factors in harvesting them, and the flow of capital
investment needed to support the harvesting. The chapter by Herrera and Lenhart re-
views some results on optimal control in metapopulation models and shows how to
extend the approach to reaction-diffusion models and related models based on partial
differential equations.

Our friend and colleague Alan Lazer once remarked: “It is better to open up an area
of research than to close one down.” As the chapters in this volume show, there is
a great deal more to be done before the discipline of spatial ecology is ready to be
closed down. We hope that this volume will inspire readers to open up new areas
of research in the mathematical theory of spatial ecology and its connections with
evolutionary theory, epidemiology, and economics.

Robert Stephen Cantrell
Chris Cosner

Coral Gables, FL Shigui Ruan
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CHAPTER 1

Competition dynamics in a seasonally
varying wetland

Don L. DeAngelis
U. S. Geological Survey and University of Miami

Joel C. Trexler
Florida International University

Douglas D. Donalson
Everglades National Park

Abstract. We have used one- and two-dimensional, spatially explicit models to simulate
fish communities in freshwater wetlands in which the seasonality of rainfall in these wet-
lands causes annual fluctuations in the amount of flooded area, or fish habitat. We have
modeled the competition between small fish species that differ from each other in efficiency
of resource utilization and dispersal ability. The simulations showed that these tradeoffs,
along with the spatial and temporal variability of the environment, allow coexistence of
several species competing exploitatively for a common resource type. This mechanism,
while sharing some characteristics with other mechanisms proposed for coexistence of
competing species, is novel in detail. Simulated fish densities resembled patterns observed
in Everglades empirical data. We are also modeling trophic chains and how these chains
respond to the annual fluctuations in available habitat. These studies are a step towards
understanding the community and food chain structure of fishes in seasonally fluctuating
environments. They raise many theoretical questions that we plan to discuss in our essay.

1.1 Introduction

Models used in applied aspects of ecology, such as dealing with specific questions of
conservation, assessment, and restoration, are usually far different from models used
to elucidate theoretical issues. The former tend to include details that may be impor-
tant to the particular applied question, while the latter are kept as simple as possible
to reveal theoretical insights. However, theory should and can play a more prominent
role in influencing the way that ecosystems are managed. The concept of trophic cas-
cades from food web theory and metapopulation theory from spatial ecology are ex-
amples where theoretical models are beginning to make inputs to management plans.

1



2 COMPETITION DYNAMICS IN A SEASONALLY VARYING WETLAND

As ecological theory is extended to more and more complex phenomena in which
spatial heterogeneity and temporal fluctuations play a role, its potential application
to real ecosystems and to specific applied issues is increasing. Practical models, even
though necessarily more detailed and specific than those of theoretical ecology, may
contain kernels of simpler theoretical concepts and models. Here we consider such a
case of application of theory to a key component of the Everglades ecosystem.

The Everglades is a large freshwater marsh, characterized by the strong seasonal
rainfall pattern of the region, which creates a cycle of wet and dry seasons. Water
depths vary seasonally, but are seldom greater than one meter in this hydroscape of
thousands of square kilometers. Because of the flat landscape, relatively small differ-
ences in mean water level amplify into large differences in the amount of wetted area
and flooding duration, which affect the plant and animal communities. A commu-
nity of small-bodied fishes, along with macroinvertebrates like crayfish, is a crucial
component of the Everglades ecosystem (Kushlan 1990), as it is in many other sea-
sonal wetlands, such as the Pantanal (Heckman 1998). These fishes are important
connections that link both the small herbivorous fauna that feed on periphyton and
the detritivores with the higher trophic level species, such as wading birds.

A question of great practical importance is how water levels in the Everglades should
be regulated to maintain a system that is as close as possible to the natural ecosys-
tem. The wetland small-fish community is strongly influenced by seasonal hydro-
logic fluctuations (Loftus and Kushlan 1987, Trexler et al. 2002). Human-induced
changes in hydrology over the last several decades have altered hydroperiods in most
wetland areas, thereby diminishing this fish forage-base or changing the pattern of
its availability. Lack of sufficient biomass and availability of prey is hypothesized to
have been a major factor in the decline of wading bird nesting at traditional Ever-
glades’ rookeries (Ogden 1994).

