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The Action Principle and 
Partial Differential Equations





General Introduction

The principle of stationary action, in the form in which it arose in classical 
mechanics in the work of Lagrange, led to the discovery of symplectic geom­
etry and the development of Hamiltonian methods which are indispensable 
in the study of the equations of motion.

In classical mechanics the domain of the unknowns is the real line of 
time, the action is a single integral and the Euler-Lagrange equations are 
ordinary differential equations. The principle of stationary action was sub­
sequently generalized to the case that the domain of the unknowns, the 
manifold of independent variables, is multi-dimensional, the action is a 
multiple integral, and the Euler-Lagrange equations are partial differential 
equations.

This generalization originates in Lagrange’s derivation of the partial 
differential equation which a function of two variables must satisfy so that 
its graph is a surface of least area in Euclidean space. Dirichlet’s principle 
provided a simpler example of an action as a multiple integral, which stim­
ulated the development of direct methods of the calculus of variations for 
several independent variables, beginning with the work of Hilbert [Hil]. 
This development led to the solution of the problem of surfaces of least 
area by Douglas [Dou] and Rado [R].

In the mean time Hilbert had extended the principle of stationary ac­
tion to the case that the domain manifold is the four dimensional manifold 
of space-time and derived from a particular form of this principle Maxwell’s 
equations for the electromagnetic field. Hilbert’s work in this direction cul­
minated with his discovery of the action principle which governs the geom-
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etry of the space-time manifold itself [Hi2], leading to Einstein’s equations 
of general relativity. The general form of the stationary action principle as 
envisioned by Hilbert, is at the present time a central unifying theme in 
theoretical physics.

Now, a great deal of deep work has been done in the calculus of vari­
ations in the case that the Euler-Lagrange equations are of elliptic type, 
in developing direct methods and in working out the regularity theory of 
solutions. Among the milestones in this development are Morrey’s solution 
of the harmonic map problem from the unit disc to a Riemannian manifold 
[Ml], the first variational problem to be solved where the Euler-Lagrange 
equations constitute a non-linear system of partial differential equations, 
leading him directly to the solution of the problem of surfaces of least area 
in a Riemannian manifold. Also, the breakthrough in the regularity the­
ory of more than two independent variables by De Giorgi [DeG] and Nash 
[Na], in the case of a single unknown function, which led, in particular, to 
the solution of the problem of hypersurfaces of minimal volume in higher 
dimensional spaces.

However, despite the remarkable progress, just outlined, in the elliptic 
case, the aspects of the action principle which are relevant to the case where 
the Euler-Lagrange equations are of hyperbolic type, the case occuring in 
physics, have been left largely undeveloped, with the notable exception of 
the principle connecting symmetries to conserved quantities propounded 
by Noether [No]. The purpose of the present book is to contribute toward 
remedying this situation. Thus our aim is to introduce concepts and prove 
theorems which will be found useful in developing the theory of non-linear 
systems of hyperbolic type. For this reason we have completely left out all 
subject matter which pertains exclusively to the elliptic case. Nevertheless, 
since there is a number of concepts and theorems of a general nature, which 
apply equally well to the elliptic and hyperbolic cases in particular, we 
expound these in the first four chapters of the book.

After the introductory first chapter, the main developments expounded 
in this book are the following. First, in Chapter 2, symplectic geometry 
in the case of a multi-dimensional domain manifold is explored. In anal­
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ogy with classical hydrodynamics, a theory of flows is developed. A flow 
corresponds to an n-parameter family of solutions of the Euler-Lagrange 
equations (n is the number of dependent variables), and the theory is an 
extension of the Hamilton-Jacobi theory of classical mechanics. In Chap­
ter 3, a general theory of integral identities is developed, the theory of 
compatible currents, which extends the work of Noether. Whereas other 
methods, such as the maximum principle, are avaivalble for the treatment 
of elliptic equations, integral identities provide the only known general ba­
sis for approaching hyperbolic equations. In the development of the theory 
of compatible currents the great gulf between the case of two independent 
variables and the case of more than two independent variables becomes 
apparent. Chapter 4 deals with the case that the unknown is a section 
of a vector bundle over the domain manifold, rather than a mapping of 
the domain manifold into a target manifold. This is necessary for the de­
velopments of the last two chapters. Chapter 5 begins with our notion of 
hyperbolicity, which represents a significant departure from notions in the 
existing literature and suggests new methods for the solution of problems. 
We show how the new notion overcomes the difficulties associated with sin­
gularities of the characteristic variety. The causal structure on the domain 
manifold defined by a hyperbolic Lagrangian is then studied and the do­
main of dependence property of solutions is established. As is usual in this 
subject, the methods of the domain of dependence theorem lead readily 
to a local existence theorem, for given initial data. The results apply in 
particular to the theory of non-linear elasticity. We should note here that 
Leray’s pioneering theory of strictly hyperbolic systems [L] is applicable to 
non-linear elasticity only under certain restrictions. In fact, Fritz John has 
found a physical example [J] to which Leray’s theory does not apply. More­
over, Tahvildar-Zadeh has recently shown [T-Z] that Fritz John’s example 
is stable within the framework of non-linear elasticity, thereby reinforcing 
its importance. In contrast to Leray’s theory, our results apply without 
restrictions to the general framework of the theory of elasticity.

