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Foreword

 

In the near future, the unprecedented use of novel technologies for membrane
proteins will hopefully aid in conquering the last frontier in structural biology.
Although there are more than 30,000 protein structures deposited in the protein data
bank (PDB), less than 1% of these represent membrane proteins. In light of the fact
that membrane proteins constitute >20% of all proteins, this disparity in the number
of membrane proteins and available structures is due to the inherent transmembrane
nature of these proteins, which makes their expression, purification, stabilization,
and crystallization substantially more difficult than for their soluble counterparts.
The significance of structural biology has been recently demonstrated in the field
of rational drug design. Unfortunately, from the drug discovery point of view,
membrane proteins comprise 60 to 70% of current medicinal targets. In order to
improve the success in obtaining high resolution structures on membrane proteins,
development of appropriate technology is necessary for all areas including expres-
sion, purification, and crystallography. 

 

Structural Genomics on Membrane Proteins

 

provides an excellent overview on novel research in bioinformatics and modeling
on membranes as well as the latest technological developments in recombinant
protein expression, refolding of membrane proteins from inclusion bodies, solubi-
lization, and purification methods. Moreover, methods for the application of NMR
and miniaturization in structural biology as well as electron and atomic force micros-
copy on membrane proteins are discussed. It is very helpful and a great read!

 

Krzysztof Palczewski, Ph.D., 

 

Chair, Department of Pharmacology
Case Western Reserve University
Cleveland, Ohio, U.S.A.





 

Preface

 

Genomics, proteomics, and other types of “omics” approaches have proven most
fruitful in both current basic and applied research. There are numerous examples of
studies on whole genomes of specific organisms, types of genes/proteins and
gene/protein families. In genomics and proteomics strategies, the aims are to study
the function of gene activities and to characterize proteins. Structural genomics
approaches, again, have the goals set on structure determination of target proteins,
which can facilitate rational drug design by speeding up the drug development
process and improving the selectivity and efficacy of medicines. In this context,
membrane proteins are of great significance as more than 60% of current drugs are
based on this group of proteins.

As in many other modern approaches, a thorough knowledge in bioinformatics
is a necessity for successful applications in structural genomics. Another cornerstone
of any structure determination is the supply of proteins for purification and crystal-
lization attempts. Very few proteins, especially those of therapeutic interest, are
available in high quantities in native tissue, and even so, ethical issues prevent
proceeding with this approach. The scientific community therefore relies, to a large
extent, on recombinant expression technologies. As the requirements for membrane
protein expression are more demanding, expression has been evaluated in bacterial,
yeast, insect, and animal cells, applying a variety of specifically designed vectors
containing various expression-enhancing sequences and tags to facilitate purification.
The expression mode dictates the downstream processing requests as recombinant
proteins in 

 

Escherichia coli

 

 inclusion bodies need to be subjected to refolding, as
those expressed in cell membranes require solubilization procedures. Purification
technologies are also of great importance as the presence of detergents makes the
procedure more difficult and the target proteins less stable. Furthermore, crystalli-
zation of membrane proteins has been more difficult than for their soluble counter-
parts, clearly indicated by the submission of less than 100 structures in public
databases compared with more than 30,000 entries for soluble proteins. However,
x-ray crystallography is not the only approach to receive structural information on
proteins. Alternative methods include NMR (nuclear magnetic resonance) and EM
(electron microscopy) technologies.

I would like to acknowledge the authors of the chapters of this book. The
enthusiasm encountered was overwhelming and made the project possible. I am also
grateful to CRC Press and Jill Jurgensen, Project Coordinator, and Jay Margolis,
Project Editor, for the efficient and professional contribution to get the book pub-
lished. Sadly, during the preparation of the manuscript, Dr. Helmut Reiländer (Aven-
tis Pharmaceuticals, Frankfurt, previously at Max Planck Institute for Biochemistry,
Frankfurt) passed away after a long illness. Helmut, as a colleague and a good friend,



 

made a significant contribution to the field of recombinant membrane proteins, and
his support for many structural genomics programs in Europe has been vital. I
dedicate this book to his memory.

 

Kenneth H. Lundstrom, Ph.D.



 

Editor
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1.1 SCOPE OF BOOK

 

The aim of this book is to provide the reader with an overview on structural biology
research and recent technology development on integral membrane proteins (IMPs).
IMPs represent the last frontier in structural biology that has not been conquered.
Paradoxically, although IMPs are the most important drug targets, very few high-
resolution structures are available. Among the more than 30,000 structures deposited
in public databases, only some 60 are on IMPs.

 

1

 

 A similar situation was encountered
for soluble proteins in the 1970s when structural determination methods were less
advanced. Technology development led to an almost exponential increase in the
number of resolved structures. However, IMPs are more complicated to handle due
to their topology, which affects the inefficient transport and insertion in cellular
membranes, the toxic effects of recombinant IMPs on host cells, and the instability
of IMPs. As the density of IMPs in native tissue — with the few exceptions of IMPs
such as the bacterial rhodopsin in 

 

Halobacterium salinarium,

 

2

 

 

 

the

 

 

 

bovine rhodopsin
in cow retina,

 

3

 

 and the nicotinic acetylcholine receptor in the electric organ of

 

Torpedo marmorata

 

4

 

 — is insufficient for purification attempts directly from the
native tissue, recombinant expression of IMPs is a necessity. Furthermore, large-
scale isolation and purification of IMPs from human tissues for structural studies
would be ethically unacceptable.

For this reason, much emphasis has been put on the overexpression of IMPs
from various expression vectors. Generally, the overexpression of prokaryotic IMPs
has been more successful than that of their eukaryotic counterparts.

