Microbiological Examination Methods of Food and Water

A Laboratory Manual

2nd Edition

MICROBIOLOGICAL EXAMINATION METHODS OF FOOD AND WATER

MICROBIOLOGICAL EXAMINATION METHODS OF FOOD AND WATER

A Laboratory Manual

Second Edition

NEUSELY DA SILVA, MARTA HIROMI TANIWAKI, VALÉRIA CHRISTINA AMSTALDEN JUNQUEIRA, NELIANE FERRAZ DE ARRUDA SILVEIRA, MARGARETE MIDORI OKAZAKI & RENATO ABEILAR ROMEIRO GOMES

Institute of Food Technology – ITAL, Campinas, SP, Brazil

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business A BALKEMA BOOK Originally published in Portuguese as: 'Manual de Metodos de Análise Microbiológica de Alimentos e Água ©2010, Livraria Varela, Sao Paulo, Brazil

English edition 'Microbiological Examination Methods of Food and Water: A Laboratory Manual', CRC Press/Balkema, Taylor & Francis Group, an informa business ©2013 Taylor & Francis Group, London, UK

Translation to English: Paul van Dender†

CRC Press/Balkema is an imprint of the Taylor & Francis Group, an informa business

© 2019 Taylor & Francis Group, London, UK

Typeset by Apex CoVantage, LLC

All rights reserved. No part of this publication or the information contained herein may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, by photocopying, recording or otherwise, without written prior permission from the publisher.

Although all care is taken to ensure integrity and the quality of this publication and the information herein, no responsibility is assumed by the publishers nor the author for any damage to the property or persons as a result of operation or use of this publication and/or the information contained herein.

Published by: CRC Press/Balkema

Schipholweg 107c, 2316 XC Leiden, The Netherlands e-mail: Pub.NL@taylorandfrancis.com www.crcpress.com - www.taylorandfrancis.com

Library of Congress Cataloging-in-Publication Data

Names: Šilva, Neusely da., author.

Title: Microbiological examination methods of food and water : a laboratory manual / Neusely da Silva, Marta Hiromi Taniwaki, Valeria Christina Amstalden Junqueira, Neliane Ferraz de Arruda Silveira, Margarete Midori Okazaki & Renato Abeilar Romeiro Gomes.

Other titles: Manual de metodos de analise microbiologica de alimentos e agua. English Description: Second edition. | Leiden, The Netherlands ; Boca Raton : CRC Press/Balkema, [2018] | Includes bibliographical references and index.

Identifiers: LCCN 2018034220 (print) | LCCN 2018035352 (ebook) | ISBN 9781315165011 (ebook) |

ISBN 9781138091887 (hardcover : alk. paper) | ISBN 9781138057111 (pbk. : alk. paper) Subjects: MESH: Bacteriological Techniques—methods | Food Microbiology—methods | Water Microbiology | Laboratory Manuals

Classification: LCC QR115 (ebook) | LCC QR115 (print) | NLM QW 25.5.B2 | DDC 579/.16-dc23 LC record available at https://lccn.loc.gov/2018034220

ISBN: 978-1-138-05711-1 (Pbk) ISBN: 978-1-138-09188-7 (Hbk) ISBN: 978-1-315-16501-1 (eBook)

Table of contents

About the authors X							
Pre	Preface XX List of tables XX						
Lis							
				XXXV			
Lis	st of figures XXX						
1	1 Sampling, transport and storage of samples for analysis						
	Revisi	ion histor	y	1			
	1.1	Introdu	iction	1			
		1.1.1	Lot	1			
		1.1.2	Lot sample and sample unit	1			
		1.1.3	Lot sampling plans	2			
		1.1.4	Analytical unit	2 2 2			
	1.2	Collect	ing samples for analysis	2			
		1.2.1	Selection and preparation of containers for the sampling of foods contained in				
			non-individual packages	3			
		1.2.2	Procedures for the sampling of foods contained in non-individual packages	3			
		1.2.3	Sampling of foods involved in foodborne diseases	4			
		1.2.4	Sampling of water	4			
1.3 Transportation and storage of samples until analysis				4 5 5 5 5			
		1.3.1	Foods with low water activity	5			
		1.3.2	Frozen foods	5			
		1.3.3	Refrigerated foods	5			
		1.3.4	Commercially sterile foods in sealed packages	6			
		1.3.5	Water samples	6			
	1.4	Referen	ices	7			
2	Prepa	ration of	f samples for analysis	9			
_	_	ion histor		9			
	2.1	Introdu	•	9			
	2.2		genization of samples and withdrawal of the analytical unit	10			
		2.2.1	Procedure for homogenization and withdrawal of analytical units from				
			liquid products	11			
		2.2.2	Procedure for homogenization and withdrawal of analytical units from solid				
			or concentrated liquid products	11			
		2.2.3	Procedure for withdrawing the analytical unit using the surface swabbing technique	12			
			2.2.3.1 Swab sampling	12			
			2.2.3.2 Sponge swab sampling	13			
		2.2.4	Procedure for withdrawing the analytical unit using the surface washing technique	13			
			2.2.4.1 Procedure for washing poultry carcasses	13			
			2.2.4.2 Procedure for washing other foods	13			
			2.2.4.3 Procedure for washing packages	14			
		2.2.5	Keeping of counter-samples	14			
	2.3	Prepara	ntion of the first dilution of the analytical unit	14			

	2.3.1	1 Diluents for presence/absence tests	14
	2.3.2		14
	2.3.3		14
	2.3.4		15
	2.3.5		16
	2.3.0		16
	2.3.7		
	2.3.7	liquid samples	16
	2.3.8		10
	2.3.0	swabbing or surface washing	16
2.4	Seria	Il decimal dilution of the sample	16
2.5		rences	17
		Procedures for homogenizing the content and withdrawal of the analytical unit of	- /
1 11110/1		rent types of foods	18
		Powdered products	18
		Pasty or ground products	18
		Yogurts with fruit pieces	18
		Cheeses	18
		Very hard food products	18
		Pieces of solid foods	18
		Eggs in the shell	18
		Meat cuts for analysis of non-surface contamination	19
	'	Bivalves	19
		Gastropods	19
	,	Whole and sliced cephalopods	19
	<i>,</i>	Whole crustaceans such as crabs	19
		Sea urchins	19
		Whole fresh fish	19
Anney	,	Special cases in which there are variations in the analytical unit and/or dilution	1)
1 mmex		or diluents recommended for the preparation of the first dilution of samples of	
		rent types of foods	19
		Liquids with low levels of contamination	19
		Fatty foods	20
		Lump-forming powders	20
		Thickeners or products containing natural antimicrobial compounds	20
		Gelatin	20
	· ·	Acid products	20
		Fine flours or meals, cereal grains, animal feed	20
	0	Cocoa and chocolate	21
	· ·	Egg white	21
		Fermented products containing live microorganisms intended for the	21
	,	quantification of the contaminating microflora (except probiotics)	21
		Powdered dairy products (dried milk, dried sweet whey, dried acid whey,	21
		dried buttermilk, lactose)	21
		Butter	21
		Frozen dairy products and ice cream	21
		Cheeses	21
	<i>'</i>		22
		Fermented dairy products Casein and caseinates	22
	1		22
	q)	Rennet casein difficult to dissolve	LL

