TOPICS IN TOPOLOGY

SOLOMON LEFSCHETZ

ANNALS OF MATHEMATICS STUDIES
NUMBER 10

TOPICS IN TOPOLOGY

BY

SOLOMON LEFSCHETZ

PRINCETON PRINCETON UNIVERSITY PRESS
 LONDON : HUMPHREY MILFORD
 OXFORD UNIVERSITY PRESS
 1942

Copyright 1942
 Princeton University Press

Lithoprinted in U.S.A.
EDWARDS BROTHERS, INC.
ANN ARBOR, MICHIGAN
1942

The present monograph has been planned in such a way as to form a natural companion to the author's volume Algebraic Topology appearing at the same time in the Colloquium Series and herreafter referred to as AT. The topics dealt with have for common denominator the relations between polytopes and general topology. The first chapter takes up the relations between polytopes in general and the topologies which they may receive and in these questions we lean particularly heavily upon J. Tukey. The second chapter completes in certain important points the treatment of singular elements of AT. The third chapter deals with mappings of spaces on polytopes and certain related imbedding questions; it contains also a modern treatment of retraction for separable metric spaces. The last chapter is devoted to the group of questions centering around the general concept of local connectedness. Comparisons with retracts are considered at length, there is a full treatment of the homology and fixed point properties. The chapter concludes with an outline of the relations with "homology" local connectedness (the so-called HLC properties).

The general notations are those of AT. In addition to a short reference bibliography, a mere supplement to that of AT, there is also given a fairly comprehensive bibliography on locally connected spaces and retraction.

TABLE OF CONTENTS
Page
Chapter I. POLYTOPES 1
§1. Affine Simplexes and Complexes 1
§2. Geometric Complexes 9
§3. Comparison of the Topologies Associated with Affine Complexes 16
Chapter II. SINGULAR COMPLEXES 23
Chapter III. MAPPING AND IMBEDDING THEOREMS. RE- TRACTION 35
§1. Fundemental Mapping Theorem 35
§2. Application to Normal and Tychonoff Spaces 45
§3. Compact Imbedding of Separable Metric Spaces 49
§4. Topological Imbedding in Euclidean Spaces 53
§5. Retraction 58
Chapter IV. LOCAL CONNECTEDNESS AND REIATED TOPICS 75
§1. Localization 75
§2. Partial Realization of Complexes. Application to Local Connectedness 81
§3. Relations Between the LC Properties and Retraction 92
§4. Characterization of the LC Properties by Mappings of Continuous Complexes 98
§5. Homology Theory of LC Spaces 104
§6. Coincidences and Fixed Points 112
§7. HLC Spaces. Generalized Manifolds 122
Special Bibliography 127
General Bibliography 133
Index 136

Chapter I.
POLYTOPES
§1. AFFINE SIMPLEXES AND COMPLEXES

1. Affine Simplexes. In spite of the evident analogy with the treatment of Euclidean simplexes of (AT, III, VIII). it will be more convenient and also clearer to repeat the necessary introductory definitions and properties.

Our simplexes are considered here also as subsets of a real vector space \mathfrak{B} whose elements are to be called points.
(1.1) DEFINITION. Let $\sigma^{p}=a_{0} \ldots a_{p}$ be a p-simplex whose vertices are independent points of a real vector space p. By the affine p-sinplex associated with σ^{p} is meant the set, written $\sigma \underset{\mathrm{V}}{\mathrm{p}}$ given by (1.2) $x=x^{1} a_{1}$

$$
\begin{equation*}
p=0: x^{0}=1 \tag{1.5}
\end{equation*}
$$

$p>0: 0<x^{i}<1, \quad \sum x^{i}=1$.
The $x^{1 / s}$ are the barycentric coordinates of x. To the face $\sigma^{q}=a_{i} \quad \ldots a_{1_{q}}$ of σ^{p} there corresponds the set of points obtained by replacing $0<x_{1_{h}}$ by $0=x_{1_{h}}$ in (1.4); it is the σq_{v}^{q} associated with σ^{q} and is called a q-face of σ_{v}^{p}. We transfer to σ_{v}^{p} and to its faces the terminology previously adopted for σ^{p}. In particular we speak of the open or closed affine
simplex, the boundary $B \sigma_{v}^{p}$ etc. The set of all points in an element of $\mathcal{B} \sigma \underset{V}{p}$ or of $C l \sigma \underset{V}{p}$ is denoted by $\left|B \sigma_{V}^{P}\right|$ or $\left|C l \sigma_{V}^{p}\right|$.
(1.5) The open and the closed affine simflexes are convex.