Finally, the last chapter deals with electromagnetic theory, the electro­
dynamics of a general non-linear continuous medium. Although electro­
magnetic theory may be considered to be a theory of sections of the cotan­
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gent bundle of the domain manifold, it cannot be reduced to the general 
theory of sections of vector bundles, for then the Legendre transformation 
which takes us from the Lagrangian to the Hamiltonian picture would be 
singular. This is a direct consequence of the requirement of gauge invari­
ance and requires a reworking of all constructions. We have thus devoted 
a separate chapter to this theory, in view also of its physical significance. 
We establish results analogous to those of Chapters 3 and 5 (including the 
domain of dependence theorem) in the framework of non-linear electro­
dynamics. The results in this chapter are the first general results in this 
framework going beyond the linear approximation.



Chapter 1

1.0 Introduction

In this chapter we begin with the basic concepts of the calculus of varia­
tions in several independent variables, the central theme being the principle 
of stationary action. The independent variables constitute an m  dimen­
sional manifold M ,  the domain of the dependent variables. The latter 
take values in a n dimensional target manifold TV. The action is a m 
fold integral over a domain T> with compact closure in M .  The subject 
matter of the first section is thus entirely classical. Our presentation is 
however from the global perspective, with the intention of making explicit 
the geometric structures which need to be introduced at each step and dis­
tinguishing those constructs which turn out to be independent of specific 
choices of such structures. The second section presents the transition from 
the Lagrangian to the Hamiltonian picture from the same perspective. The 
Hamiltonian picture in the case of several independent variables originates 
in the work of De Donder [DeD], and is much less widely known than the 
Lagrangian picture, in contrast to the case of a single independent variable. 
Lastly, the third section is devoted to examples. The first two are from 
classical differential geometry: harmonic maps and minimal surfaces. We 
then present a novel formulation of relativistic continuum mechanics, to 
which the last two examples belong: fluid dynamics and the dynamics of 
crystalline solids. The latter is treated in the framework of our recently 
developed continuum theory of dislocations ([Ch]).
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1.1 The Lagrangian Picture

Let M  and M  be differentiable manifolds, dim M  = m, dim M  — n, and let 
M  be oriented. We shall study Lagrangian theories of maps u : M  —* Af. 
The configuration space is the product

C — M  x M  (dimC — m + n) (1.1)

The velocity space is the bundle:

V -  [J C(TxM ,T qAf) (dimV — m + n + mn) (1.2)
(x,q)&r

In general, if U and V  are vector spaces we denote by C(U, V ) the space 
of linear maps of U into V. An element v of V is called canonical velocity. 
Letting 7iv,c be the projection V onto C,

nvp • V —► C
v e C(TXM ,T qU )  i ► (x , g )eC

(V, 7Tv,c) is a vector bundle over C. Also, letting 7tv,m and 7ryx  be the 
projections of V onto M  and Af, ttv,m (v) and ttvx(v) being respectively 
the 1st and 2nd components of flv,c(v)> 0A7I'v,.m) is a bundle over M. and 
(V, 7Tvx) is a bundle over Af.