		r)	Powdered	d milk-	based infant foods	22
		s)	Custard,	dessert	s and sweet cream (pH > 5)	23
		t)	Mollusks	(bivalv	ves and gastropods) and sea urchins	23
		u)	Sea cucu	mbers ((Holothuroidea) and tunicates	23
3	_	-		chniqu	es for enumeration of microorganisms	25
	Revisio		•			25
	3.1		oduction	1.		25
	3.2		plate tec	-		26
		3.2.1			equired for the analyses	26
	2.2	3.2.2		cedure		26
	3.3	-	ad plate t	-		27 28
		3.3.1 3.3.2		cedure	equired for the analyses	28 28
	3.4		p plate te			20 29
	J.4	3.4.1			equired for the analyses	29 29
		3.4.2		cedure		29
	3.5		nbrane fil			30
	5.5	3.5.1			equired for the analyses	30
		3.5.2		cedure		30
	3.6				nd calculating results according to APHA	31
		3.6.1	-		calculations	31
				.1.1	Rules for calculating the pour plate results in the standard situation	32
			3.6	.1.2	Rules for calculating the pour plate results in unusual situations	33
			3.6	.1.3	Calculating the pour plates results for samples prepared by	
					the surface swabbing technique (swabs or sponges)	35
			3.6	.1.4	Calculating the pour plate results of samples prepared by the surface	
					washing technique	36
		3.6.2	1	-	te calculations	36
		3.6.3			e calculations	36
		3.6.4			e filtration calculations	36
	3.7				colonies and calculating results according to ISO 7218:2007/Amd.1:2013	37
		3.7.1			neral requirements for the calculation of results	37
					ber of Petri dishes per dilution	37
					num and minimum acceptable number of colonies on counting plates	37
			c)		nal dilution of the number of colonies	38
			d)		table variation between counts of the pair of plates of a duplicate	38
		270	e)		ntation of the result Iles for the calculation of results	38 38
		3.7.2 3.7.3			calculation in unusual situations	58 41
	3.8		rences			41
	-			imits of	f agreement for sums of colony counts of two parallel Petri dishes or	-15
	1 milex				one Petri dish per dilution step over two 10-fold dilution steps	
					f 99% per comparison) (ISO 14461-2:2005)	44
	Annex		<u> </u>	•	f agreement for colony counts of two parallel Petri dishes	
					f 99% per comparison) (ISO 14461-2:2005)	45
4	Basic t	techni	iques for	micro	bial enumeration by the most probable number (MPN) method	47
	Revisio					47
	4.1		oduction			47

	4.2	Multiple dilution test			48
		4.2.1		equired for the analyses	49
		4.2.2	Procedure		49
	4.3	Single di	ilution test		50
		4.3.1		equired for the analyses	50
		4.3.2	Procedure		50
	4.4	Calculat	ion of the re	sults	51
		4.4.1	Calculating	g the results of the multiple dilution test	51
			4.4.1.1	Calculation using the MPN tables (for decimal dilutions)	51
			4.4.1.2	Calculating using the Thomas formula (for non-decimal dilutions)	52
			4.4.1.3	Calculating the results of the samples prepared by the surface swabbing	
				or surface washing techniques	52
		4.4.2	Calculating	g the results of the single dilution test	53
			4.4.2.1	Rules for calculations performed using Table MPN-3	53
			4.4.2.2	Calculation for samples prepared by the surface swabbing or surface	
				washing techniques	53
	4.5	Reference	ces		53
	Annex	4.1 – MI	PN tables		54
5	Basic t	echnique	es for the de	tection of the presence/absence of microorganisms	57
		n history		¥ 0	57
	5.1	Introduc			57
		5.1.1	Enrichmer	nt	57
			5.1.1.1	Pre-enrichment	58
			5.1.1.2	Selective enrichment	58
		5.1.2	Isolation in	n solid media (selective differential plating)	58
		5.1.3	Confirmat		59
			5.1.3.1	Catalase test	59
			5.1.3.2	Citrate test	59
			5.1.3.3	Amino acid decarboxylation tests	59
			5.1.3.4	Phenylalanine deaminase test	59
			5.1.3.5	Carbohydrate fermentation tests	59
			5.1.3.6	Indole test	60
			5.1.3.7	Malonate test	60
			5.1.3.8	Oxidation/fermentation (O/F) test	60
			5.1.3.9	Oxidase test	61
			5.1.3.10	Nitrate reduction test	61
			5.1.3.11	Urease test	61
			5.1.3.12	Methyl red (MR) test	61
			5.1.3.13	Voges-Proskauer (VP) test	62
	5.2	Material	required for	the analyses	62
	5.3	Procedu	re		62
		5.3.1	Pre-enricht	ment	62
		5.3.2	Selective er	nrichment	62
		5.3.3	Differentia		62
			5.3.3.1	Streak plating technique for obtaining pure cultures	62
		5.3.4	Selection o	of colonies and subculturing of cultures for confirmation	63
			5.3.4.1	Technique for the subculturing of pure cultures starting from colonies	
				isolated from plates	63

		5.3.5	Confirmat	ion tests	63			
			5.3.5.1	Gram staining (Hucker's method)	63			
			5.3.5.2	(new) KOH test for confirmation of doubtful Gram staining				
				(Gregersen, 1978)	64			
			5.3.5.3	Spore staining (Schaeffer-Fulton's method)	64			
			5.3.5.4	Spore staining (Ashby's method)	64			
			5.3.5.5	Wet mounts for direct (fresh) microscopic observation	64			
	5.4	Referenc	es		64			
6		oic plate co			65			
		on history			65			
	6.1	Introduc			65			
		6.1.1	<u> </u>	tance and significance of the total aerobic mesophilic count	65			
		6.1.2		of psychrotrophs	66			
	()	6.1.3		s on methods of analysis	67			
	6.2			method APHA 8:2015 for aerobic mesophilic bacteria in foods	(0			
		and wate			69 69			
		6.2.1 6.2.2	Procedure	equired for analysis				
		0.2.2	6.2.2.1	Pour plate technique	70 70			
			6.2.2.1	Spread plate technique	70			
			6.2.2.3	Membrane filtration technique	71			
	6.3	(revised)		AOAC official methods for aerobic mesophilic bacteria in foods	73			
	0.5	(ievised) 6.3.1		equired for analysis	73			
		6.3.2	Procedure		73			
	6.4			method APHA 13.61:2015 for aerobic psychrotrophic bacteria	10			
		in foods			73			
		6.4.1	Material re	equired for analysis	74			
		6.4.2	Procedure	1	74			
	6.5	(new) Pla	new) Plate count methods ISO 4833-1:2013 and ISO 4833-2:2013/Corr.1:2014 for					
		aerobic mesophilic bacteria in foods						
		6.5.1	-	equired for analysis	75			
		6.5.2	Procedure		75			
	6.6	(new) Pla	ate count me	ethod BAM/FDA:2001 for aerobic mesophilic bacteria in foods	77			
		6.6.1	Material re	equired for analysis	77			
		6.6.2	Procedure		77			
	6.7	Referenc	es		79			
7	Yeasts	and mold	ls		81			
		on history			81			
	7.1	Introduc			81			
		7.1.1		molds in foods	81			
		7.1.2		s on methods of analysis for total yeast and mold counts	82			
		7.1.3	Psychrotro		82			
		7.1.4	Heat-resist		84			
		7.1.5		e-resistant yeasts (PRY)	84			
			7.1.5.1	Zigosaccharomyces bailii	85			
			7.1.5.2	Zygosaccharomyces bisporus	85			
			7.1.5.3	Schizosaccharomyces pombe	85			