The species richness of the fish community is deemed to be important, both for its
intrinsic value and for the contribution of species richness to biomass productiv-
ity of the community. The coexistence of many fish species of similar small body
size and resource use also poses interesting questions for ecological theory. Numer-
ous hypothesized mechanisms have been proposed for the maintenance of species
richness in communities and the maintenance of the diverse Everglades freshwater
fish community may be related to some current ecological theory on nonequilibrium
communities. Environmental fluctuations are often proposed as means for maintain-
ing richness in a dynamic community by preventing competitively dominant species
from eliminating others. Chesson (2000) reviewed mathematical models showing
that environmental fluctuations could promote diversity in nonequilibrium commu-
nities, when the fluctuations effectively provide distinct niches for the competing
species. These circumstances may occur when the competing species have tradeoffs
in key physiological and/or behavioral traits that allow the relative advantages to
alternate among species in a fluctuating environment.

It is possible that some of the tradeoffs involve differences in the ability to move
quickly into newly flooded areas and in the competitive ability in the permanently
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flooded areas. As vast areas of wetland are re-flooded each year, opportunistic fish
species can disperse into and exploit those areas first; while other species appear
better at dominating more permanently inundated areas of marsh. Species better at
exploiting more stable areas should have higher reproductive and/or survival rates in
long-hydroperiod areas, and they should be slower to disperse.

This idea is related to some current theoretical ideas developed for other commu-
nities. For example, Litchman and Klausmeier (2001) developed a model based on
tradeoffs in coexisting species, phytoplankton species in their case, competing under
seasonally periodic light availability. One species (‘opportunist’) was able to grow
faster under initially high levels of light, but, when phytoplankton biomass increased
to the point that self-shading occurred, the advantage shifted to the other (‘gleaner’)
species. Both species declined during the period of the year when external solar ra-
diation was low. For certain ratios of light to dark period, coexistence was possible.

The model of Litchman and Klausmeier (2001) relies on periodic temporal variations
for coexistence. Other theoretical ideas emphasize spatial movement, as in “succes-
sional mosaic” models (Armstrong 1976, Tilman 1994, Holmes and Wilson 1998).
In that hypothesis, disturbances occur asynchronously across the landscape, creating
new habitats ready to be recolonized. If some members of the regional species pool
have traits that allow invasion of newly available gaps where they increase rapidly,
while others invade slowly but are better competitors and eventually displace the pi-
oneers, species diversity can be maintained. Areas within this dynamic landscape of-
fer a range of successional stages at a given time, allowing niches for many different
life-history traits. Other models of this class assume that all patches are continuously
occupied by all the species, but differences in dispersal rates, along with differences
in resource growth rates on different patches, can maintain more than one species on
a given resource (Abrams and Wilson 2004, Namba and Hashimoto 2004).

Our conceptual model, which attempts to account for at least some aspects of co-
existence within the South Florida wetland fish community, contains elements of
the above nonequilibrium hypotheses. However, the mechanism we propose differs
slightly from each of those. As in the “successional mosaic” hypothesis, fish species
populations move at different rates into newly opened (flooded) habitat, with the
more competitive species moving more slowly than the more opportunistic ones. But
this re-colonization process does not occur in randomly and asynchronously opened
habitat patches, as in gap creation in forest systems. As in the Litchman and Klaus-
meier (2001) model, rather than random disturbances, deterministic periodic tem-
poral variation is assumed, here as large annual pulses during the seasonal flooding
period. In addition, during the dry season, the recession of water forces all popu-
lations together into permanent or semi-permanent waterbodies, so that all species
may be squeezed together for part of an annual cycle. The gradual opening of new
habitat by the rising water gives the more effectively dispersing fish species a tem-
porary advantage, during which they can build in numbers before being subjected to
competition by the other invaders. When the waters recede, the opportunistic fish are
subjected again to heavy competition, but if they have built up high enough numbers,
the species may persist.
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1.2 Model

The mechanism for small fish coexistence described above was incorporated into a
detailed spatial simulation model of competing fish species described by DeAngelis
et al. (2005). However, the mechanism can be transparently illustrated by a more
abstract model. We first describe it conceptually and then show that it is plausible by
showing model output for a particular parameterization.

