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Preface

The whole range of steel thermal processing technology, from casting and plastic forming to
welding and heat treatment, not only produces workpieces of the required shape but also optimizes
the end-product microstructure. Thermal processing thus plays a central role in quality control,
service life, and the ultimate reliability of engineering components, and now represents a funda-
mental element of any company’s competitive capability.

Substantial advances in research, toward increasingly accurate prediction of the microstructure
and properties of workpieces produced by thermal processing, were based on solutions of partial
differential equations (PDEs) for temperature, concentration, electromagnetic properties, and stress
and strain phenomena. Until the widespread use of high-performance computers, analytical solution
of PDEs was the only approach to describe these parameters, and this placed severe limitations in
terms of prediction for engineering applications so that thermal process developments themselves
relied on empiricism and traditional practice. The level of inaccuracy inherent in computational
predictions hindered both materials performance improvements and process cost reduction.

Since the 1970s, the pace of development of computer technology has made possible effective
solution of PDEs in complicated calculations for boundary and initial conditions, as well as non-
linear and multiple variables. Mathematical models and computer simulation technology have
developed rapidly; currently well-established mathematical models integrate fundamental theories
of materials science and engineering including heat transfer, thermoelastoplastic mechanics, fluid
mechanics, and chemistry to describe physical phenomena occurring during thermal processing.
Further, evolution of transient temperature, stress—strain, concentration, microstructure, and flow
can now be vividly displayed through the latest visual technology, which can show the effects of
individual process parameters. Computation/simulation thus provides an additional decision-
making tool for both the process optimization and the design of plant and equipment; it accelerates
thermal processing technology development on a scientifically sound computational basis.

The basic mathematical models for thermal processing simulation gradually introduced to date
have yielded enormous advantages for some engineering applications. Continued research in this
direction attracts increasing attention now that the cutting-edge potential of future developments is
evident. Increasingly profound investigations are now in train globally. The number of important
research papers in the field has risen sharply over the last three decades. Even so, the existing
models are regarded as highly simplified by comparison with real commercial thermal processes.
This has meant that the application of computer simulation has thus far been relatively limited
precisely because of these simplifying assumptions, and their consequent limited computational
accuracy. Extensive and continuing research is still needed.

This book is now offered as both a contribution to work on the limitations described above and
as an encouragement to increase the understanding and use of thermal process models and
simulation techniques.

The main objectives of this book are, therefore, to provide a useful resource for thermal
processing of steels by drawing together

* An approach to a fundamental understanding of thermal process modeling

* A guide to process optimization

* An aid to understand real-time process control

* Some insights into the physical origin of some aspects of materials behavior

* What is involved in predicting material response under real industrial conditions not easily
reproduced in the laboratory

vii



viii
Linked objectives are to provide

* A summary of the current state of the art by introducing mathematical modeling method-
ology actually used in thermal processing

* A practical reference (industrial examples and necessary precautionary measures are
included)

It is hoped that this book will

* Increase the potential use of computer simulation by engineers and technicians engaged in
thermal processing currently and in the future

¢ Highlight problems requiring further research and be helpful in promoting thermal process
research and applications

This project was realized due to the hard work of many people. We express our warm appreciation
to the authors of the respective chapters for their diligence and contribution. The editors are truly
indebted to everyone for their contribution, assistance, encouragement, and constructive criticism
throughout the preparation of this book.

Here, we also extend our sincere gratitude to Dr. George E. Totten (Totten Associates and a
former president of the International Federation for Heat Treatment and Surface Engineering
[IFHTSE]) and Robert Wood (secretary general, IFHTSE), whose initial encouragement made
this book possible, and to the staff of CRC Press and Taylor & Francis for their patience and
assistance throughout the production process.

C. Hakan Giir
Middle East Technical University

Jiansheng Pan
Shanghai, Jiao Tong University
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Steels are usually under the action of multiple physical variable fields, such as temperature field,
fluid field, electric field, magnetic field, plasm field, and so on during thermal processing. Thus, heat
conduction, diffusion, phase transformation, evolution of microstructure, and mechanical deform-
ation are simultaneously taken place inside. This chapter includes the mathematical fundamentals of
the most widely used numerical analysis methods for the solution of partial differential equations
(PDEs), and the basic knowledge of continuum mechanics, fluid mechanics, phase transformation
kinetics, etc. All these are indispensable for the establishment of the coupled mathematical models
and realization of numerical simulation of thermal processing.

1.1 THERMAL PROCESS PDEs AND THEIR SOLUTIONS

1.1.1 PDEs ror Hear CoNDUCTION AND DIFFUSION

The first step of computer simulation of thermal processing is to establish an accurate mathematical
model, i.e., the PDEs and boundary conditions that can quantificationally describe the related

phenomena.
The PDE describing the temperature field inside a solid is usually expressed as follows:
o ( oT o (, oT 0 (, 0T oT
— (A= — A= — (A= = pcy— 1.1
8x( 6x)+8y< 8y)+0z< 61)+Q P 5r (1.1
where

T is the temperature

7 is the time

X, y, z are the coordinates

A is the thermal conduction coefficient

p is the density

¢, is the heat capacity

Q is the intensity of the internal heat resource
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FIGURE 1.1 Heat flux along coordinates subjected to an infinitesimal element.

Equation 1.1 has a very clear physical concept, and can be illustrated as in Figure 1.1. The first
item on the left-hand side of the equation is the net heat flux input to the infinitesimally small
element along axis x, i.e., the difference between the heat flux entering 6Q,;, and the heat flux
effusing 6Q,ou. The second and third items are the net heat flux along axes y and z, respectively
(Figure 1.1). The intensity of the internal heat source Q may be caused by different factors, such as
phase transformation, plastic work, electricity current, etc. The right-hand side of the equation
stands for the change in heat accumulating in the infinitesimal element per time unit due to the
temperature change. Equation 1.1 shows that the sum of the heat input and heat generated by the
internal heat source is equal to the change in heat accumulating for an infinitesimal element in each
time unit, so it functions in accordance with the energy conservative law. The heat conduction
coefficient A, density p, heat capacity c,, and the intensity of the internal heat source are usually the
functions of temperature, making Equation 1.1 a nonlinear PDE.

There are three kinds of boundary conditions for heat exchange in all kinds of thermal
processing technologies.

The first boundary condition Sy: The temperature of the boundary (usually certain surfaces) is
known; it is a constant or function of time.

Ty = C(7) (1.2)
The second boundary condition S,: The heat flux of the boundary is known.

oT
A =4 1.3)

where
OT/On is the temperature gradient on the boundary along the external normal direction
q is the heat flux through the boundary surface

The third boundary condition S3: The heat transfer coefficient between the workpiece and
environment is known.
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—A (6_T> =T, —Ty) (1.4)
on

where
T, is the environment temperature
T, is the surface temperature of the workpiece
h is the overall heat transfer coefficient, representing the heat quantity exchanged between
the workpiece surface and the environment per unit area and unit time when their tempera-
ture difference is 1°C

It is worth mentioning that only convective heat transfer occurs in some cases; however, radiation
heat transfer should also be considered in other complicated ones, such as gas quenching and
heating under protective atmosphere. Hence, the overall heat transfer coefficient /2 should be the sum
of the convective heat transfer coefficient /. and the radiation heat transfer coefficient /.. Therefore,
we have

h=he+h (1.5)
The radiation heat transfer coefficient 4, can be obtained as follows:
he = eo(T2 + T2X(T, + Ty) (1.6)
where

¢ is the radiation emissivity of the workpiece
o is the Stefan—-Boltzmann constant

The boundary condition can be set according to the specific thermal process, and the tempera-
ture field inside the workpiece at different times, the so-called unsteady temperature field, can be
obtained by solving Equation 1.1. When the temperature field inside the workpiece does not change
with time any more, it arrives at the steady temperature field, and the left-hand side of Equation 1.1
becomes zero.

The unsteady concentration field inside the workpiece subjected to carburizing or nitriding is
usually governed by the following PDE.

0 ocC 0 oC 0 ocC ocC
Ox (D 8x> +8y (D 8y> +5Z (D 5’Z> - or 7
where

C is the concentration of the element being penetrated (carbon or nitrogen)
D is the diffusion coefficient

The boundary conditions can also be classified into the following three kinds.
Boundary s;: The surface concentration is known.
C,=C (1.8)

Boundary s,: The mass flux through the surface is known.

Lol
D (5) =q (1.9)
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Boundary s5: The mass transfer coefficient between the workpiece surface and environment
(ambient media) is known.

ocC
-D (%> = B(Cy — Cy) (1.10)

where
D is the diffusion coefficient
B is the mass transfer coefficient
C, is the atmosphere potential of carbon (or nitrogen)
C; is the surface concentration of carbon (or nitrogen)

Although the diffusion and heat conduction PDEs describe different physical phenomena, their
mathematical expression and solving method are exactly the same.

1.1.2 SoLvING METHODS FOR PDEs

Usually, there are two methods to solve the PDEs, analytical method and numerical method. The
analytical method, taking specific boundary conditions and initial conditions, can obtain the analytical
solution by deduction (for example, variables separation method), which is a type of mathematical
representation clearly describing certain field variables under space coordinates and time.

The analytical solution has the advantage of concision and accuracy, so it is also called exact
solution. Although it plays an important role in fundamental research, it is only applicable to very
few cases with relatively simple boundary and initial conditions. Therefore, the analytical solution
cannot cope with massive problems under practical manufacture environment, which are featured
with complicated boundary conditions and a high degree of nonlinearity.

The numerical solution, also named approximate solution, is applicable for different kinds
of boundary conditions and can cope with nonlinear problems. It is the most basic simulation
method in engineering. Up to now, the finite-element method (FEM) and finite-difference method
(FDM) are the most widely used methods in simulation of the process, and their common
characteristic is discretization of continuous functions, thus transforming the PDEs into large
systems of simultaneous algebraic equations and solving the large algebraic equation group finally
(Figure 1.2).

FIGURE 1.2 Discretization of the continuous function.
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1.2 FINITE-DIFFERENCE METHOD

1.2.1 INTRODUCTION OF FDM PRINCIPLE

First, for a continuous function of x, namely f{x), f_1, fo, and f; are retained as the values of fat x_1,
Xo, and xy, respectively (Figure 1.2). When the function has all its derivatives defined at xo and f;, f_;
can be expressed by a Taylor series as follows:

(Ax)z 11 (Ax)3 i (Ax)iv A%
FTRE I TR LR BT

Ax)? Ax)? Ax)Y .

fi=fo+Ax-fy+

. (1.11)

fa=/fo—Ax-fy+
Truncating the items after (Ax)z, Equation 1.11 can be written as

of

ox

_ /_fl_f()_g //Nfl_fo
x:infoi Ax 2f0~ Ax

(1.13)

Equation 1.13 is the first-order forward difference with its truncation error of {}(Ax). Here ()(Ax) is a
formal mathematical notation, which represents terms of order Ax.
In the same way, another difference scheme from Equation 1.12 can be obtained as follows:

of ,_fo—fa Ax o, fo—fa
el — f = o 1.14
o, A T2 Ax (1.14)
This is the first-order backward difference with its truncation error of (Ax).
Subtracting Equation 1.12 from Equation 1.11 yields
of ;N —fa (Ax)z m _S1—=f1
R S S T 2 (1.15)
Equation 1.15 is the second-order central difference with its truncation error of Q(sz).
Summing Equations 1.11 and 1.12, and solving for 9*f/0x*, we have
Of o _h=2h+ 0 Ay fi—2fo+f
i 2 Vo 1.16
e =T TRl (A (110

Equation 1.16 is the second-order central second difference with its truncation error of Q(sz).

It can be observed that the truncation error, originating from the replacement of the partial
derivatives by finite-difference quotients, makes the FDM solution an approximate one; however,
the accuracy can be improved by reducing the step size.

1.2.2 FDM ror ONE-DIMENSIONAL HEAT CONDUCTION AND DIFFUSION

In this section, two simple cases are taken to elucidate the FDM to solve the PDEs in engineering.
The first case is the unsteady, one-dimensional heat conduction PDE without an internal heat
resource item, and the second one is the one-dimensional diffusion PDE.

The governing PDE for the unsteady, one-dimensional heat conduction without an internal heat
resource item has the following concise form:

o1 _or

am 5= (1.17)
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where o =A/ pc,,, x and 7 are independent variables. Equation 1.17 has two independent variables,
x and 7.

Replacing the partial derivatives in Equation 1.17 with finite-difference quotients, the difference
equation can be obtained as follows:

T -2Mp Ty, 1T T
(Ax)? a At

(1.18)

where
i is the running index in the x direction
n is the running index in the 7 direction

When one of the independent variables is a marching variable, such as 7 in Equation 1.17, it is
conventional to denote the running index for this marching variable by n and to display this index as
a superscript in the finite-difference quotient (Figure 1.3), 77" |, T7', and T} | are the temperatures on
node i — 1, i, and i+ 1 at time level n, respectively, and T;“‘H is the temperature on node i 4 1 at time
level n+ 1.