			7.1.5.4	Candida krusei	85	
			7.1.5.5	Pichia membranaefaciens	86	
		7.1.6	Osmophili	c yeasts	86	
			7.1.6.1	Zygosaccharomyces rouxii	86	
		7.1.7	Direct plat	ing method ICFM for particulate foods	87	
	7.2.A	Plate cou	nt method A	APHA 21:2015 for yeasts and molds in foods	87	
		7.2.A.1	Material re	equired for analysis	87	
		7.2.A.2	Procedure		87	
	7.2.B	(new) Pla	te count me	ethods ISO 21527-1:2008 and ISO 21527-2:2008 for yeasts		
		and mole	ls in foods		90	
		7.2.B.1		equired for analysis	90	
		7.2.B.2	Procedure		90	
	7.2.C			ethod BAM/FDA:2001 for yeasts and molds in foods	92	
				equired for analysis	92	
			Procedure		92	
	7.3			method APHA 13:2015 for psychrotrophic fungi in foods	93	
		7.3.1		equired for analysis	93	
	_ /	7.3.2	Procedure		93	
	7.4			method APHA 22.4:2015 for heat-resistant molds in foods	95	
				equired for analysis	95	
		7.4.2	Procedure		95	
	7.5			009) methods for preservative-resistant yeasts in foods	97	
		7.5.1		equired for analysis	97	
		7.5.2	Procedure		97	
			7.5.2.1	Presence/absence method	98	
	7((7.5.2.2	Direct plate count method	99	
	7.6			filtration or plate count methods APHA 17.3:2015 for osmophilic	99	
		yeasts in 7.6.1		pavirad for analyzia	99 99	
		7.6.2	Procedure	equired for analysis	99 99	
		/.0.2	7.6.2.1	Membrane filtration method	99 99	
			7.6.2.2	Plate count method	100	
	7.7	(new) Di			100	
	/•/	(new) Direct plating method Hocking <i>et al.</i> (2006) for percentage of fungal infection in particulate foods				
				equired for analysis	100 101	
		7.7.2	Procedure		101	
	7.8	Reference			101	
8	Entero	bacteriac	eae		103	
	Revisio	on history			103	
	8.1	Introduct	tion		103	
		8.1.1	Taxonomy		103	
		8.1.2		s on methods of analysis	104	
	8.2	(revised)	Plate count	method APHA 9.62:2015 for Enterobacteriaceae in foods	105	
		8.2.1	Material re	equired for analysis	105	
		8.2.2	Procedure		105	
	8.3			sence (P/A) or most probable number (MPN) method APHA 9.61:2015		
			obacteriaceae		106	
		8.3.1		equired for analysis	106	
		8.3.2	Procedure		106	

	8.4	(revised)	AOAC official method 2003.1 (Petrifilm [™]) for <i>Enterobacteriaceae</i> in selected foods	108			
		8.4.1	Material required for analysis	108			
		8.4.2	Procedure	108			
	8.5		ate count method ISO 21528-2:2017 for Enterobacteriaceae in foods	109			
		8.5.1	Material required for analysis	109			
		8.5.2	Procedure	109			
	8.6		esence/absence (P/A) or most probable number (MPN) method ISO 21528-1:2017				
			<i>obacteriaceae</i> in foods	111			
		8.6.1	Material required for analysis	111			
		8.6.2	Procedure	111			
	8.7	Reference	es	113			
9	Total a	und therm	otolerant coliforms and <i>Escherichia coli</i>	115			
		on history		115			
	9.1	Introduc	tion	115			
		9.1.1	Definition of total coliforms	115			
		9.1.2	Definition of thermotolerant coliforms	116			
		9.1.3	E. coli	116			
		9.1.4	Use as indicators	116			
		9.1.5	Comments on methods of analysis	117			
	9.2	(revised)	Most probable number (MPN) method APHA 9:2015 for total/thermotolerant				
		coliforms	s and <i>E. coli</i> in foods	119			
		9.2.1	Material required for analysis	119			
		9.2.2	Procedure	120			
	9.3		bable number (MPN) methods ISO 4831:2006 and ISO 7251:2005 for total				
			s and presumptive <i>E. coli</i> in foods	123			
		9.3.1	Material required for analysis	123			
		9.3.2	Procedure	123			
	9.4		Most probable number (MPN) method APHA/AWWA/WEF:2012 for total				
			motolerant coliforms and <i>E. coli</i> in water	126			
		9.4.1	Material required for analysis	126			
		9.4.2	Procedure	126			
	9.5		ost probable number (MPN) method BAM/FDA:2017 for total/thermotolerant	1.00			
			s and <i>E. coli</i> in foods	128			
			Material required for analysis	128			
	0.(9.5.2	Procedure	129			
	9.6	· /	Plate count method APHA:2015 for total coliforms in foods	130			
		9.6.1 9.6.2	Material required for analysis Procedure	130			
	0.7			130			
	9.7		embrane filtration method ISO 9308-1:2014/Amd.1:2016 for total coliforms <i>ili</i> in water	132			
		9.7.1	Material required for analysis	132			
		9.7.2	Procedure	132			
	9.8	Reference		132			
10	0. 1	1		135			
10		Staphylococcus aureus					
		on history	tion	135			
	10.1	Introduc		135			
		10.1.1	Taxonomy	135			
			10.1.1.1 The genus Staphylococcus	135			

			10.1.1.2	The coagulase-positive staphylococci	136
			10.1.1.3	Staphylococcus aureus	137
		10.1.2	Epidemiolo	gy	137
			10.1.2.1	Staphylococcus aureus enterotoxins	137
			10.1.2.2	Staphylococcal food poisoning	138
		10.1.3	Comments	on methods of analysis	139
	10.2	(revised)	Plate count r	method APHA 39.63:2015 for coagulase-positive staphylococci	
			hylococcus aur		140
		10.2.1	Material rec	quired for analysis	140
		10.2.2	Procedure		140
	10.3	(revised)	Most probab	ble number (MPN) method APHA39.62:2015 for coagulase-positive	
		staphylo	cocci and <i>Sta</i> j	phylococcus aureus in foods	143
		10.3.1	Material rec	quired for analysis	143
		10.3.2	Procedure	• •	143
	10.4	(revised)	Presence/abs	ence method APHA 39.61:2015 for coagulase-positive staphylococci	
		and Stap	hylococcus aur	<i>reus</i> in foods	145
		10.4.1	Material rec	quired for analysis	145
		10.4.2	Procedure	• •	145
	10.5	Referenc	es		147
11	Bacill	us cereus			149
		on history			149
	11.1	Introduc	tion		149
		11.1.1	Taxonomy		149
			11.1.1.1	Bacillus cereus group	149
				Bacillus anthracis	150
				Bacillus thuringiensis	150
				Bacillus mycoides	150
				Bacillus pseudomycoides	151
				Bacillus weihenstephanensis	151
				Bacillus cytotoxicus	151
				New species	151
			11.1.1.2	Bacillus cereus	151
		11.1.2	Epidemiolo		152
			*	on methods of analysis	152
	11.2			method APHA 31.61:2015 for <i>Bacillus cereus</i> in foods	153
		11.2.1		quired for analysis	153
		11.2.2	Procedure	quired for unarysis	154
	11.3			ble number (MPN) method APHA 31.62:2015 for Bacillus cereus in foods	157
	11.0	11.3.1	*	quired for analysis	157
		11.3.2	Procedure	quired for unarysis	157
	11.4	Referenc			159
12	Claster	idiaan taa	friman		161
14		idium per on history	Jringens		161
	12.1	Introduc	tion		161
	14,1	12.1.1	Taxonomy		161
		12.1.1	•	1077 -	161
		14,1,4	Epidemiolo 12.1.2.1	clostridium perfingens type A food poisoning	162
			12.1.2.1	Clostridium perfringens type C necrotic enteritis	162
		12.1.3		on methods of analysis	163
		14.1.9	Comments	Un memory UI allarysis	100

