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Preface

More than any other branch of mathematics, probability theory has 
developed in conjunction with its applications. This was true in the begin
ning, when Pascal and Fermat tackled the problem of finding a fair way 
to divide the stakes in a game of chance, and it continues to be true to
day, when the most exciting work in probability theory is being done by 
physicists working on statistical mechanics.

The foundations of probability theory were laid just over fifty years ago, 
by Kolmogorov. I am sure that many other probabilists teaching a begin
ning graduate course have also had the feeling that these measure-theoretic 
foundations serve more to salve our mathematical consciences than to pro
vide an incisive tool for the scientist who wishes to apply probability theory.

This work is an attempt to lay new foundations for probability theory, 
using a tiny bit of nonstandard analysis. The mathematical background 
required is little more than that which is taught in high school, and it is 
my hope that it will make deep results from the modern theory of stochastic 
processes readily available to anyone who can add, multiply, and reason.

What makes this possible is the decision to leave the results in non
standard form. Nonstandard analysts have a new way of thinking about 
mathematics, and if it is not translated back into conventional terms then 
it is seen to be remarkably elementary.

Mathematicians are quite rightly conservative and suspicious of new 
ideas. They will ask whether the results developed here are as powerful as 
the conventional results, and whether it is worth their while to learn non
standard methods. These questions are addressed in an appendix, which 
assumes a much greater level of mathematical knowledge than does the 
main text. But I want to emphasize that the main text stands on its own.
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