 

5

 

 The main reason
is that it has been possible to overexpress them in 

 

Escherichia coli

 

 or alternative
bacterial organisms. The complexity of prokaryotic IMPs is also lower as most post-
translational modifications do exist only in eukaryotes. Chapter 3 describes the

 

Expression of Bacterial Membrane Proteins

 

, and Chapter 4 is an overview of

 

Prokaryotic Membrane Protein Production Strategies

 

 as a high throughput
approach. One of the drawbacks of eukaryotic IMP expression in 

 

E. coli

 

 has been
the toxicity the foreign IMP has caused when inserted in bacterial membranes. For



 

2
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this reason, an alternative strategy has been to overexpress recombinant IMPs in
bacterial inclusion bodies, which has significantly reduced host-cell toxicity and
improved IMP yields substantially. However, in this case the drawback has been the
requirement of refolding procedures to re-establish the functionality of the IMP,
which has been frustratingly inefficient.

 

6

 

 Recent method development has brought
some improvements to the refolding technology as described in Chapter 5 on 

 

Refold-
ing and Purification Technologies

 

. Chapter 6 is an overview of 

 

Crystallization of
Membrane Proteins

 

 with a special emphasis on bacterial IMPs.
Eukaryotic IMPs can be divided into GPCRs, ion channels, transporters and

single-transmembrane proteins, which play such important roles in cellular signaling
events.

 

7

 

 A variety of factors such as small molecule ligands, light, odors, ions,
changes in cell membrane potential, pressure, and pH can trigger the activation of
IMPs.

 

8

 

 Activation of IMPs results in signal transduction cascades including changes
in intracellular calcium levels, protein phosphorylation, transcriptional regulation,
proliferation, and cell death. IMPs are therefore directly involved in cardiovascular,
metabolic, neurodegenerative, neurological, psychiatric, and viral diseases.

 

9

 

 Addi-
tionally, certain GPCRs and single-transmembrane receptors play a role in cancer
development. Chapter 7 has therefore been dedicated to 

 

Signaling through Mem-
brane Proteins

 

 to provide an overview of how IMPs function. Special attention is
given to the Expression of Eukaryotic Membrane Proteins in various host systems.
Chapter 8 deals with Yeast Expression Vectors, Chapter 9 with IMP Expression
in Insect Cells, and Chapter 10 with the application of Mammalian Cells for
recombinant IMP production. The downstream processing of expressed recombinant
IMPs is described in Chapter 11, where methods for Solubilization and Purification
of Membrane Proteins are outlined. Chapter 12 is dedicated to Fluorescence
Technologies, which are applied as quality control measurements for the function-
ality of the overexpressed recombinant IMP. These methods are extremely important
and allow fast and reliable optimization of the conditions required for expression
and purification.

Chapter 14 describes the Miniaturization of Structural Biology Technologies,
which provides a means for high-throughput screening of crystallization parameters
and conditions and substantially reduces the requirement of precious purified protein.
Alternative methods to x-ray crystallography are described in Chapter 13, Mem-
brane Proteins and NMR, and in Chapter 16, Applications of Electron Micros-
copy Technologies on Membrane Proteins. As most efforts in structural biology
today — especially structural genomics initiatives,10 where whole gene or protein
families or whole genomes are studied — require a major input of expertise in a
broad range of areas such as expression, purification and crystallization, large
national and international networks have been established as described in Chapter 16.

Chapter 2 provides a description of Bioinformatics on Membrane Proteins
and in silico methods for drug screening. Homology studies on sequences and
topologies on membrane proteins are important for a better understanding of their
various functions. Chapter 17 discusses in detail the application of Molecular
Modeling as a prerequisite for drug development programs today. In Chapter 18,
Structure-Based Drug Design, demonstrates through examples how the drug
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discovery process can be accelerated and improved with the aim of generating better
and safer medicines.

1.2 SUMMARY

The structural biology of IMPs is reaching a critical stage in development. During
the past 20 years less than 1% of the accumulated high-resolution structures have
been represented by IMPs. This situation is really unsatisfactory as the majority of
drug targets today are based on IMPs. Major technology development has taken
place in the areas of recombinant protein expression, purification, and crystallization.
The advances in molecular and cell biology have also substantially enhanced our
understanding of the function of IMPs. However, further technology improvement
is necessary. Although tens to hundreds of milligrams of recombinant proteins can
be produced from bacterial, yeast, insect, and mammalian cells today to give further
insight into the structural characterization of IMPs, obtaining high-resolution struc-
tures is a far more commplex process. Although efforts on certain IMPs in individual
research teams have generated some success, the trend is now to establish large
networks where a large number of targets, whole gene families, or genomes, can be
studied in parallel. These efforts seem to be the most efficient way forward to achieve
the much awaited breakthrough in structural genomics of IMPs in the near future.
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2.1 INTRODUCTION

Membrane proteins are of critical importance for a wide variety of biological pro-
cesses. They constitute ion channels, transport proteins, receptors for hormones,
light, and odorants, just to mention a few examples. Over half of prescription drugs
act on G protein-coupled receptors.1 In the completely sequenced genomes, the
proportion of genes coding for membrane proteins is estimated to be about 25%.2–4

In spite of the biological importance of membrane proteins, there are only a few
proteins for which the three-dimensional structures have been solved experimentally
due to difficulties in crystallizing these proteins. Currently, only about 1 to 2% of
all structures in the PDB5 are membrane proteins.6 Thus, there is a large gap to
bridge. Bioinformatics can be of great value when it comes to identifying membrane-
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spanning proteins from the amino acid sequence alone and predicting their topology,
that is, delineating the transmembrane segments and the orientation of the protein
in the membrane.