	12.2	(revised) 12.2.1		method APHA 33.72:2015 for <i>Clostridium perfringens</i> in foods quired for analysis	164 164
		12.2.1	Procedure	quired for analysis	165
	12.3			sence method APHA 33.71:2015 for Clostridium perfringens	10)
	12.0	in foods			167
		12.3.1		quired for analysis	167
		12.3.2	Procedure	quired for unity one	167
	12.4			thod BAM/FDA:2001 for <i>Clostridium perfringens</i> in foods	169
	1211	12.4.1		quired for analysis	169
		12.4.2	Procedure	1	169
	12.5			thod ISO 7937:2004 for <i>Clostridium perfringens</i> in foods	171
		12.5.1		quired for analysis	171
		12.5.2	Procedure	1 2	172
	12.6			ration method ISO 14189:2013 for <i>Clostridium perfringens</i> in water	173
		12.6.1		quired for analysis	173
		12.6.2	Procedure	1 ,	173
	12.7	Reference	ces		175
13	Entero				177
		on history			177
	13.1	Introduc			177
		13.1.1	Taxonomy		177
			13.1.1.1	Enterococci	178
			12112	Description of the genus <i>Enterococcus</i>	178
			13.1.1.2	Fecal streptococci	179
			12112	Description of the genus <i>Streptococcus</i>	180
		1212	13.1.1.3	Differentiation of enterococci from group bovis fecal streptococci	180
	12.2	13.1.2		on methods of analysis	180
	13.2	(revised) in foods		method APHA 10.5:2015 for enterococci and fecal streptococci	181
		13.2.1		aviral for analysis	181
		13.2.1	Procedure	quired for analysis	181
	13.3			ble number (MPN) method APHA 10.2:2015 for enterococci and fecal	102
	15.5		occi in foods	Se number (wit iv) method Al 11/ 10.2.2015 for enterococci and reca	183
				quired for analysis	183
		13.3.2	Procedure	quired for analysis	183
	13.4			filtration method APHA/AWWA/WEF 9230C.3c:2012 for enterococci	105
	13.1		l streptococci		184
		13.4.1		quired for analysis	184
		13.4.2	Procedure	quired for unaryour	184
	13.5			method ISO 7899-2:2000 for intestinal enterococci in water	186
	-0.9	13.5.1		quired for analysis	186
		13.5.2	Procedure	1	186
	13.6	Reference			186
14		acid bact			189
		on history			189
	14.1	Introduc			189
		14.1.1	Carnobacte		189
		14.1.2	Enterococc		191
		14.1.3	Fructobacil	lus	191

		14.1.4	Lactobacillus	192
		14.1.5	Lactococcus	192
		14.1.6	Leuconostoc	193
		14.1.7	Oenococcus	193
		14.1.8	Pediococcus	194
		14.1.9	Streptococcus	194
		14.1.10	Tetragenococcus	195
		14.1.11	Weissella	195
		14.1.12	Comments on methods of analysis	195
	14.2	(revised)	Plate count method APHA 19.52:2015 for lactic acid bacteria in foods	198
		14.2.1	Material required for analysis	198
		14.2.2	Procedure	198
	14.3		MPN methods APHA 19.526:2015 and APHA 19.524:2015	
			acid bacteria in foods	200
		14.3.1	Material required for analysis	200
		14.3.2	Procedure using MRS broth	200
		14.3.3	Procedure using Rogosa SL broth	202
	14.4	· ,	ate count method ISO 15214:1998 for lactic acid bacteria in foods	202
		14.4.1	Material required for analysis	202
	1/5	14.4.2	Procedure	202
	14.5	Reference	es	205
15	Camp	ylobacter		207
	Revisio	on history		207
	15.1	Introduc	tion	207
		15.1.1	Taxonomy	207
			15.1.1.1 Campylobacter	207
			15.1.1.2 Thermotolerant Campylobacter	209
		15.1.2	Epidemiology	209
	15.2		Presence/absence method ISO 10272-1:2017 for thermotolerant Campylobacter	
		in foods		210
		15.2.1	Material required for analysis	210
		15.2.2	Procedure	210
	15.3		ate count method ISO 10272-2:2017 for thermotolerant <i>Campylobacter</i> in foods	213
			Material required for analysis	214
	15 /	15.3.2	Procedure	214
	15.4	Reference	es	216
16	Crono	bacter		217
	Revisio	on history		217
	16.1	Introduc	tion	217
		16.1.1	Taxonomy	217
			Cronobacter Iversen et al. (2008)	218
		16.1.2	Epidemiology	219
		16.1.3	Codex Alimentarius microbiological criteria for Cronobacter spp. in powdered	
			infant formulae	219
		16.1.4	Comments on methods of analysis	220
	16.2	· ,	Presence/absence method ISO 22964:2017 for Cronobacter in foods	220
		16.2.1	Material required for analysis	220
		16.2.2	Procedure	221

	16.3	(new) Presence/absence method BAM/FDA:2012 for <i>Cronobacter</i> in dehydrated powdered				
		infant fo			223	
		16.3.1		equired for analysis	223	
		16.3.2	Procedure		223	
	16.4	Referenc	es		225	
17	Pseudo				227	
		on history			227	
	17.1	Introduc			227	
		17.1.1	Taxonomy		227	
			17.1.1.1	Pseudomonas	227	
				<i>Pseudomonas</i> in treated water intended for human consumption	229	
				<i>Pseudomonas</i> in mineral water and natural water	230	
			17112	<i>Pseudomonas</i> in foods Shewanella	230 230	
			17.1.1.2		230 231	
			17.1.1.3	<i>Shewanella putrefaciens</i> (synonym <i>Pseudomonas putrefaciens</i>) Janthinobacterium	231	
			1/.1.1.J	Janthinobacterium lividum (synonym Pseudomonas mephitica)	231	
			17.1.1.4	Stenotrophomonas	232	
			1/,1,1,1	Stenotrophomonas maltophilia (synonym Pseudomonas maltophilia)	232	
	17.2	(revised)	MPN meth	od APHA/AWWA/WEF 9213:2012 for <i>Pseudomonas aeruginosa</i>	252	
		in water			233	
		17.2.1		equired for analysis	233	
		17.2.2	Procedure		233	
	17.3			method ISO 16266:2006 for Pseudomonas aeruginosa in water	234	
		17.3.1		equired for analysis	234	
		17.3.2	Procedure		234	
	17.4			ISO 13720:2010 for presumptive <i>Pseudomonas</i> spp. in meat		
			t products		237	
		17.4.1		equired for analysis	237	
	175	17.4.2	Procedure		237	
	17.5			ISO 11059:2009 for <i>Pseudomonas</i> spp. in milk and milk products	237	
		17.5.1 17.5.2	Procedure	equired for analysis	237 238	
	17.6	Referenc			238 240	
10	T •				243	
18	Listeria monocytogenes					
		on history Introduc	tion		243 244	
	18.1	18.1.1			244 244	
		18.1.1	Taxonomy Epidemiol		244 246	
		18.1.2		s on methods of analysis	240	
	18.2			ence or MPN method BAM/FDA:2017 for <i>Listeria monocytogenes</i> in foods	240	
	10.2	18.2.1		equired for analysis	248	
		18.2.2	Procedure		248	
			18.2.2.1	Presence/absence test and MPN count	250	
			18.2.2.2	Direct plate count	253	
	18.3	(revised)		sence method USDA/MLG:2017 for <i>Listeria monocytogenes</i> in foods	254	
		18.3.1		equired for analysis	254	
		18.3.2	Procedure		254	

