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PREFACE

This manuscript is based upon lectures given at Princeton University 

during the fall semester of 1971-72. The central theme is Artin’s braid 

group, and the many ways that the notion of a braid has proved to be im­

portant in low dimensional topology.

Chapter 1 is concerned with the concept of a braid as a group of 

motions of points in a manifold. Structural and algebraic properties of the 

braid groups of two manifolds are studied, and systems of defining rela­

tions are derived for the braid groups of the plane and sphere. Chapter 2 

focuses on the connections between the classical braid group and the 

classical knot problem. This is an area of research which has not pro­

gressed rapidly, yet there seem to be many interesting questions. The 

basic results are reviewed, and we then go on to prove an important 

theorem which was announced by Markov in 1935 but never proved in de­

tail. This is followed by a discussion of a much newer result, Garside’s 

solution to the conjugacy problem in the braid group. The last section of 

Chapter 2 explores some of the possible implications of the Garside and 

Markov theorems.

In Chapter 3 we discuss matrix representations of the free group and 

of subgroups of the automorphism group of the free group. These ideas 

come to a focus in the difficult open question of whether Burau’s matrix 

representation of the braid group is faithful. In Chapter 4, we give an 

overview of recent results on the connections between braid groups and 

mapping class groups of surfaces. Finally, in Chapter 5, we discuss 

briefly the theory of “ plats.”  The Appendix contains a list of problems. 

A ll are of a research nature, many of unknown difficulty.
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vi PREFACE

It will be assumed that the reader is familiar with the basic ideas of 

elementary homotopy theory, such as the notions of covering spaces and 

fiber spaces, and of exact sequences of homotopy groups of pairs of 

spaces (a good reference is Hu’s “ Homotopy Theory,” 1959); also, with 

elementary concepts in infinite group theory, such as the Schreier- 

Reidemeister rewriting process (see, for example, Magnus, Karass and 

Soliar, “ Combinatorial Group Theory,”  1966). With this qualification, we 

have attempted to make the manuscript self-contained.

On the matter of notation: Theorems are labeled consecutively within 

each chapter, e.g., Theorem 3.2 means the second theorem in Chapter 3; 

Corollary 3.2.2 means the second corollary to Theorem 3.2; Lemma 3.2.1 

means the first lemma used in the proof of Theorem 3.2. Equations are 

numbered consecutively within each chapter, e.g., equation (3-33) means 

the thirty-third equation of Chapter 3. A double bar || is used to signify 

the end of a proof.

The suggestion that the lecture notes be the basis for a monograph 

originated with Ralph H. Fox. His lively interest and continuing en­

couragement, and his willingness to share completely the wealth of his 

knowledge and experience, did much to make this manuscript a reality.

I am deeply indebted to Charles F. Miller III, whose careful reading 

of the manuscript and many questions, criticisms and suggestions helped 

to make it both more readable and more accurate. The monograph was 

also reviewed by Jose Maria Montesinos; there is no adequate way to 

thank him for the time and effort and expertise which he brought to the 

task. The original lecture notes were taken by James Cannon, and I 

wish to thank him for his interest in the topics presented, and for the 

large amount of time and energy which he expended in the preparation of 

the notes. However, any errors which exist are certainly mine, because 

the manuscript has undergone extensive revisions from the original notes.

I would also like to thank K. Murasugi, for numerous discussions about 

the possibility of applying braid theory to knots, which helped to clarify 

for me many of my own ideas. I am also grateful to all who attended the 

lectures, for their interest, questions and insights.
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Finally, my thanks to J. H. Roberts, for communicating his unpublished 

proof of Theorem 4.4; to an unknown seminar speaker at Princeton Univer­

sity, circa 1954, for his notes on Theorem 2.3; and to the National Science 

Foundation of the United States for partial support.

JOAN S. BIRM AN
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CHAPTER 1

BRAID GROUPS

The central theme in this manuscript is the concept of a braid group, 

and the many ways that the notion of a braid has been important in low 

dimensional topology. In particular, we will be interested in the largely 

unexplored possibility of applying braid theory to the study of knots and 

links, and also to the study of surface mappings.

Our object in this first chapter will be to develop the main structural 

and algebraic properties of braid groups on manifolds. (Our braid groups 

will be limited to groups of motions of points; we will not treat generali­

zations to motions of a sub-manifold of dimension > 0 in a manifold.) In 

this setting the “ classical” braid group B fl of Artin appears as the “ full 

braid group of the Euclidean plane E .”