In general, if M  and M  are differentiable manifolds, (B, is a vector 
bundle over N ,  and /  is a map of M  into Af, we denote by f*B the pullback 
bundle:

rn =  U W ^ X / W )  (i-3)
x€M

a vector bundle over M . We have:

7T/*b,m(z, b) = x ;be (1.4)



1.1. THE LAGRANGIAN PICTURE 9

Denoting by A^M. the vector bundle

Ak M =  |J Ak(TxM )  (1.5)
xeM

where /\k(TxM ) is the space of totally antisymmetric Minear forms on 
TXM ,  we consider the pullback bundle 7ty M A* M ,  a vector bundle over 
V.

An element of this bundle belonging to the fiber over v G V is an element 
of Afc(TxM ), where x  - 1tv,m(v) Is the corresponding base point in M .

The Lagrangian L is a differentiable section of the pullback bundle 
nv,M Am M .  If u : x  i-» u(x) is a map of M  into Af then a : x i-+ v(x) — 
du(x) is a section of (V, 7tv,m ) and L o a is an exterior differential form of 
the top degree, m, on M .  Thus L o a can be integrated on any open set
V  with compact closure in M  and the integral

fc>[u;P] =  f  Locr (1.6)J v

is the action o f u i n V .

The C-vertical derivative of L at v € V, 7ry,c(v) =  (x, q), is the element 
(idL/dv)(v) of

C(C(TXM , TqAf), Am(TxM))

defined by:

( § ^ ) ( v ) - v  =  lim j{L(v + tv )-L {v )}

: W e tt^ (x , q) -  C(TXM , TqAf) (1.7)

Now C(TqAf, Am-i(TxM))  is canonically isomorphic to C(C(TXM , TqAf), 
Am(TxM)); the isomorphism i takes a  to ia, where
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(ia) ■ v — v A a : W e C(TXM , TqM) (1.8)

with v A a  € Am(TxM )  given by:

m
(v A a)(X x, . . . , X m) =

VXl t . . . , X m e T xM  (1.9)

We can thus identify (dL/dv)(v) with an element of C(TqAf, Am-i(TXM)). 
Let us define the vector bundles over C.

A k / { M , A T )  =  U  C { A k { T x M ) ,  A e ( T qA f ) )

(x,q)€C

=  U  C ( r f ( T t A f ) , A k { T x M ) )  (1.10)
(x,q)€C

(In general, if V is a vector space we denote by Afc(V̂ ) the totally anti­
symmetric fc-fold tensor product of V with itself). Then dL/dv can be 
identified with a section of the pullback bundle iry C Am_i,i We
define the canonical momentum to be the section:

' = §  <L11>

Next, we shall define the //-horizontal derivative of L. To do this re­
quires the choice of a connection A in T AT. We require A to be symmetric. 
Thus, if D is the associated covariant derivative and Y, Z  are vectorfields 
on Af  then:

Dy Z - D zY  = [Y}Z\ (1.12)

Given a curve 7 : ( —1,1)—►A/’ inA/" through q, 7 (0) =  g, with tangent 
vector Q at g, 7 (0) — Q} we can then define a curve 7^  : (—1, 1) —► TM
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in TAf through Q' € TqAf, jj%r(Q) =  Q', the horizontal lift of 7  to TAf 
through Q'. We have: — T- The tangent vector 7^ ( 0) of this
curve at O' is the horizontal lift to TAf through Q’ E TqAf of the vector 
Q e TqAf and is denoted by Qtj^.

If Ma, a e  5ft, is the transformation of TAf given by:

Ma(Q) = aQ : VQ 6 TAf (1.13)

then we have:

Qtn  =  dMa • Q %  (1.14)

where dMa is the differential of the map Ma : TAf —► TAf.

If A is another symmetric connection in TAf, then the difference A —A  
corresponds to a tensorfield B  on Af, a section of the vector bundle

S£V = U  Sl{TqAf) (1.15)
q€.Af

over Af, where S\(TqAf) is the space of symmetric bilinear maps of TqAf into 
TqAf. Then Q %  -  Q%, the difference of the horizontal lifts of Q E TqM  
to TAf through O' € TqAf defined by the two connections is given by:

Q %  -  Q %  = -B(Q, O') € TqAf (1.16)

Let again 7 : (—1, 1) —>■ Af be a curve in Af through q, y(0) — q, with 
tangent vector Q at q, 7(0) =  Q. Given any v € V such that Tryx(v) — 
we can define a curve 7y : (—1, 1) —► V in V through v, 7y (0) =  v, by 
requiring that n y x  0 Tv =  T while ttv,m 0 Tv maps (—1,1) to the single 
point x — € and for each X  € TXM  the curve

