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Preface

There is perhaps nothing which so occupies the middle

position of mathematics as trigonometry.

—J. F. Herbart (1890)

This book is neither a textbook of trigonometry—of which there
are many—nor a comprehensive history of the subject, of which
there is almost none. It is an attempt to present selected topics
in trigonometry from a historic point of view and to show their
relevance to other sciences. It grew out of my love affair with
the subject, but also out of my frustration at the way it is being
taught in our colleges.

First, the love affair. In the junior year of my high school we
were fortunate to have an excellent teacher, a young, vigorous
man who taught us both mathematics and physics. He was a
no-nonsense teacher, and a very demanding one. He would not
tolerate your arriving late to class or missing an exam—and you
better made sure you didn’t, lest it was reflected on your report
card. Worse would come if you failed to do your homework or
did poorly on a test. We feared him, trembled when he repri-
manded us, and were scared that he would contact our parents.
Yet we revered him, and he became a role model to many of
us. Above all, he showed us the relevance of mathematics to
the real world—especially to physics. And that meant learning
a good deal of trigonometry.

He and I have kept a lively correspondence for many years,
and we have met several times. He was very opinionated, and
whatever you said about any subject–mathematical or other-
wise—he would argue with you, and usually prevail. Years af-
ter I finished my university studies, he would let me under-
stand that he was still my teacher. Born in China to a family
that fled Europe before World War II, he emigrated to Israel
and began his education at the Hebrew University of Jerusalem,
only to be drafted into the army during Israel’s war of indepen-
dence. Later he joined the faculty of Tel Aviv University and
was granted tenure despite not having a Ph.D.—one of only two
faculty members so honored. In 1989, while giving his weekly
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lecture on the history of mathematics, he suddenly collapsed
and died instantly. His name was Nathan Elioseph. I miss him
dearly.

And now the frustration. In the late 1950s, following the early
Soviet successes in space (Sputnik I was launched on October
4, 1957; I remember the date—it was my twentieth birthday)
there was a call for revamping our entire educational system,
especially science education. New ideas and new programs sud-
denly proliferated, all designed to close the perceived techno-
logical gap between us and the Soviets (some dared to question
whether the gap really existed, but their voices were swept aside
in the general frenzy). These were the golden years of Ameri-
can science education. If you had some novel idea about how
to teach a subject—and often you didn’t even need that much—
you were almost guaranteed a grant to work on it. Thus was born
the “New Math”—an attempt to make students understand what
they were doing, rather than subject them to rote learning and
memorization, as had been done for generations. An enormous
amount of time and money was spent on developing new ways
of teaching math, with emphasis on abstract concepts such as set
theory, functions (defined as sets of ordered pairs), and formal
logic. Seminars, workshops, new curricula, and new texts were
organized in haste, with hundreds of educators disseminating
the new ideas to thousands of bewildered teachers and parents.
Others traveled abroad to spread the new gospel in developing
countries whose populations could barely read and write.

Today, from a distance of four decades, most educators agree
that the New Math did more harm than good. Our students
may have been taught the language and symbols of set theory,
but when it comes to the simplest numerical calculations they
stumble—with or without a calculator. Consequently, many high
school graduates are lacking basic algebraic skills, and, not sur-
prisingly, some 50 percent of them fail their first college-level
calculus course. Colleges and universities are spending vast re-
sources on remedial programs (usually made more palatable
by giving them some euphemistic title like “developmental pro-
gram” or “math lab”), with success rates that are moderate at
best.

Two of the casualties of the New Math were geometry and
trigonometry. A subject of crucial importance in science and
engineering, trigonometry fell victim to the call for change. For-
mal definitions and legalistic verbosity—all in the name of math-
ematical rigor—replaced a real understanding of the subject.
Instead of an angle, one now talks of the measure of an angle;
instead of defining the sine and cosine in a geometric context—
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as ratios of sides in a triangle or as projections of the unit cir-
cle on the x- and y-axes—one talks about the wrapping function
from the reals to the interval �−1; 1�. Set notation and set lan-
guage have pervaded all discussion, with the result that a rela-
tively simple subject became obscured in meaningless formalism.