Let $x^{\prime}, x^{\prime \prime} \in C l \sigma_{V}^{p}$. The segment $I=\overline{x^{\prime} x^{\prime T}}$ joining them consists of the points
(1.6) $x=t^{\prime} x^{\prime}+t^{\prime \prime} x^{\prime \prime}, 0 \leq t^{\prime}, t^{\prime \prime} \leq 1, t^{\prime}+t^{\prime \prime}=1$.

Hence if $x^{\prime}=x^{1} a_{1}, x^{\prime \prime}=x^{\prime \prime} a_{a_{1}}$ we have

$$
x=x^{2} a_{1}, y^{1}=t^{\prime} x^{\prime}+t^{\prime \prime} x^{\prime \prime}
$$

and we verify readily that $x \in\left|C l \sigma_{V}^{p}\right|$. Similarly for $\sigma \underset{v}{p}$.
(1.7) If $\sigma_{\mathrm{v}}^{\mathrm{p}}=\sigma_{\mathrm{v}}^{\prime} \sigma_{\mathrm{v}}^{\prime \prime} \quad$ (complementary
faces) there passes through each point $x a$ unique segment $\bar{x}^{\top} x^{\top T}$ with $x^{\prime} \in \sigma_{\alpha}^{\prime}, x^{\prime \prime} \in \sigma_{\alpha}^{\prime \prime}$.
(Same proof as for (AI,VIII,2.1).

$$
\begin{aligned}
& \text { 2. (2.1) DEFINITION. Let } S=\left\{\sigma_{v i}\right\} \text {, } \\
& S^{\prime}=\left\{\sigma_{V 1}^{\prime}\right\} \text { be two sets of affine simplexes, } \\
& \text { where the simplexes in each set are disjoint. } \\
& \text { We shall say that } S^{\prime} \text { is a simplicial parti- } \\
& \text { dion of } S \text { whenever each } \sigma_{V_{i}^{\prime}}^{\prime} \text { is in some } \sigma_{V j} \\
& \text { and each } \sigma_{V j} \text { is a union of } 8 \text { finite number } \\
& \text { of } \sigma_{V I}^{\prime} \cdot T h u s S^{\prime} \text { is a partition of } S \text { in } \\
& \text { the sense of (AT,IV,29). }
\end{aligned}
$$

(2.2) Let $S=\left\{\sigma_{v i} \mid\right.$ be a simplicial
partition of $B \sigma_{V}^{p}$ and δ_{p}^{p} any point of σ_{V}^{p}. Then: (a) if $\hat{\sigma}^{p}\left(\sigma_{v}^{p}, S^{\prime}=\left\{\hat{\sigma}^{p}, \quad \sigma^{p} \sigma_{v 1}\right\}\right.$ is a simplicial partition of σ_{V}^{p} (b) ir $\hat{\sigma}^{p} \in \sigma_{v i}, S^{\prime}=\left\{\hat{\sigma}^{p} \sigma_{v j} \mid j \neq 1\right\}$ has the same proparty.

Since (2.2) is trivial for $p=0$ we assume $p>0$. Suppose first $\hat{\sigma}^{p} \subset \sigma_{v}^{p}$ and let $x \neq \hat{\sigma}^{p}$. By (1.5) the segment $\hat{\sigma}^{p} x$ extended meets $\left|B \sigma_{V}^{p}\right|$ in a point x^{\prime} in some $\sigma_{v 1}$ and so $x \in \hat{\theta}^{p} \sigma_{V 1}$. Thus σ_{v}^{p} is the union of the elements of S^{\prime}. Since $\hat{\sigma}^{p}$ is in no $\hat{\sigma}^{p} \sigma_{v i}$ we only have to prove the disjunction property for a pair $\hat{\sigma}^{p_{G}}{ }_{v 1}, \hat{\sigma}^{p_{\sigma}}{ }_{v h}$, $1 \neq h$. Now if x is a point common to both, $\hat{\sigma}^{p} x$ extended will meet $B \sigma_{\mathrm{v}}^{\mathrm{p}}$ in a point common to $\sigma_{v_{1}}, \sigma_{\mathrm{vh}}$ and this is ruled out since S is a simplicial partition of $B \sigma_{v}^{p}$. The treatment of (b) is essentially similar.
(2.3) Let $\left.\mid \sigma_{v i}\right\}$ be the set of all the proper faces of σ_{V}^{p} and $\hat{\sigma}_{i}, \hat{\sigma}^{p}$ points on $\sigma_{v i}, \sigma_{v}^{p}$. Then the affine simplexes

