TRANSCENDENTAL NUMBERS

By Carl Ludwig Siegel

ANNALS OF MATHEMATICS STUDIES NUMBER 16

ANNALS OF MATHEMATICS STUDIES

Edited by Emil Artin and Marston Morse

- 1. Algebraic Theory of Numbers, by HERMANN WEYL
- 3. Consistency of the Continuum Hypothesis, by Kurt Gödel
- 6. The Calculi of Lambda-Conversion, by Alonzo Church
- 7. Finite Dimensional Vector Spaces, by PAUL R. HALMOS
- 10. Topics in Topology, by Solomon Lefschetz
- 11. Introduction to Nonlinear Mechanics, by N. KRYLOFF and N. BOGOLIUBOFF
- 14. Lectures on Differential Equations, by Solomon Lefschetz
- Topological Methods in the Theory of Functions of a Complex Variable, by Marston Morse
- 16. Transcendental Numbers, by CARL LUDWIG SIEGEL
- 17. Problème Général de la Stabilité du Mouvement, by M. A. LIAPOUNOFF
- 19. Fourier Transforms, by S. Bochner and K. Chandrasekharan
- Contributions to the Theory of Nonlinear Oscillations, Vol. I, edited by S. Lefschetz
- 21. Functional Operators, Vol. I, by John von Neumann
- 22. Functional Operators, Vol. II, by John von Neumann
- 23. Existence Theorems in Partial Differential Equations, by Dorothy L Bernstein
- 24. Contributions to the Theory of Games, Vol. I, edited by H. W. Kuhn and A. W. Tucker
- Contributions to Fourier Analysis, by A. Zygmund, W. Transue, M. Morse,
 A. P. Calderon, and S. Bochner
- 26. A Theory of Cross-Spaces, by Robert Schatten
- 27. Isoperimetric Inequalities in Mathematical Physics, by G. Polya and G. Szego
- 28. Contributions to the Theory of Games, Vol. II, edited by H. Kuhn and A. W. Tucker
- Contributions to the Theory of Nonlinear Oscillations, Vol. II, edited by S. Lefschetz
- 30. Contributions to the Theory of Riemann Surfaces, edited by L. Ahlfors et al.

TRANSCENDENTAL NUMBERS

By Carl Ludwig Siegel

PRINCETON
PRINCETON UNIVERSITY PRESS
1949

COPYRIGHT 1949, BY PRINCETON UNIVERSITY PRESS LONDON: GEOFFREY CUMBERLEGE, OXFORD UNIVERSITY PRESS

PRINTED IN THE UNITED STATES OF AMERICA

PREFACE

This booklet reproduces with slight changes a course of lectures delivered in Princeton during the Spring term 1946. It would be misleading to call it a theory of transcendental numbers, our knowledge concerning transcendental numbers being narrowly restricted. The text deals with a few special transcendency problems of some interest, but it is more than a mere collection of scattered examples, since it involves a method which might be useful in the search of more general results.

Carl Ludwig Siegel.

April, 1949
Princeton, New Jersey.

CONTENTS

Preface		V
CHAPTER	I. THE EXPONENTIAL FUNCTION	1
§1.		1
§2.	The operator f(D)	
	Approximation to e^{X} by rational functions	
	The irrationality of ea for rational a #0	
	-	9
		10
	$\rho_{\star}X$ $\rho_{\star}X$	
		12
	• •	16
§9.	K. ,	16
§10.	The transcendency of ea for real	
	,	17
	**	18
	•	20
	•	24
§14.	The interpolation formula	27
§ 15.	Concluding remarks	30
CHAPTER	II. SOLUTIONS OF LINEAR DIFFERENTIAL	
OHATTEM		31
£ 1		ر 33
		ر 35
•		フラ 38
		40
		40
§ 5.	The coefficient matrix of the	<u>)</u> 4
	approximation forms	44

viii	CONTENT
ATTT	CONTENT

§ 6.	Estimation of R_k and P_{k1}	4-
	The rank of $E_1(\alpha), \ldots, E_m(\alpha)$	49
	Algebraic independence	52
§ 9.	Hypergeometric E-functions	51
§10.	The Bessel differential equation	59
§11.	Determination of the exceptional case	63
§12.	Algebraic relations involving different	
	Bessel functions	65
§13.	The normality condition for Bessel functions	68
§14.	Additional remarks	72
<u>CHAPTER</u>	III. THE TRANSCENDENCY OF a FOR IRRATIONAL	ī
	<u>ALGEBRAIC</u> b <u>AND</u> <u>ALGEBRAIC</u> a \neq 0, 1	75
	Schneider's proof	76
§ 2.	Gelfond's proof	80
§ 3.	Additional remarks	83
	IV. ELLIPTIC FUNCTIONS	85
§1.	Abelian differentials	85
§ 2.	Elliptic integrals	87
§3.	The approximation form	90
§4.	Conclusion of the proof	92
§ 5.	Some other results	95
Bibliog	<u>raphy</u>	1 0 1