This chapter presents a survey of various prediction methods, most of which are
available as Web services, allowing for easy and user-friendly access. Several con-
sensus methodologies have also appeared. In addition, the chapter will review eval-
uations of prediction performance and availability of data sets of experimentally
verified membrane proteins.

2.2 PREDICTION OF MEMBRANE-SPANNING 
REGIONS OF PROTEINS

Among the presently known three-dimensional structures of membrane proteins,7

most consist of one or several membrane-spanning alpha helices with intervening
short or long loops on each side of the membrane (Figure 2.1). There is also an
alternative architecture with beta sheets forming a barrel inserted in the membrane,

FIGURE 2.1 Schematic view of a transmembrane protein illustrating five different prediction
methods. The thick vertical boxes illustrate three transmembrane helices, while the thin lines
represent the intervening loops and the N- and C-terminal tails. Encircled numbers with arrows
point to the segments used in the predictions (see text for the details).
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but only a few proteins of this type are known so far. Most prediction algorithms
are developed for alpha-helical membrane proteins, but there are algorithms for beta-
barrel proteins as well. The topology prediction methods aim at identifying the
membrane-spanning segments and the orientation of the protein in the membrane,
that is, if the N terminus is cytosolic or noncytosolic. In the subsequent sections,
the different types of prediction algorithms will be described. Most methods are
available as Web servers and are listed in Table 2.1. 

2.2.1 HYDROPHOBICITY ANALYSIS

One of the first and most basic methods to identify the membrane-spanning regions
is to find hydrophobic segments in the protein sequence that are long enough to
traverse the membrane (Figure 2.1A). Since the hydrophobic region corresponding
to the apolar phospholipid tails of the lipid bilayer is about 30 Å,8 these segments

TABLE 2.1
Membrane Protein Prediction Methods Available as Web Servers

Method Web Server Ref.

A. Alpha-Helical Proteins
BPROMPT http://www.jenner.ac.uk/BPROMPT 44
ConPred http://bioinfo.si.hirosaki-u.ac.jp/~ConPred2/ 39
DAS http://www.sbc.su.se/~miklos/DAS/ 17
HMMTOP http://www.enzim.hu/hmmtop 31
MEMSAT http://www.psipred.net 28,29
PRED-TMR2 http://o2.db.uoa.gr/PRED-TMR/ 46
PRODIV-TMHMM http://www.sbc.su.se/PRODIV-TMHMM/ 34
SOSUI http://sosui.proteome.bio.tuat.ac.jp/sosui_submit.html 43
SVMtm http://ccb.imb.uq.edu.au/svmtm/SVMtm_Predictor.shtml 35
THUMBUP http://phyyz4.med.buffalo.edu/service.htm 15
TMAP http://www.ifm.liu.se/bioinfo/services 24,25
TMFinder http://www.bioinformatics-canada.org/TM/ 12
TMHMM http://www.cbs.dtu.dk/services/TMHMM 3
TMpred http://www.ch.embnet.org/software/TMPRED_form.html 42
TMMOD http://liao.cis.udel.edu/website/servers/TMMOD/ 33
TopPred http://bioweb.pasteur.fr/seqanal/interfaces/toppred.html 23

B. Beta-Barrel Proteins
B2TMPRED http://gpcr.biocomp.unibo.it/ 49
Omp_topo_predict http://strucbio.biologie.uni-

konstanz.de/~kay/om_topo_predict.html
48

PRED-TMBB http://bioinformatics.biol.uoa.gr/PRED-TMBB/ 53
PROFtmb http://cubic.bioc.columbia.edu/services/proftmb 54
TBBPred http://www.imtech.res.in/raghava/tbbpred/ 51
TMBeta-Net http://psfs.cbrc.jp/tmbeta-net/ 50
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should be about 20 residues if they form an alpha helix. To identify these segments,
a hydropathy plot is made by plotting the hydrophobic character against the residue
number. Normally, the values are averaged over a sliding window to smooth the
curve.

In 1982, Kyte and Doolittle developed a hydropathy scale for amino acid resi-
dues, which they used to calculate a moving average of segment hydrophobicity
along the protein chain.9 They showed that such hydropathy plots could be used to
identify membrane-spanning regions and interior regions of globular proteins. Still,
the Kyte–Doolittle method is widely used and is considered to be the standard
technique for hydrophobicity analysis.

Since then, a number of hydrophobicity scales have been developed.10 In 1990,
Degli-Esposti and co-workers evaluated different hydropathy scales for prediction
of membrane proteins.11 From their comparisons, it can be seen that most hydro-
phobicity scales correlate quite well, even if some clearly deviate. A new average
scale, denoted AMP07, was created based on seven scales.11

Optimal window sizes vary among methods and have also been investigated.
For the Kyte–Doolittle method, it was found to be five to nine residues,11 while in
the original paper, a 19-residue window was suggested.9 The drawbacks of long
windows are the loss of local information and the risk of an apparent fusion of
closely spaced transmembrane segments.11 It should be remembered that when
changing the window size, the threshold values might also have to be changed from
those of the original method descriptions.

Prediction accuracy could be improved by selecting a scale developed especially
for membrane proteins, which is used in several prediction algorithms (see below),
where propensity values are calculated from known membrane proteins.