$$
\text { (2.4) } \quad \zeta=\hat{\partial}_{1} \ldots \hat{\partial}_{j} \hat{\sigma}^{p}, \sigma_{v 1} \nprec \ldots \prec \sigma_{v j}
$$

make up a simplicial partition of σ_{v}^{p}.
This is trivial for $p=0$ so we assume it for dimensions $<\mathrm{p}$ and prove it for p . Under the hypothesis of the induction the collection of all the $\zeta_{0}^{\prime}=\hat{\sigma}_{1} \ldots \hat{o}_{j}$ $\sigma_{v i} \prec \cdots\left\langle\sigma_{v j}\right.$ terminating with $\hat{\sigma}_{j}$ is a simplicial partition of $\sigma_{v j}$. Since the $\sigma_{y j}$ are disjoint $\left\{\zeta^{\prime}\right\}$ is a simplicial partition of $B \sigma_{V}^{p}$, so that (2.3) follows now from (2.2).

The decomposition of ($\mathrm{Cl} \sigma_{\mathrm{v}}^{\mathrm{p}}$) by the simplexes (2.11) is its first derived ($C 1 \sigma_{\mathrm{v}}^{\mathrm{p}}$)'. Usually the centroid $\left(\frac{1}{p+1}, \ldots, \frac{1}{p+1}\right)$ is chosen as $\hat{\sigma}^{p}$ and similarly for the faces. The corresponding ($C l \sigma_{v}^{p}$)' is known as the barycentric first derived. We can treat similarly the simplexes of (Cl $\sigma_{\mathrm{v}}^{\mathrm{p}}$)', and obtain the successive derived or barycentric derived as the case may be. In general, unless otherwise stated, "derived" shall stand for "barycentric derived".
(24.5) The following designations will be found very convenient. The simplexes of $\left(\mathrm{Cl}_{\sigma} p_{\mathrm{y}}\right)^{(n)}$ will be designated by σ_{n} (we omit the subscript v). Since the σ_{n}
make up a dissection of $C l \sigma \underset{v}{p}$ every point x of the latter belongs to one and only one σ_{n} which will be denoted by $\sigma_{n}(x)$.
3. The vector space \mathbb{B} or its subspaces may be metrized in various weys. For our purpose it is sufficient to consider an Euclidean metric relative to a base $B=\left\{b_{1}\right\}$. If $x=x^{1} b_{1}, y=y^{1} b_{1}$ (finite sums) such a metric is defined by

$$
\begin{equation*}
d(x, y)=\left(\sum\left(x^{1}-y^{1}\right)^{2}\right)^{1 / 2} \tag{3.1}
\end{equation*}
$$

and it has a meaning for all (x, y). The simplexes of B are then Euclidean and may be written $\sigma^{\sigma^{p}}$ as in AT. The simplexes of the nth derived $\left(C l \sigma_{e}^{p}\right){ }^{\varphi}(n)$ have a maximum diameter: the mesh of the derived.

As a special case one may utilize the metric (3.1) attached to the subspace spanned by the vertices a_{1} of σ^{p} in D relative to the base $\left\{a_{1}\right\}$ for the subspace. We thus obtain a metric for σ^{p}, and in fact for $\left|C l \sigma_{v}^{p}\right|$, given by (3.1) where x^{1}, y^{1} are now the barycentric coordinates of x, y. This particular metric will be called the natural metric of σ_{v}^{p}. Notice that if $\sigma_{v}^{q} \prec \sigma_{v}^{p}$, the induced metric in $\sigma \underset{v}{q}$, is likewise its natural metric.
(3.1a) Remark. If no topology is specified for $\sigma \underset{v}{p}$ it will be understood that the set has been topologized by means of its natural metric. In point of fact the various topologies that may be specified in the sequel for σ_{V}^{p} will always be equivalent to the one induced by its general metric. This property is readily verified in each case and no further reference will be made to it later.
(3.2) The Euclidean p-simplex σ ${ }_{e}^{p}$ is a
p-cell; its boundary $B \sigma_{e}^{p}$ is $a_{1}(p-1)$-sphere and ${\underset{\sigma}{\theta}}_{p}^{p}$ is a p-dimensional parallelotope.