Section 1.1 is concerned with definitions. The problem of how to 

properly define a braid, in order to capture the essential significant pro­

perties of “ weaving patterns”  and so study them mathematically, is a 

very basic one, for if the definition is too narrow the range of application 

will be severely limited, while if it is too broad there will not be an inter­

esting theory. It is a tribute to Artin5s extraordinary insight as a Mathe­

matician that the definition he proposed in 1925 [see Artin, 1925] for 

equivalence of geometric braids could ultimately be broadened and general­

ized in many different directions without destroying the essential features 

of the theory. For a discussion of several such generalizations, see 

Section 1.1; for generalizations to higher dimensions see [D. Dahm, 1962] 

and [D. Goldsmith, 1972]; for other generalizations, see [Brieskorn and 

Saito, 1972; Arnold, 1968b; Gorin and Lin, 1969].

3



4 BRAID GROUPS

Section 1.2 contains a development of the main properties of “ configu­

ration spaces,”  introduced by E. Fadell and L . Neuwirth in 1962. Con­

figuration spaces w ill be our tool for finding defining relations in the 

braid groups of surfaces. We chose this method because we felt that it 

gave particular geometric insight into the algebraic structure of the 

classical braid group as a sequence of semi-direct products of free groups. 

This same structure is exhibited by other methods in [Magnus 1934;

Markoff 1945; Chow 1948].

In Section 1.3 we review the chief properties of braid groups on mani­

folds other than E2 and S2. Theorem 1.5 shows that braid groups of 

manifolds M of dimension n > 2 are really not of much interest, since 

they are finite extensions (by the full symmetric group) of the n^ 1 carte­

sian product of 772M. Theorems 1.6 and 1.7 are concerned with the rela- 

tionships between Art in’s classical braid group on E and the braid 

groups of other closed 2 -manifolds.

In Section 1.4 we study the braid group of E . In Theorem 1.8 we 

find generators and defining relations for the full braid group Bfl of E2. 

Corollaries 1.8.1 and 1.8.2 relate to the algebraic structure of Bn as a 

sequence of semi-direct products of free groups, and lead to solutions to 

the “ word problem”  in B fl. In Corollary 1.8.3 we establish that B n has 

a faithful representation as a subgroup of the automorphism group of a free 

group. This subgroup is characterized in Theorem 1.9, by giving neces­

sary and sufficient conditions for an automorphism of a free group of rank 

n to be in B fl. Corollary 1.8.4 identifies the center of Bfl. Finally, in 

Theorem 1.10 we establish another interpretation of Bn as the group of 

topologically-induced automorphisms of the fundamental group of an 

n-punctured disc, where admissible maps are required to keep the boundary 

of the disc fixed pointwise.

Section 1.5 discusses the braid group of the sphere, which will play 

an important role later in this book, in relation to the theory of surface 

mappings. In Section 1.6 we give a list of references for further results 

on braid groups of closed 2-manifolds.
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1.1. Definitions

We begin not with the classical braid group, but with a somewhat 

more general concept of a braid as a motion of points in a manifold. Our 

definition will be shown to reduce to the classical case when the mani­

fold is taken to be the Euclidean plane. n

Let M be a manifold of dimension > 2 , let J J  M denote the n-fold
i= 1

product space, and let F Q nM denote the subspace

F0 ,nM = j ( z i> "^ 2 n>€I I M/ 2 i ^ zj if

(The meaning of the subscript “ 0 ”  in the symbol F0 n will become clear 

later.) The fundamental group 77̂  FQ of the space FQ nM is the pure 

(or unpermuted) braid group with n strings of the manifold M.

Two points z and z ' of FQ nM are said to be equivalent if the 

coordinates (z 1,• • • ,zfl) of z differ from the coordinates (z^ of

z ' by a permutation. Let B 0 nM denote the identification space of 

Fq flM under this equivalence relation. The fundamental group 

of the space B Q is called the full braid group of M, or more simply, 

the braid group of M. Note that the natural projection ft: F0 nM -> BQ nM 

is a regular covering projection.