The method that TMFinder uses is a combination of hydrophobicity and helicity
scales for transmembrane protein prediction to reliably distinguish between mem-
brane proteins and globular proteins.12 It uses a hydrophobicity scale that was derived
from experimental properties of transmembrane-mimetic model peptides13 and a
helicity scale derived from the structural properties of these peptides.14 The principle
of TMFinder is that a transmembrane segment must show both hydrophobicity and
helicity.

Recently, a scale reflecting burial propensity has been developed from a set of
200 structurally known proteins.15 The prediction method THUMBUP is based on
this scale of burial propensity and the positive inside rule, and the method has been
shown to reach similar levels of accuracy as the parametrically more complicated
Hidden Markow Model (HMM)-based methods.15

Amphiphilicity can be measured using a method developed by Eisenberg and
co-workers.16 The so-called helical hydrophobic moment can be used as a means to
distinguish transmembrane helices from those of globular soluble proteins.

A variant of hydrophobicity analysis is the method known as dense alignment
surface (DAS).17 In this method, a number of low-stringency dot plot analyses are
performed between the sequence to be predicted and a set of nonhomologous mem-
brane proteins.17,18 The putative membrane-spanning regions are seen as diagonals
reflecting distant similarity.



Bioinformatics in Membrane Protein Analysis 9

2.2.2 THE POSITIVE INSIDE RULE

A major breakthrough in the prediction of membrane protein topology was the
discovery by von Heijne in 1986 that there is a preponderance of positively charged
residues on the cytosolic side of prokaryotic membrane proteins.19 The rule was later
found to be valid also for eukaryotic membrane proteins,20 even if not to the same
extent. Recently, a genome-wide investigation showed that the positive inside rule
is detectable in all completely sequenced genomes.21

TopPred,22,23 the first membrane protein topology prediction method, combines
hydrophobicity analysis with the positive inside rule. The hydrophobicity analysis
was performed using a trapezoid sliding window, giving more weight to the central
residues than to the flanking residues. After the identification of putative trans-
membrane segments, the positive inside rule was applied to predict the topology.
In cases where hydrophobic segments were on the borderline to be judged as
transmembranous or not, the positive inside rule was used to distinguish between
the alternatives.

2.2.3 USE OF MULTIPLE SEQUENCE ALIGNMENTS

The first method to use the information available from multiple sequence align-
ments of homologous proteins in membrane protein prediction was TMAP.24 The
idea is that by including information about the amino acid residue variation at
each position, the membrane-spanning regions can be identified with higher
accuracy than by using only a single sequence, similarly to a strategy applied
for secondary structure predictions. The TMAP method also takes into consid-
eration the differences in residue distributions between the central, hydrophobic
part of the membrane-spanning helix and the ends, corresponding to the regions
interacting with the polar head groups of the lipid bilayer (see Figure 2.1B).
Two sets of propensity values are used in the prediction, derived from the
statistical analysis of known membrane proteins. The use of two sets of propen-
sity values together with the use of multiple sequences increases the prediction
accuracy24

The TMAP method has been extended to predict the topology by analyzing the
residue distributions of the loops on each side of the membrane.25 Apart from the
prominent Lys/Arg preponderance for the cytosolic side, the distributions of further
residue types were also analyzed, which has led to improvements over considering
the positive inside rule only.

Another method that also includes knowledge from related sequences is the
PHD-htm by Rost and co-workers.26,27 The sequence to be predicted is first used to
search sequence databases for homologues, which subsequently are included in a
multiple sequence alignment. From this alignment, a profile reflecting the residue
distribution for each alignment position is calculated  . The profile is analyzed by a
neural network algorithm that estimates, for each residue, the preference to be in a
transmembrane helix.   After refinements of the results from the neural network, the
positive inside rule is applied to predict the orientation of the protein in the mem-
brane.
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2.2.4 MODEL-RECOGNITION APPROACHES

In 1994, Jones and co-workers developed a prediction method, MEMSAT, using five
sets of propensity values, derived from proteins with known membrane topologies.28

These values represent the statistical likelihood of each amino acid residue type to
be in the structural states: inside loop, outside loop, inside helix end, helix middle,
and outside helix end (Figure 2.1C). The helix end regions were set to four residues.
For the protein sequence of length n to be predicted, these five scores are assigned
to each residue, giving an n × 5 matrix. A dynamic programming algorithm recog-
nizes the optimal membrane topology model, revealed by the path with the highest
score through this matrix. In difficult cases, the method might suggest several
alternative models. The MEMSAT algorithm has been refined using information
from multiple sequence alignments29

The modeling concept has been further developed using hidden Markov models
(HMMs) in the two prediction methods HMMTOP and TMHMM. HMM is a
machine learning technique that can be used for a number of modeling purposes in
various fields, and HMMs have become very popular in bioinformatics.30 When used
for membrane protein predictions, an HMM is first trained on a number of known
cases, during which phase all parameters of the model are optimized. Subsequently,
the HMM is tested and evaluated on a test set that is different from the training set.

HMMTOP, devised by Tusnády and Simon, uses an architecture that models the
membrane proteins in five different states: membrane helix, outside tail, outside
loop, inside tail, and inside loop31 (Figure 2.1D). The idea is that the residue
distributions in each of these five structural parts better reflects reality than does the
mere consideration of the hydrophobic character of the residues. The HMM searches
possible topologies and finds the one with the maximum likelihood.

TMHMM, devised by Krogh and co-workers,3 uses seven different states: helix
core, cytosolic cap, noncytosolic cap, cytosolic loop, noncytosolic short loop, non-
cytosolic long loop, and globular region (see Figure 2.1E). Loops of lengths up to
20 residues are classified as “loop” regions, while longer loops are classified as
“globular” regions. The cap regions correspond to the five residues at each end of
the transmembrane segments.