Worse, because so many high school graduates are lacking ba-
sic algebraic skills, the level and depth of the typical trigonome-
try textbook have steadily declined. Examples and exercises are
often of the simplest and most routine kind, requiring hardly
anything more than the memorization of a few basic formulas.
Like the notorious “word problems” of algebra, most of these
exercises are dull and uninspiring, leaving the student with a
feeling of “so what?” Hardly ever are students given a chance
to cope with a really challenging identity, one that might leave
them with a sense of accomplishment. For example,

1. Prove that for any number x,

sin x
x
= cos

x

2
cos

x

4
cos

x

8
· : : : :

This formula was discovered by Euler. Substituting x = π=2, us-
ing the fact that cosπ=4 = √2=2 and repeatedly applying the
half-angle formula for the cosine, we get the beautiful formula

2
π
=
√

2
2
·
√

2 +√2
2

·
√

2 +
√

2 +√2
2

· : : : ;

discovered in 1593 by François Viète in a purely geometric way.

2. Prove that in any triangle,

sinα+ sinβ+ sin γ = 4 cos
α

2
cos

β

2
cos

γ

2
;

sin 2α+ sin 2β+ sin 2γ = 4 sinα sinβ sin γ;

sin 3α+ sin 3β+ sin 3γ = −4 cos
3α
2

cos
3β
2

cos
3γ
2
;

tanα+ tanβ+ tan γ = tanα tanβ tan γ:

(The last formula has some unexpected consequences, which we
will discuss in chapter 12.) These formulas are remarkable for
their symmetry; one might even call them “beautiful”—a kind
word for a subject that has undeservedly gained a reputation
of being dry and technical. In Appendix 3, I have collected
some additional beautiful formulas, recognizing of course that
“beauty” is an entirely subjective trait.
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“Some students,” said Edna Kramer in The Nature and Growth
of Modern Mathematics, consider trigonometry “a glorified ge-
ometry with superimposed computational torture.” The present
book is an attempt to dispel this view. I have adopted a his-
torical approach, partly because I believe it can go a long way
to endear mathematics–and science in general—to the students.
However, I have avoided a strict chronological presentation of
topics, selecting them instead for their aesthetic appeal or their
relevance to other sciences. Naturally, my choice of subjects re-
flects my own preferences; numerous other topics could have
been selected.

The first nine chapters require only basic algebra and trig-
onometry; the remaining chapters rely on some knowledge of
calculus (no higher than Calculus II). Much of the material
should thus be accessible to high school and college students.
Having this audience in mind, I limited the discussion to plane
trigonometry, avoiding spherical trigonometry altogether (al-
though historically it was the latter that dominated the subject
at first). Some additional historical material–often biographical
in nature—is included in eight “sidebars” that can be read in-
dependently of the main chapters. If even a few readers will be
inspired by these chapters, I will consider myself rewarded.

My dearest thanks go to my son Eyal for preparing the illus-
trations; to William Dunham of Muhlenberg College in Allen-
town, Pennsylvania, and Paul J. Nahin of the University of New
Hampshire for their very thorough reading of the manuscript; to
the staff of Princeton University Press for their meticulous care
in preparing the work for print; to the Skokie Public Library,
whose staff greatly helped me in locating rare and out-of-print
sources; and last but not least to my dear wife Dalia for con-
stantly encouraging me to see the work through. Without their
help, this book would have never seen the light of day.

Note: frequent reference is made throughout this book to the
Dictionary of Scientific Biography (16 vols.; Charles Coulston
Gillispie, ed.; New York: Charles Scribner’s Sons, 1970–1980).
To avoid repetition, this work will be referred to as DSB.