The classical braid group of Artin [cf. Artin 1925 and 1947a] is the 

braid group ^ B q  nE2, where E2 denotes the Euclidean plane. ArtinJs 

geometric definition of ^ 1B Q nE2 can be recovered from the definition 

above as follows:

Choose a base point z ° = (z j ,“ -,z^) € FQ nE2 for tTj^Fq^E2 and a 

point z° € B Q nE2 such that p (z °) = z°. Any element in ^ B q  nE2 =

7?!(Bq nE2 ,z ° )  is represented by a loop

I : I,{0,1} -> BQ flE2 ,z °  

which lifts uniquely to a path

-  F0 >nE2 ,z ° .
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If f(t) = t e l ,  then each of the coordinate functions ^

defines (via its graph) an arc A^ = (^ (t ), t ) in E2 x I. Since f(t) e FQ flE2

the arcs are disjoint. Their union A = A x U*** U A fl is called

a geometric braid (see Figure 1). The arc A. is called the i^ 1 braid 

string.

A geometric braid is a representative of a path class in the funda­

mental group flE2. Thus if A and A are geometric braids, then

A ~  A (that is, they represent the same element of n) if the paths

f and I '  which define these braids are homotopic relative to the base 

point (z^,---,z£ ) in the space FQ nE2. Thus we require the existence of

a continuous mapping ?  : I x I  -> F0 nE2 with

(z ° ,0 )  (z ° ,0 ) (z °,0 ) (z ° ,0 )

Fig. 1.
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5(t,0) = ^ 1(t ,0 ) , - ,3 :n(t,0)) =

y (t f i> = (t, i ) , • • •, ?n(t, i »  = < ? i(t ),-.,rn(t))

5(0, s) = <^(0, s ) , - , 5 n(0, S)) = (2 ? , - ,2° )

5 (1 ,s )=  ^ ( l . s ) , — ,5 ( i , s ) )=  (z° )
1 n Ml Mn

where 0-ij ,-**,ptn) is a permutation of the array (1,— ,n). The homotopy 

3“ defines a continuous sequence of geometric braids 2 (s) = 2 1(s)U--*U 

2 n(s), s £ I, where 2 j(s ) = (^ (t, s), t), such that £1(0) = 2 and 2(1)=2'. 

The reader is referred to Figures 2(b) and 2(c) for pictures of geometric 

braids which are equivalent to the “ trivial” braid.

One may also define various stronger and weaker forms of equivalence 

between geometric braids, and we mention several of these briefly:

i). Let 2  and 2 be geometric braids. Note that 2 and &' are 

subsets of E2 x I. Then, we write 2 «  &' if there is an isotopic deforma­

tion § s of E2 x I which is the identity on E2 x {0} and on E2 x {1}

for each s e [0,1] and which has the property:

*For each s € [0,1] the image set 2 (s) of 2 under § s 

is a geometric braid, that is, 2 (s ) meets each plane 

E2 x {t0}, tQ e I, in precisely n points, and moreover 

2(0) = 2 ,  2(1) = 2 '.

It was proved by Artin [see 1947a] that 2  «  2 . if and only if 2 ^ 2 .

Thus a braid homotopy may always be “ extended” to E2 x I, in the 

sense defined above.

ii). If we think of our braid strings as being made of 

elastic, one might imagine a more general type of equivalence in which
A

the strings could be stretched or deformed in the region E x I without 

requiring that 2 (s) meet each plane E2 x ^q}, £ I, in precisely n

points. In this situation, it might happen, for example, that some inter­

mediate set 2 1(s0) U--*U 2n(s0) is as illustrated in Figure 3. (This 
intermediate set is not a geometric braid.) More precisely, under this
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i+1 i+2

(c)

Fig. 2.
«  identity

(a ) Geometric braids representing cr- and a- 1
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more general notion, & ^  fi if there is an isotopy § g which is exactly 

like that defined in i) above except that need not satisfy the 

property *. Again, Artin established [1947a] that f i s  fi if and only if 

d  ~  f i . (This is the first hint of a relationship between the concepts of 

equivalence of braids and equivalence of links, a relationship which will 

be studied in detail in Chapter 2.)

iii). D. Goldsmith [1974] has defined a concept of “ homotopy”  of 

braids by defining two geometric braids to be homotopic if one can be de­

formed to the other by simultaneous homotopies of the individual paths 

$ *(t), t) in E2 x I, fixing the end points, and subject to the restriction 

that a string may intersect itself, but not any other string. Note that if 

d - d  then d  and d  are also equivalent under Goldsmith’s rule, but
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the converse need not be true. In fact, Goldsmith has exhibited non­

trivial elements of the group nx B 0 >3E2 which are homotopic to the identity 

element of jt^Bq^E2. She goes on to define a “ homotopy braid group, ” 