Table 1.1. X1, X2, and X3 represent the three species. ↑ represents increasing pop-
ulation size, ↓ represents decreasing population size,→ represents emigration from
a region,← represent immigration to a region, and c stands for constant. There are 6
time periods denoted in the table, and 6 transitions between time periods, which may
be very short.

Period of Time During the Year

Region I I→II II II→III III III→IV IV IV→V V V→VI VI VI→I

A X1 c X1 c X1 c X1 c X1 c X1 c X1 c X1 c X1 c X1 c X1 c X1 c
X2 ↓ X2 X2 ↓ X2 → X2 ↓ X2 X2 ↓ X2 X2 ↓ X2 ← X2 ↓ X2
X3 ↓ X3 → X3 ↓ X3 X3 ↓ X3 X3 ↓ X3 X3 ↓ X3 X3 ↓ X3 ←

B X2 ← X2 ↑ X2 X2 ↑ X2 X2 ↑ X2 →
X3 ← X3 ↑ X3 X3 ↓ X3 → X3 ↓ X3 ← X3 ↓ X3 X3 ↑ X3 →

C X3 ← X3 ↑ X3 →

The conceptual model considers three fish populations, each of which has a tradeoff
in its competitive ability and ability to disperse into newly flooded areas. Instead of
considering a smooth elevation gradient, we assume a step-wise gradient of three
elevations. The first region, Region A, is low elevation and permanently flooded.
Region B is flooded for a fraction of the year and Region C is flooded for a smaller
fraction of the year. Fish Species 1 can only survive in Region A; the water is too
shallow for it in Regions B and C. Both Species 2 and 3 can invade Regions B when it
floods, but Species 3 can invade sooner and stay longer. When Region C, the highest
elevation region is flooded, only Species 3 can invade.

The competitive dynamics are simplified in a crucial way by making competition
asymmetrical. Species 1 has a negative effect on Species 2 and 3, and Species 2 has
a negative effect on Species 3, but the reverse does not occur. We assume further
that each population grows logistically in the absence of competition, but when in
the presence of a competitively superior species, a population (e.g., Species i) is af-
fected via Lotka-Volterra competition (i.e.,−cijXiXj) by the competitively superior
species j. Because the population of Species 1 does not move out of Region A and
because it is assumed to suffer no negative effects of competition, it remains constant
at its carrying capacity.

Imagine a yearly cycle in which water level rises and falls in a smooth, relatively de-
terministic manner. The dynamics of the community can be described by considering
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the year divided into 12 intervals, as shown in Table 1.1. The simplifications made
above allow the model to be solved analytically. The equations and parameters for
a particular quantitative realization of this conceptual model are shown in the Ap-
pendix. Conceptually, the temporal sequence of dynamics through a year should be
as follows.

Time period I. The water level is low, so all three fish species are confined to Region
A. Species 1 is the best competitor. It is assumed to remain constant during this and
all other period. The other two species are declining.

Time period I→II. This is an interval during which the water depth in Region B
reaches a level that some part of the population of Species 3 can invade. (This, and
all other transition intervals, is considered to be very brief in the model.)

Time period II. The population of Species 3 increases in density in Region B, follow-
ing logistic growth. Both Species 2 and 3 continue to decline in Region A.

Time period II→III. With rising water level, during this brief interval part of the pop-
ulation of Species 2 invades Region B. The remaining populations of both Species 2
and 3 in Region A continue to decline.

Time period III. The population of Species 2 increases in Region B, and Species 3
may either grow, or decline, depending on the balance between its own growth rate
and the Lotka-Volterra competition from Species 2.

Time period III→IV. Water level continues to increase, such that part of the popula-
tion of Species 3 invades Region C.

Time period IV. The population of Species 3 increases in Region C according to
logistic growth. The dynamics in the other regions remain the same.