Skokie, Illinois
February 20, 1997
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PROLOGUE

Ahmes the Scribe, 1650 B.C.

Soldiers: from the summit of yonder pyramids forty

centuries look down upon you.

—Napoleon Bonaparte in Egypt, July 21, 1798

In 1858 a Scottish lawyer and antiquarian, A. Henry Rhind
(1833–1863), on one of his trips to the Nile valley, purchased a
document that had been found a few years earlier in the ruins
of a small building in Thebes (near present-day Luxor) in Up-
per Egypt. The document, known since as the Rhind Papyrus,
turned out to be a collection of 84 mathematical problems deal-
ing with arithmetic, primitive algebra, and geometry.1 After
Rhind’s untimely death at the age of thirty, it came into the
possession of the British Museum, where it is now permanently
displayed. The papyrus as originally found was in the form of
a scroll 18 feet long and 13 inches wide, but when the British
Museum acquired it some fragments were missing. By a stroke
of extraordinary luck these were later found in the possession
of the New-York Historical Society, so that the complete text is
now available again.

Ancient Egypt, with its legendary shrines and treasures,
has always captivated the imagination of European travelers.
Napoleon’s military campaign in Egypt in 1799, despite its
ultimate failure, opened the country to an army of scholars, an-
tiquarians, and adventurers. Napoleon had a deep interest in
culture and science and included on his staff a number of schol-
ars in various fields, among them the mathematician Joseph
Fourier (about whom we will have more to say later). These
scholars combed the country for ancient treasures, taking with
them back to Europe whatever they could lay their hands on.
Their most famous find was a large basalt slab unearthed near
the town of Rashid—known to Europeans as Rosetta—at the
western extremity of the Nile Delta.

The Rosetta Stone, which like the Rhind Papyrus ended up
in the British Museum, carries a decree issued by a council
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of Egyptian priests during the reign of Ptolemy V (195 b.c.)
and is recorded in three languages: Greek, demotic, and hiero-
glyphic (picture script). The English physicist Thomas Young
(1773–1829), a man of many interests who is best known for his
wave theory of light, was the first to decipher the inscription
on the stone. By comparing the recurrence of similar groups
of signs in the three scripts, he was able to compile a prim-
itive dictionary of ancient Egyptian words. His work was com-
pleted in 1822 by the famous French Egyptologist, Jean François
Champollion (1790–1832), who identified the name Cleopatra
in the inscription. Champollion’s epochal work enabled scholars
to decipher numerous Egyptian texts written on papyri, wood,
and stone, among them several scrolls dealing with mathemat-
ics. The longest and most complete of the mathematical texts is
the Rhind Papyrus.

August Eisenlohr, a German scholar, was the first to trans-
late the Rhind Papyrus into a modern language (Leipzig, 1877);
an English translation by Thomas Eric Peet appeared in Lon-
don in 1923.2 But the most extensive edition of the work was
completed in 1929 by Arnold Buffum Chase (1845–1932), an
American businessman whose trip to Egypt in 1910 turned him
into an Egyptologist. It is through this edition that the Rhind
Papyrus became accessible to the general public.3

The papyrus is written from right to left in hieratic (cursive)
script, as opposed to the earlier hieroglyphic or pictorial script.
The text is in two colors—black and red—and is accompanied
by drawings of geometric shapes. It is written in the hand of a
scribe named A’h-mose, commonly known to modern writers as
Ahmes. But it is not his own work; he copied it from an older
manuscript, as we know from his own introduction:

This book was copied in the year 33, in the fourth month of the
inundation season, under the majesty of the king of Upper and
Lower Egypt, ‘A-user-Re’, endowed with life, in likeness to writings
of old made in the time of the king of Upper and Lower Egypt,
Ne-ma’et-Re’. It is the scribe A’h-mose who copies this writing.4

