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INTRODUCTION

The present monograph has been planned in such a
way as to form a natural companion to the author's volume
Algebraic Topology appearing at the same time in the Col-
loquium Series and hedreafter referred to as AT. The
topics dealt with have for common denominator the rela-
tions between polytopes and general topology. The first
chapter takes up the relations between polytopes in gen-
eral and the topologies which they may recelve and in
these questions we lean particularly heavily upon J.
Tukey. The second chapter completes in certain important
points the treatment of singular elements of AT. The
third chapter deals with mappings of spaces on polytopes
and certain related imbedding questions; it contains also
a modern treatment of retraction for separable metric
gspaces. The last chapter 1s devoted to the group of
questions centering around the general concept of local
connectedness. Comparisons with retracts are considered
at length, there is a full treatment of the homology and
fixed point properties. The chapter concludes with an
outline of the relations with "homology"™ local connected-
ness (the so-called HLC properties).

The general notations are those of AT. In addition
to a short reférence bibllography, & mere supplement to
that of AT, there 1s also given a fairly comprehensive
bibliography on locally connected spaces and retraction.
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Chapter I.

POLYTOPES

§1. AFFINE SIMPLEXES AND COMPLEXES

1. Affine Simplexes. 1In spite of the evident an-
alogy with the treatment of Euclidean simplexes of (AT,
IIT, VIII). it wlll be more convenlent and also clearer to
repeat the necessary introductory definitions and proper-
ties.

Our simplexes are consldered here also ag subsets
of a real vector space B whose elements are to be called

points.

(1.1) DEFINITION. Let oP=4a ... a
be a p-simplex whose vertlces are independent
points of a real vector space [ . By the af-
fine p-simplex associated with oFf 1s meant
the set, wrltten 05 given by

(1.2) X = xiai

(1.%3) p=o0:x°=1,

(1.4) p>o0:o0¢( <t <1, E:xi = 1.

The xi‘s are the barycentrlc coordinates of x.
To the face o9 = 8y ... 8 of oP there cor-

responds the set of 8oints ogtained by replacing
0 < xih by o0 = xih in (1.%); it 1is the cg

assoclated with o9 and 1s called a g-face of
05. We transfer to 05 and to 1ts faces the
terminology previously adopted for sP., In par-
ticular we speak of the open or closed affine

1



2 I. POLYTOPES

simplex, the boundary !Bo'p etc. The set of
all points in an element of BoP orof C1 crg
is denoted by |B o€| or lCl o¥l

{1.5) The open and the closed affine sim-
plexes are convex.

let x', x''€ 01c§ . The segment 1 = X' X'V
Joining them consists of the pqints

(1.6) x=t'x' +t"'x"", 0L t', t'"" L 1,t' + t"=1,
Hence if x' = xiai, X" = x"iai we have

X = x'iai, yi = t! x'1 + tt x"1

and we verify readily that xe€[Cl osl . Similarly for cg.

(1.7) If cg = cr"rcr"r' (complementary
faces) there passes through each point x a
unique segment X'x'' with x'€agy, x''eal'.

(Same proof as for (AT,VIII,2.1).

2.(2.1) DEFINITION. Let 8 = o i"
3= Iq\'fi‘ be two sets of affine simplexes,
where the simplexes in each set are disjoint.
We shall say that S' 1s a simplicial parti-
tion of 8 whenever each c‘;i is in some °vj
and each avj is a union of a finite number
of c",i. Thus 8' 1s a partition of 3 in
the sense of (AT,IV,29).

(2.2) 1et 8= fc !} be a simplicial

partition of 'Bcp and GLP a.ny point of Gp

Then: (&) if "pcop S = 5P 8 "vi}

1s a simplicial partition of cP- (b) ir
8Pca,y, 8' = 18P0 vyld # 1 has the same prop-

erty.
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Since (2.2) 1s trivial for p= 0 we assume p ) O.
Suppose first &PcC cp and let x #6°. By (1.5) the seg-
ment 8Px extended meets |'B apl in a point x' 1in some

S and so xeapcvi. Thus ce 1s the union of the ele-
ments of S'. Since 8P 1s inno 6Pg vi We only ha.ve
to prove the disjunction property for a palr 8P 1,0 %yh?
1#h., Now if x 1s a point common to both, pr extend-
ed will meet '80'5 in a point common to °v1:°vh and
this 18 ruled out since 3 13 a simplicial partition of
Bae. The treatment of (b) 1s essentially similar.