Time period IV→V. The water level is now falling and is shallow enough in Region
C that some of Species 3 migrates back to Region B, though some fraction of the
population is stranded in Region C and dies.

Time period V. The dynamics in Regions A and B continue as before.

Time period V→VI. The water level is now falling and is shallow enough in Region
B that some of Species 2 migrates back to Region A, though some fraction of the
population is stranded in Region B and dies.

Time period VI. The population of Species 3 is able to increase again in Region B
without competition from Species 2.

Time period VI→I. The water level is now falling and is shallow enough in Region
B that some of Species 3 migrates back to Region A, though some fraction of the
population is stranded in Region B and dies. The cycle now repeats.
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1.3 Results

A quantitative evaluation of the model can be made using a hypothetical set of pa-
rameter values. At the beginning of the year, water level is assumed to be low and
all populations are squeezed together in Region A. Populations of Species 2 and 3
decline at first in Region A (Figure 1.1a), a decline that is sharpened by a migration
of parts of these populations (Species 3 first, and then Species 2) to Region B as wa-
ter levels rise (Figure 1.1b). In Region B, Species 3 is first able to increase, but after
Species 2 invades and starts to increase, the population of Species 3 declines. Species
3 is then able to invade Region C with further increase in water levels, where it grows
logistically until falling water level causes that region to dry out (Figure 1.1c). Part of
the population of Species 3 is able to migrate back to Region B, where competition
with Species 2 continues. Finally, falling water levels compress both Species 2 and
3 back into Region A and the cycle begins again. This yearly cycle is stable and the
system will return to it if perturbed.

This simple model illustrates the role that periodic fluctuations in the environment,
in this case in water level, can play in biodiversity. Species 3 cannot exist if the
amplitude of the regular flooding is decreased. If this amplitude is decreased such
that the period of time that Region C is flooded decreases sufficiently from the 110
day period shown in Figure 1.1, Species 3 will disappear from the system (Figure
1.2).

1.4 Discussion

The model displays a highly simplified version of the actual dynamics of fish species
along an elevation gradient subject to temporal fluctuations in water level. However,
this is a first building block onto which more complexities can be added. The ability
of this mechanism to operate in more realistic models has been demonstrated in a
multi-species simulation model in which as many as five fish species with different
competitive and dispersal abilities were able to coexist along an elevation gradient
(DeAngelis et al. 2005). A surprising outcome of that model was that a species that
was both a poorer competitor and had less dispersal ability than at least one other
species in the model was still able to coexist. That result illustrates the emergent
complexities that multiple competing species in a spatially and temporally varying
environment can create. The simple model here, with highly asymmetric competi-
tion, cannot produce such complex phenomena as that. However, even the simple
model of this paper demonstrates the importance of amplitude of annual fluctuations
in water level. A decrease in amplitude may lead to the loss of a population that
requires sufficient time in an area without competition to maintain population size.

The real Everglades ecosystem contains further complexities that must be encom-
passed by any model that aims at realism. One such complexity is the existence
of microscale elevation heterogeneity, which leads to the existence of small perma-
nent and temporary ponds in areas that have otherwise dried out. These can serve as
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Figure 1.1 This shows the dynamics of three populations in three discrete regions of increas-
ing elevation in a wetland, subject to regular seasonal fluctuations in water level that result in
Regions B and C being flooded only part of the year. (a) Species 1 (solid line) exists on in
Region A, and has a negative effect on the two other species. (b) Species 2 (dashed line) and 3
(dotted line) can migrate instantaneously to Region B when water becomes sufficiently deep.
(c) Species 3 can briefly occupy the highest elevation area, Region C. The parameter values
used are as follows. T1 = 40., T2 = 90., T3 = 130., T4 = 240., T5 = 290., T6 = 340.,
r2 = 0.012, r3 = 0.02, k2 = 50., k3 = 50., c12 = 0.004, c13 = 0.005, c23 = 0.0002,
f2wet = 0.5, f2dry = 0.6, f3wet = 0.7, f3dry = 0.5.
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Figure 1.2 Size of the population of Species 3 in Region A at the end of the year, as a function
of the length of the period that Region C is flooded.