One difficulty with transmembrane protein prediction is distinguishing a signal
sequence from a transmembrane segment, since both are similar in length and
hydrophobic in nature. Käll and co-workers have developed Phobius, an HMM-
based predictor that combines transmembrane segment prediction with signal peptide
prediction.32 The method is based on the models in TMHMM and SignalP-HMM.
Phobius makes fewer misclassifications between transmembrane segments and sig-
nal peptides compared with the TMHMM and SignalP used individually. However,
Phobius is less sensitive in signal peptide detection and less accurate when predicting
the cleavage site of the signal peptide.

In 2005, a third HMM-based method, TMMOD, was described.33 This method
is based on the ideas of TMHMM but differs in the modeling of loops on both sides
of the membrane and in the training procedure of the HMM. The authors report a
small improvement compared with the TMHMM method.
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Evolutionary information from multiple sequence alignments has long since
been shown to improve membrane protein predictions.24,26 Recently, Viklund and
Elofsson showed that the HMM-based predictors could also be significantly
improved by inclusion of information from evolutionary related sequences.34 They
have developed a method, PRODIV-TMHMM, which can correctly predict the
topology for about two-thirds of all membrane proteins. Sequence profiles are created
from the multiple sequence alignments and used as input to the HMMs. The per-
formance is increased by approximately 10 percentage units when multiple sequence
information is included; this is in the same range as reported for other methods,
including the multiple sequence version of HMMTOP.34

2.2.5 SUPPORT VECTOR MACHINES

A support vector machine (SVM) is a machine learning technique suitable for
classification purposes. SVMs have also recently been used in membrane protein
predictions, as is shown with the method SVMtm.35 The authors claim a sensitivity
of 93.4% and specificity of 92% for the transmembrane helix predictions. The
method can distinguish transmembrane proteins from soluble proteins with 99%
accuracy. In addition, the method calculates a reliability measure for each trans-
membrane segment.

2.2.6 CONSENSUS TECHNIQUES

One strategy to improve the accuracy of the predictions is to combine several
different methods using the consensus as the result. Such a combination was shown
early on to increase the accuracy of secondary structure predictions.36,37 To determine
the consensus, it has to be decided how large the deviations can be between the
segments predicted by the different methods. One consensus method uses a minimum
overlap of five residues and has shown that there are small differences in the outcome
using values between 1 and 10.38 Another consensus method, in contrast, limits the
differences in the distance between the mid-positions of the transmembrane segments
to 11 to 15 residues.39

In 2000, Nilsson and co-workers reported that by using the consensus of five
different prediction methods, the fraction of correctly predicted topologies could be
considerably increased.40 The five methods used were TMHMM, HMMTOP,
MEMSAT, TopPred, and PHD. It was shown that when all five methods agreed, the
fraction correctly predicted was 100% and that when four methods agreed, the
accuracy was over 80%. These numbers can be compared with accuracies of 48 to
73% for each method used individually. However, the number of predictions
decreases when applying the stringent criterion of 5:5 or 4:1 majority consensus.
For E. coli membrane proteins, it was shown that using a threshold of at least four
agreeing methods, close to half of the proteins could be predicted with high accuracy.

ConPred is another consensus prediction method39 that uses nine different meth-
ods: KKD,41 TMpred,42 TopPred, DAS, TMAP, MEMSAT, SOSUI,43 TMHMM, and
HMMTOP. For topology predictions, only TMpred, TMAP, MEMSAT, TMHMM,
and HMMTOP are used. The prediction accuracy reported is almost 100%. However,
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the prediction coverage is only 20 to 30%. The consensus methodology is calculated
to increase accuracy by up to 11 percentage units over the individual methods. The
ConPred server reports the predicted model accompanied by graphical representa-
tions showing topology, hydropathy plot, and helical wheel diagram.

A third consensus prediction method is BPROMPT, which uses a Bayesian belief
network to integrate the results from several Web-based predictors.44 The methods
included are HMMTOP, DAS, SOSUI, TMpred, and TopPred. The BPROMPT
method is reported to arrive at a topology prediction accuracy of 70% for prokaryotes
and 53% for eukaryotes.

An additional method is CoPreTHi, which combines the output from seven
methods (DAS, ISREC-SAPS,45 PHD, SOSUI, TMpred, TopPred, and PRED-
TMR46) and considers an amino acid residue to be transmembranous if it is predicted
by at least three methods.47

2.2.7 PREDICTION OF BETA-BARREL PROTEINS

The beta-barrel membrane proteins have hitherto been characterized in bacteria,
where they mediate transport of ions and small molecules. They have also been
found in the organelles mitochondria and chloroplasts. The hydrophobic properties
of the membrane-spanning beta strands are similar to those of soluble proteins,
making predictions difficult. Furthermore, only few proteins are structurally char-
acterized, and therefore only a small training set is available for the development of
prediction methods. Consequently, there is a risk of over-training of the algorithms.
So far, neural networks and hidden Markov models have been popular in prediction
of beta-barrel membrane proteins.

One of the first reports on neural network methods used in topology predictions
of beta-strand membrane proteins was published in 1998 by Diederichs and co-
workers.48 This method predicts the residue locations along the z-axis perpendicular
to the membrane plane, where low values indicate periplasimc turns, medium values
transmembrane beta-strands, and high values extracellular loops. The method was
developed based on seven known structures and shown to be able to correctly predict
two structures not related to the training set.48

Neural networks were combined with dynamic programming in a method devel-
oped by Jacoboni and coworkers.49 They also included evolutionary information in
the input to the network and achieved an accuracy of 78%. The topology prediction
is based on the observation that the longest loops are at the extracellular side of the
membrane.