The first king mentioned, ‘A-user-Re’, has been identified as a
member of the Hyksos dynasty who lived around 1650 b.c.; the
second king, Ne-ma’et-Re’, was Amenem-het III, who reigned
from 1849 to 1801 b.c. during what is known as the Middle
Kingdom. Thus we can fix the dates of both the original work
and its copy with remarkable accuracy: it was written nearly four
thousand years ago and is one of the earliest, and by far the most
extensive, ancient mathematical document known to us.5
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The work opens with a grand vision of what the author plans
to offer: a “complete and thorough study of all things, insight
into all that exists, knowledge of all secrets.”6 Even if these
promises are not quite fulfilled, the work gives us an invaluable
insight into early Egyptian mathematics. Its 84 problems deal
with arithmetic, verbal algebra (finding an unknown quantity),
mensuration (area and volume calculations), and even arith-
metic and geometric progressions. To anyone accustomed to
the formal structure of Greek mathematics—definitions, axioms,
theorems, and proofs—the content of the Rhind Papyrus must
come as a disappointment: there are no general rules that apply
to an entire class of problems, nor are the results derived log-
ically from previously established facts. Instead, the problems
are in the nature of specific examples using particular numbers.
Mostly they are “story problems” dealing with such mundane
matters as finding the area of a field or the volume of a gra-
nary, or how to divide a number of loaves of bread among so
many men. Apparently the work was intended as a collection of
exercises for use in a school of scribes, for it was the class of
royal scribes to whom all literary tasks were assigned—reading,
writing, and arithmetic, our modern “three R’s.”7 The papyrus
even contains a recreational problem of no apparent practical
use, obviously meant to challenge and entertain the reader (see
p. 11).

The work begins with two tables: a division table of 2 by all
odd integers from 3 to 101, and a division table of the integers
1 through 9 by 10. The answers are given in unit fractions—
fractions whose numerator is 1. For some reason this was the
only way the Egyptians knew of handling fractions; the one ex-
ception was 2/3, which was regarded as a fraction in its own
right. A great amount of effort and ingenuity was spent in de-
composing a fraction into a sum of unit fractions. For example,
the result of dividing 6 by 10 is given as 1=2 + 1=10, and that of
7 by 10 as 2=3 + 1=30.8 The Egyptians, of course, did not use
our modern notation for fractions; they indicated the reciprocal
of an integer by placing a dot (or an oval in hieroglyphic script)
over the symbol for that integer. There was no symbol for addi-
tion; the unit fractions were simply written next to each other,
their summation being implied.9

The work next deals with arithmetic problems involving sub-
traction (called “completion”) and multiplication, and problems
where an unknown quantity is sought; these are known as aha
problems because they often begin with the word “h” (pro-
nounced “aha” or “hau”), which probably means “the quantity”
(to be found).10 For example, Problem 30 asks: “If the scribe
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says, What is the quantity of which 2=3 + 1=10 will make 10,
let him hear.” The answer is given as 13 + 1=23, followed by a
proof (today we would say a “check”) that this is indeed the
correct answer.

In modern terms, Problem 30 amounts to solving the equation
�2=3+ 1=10�x = 10. Linear equations of this kind were solved by
the so-called “rule of false position”: assume some convenient
value for x, say 30, and substitute it in the equation; the left
side then becomes 23, instead of the required 10. Since 23 must
be multiplied by 10/23 to get 10, the correct solution will be
10/23 times the assumed value, that is, x = 300=23 = 13+ 1=23.
Thus, some 3,500 years before the creation of modern symbolic
algebra, the Egyptians were already in possession of a method
that allowed them, in effect, to solve linear equations.11

Problems 41 through 60 are geometric in nature. Problem 41
simply says: “Find the volume of a cylindrical granary of diam-
eter 9 and height 10.” The solution follows: “Take away 1/9 of
9, namely, 1; the remainder is 8. Multiply 8 times 8; it makes
64. Multiply 64 times 10; it makes 640 cubed cubits.” (The au-
thor then multiplies this result by 15/2 to convert it to hekat, the
standard unit of volume used for measuring grain; one hekat has
been determined to equal 292.24 cubic inches or 4.789 liters.)12

