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PKEFACE 

These are notes based on a course of lectures given at Princeton 
University during the Fall tem of 197^, incorporating some material from 
lecture courses given during the year 1963-6^ as well. The topic of the 
lectures is the study of complex analytic pseudogroup structures on complex 
manifolds, viewed as an extension of the theory of uniformization of 
Eiemann surfaces. The particular pseudogroup structures considered, and 
the questions asked about them, are determined by this point of view; and 
this point of view also lies behind the choice of the role of connections 
as a unifying and limiting principal theme. A more detailed overview of 
the topics covered and the point of view taken is given in the introductory 
chapter. There remain many fascinating open questions and likely avenues 
to explore; and I hope these notes will provide a background for further 
investigations. 

I should like to express my thanks here to the students and 
colleagues who attended these lectures, for their interest and their many 
helpful comments and suggestions, and to Mary Smith, for the splendid typing 
of these notes. 

E. C. Gunning 

Princeton, New Jersey 
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§1. Introduction 

The general uniformization theorem for Eiemann surfaces is one 

of the most remarkable results in complex analysis, and is at the center of 

a circle of problems which are still very actively being investigated. 

An interest in extending this theorem to complex manifolds of higher dimen

sions has long been manifest, and indeed there have been several extensions 

of one or another aspect of the general uniformization theorem. As has 

been observed in other cases, some theorems in classical complex analysis 

appear as the accidental concurrence in the one-dimensional special case of 

rather separate phenomena in the general case; so a major difficulty is 

deciding just what to attempt to extend. For compact Eiemann surfaces per

haps the principal use of the general uniformization theorem lies in the 

possibility of representing these surfaces as quotients of the unit disc or 

the complex plane modulo a properly discontinuous group of complex analytic 

automorphisms. Becent works (surveyed in [2]) have demonstrated the existence 

and importance of a considerable array of different representations of compact 

Eiemann surfaces as quotients of various subdomains of the sphere modulo 

appropriate groups of automorphisms; but the detailed results seem to rest 

very heavily on purely one-dimensional tools. On the other hand any such 

representation has a local form, in the sense that the representation can be 

viewed as inducing a complex projective structure on the Eiemann surface, a 

rather finer structure than the complex analytic structure [2o]. The set of 

all projective structures on a compact Riemann surface, being somewhat more 

local in nature, can be handled much more readily than the set of uniformiza-



tions of the surface and with tools that are less restricted to the one-

dimensional case; and these structures include, in addition to those induced 

by the classical and contemporary uniformizations, those associated to the 

more exotic representations investigated by Thurston [Ul], in which the groups 

of automorphisms are not discontinuous. It is the extension to manifolds 

of higher dimensions of this somewhat local additional structure on Biemann 

surfaces that I propose to discuss here; if the phrase did not already 

have a different generally accepted meaning, this could perhaps be called the 

local uniformization of complex manifolds. 

There are many papers in the literature in which such structures 

on manifolds have been investigated, although not often have complex analytic 

manifolds been of primary interest; for this is really just a special case 

of the general problem of the investigation of pseudogroup structures on 

manifolds, an active area of research in differential geometry. However the 

model presented by the uniformization of Eiemann surfaces suggests restricting 

attention to a very special class of pseudogroup structures, those defined 

by families of partial differential equations having constant coefficients; 

for the defining differential equations can play the role in the general case 

that the Schwarzian derivative plays in the one-dimensional case, and that 

suggests the tenor of the treatment of the general case on the model of the 

one-dimensional case. The principal difference between the one-dimensional 

case and the higher-dimensional cases is then merely the presence of nontrivial 

integrability conditions in the higher-dimensional cases. That in turn suggests 

considering the connections associated to the structures rather than the 



structures themselves; and the formal treatment in the general case is 

then precisely parallel to that in the one-dimensional case. Considering 

the connections rather than the structures really has the effect of 

linearizing the entire problem, and thus trivializing the questions of deform

ation of structures and of moduli of structures. The nonlinearity does 

appear in the investigation of integrability conditions, although even there 

it is frequently possible to avoid the apparent nonlinearities; and the moduli 

can be introduced at this stage in a rather simpler and more explicit manner. 