This is a consequence of (AI, $I, 12.9$) and the fact that $\left|C l \sigma_{v}^{p}\right|$ is a bounded convex subset of a Euclidean space ${ }_{c} \mathrm{p}$, the metrized subspace of the vertices.
(3.3) Let $\sigma_{e}^{p}=a_{o} \ldots a_{p}$, be a simplex in an Euclidean space \mathcal{C}^{n} and x any point of $\epsilon^{\text {¹ }}$. Then $d(x, y), ~ y \in \sigma_{\theta}^{p}$, does not exceed the maximum distance ρ from x to the vertices. (AT, VIII, 2.2).
(3.4) The dismeter of $\sigma \underset{e}{p}$ is the length of its longest edge (AT, VIII, 2.3).
(3.5) Mesh $(C l \sigma \underset{e}{p})^{\prime} \leq \frac{p}{p+1}$ diem σ_{e}^{p}. (AT, VIII, 2.4).
(3.6) If σ_{V}^{p} is assigned the natural metric then mesh $\left(C I \sigma_{\mathrm{v}}^{\mathrm{p}}\right)^{(\mathrm{n})} \leqq \sqrt{2}\left(\frac{\mathrm{p}}{\mathrm{p}+1}\right)^{\mathrm{n}}$, which $\rightarrow 0$ as $n \rightarrow \infty$.

For in the natural metric the edges of σ_{v}^{p} a.ll have the length $\sqrt{2}$ and so (3.6) is a consequence of (3.5).
> (3.7) If x, x are distinct points of $\sigma_{\mathrm{v}}^{\mathrm{p}}$ there is an n such that the simplexes $\sigma_{n}(x), \quad \sigma_{n}\left(x^{\prime}\right)$ containing x, x^{\prime} have no common vertices. (3.6).
(3.8) Let $\left\{\sigma_{n} \mid\right.$ be such that $\bar{\sigma}_{n+1} C \sigma_{n}$ (notations of 2.5). Then $\cap \bar{\sigma}_{n}=x$ a point of $\bar{\sigma}_{\mathbf{v}}^{\mathbf{p}}$.

In the natural metric $\bar{\sigma}_{\underset{\sigma}{p}}^{p}$ is a compactum and $\left\{\bar{\sigma}_{n}\right\}$ a collection of closed subsets with the finite intersection property. Hence $\cap \bar{\sigma}_{n} \nmid \phi$ and aince diam $\sigma_{n} \rightarrow 0$ the intersection is a point.
(3.9) Let $x \in \sigma_{v}^{q} \prec \sigma_{v}^{p}$. Then there exists an n such that $\sigma_{n}(x)$ has all its vertices in St σ_{v}^{q} (star in CI σ_{V}^{p}).

For diam $\sigma_{n}(x) \rightarrow 0$ and the distance from x to the set of simplexes not in St $\sigma_{\mathrm{v}}^{\mathrm{q}}$ is positive.
4. Affine complexes. Just as for simplexes it is convenient as well as clearer to separate the affine and other complexes. The affine complex serves to specify the point-set which under suitable topologies becomes a geometric or an Euclidean complex.
(4:1) DEFINITION, Let $K=\{\sigma\}$ be a simplicial complex and let $\left\{A_{1}\right\}$ be its vertices where \{1\} is any set whatever. Let $\left\{a_{1}\right\}$ be vectors of a real vector space with the following properties:
(4.2) $a_{1} \longleftrightarrow A_{1}$ is one-one;
(4.3) if $\sigma=A_{1} \ldots A_{j} \in K$ then a_{1}, \ldots, a_{j} are
independent, and so they are the vertices of an affine simplex denoted by σ_{v};
(4.4) $\sigma D \sigma^{\prime} \Longrightarrow \sigma_{v} \cap \sigma_{v}^{\prime}=\phi$.

If we trensfier to $\left\{\sigma_{v}\right\}$ the incidences "is a face of" prevailing in K, likewise the same incidence-numbers, it becomes a complex $K_{V} \cong K$, known as an affine simplicial complex. Its relation to K is also described by the statement: K_{V} is an affine realization of K. We also refer sometimes to K as an antecedent of K_{v}.

We transfer to K_{V} the full terminology attached to K .
Example. Clo ${ }_{V}^{p}, \mathcal{B} \sigma_{V}^{p}$ are affine realizations of $C l \sigma^{p}$, ${ }_{B \sigma}{ }^{p}$ and $\sigma \underset{v}{p}$ is an open subcomplex of $\mathrm{Cl} \sigma_{\mathrm{v}}^{\mathrm{p}}$.

The set of all the points of the simplexes of K_{v} is denoted by $\left|K_{V}\right|$.