7$ - X  : t e  ( - 1 ,1) ~  7tu(0 • X  e T<t)Af
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in TAf coincides with T -^ , the horizontal lift of 7 to TAf through v • X  6 
TqAf:

' $ - X  = - f t#  : VX € TXM  (1.17)

If we denote by Qy the tangent vector at v E V of the curve 7y in V, 
Qv — 7v (0); we have, according to the above,

C fv-X  = : VX € TXM  (1.18)

The vector Qy E TvV is the horizontal lift to V through v  of the vector 
Q e  TqAf. If A  is another symmetric connection in TAf then by 1.16 the 
difference of the horizontal lifts of Q to V defined by the two connections 
is:

< $ - < $  = -B{Q,v)  (1.19)

a C-vertical vector at v. Here B(Q, v) E C(TxAi, TqAf) is defined by:

B(Q,v) • X  = B{Qyv- X )  : VX e TXM

We define the A^-horizontal derivative of L at v relative to the connec­
tion A  to be the element DL(v) of C(TqAf, Am(TxM)), (x, q) — 7rv,c(v), 
defined by:

(DL)(v) - Q = ( ^  L (4 v(t))] : VQ € TqAf (1.20)

where 7 is any curve in Af through q with tangent vector Q at q, 7 (0) =  Q. 
Denoting by 6L the M-vertical differential of L, that is the restriction of 
the differential of L to vectors tangent to the fibers {7Ty^((x) : x E M },  
we can write:
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( I ^ C * ) ) )  = S L -< $  (1-21)

Thus,

(DL)(v) - Q — 8L- Qy : VQ e  TqAf, q =  ttvX (v) (1.22)

The ^/’-horizontal derivative DL of L, defined by a given connection A  in 
TAf, is a section of the pullback bundle iry>c Am,i (M,Af). We define the 
canonical force to be the section:

f  — DL (1.23).

By 1.19, the difference of the AA-horizontal derivatives of L defined by the 
connections A  and A  is:

(DL -  DL)(v) ■ Q = -  ( ^ )  (v) ■ B(Q, v)

Thus, in view of 1.11 the difference of the canonical forces is given by:

( /  -  f)(v) ■ Q = ~p(v) ■ B(Q, v) (1.24)

Given a mapping u : M  —► Af, the connection A  in TAf induces a 
connection u*A in the pullback bundle

u*TAf — Cu (1.25)

a vector bundle over Ad, as follows. A curve k* in u*TAf is a mapping of 
the form:

k* : ( - 1, 1) -► u*TAf, 
1 i-> (c(t), k(t)) (1.26)
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where c : (—1, 1) —► M  is a curve in M  and k : (—1, 1) —+ TAf is a curve 
in TAf projecting to the curve u o c : (—1, 1) —>■ Af in Af. We say that 
k* is a horizontal curve in u*TAf if and only if At is a horizontal curve in 
TAf. The tangent vector k*(0) to the curve k* at the point k* (0) is then 
the horizontal lift to u*TAf through k*(0) of the tangent vector c(0) to the 
curve c at c(0):

k*(0) =  c ( 0 ) S  (1.27)

and we have:

F (0) =  (c(0), k(0)) (1.28)

with k(0) the horizontal lift to TAf through k(0) of the tangent vector to 
the curve u o c a t  (u o c)(0). Setting c(0) =  x 6 M ,c(0) — X  € TXAA, 
k(0) — Q e  Tu(xyAf, we can write:

=  (X, (du(x) • X )% )  (1.29)

On u*TAf we can define for each a £ 5ft, a transformation Ma of u*TAf, 
analogous to the transformation 1.13 of TAf, by:

Ma(x, Q) — (x, aQ) : Vx e M ,  VQ € Tu(x)Af (1.30)

and by 1.14 we have:

The connection u*A defines a covariant derivative D* of sections of 
u*TAf — Cu. If s is a section of Cu and c : (—1, 1) —► M  is a curve in Ai  
through x  with tangent vector X  at x, then s o c is a curve in u*TAf. The 
tangent vector to this curve at s(x) is ds(x)-X  where ds is the differential
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of s as a map of M. into Cu. The covariant derivative D*s(x) ■ X  of s at. x 
evaluated on X  € TXA4 is then defined to be the vertical part of the vector 
<fe(x) • X:

D*s(x)-X = d 8 ( x ) - X - X $ $ f  (1.32)

D*s itself is a section of the vector bundle:

u C{TXM ,T U(X)M) -  Vu C V (1.33)
x € M

If /  is a function on M  and s is a section of Cu, the section f s  of Cu is 
defined by:

(,fs)(x) = f(x)s(x) : Vx e M  (1-34)

From 1.31, 1.32 it follows that

D*(fs)(x)-X = dMf{xy(D*s(x)-X)+(df(xyX)s(x) :Vx e M ,V X  e TXM
(1.35)

The first term on the right can be written simply as f(x)(D*s(x) ■ X )  in
view of the fact that the vector D*s(x) • X  is vertical and the fibers of
u*TM have linear structure.

If A is another symmetric connection in TAf with the difference A —A 
corresponding to a tensor field B  on Af then from 1.29 and 1.16 we have, 
in reference to 1.32,

x l P M- X i l %  -  ( d u ( x ) - x t ^ - ( d u ( x ) - x p f

— —B(du(x) • X, s(x)) — —B(s(x), du(x)) • X,
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the last step by virtue of the symmetry of B. Hence, at each x e  M , 
the difference at x of the covariant derivatives of s defined by the two 
connections is given by:

The Euler-Lagrange equations for a mapping u : M  Af express the 
condition that for any domain V  with compact closure in M  the action S  
is stationary at u with respect to variations supported in any sub-domain
V  with compact closure in T>. Let {u* : t € (—1,1)} be a differentiable 
family of maps M  into Af,uo — u, agreeing in M \V .  Then for each 
x e M ,  7x : t —i► Ut{x) is a curve in Af through u(x). Let u{x) be the 
tangent vector of this curve at u(x), u(x) = 7X(0). Then u : x —> (x, ii(x)), 
the variation of the map u, is a section of the pullback bundle u*TAf — Cu.

Consider, for each x € M ,  the curve 6X : t  -+ d\tt(x). It is a curve in
V through cr(x) — du(x) which projects to the curve 7X in Af and to the 
single point x in M .  Its tangent vector <jx(0) at <r(x) can be expressed as 
the sum of a A^-horizontal vector u(x)y the horizontal lift of 7X(0) to V 
through a(x), and a C-vertical vector whidi we denote a(x):

Thus <7 is a section of the vector bundle Vu (see 1.33).

Let c be a curve in M  through x with tangent vector X  at x:

D*s(x) — D*s(x) =  B(s(x), du(x)) (1.36)

4 (0) =  u ( x p x) + &(x) (1.37)

c : ( - 1, 1) M , c(0) =  x, c(0) -  X

Consider the map:

h : (—1, l )2 —► Af

by:
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h(t, s) =  ik(c(s))

Let Y, Z  be the vectorfields:

defined along h((—1, l)2) C N .  We have:

K*l " * •([» • 1 ] )  = °

and:

(1.38)

(1.39)

(1.40)

Yh(t,s) =  «t(c(s)), Z t y j  = dut(c(s)) ■ c(s) (1.41)

Thus, considering the curves 11-» Zh(t,o), s i—>• Yh(o,») in Tftf, we have:

(DyZ)h(o,o) = vertical part of &(x) ■ X

(DzY)h(ofl) — vertical part of =  D*u(x) • X

Therefore, by the symmetry of the connection A, 1.12, and 1.40,

(&(x) -  D*u(x)) ■ X  = (Dy Z  -  DzY )h(m =  0

We conclude that:
& — D*ii (1.42)

In view of 1.37, 1.42 and the definitions 1.11, 1.23 we can express:



18 CHAPTER 1.

— f  {(focr) • u + D*u A (poa)} (1-43)Jv

Let r  be a section of the vector bundle Akj(M,Af) (see 1.10) considered 
as a bundle over M .  Let u : M  —► Af be the composition of r  with the 
projection of /\k,e(M,Af) to Af on the left. We can then define dr, the 
covariant exterior derivative of r, a section of the bundle /\k+is(AA,Af) 
over M ,  as follows. Given vectors Qi, ...,Qe  € Tu(x)Af we extend them 
to local sections si, . . . ,se  of u*TAf. Then r(-si,. . . ,  se) is a locally defined 
exterior differential form of degree k on M  and its exterior derivative is 
defined in the usual manner. We then set:

i
(<ir)(Q i, . . . ,Q e) = d(T(si} . . . , s e) ) - J 2  (D*Sj A t)(s1} .. .  < Sj > .. .  ,se)