A third example of a neural-network-based method is reported by Gromiha and
co-workers.50 Their method reports probabilities for each beta strand allowing for
further interpretations after analysis. Trained on 13 known structures, this method
achieved 73% prediction accuracy.  

Natt and co-workers have used both neural networks and support vector
machines (SVM) to predict the transmembrane regions of beta-barrel proteins.51

They used a feed-forward neural network with a standard back-propagation training
algorithm. By including information from multiple sequence alignments, they could
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increase the accuracy to 80%, an improvement of the same range as for alpha-helical
proteins.34 They also developed an SVM-based method based on the amino acid
sequence together with 36 physicochemical parameters. The accuracy is reported to
be 77%. However, by combining the two techniques, the accuracy could be increased
to 82%.

In analogy to prediction of alpha-helical membrane proteins, HMMs have also
been used for beta-barrel membrane proteins. Martelli and coworkers52 constructed
a predictor using six states — beta-strand transmembrane core (two states), beta
strand caps at each side of the membrane, inner loop, outer loop, and globular domain
in the middle of each loop. They used input from multiple sequence alignments in
the HMM to increase the accuracy, which is reported to be 83%. The information
from the multiple sequence alignment is entered into the HMM as vectors, repre-
senting the sequence profile. The discriminatory ability between beta-membrane
proteins and globular proteins is about 90%.

Another HMM-based method is PRED-TMBB, developed by Bagos and co-
workers.53 This HMM is a cyclic 61-state model, consisting of three submodels,
representing the transmembrane strand and the inner and outer loops. The lengths
of the transmembrane strands are between 7 and 17 residues. The method that was
trained on 14 known proteins and tested using a jack-knife procedure shows 84%
accuracy. Furthermore, PRED-TMBB discriminates beta-barrel proteins correctly
from water-soluble proteins in 89% of the cases.

Bigelow and co-workers54 have invented PROFtmb, a profile-based HMM for
beta-barrel membrane proteins, with an accuracy of 86%. They have included a new
definition of beta-hairpin motifs. This HMM includes 91 states representing the
transmembrane beta strand in each direction, beta hairpins, inner loop, and outer
loop. The discrimination between membrane proteins and soluble beta proteins is
reported to be 100% at 45% coverage. The authors have applied this method on
completed genomes from Gram-negative bacteria.

Finally, an alternative approach is used in the beta-barrel finder (BBF) program,
which is based on analysis of the secondary structure, hydropathy, and amphipath-
icity of six outer membrane structures.55 The authors have used BBF to estimate the
proportion of beta-barrel membrane proteins in E. coli to be 2.8%. The program is
available from the authors.

2.3 PREDICTION CONFIDENCE

When predicting membrane proteins, some regions are correctly predicted, while
other regions are wrongly predicted. It would be of great value if the accuracy of
the prediction could be estimated using a type of quality measurement, for example,
that presented by PHD_htm.26 Melén and co-workers56 have developed reliability
measures for the transmembrane prediction methods TMHMM, HMMTOP, MEM-
SAT, PHD, and TopPred. For TMHMM and MEMSAT, the reliability scores have
been shown to correlate with prediction accuracy and will therefore add valuable
information to the predictions.
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2.3.1 PARTIAL PREDICTIONS WITH HIGH ACCURACY

In cases when it is difficult to get correct predictions of the complete protein, it
would still be valuable to get at least a partial prediction, especially if there is
additional information available from elsewhere. Many times, it would also be
important to know if these partial predictions are of high confidence. It has been
shown that using a consensus technique with the criterion that at least four of five
methods should agree gives predictions with high accuracy.40 However, with this
strict criterion, only a small number of membrane proteins will be predicted. Thus,
in order to increase the number of predicted proteins, a method for prediction of
partial topologies was developed using the strict criterion of the consensus method-
ology.38 Partial consensus topologies could then be predicted for 60 to 70% of all
proteins, on average covering 58% of the sequence length.

2.3.2 COMBINATION OF PREDICTIONS AND EXPERIMENTAL DETERMINATION

Partial predictions can be used in combination with experimental analyses of mem-
brane topology. For instance, the experimental determinations can be directed to
those regions for which the predictions are ambiguous. Thus, a limited number of
experiments combined with reliable predictions can give the complete picture of a
membrane protein topology. It has been shown that a combination of experimental
determination of the C-terminal location and consensus predictions can be used to
give reliable topology models for E. coli.57,58

Another example of a successful combination is cases where there are two
alternative predicted topologies and one experiment thereby could be sufficient to
distinguish between these two models.57 An experimentally determined C-terminal
location can be used as a constraint for TMHMM to improve the outcome of the
predictions.59

2.4 EVALUATION OF METHODS

It is of importance to try to estimate the accuracy of the available prediction methods,
and therefore several evaluations have been reported.

An evaluation of different alpha-helical membrane protein prediction methods
has been made by Möller and co-workers.60 For evaluation, they used a test set of
188 membrane proteins with experimentally verified topology.61 They measured the
reliability of both transmembrane segment predictions and sidedness predictions.
Overall, they found the methods TMHMM and MEMSAT to be generally the best
performing. HMMTOP was best for sidedness predictions. Interestingly,
Kyte–Doolittle-based analyses (KKD)41 and analysis of hydrophobic moment 16 were
quite reliable in identifying membrane-spanning regions, even though the methods
lacked specificity for membrane proteins.