Thus, to find the area of the circular base, the scribe replaced it
by a square of side 8/9 of the diameter. Denoting the diameter
by d, this amounts to the formula A = ��8=9�d�2 = �64=81�d2.
If we compare this to the formula A = πd2=4, we find that the
Egyptians used the value π = 256=81 = 3:16049, in error of only
0.6 percent of the true value. A remarkable achievement!13

G G G

Of particular interest to us are Problems 56–60. They deal with
that most famous of Egyptian monuments, the pyramids, and all
use the word seked (see fig. 1).14 What this word means we shall
soon find out.

Problem 56 says: “If a pyramid is 250 cubits high and the side
of its base 360 cubits long, what is its seked?” Ahmes’s solution
follows:

Take 1/2 of 360; it makes 180. Multiply 250 so as to get 180; it makes
1/2 1/5 1/50 of a cubit. A cubit is 7 palms. Multiply 7 by 1/2 1/5 1/50:

1 7
1/2 3 1/2
1/5 1 1/3 1/15
1/50 1/10 1/25
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Fig. 1. Problem 56 of the Rhind Papyrus.

The seked is 5 1
25 palms [that is, �3+ 1=2� + �1+ 1=3+ 1=15� + �1=10+

1=25� = 5 1
25 ].15

Let us analyze the solution. Clearly 1/2 of 360, or 180, is half
the side of the square base of the pyramid (fig. 2). “Multiply
250 so as to get 180” means to find a number x such that 250
times x equals 180. This gives us x = 180=250 = 18=25. But
Egyptian mathematics required that all answers be given in unit
fractions; and the sum of the unit fractions 1/2, 1/5, and 1/50 is
indeed 18/25. This number, then, is the ratio of half the side of
the base of the pyramid to its height, or the run-to-rise ratio of
its face. In effect, the quantity that Ahmes found, the seked, is
the cotangent of the angle between the base of the pyramid and its
face.16

Two questions immediately arise: First, why didn’t he find the
reciprocal of this ratio, or the rise-to-run ratio, as we would do
today? The answer is that when building a vertical structure, it
is natural to measure the horizontal deviation from the vertical
line for each unit increase in height, that is, the run-to-rise ratio.
This indeed is the practice in architecture, where one uses the

θ

a

a

h

Fig. 2. Square-based
pyramid.



8 P R O L O G U E

term batter to measure the inward slope of a supposedly vertical
wall.

Second, why did Ahmes go on to multiply his answer by 7?
For some reason the pyramid builders measured horizontal dis-
tances in “palms” or “hands” and vertical distances in cubits.
One cubit equals 7 palms. Thus the required seked, 5 1

25 , gives
the run-to-rise ratio in units of palms per cubit. Today, of course,
we think of these ratios as a pure numbers.

Why was the run-to-rise ratio considered so important as
to deserve a special name and four problems devoted to it in
the papyrus? The reason is that it was crucial for the pyramid
builders to maintain a constant slope of each face relative to
the horizon. This may look easy on paper, but once the actual
construction began, the builders constantly had to check their
progress to ensure that the required slope was maintained. That
is, the seked had to be the same for each one of the faces.

Problem 57 is the inverse problem: we are given the seked and
the side of a base and are asked to find the height. Problems
58 and 59 are similar to Problem 56 and lead to a seked of 5 1

4
palms (per cubit), except that the answer is given as 5 palms and
1 “finger” (there being 4 fingers in a palm). Finally, Problems 60
asks to find the seked of a pillar 30 cubits high whose base is 15
cubits. We do not know if this pillar had the shape of a pyramid
or a cylinder (in which case 15 is the diameter of the base); in
either case the answer is 1/4.