(2.3) Let |o 1} be the set of all the
proper faces of 0'5 and cri,crp points on
Oqr crs. Then the affine simplexes

(2.4) ¢ = 3’ ee.e 8.6P, o 1-(....-4ch
make up a simplicial partition of a

This 1s trivial for p = v 80 we assume it for di-
mensions < p and prove 1t for p. Under the hypothesis
of the induction the collection of all the ¢! =73, ... G'j
Oy1 X o< terminating with &, 1s a simplicial par-
tition of Ty g Since the o are disjoint | §'l 1is
a simplicial partition of 'chv, so that (2.3) follows now
from (2.2).

The decomposition of (C1l crp) by the simplexes (2.11)
is 1ts first derived (Cl crp)' Usue.lly the centrold
(pll’ ere +1) is chosen as 6P and similarly for the
faces. The corresponding (c1 cp)' is kmown as the bary-
centric first derived. We can trea.t similarly the sim-
plexes of (Cl °€)" and obtain the successive derived or
barycentric derived as the case may be. In general, un-
less otherwise stated, "derived"” shall stand for "bary-
centric derived".

(24.5) The following designations will be found very
convenlent. The simplexes of (Clcp) n) will be desig-

nated by o (we omit the subscript v). Since the o

n n
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make up a dissection of Cl 05 every point x of the
latter belongs to one and only one ¢ which will be de-
noted by cn(x).

3. The vector space D or its subspaces may be
metrized In varlous ways. For our purpose it 1s suf-
ficient to consider an Euclidean metric relative to a
base B = {bi!. If x= xibi, ¥y = yib:L (finite sums)
such & metric 1s defined by

(3.1) adx,y) = ( S L - yh2)'/2

and it has a meaning for all (x,y). The simplexes of T
are then Eucllidean and may be written og as in AT.
The simplexes of the nth derived (Clcg) (n) have a max-
Imm diameter: the mesh of the derived.

As g speclal case one may utilize the metric (3.1)
attached to the subspace sparmmed by the vertlces 8y of
o® in D relative to the base {aif for the subspace.
We thus obtaln a metric for cp, and in fact for |Clc€| s
glven by (3.1) where xi ,yi are how the barycentric co-
ordinates of x,y. Thils particular metric will be called
the patural metric of oP. Notice that if of <oP, the
induced metric in o, 1s likewise its natural metric.

(3.18) Remark. If no topology is specified for ce
it will be understood that the set has been topologized by
means of 1ts natural metric. In polnt of fact the various
topologles that may be specifled in the sequel for 05
will :always be equivalent to the one induced by its gen-
eral metric. This property 1ls readily verifled in each
case and no further reference will be made to it later.

(3.2) The Euclidean p-simplex crp is a
p-cell; its boundary Bcp i1s a« (p-1)-sphere
and ap is a p-di.mensional parallelotope.

This 1s a consequence of (AT,I, 12.9) and the fact
that |[Cl cpl is8 a bounded convex subset of a Euclidean
space (,p the metrized subspace of the vertlces.
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(3.3) Let cg =85 ... a.p, be a simplex
in an Euclidean space (¢ 0 and x any point
of G . Then d(x,y), yecg, does not ex-

ceed the maximum distance p from x to the

vertices. (AT, VIII, 2.2).

(3.4) The diameter of og 1s the length
of its longest edge (AT, VIII, 2.3).

Py P
(3.5) Mesh (Clce) Si% diem og.
(AT, VIII, 2.4).

(3.6) If ce 1s assigned the natural
metric then mesh (Cl ce)(n £ Va2 (BB

p+1’ !
which - 0 as n— .

For in the natural metric the edges of oe all have
the length V2 and so (3.6) is a consequence of (3.5).

(3.7) If x,x' are distinct points of
o-e there s an n sych that the simplexes
on(x), cn(x') containing x,x' have no
common vertices. (3.6).

(3.8) let | o‘-nf be sugh that T+1C%
(notations of 2.5). Then mcn = X & point
of Eg.

In the naturel metric ag 1s & compactum and [ &}
a collection of closed subsets with the finite intersec-
tion property. Hence /3, ¥ ¢ and since diam ¥, — 0
the intersection 1s & point.

(3.9) Let xec:rsv < o‘g. Then there exists
an n such that qn(x ) has all 1ts vertices
in St 03 (star In Cl 05).



6 A I. POLYTOPES

For diam cn(x) — 0 and the distance from x to
the set of simplexes not in St 03 1s positive.