With some rearrangement, this equation can be written as

T = FoT?,, + FoT! | + (1 — 2F)T! (1.19)

where

alt A At
0 =—"T"F="7""""7>
A0?  pey(Axy?
Equation 1.19 is written with temperatures at time level n on the right-hand side and temperatures
at time level n+ 1 on the left-hand side. Within the time-marching philosophy, all temperatures at
level n are known and those at level n 4 1 are to be calculated. Of particular significance is that only
one unknown T{'Jrl appears in Equation 1.19. Hence, Equation 1.19 allows for the immediate
solution of 7! from the known temperatures at time level n.
Equation 1.19 is one of the so-called explicit finite-difference approaches, which provide a
straightforward mechanism to accomplish this time marching (Figure 1.3). However, this approach

Ty

<Y

FIGURE 1.3 Tllustration of discretization and time marching.
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has the limitation that only when the stability criterion Fy < 1/2 is met, the converged solution can be
obtained. The truncation error can be estimated as Q(Ax>)(A7).

Writing the spatial difference on the right-hand side of Equation 1.17 in terms of temperatures at
time level n+ 1, we can obtain

L A A Ve

1.20
(Axy? At (120

With some rearrangement, Equation 1.21 can be written as
FoTM! — QFy + )T + R =17 (1.21)

Observing Equation 1.21, the unknown Tl”“ is not only expressed in terms of the known temper-
atures at time level n, namely 77, but also in terms of other unknown temperatures at time level
n+ 1, namely, T{‘jl and Tl’f,' In other words, Equation 1.21 represents one equation with three
unknowns, namely 77", 7!, and T}/}'. Hence, Equation 1.21 applied at a given grid point i does
not stand alone; it cannot by itself result in a solution for Ti”“. Rather, Equation 1.21 must be
written at all interior grid points, resulting in a system of algebraic equations from which the
unknowns 77" for all i can be solved simultaneously.

Equation 1.21 is one of the so-called implicit finite-difference approaches, in which the unknown
must be obtained by means of simultaneous solution of the difference equations applied at all grid
points arrayed at a given time level. Because of this need to solve large systems of simultaneous
algebraic equations, implicit methods are usually involved with the manipulations of large matrices.
One advantage of these methods lies in the fact that they are unconditionally stable, i.e., they can
always get the converged solution. Their truncation error can also be estimated as Q(sz) - (A7).

There are different difference equations that can represent Equation 1.17 except Equations 1.21
and 1.22, which are the only two of many difference representations of the original PDE. For
example, writing the spatial difference on the right-hand side in terms of average temperatures
between time level n and n + 1, Equation 1.17 can be represented by

T, 2T+ T, T -2 T T Ty
2(Ax)? 2(Ax)? At
— FoT!M +2(1 + F)T ' — FoT™ = FoT!, +2(1 — Fo)T! + FoT!, (1.22)

This special type of differencing employed in Equation 1.22 is called the Crank—Nicolson form,
which is also unconditionally stable and has a small truncation error of Q(Ax)*(At)%.

As a typical case of one-dimensional heat conduction without an internal heat resource, an infinite
plate with a thickness of d is subjected to the boundary condition that can be expressed as follows:

or

WT, —Ty) = —A—
(T = To) onl_,

(1.23)

The spatial discretization is shown in Figure 1.4, generating m + 1 nodes from surface (node 0) to
center (node m). Here, because of the symmetry half of the slab can only be considered, and the
symmetry axis can be set as the adiabatical boundary.

For the surface node (i = 0), the boundary condition is introduced and the Crank—Nicolson form
can be obtained as follows:

] [ A I e

3 TAx (T3 —13) (1.24)
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T A

B |

FIGURE 1.4 Spatial difference scheme of nodes for an infinite plate.

With some rearrangement, Equation 1.24 can be written as
(1 + Fo +B)HT; ™ — FoT!™ = (1 — Fy — Bi)T{ + FoT} + 2BiT, (1.25)

where Bi = hAt/Ax.
For the central node (i =m), the adiabatical boundary OT/0x=0 is input, and the difference
equation is

(1 + Fo)T'H — FoT' ) = (1 — F)T" + FoT!_, (1.26)

The finite-difference form for transient heat conduction in the infinite plate is composed by
Equations 1.22, 1.25, and 1.26, providing m + 1 algebraic equations for m + 1 unknown 7; for all
nodes. The unique solution for the temperature field can usually be obtained by a mature algorithm.

The one-dimensional diffusion PDE (Equation 1.27) and its difference equations have the same
form as that of the unsteady, one-dimensional heat conduction without an internal heat resource.
Hence, the corresponding equations are briefly repeated and then entered into solving of the
algebraic equation group.

o*c _acC

The boundary conditions at the surface node and the center node are the third type of boundary
condition and the adiabatical condition, respectively, and are listed as follows:

oC
—D— = B(Cg - G)

X x=0
e (1.28)
Da_X . == O
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For the inner nodes (i=1---m — 1), the Crank—Nicolson difference form can be written as

—FoCM™ +2(1 + Fo)C!!' — FoCl = FoCly +2(1 — Fo)C! + FoCl, (1.29)
D-A
where Fy = #
(Ax)

For the surface node (i =0), the Crank—Nicolson form is
1+ Fo+ Bi)Cg+1 - F()C’f+1 = (1 - Fy — Bi)Cj + FyC} + 2BiC, (1.30)
For the central node (i =m), the difference equation is

(1 + Fo)C*™ — FoC = (1 — Fo)C + FoC" (1.31)

m—1

The algebraic equation group constituted by Equations 1.29 through 1.31 can be expanded and
written in the following matrix form:

rdo ao 117 Co T
bl d] aj Cl
bz di a; Cz

bmfl dmfl am—1 Cmfl

dy 1 167" e
by dy 4 Ci 0
= b, d a X C; +1 0 (1.32)
by dyy a, Cn-1 0
v, d, ] LCud L0
where
dy=1+Fy+ Bi
dl:d2:"':dm—l:2(1+F0)
d,=1+F,
bl:b2:~~':bm:—F0
aO:alz"':am—l:_FO
dy=1—Fy—Bi
d’I:d’z:-~-:d:n71:2(l—F0)
d,’nzl—Fo
Vo=by=-..=b =F,
dy=dy == = —F
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When the concentration of the nodes at time level n is known, the right-hand side of Equation 1.32
can be simplified as a column matrix. Thus, we obtain

[dy ag 17 Co 1" [ Fo T
b] dl aj Cl Fl
b,’ d,' a; Ci = Fi (133)
bmfl dmfl am—1 Cmfl mel
I bw  dy || Cn L Fu

The coefficient matrix on the left-hand side of Equation 1.33 is a tridiagonal matrix, defined as
having nonzero elements only along the three diagonals, which are marked with three dashed lines.
The solution of the system of equations denoted by Equation 1.33 involves the manipulation of the
tridiagonal arrangement; such solutions are usually obtained using Thomas’ algorithm, which has
become almost standard for the treatment of tridiagonal systems of equations. A description of this
algorithm is given as follows.

First, Equation 1.33 is changed into an upper bidiagonal form by dropping the first term of each
equation, replacing the coefficient of the main-diagonal term by Equation 1.34, and replacing the
right-hand side with Equation 1.35.

, b;
di":di—dTai,l (i=123,....m—1,m) (1.34)
i—1
. bi .o .
F,?‘:Fi—dTFi_] (i=123,....m—1,m) (1.35)
i—1

Then Equation 1.33 transforms into an upper bidiagonal form as follows:

- dO ao - - C() - n+l — F() -
dfk aq C] Fl*

d;sfl am—1 Cmfl Fr:r’L:l

L di 1L C, | L F

The elements with the superscript asterisk are those subjected to Gaussian elimination. The last
equation in Equation 1.36 has only one unknown. Solving Cfﬂ“ from Equation 1.37, all other
unknowns are found in sequence from Equation 1.38, starting from C:‘nfll to C’1’+'.

Fy
crtl = (1.37)

m d;nk

ol — (Fi* —a,-Cffll)

; IF i=m—-1m-2,...,2,1) (1.38)
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The concentration of the surface node Cj™' can be obtained by

(FO — aOC?“)

C(?)Hr] _ do

(1.39)

So far, the concentration of all nodes at time level n 4 1 has been calculated. Sometimes, the activity
is used instead of the concentration in diffusion problems such as the nitriding process.

1.2.3 BRIEF SUMMARY

The main advantage of FDM lies in its rigorous mathematical derivation, and it is very simple when
applied in one-dimensional problems. For the two- and three-dimensional problems, FDM can also
be applied but for objects with relatively simple shapes due to its limitation in coping with
complicated-shape boundaries. Hence, the FEM method is mainly used in the simulation of
temperature fields and concentration fields with three-dimensional complicated-shape parts.

1.3 FINITE-ELEMENT METHOD

The FEM, sometimes referred to as finite-element analysis (FEA), is a computational technique used
to obtain approximate solutions of boundary value problems in engineering. Simply stated, a
boundary value problem is a mathematical problem in which one or more dependent variables
must satisfy a differential equation everywhere within a known domain of independent variables
and satisfy specific conditions on the boundary of the domain. Usually, FEM divides the definition
domain into reasonably defined subdomains (element) by hypothesis and supposes the unknown
state variable function in each element approximately defined, so that the approximate solution of
boundary value and initial value problems is thus obtained. Since the respectively defined functions
can be harmonized at element nodes or certain joint points, the unknown function can approxi-
mately be expressed in the whole definition domain.

Because of the extraordinary flexibility of element division, the FEM elements can fit well to
objects with complex shape and the boundaries with complex curved surfaces. For example,
complex three-dimensional regions can be effectively filled by tetrahedral elements, similar to
triangular elements filling a two-dimensional region. Therefore, the FEM is the most widely used
method in heat treatment numerical simulation so far.

FEM has been dissertated in detail in related monographs [1-3]. Hence, a brief introduction is
presented in this section.

1.3.1 BRrIer INTRODUCTION

No matter what the physical nature of the problem, the standard FEM is always performed with a
sequential series of steps. Certain steps in formulating an FEA of a physical problem are common to
all such analyses, whether structural, heat transfer, fluid flow, or some other problems. The steps are
described as follows:

. Definition of problem and its definition domain

. Discretization of the definition domain

. Determination of all kinds of state variables

. Formulations of the problem

. Establishing of coordinate system

. Construction of the approximate function for elements
. Derivation of element matrix and equation

~N NN
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8. Coordinate transformation

9. Assembly of element equation
10. Introduction of the boundary condition
11. Solution to the final algebraic equation
12. Explanation of the results

When FEM for a specific engineering problem is performed by computer (these steps are embodied
in commercial finite-element software packages), it usually involves three stages of activity:
preprocessing, solution, and postprocessing.

1.3.1.1 Stage 1: Preprocessing

The preprocessing stage involves the preparation of data, such as nodal coordinates, connectivity,
boundary conditions, loading, and materials information. It is generally described as defining the
model and includes the following:

¢ Define the geometric domain of the problem

* Define the element type(s) to be used

* Define the material properties of the elements

* Define the geometric properties of the elements (length, area, and the like)
¢ Define the element connectivities (mesh of the model)

¢ Define the physical constraints (boundary conditions)

* Define the loadings

1.3.1.2 Stage 2: Solution

The solution stage involves stiffness generation, stiffness modification, and solution of equations,
resulting in the evaluation of nodal variables. Other derived quantities, such as gradients for stresses,
may be evaluated at this stage. In other words, the finite-element software assembles the governing
algebraic equations in matrix form and computes the unknown values of the primary field variable(s).
The computed values are then used by back substitution to compute additional derived variables, such
as reaction forces, element stresses, and heat flow.

1.3.1.3 Stage 3: Postprocessing

Analysis and evaluation of the solution results is referred to as postprocessing, so the postprocessing
stage deals with the presentation of results. Typically, the deformed configuration, mode shapes,
temperature, and stress distribution are computed and displayed at this stage. Postprocessor software
contains sophisticated routines used for sorting, printing, and plotting selected results from a finite-
element solution. Examples of operations that can be accomplished include

* Sort element stresses in order of magnitude
* Check equilibrium

¢ Calculate factors of safety

¢ Plot deformed structural shape

* Animate dynamic model behavior

* Produce color-coded temperature plots

While solution data can be manipulated in many ways in postprocessing, the most important
objective is to apply sound engineering judgment in determining whether the solution results are
physically reasonable.
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1.3.2 GALERKIN FEM rFor Two-DIMENSIONAL UNSTEADY HEAT CONDUCTION

The method of weighted residuals, especially the embodiment of the Galerkin FEM, is a powerful
mathematical tool that provides a technique for formulating a finite-element solution approach to
practically any problem for which the governing differential equation and boundary conditions can
be written.

Here, two-dimensional unsteady heat conduction is taken as an example to derive the FEM
formulations by Galerkin’s weighted residual method.

The governing PDE for unsteady, two-dimensional heat conduction with an internal heat
resource is

T  O°T or
(@‘Fa—)]z)"!‘Q_PCpE—O (1.40)

The initial condition, supposing the temperature field is known, can be written as
=0 T=T, (1.41)

The three types of boundary conditions have been listed by Equations 1.2 through 1.4.