refuges for fish, so that population recovery in a new flooded region does not have
to depend on the arrival of immigrants from distant larger permanent waterbodies.
Another complexity is that of the total food web. Predator-prey interactions gener-
ate oscillations, and the movement of pulses of migrating fish across the landscape
creates spatially varying concentrations of periphyton, detritus, and nutrients. These
dynamics are now being studied using a large, spatially explicit simulation model.
This model, by using a 100× 100 cell grid, also allows us to extend the analysis be-
yond the simple topography of the model described here, and also to more complex
temporal changes in water levels, which may be highly irregular in the Everglades.
These all may be expected to contribute to novel emergent qualities in the commu-
nity dynamics. However, the new model still contains at its heart, though in far more
elaborated form, the mechanism of species coexistence illustrated in the Appendix.
As expected, it can produce results of coexistence that reflect those of the simpler
model. Importantly, both the simple model and the more complex one demonstrate
the importance of environmental fluctuations in maintaining species richness.
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1.5 Appendix

A number of simplifying assumptions are made so that the mechanism behind coex-
istence of competing fish along an elevation gradient can be explained analytically.
The equations for the three fish species, where the elevation gradient is divided into
three regions of different elevation, are as follows.

Region A - Lowest elevation

This region is always flooded and always occupied by all three species. It is assumed
that Species 1 is the dominant competitor, whose biomass density stays close to its
carrying capacity, k1. Species 2 and 3 always decline in this region due to asymmet-
ric or one-sided competition, but are reinforced by immigration from the Region B
when it dries, which prevents these populations from going to zero. The simplified
equations for the three species are always

X∗1 = k1

dX2

dt
= −c12X∗1X2

dX3

dt
= −c13X∗1X3

(1.1)

Region B - Intermediate elevation

Both Species 2 and 3 can invade this region when it floods, though Species 3 invades
first, at time T1, and leaves at time T6, while Species 2 invades at time T2 and leaves at
time T5. Species 2 is competitively dominant and is always described by the equation

dX2

dt
= r2

(
1− X2

k2

)
X2 (1.2)

When Species 3 is alone, during the time intervals T1 < t < T2 and T5 < t < T6, it
is described by

dX3

dt
= r3

(
1− X3

k3

)
X3 (1.3)

However, when both Species 2 and 3 are present, Species 3 is described as having
the negative effect of one-sided competition from Species 2, as follows, where, for
simplicity, we ignore the carrying capacity effect on Species 3:

dX3

dt
= (r3 − c23X2)X3

=
(
r3 − c23f2wetX

∗
2(T2)k2e

r2(t−T2)

f2wetX∗2(T2)er2(t−T2) + (k2 − f2wetX∗2(T2))

)
X3 (1.4)

Here f2wet is the fraction of population of Species 2 that migrates from Region A to
Region B when it floods.
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Region C - Highest elevation

Only Species 3 can invade this region, during the interval T3 < t < T4. Its growth is
described by

dX3

dt
= r3

(
1− X3

k3

)
X3 (1.5)

When these equations are integrated over each of the time intervals, with appropriate
initial conditions at the start of each interval, the following mathematical expressions
are obtained in each time period and region (see Table 1.1):

Time Period I (0 < t < T1)

Region A:

X2A(t) = X2A(0)e−c12X∗
1t

X3A(t) = X3A(0)e−c13X∗
1t

(1.6)

Time Period II (T1 < t < T2)

Region A: Here f3wet is the fraction of population of Species 3 that migrates to
Region B from Region A when it floods.