	18.4	(revised) Plate count method ISO 11290-2:2017 for Listeria spp. and Listeria	
		monocytogenes in foods	257
		18.4.1 Material required for analysis	257
		18.4.2 Procedure	257
	18.5	(revised) Presence/absence method ISO 11290-1:2017 for Listeria spp. and Listeria	
		monocytogenes in foods	260
		18.5.1 Material required for analysis	260
		18.5.2 Procedure	260
	18.6	References	262
19	Salmo	mella	265
		on history	265
	19.1	Introduction	266
	-	19.1.1 Taxonomic classification of <i>Salmonella</i>	266
		19.1.2 Serological classification of <i>Salmonella</i>	268
		Somatic ("O") antigens	268
		Capsular (surface or envelope) antigens	268
		Flagellar ("H") antigens	269
		The White-Kauffmann-Le Minor system	269
		Salmonella serovar nomenclature	269
		Serovars most commonly found	269
		19.1.3 Biochemical characteristics of <i>Salmonella</i>	270
		19.1.4 Epidemiology	270
		19.1.5 Comments on traditional methods used for the examination of <i>Salmonella</i>	272
		19.1.6 Comments on alternative methods for the analysis of <i>Salmonella</i>	274
		19.1.7 Composite samples for analysis	274
	19.2	(revised) Presence/absence method ISO 6579-1:2017 for <i>Salmonella</i> in foods	274
	- /	19.2.1 Material required for analysis	277
		19.2.2 Procedure	277
	19.3	(revised) Presence/absence method BAM/FDA:2018 for Salmonella in foods	282
	1710	19.3.1 Material required for analysis	282
		19.3.2 Procedure	282
	19.4	(revised) Presence/absence method MLG/USDA:2017 for <i>Salmonella</i> in foods	292
	- / / -	19.4.1 Material required for analysis	292
		19.4.2 Procedure	292
	19.5	References	296
20	Vihrio	o cholerae and Vibrio parahaemolyticus	299
20		on history	299
	20.1	Introduction	300
	20.1	20.1.1 Taxonomy	300
		20.1.2 Epidemiology	305
		20.1.2.1 <i>V. cholerae</i>	305
		20.1.2.2 V. parahaemolyticus	305
		20.1.2.3 V. vulnificus	305
		20.1.3 Comments on methods of analysis	306
	20 2 A	A Presence/absence method BAM/FDA:2004 for <i>Vibrio cholerae</i> in foods	300 307
	20.2.11	20.2.A.1 Material required for analysis	307 307
		20.2.A.2 Procedure	307
			507