The right-hand side of Equation 1.40 equals zero when the column vector 7, the exact solution
of the temperature field, is substituted. On the contrary, the approximate solution 7 makes the
residual error:

OFT T or

The basic idea of the weighted residual method is to construct a suitable weight function so that the
integration of products by residual error and weight function equals zero; the approximate solution
on the whole domain can thus be obtained. Therefore, we have

PT 0T or
[[wi(a (G +57) oz + @) antr=0 -
D

where W; is the weight function.

Several variations of the weighted residual method exist and the techniques vary primarily in
how the weight functions are determined or selected. The most common techniques are point
collocation, subdomain collocation, least squares, and Galerkin’s method [4].

The second-order differential item in Equation 1.43 can be transformed into a first-order item by
integration in parts. Therefore, the second-order differential item can be expressed as

2 2 . .

ﬂw,» ()\ (a—T + ﬂ»dxdy - fﬂ)\ <8W' or | oW @>dxdy + me Mo (144
X ly on

D D S

ox2  Oy? Ox Ox Oy Oy
and
or [ orT or or
JW,-/\%ds_JW,»A%dﬁjm)\%dsjtjw\%ds (1.45)
S 51 Sz S3
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Since the temperature on boundary S; is known, we have fSlWA(ﬁT/ On)ds = 0. Substituting
Equations 1.44 and 1.45 into Equation 1.43, we can get

OW; OT  OW; OT or oT oT
e = ( pe,— — = | wa= A—ds (1.4
“ (ax x5 8y>dxdy+ 17 (pc,, o Q)dxdy JW,/\ 50+ JW,A 5-ds (1.46)

2 S3

The element analysis is to establish the formulations by which the continuous function in the
subdomain AD can be expressed by the node values, i.e., the function of the node values. Supposing
there are n elements in the solution domain, and there are m nodes in each element with the
temperature 7; (i=1, 2,..., m), the unknown temperature T& »2) defined in the element can be
expressed as the interpolation function of each node. Therefore, we have

TGy =NiTi + NoTo + -+ + Ny Ty = [N T3} (1.47)
where N, is the shape function, which is a function of the components of each element nodes (x;, y;, z;)
and those of the location (x, y, z).

For example, the shape functions of a triangle element with three nodes can be simply derived
and expressed as

1
Ni(x,y) = ﬂ(ai + bix + ciy)
1
Nj¥) = 51 @) + by + ) (1.48)
1
Nin(x,y) = ﬂ(am + byx + cpy)

where
_ 1
A= E(bicj — bjC,‘)
ai = XjYm — Xm)js Aj = XmYi — XiYms Am = XiYj — XjYi
bi = Yj = Ym> bj = Ym = Yis bw = yi — ¥
Ci =Xm — Xj5 G = Xj — Xy Cp = Xj — X

Although the shape functions for different types of elements have different forms, they have
common characteristics and can be obtained by the geometrical method. Especially the coefficients
in the shape functions are the functions of the coordinates of each node, that is,

Ni(-x7yvz) = F(xi’yi7zi9-x’y’z)7 = 1’2’ ce.,m (149)

Obviously, the shape functions are determined only by the coordinates of each node and the type of
element. Hence, the temperature on certain points in an element can be expressed as the function of
node temperature, namely, the column vector {7;} (see Equation 1.47).

Equation 1.46 is applicable in the whole solution domain D, so for its subdomains, i.e., each
element AD, we have

owW; OT = OW; oT oT
JJA(ax 54— By a—y)dxdy—&-W,(pc,,E—Q)dxdy
AD
oT oT
ASZ AS}

ds (1.50)
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In Galerkin’s weighted residual method, the weight functions are chosen to be identical to the trial
function. Here, the shape functions are taken as the weight functions, for example, W; = Ny(x, y), and
substitute into Equation 1.50. Hence, we have

ON; 0T ON; OT oT
d
”)\<8x Bx+ By 0 )dx y—#N(pcpa Q)dxdy
AD
= J Ni/\gds+ JNi)\gds (1.51)
on on
AS> AS3

Substituting Equation 1.47 into Equation 1.51, and introducing the boundary conditions from
Equations 1.2 through 1.4, we have

ON; (ON; . ON;_ . ON, ON; (ON; . ON; . ON,
i+ 52T+ — T ) +A T+ 22T+ T

Ox \ Ox ox 7 ox dy \ Oy dy 7 Oy
oT; oT; aT,
Nipc, - | Njy—=—+ N;—L + N,,—" ) — N;Q|dxd
+ Nipep < (‘31'Jr j@TJr 81') Q] Y
- J gNids — J AN{N;T; + N;T; — Ta)ds (1.52)

AS, AS3

Taking W;=N/(x, y) and W,,=N,,(x, y), and deriving in exactly the same way, can be obtained
as follows:

” {A%<@n+%r+%mﬂﬁ) <@T,-+%T-+%Tm)

Ox \ Ox ox 7 Ox Jy Oy dy 7 0Oy
oT; oT; OT,,
+ijcp<N 3 —i—N,8 + Ny aq_)-MQ}dXdy
= J gN;ds — J hN;(N;T; + N;T; — Ta)ds (1.53)

AS, ASB

ON, (ONi.. ON,.. ONn ON, (ONi.. ON,.. ON»
ST 2B (Bige | P P
J” ox (8x o U o > dy <ay oy T oy )

oT; oT; oT,,
—J 4N, =") N,
+ Nupcy, (N 5 +N; 5 LS 87) N,dedy]
= J gN,,ds — J hNu(NiT; + N;T; — Ta)ds (1.54)
AS, AS;

For the interior elements, the right-hand side of Equations 1.52 through 1.54 equals zero respect-
ively; while for the boundary element, only the right-hand side of Equation 1.54 equals zero with the
assumption that only node i and j are on the boundary.

An equation group constructed by Equations 1.52 through 1.54 contains only the three

unknowns, T;, T;, and T,,. After rearrangement, it can be written in matrix form as follows:

[KI°{T°} +[CJ°%{T}°: {p}° (1.55)
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where
[K]® is the element stiffness matrix
{T}° is the column vector of temperature on element nodes (unknown)
[CI° is the element heat capacity matrix
{p}€ is the element constant vector item

The element stiffness matrix assembled from Equations 1.52 through 1.54 is

[ ON; ON; n ON; ON;  ON; ON; n ON; ON;  ONy ON; n ONyu ON;
Ox Ox 0Oy Oy Ox Ox 0Oy Oy Ox Ox Jdy Oy

[K]e:JJA 8Ni.%+aNi.% %%_,_%% aN’".% %% dxdy
Ox Ox 0Oy Oy Ox Ox 0Oy Oy Oox Ox dy Oy
P ON oM, 0N 0N, 0N, ON, O 9Ny DNy DN Ny ON,
| Ox Ox Oy Jdy Ox Ox Ody 0Jdy Ox Ox dy 0Oy |
N; NiN; N;N; 0
+ Jq N; |ds+ Jh N;N; N;N; 0 |ds (1.56)
ASy 0 AS3 0 0 0
Substituting Equation 1.48 into Equation 1.56, and integrating, we obtain
A blz + Ciz b,‘bj + CiCj bibm + cicpy hi:s 2 1 0
[K1° = 7 | bibi+ cies bi+c; by tcion | +—2{1 2 0 (1.57)
bubi + cmci  bubj +cme; b2+ 0 0 0

where
A is the area of element AD
l;; is the length of exterior boundary; /;; = 0 for the interior element

The coefficients b;, b;, b, c;, ¢j, ¢, are determined by the coordinates of nodes. Obviously, every
element in [K]® is determined.
For the element heat capacity matrix, we have

N,N; N;N; N,N;
[C]‘°‘=HPCp NiNj  NiN; ~ NuN;j | dxdy (1.58)

2 [ NiNw NNu NuNy

Substituting Equation 1.48 into Equation 1.58, and integrating, we obtain

A
”N,dexdy = ”N,»Nm dxdy = ﬂNij dxdy = —

12
AD AD AD | (1.59)
”NiNidxdy = ”NjN, dxdy = ﬂNmNm dxdy = 3
AD AD AD
Thus, Equation 1.58 can be rewritten as
oA 2 1 1
[C] = plg 121 (1.60)
1 1 2



18 Handbook of Thermal Process Modeling of Steels

The element constant vector item {p}° in Equation 1.55 can be expanded as

P} =1{p)® + {pqg}° + {pnl° (1.61)

where {pq}°, {pq}°, {pn}° originate from the internal heat resource, heat flux in the second kind of
boundary condition, and the heat transfer coefficient in the third kind of boundary condition,
respectively.

The item {pg}° can be obtained by

{po}° = J ON; dxdy + J ONj; dx dy + J ON,, dxdy (1.62)
AD AD AD

When the internal heat resource intensity Q is a constant, we have

1
{PQ}CZAS—Q 1 (1.63)

When the internal heat resource intensity Q is a linear function, we have

20; Qi On
{Pq)° = T Qi 2q; On (1.64)
O O 204

where Q;, Q;, and Q,, are the internal heat resource intensity on node i, j, and m, respectively.
The item {p4}° due to the heat flux on the boundary can be obtained by

= [ avias+ [ anast [ amnas (1.65)
ASQ ASQ ASZ

When the heat flux through the boundary ¢ is a constant, we have

L
{pq} = qu 1 (1.66)
0

When the heat flux through the boundary ¢ is a linear function, we have

; 2g;i +q;
{pq}eZéq gi + 2q; (1.67)
0+0

The item {py,}° due to the heat transfer coefficient on the boundary can be obtained by

1

l;
inTd 1 (1.68)
0

{pn}€ = J hT,N; ds + [ hT,N; ds + J hT,N,, ds:z

AC; AC; AC;
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Therefore, the continuous function Tf’x,y’f) on the subdomains, i.e., the element AD, has been
expressed by the node temperature, and the algebraic equation group with the unknown variables
of node temperature has been established.

For the whole solution domain, the algebraic equation groups on each element are assembled
together so that a large-scale equation group can be obtained as follows:

[K]{T}+[C]£{T}—{P}:O (1.69)
where
General stiffness matrix: [K] =Y [K]° (1.69a)
Heat capacity matrix: [C] = Z [C]® (1.69b)
Heat flux matrix: {P} = Z (P)° (1.69¢)

The solving of Equation 1.69 brings the solution of the temperature field for the unsteady two-
dimensional heat conduction. The evolution of temperature can be observed by recording the node
temperature at each time level, and the heating (or cooling) curves at special points can also be
extracted from the result files.

1.3.3 FEM FoRrR THREe-DIMENSIONAL UNSTEADY HEAT CONDUCTION

The principles and procedure in the FEM for three-dimensional unsteady heat conduction are
identical to those in the two-dimensional one, as presented in the previous section. The derivation
of its FEM formulations is more complex and can be found in related monographs [5—7]. Here, only
the derived results are briefly outlined.

The governing PDE of three-dimensional unsteady heat conduction with an internal heat
resource is repeated here.

PT T 0T or

T il = pc, — 1.70
(ax2+ay2+az2>+Q P oy (1.70)
Supposing that there are total n elements (m nodes in each element) and p nodes after the
discretization of the whole solution domain, Equation 1.70 can be transformed into an algebraic
equation group as follows:

[KHT} + [C]{?—Z} —{P}=0 (1.71)

(K] =) [KI (1.71a)
[c1=>[cr (1.71b)

(P} => (P} (1.71c)

[K]® = m [BI'[D][B]dv + ﬂh[N]T[N]ds (1.71d)

Ve Se
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[CI° = m pc,[NT'[N1dv (1.71e)
Ve
[pl° = m QO[N] dv + H hT,[N1"ds (1.71f)
Ve Se
A0 0
[DI=]0 A O (1.71g)
0 0 A
ox Ox T Ox
| Ny N> ONp
[B] = o R (1.71h)
Loz 9z = 97
[N] = [Ni1Nz - - Np] (1.71i)

where
V¢ is the element volume
S° is the exterior boundaries

In the unsteady temperature field, the variable temperature T(,, . is a function of spatial
location and time. Equation 1.71 is the spatial discretized formulation with the time differential
item OT/O, which can be discretized by the difference method in a uniform format as follows:

or or 1
0 (g)f(l —0) (E)Tm: AT = Trea0) (1.72)

If 6 =1, the backward difference format of time discretization is
oT 1
— | =— (T, — T,_ar 1.73
( 87)7 Ar( Ar) (1.73)

Substituting Equation 1.73 into Equation 1.71, we get

1 1
([K]+A—[C]){Tr} = —[CHTr-ar} + (P} (1.74)
T At

If 6 =1/2, the Crank—Nicolson difference format (also named central difference format) of time
discretization can be obtained as

1 oT oT 1
2 [(&)f(arl_m} =30 ) (47

Substituting Equation 1.75 into Equation 1.71, the corresponding FEM algebraic equation can be
obtained as follows:

1

2 2
([K] +E[C]> {T:} = (E [C]— [K]) {Tr-ar} +E({P}T +{P}:-ar) (1.76)
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The Crank—Nicolson difference format is, in general, more accurate than the backward difference
method, in that it does not give preference to either temperature at time level 7 — A7 or time level 7
but, rather, gives equal credence to both.