X2A(t) = X2A(T1)e−c12X∗
1(t−T1)

X3A(t) = (1 − f3wet)X3A(T1)e−c13X∗
1(t−T1)

(1.7)

Region B:

X3B(t) =
f3wetX3A(T1)k3e

r3(t−T1)

f3wetX3A(T1)er3(t−T1) + (k3 − f3wetX3A(T1))
(1.8)

Time Period III (T2 < t < T3)

Region A:

X2A(t) = (1 − f2wet)X2A(T2)e−c12X∗
1(t−T2)

X3A(t) = X3A(T2)e−c13X∗
1(t−T2)

(1.9)
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Region B:

X2B(t) =
f2wetX2A(T2)k2e

r2(t−T2)

f2wetX2A(T2)er2(t−T2) + (k2 − f2wetX2A(T2))

X3B(t) = X3b(T2)eQ3B

Q3B = r3(t− T2) +
c23k2

r2
ln(R(t)/k2)

R(t) = f2wetX2A(T2)er2(t−T2) + (k2 − f2wetX2A(T2))

(1.10)

Time Period IV (T3 < t < T4)

Region A:

X2A(t) = X2A(T3)e−c12X∗
1(t−T3)

X3A(t) = X3A(T3)e−c13X∗
1(t−T3)

(1.11)

Region B: Here f3wet is the fraction of population of Species 3 that migrates from
Region B to Region C when it floods

X2B(t) =
X2B(T3)k2e

r2(t−T3)

X2B(T3)er2(t−T3) + (k2 −X2B(T3))

X3B(t) = (1− f3wet)X3B(T3)eQ3B

Q3B = r3(t− T3) +
c23k2

r2
ln(R(t)/k2)

R(t) = X2A(T3)er2(t−T3) + (k2 −X2A(T3))

(1.12)

Region C:

X3C(t) =
f3wetX3B(T3)k3e

r3(t−T3)

f3wetX3B(T3)er3(t−T3) + (k3 − f3wetX3B(T3))
(1.13)

Time Period V (T4 < t < T5)

Region A:
X2A(t) = X2A(T4)e−c12X∗

1(t−T4)

X3A(t) = X3A(T4)e−c13X∗
1(t−T4)

(1.14)

Region B: Here f3dry is the fraction of population of Species 3 that migrates from
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Region C to Region B when the former is too shallow.

X2B(t) =
X2A(T4)k2e

r2(t−T4)

X2B(T4)er2(t−T4) + (k2 −X2B(T4))

X3B(t) = (X3B(T4) + f3dryX3C(T4))eQ3B

Q3B = r3(t− T4) +
c23k2

r2
ln(R(t)/k2)

R(t) = X2B(T4)er2(t−T4) + (k2 −X2B(T4))

(1.15)

Time Period VI (T5 < t < T6)

Region A: Here f2dry is the fraction of population of Species 2 that migrates from
Region B to Region A when the former is too shallow.

X2A(t) = (X2A(T5) + f2dryX2B(T5))e−c12X∗
1(t−T5)

X3A(t) = X3A(T5)e−c13X∗
1(t−T5)

(1.16)

Region B:

X3B(t) =
X3B(T5)k3e

r3(t−T3)

X3B(T5)er3(t−T3) + (k3 −X3B(T5))
(1.17)

Time Period VII (T6 < t < 365)

Region A: Here f3wet is the fraction of population of Species 3 that migrates from
Region B to Region A when the former is too shallow.

X2A(t) = (X2A(T5)e−c12X∗
1(t−T6)

X3A(t) = (X3A(T5) + f3dryX3B(T6))e−c13X∗
1(t−T5)

(1.18)

Then set
X2(0) = X2(365)

X3(0) = X3(365)
(1.19)

and begin a new annual cycle.
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CHAPTER 2

Spatial dynamics of multitrophic
communities

Priyanga Amarasekare
University of California at Los Angeles

Abstract. I discuss the influence of dispersal on two multitrophic communities: intraguild
predation and keystone predation. The key finding is an asymmetry between species in
their dispersal effects and responses. In both intraguild predation and keystone predation,
dispersal of the predator-resistant inferior competitor has a large effect, but dispersal of
the predator-susceptible superior competitor has little or no effect, on coexistence and
species’ distributions. In the case of keystone predation, the inferior competitor’s disper-
sal also mediates the predator’s dispersal effects: predator dispersal has no effect when
the inferior competitor is immobile, and a large effect when it is mobile. The direct and
indirect effects of the inferior competitor’s dispersal changes species’ distributions from
inter-specific segregation in resource-poor and resource-rich habitats to inter-specific ag-
gregation in resource-rich habitats. The important point is that the interaction between com-
petition and predation creates asymmetries between species that lead to unexpected effects
of dispersal. These asymmetries suggest the existence of keystone dispersers, species that,
through their dispersal, have disproportionately large effects on species distributions and
diversity in multitrophic communities.