Actually for some purposes it appears that the connections are all that is 

really needed of the structures, as will be evident during the course of the 

discussion; so the emphasis here will be primarily on the connections. 

Even among the restricted class of pseudogroups mentioned above there 

is a great variety of possible pseudogroups; and any analysis detailed enough 

to be nontrivial seems to require somewhat separate treatment of basically 

different pseudogroups. Therefore to limit the present discussion as much 

as reasonably possible only those pseudogroups defined by partial differential 

equations with constant coefficients and having unrestricted Jacobian matrices 

will be considered here; the latter condition can be rephrased as the condition 

that the pseudogroup be transitive on tangent directions. This subclass of 

pseudogroups is still broad enough to include all the one-dimensional pseudo

groups and some of the classical pseudogroups of differential geometry, the 

affine and projective pseudogroups; so this is perhaps the restriction leaving 

the general discussion closest to that of the one-dimensional case. There are 

enough complex manifolds admitting pseudogroup structures of this subclass to 



lead to an interesting discussion. However this restriction does leave 

out a great many interesting and important pseudogroup structures, such as 

general G-structures, contact structures, and foliated structures, which 

must eventually be included in any complete treatment of uniformization of 

complex manifolds. Some of these structures are well treated in other places 

though [8], [lk] ; and the subject is anyway not sufficiently developed to 

warrant any attempt at a complete treatment. 

In a discussion such as this it is a matter of choice whether merely 

to list the pseudogroups being considered, together with their defining 

equations and relevant properties, or rather to derive the defining equations 

and their properties from a classification of the possible pseudogroups of 

the limited class under consideration. I have chosen the second alternative, 

but to avoid requiring an unwilling reader to wade through the classification 

it has been included in a separate first part, from which the remainder of 

the discussion is essentially independent; so the unwilling reader need only 

glance at the list of pseudogroups contained in Theorem 1 at the end of §5, 

and refer to the properties of the defining equations as needed. The general 

study of pseudogroups of transformations was begun and carried very far 

indeed by E. Caxtan in a series of fundamental papers, [J] ; and the extension 

and completion of the classification of pseudogroups has been taken up recently 

by several differential geometers in a number of major papers, of which it 

may suffice here merely to mention [16], [29], and [39]· However the classifi

cation of the restricted set of pseudogroups being considered here can be 

carried out quite simply and completely, without use of the extensive machinery 

required in the general case; indeed the classification can be reduced to an 



algebraic investigation of the subgroups or subalgebras of an easy and quite 

explicit finite Lie group or algebra, and some very classical analysis. 

The advantage of carrying out the classification in detail in this case is that 

it clarifies the relevant notion of equivalence and exhibits the possible 

alternative forms for these pseudogroups, while it also demonstrates the role 

of the defining equations and the parts played by their properties. It may 

also appeal to others, as it does to me, to see why such peculiar operators 

as the Schwarzian derivative must have the forms and properties that they do. 

The second part contains a general discussion of pseudogroup structures 

on complex manifolds for the special class of pseudogroups being considered. 

here, with particular attention to the role played by connections. The purely 

formal aspects, which hold for all these pseudogroups simultaneously, are 

treated in §6, while the remaining three sections discuss some more detailed 

properties of connections for the individual pseudogroups. The properties 

treated are: integrability conditions, alternative characterizations of the 

pseudogroups (except for the projective pseudogroup, where this seems less 

interesting)j the differentiation operators associated to the connections, 

and the topological restrictions imposed by the existence of complex analytic 

connections. To provide some illustrative examples the third part contains a 

discussion of some aspects of these pseudogroup structures on two-dimensional 

compact complex manifolds, and is devoted primarily to the topics: which 

compact surfaces satisfy the topological restrictions the existence of complex 

analytic connections imposes; and then which of these surfaces actually admit 

complex analytic connections; and finally briefly which of these connections 

are integrable. 



The group of k-jets and its Lie algebra. 