in foods and water 390 20.2.B.1 Material required for analysis 310 20.3.A.2. Procedure 310 20.3.A.2 Procedure 313 20.3.A.2 Procedure 313 20.3.A.2 Procedure 313 20.3.B (revised) Presence/absence or MPN method APHA 40.62/40.63:2015 for <i>Vibria</i> <i>parabaenolyticus</i> and <i>Vibria</i> valufificgus in foods 315 20.3.B.1 Material required for analysis 315 20.3.B.2 Procedure 316 20.4.1 Material required for analysis 315 20.3.B.2 Procedure 316 20.4.1 Material required for analysis 318 20.4.2 Procedure 318 20.4.2 Procedure 318 20.4.2 Procedure 318 20.4.2 Procedure 318 20.5 References 322 21.1 Introduction 325 21.1.1 Introduction 325 21.1.1 Introduction 325 21.1.1 Introduction 325 21.1.2 Epidemiology 327 21.2.2 Presence/absence method ISO 10273:2017 for pathogenic <i>Versinia enterocolitica</i> 328 21.2.2 Procedure 338 21.2.2 Procedure 338 21.2.2 Procedure 338 21.2.1 Material required for analysis 328 21.2.2 Procedure 328 21.3 References 332 22.1 Introduction 325 21.1.1 Travonomy 325 21.1.1 Travonomy 325 21.1.1 Introduction 325 21.1.2 Epidemiology 327 21.2 Presence/absence method ISO 10273:2017 for pathogenic <i>Versinia enterocolitica</i> 338 22.1.2 Procedure 338 22.1.3 References 332 22.1.1 Introduction 333 22.1.1 Contex 333 22.1.1.2 Spore ultrastructure 334 22.1.1.3 Sequence of spore formation 333 22.1.1.1 Sequence of spore formation 333 22.1.1.2 Spore ultrastructure 334 22.1.2.2 Adicyclobacillus acidoenterstris 336 <i>Alicyclobacillus acidoenterstris</i> 336 <i>Alicyclobacillus acidoenterstris</i> 336 <i>Alicyclobacillus acidoenterstris</i> 336 <i>Alicyclobacillus acidoenterstris</i> 337 <i>Alicyclobacillus acidoenterstris</i> 337 <i>Alicyclobacillus</i>		20.2.B	(revised)	Presence/ab	sence and MPN methods APHA 40.61:2015 for Vibrio cholerae	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			in foods	and water		309
 20.3.A MPN method BAM/FDA:2004 for Vibrio parahaemalyticus in foods 20.3.A. J. Procedure 20.3.B. Procedure 20.3.B. (Material required for analysis in foods 20.3.B. (Material required for analysis in foods 20.3.B. J. Procedure 20.3.B. (Material required for analysis in foods 20.3.B. (Material required for analysis in foods 20.3.B. (Material required for analysis in foods 20.4.1 (revised) Presence/absence method ISO 21872-1:2017 for potentially enteropathogenic Wibrio cholerae and Vibrio parahaemolyticus in foods 20.4.1 (revised) Presence/absence method ISO 21872-1:2017 for potentially enteropathogenic Vibrio cholerae and Vibrio parahaemolyticus in foods 20.4.1 (Material required for analysis 20.4.2 Procedure 21.8 References 22.1.1 Introduction 22.1.1.1 Taxonomy 21.2.1 Protecture 22.2.1.2 Epidemiology 23.2 22.2.2 Procedure 23.2 22.3 References 23.2 23.2 24.1.1 Material required for analysis 21.2.2 Procedure 23.2 23.2 24.2 Procedure 25.3 25.3 References 26.3 27.1.2 Epidemiology 28.2 21.2.1 Material required for analysis 21.2.2 Procedure 28.2 21.3 References 22.1.1.1 Sequence of spore formation 22.1.1.2 Spore ultrastructure 23.4 Alticyclobacillus acidaterrestris 21.2.2 Alticyclobacillus acidaterrestris 22.1.2.2 Alticyclobacillus acidaterrestris 23.5 Alticyclobacillus acidaterrestris 21.2.2 Alticyclobacillus acidaterrestris 21.2.2 Alticyclobacillus acidaterrestris 22.1.2.3 Aneurinibacillus socchari 23.3 22.1.2.3 Aneurinibacillus acidaterrestris 23.4 Aneurinibacillus acidaterrestris 23.5 Alticyclobacillus acidaterrestris 23.6 Alticyclobacillus acidaterrestris 23.6 Alticycloba			20.2.B.1	Material re	equired for analysis	310
203.A.1 Material required for analysis 313 20.3.A.2 Procedure 313 20.3.B.1 Material required for analysis 315 20.3.B.1 Material required for analysis 315 20.3.B.2 Procedure 316 20.4 (revised) Presence/absence method ISO 21872-1:2017 for potentially enteropathogenic 318 20.4.1 Material required for analysis 318 20.4.2 Procedure 318 20.4.1 Material required for analysis 318 20.4.2 Procedure 318 20.5 References 322 21 Versinia enterocolitica 325 Revision history 325 321.1.1 Takerial required for analysis 328 21.2.1 Presencelabsence method ISO 10273:2017 for pathogenic Yersinia enterocolitica 338 21.3.2 Procedure 328 21.1.1 Taxonomy 323 22.1.2 Presencelabsence method ISO 10273:2017 for pathogenic Yersinia enterocolitica 339 21.2.1 Material required for analysis 328 21.2.2 Procedure			20.2.B.2	Procedure		310
20.3.A.2 Procedure31320.3.B (revised) Presence/absence or MPN method APHA 40.62/40.63:2015 for Vibrio parahaemolyticus and Vibrio vulatificus in foods31520.3.B.1 Material required for analysis31520.3.B.2 Procedure31620.4.1 Material required for analysis31820.4.1 Material required for analysis31820.4.2 Procedure31820.5 References32221 Versinia enterocolitica325Revision history32521.1.1 Taxonomy32521.1.2 Epidemiology32721.2 Presence/absence method ISO 10273:2017 for pathogenic Versinia enterocolitica328in foods32821.2.2 Procedure32821.3.1 References33322.1.2 Procedure33322.1.1 Introduction33322.1.1 Introduction33323.2 Procedure32821.3.2 References33222Sacterial spore count33322.1.1 Introduction33322.1.1 Introduction33322.1.1 Introduction33322.1.1 Material required for analysis32821.3.3 References33222.1.1 Introduction33322.1.1 Introduction33322.1.1 Spore ultrastructure33422.1.2.2 Alticyclobacillus acidoterrestris33522.1.2.1 Activacillus33522.1.2.2 Alticyclobacillus acidoterrestris336Alticyclobacillus acidoterrestris336337Alticyclobacillus acidoterrestris336 <th></th> <th>20.3.A</th> <th>MPN me</th> <th>ethod BAM</th> <th>/FDA:2004 for Vibrio parahaemolyticus in foods</th> <th>313</th>		20.3.A	MPN me	ethod BAM	/FDA:2004 for Vibrio parahaemolyticus in foods	313
20.3.B (revised) Presence/absence or MPN method APHA 40.62/40.63:2015 for Vibrio parahaemolyticus and Vibrio valuificus in foods 315 20.3.B.1 Material required for analysis 315 20.3.B.2 Procedure 316 20.4 (revised) Presence/absence method ISO 21872-1:2017 for potentially enteropathogenic Vibrio cholerae and Vibrio parahaemolyticus in foods 318 20.4.1 Material required for analysis 318 20.5 References 322 21 Versinia enterocolitica 325 Revision history 325 21.1.1 Introduction 325 21.1.2 Epidemiology 327 21.2 Presence/absence method ISO 10273:2017 for pathogenic Versinia enterocolitica 328 21.2.1 Material required for analysis 328 21.2.1 Material required for analysis 328 21.2.2 Procedure 328 21.3 References 332 22 Bacterial spore count 333 Revision history 333 22.1.1 Introduction 333 22.1.1 Sequence of spore formation 333 22.1.1.1 Sequence of spore formation 333 22.1.1.2 Epidemiology 333 22.1.1.2 Introduction 333 22.1.1.3 Material required for analysis 333 22.1.1.1 Sequence of spore formation 333 22.1.1.2 Drocedure 333 22.1.1.2 Material spore 333 22.1.1.1 Sequence of spore formation 333 22.1.1.2 Material spore 333 22.1.2.1 Activatilus 335 22.1.2.2 Anicyclobacillus acidoterrestris 336 Alicyclobacillus acidoterrestris 336 Alicyclobacillus acidoterrestris 336 Alicyclobacillus acidoterrestris 336 Alicyclobacillus acidoterrestris 337 Alicyclobacillus acidoterrestris 337 Alicyclobacillus acidotaldarius 337 Alicyclobacillus acidotaldarius 337 Alicyclobacillus acidotaldarius 337 Alicyclobacillus acidotaldarius 337 Alicyclobacillus acidotaldarius 337 Alicyclobacillus acechari 337 22.1.2.3 Ametrinibacillus Sacchari 337 2			20.3.A.1	Material re	equired for analysis	313
