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PREFACE

This booklet reproduces with slight changes a
course of lectures delivered in Princeton during the
Spring term 1946. It would be misleading to call it a
theory of transcendental numbers, our knowledge con-
cerning transcendental numbers being narrowly restricted.
The text deals with a few special transcendency problems
of some interest, but it is more than a mere collection
of scattered examples, since it involves a method which
‘might be useful in the search of more general results.

Carl Ludwig Siegel.

April, 19k9
Princeton, New Jersey.
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CHAPTER I
THE EXPONENTIAL FUNCTION

The most widely known result on transcendental
numbers 1s the transcendency of = proved by Lindemann
in 1882. His method 1s based on Hermite's previous work
who discovered the transcendency of e in 1873. Both
results are contained in the general Lindemann-
Welerstrass theorem which will be proved in §12. We
shall start with some simpler problems, namely the
irrationality of e and # and related questions.

§1. The irrationality of e
The usual proof of the irrationality of e runs as
follows. From the series

2 =
e =8 + I S = — r = =
n n’ n = k!’ N e k!
(n=1,2 )
Since
r, (1 + —l—-+ — 4 )<
(n+1)' n+2 (n+2)(n+3) (n+1)' 4



2 1. THE EXPONENTIAL FUNCTION
we find that

1

- e-1 .
e_ST+P1<2+ 5 e < 3;
therefore
2
O<I’n<(n+1)!'
Put
1 P 1 —_
n!s, =a, n! r = bn’

then the number a, is integral and

O<b <n+1<

forn=1,2,.... This proves that n! e = a, + bn and,
a fortiori,n e 1is never an integer. In other words, e
is irrational.

The proof is still simpler, if we use the series
for e instead of e. Then

n k x® _ k
-1_ . 3 (-1) - (=1)
e —-Un+pn,0'n—-k=zo Kt y pn 1% k!
(n=1,2,...)
and
JPRRS o TR - 1 _ 1 1
0 (=) ey T T T @yt t oot S et
Defining
nte =a,, nte, =f,

we see that a, is integral and



§1. THE IRRATIONALITY OF e. 3
_ o+ 1

-1 . -1,
Therefore nle =a, +8, and,a fortiori,n e ' is never

an integer.

We can prove a little more, namely that e is rot
the root of a quadratic equationax2 + bx + ¢ = 0 with
integral a, b, ¢, not all 0. Consider the expression

E_ =n! (ae + ce )

n

with integral a and c, not both 0. Then

B, =S, + Rys Sy =88y + 0y, Ry =aby+ chy,

where Sn is integral and the absolute value

n+1 ’

| R, 1< I ab |+ lob | ¢ 2laltlel
o that

'Ry 1 <1

for all n > 2lal+lcl. On the other hand we have the

recursion formula

R, - Ry

a(nb,_, - b )+ c(nB a1 " B n)

a + (-1)nc.

It follows that at least one of the three numbers

Rn—1’ Rn, Rn+1 is different from 0, since otherwise
a+c=0, a-c=0 and a=0, c¢c=0. This shows the existence of
a positive integer v such that E, is not integral, and
therefore the number