3-1
(1.44)

Now 1.35 implies that the right hand side is a ^-linear form on the space of 
sections of u*TJ\T with linearity defined with respect to multiplication by 
the ring of functions on M  as in 1.34. It follows that the above definition 
is meaningful for it does not depend on the manner in which the vectors 
Qiy. . . ,  Qe are extended to local sections s±,. . . ,  se. In the case k =  m  — 
1, t  — 1 the formula 1.44 reduces to:

(dr)(Q) =  d(r(s)) — D*s A r  (1-45)

a formula which in particular applies to the section poa  of AO-

We can thus write:

D*u A(poa) = d((p o a)(u)) — (d(p o a))(u)

and since by Stokes’ theorem
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f v d((p o <r)(u)) = j j j p o  a){u) = 0,

in view of the fact that u vanishes in neighborhood of &D, 1.43 takes the 
form:

The requirement that, for any domain V  with compact closure in M , S  be 
stationary with respect to arbitrary variations u vanishing in a neighbor­
hood of &D then yields the Euler-Lagrange equation:

d{jp o a) = f  o a (1-47)

It follows from 1.36 and 1.45 that the difference at (x, Q) e u*TH of 
the covariant derivatives of p o a defined by the connections A  and A  is 
given by:

(d(po a) — d(po a)) ■ Q — — B(Q,v) A {poa) (1-48)

on the other hand, according to 1.24, the difference of the corresponding 
canonical forces is also given by:

(.f o a - f o a ) - Q  = -B (Q ,v )A (p o a ) (1.49)

We conclude that the Euler-Lagrange equation is independent of the par­
ticular choice of a symmetric connection in TAf.

1.2 The Hamiltonian Picture

We now consider the relationship between the canonical velocity v and the 
canonical momentum p. As we have seen, p is a section of the pullback 
bundle ny c'P where V  is the bundle
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P  =  Aro_i ,i{M,Af) (2.1)

which we call phase space. According to our definition 1.11, p is the re­
striction of the differential of L to the fibers of V over C. At each (x, q) EC 
this relation constitutes a nonlinear mapping of

nvfifa ? )=  £(TxM , TqAf)

into

?) -  C(Am- \ T xM), Tq*Af) = C{TqH, Am-i(TxM ))

These two vector spaces axe isomorphic. For, upon choosing a volume form 
e on M ,  to each p E £(Am_1(7,xM ), T*Af) we can associate

p* E C(TXM ,T ;N )  =  C(TqAf,TxM ) = (C(TxM ,T qAf))*

by:

p(^1,. . . ,^m-i).-Q - e(p*(Q),Xi,. .. tX , ^ i )
: VX1, . . . , X m- i E T xM ,V Q E T qAf (2.2)

The linear mapping p’ w p  given by 2.2 is an isomorphism of (C(TXM , 
TqAf))* onto £(Am- 1(rxM ), T*Af). Since C(TXM , TqAf) is isomorphic with 
its dual, it follows that the vector spaces q) and n‘̂ ( x ,  q) are like­
wise isomorphic. In particular,

dim'P -  dim V =  m + n +  mn

We now introduce the hypothesis that for each (x, q) EC the non-linear 
mapping of 7Ty^(x,g) into 7Tpc(x, q) defined by 1.11 is a diffeomorphism
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of 7iyp(x,q) onto npfi(x,q). This hypothesis allows us to pass from the 
Lagrangian to the Hamiltonian theory. Denoting by 7PptM the projection 
of V  to M ,  we define the Hamiltonian H  to be the differentiable section 
of the pullback bundle Am M  given by:

H(j>) — v A p — L(v) (2.3)

with p and v related according to 1.11:

(2-4)

We shall refer to 2.3, 2.4 as the Legendre transformation, for, in the case 
m — 1 it reduces to the Legendre transformation of classical mechanics.