Bn, and finds a group presentation for B n which exhibits B n as a 

quotient group of the group ^ B ^ E 2. We note that Goldsmith’s results 

were suggested by J. Milnor’s work on homotopy of links and isotopy of 

links [see J. Milnor, 1954].

iv). The concept of a braid group has been generalized by D. Dahm 

[1962] and by D. Goldsmith [1972] to a group of motions of a submanifold 

in a manifold. We now give Goldsmith’s definition of that group. Let N 

be a subspace contained in the interior of a manifold M. Denote by W(M) 

the group of autohomeomorphisms of M with the compact open topology, 

where if M has boundary <9M, all homeomorphisms are required to fix 

<9M pointwise. Denote the identity map of M by 1M : M M. A motion 

of N in M is a path in K(M) beginning at £0 = 1M and ending at 

where ^ (N )  = N. The motion is said to be a stationary motion of N 

in M if £t(N ) = N for all t e [0 ,1 ]. To compose two motions, translate 

the second by multiplication in the group H(M) so that its initial point 

coincides with the endpoint of the first, and multiply as in the groupoid of 

paths. Define the inverse f "1 of a motion f to be the inverse of the 

path f in K(M), translated so that its initial point is 1M.

Finally, let motions f and g be equivalent if the path f~ 1g is 

homotopic modulo its endpoint to a stationary motion. The group of 

motions of N in M is the set of equivalence classes of motions of N 

in M, with multiplication induced by composition of motions. From this 

point of view, the group of motions of an interior point in a manifold M is 

the group 7TjM, and the group of motions of n distinct points is the pure 

braid group of M (cf. Chapter 4 of this text, also Theorem 1.10).

Dahm [1962] studies the group of motions of n disjoint circles in S ,
3and Goldsmith [1972, studies the group of motions of torus links in S .
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1.2. Configuration spaces

PROPOSITION 1.1. The natural projection map p : Fq flM B0 is a 

regular covering space projection. The group of covering transformations 

is the full symmetric group Xn on n letters. Therefore there is a 

canonical isomorphism

(1-3) * lB 0, » « / » 1F0>nM *  .

The geometric interpretation of the product of two braids is immediate; 

suffice it to say that, in Figure 1, the configuration of arcs between any 

two consecutive dotted horizontal levels can be considered to be geometric 

braids (Q j, 0 2, fl4) of which the entire braid 0  = Q 1Q2^ 3^ 4  is the 

product.

Geometric intuition suggests that an arbitrary braid is equivalent to a 

braid that is a product of simple braids of the types illustrated in Figure 2. 

The equivalence classes of these elementary braids will be denoted by 

the symbols o  ̂ and a^"1. In the example of Figure 1,

Q = °1 «2 a3 1 •

Geometric intuition thus suggests that generate the group

77̂  Bq nE2, a fact which will be proved later.

The following relations in ^1B0 nE2 are obvious from Figure 2:

(1-1) = o^oi if |i—j| > 2 , 1 < i, j < n—1

(1-2 ) o . ^ i+1 «r. = a i+1 a ja i+1 1 < i < n- 2  .

It will be proved below that (1-1) and (1-2) comprise a set of defining re­

lations in ^jBq nE2. Our proof, which allows us at the same time to 

compute defining relations for the braid groups of arbitrary 2 -manifolds, 

will make use of the concept of the “ configuration space”  of a manifold. 

Other proofs (for the special case M= E2) can be found in [Artin 1925; 

1947a; Magnus 1934; Bohnenblust 1947; Fox and Neuwirth 1962].
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Proof. Clear. ||

Since the map p is known explicitly, it follows from Proposition 1.1 

that it is not difficult to analyze nM once nM is known.

Therefore, the remainder of this section will be devoted to the group

* l F0,nM‘

Let Qm == a set of fixed distinguished points of M.

Following Fadell and Neuwirth [1962] and Fadell and Van Buskirk [1962] 

we define the configuration space Fm nM of M to be the space 

F0 n(M — Qm). Note that the topological type of Fm does not depend 

on the choice of the particular points Qm, since one may always find an 

isotopy of M which deforms any one such point set Qm into any other 

Q'm. Note that Fm lM = M -Q m* (One may, similarly, define spaces 

®m n^ = n ^ ““^m^ however we will only be interested in BQ QM.)