It follows from the definition of K_{v} that every point $x \in\left|K_{V}\right|$ satisfies a relation
(4.5)
$x=x^{1} a_{1}$
where if $x \in \sigma_{v}$ considered in (4.3), the coordinates x^{1}, \ldots, x^{j} are the barycentric coordinates of x in σ_{v}.

It follows that the x^{1} are unique and satisfy (1.3), (1.4). The x^{1} are known here also as the barycentric coordinates of x.
(4.6) Barycentric mapping. The definition is the same as for Euclidean complexes (AT,VIII,6.1) and need not be repested.
(4.7) A notewrorthy special case is when $K_{v}, K_{1 v}$ are both realizations of the same complex K. Let $\left.\left\{A_{1}\right\}, 1 a_{1}\right\}$, $\left\{a_{1}^{\prime}\right\}$ be the vertices of $K, K_{v}, K_{1 \nabla}$ where a_{1}, a_{i} are the images of A_{1}. Then $a_{1} \rightarrow a_{1}$ is a one-one transformation which induces a one-one barycentric mapping τ, referred to as the natural barycentric mapping $K_{v} \rightarrow K_{1 v}$.

We notice the following properties:
(4.8) Every simplicial complex K has an affine realization K_{V}.

For if $\left\{A_{1}\right\}$ is chosen as a base for a real vectorspace D (its elements being all the finite forms $t^{1} A_{1}$ with the t_{i} real) the three conditions (4.2), (4.3), (4.4) are naturally satisfied and so K_{y} may be constructed with $a_{1}=A_{1}$ throughout.

It is inportant to observe that this special choice of the a_{1} is not unique. Thus consider the two-complex K^{2} consisting of a $B \sigma^{3}$ with one two-face removed. K^{2} has the following affine realization: take a plane triangle $A B C$ and let D be its centroid; K^{2} consists of the triangles $D A B, D B C, D C A$ with all their sides and vertices. This is a realization as a subset of a plane, whereas the above construction would require a four-space.
(4.9) Let $\hat{\sigma}$ be some point on $\sigma_{v} \in K_{v}$. Then:
(a) $\zeta=\hat{\sigma}_{1} \ldots \hat{\sigma}_{j}, \sigma_{v i} \prec \ldots \prec \sigma_{v j}$
is an affine simplex and

$$
\text { (b) } K_{V}^{\prime}=\{c\} \text { is an affine realization }
$$

of K^{\prime}, and is known as a first derived of K_{V}; (c) $\left|F_{V}\right|=\left|K_{V}^{\prime}\right|$.

This is an inmediate consequence of (1.10) together with (AT,IV,26).

When the new vertices $\hat{\sigma}$ are the centroids of the corresponding σ, the affine complex K_{V}^{\prime} is called the barycentric first derived. The definition of the nth derived, barycentric or otherwise is now obvious. It is written $K_{V}^{(n)}$ and is an affine realization of $K^{(n)}$ which coincides with K_{v} as a point set.
(4.10) Notations. Extending the notations introduced in (2.5) we designate by σ_{n} the simplexes of $K^{(n)}$ (also σ for σ_{0}) and by $\sigma_{n}(x)$ the $\sigma_{n} \ni x$.

The following property is needed later.
(4.11) Let $\hat{\sigma}$ be a point of σ_{v} and
let K_{V} undergo the set-transformation S (in the sense of $A T, I V, 7): S$ is the identity outside of St $\sigma_{v} ; S \sigma_{v}=\hat{\sigma} B \sigma_{v} ;$ if $\sigma_{v}^{\prime} \in S t \sigma_{v}-\sigma_{v}$; $S \sigma_{V}^{\prime}=\hat{\sigma}\left(\mathbb{B} \sigma_{V}^{\prime}-\sigma_{V}\right)$. Then S is a simplicial partition of K_{v} into a new complex $K_{i v}$, and $K_{1 v}$ is a subdivision of K_{v}.

The partition property is an immediate consequence of (1.9). It is also clear that S fulfills the conditions of (AT, IV,24.8) and so it is a subdivision.
(4.12) Consider the function $\mathrm{d}(\mathrm{x}, \mathrm{y})$ defined on K_{v} by the expression (3.1). If $K_{1 v}$ is the affine realization of (4.8) with $\left|A_{1}\right|$ as the base for the vector space \mathcal{B}, then $d(x, y)$ is a metric for D and hence for $K_{1 v}$. Since the natural parycentric transformation $K_{1 V} \rightarrow K_{V}$ is one-one and preserves the barycentric co-