Consider the set of all germs of complex analytic mappings from 

the origin to the origin in the space of n complex variables. The 

k-jet of such a germ f, denoted by is defined to consist of the 

terms of order in the Taylor expansion of the germ f ; but since all 

these germs are assumed to take the origin to the origin the conventional 

usage will be slightly modified in that the constant terms in the Taylor 

expansion, the terms of order = 0, will not be considered as part of the 

k-jet. Upon identifying a k-jet with its Taylor coefficients the set 

of all such k-jets can be viewed as a finite-dimensional complex 

vector space; indeed can be viewed as the direct sum 

( 1 ) 

where is the complex vector space of dimension 

consisting of the Taylor coefficients of order then 

choosing any germs of complex analytic mappings such that 

define 

(2) 

noting that the k-jet of the composite mapping depends only on the 

k-jets of the individual mappings It is readily verified that under the 

operation (2) the set has the structure of a semigroup with an identity 

element, though not generally an abelian semigroup; the identity is the germ 

of the identity mapping. The subset of germs of local homeomorphisms 

form the group of invertible elements in this group will 

-6-
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be called the general k-fold group or the group of k-jets, the special case 

being of course the general linear group. The group 

consists of all the jets such that the terms of order = 1 form a 

nonsingular n x n matrix; thus is a dense open subset of the vector 

space and with the natural manifold structure inherited from that 

vector space it is evident that is a complex Lie group. 

It is a quite simple matter to write the group operation in 

explicitly in terms of the natural global coordinates provided by the encom-

passing vector space , or at least explicitly enough for the present 

purposes. To do so it is necessary to be a bit more precise about the 

coordinatization of the space , since there are various possibilities. 

It seems most convenient for the present purposes to view as 

the subspace of the (p+l)-fold tensor product consisting of 

those tensors which are fully symmetric in the last p indices; the first 

index will be written as a superscript and the last p indices as subscripts, 

so an element is a tensor 

(3) 

which is symmetric in the p lower indices. An element is then the 

set of k tensors 

w 

If f is the germ of a complex analytic mapping from the origin to the origin 

in and is given by the n coordinate functions then 

the k-jet will be taken to be the element (!(•) with components (3) 
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given by 

(5) 

This means that the k-jet is actually viewed as a set of derivatives of the 

coordinate functions rather than as a set of Taylor coefficients, just a 

difference of some combinatorial numerical coefficients; but the group 

operation (2) can then be obtained merely by repeated applications of the 

chain rule for differentiation. In particular if and 

it follows readily that 

(6) 

(7) 

(8) 

and so on. Formula (6) is just the usual matrix product; and while the 

ensuing formulas are somewhat more complicated, their general pattern is quite 

transparent. I n d e e d i s a sum of p terms, the q-th of which is 

of the form w h e r e d e n o t e s some poly-

nomial function of the components of the tensors r) . That polynomial is in 
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turn a sum of terms of the f o r m w h e r e are various subsets 

of the indices such tnai; ' is a permutation of 

the indices ; all possible sizes of subsets appear, since 

all such differentiations appear upon iterating the chain rule, and the sum 

must be formally symmetric in the indices . Thus in general 

(9) 

Here denotes a sum over all sets of integers such that 

and 

so on, consisting of of the indices " denotes 

a sum over some set of permutations of the indices . Actually 

consists of the minimal sum needed to ensure the formal symmetry of 

in the lower indices, taking into account the symmetries of the tensors 

and r) ; but that is a finer point than is really needed here, so will not 

be proved. Indeed the general formula is not really needed, and it is an easy 

matter to verify any particular case of the formula. For example in the case 

p = the next case after (8), the formula is 

(10) 
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where is a sum over 6 permutations, is a sum over U permutations, 

and is a sum over 3 permutations; for the expression is already 

symmetric in the indices said and is also symmetric in the indices 

and (since is symmetric), so the summation is only extended 

over a set of permutations in the symmetric group on ^ letters which 

represent cosets of the subgroup describing this symmetry, and similarly in 

the other cases. 

The structure of the Lie group can be described in general 

terms rather easily, without making much use of the preceding detailed form 

of the product operation; but more details will be needed later in 

describing subgroups of . Note that for any integers it is 

possible to consider the of a k-jet , this defines a 

mapping 

which is evidently a surjective group homomorphism. In terms of the represen-

tation (It) of course 

For the special case the kernel of this group homomorphism can be 

identified with the vector space T J indeed the kernel of this homomorphism 
k 

is clearly the point set in the decomposition (l), 

where is the identity matrix (the identity element in being 

and it follows easily from (9) that in this subgroup the 

group operation amounts to addition in the vector space . There thus arises 