In FDM of time, the key parameter governing solution accuracy is the selected time step Ar. In a
fashion similar to the FEM, in which the smaller the elements are, physically, the better is the
solution, the FDM converges more rapidly to the true solution as the time step is decreased.

When the temperature field at time level 7 — A7 is known, and input into Equation 1.74 or
Equation 1.76, the temperature {7} on all nodes at time level 7 can thus be solved, and the
marching solution can progress in time until a steady state is reached. The nodal temperatures,
recorded step by step at different time levels, constitute the evolution history of the three-dimen-
sional temperature field.

1.4 CALCULATION OF TRANSFORMATION VOLUME FRACTION

1.4.1 INTERACTIONS BETWEEN PHASE TRANSFORMATION AND TEMPERATURE

The latent heat releases as an internal heat source inside the solid when phase transformation occurs.
Thus, the kinetics of phase transformation strongly depends on the temperature history of steel parts,
but also strongly affects the temperature field inside. The interactions between phase transformation
and temperature are not one-way, but bilateral, increasing the complexity in the accurate numerical
simulation of the thermal processing.

The latent heat per time unit, expressed as the internal heat source in the heat conduction
equation, i.e., Equation 1.1, is usually calculated by the following Equation 1.77:

0= AHi—‘: (1.77)

where
AH is the enthalpy difference when a new phase of unit volume forms from the parent phase
AV is the change of transformation fraction in the time step At

The calculation of the volume fraction is the key to predict the evolution of temperature and
microstructure during the thermal processing, as well as the final microstructure constituents and
rough mechanical property. Since phase transformations are usually classified into two categories
according to their mechanisms, diffusion transformation (for example, pearlite transformation),
and nondiffusion transformation, i.e., martensitic transformation, the mathematical models of the
transformation kinetics are very different.

In this section, the numerical method to calculate the transformed volume fraction of a new
phase is mainly introduced.

1.4.2 DirrusioN PHASE TRANSFORMATION

A time—temperature—transformation (TTT) diagram describes the relationship between the trans-
formation starting, ending, and the transformed volume fraction during the isothermal process at
different temperatures. The isothermal kinetics equation, namely Johnson-Mehl equation [8],
provides a solid base for numerical simulation of thermal process although it cannot be directly
applied to calculate the volume fraction due to the nonisothermal process of the practical heating
or cooling process. Until now, the method proposed by Fernandes et al. [9] has been widely
accepted, in which the practical nonisothermal process is considered as many isothermal stages
with a tiny time duration as shown in Figure 1.5, and the effect of these stages can be summed
together according to Scheil’s additivity rule.
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FIGURE 1.5 Schematic model for fraction calculation of diffusion transformation during continuous cooling
process.

Due to the strict limits of Johnson—Mehl equation, Avrami [10] proposed an empirical equation,
which has a simpler form and has been widely used, as follows:

f=1—exp(=bt") (1.78)

where
fis the volume fraction of a new phase
t is the isothermal time duration
b is a constant dependent on the temperature, composition of parent phase, and the grain size
n is also a constant dependent on the type of phase transformation and ranges from 1 to 4

Coefficient b and n at different temperatures are usually calculated from the experimentally
obtained TTT diagrams by the following equations:

o Inln0 —f) —In(1 — )]
™= Int; —Inty

In(1 —
b(T) = (tn(T)fl) (180)
1

(1.79)

Therefore, the relationship between the volume fraction and time under certain isothermal temper-
atures can be calculated by Equations 1.78 through 1.80. Most experimental data of phase trans-
formation agree well with the Avrami equation.

Only with the help of Scheil’s additivity rule can the transformation starting time, namely, the
incubation period, for a nonisothermal cooling or heating process be determined. The general form
of Scheil’s additivity rule can be written as

I

dr " Ag
4 i i

i=1
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where
t; is the incubation period to be determined for the nonthermal process
tiTTT is the incubation period under a certain isothermal temperature
At; is the time step

It can be understood that the transformation in the nonisothermal process occurs when the
summation of the relative fractions Az; /#7™T reaches unity.

Scheil’s additivity rule has also been applied in volume fraction calculation. For example, to
find the time (z,,) needed to attain a certain fraction transformed (£,,) in a nonisothermal transform-
ation with time—temperature path T, Scheil’s additivity rule is expressed as

Iy

dt
te,(T)
0

1 (1.82)

where #; (T) is the time to transform the fraction £, isothermally at the current isotherm T,
According to Equation 1.82, the total time required for completion of the transformation is obtained
by adding the absolute durations of time At spent at each temperature 7, until the sum of the relative
durations At/t; (T) becomes unity. The time 7, (T), to reach transformed fraction &,,, can be obtained
from the kinetics equation, i.e., the Avrami equation (Equation 1.78).

To explicitly demonstrate its calculation method, the concept of fictitious time * and
fictitious transformed volume fraction f{* are commonly developed [9]. These two variables can
be calculated by

' —In(—f_ 1/n;
= {n(fl)} (1.83)
b;
5 =1 —explb;i(tF+ A" (1.84)
Hence, the practical transformed fraction is
=1+ o) (1.85)
where
£, andf; _; are the austenite fraction and transformed fraction at the end of the previous time
step

Jmax 18 the maximum possible transformed fraction for this type of transformation

Equations 1.78 through 1.85 constitute the basic frame of volume fraction calculation for the
diffusion transformation, whereas it should be carefully applied in specific case studies and
necessary modifications be made.

1.4.2.1 Modification of Additivity Rule for Incubation Period

Based on theoretical analysis and experimental results, Hsu [11] points out that the additivity rule
is not always accurate enough to be applicable in incubation period prediction. Hawbolt et al. [12]
and Reti and Felde [13] held the same viewpoint that the additivity rule sometimes seriously
overestimates the incubation time.

Taking the eutectoid steel as the example, the practical incubation period /ST under certain
cooling rate, as well as the incubation periods for different isothermal stages ™", can be obtained
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TABLE 1.1
Summation of Relative Durations in Nonisothermal
Process of Eutectoid Steel

Average Cooling Summation of

Rate, °C/s Relative Durations, y Source
75 0.2 [12]
2.0 0.23

38.5 0.24

53 0.43 [14]
21.2 0.31

47.6 0.28

from CCT and TTT diagrams, respectively. Hence, the relative durations of each tiny isothermal
stage Ar/tI™T can be summed stage by stage from zero to 1T by

ccT
lS

At
X = Z T (1.86)

0

Beyond expectation, the summation Y, listed in Table 1.1, is much less than unity.

Another approach has been proposed to modify the additivity rule for prediction of incubation
period using TTT and CCT diagrams simultaneously [14].

The starting curves of TTT and CCT diagram are plotted together as Figure 1.6. The average
cooling rate during arbitrary time step Az; on the practical cooling curve, that is, the slope of the
tangent line dd drawn at the middle point of time step At;, can be calculated by

T —T;
o= " (1.87)
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FIGURE 1.6 Schematic sketch of the modification of additivity rule for incubation period.
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Cooling from the critical point A.; with the constant rate of V;, the cross point with the starting curve
tSCT in the CCT diagram gives the incubation period tSC(gT, during which the modification coefficient

@; of relative durations in this time step for the TTT diagram can be calculated by

CCT
fs([)

dr
b = J ATT (1.88)
0 S

The modification coefficient ¢; reflects the difference in incubation period between the CCT and
TTT diagram. When ¢; equals unity, there is no difference. Usually, it is bigger than unity since it is
very common that the starting curve in CCT lags behind that in the TTT diagram. Therefore, the
relative time duration Ar;/z T for the time step Ar; can be modified as (Az;/15;T)(1/)).

Hence, for the transformation starting time, namely, the incubation period for the isothermal
process, the criterion is modified as follows:

Ay 1
A2y (1.89)
Zt;l;};r ®;

The theoretical derivation of this modification is still in the process of consummation, and the
application and the accuracy also need to be further validated.

1.4.2.2 Modification of Avrami Equation

It is very clear that the time in the Avrami Equation 1.78 counts since the transformation occurs, that
is, the incubation period is not included. Therefore, Hawbolt et al. [12] suggested that the modified
form of Avrami equation should be

f=1—exp[-b(t —t)"] (1.90)
The calculation of coefficients n and b is also changed as

In[In(1 = £1) — In(1 — f»)]
In(ty — t5) — In(t, — &)
In(1 — 1)

n(T) = (1.91)

where £, is the incubation period of the isothermal process at a certain temperature.

To demonstrate the difference between these two methods, again, the eutectoid steel (T8 steel) is
taken as an example. In the algorithm 1 based on the Avrami equation, the transformation starting
time f, (approximate as 7o) and ending time 7. (approximate as g 99) read from the TTT diagram
are input to Equations 1.78 through 1.80 to calculate the coefficients n, b, and f, »5 (the time needed
to get a fraction of 0.25 of the new phase). In the algorithm 2 based on the modified Avrami
equation, fy 5 and fy7s5 are the time to transform the new phase of the volume fraction of 0.5 and
0.75, respectively, both of which include the incubation period 7, and can be got from the TTT
diagram. With the help of Equations 1.90 through 1.92, the coefficients n, b, and 7,5 are also
calculated. All these data are listed in Table 1.2. It is obvious that the modified Avrami equation
seems more reasonable and fits better with the TTT diagram than the unmodified one.
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TABLE 1.2
Coefficients n, b, and t; »5 Calculated by Different Methods

Data from TTT Diagram of Algorithm 1: Avrami Algorithm 2: Modified
Temperature Eutectoid Steel (T8 Steel) Equation Avrami Equation
(o) 66 toas6) fos®) fors6) t(s) n(M bM)x107° foz5(6) n(M bT)x107° to5(s)
700 125 39 63 90 120 2.71 1.07 43.1 1.62 121 41.9
650 2.7 6.5 8.8 11.5 18.5 3.18 425 7.7 1.89 2271 6.5
450 1.4 5.5 8.0 11 20 2.13 463 6 2.05 1460 5.7
400 3 30 43 65 100 1.75 147 20.5 1.58 200 26

1.4.2.3 Calculation of Proeutectoid Ferrite and Pearlite Fraction

The transformations in the hypoeutectoid steel can be explained by Figure 1.7. When the steel is
cooled rapidly until the temperature is below line SE’, the stable ferrite a and cementite FesC
precipitate simultaneously and form the quasieutectoid. However, if the temperature is above
point a, for example, at point a’, the nucleus of ferrite appears first at the austenite grain boundary,
and the ferrite grows up as the time goes on. At the same time, carbon diffuses into the neighboring
austenite grain due to its low dissolvability in ferrite, increasing the carbon concentration in
austenite. When the concentration reaches point b located on the boundary of two-phase area
o+ Fe3C, the retained austenite starts to decompose into pearlite.

The mechanism of the transformation process has been investigated intensively and has almost
reached common understanding, while the fraction calculation of proeutectoid ferrite and pearlite is
an unsettled dispute.

The nucleation sites and the mode of the proeutectoid ferrite are theoretically different from
those of eutectoid pearlite. Although their growth is controlled by diffusion, the growth mode and
diffusion route of carbon are different. These factors support the viewpoint that the fraction of
proeutectoid ferrite and pearlite should be calculated separately, that is, two sets of independent

C (%)

FIGURE 1.7 Schematic sketch of the quasiequilibrium diagram of Fe-C.
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Avrami equations should be used. Therefore, Wang et al. [15] proposed that the volume fraction of
proeutectoid ferrite and pearlite in steel 1025 be calculated by two Avrami equations as

fF =1- exp[—bp(t — l‘sp)nF] (1.93)
fo =1 — exp|—bp(r — 15p)"] (1.94)

On the other hand, the proeutectoid ferrite precipitates along the austenite grain boundary, and there
is enough space for growth at the initial stage. However, with the growth of the new phase, the
volume fraction increases, and the transformation rate decreases because of the encounter of the new
phase. Usually, the pearlite transformation occurs when the proeutectoid ferrite precipitation is still
in process. Hence, the proposal [12,15] that the proeutectoid ferrite precipitation should be
described by one dependent Avrami equation seems to lack convincing evidence.

In addition, the starting temperature of pearlite transformation during continuous cooling is hard
to determine because the carbon content of austenite varies with the precipitation of proeutectoid
ferrite. The pearlite transformed is usually the quasi-eutectoid in which the carbon content decreases
with the decrease in temperature. These are not in agreement with the hypotheses of the additivity rule.