TMHMM and SOSUI are most reliable in not making false predictions, that is,
predicting transmembrane helices in proteins not bound to the membrane. For signal
peptides that often are mispredicted as transmembranous, the methods ALOM,62

PHD, and TopPred were most successful.
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The evaluation also shows that these methods have problems when predicting
proteins with four or more transmembrane segments. In proteins with many mem-
brane passages, all transmembrane segments do not need to be hydrophobic, since
not all are in direct contact with the lipid bilayer. If the segments are amphiphilic,
it is difficult to distinguish them from a helix at the exterior of a globular cytosolic
protein. These difficulties are also seen when trying to predict the topology of the
G protein-coupled receptors.63

In 2002, Ikeda et al. compared 10 transmembrane prediction methods on a test
set of 122 experimentally characterized transmembrane topologies.64 They also
reported that methods based on HMMs and other model-based approaches were
most successful. Furthermore, they noticed that generally the prediction performance
is better for prokaryotic sequences than for eukaryotic ones.

In general, the methods fared less well in these evaluations than in the original
reports. One major reason could be that the methods might have been “over-trained”
on the proteins available at the time for development. The training set might not
have been representative enough due to only a small number of proteins with known
topologies being available. Thus, more recently developed techniques would be
better, since they are trained on a much larger test set. However, more importantly,
significant advances have been made in the recent algorithms. The early techniques
only judged single properties, such as hydrophobicity, while recent algorithms have
subdivided the membrane protein into several parts, using multiple parameters for
the different parts of the protein (see Figure 2.1).

2.5 TEST SETS AND DATABASES OF MEMBRANE 
PROTEINS

A collection of experimentally characterized membrane proteins has been assem-
bled and made publicly available by Möller and co-workers at ftp://ftp.ebi.ac.uk/
databases/testsets/transmembrane.60 The entries are human curated and annotated,
depending on experimental reliability. The top level (A) consists of proteins with
known three-dimensional structure, level B of proteins characterized biochemi-
cally with at least two complementary methods, followed by level C with proteins
for which only basic biochemical characterization has been reported. The database
will be continuously updated and is provided in Swissprot format, making it easy
to use for development and evaluation of new membrane protein prediction
algorithms.

TMPDB is another database of experimentally characterized membrane protein
topologies. The release of 2003 contained over 300 proteins, of which the vast
majority was of the alpha-helical type.65 TMPDB is based on information from
examination of scientific articles and sequence and structure databases. The data are
valuable for all scientists developing and optimizing new methods for transmem-
brane protein predictions. The database is available at http://bioinfo.si.hirosakiu.
ac.jp/~TMPDB/.

PDB_TM is a database of transmembrane proteins with known structures,
extracted from PDB. In PDB_TM, the membrane-spanning segments are determined
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using the TMDET algorithm66 for calculation of the position of the protein in the lipid
bilayer. The PDB_TM is updated weekly and is available at http://www.enzim.hu/
PDB_TM.

2.6 CONCLUSION

Even if today’s methods for membrane protein prediction are quite accurate and
these structural predictions are among the most successful in bioinformatics, there
is still much room for improvement. For development and training of the algorithms,
the number of experimentally determined structures is still far too low, which might
lead to methods that are biased and lack generality. Hopefully, the ongoing structural
genomics initiatives worldwide will contribute to a considerable increase in the
number of available structures. Also, large-scale experimental topology mappings
will add important knowledge regarding membrane protein properties that can be
used in new methods.

Hitherto, most methods have been based on neural networks and HMMs, but
now methods based on support vector machines have started to appear. It can be
anticipated that further sophisticated machine learning techniques will be used in
membrane protein predictions. It is also likely that various combinations of these
techniques will increase reliability. Thus, more training data together with improved
prediction algorithms will hopefully help approach 100% accuracy.
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3.1 INTRODUCTION

Membrane transport proteins are involved in nutrient capture, antibiotic efflux,
protein secretion, toxin production, photosynthesis, oxidative phosphorylation, envi-
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ronmental sensing, and other vital functions in bacteria (Figure 3.1). Already there
is commercial interest in inhibiting the activities of some membrane transport pro-
teins, optimizing the activities of others, employing them as transducers of electri-
cal/chemical/mechanical energy for nanotechnology, and so on. However, membrane
proteins are notoriously difficult to study. Owing to their extreme hydrophobicity,
they are refractory to direct manipulation and can only be removed from the mem-
brane, and their solubility maintained, in the presence of a detergent.1 In addition,
transport proteins are usually only expressed at low levels and constitute less than
0.1% of total cell protein. Such difficulties help explain why fewer than 100 unique
membrane protein structures have been resolved (see relevant examples in
References2,3), although the structures of over 8000 unique soluble proteins (from
almost 30,000 total structures, many not unique) have been solved. In fact, less than
1% of unique structures in the Protein Structures Database are membrane proteins,
whereas they account for about 30% of all proteins in the cell.2,3

Prokaryote membrane transport proteins fall predominantly into two classes.4,5

One of these uses adenosine triphosphate (ATP) to energize the transport of sub-
strates across the membrane — the “ATP-Binding Cassette” (ABC) superfamily6,7