We are interested in the relationship between the configuration spaces 

Ffl mM and FQ nM. The key observation is the following theorem:

T H E O R E M  1.2 [Fadell and Neuwirth, 1962]. Let n : Fm flM Fm be 

defined by

(1-4) f f (Z j , - , z n)=  (z 19— ,z r), 1 < r <  n .

Then n exhibits Fm as a locally trivial fibre space over the base 

*Pace Fm,rM' with iibre Fm+r,n—rM-

Proof. First consider, for some base point (z® ,•••, z^) in Fffl rM, the 

fibre

ff- 1 (z ° ,— ,z ° )=  {(z^ ,— ,z®,yr+1 ,— ,yn), where

z®,*” , zj>yr+l>*">yn are distinct and in M -Q ml.

If we select equal to Qm U {z® ,-",z® }, then

Fm+r,n-rM = ^ r + l ’ ' " ’ ^ ’ where ^ + 1 ’* ' '’^  are distinct and in

M-Qm+r* ’
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and there is an obvious homeomorphism

F 1 m+r,n—r

defined by

% r + i ’- ’ yn) = ( * ? . - . * ? .  y « . i . - . y n) •

The proof of the local triviality of n will be carried out, for notational 

and descriptive convenience, only in the case of r = 1. The other cases 

will be left to the reader as exercises. Fix for consideration, therefore, a 

point xQ € M — Qm = Fm = Fm fM. Add another point qm+1 to the set 

Qm to form Qm+1 and pick a homeomorphism a :M -> M, fixed on Qm, 

such that a 0l|B4- i ) “ xo* Let U denote a neighborhood of xQ in M -Q m 

which is homeomorphic to an open ball, and let U denote the closure of U. 

Define a map 6 : U x U  -* U with the following properties. Setting 8Z(y) = 

d(z, y) we require:

(i) 8z : U U is a homeomorphism which fixes <?U.

(ii) 8Z( z ) = x Q.

By (i), 8 can be extended to 8 : UxM  M by defining 8 (z,y) = y for 

y / U. The required local product representation

9
is given by

<!>{z ,z 2 ,— ,z n) =  ( z , d -x« {z 2) , - , e - l« {z n) ) .

<t>~X(z,Z2,— ,Zn) = (z ,a - 10z(z2), — ,a _ 102 (zn»  . II 

Two important consequences of Theorem 1.2 now follow:

PROPOSITION 1.3. Ii  jr2 (M -Q m) =  ^ (M -Q jn )” 0 ior each m > 0, 

then ^2FO nM = 0 .
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Proof. The exact homotopy sequence of the fibration 77 :F  M -> F  ,M =m,n m,x
M —Qm of Theorem 1.2 gives an exact sequence

-  -  * 3(M -Q ffi)  -> * 2Fm + l,n -lM -  ff2Fm,nM -  ff2<“ -Qm> -  "*  •

Since = = ** follows that ^^m +l n - 1®® anc*

772^m n^ are isomorpkic. An inductive argument shows that

(i-5 ) *2F0,nM ^ ' n 2 F n ^ l 9 l U  = *  0 •

This completes the proof. ||

Let 7t be the projection map from F0 nM to FQ n -1M defined by 

(1-4). Let (z °,...,z2 ) be base point for ztjFq flM. Let Fn-1 1M =

M — Q ^ j  = M — Let j  be the inclusion map from Fn_ x

to F0 nM, defined by

(1-6) #(zn) = (zl ’‘*',zn—l ,z n̂  zn e M “ lzl ’" ' ’ zn -l*  •

Theorem  1.4. I i  = = =  ̂ *or every

m > 0 , then the following sequence of groups and homomorphism is exact:

(1.7) 1  > ^ (F n_ 1(1M,z0) ^  ffl(F0>nM ,(z ° , - ,z O ) )

> ffl (F0 ,n -lM,(zl ’” ’,zn - l^  ” 1

where and are the homomorphism induced by the mappings n 

and j .

Proof. The sequence (1-7) is part of the exact homotopy sequence of the 

fibration of Theorem 1.2. The identity terms reflect the equalities 

7t2F0 n_ t = 1, established in Proposition 1.3, and =

= 1* II