Based on the above analysis, Pan et al. [16] developed a set of new approaches that uses one
combined Avrami equation to calculate the total volume fraction of proeutectoid ferrite and pearlite.
Assuming that the steel is isothermally kept for enough long time to precipitate the proeutectoid
ferrite only and the pearlite transformation does not occur, the final volume fraction of ferrite fT,

end
under certain temperature 7; can be calculated by lever rule as
/1,
F ab
fend - W (1 .95)

Therefore, the definition domain of the Avrami equation describing the proeutectoid ferrite is
[0, £F ;1. However, the practical situation is that the pearlite transformation usually occurs before
the volume fraction of proeutectoid ferrite reaches fr ;. Thus, there exists a maximum volume

fraction of proeutectoid ferrite £ at a certain temperature, which can be calculated as

bd'
F
=— 1.96
fmax Cb ( )
When the volume fraction of proeutectoid ferrite reaches ff . the carbon concentration in the
retained austenite reaches the composition range of quasieutectoid. The decomposition of austenite
enters the stage of pearlite transformation. The accurate kinetics of austenite decomposition, i.e., the
solid line in Figure 1.8, can be split into two parts: the first part is the transformation of proeutectoid
. F . . F . .
ferrite from [0, f,. ], and the second part is that of pearlite from [f;,,,,1]. The whole curve is still
S type and can be united into one Avrami equation.
The total volume fraction of proeutectoid ferrite fg, and pearlite fp, can be calculated referring to
previous sections, and their separation is performed:

ax?

F fFi :ﬁ
If f; < f. then {fPi -0 (1.97)
_ ¢F
If f; > fr. then {}:‘z ;“gni(frﬁax (1.98)

In order to test this approach, the TTT and CCT diagram of 45# steel was used to calculate the volume
fraction of proeutectoid ferrite fr, and pearlite fp, which were then input into the additivity rule as
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FIGURE 1.8 Schematic sketch of isothermal transformation in hypoeutectoid steel.

TABLE 1.3

Results of Check Computation of the Additivity Rule in 45# Steel
Average Cooling Rate (°C/s) T (s) T O & (s) Xi
0.6 1133 717 288.3 0.98
8.1 9.5 689 635 0.97
25 2.7 670 625 0.94

ccT
te

Ati
%= (1.99)
si

CCT ‘el
t.\

The results listed in Table 1.3 indicate that the summation of relative durations almost reaches unity
under different cooling rates, demonstrating the feasibility of the approach discussed here.

Related experimental and simulation results [17] also demonstrated that the whole decompos-
ition process of austenite in hypoeutectoid steel can be reasonably described by one Avrami
equation.

1.4.3 MARTENSITIC TRANSFORMATION

In most cases, the transformed volume fraction of martensite is independent of the cooling rate, but a
function of temperature. The Koistinen—Marburger [18] equation is always adopted in thermal
process simulation, and it is

fm=1—exp[—aM; —T)] (1.100)
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where
Jfu 1s the transformed volume fraction of martensite
T is the temperature
M is the start temperature of martensitic transformation
« is the constant reflecting the transformation rate and varying with the steel composition

For carbon steel with the carbon content lower than 1.1%, we have o =0.011.
Assuming that the average volume of martensite lamella is constant, Magee [19] theoretically
derived the constant « as

— OAGY™M
Vel2lv

o (1.101)

o =

where
V is the average volume of martensite lamella
@ is the ratio of the martensite number newly formed to the driving force in the austenite of
unit volume
AGY ™M is the free energy difference between austenite and martensite

Hsu [20] inferred that the Koistinen—Marburger equation is only applicable in high and medium
carbon content steels in which the carbon does not diffuse when martensite transform occurs. While
in the low carbon steel and the medium carbon steel with strip austenite the alloy element affects the
carbon diffusion. Therefore, the Koistinen—-Marburger equation should be modified for the low
carbon steel, and it becomes

f=1—exp[B(Ci — Co) — a(M; — T,)] (1.102)

where
Cy is the carbon concentration in austenite
C; is the carbon concentration in martensite

« and B are constants dependent on the materials; the former can be obtained according to Equation
1.101, while the latter can be calculated as follows:

_ OAGY™™M
L2806

B=Vo—7r (1.103)

where C is the carbon concentration.

Generally, the volume of martensite in the carbon steel and alloy steel is calculated using
Equations 1.100 and 1.102, and the M; point can be obtained by experiment and the following
empirical equations:

M,(°C) = 520 — (C%) x 320 (1.104)
M,(°C) = 512 — 453C — 16.9Ni + 15Cr — 9.5Mo + 217(C)?
— 71.5(C)(Mn) — 67.6(C)(Cr) (1.105)

The M point is considered as a constant in Koistinen—Marburger equation, while it varies if other
transformations, for example, pearlite transformation, bainite transformation, and so on, occur
heretofore, changing the composition of the parent phase or consuming the embryos. It can be
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observed from the CCT curves that the more the austenite decomposes, the more the M, point
decreases. The phenomenon has not been generally reflected in the additivity rule in calculation of
volume fractions using TTT curves. Hence, the calculation model, i.e., the Koistinen—-Marburger
equation, for martensite is in great need of further amendment based on transformation mechanisms
to improve its universality and accuracy.

1.4.4 Errect OF STRESS STATE ON PHASE TRANSFORMATION KINETICS

The stress state has considerable effects on the phase transformation kinetics irrespective of the
diffusion transformation or that of nondiffusion. Numerous investigations [21-25] have been carried
out to clarify the mechanism and to establish effective models for accurate simulation. Up to now,
the research in this field is still far from satisfactory. Some mathematical models proposed by
different groups are only applicable for some specific steels, and some need to be further validated.
In this section, representative models are briefly introduced.

1.4.4.1 Diffusion Transformation
For the pearlite transformation, Inoue and Wang [26] developed the model of transformation

kinetics under stress. In his work, the Johnson—Mehl equation in the stress-free state is expressed as

f=1—exp —JF(T)(t —7)dr (1.106)
0

The Johnson—Mehl equation under stress state was modified as

f=1—exp —J exp (com)F(T)(t — 7)°dr (1.107)
0

where
F(T) is the temperature function
o, is the mean stress
c is a constant

Denis et al. [27] introduced the effect of stress into the coefficients (n and b) in the Avrami
equation (Equation 1.78) as follows:

Ny =n (1.108)
b
bg’ —m (1109)

where
o, is the equivalent stress
C is a constant

1.4.4.2 Martensitic Transformation

For martensitic transformation, the stress state in the steel has much greater effects on the trans-
formation process. The coefficient « in the Koistinen—Marburger equation (Equation 1.100), as well
as the M point, is strongly dependent on the stress state.
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Observing Equation 1.101, the coefficient o can be obtained from the driving force in which the
stress plays an important role. Thus, Hsu proposed an empirical equation as follows, indicating the
relationship between o and equivalent stress o;.

a=qay+ a;o; (1.110)

where the coefficients are about g = 1.2430 x 1072 and a; = 6.9752.
Inoue and Wang [26] expressed the Koistinen—Marburger equation without stress as

f=1—exp(e()) (1.111)

while the kinetics equation under stress was modified as

f=1- exp[(Aam + BJ%) n qs(T)] (1.112)

where
O, 1s the mean stress, i.e., hydrostatic pressure
J, is the second stress invariant
coefficients A and B are the material constants

Similarly, Denis et al. [27] developed the model of martensitic transformation under stress, and
her equation for volume fraction of martensite is

f=1- exp(—a(Ms Aoy + Boi —T) + (Aa'm +Ba§/2)) (1.113)

Compared to Equation 1.112, this equation additionally considers the effect of stress on the M,
point, which can be clearly expressed as an extra item AM; [28]. Therefore, we have
MY = M + AM (1.114)
AM; = Aoy, + Bo; (1.115)

1.5 CONSTITUTIVE EQUATION OF SOLIDS
1.5.1 Erastic ConsTITUTIVE EQUATION

1.5.1.1 Linear Elastic Constitutive Equation

In a solid under deformation, the stress depends on the current strain state, and is a single value
function of the strain. The elastic deformation will be recovered, when the load is released, i.e., the
elastic deformation is reversible. Usually elastic constitutive relation is taken as linear.

1.5.1.1.1 Isotropic Elasticity
In the isothermal, small deformation process of solids, the stress components are a linear function of
the components of the small strain tensor, as follows:

o= C;klsil (1.116)

where Cjy, is the elastic tensor, the superscript “e” means elastic
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Such a material model is called linear elastic constitutive equation. The incremental form of the
above equation is

doy = C, e, (1.117)

Usually metals can be taken as isotropic, linear elastic materials or ideal elastic materials. For such
materials, the elastic tensor is a fourth-order isotropic tensor, including only two independent
parameters, as follows:

1%

C¢
1—2v

it = 26 (5:'/«5;1 + 6ij8k1) (1.118)

where
G is the shear modulus
v is the Poisson’s ratio

G is related with Young’s modulus E by the following equation:

G E
T 2(14v)

In finite deformation, to meet the requirement of objectivity, the Jaumann rate of Cauchy stress
tensor and the rate of deformation tensor, which possess objectivity, are adopted, and the elastic
constitutive equation is rewritten as

Ojj = iejkldzl (1.119)

For the convenience of finite-element formulation, the stress and strain are usually rewritten from
second-order tensors into vectors, e.g.,

T
0 = [01102033012023031]

T
& = [e11&808332¢61226232€31]

Accordingly, the fourth-order tensor C° is rewritten into a matrix:

1—v v v 0 0 0
v 1—v v 0 0 0
2G v v 1—v 0 0 0
e _
¢ = 1 —2v 0 0 0 (1-2v)/2 0 0 (1.120)
0 0 0 0 (1-2v)/2 0
0 0 0 0 0 (1-2v)/2

Then the elastic constitutive equation can be written in the matrix form:
o=C
In this chapter, the symbol o is used to represent the stress both in tensorial form and in vectorial

form. Similar usage is also applied for £ and C°. The exact meaning of the symbol can be deduced
from the context.
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Elastic deformation can be decomposed into a volumetric component,

c __ (< (& (<
&y, = (&1, + &5, + %) /3

e e e s
sij—sij—smSU
e 10_/
YR
1-2v
En = E Om

1.5.1.1.2  Orthotropic Elasticity

Some materials, such as a single crystal, show different elastic behavior along different directions. If
the principal axes are mutually orthogonal, it is called orthotropic elasticity. If along each principal
axis, the elastic properties are identical, then the elastic matrix is

Ch Ch Cha 0 0 017
Cno Cn Cn2 0 0

cc= |G Cn Cu 0 0 (1.121)
0 0 0 Cu 0 0
0 0 0 0 Cu O
Lo 0 0 0 0 Cul

1.5.1.2 Hyperelastic Constitutive Equation

Some materials such as rubbers, have highly nonlinear stress—train relationships; they remain
elastic even when they go through a huge deformation. Such materials are described by hyperelastic
constitutive equation.

If a material possesses the strain energy density function, w, which is an analytic function of the
strain tensor, and the increment of which is the work done by the stress, then it is called hyperelastic
material. For hyperelastic material

1 .
w=—S;E; (1.122)
Po

where
po is the mass density in initial configuration
S;j is the second Piola—Kirchhoff stress tensor
E,-j is the Green strain tensor

On the other hand, the strain energy function is the analytic function of strain tensor; then
W=_—FE; (1.123)

<isi,—a—w)E,-j=o (1.124)
p A
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If the components of E,j are mutually independent, from the arbitrariness of E,-j, we have

ow

Si = Po g (1.125)
ij

Equation 1.125 is the hyperelastic constitutive equation.
If the volume change in deformation process is negligible, then the components of E;; are not
independent, but should meet the incompressible condition:

aXm 6Xn ;
= E, = 1.12
ax, O L 0 (1.126)

Eii

Comparing Equations 1.124 and 1.126, it is known that

1y ow _0X 0%
Po v OE;; © Ox,, Oxy

That is,

1 ow 0X,, 0X,

o 35, " o (1.127)

Sy =

where £ is the hydrostatic pressure, determined by the boundary conditions. Equation 1.127 is the
constitutive equation of incompressible hyperelastic materials.

For isotropic hyperelastic materials, the deformation energy density function could be expressed
as a function of the invariables of Green deformation tensor:

w=w(,1,13)
where
LI =Ci;=2E; +3
L = (Ciicjj - CUCJL)/Z = 2EiiEjj +4E; — 2Elelj +3 118)
O0X Oxp .
I; = det C = det Grm
3 et C e <8Xl ax])
So
ow ol Ow 0L, 0w Ol
51 =P \51, oE, *on, A 1.129
e L’” 1 OE; 0L, OE; Ol OE; (1.129)
where
ol
e 281
oE;
or.
a?j = 2(61]5rs - 8ir8js)(2Em + 6rs) (1130)
oy 0K 0%
OE;  ~ Oxy Oxp
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For an incompressible hyperelastic material, /3 need not be considered. Then,

8w 311 3W 3]2 haX, %

S; = il TR
i = Pol 51, 9B, 0L, 0E;| " 0y O

(1.131)

By defining different deformation energy density functions, different hyperelastic material models
could by defined. Some commonly used models are given below:

1. Neo Hooke model [3,29]
w= Ci(I; —3) (1.132)
2. Moony model [30-32]
W =Ci( —3)+ C(l, — 3) (1.133)

where C; and C, are the material constants.

The deformation energy density functions of the above models are defined by the
invariables of Green deformation tensor. Because C;; = /\iz, A; is the principal stretch; the
deformation energy density functions of the models are functions of even power of A;, so
they belong to the Rivilin materials. For the Rivilin materials, the deformation energy
density functions can be chosen as functions of higher-order power of I; and I,. With an
increase in the order, or the number of the items, the agreement of the constitutive equation
with the behavior of real materials will be improved, but the parameters to be determined
increase, and the computation becomes more complicated. It is found that /5 is not included
in the deformation energy density functions of the above models, so they are incompress-
ible hyperelastic materials.