FIGURE 3.1 Active transport systems in bacteria. The large oval represents the cytoplasmic
membrane of the microorganism. A transmembrane electrochemical gradient of protons is
generated by respiration or ATP hydrolysis, shown on the left. The proton gradient may be
used to drive ATP synthesis and the proton–nutrient symport and proton–substrate antiport
secondary active transport systems shown along the top; alternatively, sodium (not shown) or
phosphate (right side) may be the accompanying ions. Each is generally a single protein,
usually of the 12-helix type. Along the bottom are illustrated primary active transport systems
energized directly by ATP and a sensor kinase system.
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—  and the second, the “Major Facilitator Superfamily” (MFS)8,9 is usually energized
by the electrochemical gradient of protons (Figure 3.1) or sometimes sodium or
phosphate ions (Figure 3.1). Members of the ABC superfamily and other types of
transport systems5 are not considered further in this chapter, which focuses mainly
on the MFS transport proteins. These are found in nearly all organisms, from
cyanobacteria to humans.10,11

In bacteria, individual MFS proteins may accomplish: the active accumulation of
nutrients by a cation–substrate symport mechanism (Figure 3.1); the active efflux of
compounds such as antibiotics, antibacterials, or toxins by a cation–substrate antiport
mechanism (Figure 3.1); or substrate/substrate antiport reactions (Figure 3.1). They
are thought to be single polypeptides comprising 10 to 14 (usually 12)  transmembrane
alpha helices,12 illustrated for the Escherichia coli “FucP” protein in Figure 3.2. This
conclusion is usually based on analysis of the hydropathic profile of the amino acid
sequence of each protein predicted from its DNA sequence. In a few cases, the
prediction is reinforced by genetic, immuno-chemical or other types of topological
experiments.13 There is structural information consistent with the 12-helix composition
from electron diffraction analyses of two-dimensional protein crystals.14–16 A spectac-
ular confirmation came from x-ray diffraction analysis of three-dimensional crystals
of three MFS proteins from E. coli: the lactose-H+ symporter LacY17, the glycerol-
P/Pi antiporter GlpT18 (Figure 3.1), and the Na+/H+ antiporter NhaA.19

FIGURE 3.2 (See color insert following page 272.) A two-dimensional model for the folding
of the FucP protein of Escherichia coli in the cell membrane based on hydropathy plot,
positive inside rule, and beta-lactamase fusions. Positive and negative residues are highlighted
in gray and black, respectively. From Gunn, F., Tate, C.G., Sansom, C.E., Henderson, P.J.F.
Molec. Microbiol., 15, 771–783, 1995; and Clough, J.L. Ph.D. Thesis, University of Leeds,
2001. With permission.
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To enable the determination of structures of membrane transport proteins, a
continuing supply of milligram quantities of protein is required. As native expression
levels are usually less than 0.1% of total cell protein, heterologous gene expression
is a necessity. Even if this approach is successful, a suitable detergent must be found
for purification. The protein may also require “conformation locking” to overcome
the probable flexibility of transport proteins, which is invoked to account for their
ability to bind substrate in or on one side of the membrane, and effect its translo-
cation. The strategy needed to purify sufficient active protein is therefore complex.

A general approach has been devised for the amplified expression, purification,
and characterization of bacterial membrane transport proteins (Table 3.1) in E. coli.
The strategy is described in this chapter, using the L-fucose-H+ symport protein,
FucP20 (Figure 3.2) as an example to facilitate future examination of the large number
of transport proteins arising from genome analyses; these proteins have potential for
development of novel antibacterials and perhaps applications in biotechnology. L-
Fucose — 6-deoxy-L-galactose — is reasonably abundant in nature as the breakdown
product of plant cell wall polysaccharides and is used as a carbon source by free-
living bacteria.20 So far, the strategy has been successful for over 30 prokaryotic
transporters, including MFS transport proteins from E. coli, Brucella abortus, B.
melitensis, Helicobacter pylori, Microbacterium liquefaciens, Enterococcus faecalis,
Bacillus subtilis, Staphylococcus aureus, Campylobacter jejuni, and Neisseria men-
ingitides (Table 3.1). Proteins produced in this way have been tested in crystallization
trials, and so far, two have yielded diffracting crystals.

Other organisms that appear to be successful for the propagation of vectors and
expression of heterologous prokaryotic membrane proteins are Lactococcus lactis,
Streptococcus thermophilus,21 and Halobacterium salinarum.22

3.2 E. cOLI EXPRESSION SYSTEMS

To facilitate the study of prokaryotic membrane proteins, numerous E. coli expres-
sion systems have been used,23,24 with levels of expression as high as 50% of inner
membrane protein24 and 80% of outer membrane protein.25

The pET system (Novagen), which is widely used for the expression of soluble
proteins, has also led to the amplified production of membrane proteins.26–30 In pET
vectors, the strong bacteriophage T7 promoter is recognized by T7 but not by E. coli
RNA polymerase. Expression from pET vectors is achieved by transforming the
recombinant plasmid into a host strain that carries a chromosomal copy of T7 RNA
polymerase. For the usual E. coli (DE3) lysogen host strains, the T7 RNA polymerase
is under the control of the lacUV5 promoter,30 thereby allowing some expression of
T7 RNA polymerase even in the absence of an inducer. In the case of the fucP gene,
a construct exploiting the T7 system (Figure 3.3A) did yield expression but not
amplification of the protein.31 However, constructs exploiting transcription from the
lambda leftward promoter (plasmid AD5827)31–33 (Figure 3.3A) or the tac promoter
(plasmid pTTQ18)34 (Figure 3.3A) — which in the absence of isopropyl-β-D-thio-
galactoside (IPTG) is repressed by the plasmid-encoded lac repressor (Figures
3A,B),34–35 — were successful.31,36 We have now successfully overexpressed more than
30 prokaryotic membrane transport proteins in E. coli using the plasmid pTTQ18