CHAPTER I

THE EXPONENTIAL FUNCTION

The most widely known result on transcendental numbers is the transcendency of π proved by Lindemann in 1882. His method is based on Hermite's previous work who discovered the transcendency of e in 1873. Both results are contained in the general Lindemann-Weierstrass theorem which will be proved in §12. We shall start with some simpler problems, namely the irrationality of e and π and related questions.

§1. The irrationality of e

The usual proof of the irrationality of e runs as follows. From the series

$$e = \sum_{k=0}^{\infty} \frac{1}{k!}$$

we get the decomposition

$$e = s_n + r_n$$
, $s_n = \sum_{k=0}^{n} \frac{1}{k!}$, $r_n = \sum_{k=n+1}^{\infty} \frac{1}{k!}$
 $(n=1,2,...)$.

Since

$$r_n = \frac{1}{(n+1)!} (1 + \frac{1}{n+2} + \frac{1}{(n+2)(n+3)} + \dots) < \frac{e-1}{(n+1)!}$$

we find that

$$e = S_1 + r_1 < 2 + \frac{e-1}{2}, e < 3;$$

therefore

$$0 < r_n < \frac{2}{(n+1)!}$$

Put

$$n! s_n = a_n, \quad n! r_n = b_n,$$

then the number an is integral and

$$0 < b_n < \frac{2}{n+1} \le 1$$

for $n = 1, 2, \ldots$ This proves that $n! e = a_n + b_n$ and, a fortiori, n e is never an integer. In other words, e is irrational.

The proof is still simpler, if we use the series for e^{-1} instead of e . Then

$$e^{-1} = \sigma_n + \rho_n$$
, $\sigma_n = \sum_{k=0}^{n} \frac{(-1)^k}{k!}$, $\rho_n = \sum_{k=n+1}^{\infty} \frac{(-1)^k}{k!}$

and

$$0 < (-1)^{n+1} \rho_n = \frac{1}{(n+1)!} - \frac{1}{(n+2)!} + \dots < \frac{1}{(n+1)!}$$

Defining

$$n! \sigma_n = \alpha_n, \quad n! \rho_n = \beta_n$$

we see that α_n is integral and

3

$$0 \ \left< \ \left(\, ^{-1} \, \right)^{n+1} \beta_n \ \left< \, \frac{1}{n+1} \, \right< \, 1 \, .$$

Therefore $n!e^{-1} = \alpha_n + \beta_n$ and, a fortiori, n_ie^{-1} is never an integer.

We can prove a little more, namely that e is not the root of a quadratic equation $ax^2 + bx + c = 0$ with integral a, b, c, not all 0. Consider the expression

$$E_n = n! (ae + ce^{-1})$$

with integral a and c, not both 0. Then

$$\mathbf{E}_{\mathbf{n}} = \mathbf{S}_{\mathbf{n}} + \mathbf{R}_{\mathbf{n}}, \quad \mathbf{S}_{\mathbf{n}} = \mathbf{a}\mathbf{a}_{\mathbf{n}} + \mathbf{c}\alpha_{\mathbf{n}}, \quad \mathbf{R}_{\mathbf{n}} = \mathbf{a}\mathbf{b}_{\mathbf{n}} + \mathbf{c}\beta_{\mathbf{n}},$$

where S_n is integral and the absolute value

$$|R_n| \le |ab_n| + |c\beta_n| < \frac{2|a| + |c|}{n+1}$$

so that

$$|R_n| < 1$$

for all $n \ge 2|a|+|c|$. On the other hand we have the recursion formula

$$nR_{n-1} - R_n = a(nb_{n-1} - b_n) + c(n\beta_{n-1} - \beta_n)$$

= $a + (-1)^n c$.

It follows that at least one of the three numbers R_{n-1} , R_n , R_{n+1} is different from 0, since otherwise a+c=0, a-c=0 and a=0, c=0. This shows the existence of a positive integer ν such that E_{ν} is not integral, and therefore the number