4, Affine complexes. Just as for simplexes it 1s
convenient as well as clearer to separate the affine and
other complexes. The affine complex serves to specify
the point-set which under sultable topologies becomes a
geometric or an Euclidean complex.

(4.1) DEFINITION. let K= [of be a
simpliclal complex and let {Aii be its ver-
tices where {1} 1s any set whatever. Let
{ail be vectors of a real vector space with
the following properties:

(4.2) 8y «— A1 is one-one;

(4.3) 1f o= Ai”’ A;EK then zs.i,...,a.j are
independent, and so they are the vertices
of an affine simplex denoted by oy

(4.4) o po! =)cvh o", = ¢,

If we transfer to Icrv! the incldences "is a

face of" prevalling in K, likewise the same

incidence-numbers, it becomes a complex Kvg K,

known as an affine simplicial complex. Its re-

lation to K 1s also described by the statement:

K, is an affine realization of K. We also re-

fer sometimes to K as an antecedent of lg,

We transfer to Kv the full terminology attached to K.

Example. Clo¥,BoP are affine realizations of CloP,
BsP and cg is an open subcomplex of Cl ce.

The set of all the points of the simplexes of lg,
1s denoted by IK,|.

It follows from the definition of Kv that every
point x € IKvl satlsfiles a relation

(4.5) X = xiai
where 1f x €o, considered in (4.3), the coordinates

xj‘,...,x:I are the barycentric coordinates of x 1in oy
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It follows that the x' are unique and satisfy (1.3),
(1.4%). The xt are known here also as the barycentric
coordinates of x,

(4.6) Barycentric mapping. The definition 1s the
same as for Euclidean complexes (AT,VIII,6.1) and need
not be repeated.

(4.7) A noteworthy speclal case 1s when Kv’ Kw are
both realizations of the same complex K. ILet {Aii, 1a.1l,
{a.j'_i be the vertices of K, K, K, where a,, aj are the
images of Ai' Then a; — a.i 1s a one-one transformation
which Induces a one-one barycentric mapping T, referred
to as the matural barycentrlic mapping Kv —’KW'

We notice the followlng properties:

(4.8) Every simplicial complex K has an
affine realization Kv.

For if {All is chosen as a base for a real vector-
space T (its elements being all the finite forms tlA,
with the ti real) the three conditions (%.2), (4.3),
(4.4) are naturally satisfied and so Kv may be con~
structed with ay = Ai throughout.

It 1s important to observe that this speclal cholce
of the ay is not unique. Thus consider the two-complex
K2 consisting of a B o> with one two-face removed. K-
has the following affine reallizatlon: take a plidne
triangle ABC and let D be its centroid; K° consists of
the triangles DAB, DBC, DCA wilth all thelr sides and
vertices. This 1s a realization as a subset of a plane,
whereas the above construction would require a four-space.

(4.9) let & be some point on c € K,.
Then:
(a) C=Gi... GJ"'vi'*""“'vj
is an affine simplex and
€ C ovj;
(v) K; = {¢} 1s an affine realization
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of K', and 1s known as a first derived of Ig,;

(e) 1K, = IR,

This 1s an immediate consequence of (1.10) together
with (AT,IV,26).

When the new vertices G are the centroids of the
corresponding o, the affine complex K“, 1s called the
barycentric first derived. The definition of the nth
derived, barycentric or otherwlse 1s now obvious. It 1s
written K(fl_l) and 1s an affine realization of KXK'
which coincides with Kv as a point set.

(4.,10) Notations. Extending the nota-
tions introduced in (2.5) we designate by o,
the simplexes of K(n) (also o for cro) and
by cn(x)- the %h 3X.

The following property is needed later.

(4.11) Let & be a point of o and
let Kv undergo the set-transformation S (in
the sense of AT,IV,7): S 1s the identity out-
slde of St o ; So, = ’c‘chrv; 1f ol €8t o -o,;
Sog = ¥ (Boj - o,). Then S 1is a simplicial
partition of Kv into a new complex K1v’ and

K1 1s a subdivision of K .
v v

The partition property is an immediate consequence of
(1.9). It is also clear that 8 fulfills the conditions
of (AT,IV,24.8) and so it 1s a subdivision.

(4.12) Consider the function d(x,y) defined on
Kv by the expression (3.1). If K, 6 1is the affine re-
alization of (4.8) with )Aii as the base for the vector
space T, then d(x,y) 1s a metric for B and hence
for K1v' Since the natural parycentric transformation
K1v‘_’Kv is one-one and preserves the barycentric co-