3. Ogden model [33,34]
Volume change in deformation is taken into account in this model. Its deformation energy
density function is

N
W= DB O g AT) - 3] sk (F 1) (A0

where
M, and «,, are the material constants
K is the voluminal modulus
J is the ratio of volume change expressed as J = AjA2A3

Equation 1.134 should be applied in case the ratio of volume change is in the order of 0.01. If
volume change is large, the following generalized compressible Ogden model could be used:

N N
W:Zﬂp\?”ﬂi‘”ﬂé‘”—ﬂ+Z%(1—JB") (1.135)
n=1 n

n

Q

n=1

where u,, «,, and 3, are the material constants. Usually N=2 or N =3 is appropriate.
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1.5.2 ErastorLasTic CONSTITUTIVE EQUATION
1.5.2.1 Introduction

The plastic behavior of the metal at normal temperature depends on deformation history of the
material, hence the plastic flow theory, that establishes the relationship between stress rate and strain
rate, should be normally used.

In establishing the constitutive equation, first a small deformation problem is considered, and
the relationship between Cauchy stress and small strain is established. Then the constitutive
equation is extended to finite-deformation problem; here Cauchy stress and small strain should be
substituted by corresponding appropriate stress rate and strain rate. The appropriate stress rate could
be chosen as Jaumann rate of Cauchy stress, &, and the objective strain rate could be chosen as the
rate of deformation tensor, d.

The elastoplastic deformation is decomposed into a recoverable elastic deformation and an un-
recoverable plastic deformation. In small deformation, the strain increment de is decomposed as
follows:

de = de® + ade?
Correspondingly, in finite deformation, the strain rate, d, is decomposed as
d=d°+ ad’

where
superscripts “‘¢’” and “p’’ mean the elastic and plastic components, respectively
a is the loading factor

In pure elastic deformation, including unloading, « = 0; in elastoplastic deformation, o = 1.

1.5.2.2 Yield Criterion

When a metal sample is deformed under uniaxial loading, if the deformation is small, the material is
in elastic state, and the relation between stress and strain is linear. When the stress reaches the yield
point, o, the material yields and deforms plastically, and the relation between stress and strain
becomes nonlinear.

In a deforming body, the stress distribution is generally not uniform. For a particle in the
material, when the stress components meet a certain condition, the particle will yield. This condition
is called yield criterion. The yield criterion can be written in the following general mathematical
expression:

F=f(o) —0,=0 (1.136)

where
flo ;) is the function of the stress components
o is the initial yield stress

The yield criterion may be geometrically represented by a surface in the stress space, called
yield surface. If the stress, o, locates inside the surface, i.e., F' (o;;) <0, then the particle is in elastic
state. If the stress, o;, locates on the surface, i.e., F(o;)) =0, then the particle yields and turns into

the plastic state. But it is impossible for the stress, o;, to get out the surface, i.e., F(o;) > 0.
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1.5.2.3 Flow Rule

1.5.2.3.1 Associated Flow Rule

For ordinary engineering materials, the flow stress is an increasing function of the plastic strain
in plastic deformation; such material is called a stable material, which meets the condition
Ao ;; Ag;; > 0 during plastic deformation. Consequently, successive yield surface, or loading surface,
F(oy;, Y) is convex. Let the stress space coincide with the strain space; then the plastic strain
increment must point in the outward normal direction of the yield surface F' (o, Y), i.e.,

OF
80',:,'

&j=A (1.137)

where
OF /0o, the geometric meaning of the partial derivative, is the component of the unit outward
normal vector of the yield surface F, in the stress space
A is the scalar factor

Adopting the concept of plastic potential theory, F' is taken as the plastic potential function. When
the yield criterion is taken as the plastic potential function, associated flow rule can be obtained.
Using a different yield function, different plastic stress—strain relationships can be derived from
associated flow rule. If the plastic potential function is not chosen as the yield criterion, the resulting
plastic stress—strain relationship is called nonassociated flow rule. For metals, associated flow rule is
normally used.

1.5.2.3.2 loading-Unloading Condition

Work hardening usually occurs in plastic deformation of metals at normal temperature, which
causes an increase in successive yield stress or flow stress. Successive yield criterion can normally
be written as

F=fo)-YE)=0

where Y is the flow stress, and is usually taken as a function of the accumulated plastic strain, *. In
small elastoplastic deformation, the loading—unloading condition of work hardening material is as
follows.

Loading:
OF
F=0, dF=0 and ——do;>0
80’,’]
Unloading:
F=0, dF <0 (1.138)

Neutral variation:

F=0, dF=0 and gdo’ijzo

ajj

where, the geometric meaning of (OF /8o,j)da',»j is the projection of stress increment, do, in the
outward unit normal vector of the yield surface, OF /0. In loading state, the value of the projection
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is positive. During loading, F=0 and dF =0 must be satisfied; they are called consistency
condition. From the consistency condition, we obtain

OF

—do; —dY =0
60',']' O-J
Since o =Y and do = dY during loading, the above equation can be written as
OF
+—do; —do =0
60',']‘

1.5.2.4 Hardening Law

1.5.2.4.1 Two Kinds of Hardening Assumptions
For hardened materials, it is assumed that the successive yield behavior still obeys the initial yield
criterion, but the initial yield stress must be replaced by flow stress.

The change in successive yield surface, and yield locus, which is the intersection of the yield
surface with a plane in the stress space, is very complicated. For simplicity, two kinds of assump-
tions are commonly adopted. One of them is the isotropic hardening assumption. Its key points are
(1) the material remains isotropic after hardening; (2) the center and the shape of the yield locus do
not change after hardening, but its size grows continuously during deformation. The other is the
kinematic hardening assumption. Its key point is that the size and shape of the yield locus is fixed
after hardening, and the yield locus only moves rigidly in the stress space. Sometimes both
assumptions are combined in application.

1.5.2.4.2  Equivalent Stress—Equivalent Strain Relation

Flow stress is the function of accumulated plastic strain or plastic work; their relationship can be
determined by the single curve assumption. It is assumed that in the equivalent stress—equivalent
strain relationship in general the stress state is identical with the true stress—true strain relationship in
uniaxial stress state.

The commonly used formulations describing the relationship between equivalent stress and
equivalent strain are given below. These formulations only describe the equivalent stress and
equivalent strain relationship in plastic state; the consistency between elastic and plastic stress—
strain relationships can be realized by the compatibility of initial yield stress T .

1. Ideal plasticity

O = 0y
where, work hardening is neglected.
2. Linear hardening
o =0+ Ke
where K is the tangent modulus.
3. Power law
o = K&"

where
K is the strength factor
n the hardening exponent.

4. Power law with initial strain

=K@ +2)"
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FIGURE 1.9 True stress—true strain curve.

1.5.2.4.3 Bauschinger Effect

For metals, if loading direction is reversed after plastic deformation, the yield stress in reverse
loading direction is lower than the initial yield stress, as shown in Figure 1.9. This phenomenon is
called Bauschinger effect and can be described by the kinematic hardening assumption.

1.5.2.5 Commonly Used Plastic Constitutive Equations

1.5.2.5.1 J, Flow Rule

Supposing the material is plastically isotropic, as the yield criterion is an appropriate physical law, it
can be expressed as the function of stress invariants. Since hydrostatic pressure does not affect
yielding, the yield criterion is related only with the deviatoric stress. Consequently, the yield
condition can be written as

F(J,, 05 =0

where J; and J; are the second and third invariants of the deviatoric stress, o7;. It should be noted
that J{ = 0.
For the isotropic hardening material, the von Mises yield criterion can be written as

/3
F= Eo’ijo’;j—Y: 3/, -Y=0 (1.139)

Since the yield criterion is the function of the second invariant of deviatoric stress, J5, the associated
flow rule derived by it is called the J, flow rule.

Von-Mises yield criterion can be represented geometrically by a cylinder in the principal stress
space; the axis of the cylinder is along the isoclinal direction, and its radius is \/2/_3 Y, as shown in
Figure 1.10. In principal stress space, the plane passing through the origin and normal to the
isoclinal direction is called 7 plane. The Mises yield locus in 7 plane is a circle.

Substituting the Mises yield criterion into the associated flow rule, we get

(1.140)

-p_ c
8ij*/\0'ij
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o)

\

%1

O3

FIGURE 1.10 Mises yielding surface in the principal stress space.

If both sides of the above equation are multiplied by themselves and then summed, A is obtained

SRS

[NSRON

);:

where & and £ are the equivalent stress and equivalent strain rates, respectively, which are defined as

Ez—éa'(r’

R
o 2.,
& —gé‘[jé‘ij

Substituting the above equations into Equation 1.140, the Saint-Venant flow equation is obtained.

3P
P _ /
5=257%
Its incremental form is
3deP

1.5.2.5.2  Kinematic Hardening Rule
Supposing the initial yield criterion is

F=,/3Jf—-0,,=0
During plastic deformation, o in the above equation remains constant. This model is called the J,

kinematic hardening model. Supposing the center of the yield surface moves to 6, the successive
yield criterion can be written as

3 / /
F= \/E (@) — 00 — 0) — 07 = 0 (1.142)
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where 0§j is the deviator of 6;; 6;; is called backing stress.

OF _3(c;— b))

o 205,

The equivalent stress is defined as
7? = E(o" — 0o, —0)
T ) ij

When (ofj — 0;1-)6',7 > 0 and @ = oy, a=1; when (crﬁj — Gﬁj)c}ij <0ord <oy, a=0.
The movement of the center of the yield surface, 6, can be determined by Ziegler rule. It is
assumed that during plastic deformation, # moves along the direction of vector o — 6; then

0; = (o — 6y)

where éij is the Jaumann rate of 6;;.
From the consistency condition, we obtain

G
= ij
2030

It is found that if the kinematic hardening rule with Jaumann rate is used in analyzing the simple
shear deformation, after shear strain exceeds 1, shear stress will oscillate, which is unreasonable. To
prevent such a problem, it is suggested that Jaumann rate be substituted by Green—Naghdi rate in the
constitutive equation, i.e., the rotational speed w be substituted by Wi = R-R"

1.5.2.5.3 Orthotropic Material
Hill proposed the yield criterion for orthotropic materials in 1948:

F(o2 — 033) + G033 — o11)* + H(oy1 — 022)? + 2Lo%, +2Mo?%, +2Not, =1 (1.143)
where
F, G, H, L, M, and N are the anisotropic parameters

X1, X2, and x3 are the material anisotropic principal axes

Let o denote the equivalent stress and Y the flow stress:

2 F+G+H

Y |3
2(F+ G+ H)

Then Equation 1.143 can be rewritten in the following form:

. \/3 F(op — 033)" + Gloys — o1)” + H(o1 — 0m)” + 2Lo3; + 2Mo3, + 2No,

F=5-Y=0



42 Handbook of Thermal Process Modeling of Steels

According to the associated flow law,

F Y?
dsg- =dA 0 =dAr—Ay
Oojj g

where
Ay = G(o —0o33) +H(o — o)

Axp = F(on — 033) + H(o — o11)
Aszz = G(o33 — o) + F(o3; — 022)
Ap =Ay +Nop
Axz = Az = Loas
Az = Az = Mo,

ar — dzp — ) CrmpgAmIpg
E + YzClennqum”AP‘I

For a plane stress problem, e.g., the sheet metal forming problem, the yield criterion is
simplified as

3

Fo— >
2F+G+H)

(G + H)ol, + (F + H)o3, — 2Hoy102 + 2No7,| — Y2 =0

The coefficients in the above equation can be determined by the strain ratio in transverse and
thickness directions during simple tension, r = &/&,. Let ry, 45, and roo denote the strain ratio along
the direction 0°, 45°, and 90° from the rolling direction, respectively, o, o, and o, the yield
stresses in simple tension along and above directions respectively; then

1
- (I+ryo?,
_ 1
(1 + reo)a2,
H— 1o _ r90
(I +roaz (1 +ry)o?

N:(G-FH)(%—FMS)

Supposing r = rq = r45 =199, (i.€., the sheet is anisotropic along the thickness direction, but isotropic
in the horizontal plane where x, y directions coincide with the principal stress directions), then, the
yield criterion can be further simplified as

[(1 +r)(0'% +0'%) _27’0'10'2} —Y’=0
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In this condition, the following relationship among the anisotropic parameters exists. Let
0, =0, =0, then

1

F:Gzi
(1+r)o?
H=rF
N={0+2nF
L=m=C g
2
Y2:3(1+r)0'§
22 +71)

when r is more than unity, i.e., » > 1, this yield criterion cannot describe the abnormal phenomenon
of the ratio of oy, and o, less than unity, i.e., op/0, < 1, where o, means the yield stress in biaxial
tension, and o, the yield stress in simple tension. Therefore, Hill, Bassani, et al. proposed
nonquadratic yield criteria. However, the original form of the orthotropic yield criterion is more
convenient and commonly used.