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			20.3.A.2	Procedure		313
20.3.B.1 Material required for analysis 315 20.3.B.2 Procedure 316 20.4.1 Material required for analysis 318 20.4.1 Material required for analysis 318 20.4.2 Procedure 318 20.4.2 Procedure 318 20.4.2 Procedure 318 20.4.2 Procedure 322 21 Versinia enterocolitica 325 21.1.1 Taxonomy 325 21.1.1 Taxonomy 327 21.2 Presence/absence method ISO 10273:2017 for pathogenic Versinia enterocolitica 328 21.2.1 Material required for analysis 328 21.2.1 Material required for analysis 328 21.2.2 Procedure 328 21.3.1 References 332 22.1 Material required for analysis 328 21.2.2 Procedure 333 22.3 Revision history 333 22.1.1 The bacterial spore 333 22.1.1.1 Sequence of spore formation 333		20.3.B				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
20.4(revised) Presence/absence method ISO 21872-1:2017 for potentially enteropathogenic Vibrio cholerate and Vibrio parahaemolyticus in foods318 20.4.120.4.1Material required for analysis 20.4.2318 20.4.220.5References32221Yersinia enterocolitica Revision history325 21.121.1.1Taxonomy 21.1.2325 21.1.121.1.2Epidemiology32721.2Presence/absence method ISO 10273:2017 for pathogenic Yersinia enterocolitica in foods328 21.2.221.3References328 21.2.221.3References333 22.122.1.1The bacterial spore 22.1.1.2333 22.1.122.1.2Procedure333 22.1.123.3References333 22.1.124.1.2Airyclobacillus acidoterrestris Alicyclobacillus acidoterrestris Alicyclobacillus acidoterrestris Alicyclobacillus acidoterrestris Alicyclobacillus acidoterlisis Alicyclobacillus acidoterlisis Alic					equired for analysis	
Vibrio cholerae and Vibrio parahaemolyticus in foods31820.4.1Material required for analysis31820.4.2Procedure31820.5References32221Versinia enterocolitica325Revision history32521.1.1Taxonomy32521.1.2Epidemiology32721.2Freence/absence method ISO 10273:2017 for pathogenic Versinia enterocolitica32821.2.1Material required for analysis32821.2.2Procedure32821.3References33321.1.3References33322.1Introduction33322.1.1Material required for analysis33821.2.2Procedure33821.3References33322.1.1The bacterial spore33322.1.1.1Sequence of spore formation33322.1.1.2Spore ultrastructure33422.1.1.3Mechanisms of spore resistance33422.1.2.4Ariyelobacillus acidocaldarius33522.1.2.2Aicyelobacillus acidocaldarius336Alicyelobacillus acidocaldarius336Alicyelobacillus acidocaldarius336Alicyelobacillus fastidiosus337Alicyelobacillus fastidiosus337Alicyelobacillus fastidiosus337Alicyelobacillus fastidiosus337Alicyelobacillus fastidiosus337Alicyelobacillus fastidiosus337Alicyelobacillus fastidiosus337<						316
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		20.4				
20.4.2Procedure31820.5References32221Versinia enterocolitica325Revision history32521.1Introduction32521.1.1Taxonomy32521.1.2Epidemiology32721.2Presence/absence method ISO 10273:2017 for pathogenic Yersinia enterocolitica32821.2.1Material required for analysis32821.2.2Procedure32821.3References33322.1.3References33322.1.1Sequence of spore formation33322.1.1Sequence of spore formation33322.1.1.2Spore count33422.1.1.3Mechanisms of spore resistance33422.1.2.1Aeribacillus33522.1.2.2Alicyclobacillus33522.1.2.1Aeribacillus acidoterrestris336Alicyclobacillus acidoterrestris336Alicyclobacillus acidoterrestris336Alicyclobacillus acidoterrestris337Alicyclobacillus fortidus forming337Alicyclobacillus fortidus forming337Alicyclobacillus fortidus forming337Alicyclobacillus fortidus forming337Alicyclobacillus fortidus forming337Alicyclobacillus forming337Alicyclobacillus fortidus337Alicyclobacillus fortidus337Alicyclobacillus fortidus337Alicyclobacillus fortidus337Alicyclobacillus fortidus337 <th></th> <th></th> <th></th> <th></th> <th>· ·</th> <th></th>					· ·	
20.5 References 322 21 Versinia enterocolitica Revision history 325 21.1 Introduction 325 21.1.1 Taxonomy 325 21.1.2 Epidemiology 327 21.2 Presence/absence method ISO 10273:2017 for pathogenic Yersinia enterocolitica in foods 328 21.2.1 Material required for analysis 328 21.2.2 Procedure 328 21.3 References 333 22.1.3 References 333 22.1.1 The bacterial spore 333 22.1.1.1 Sequence of spore formation 333 22.1.1.1 Sequence of spore formation 333 22.1.1.1 Seque ultrastructure 334 22.1.2.1 Aribyclobacillus 335 22.1.2.1 Aribyclobacillus 335 22.1.2.1 Aribyclobacillus acidoterrestris 336 Alicyclobacillus acidoterrestris 336 Alicyclobacillus datai 336 Alicyclobacillus datai 336 Alicyclobacillus datai 336 Alicyclobacillus datai <th></th> <th></th> <th></th> <th></th> <th>equired for analysis</th> <th></th>					equired for analysis	
21Versinia enterocolitica325Revision history32521.1Introduction21.1.2Epidemiology21.1.2Epidemiology21.2Presence/absence method ISO 10273:2017 for pathogenic Yersinia enterocoliticain foods32821.2.1Material required for analysis21.3References21.3References22Pacterial spore countRevision history33322.1.122.1.1.1Sequence of spore formation33322.1.1.1Spore ultrastructure33322.1.1.1Sequence of spore formation33322.1.2.1Arityclobacillus33422.1.2.1Arityclobacillus acidoterrestris33521.1.2Alicyclobacillus acidotalis336Alicyclobacillus acidotalis337Alicyclobacillus fastidiosus338339330331331332332333334335335336337338339339330330331331332333334335335336337337338339339330330331331332<		20.5				
Revision history32521.1Introduction32521.1.1Taxonomy32521.1.2Epidemiology32721.2Presence/absence method ISO 10273:2017 for pathogenic Yersinia enterocolitica32821.2.1Material required for analysis32821.2.2Procedure32821.3References33322.13References33322.14The bacterial spore33322.15Introduction33322.1.1Sequence of spore formation33322.1.1.1Sequence of spore formation33322.1.1.2Spore cluttastructure33422.1.1.3Mechanisms of spore resistance33422.1.2.1Aeribacillus33522.1.2.2Alicyclobacillus acidocaldarius336Alicyclobacillus acidocaldarius336Alicyclobacillus acidocaldarius336Alicyclobacillus acidocaldarius336Alicyclobacillus fastidiosus337Alicyclobacillus fastidiosus		20.5	Referenc	es		322
21.1Introduction32521.1.1Taxonomy32521.1.2Epidemiology32721.2Presence/absence method ISO 10273:2017 for pathogenic Yersinia enterocolitica32821.2.1Material required for analysis32821.2.2Procedure32821.3References33322Bacterial spore count333Revision history33322.1.1The bacterial spore33322.1.1The bacterial spore33322.1.1.1Sequence of spore formation33322.1.1.2Spore ultrastructure33422.1.2.3Mechanisms of spore resistance33422.1.2.4Aribacillus33522.1.2.5Aribacillus33522.1.2.4Aribacillus33522.1.2.5Alicyclobacillus336Alicyclobacillus acidoterrestris336Alicyclobacillus dauci336Alicyclobacillus fastidiosus337Alicyclobacillus fastidiosus337Alicyclobacillus fastidiosus337Alicyclobacillus fastidiosus337Alicyclobacillus fastidiosus337Alicyclobacillus pomorum33722.1.2.3Aneurinibacillus337	21	Yersin	ia enteroc	olitica		325
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Revisio	n history			325
21.1.2Epidemiology32721.2Presence/absence method ISO 10273:2017 for pathogenic Yersinia enterocolitica in foods32821.2.1Material required for analysis32821.2.2Procedure32821.3References33322Bacterial spore count333Revision history33322.1.1The bacterial spore33322.1.1The bacterial spore33322.1.1.1Sequence of spore formation33322.1.1.2Spore ultrastructure33422.1.1.3Mechanisms of spore resistance33422.1.2Aicyclobacillus33522.1.2.1Aeribacillus33522.1.2.2Alicyclobacillus acidoterrestris336Alicyclobacillus acidoterrestris336Alicyclobacillus fastidiosus337Alicyclobacillus fastidiosus337Alicyclobacillus fastidiosus337Alicyclobacillus gacebari33722.1.2.3Aneurinibacillus accbari337		21.1	Introduc	tion		325