The seked found in Problem 56, namely 18/25 (in dimension-
less units) corresponds to an angle of 54◦ 15′ between the base
and face. The seked found in Problems 58–59, when converted
back to dimensionless units, is �5 1

4� x 7 or 3/4, corresponding to
an angle of 53◦ 8′. It is interesting to compare these figures to
the actual angles of some of pyramids at Giza:17

Cheops: 51◦52′

Chephren: 52◦20′

Mycerinus: 50◦47′

The figures are in close agreement. As for the pillar in Problem
60, its angle is much larger, as of course we expect of such a
structure: φ = cot−1�1=4� = 75◦ 58′.

It would be ludicrous, of course, to claim that the Egyptians
invented trigonometry. Nowhere in their writings does there
appear the concept of an angle, so they were in no position to
formulate quantitative relations between the angles and sides
of a triangle. And yet (to quote Chase) “at the beginning of the
18th century b.c., and probably a thousand years earlier, when
the great pyramids were built, the Egyptian mathematicians
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had some notion of referring a right triangle to a similar trian-
gle, one of whose sides was a unit of measure, as a standard.”
We may therefore be justified in crediting the Egyptians with
a crude knowledge of practical trigonometry—perhaps “proto-
trigonometry” would be a better word—some two thousand
years before the Greeks took up this subject and transformed it
into a powerful tool of applied mathematics.

Notes and Sources

1. The papyrus also contains three fragmentary pieces of text unre-
lated to mathematics, which some authors number as Problems 85, 86,
and 87. These are described in Arnold Chase, The Rhind Mathematical
Papyrus: Free Translation and Commentary with Selected Photographs,
Transcriptions, Transliterations and Literal Translations (Reston, VA:
National Council of Teachers of Mathematics, 1979), pp. 61–62.

2. The Rhind Mathematical Papyrus, British Museum 10057 and
10058: Introduction, Transcription, Translation and Commentary (Lon-
don, 1923).

3. Chase, Rhind Mathematical Papyrus. This extensive work is a
reprint, with minor changes, of the same work published by the Math-
ematical Association of America in two volumes in 1927 and 1929. It
contains detailed commentary and an extensive bibliography, as well
as numerous color plates of text material. For a biographical sketch
of Chase, see the article “Arnold Buffum Chase” in the American
Mathematical Monthly, vol. 40 (March 1933), pp. 139–142. Other good
sources on Egyptian mathematics are Richard J. Gillings, Mathemat-
ics in the Time of the Pharaohs (1972; rpt. New York: Dover, 1982);
George Gheverghese Joseph, The Crest of the Peacock: Non-European
Roots of Mathematics (Harmondsworth, U.K.: Penguin Books, 1991),
chap. 3; Otto Neugebauer, The Exact Sciences in Antiquity (1957; rpt.
New York: Dover, 1969), chap. 4; and Baertel L. van der Waerden,
Science Awakening, trans. Arnold Dresden (New York: John Wiley,
1963), chap. 1.

4. Chase, Rhind Mathematical Papyrus, p. 27. The royal title “Re” is
pronounced “ray.”

5. Another important document from roughly the same period is the
Golenishchev or Moscow Papyrus, a scroll about the same length as the
Rhind Papyrus but only three inches wide. It contains 25 problems and
is of poorer quality than the Rhind Papyrus. See Gillings, Mathematics,
pp. 246–247; Joseph, Crest of the Peacock, pp. 84–89; van der Waer-
den, Science Awakening, pp. 33–35; and Carl B. Boyer, A History of
Mathematics (1968; rev. ed. New York: John Wiley, 1989), pp. 22–24.
References to other Egyptian mathematical documents can be found in
Chase, Rhind Mathematical Papyrus, p. 67; Gillings, Mathematics, chaps.
9, 14, and 22; Joseph, Crest of the Peacock, pp. 59–61, 66–67 and 78–79;
and Neugebauer, Exact Sciences, pp. 91–92;
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6. As quoted by van der Waerden, Science Awakening, p. 16, who
apparently quoted from Peet. This differs slightly from Chase’s free
translation (Rhind Mathematical Papyrus, p. 27).