1.5.2.5.4 Compressible Material
Some materials, such as metal powder, have volume change during plastic deformation; besides
deviatoric and hydrostatic stress also affect their yielding. The yield criterion can be written as

F=AJ,+BJI —CY* =0 (1.144)

where
J} is the second invariant of the deviatoric stress tensor
J1 is the first invariant of the stress tensor
Y is the flow stress of matrix material
A, B, and C are the function of void volume fraction, f= Veayity/(Vinatix + Veavity), O the mass
density, p

They should be determined by experiments.
From the associated flow rule, we obtain

o 3E
85« = % (AO':j + 2BJ16,]>
3;
Erk = thJl
g

The equivalent stress and equivalent strain are defined respectively as

G* = 3(AJ) + BJ})
EZ 2|1 Y

~3[a%" T igs

(éue)?

If the material compressibility is small enough, then B approaches zero, i.e., B — 0. If A — 1 and
C — 1/3 are also assumed, then the yield criterion, the equivalent stress, and the equivalent strain of
voided material coincide with those defined by Mises criterion. For A and B, the relation A +3B =1
should be satisfied.
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1.5.2.6 Elastoplastic Constitutive Equation

The formulation of elastic constitutive equation and plastic flow rule were presented here separately.
They are now combined to get the elastoplastic constitutive equation. First, the elastoplastic
constitutive equation in small deformation is derived. If the yield criterion is written in such a
form, in which the yield stress, Y, is in the first power, then in the associated flow rule dA =dz®; i.e.,
the associated flow rule can be expressed as dsfl = dgP(OF /Doyy). Substituting this equation into
Equation 1.117, we get

_, OF
doy = C;kl(dekl —deb) = Cg'kl (dskl — d&gP 80})

If both sides of the above equation are multiplied by OF/0c; and summed up, we get

OF OF OF
— do; =—C%( dey — de? —
80',7 Ty (90',,- gkt ( M & 80'1d>

Applying the consistency condition, (0F/0o ;) do;=da, and supposing H=da/ds’, the above
equation can be written as

OF OF
Hdg? = —C5,, | deyy — de® —
& 80’0‘ ik ( & & &rkl)

dz® can be solved from the above equation:

OF e
d—P _ 00_‘_/_ Cijkldgkl
&= H+ OF Cce OF

Doy ikl Doy

Then, the general form of the elastoplastic constitutive equation referring to the stress increment in
small deformation condition is obtained:

Cce  OF OF (e

_ e ijjmn g, dory  rskl
doj = |Cyy — H+ 0F ce OF dew
0T NS Q0 g
—(ce C® Vde, = C*.d 1.145
= | Cju — alyy Jdew = Cyyden (1.145)

where « is the loading factor. For example, if Mises yield criterion is substituted into the above
equation, the elastoplastic constitutive equation of J, flow rule in small deformation condition can
be obtained.

2Ga
doy = (ijkl — 70';10;(1> dey = ijildakl

where, G is the shear modulus, g = 25°[1 4 2/(2G)]/3, and h =2H/3. Let E denote the slope of the
stress—strain curve of simple tension, assuming that the material is incompressible; then

1
0= de?/do = (de — d&®)/do = 1 /E, — 1 /JE
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In finite strain, do; and dsg- in the loading—unloading criterion, flow rule and the elastoplastic
constitutive equation should be substituted by & and d’, respectively.

lj’
1.5.2.7 Thermal Elastoplastic Constitutive Equation

1.5.2.7.1 Thermal Elastic Constitutive Equation
In the elastic zone, the strain, expressed by a vector, is decomposed as follows:

de = de® + de” = de® + adT (1.146)

where
de” is the thermal strain increment caused by thermal expansion; only the normal strain
components are nonzero
a is the vector of the thermal expansion coefficients, a =« [1 1 1 00 01"

From the Hooke’s law
£t — (Ce)71(7

Since the elastic matrix, C°, depends on the temperature, 7, differentiation of the above equation
leads to

_ d(Ce)71

de® odT + (CO) 'do

Substituting the above equation into Equation 1.146, do can be solved:

ey—1
do =C°¢ ds—(aer(C)

o)dT
If the variation of the elastic properties with changing temperature can be neglected, we obtain
do = C°(de — deM)

1.5.2.7.2 Thermal Elastoplastic Constitutive Equation
In the plastic zone, since the flow stress, Y, depends on the temperature, 7, the successive Mises

yield criterion can be written as
F=0—- Y<Jd§p,T> =0

The differentiation of the above equation is

OF aY
- = Py
do = Hdg"? + —dT
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where
_dy
~ dg?

OF [OF OF OF OF OF OF]"
80'_ 80’11 80’22 80’33 8012 80’23 80’33

In the plastic zone
de = de® + deP + de’

Substituting Equation 1.146 and the flow rule into the above equation, do can be solved.

e\ —1
de —8—Fd§p - (a—i—d(c ) 0'>dT]

do =C°
o=C oo dT

If both sides of the above equation are multiplied by OF/Oc, and then summed up, dz” can be
solved.

(35)"cde — () "€ (a+ 4G~ 0 )dT — haT

de? = pe
GO

Then, the incremental stress—strain relationship in the plastic zone is obtained.

d(Ce)71
dT

do = C® [ds — <a + 0') dT} +do! ~ C®(de — deT) + do’ (1.147)

where do' denotes the additional stress arising from the effect of temperature on the plastic
modulus:

e OF Y
ot C o ordT

P —
H+ (55) €55

1.5.2.7.3 Phase Transformation
When multiple phases exist in the material, each material parameter, such as the Young’s modulus,
E, the flow stress, Y, etc., should be taken as weighted averaging values:

A= zn: m,‘Ai
i=1

where
A is the parameter value after weighted averaging
n is the number of phases
m; is the percentage of phase i at the moment
A; is the value of the parameter for phase i
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Phase transformation causes a change in the specific volume of the material; such an effect is
similar to thermal expansion and may be computed by an equivalent thermal expansion coefficient.
Let B; denote the thermal expansion coefficient corresponding to the specific volume change caused
by transformation of phase j; then

B=> mp
j=1

where
B is the average thermal expansion coefficient; it is the function of temperature, T
n is the number of phases
m; is the increment of phase j in the computation step

Then the strain increment is obtained:

At =B[111000]"AT

1.5.2.7.4 Loading-Unloading Condition
Considering the effects of temperature on the flow stress and the equivalent stress—equivalent strain
curve, the loading—unloading condition is modified as follows:

OF\" OF
Loading: [ — —dT
oading (80’) d(r+aTd >0
OF\'. OF
loading: | — —dT 1.148
Unloading (80‘) d0+8Td <0 ( )
Neutral variation: oF Td +8FdT—O
eutral variation: | =) do+—2.dT =

1.5.3 ViscorrLastic CONSTITUTIVE EQUATION

For materials deforming under impact loading and at high temperature, the yield stress and plastic
modulus increase with an increase in the strain rate, as shown in Figure 1.11. Such behavior is called
viscosity. The permanent deformation of viscoplastic material depends on time. For viscoplastic
material, the strain rate can be decomposed into the elastic part and viscoplastic part. Here only its
viscoplastic part, is consider denoted by superscript vp. A description of the elastic part can be found
in the previous section. The viscoelastic response of the material is neglected.

1.5.3.1 One-Dimensional Viscoplastic Model

The mechanical model of viscoplastic material can be expressed by the combination of an elastic
element, a plastic element, and a viscous element, as shown in Figure 1.12. The superscripts “‘e,”
“p,” and “vp” in the figure mean elasticity, plasticity, and viscoplasticity, respectively. This kind
of model takes into account viscosity only in the plastic part, not in elastic part. It is named
elastic/viscoplastic model.
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oA

oy

o

FIGURE 1.11 Stress—strain curve of viscoplastic material.

The constitutive relation of the elastic element is o = E¢. Let Y denote the static yield stress of
the plastic element. The plastic element does not deform when o < Y, and the stress applied to the
plastic element keeps Y constant when o > Y. The constitutive relation of the viscous element is
o'P = we'®; here u is the viscosity coefficient.

The total stress and strain rates meet the following relation:

og=o0"+0"

e=&+¢£"

o'P=0c-Y

FIGURE 1.12 One-dimensional elastic/viscoplastic model.
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Then the constitutive equation of elastic/viscoplastic material is
=1 if c <Y
E=—=0 10
E

1 1
E=—=0+—(—-YY) ifo>Y
E pn

The stress exerted to the viscous element is 0P = o — Y, which is called overstress. If overstress
exists, then & cannot be zero, and the strain € will increase with time.
1.5.3.2 Viscoplastic Constitutive Equation for General Stress State

Perzyna proposed the viscoplastic constitutive equation for general stress state by associated flow
law of plastic potential theory.

OF
80’,’j

&P = y(p(P) (1.149)

where
7 is the viscous coefficient of the material
F is the static yield function

The meaning of the symbol () is

(p(F)) =0 if F<0
(p(F)) =pF) if F>0

¢(F) is a function of overstress; it should be determined by experiment. For example, ¢(F) = (F/Y)"
can be adopted. If Mises yield criterion is adopted as F in the equation, we can finally obtain

=V
évp_3ap
i o ¥

1.5.3.3 Commonly Used Viscoplastic Models

The flow stress of viscoplastic material is the function of strain, strain rate, and temperature, and the
following expressions of equivalent stress are commonly used in engineering computations.

Backofen model [35-37]

where ¢ and m are material constants.

Rosserd model [38—40]
o = k&"z

where k, m, and n are material constants. This model takes into account the effect of both strain and
strain rate on flow stress.



50 Handbook of Thermal Process Modeling of Steels

The overstress model [41-43]

where
Y(2) is the static yield stress
n and r are the material constants

Power-exponent model [44,45]

where
g is the reference stress
a is the reference strain rate
m is the material constant

1.5.3.4 Creep

If the material is loaded for a long time, especially at elevated temperature, then even the stress does
not reach the yield stress, and it will deform permanently with time. If the stress is originated
from the elastic deformation of the material, e.g., the prestress or residual stress, the stress will relax
with time. This phenomenon is called creep. Creep is similar to viscoplasticity, and they differ
in whether there exits the yield point and the time scale. A typical uniaxial creep curve is shown in
Figure 1.13.

The duration of the initial creep and the third stage creep are short. Therefore, attention is
usually concentrated on the second stage creep.

When analyzing creep problems, viscosity must be considered in both elastic and plastic
constitutive responses. Such a constitutive model is called a viscoelastoplastic model.

2

Rupture

Second stage creep

Initial creep .
Third stage creep

o

N"

FIGURE 1.13 A typical one-dimensional creep curve.
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The strain increment is decomposed as follows:
Ae = Ae® + AeP + AeT + Asg® (1.150)

where the superscripts “‘e,” “p,” ““T,” and “‘c”” denote the elastic, plastic, thermal, and creep strain,
respectively.
Creep strain Ag® can be expressed by creep strain rate £°. In the ith computation step

AeS = 5AL(1 — 6) + 0€5, At

where ) ) )
At; is the time step size of step i

€/ and €, are the creep rate at time i and time 7 + 1, respectively
0 is the parameter of finite difference, 0 < 0 < 1

Usually 6 =1/2 ~ 2/3 is adopted.
Suppose £° is the function of &, and taking the two anterior items of the Taylor expansion of
&°(o + do), we get

. . €° .
&, =& + 90| Ao; =& + HAo;
1
where
O€°
H;, =
oo |;

This matrix can be computed from viscoplastic constitutive relation:
& = £°(0F | 0a) = (05 /0a)

Then

AE? = ElCAt, + 60AtH;0; (1.151)

1. The viscoelastic constitutive equation
Substituting Equations 1.150 and 1.151 into the elastic constitutive equation and supposing

AeP =0
we obtain
Ao; = C°(Ag; — Ae] — £5A)

where

€ = [(C)" + 6HA] ™
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2. The viscoplastic constitutive equation
Expressing AeP by the flow rule and adding it to the viscoelastic constitutive equation,

we get
Ac; = CP(Ag; — Ae] — €5A1) + AT, (1.152)
whAere A )
CP=C*-CP
o Sl

H o+ (35) €5
A7 can be referred to in Equation 1.147.

Different types of creep equations are determined by experiment, which vary with different
materials and deformation conditions. Some of them, commonly used in engineering computations,
are given below.

1. A creep rule in the uniaxial loading [46]
&, = Ad"t"
1.€.,

&e = mAg'"!

where
m, n, and A are the material constants [46]

t is the time

2. Anand model [47]
& = Ag(shBT)'eT

where
T is the equivalent stress
T is the temperature (°C)
Ap, B, Q, and n are the material constants

3. Power law for the second stage creep [48]
= 16151(2637,%3

where ki, k,, and k3 are the material constants.
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1.6 BASICS OF COMPUTATIONAL FLUID DYNAMICS IN THERMAL
PROCESSING

1.6.1 INTRODUCTION

The flow phenomena are very common during thermal processing and have various forms. For
example, the liquid materials fulfill the filling through flowing in the casting and injection
forming; the gas flow in the heat treatment furnaces are helpful in ensuring the uniformity of
furnace wall and atmosphere; and the quenching media flow is usually critical to improve
quenching ability and product quality. In all these engineering problems, the continuum model
has been widely adopted, which takes a series of state variables, such as pressure, velocity,
density, temperature, and so on, describing the flow as continuous functions of time and spatial
coordinates. Hence, the daedal forms of flow during different thermal processes are dominated by
the most fundamental physical laws, namely, the mass conservation law, the momentum conser-
vation law, and the energy conservation law.