2.1 Introduction

The interplay between species interactions and dispersal is the key determinant of
diversity in spatially structured environments (Leibold et al. 2004, 2005). A great
deal is known about this interplay in communities with one or two trophic levels (e.g.,
resource, consumer; Levin 1974; Holt 1985; Murdoch et al. 1992; Amarasekare and
Nisbet 2001; Jansen 2001; Abrams and Wilson 2004) but relatively little is known
about it in communities with multiple trophic levels (e.g., resource, consumer, natural
enemy).

Most theory on spatial coexistence focuses on nontrophic or pairwise trophic interac-
tions where species cannot coexist in the absence of dispersal (e.g., competitive dom-
inance, predator overexploitation, Allee effects induced by the absence of a mutual-
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istic partner). In such situations, dispersal can allow coexistence given spatial varia-
tion in species’ traits (Levin 1974; Holt 1985, 1993; Amarasekare and Nisbet 2001;
Codeco and Grover 2001; Amarasekare 2004; Leibold et al. 2004). Two aspects of
multitrophic communities suggest the need for a different framework for understand-
ing the interplay between dispersal and species interactions. First, multitrophic com-
munities are characterized by two types of interactions (trophic and nontrophic in-
teractions) that are dynamically quite different. Second, in multitrophic communities
species occupying a particular trophic level can coexist in the absence of dispersal,
but the operation of such coexistence mechanisms is variable in space and time. Thus,
local and spatial coexistence mechanisms can operate simultaneously, and their inter-
action can lead to emergent properties (Amarasekare 2006, 2007). Dispersal effects
on multitrophic communities are therefore likely to be quite different from dispersal
effects on communities with only one type of species interaction.

Two examples of multitrophic community modules illustrate these differences. In-
traguild predation (IGP) occurs when species competing for a common resource also
prey on or parasitize one another (e.g., Polis et al. 1989; Arim and Marquet 2004);
keystone predation (KP) occurs when species competing for a common resource also
share a natural enemy (e.g., Sih et al. 1985; Navarette and Menge 1996). In both
cases the two consumer species can coexist via a trade-off that allows for local niche
partitioning. In intraguild predation local niche partitioning is possible because the
inferior resource competitor can prey on or parasitize its competitor; in keystone
predation it occurs because the inferior competitor gains more of the resource by
being less susceptible to the predator. A key feature of these trade-offs is that their
expression depends on traits of species occupying other trophic levels within the
community (Amarasekare 2007, 2008). In intraguild predation it is the common re-
source; in keystone predation it is the common resource and/or natural enemy. In the
absence of dispersal or other ameliorating factors, spatial variation in resource pro-
ductivity or predator mortality can shift the advantage to one consumer species and
cause the other’s exclusion. For instance, when resource productivity is low (preda-
tor mortality is high), exploitative competition dominates and the inferior resource
competitor is excluded; when resource productivity is high (predator mortality is
low), predation dominates and the species more susceptible to predation is excluded
(Holt and Polis 1997; Diehl and Feissel 2000; Noonberg and Abrams 2005). Thus,
the trade-off between competition and predation allows coexistence only at interme-
diate productivity/mortality levels. This illustrates another feature that distinguishes
multitrophic interactions. In nontrophic or pairwise trophic interactions, spatial vari-
ation in species’ traits typically facilitates coexistence (Leibold et al. 2004). In mul-
titrophic interactions, spatial variation in resource or predator traits can constrain the
coexistence of intermediate consumers. Thus, diversity maintenance in multitrophic
communities depends crucially on whether dispersal by intermediate consumers can
counteract the diversity reducing effects of spatial variation that act through a shared
resource or natural enemy (Amarasekare 2007).

Here I present some theoretical insights on the spatial dynamics of multitrophic com-
munities characterized by competition and predation. These insights are based on a