The C-vertical derivative of H  at p € V, irp,c(p) = ix , q) is the element 
(dH/dp)(p) of

C(C(Am- \ T xM), T*qAf), Am(TxM))

defined by:

=  Jim j { H (p  + tp )-H (p )}

: VpeC{Am- 1{TxM),T;Af) (2.5)

Now C(TxM,TqAT) is canonically isomorphic to £(C(Am~1(TxM),T*J\f),
Am(TxM)); the isomorphism j  takes (J to j  • /?, where

( j 'P ) ’P = @A P
: VpEC(Am- \ T xM),T;M)  (2.6)

(see 1.9). We can thus identify (dH/dp)(jp) with an element of C(TXM , TqJ\f). 
This element is in fact v. For, according to 2.3 we have:
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and by 2.4 and the isomorphism i of 1.8,

dL ^ d L  
dp dv

Hence:

(2.7)

which according to the isomorphism j  of 2.6 means:

We note that in the Lagrangian picture v is an element of V and p is 
a section of the pullback bundle while in the Hamiltonian picture p
is an element of V  and v is a section of the pullback bundle 7i‘ptCV.

To a section of a of (V, 1tv,m) which is a solution of the Euler-Langrange 
equation 1.47 there corresponds, through the Legendre transformation 2.3,
2.4 a section r  of which is a solution of the canonical equa­
tions. The first canonical equation corresponds to the condition that if

then (J — du. That is:

d u ~ v  or (2.9)

where now v is the section of the pullback bundle 7TpfiV, defined by the 
Hamiltonian according to 2.8. The second equation corresponds to the 
Euler-Lagrange equation. Since p o a — r, the left hand side of 1.47
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is simply dr, the covariant derivative of the section r  of (V, with
respect to a symmetric connection A  in TAf as defined by 1.45. To express 
the right hand side of 1.47 in terms of the Hamiltonian, we consider the 
A/’-horizontal derivative of H.

Given a curve 7 : (—1, 1) —► Af in Af through q, 7 (0) =  q, with tangent 
vector Q at q, 7 (0) — Q, and given any p € V  such that n-pxip) =  Q> 
we define a curve 7p : (—1,1) —* V  in V  through p, tSp(O) =  p, the 
horizontal lift of 7 to V  through p, by requiring that np ̂  o 7^  =  7 while 
irptM ° l r  maps (—1,1) to the single point x = tt-p,m(p) G AA, and for each 
X l, . . . ,  X m-i  G TXM  the curve

Ip  Xm_ i ) : t € (-1 ,1) ^  7p(0 X m-i)  € T fa t f

coincides with the horizontal lift of 7  to T*Af through

P • (Xi,. . . ,  X m-i)  G T£Af

We recall here that 7 "̂ the horizontal lift of 7 to T*Af through a  e T*Af 
is defined by the condition that VQ € TqAf}

7$ x ( t ) - l$ r ( t )  = cc-Q : W € ( - l , l )

where 7^  is the horizontal lift of 7 to TAf through Q 6 TqAf. If we denote 
by Qp the tangent vector at p e  V  of the curve jp  in V, 7p (0), we then 
have:

Q $P ( V  V  \p ' • • • J Am—1) — Wt*AT
: V(Xi,. . . ,  Xm_i) € TXM  (2.10)

where — 7t“aK0) is the horizontal lift to T*Af through a  e  T*Af of 
the vector Q — 7 (0) € TqAf.
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We define the A/’-horizontal derivative of H at p relative to the connec­
tion A to be the element (DH)(p) of £(TqAf, Am(TxAi)), (x , q) = nptc(p), 
defined by:

(DH) (p)-Q — :V Q eT qAf (2.11)

where 7 is any curve in Af through q with tangent vector Q at q, 7 (0) =  Q. 
Denoting by SH the M-vertical differential of H , that is the restriction of 
the differential of H  to vectors tangent to the fibers '• x € M },
we can write:

^ (t£ (* ))) =  5H ’ Qr (2-12)

Thus, DH  is the section of the pullback bundle tfp>M Am>i (M, Af) given 
by:

(DH) (p) • Q = SH • Qp : VQ e  TqAf, q =  nv x (j>) (2.13)

If A is another symmetric connection in TAf, with the difference A —A  
corresponding to a tensorfield B  on Af, a section of S%Af, then QrW — 
Q j L the difference of the horizontal lifts of Q € TqAf to T*Af through 
a  € T*Af defined by the two connections is given by:

<$*jS-($*« = <x-B(Q,-) (2.14)

The difference of the corresponding horizontal lifts of Q to V  through p is, 
therefore,

$ - < $  = P-B(Q,-) (2.15)

where

p ■ B(Q, ■) e C(Am~ \T xM), TjAf)