In this section, the mathematical expressions of different laws, namely, the governing PDEs,
in fluid flow and the monodromy conditions (i.e., initial and boundary conditions) making
one process different from others, are introduced from the view of fluid mechanics. The
fundamental ideas and commonly used numerical methods to solve the governing PDEs are
also briefly discussed.

1.6.2 GOVERNING DIFFERENTIAL EQUATIONS FOR FLUID

All of computational fluid dynamics (CFD), in one form or another, is based on the fundamental
governing equations of fluid dynamics: the continuity, momentum, and energy equations. They are
the mathematical statement of three fundamental physical principles upon which all of fluid
dynamics is based:

1. Mass is conserved
2. Newton’s second law, F =ma
3. Energy is conserved

1.6.2.1 Generalized Newton’s Law

The relationship between stress tensor and strain tensor for the viscous fluid can be described by
generalized Newton’s law. The constitutive equation is

[t] =2nle]l — (p —AVV)[I] (1.153)

where
[7] is the stress tensor
7 is the dynamic viscosity coefficient
p is the static pressure of fluid
V is the velocity vector
[1] is the unit vector
[&] is the strain tensor
A (A =-2/3 m) is the second viscosity coefficient
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In the Cartesian space, the strain tensor can be expressed as

o L0 On\ (0w
Ox 2\0x Oy 2\0z Ox
& fw %m 1 /0v Ou v 1 /Oow Ov
[e] = ‘Zyx :"» “2‘2 = E(a—f—a—y) 8_y §<8—y+8—z> (1.154)
N N N W ow
2\0z Ox 2\dy 0z 0z

where u, v, and w are the components of V along the coordinates x, y, and z.
The constitutive equation in the Cartesian space can thus be expressed as

0
oy = —p—|—/\Vv+2na—Z
v

0
o, = —p-l-/\VV—i-Zna—vzv

ou v (1.155)
Txy = Tyx =M 87)14»&

Ou Ow
Tox = Txz = M 8_2—’_&

ov  Ow
Ty =Ty =1 92 + _6y
where

Oy, 0y, and o, are the normal stress
Tx» Ty, and 7, are the shear stress

1.6.2.2 Continuity Equation (Mass Conservation Equation)

The fundamental physical principle that mass is conserved means that net mass flow out of the
infinitesimal fluid element through surface equals the time rate of decrease in mass inside the
infinitesimal fluid element. Hence, the continuity equation can be derived as

9P v =0 (1.156)
ot
In the Cartesian space, it becomes
Op n Apu) L d(pv) i Apw) _ 0 (1.157)

ot Ox oy 0z

where
p is the fluid
t is the time
Op/ 0t is the time rate of increase in mass inside the element volume
((O(pu)/dx) + (O(pv)/dy) + (O(pw)/Dz)) is the time rate of net mass flow out of the element
volume
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1.6.2.3 Momentum Conservation Equation

Applying another fundamental physical principle to a model of the flow, namely,

Physical principle: F =ma (Newton’s second law)

The conclusion that the time rate of flow momentum equals the sum of external force acting
on it can be arrived at. Therefore, we have the momentum equation:

pdV

P = pF + Vi) (1.158)

where F is the body force of flow of unit volume.
Substituting Equation 1.153 into Equation 1.158, and writing in the Cartesian space, the
expanded form of the momentum equation can be obtained.

8u+ %4_ %_’_ % = F_M_‘_g 2 % _1_2 6\1 @ +2

o oxVay "oz ) TP ox ax\"ax) Tay M exTay )| Taz|”
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P =P%y v\ "oy Tax|Max T ay) | Tar Mo T

ot Ox 0Oy 0z Oy [

87W+ @+ 8W+ Ow 7 op— /\VV)+ o Ow +g 814 87w g 6\1 8w
P " P 0z 0z (92 ax | dy K
(1.159)

+

ot ox Oy 0z

Equation 1.159 is also called Navier—Stokes equation. The left-hand side of Equation 1.159 is the
inertia force, while on the right-hand side of Equation 1.159, the first item is the mass force, the
second item is the pressure difference, the third item is the viscous expansion force, and the fourth
and fifth items are the viscous deformation force. The third to fifth items are only related to the
viscous coefficient and strain tensor.

1.6.2.4 Energy Conservation Equation

According to the first law of thermodynamics, the energy equation can be written as
dT
Pep 4 = —p(VV)+V(kVT)+ pg+ @ (1.160)

where
¢, is the specific heat at constant pressure
T is the flow temperature
q is the heat flux in the flow with unit mass
k is the thermal conductivity of the flow

The left-hand side of Equation 1.160 is the increase in system internal energy. On the right-hand
side of Equation 1.160, the first item is the work done by the volume change of flow (it equals zero
for the incompressible flow), the second item is the energy input by the thermal conduction, the third
item is the energy generated by the internal heat source, and the fourth item is the viscous
dissipation work, which can be expressed as
28u228v 28w o ou\* [ow o\® [Ow Ou

@)+ (w) (5 ) (o) H5 5 HE )

P = + AV - V)

(1.161)
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Then
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1.6.3 GEeNERAL FORM OF GOVERNING EQUATIONS

For the viscous Newtonian fluid, the governing equations of the main state variables that need to be
solved in fluid flow problems can be expressed in a generalized form as [49]

0 0 od
E(P‘b) + 4= (pujcb) o) (F<p axj) + So (1.163)

where
Jj=1,2, 3, x; is the coordinate components
u; is the velocity components along x;
@ is the general variable
I'g is the transmission coefficient
S¢ 1s the source item

For the incompressible turbulent flow, the coefficient and source in the equations of CFD model
are listed in Table 1.4.

Since there are usually three forms of heat transfer, conduction, convection, and radiation, it is
worth mentioning that the control equation discussed here can describe the conduction and
convection, but for the radiative flow media, the radiation heat transfer with the furnace wall or
among themselves should be considered additionally. The numerical calculation of radiation heat
transfer can be found in the related literature [50,51].

1.6.4 SIMPLIFIED AND SPECIAL EQUATIONS IN THERMAL PROCESSING

The basic equations described here are applicable in an unsteady viscous Newtonian fluid, while
their solving is extraordinarily complicated. In the modeling of thermal processing, reasonable
hypotheses are usually adopted to simplify the governing equations. Some examples are given in
Table 1.4.

TABLE 1.4

Coefficients and Source Item in the Generalized Differential Transmission Equation
Equation L) I's So

Continuity equati(')n 1 0 0 0p .

Momentum equation u; 0 pgi — e +nV-u;

Energy equation T g n {2 (3—:) + (g—; + g—:) 2+ ((Z—;V + 3—;) 2-i- (iv: + gu> +MVV)Y +pg




Mathematical Fundamentals 57

1.6.4.1 Continuity Equation for Incompressible Source-Free Flow

The incompressible source-free flow, for example, the filling process during casting, has a null
divergence of flow velocity at any point in the domain filled with flow; i.e., there is no source and
leaking of flow. It follows the mass conservation law. Therefore, the continuity equation can be
simplified as follows:

ou v
Ox Oy

ow

%= (1.164)

1.6.4.2 Euler Equations for Ideal Flow

For the ideal flow without viscous force, the forces acting on the infinitesimal cubic element include
the gravity and pressure upon six surfaces. According to Newton’s second law, we have

(dx dy dz)pg, — dp(dy dz) =
(dx dy dz)pgy — dp(dz dx) =
(dx dy dz)pg, — dp(dx dy) =

(dx dy dz)pay
(dx dy dz)pa,
(dx dy dz)pa;

(1.165)

where a,, a,, and a, are the three components of acceleration, and they are the derivatives of three
velocity components, respectively. That is,

du dv dw
ay=—, Qy=—, (3 =—

de’ dr’ dt

The acceleration here means the velocity change in the motion of an infinitesimal fluid element,
instead of that of the different flow passing through a certain position. The former is the substantial
derivative of velocity to time and spatial coordinates while the latter is the partial derivative to time
only, and their relationship is

du_ 0 dudx oudy 0u:
dt 0t 0Ox 0t 0Oy ot 0z 0t

dv Ov Ovox Ovdy Ovoz

dw  Ow Lo ow Ox Owdy 0w Oz

At Ot Ox ot Ay o 0z Ot

Substituting Equation 1.166 into Equation 1.167, the momentum equation for the ideal flow,
namely, Eular equation, can be obtained as

@+u6u+ 814 +

Ov Ov
p<5+ u@x ) +pgy (1.167)
@m_%+3w ;z__@+
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1.6.4.3 Volume Function Equation

In the simulation of the filling process during casting, the solution algorithm—volume of fluid
(SOLA-VOF) method has been developed to determine the position of the free surface [52-57].
It describes the whole flow domain by volume function F, which is defined as

F = The volume of flow in an element/element volume

Hence, solving the volume function equation, which can be expressed as follows, provides the state
of each element.

ot Ox dy 0z

OF N O(Fu) N O(Fv) N OFw) _ 0 (1.168)

The value of volume function ranges from O to 1. When it equals zero, the element is empty without
flow; when it equals unit, the element is full; In other cases, namely, 0 < F < 1, it means that the
element is a surface element, which has flow inside but not fully filled.

Hence, only when the value of volume function has been calculated for each element can the
filling and flowing state be obtained for the cast parts at any time.

1.6.5 NUMERICAL SOLUTION OF GOVERNING PDEs

The governing PDEs discussed above are applicable to flow and heat transfer processes of all the
Newtonian fluid, and the difference between different processes is prescribed by the initial and
boundary conditions (generally called monodromy conditions). The combination of governing
PDEs and corresponding initial and boundary conditions constitutes the complete mathematical
formulation of a physical process.

The initial conditions refer to the spatial distribution of the solving variables at the starting
moment of the analysis, and they need to be set initially. However, it is not necessary for the steady
problem. The boundary conditions are the evolution of the solving variables or their first derivatives
around the domain boundary with the time and position.

Usually, the governing PDEs can be divided into three classes, hyperbolic, parabolic, and
elliptic. If PDEs in the whole solving domain belong to the same class, the physical problem can
be called after the class of the PDE. Some physical problems, in which there are different classes of
PDE:s in one solving domain, are the so-called hybrid problems. The main difference in different
PDE classes lies on their domain of dependence and domain of influence, which affect their solving
methods and strategies in turn.

For the PDEs mentioned here, describing the fluid flow and heat transfer, many mathematical
methods have been developed to obtain the analytical solution, which are continuous on the whole
solving domain. Up to now, these analytical solutions are subjected only to a few simple cases. The
numerical methods have been applied more and more in mass flow and heat transfer problems of
practical engineering significance.

The fundamental idea of CFD is first, to replace the field of certain physical variables (velocity
field, temperature field, etc.) that are continuous in the spatial and time coordinates with
the collection of the values on a series of finite discretized points (nodes); then, to establish the
algebraic equation (discretization equation) reflecting the relationship of the values on these
discretized nodes based on certain principles; finally, to solve the established algebraic equation
to obtain the approximation value of the solving variables. The corresponding flow chart is shown in
Figure 1.14.

In the past several decades, many numerical methods have been developed, and their main
differences lie in their discretization method of domains and equations, and the algorithm of solving
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FIGURE 1.14 Flow chart of numerical solving for physical problems.

the algebraic equations. The frequently used methods in CFD are FDM, FEM, finite-volume method
(FVM), and finite-analytic method (FAM). The FDM and FEM have been introduced in the
previous parts of this chapter; while the FVM and FAM will not be expanded due to space limit;
the related studies [58—63] can be referred. In general sense, FVM has obvious superiority over
other methods in CFD through the comprehensive evaluation from the view of the ease of
implementation, the maturity of development and application, etc.
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2.1 INTRODUCTION

Each milestone in the human history is marked by the development of an ability to produce and
manipulate a new material to meet human needs. A wide range of metals and metallic alloys play a
key role in our industrialized society. Their importance to our life can be seen from their extensive
use in household appliances, ground transportation, power generation/conversion, aerospace, elec-
tronics and communication, biological systems, and other applications. Examples of their use are
carbon and alloy steels in numerous engineering structures, aluminum alloys in aircraft structures,
titanium alloy in the compressor sections of aircraft turbine engines, titanium—aluminum—vanadium
alloy used in human orthopedic implants and heart valves, nickel alloys in the combustor sections of
aircraft engines, magnesium alloys in space vehicle and satellite components, magnesium alloys for
laptop casings, zirconium alloys in nuclear reactor fuel elements, neodymium—iron—boron in high-
energy density magnets used in a wide range of high-technology products, and so on. Production of
components made of these materials involves various thermal-processing steps. The required
properties for each of the applications are obtained through a judicious choice of the principal
metallic element, alloying elements, control of the microstructure and thermal or heat treatments.
An in-depth understanding of how desirable microstructures in these alloys are obtained through the
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