7. Van der Waerden, Science Awakening, pp. 16–17.
8. Note that the decomposition is not unique: 7/10 can also be writ-

ten as 1=5+ 1=2.
9. For a more detailed discussion of the Egyptians’ use of unit frac-

tions, see Boyer, History of Mathematics, pp. 15–17; Chase, Rhind Math-
ematical Papyrus, pp. 9–17; Gillings, Mathematics, pp. 20–23; and van
der Waerden, Science Awakening, pp. 19–26.

10. Chase, Rhind Mathematical Papyrus, pp. 15–16; van der Waerden,
Science Awakening, pp. 27–29.

11. See Gillings, Mathematics, pp. 154–161.
12. Chase, Rhind Mathematical Papyrus, p. 46. For a discussion of

Egyptian measures, see ibid., pp. 18–20; Gillings, Mathematics, pp. 206–
213.

13. The Egyptian value can be conveniently written as �4=3�4.
Gillings (Mathematics, pp. 139–153) gives a convincing theory as to
how Ahmes derived the formula A = ��8=9�d�2 and credits him as be-
ing “the first authentic circle-squarer in recorded history!” See also
Chase, Rhind Mathematical Papyrus, pp. 20–21, and Joseph, Crest of
the Peacock, pp. 82–84 and 87–89. Interestingly the Babylonians, whose
mathematical skills generally exceeded those of the Egyptians, sim-
ply equated the area of a circle to the area of the inscribed regular
hexagon, leading to π = 3; see Joseph, Crest of the Peacock, p. 113.

14. Pronounced “saykad” or “sayket.”
15. Chase, Rhind Mathematical Papyrus, p. 51.
16. See, however, ibid., pp. 21–22 for an alternative interpretation.
17. Gillings, Mathematics, p. 187.



Recreational Mathematics in
Ancient Egypt

Problem 79 of the Rhind Papyrus says (fig. 3):1

A house inventory: houses 7

1 2,801 catsa 49

2 5,602 mice 343

4 11,204 spelt 2,301b

hekat 16,807

Total 19,607 Total 19,607
aThe Egyptian word for “cat” is myw; when the missing vowels are inserted, this
becomes meey’a uw.
bObviously Ahmes made a mistake here. The correct entry should be 2,401.

What is the meaning behind this cryptic verse? Clearly we
have before us a geometric progression whose initial term and
common ratio are both 7, and the scribe shows us how to find its
sum. But as any good teacher would do to break the monotony
of a routine math class, Ahmes embellishes the exercise with a
little story which might be read like this: There are seven houses;
in each house there are seven cats; each cat eats seven mice;
each mouse eats seven ears of spelt; each ear of spelt produces
seven hekat of grain. Find the total number of items involved.

The right hand column clearly gives the terms of the pro-
gression 7; 72; 73; 74; 75 followed by their sum, 19,607 (whether
the mistaken entry 2,301 was Ahmes’s own error in copying
or whether it had already been in the original document, we
shall never know). But now Ahmes plays his second card: in the
left-hand column he shows us how to obtain the answer in a
shorter, “clever” way; and in following it we can see the Egyp-
tian method of multiplication at work. The Egyptians knew that
any integer can be represented as a sum of terms of the ge-
ometric progression 1; 2; 4; 8; : : : ; and that the representation
is unique (this is precisely the representation of an integer in
terms of the base 2, the coefficients, or “binary digits,” being 0
and 1). To multiply, say, 13 by 17, they only had to write one of
the multipliers, say 13, as a sum of powers of 2, 13 = 1+ 4+ 8,