21.2 Presence/absence method ISO 10273:2017 for pathogenic Yersinia enterocolitica in foods 328 21.2.1 Material required for analysis 328 21.2.2 Procedure 328 21.3.3 References 333 22 Bacterial spore count 333 Revision history 333 22.1.1 The bacterial spore 333 22.1.1 The bacterial spore 333 22.1.1.1 Sequence of spore formation 333 22.1.1.2 Spore ultrastructure 334 22.1.2.1 Areibacillus 335 22.1.2.1 Areibacillus 335 22.1.2.1 Areibacillus 335 22.1.2.2 Alicyclobacillus acidoterrestris 335 22.1.2.1 Aricyclobacillus acidoterrestris 336 Alicyclobacillus contaminans 336 336 Alicyclobacillus dauci 336 337 Alicyclobacillus promoum 337 337 Alicyclobacillus partines 337 Alicyclobacillus pomorum 337 Alicyclobacillus pomorum 337 Alic			21.1.1	•		325
in foods 328 21.2.1 Material required for analysis 328 21.2.2 Procedure 328 21.3 References 332 22 Bacterial spore count 333 Revision history 333 22.1 Introduction 333 22.1.1 The bacterial spore 333 22.1.1.1 Sequence of spore formation 333 22.1.1.2 Spore ultrastructure 334 22.1.2 Taxonomy of spore resistance 334 22.1.2 Taxonomy of spore-forming bacteria important in foods 335 22.1.2.1 Aeribacillus 335 22.1.2.2 Alicyclobacillus acidoterrestris 336 Alicyclobacillus acidoterrestris 336 Alicyclobacillus acidoterrestris 336 Alicyclobacillus acidoteriestris 336 Alicyclobacillus dauci 336 Alicyclobacillus dauci 336 Alicyclobacillus dauci 337 Alicyclobacillus dauci 337 Alicyclobacillus dauci 337 Alicyclobacillus dauci 337 Alicyclobacillus dauci 337 Alicyclobacillus dauci 337 Alicyclobacillus sacchari 337 Alicyclobacillus sacchari 337 Alicyclobacillus sacchari 337						327
21.2.1Material required for analysis32821.2.2Procedure32821.3References33222Bacterial spore count333Revision history33322.1.1Introduction33322.1.1The bacterial spore33322.1.1.1Sequence of spore formation33322.1.1.2Spore ultrastructure33422.1.2Taxonomy of spore-forming bacteria important in foods33522.1.2.1Areibacillus33522.1.2.1Areibacillus33522.1.2.2Alicyclobacillus acidoterrestris336Alicyclobacillus dauci336Alicyclobacillus fastidiosus337Alicyclobacillus fastidiosus337337Alicyclobacillus fastidiosus33733722.1.2.3Aneurinibacillus337		21.2		absence me	thod ISO 10273:2017 for pathogenic <i>Yersinia enterocolitica</i>	
21.2.2Procedure32821.3References332 22 Bacterial spore count333Revision history33322.1Introduction33322.1.1The bacterial spore33322.1.1.1Sequence of spore formation33322.1.1.2Spore ultrastructure33422.1.2Taxonomy of spore-forming bacteria important in foods33522.1.2.1Aeribacillus33522.1.2.2Alicyclobacillus acidoterrestris336Alicyclobacillus acidotellus acidotellus asido336Alicyclobacillus duci336Alicyclobacillus fastidiosus337Alicyclobacillus fastidiosus337Alicyclobacillus sacchari33722.1.2.3Aneurinibacillus337						
21.3 References332 22 Bacterial spore count333 Revision history33322.1Introduction33322.1.1The bacterial spore33322.1.1.1Sequence of spore formation33322.1.1.2Spore ultrastructure33422.1.2Taxonomy of spore-forming bacteria important in foods33522.1.2.1Aeribacillus33522.1.2.2Alicyclobacillus acidoterrestris336Alicyclobacillus acidoterrestris336Alicyclobacillus acidiphilus336Alicyclobacillus fastidiosus337Alicyclobacillus fastidiosus337Alicyclobacillus pomorum337Alicyclobacillus sacchari33722.1.2.3Aneurinibacillus					equired for analysis	
22 Bacterial spore count 333 Revision history 333 22.1 Introduction 333 22.1.1 The bacterial spore 333 22.1.1 The bacterial spore 333 22.1.1.2 Spore ultrastructure 334 22.1.1.3 Mechanisms of spore resistance 334 22.1.2 Taxonomy of spore-forming bacteria important in foods 335 22.1.2.1 Aeribacillus 335 22.1.2.2 Alicyclobacillus acidoterrestris 336 Alicyclobacillus acidocaldarius 336 Alicyclobacillus contaminans 336 Alicyclobacillus fastidiosus 337 Alicyclobacillus fastidiosus 337 Alicyclobacillus fastidiosus 337 Alicyclobacillus fastidiosus 337 Alicyclobacillus sacchari 337						
Revision history33322.1Introduction33322.1.1The bacterial spore33322.1.1.1Sequence of spore formation33322.1.1.2Spore ultrastructure33422.1.2Taxonomy of spore-forming bacteria important in foods33522.1.2.1Aeribacillus33522.1.2.2Alicyclobacillus33522.1.2.2Alicyclobacillus acidoterrestris336Alicyclobacillus acidocaldarius336Alicyclobacillus dauci336Alicyclobacillus fastidiosus337Alicyclobacillus herbarius337Alicyclobacillus pomorum337Alicyclobacillus sacchari33722.1.2.3Aneurinibacillus337		21.3	Referenc	es		332
22.1Introduction33322.1.1The bacterial spore33322.1.1.1Sequence of spore formation33322.1.1.2Spore ultrastructure33422.1.2Taxonomy of spore-forming bacteria important in foods33522.1.2.1Aeribacillus33522.1.2.2Alicyclobacillus33522.1.2.2Alicyclobacillus acidoterrestris336Alicyclobacillus acidotellus acidotalius336Alicyclobacillus lobacillus acidotalius336Alicyclobacillus lobacillus acidiphilus336Alicyclobacillus fastidiosus337Alicyclobacillus fastidiosus337Alicyclobacillus sacchari337Alicyclobacillus sacchari337Alicyclobacillus sacchari337335337336337	22	Bacter	ial spore	count		333
22.1.1The bacterial spore33322.1.1.1Sequence of spore formation33322.1.1.2Spore ultrastructure33422.1.1.3Mechanisms of spore resistance33422.1.2Taxonomy of spore-forming bacteria important in foods33522.1.2.1Aeribacillus33522.1.2.2Alicyclobacillus acidoterrestris336Alicyclobacillus acidoterrestris336Alicyclobacillus acidocaldarius336Alicyclobacillus dauci336Alicyclobacillus fastidiosus337Alicyclobacillus herbarius337Alicyclobacillus pomorum337Alicyclobacillus sacchari337Alicyclobacillus sacchari33722.1.2.3Aneurinibacillus337		Revisio	n history			333
22.1.1.1Sequence of spore formation33322.1.1.2Spore ultrastructure33422.1.1.3Mechanisms of spore resistance33422.1.2Taxonomy of spore-forming bacteria important in foods33522.1.2.1Aeribacillus33522.1.2.2Alicyclobacillus336Alicyclobacillus acidoterrestris336Alicyclobacillus acidocaldarius336Alicyclobacillus acidophilus336Alicyclobacillus acidophilus336Alicyclobacillus berbarius336Alicyclobacillus fastidiosus337Alicyclobacillus berbarius337Alicyclobacillus pomorum337Alicyclobacillus sacchari337Alicyclobacillus sacchari337Alicyclobacillus pomorum337Alicyclobacillus sacchari337336337 <th></th> <th>22.1</th> <th></th> <th></th> <th></th> <th></th>		22.1				
22.1.1.2Spore ultrastructure33422.1.1.3Mechanisms of spore resistance33422.1.2Taxonomy of spore-forming bacteria important in foods33522.1.2.1Aeribacillus33522.1.2.2Alicyclobacillus336Alicyclobacillus acidoterrestris336Alicyclobacillus acidotellus336Alicyclobacillus acidiphilus336Alicyclobacillus fastidiosus337Alicyclobacillus fastidiosus337Alicyclobacillus fastidiosus337Alicyclobacillus sacchari33722.1.2.3Aneurinibacillus337			22.1.1			
22.1.1.3Mechanisms of spore resistance33422.1.2Taxonomy of spore-forming bacteria important in foods33522.1.2.1Aeribacillus33522.1.2.2Alicyclobacillus acidoterrestris336Alicyclobacillus acidoterrestris336Alicyclobacillus acidotellus acidotellus336Alicyclobacillus acidotellus acidotellus336Alicyclobacillus acidotellus acidotellus336Alicyclobacillus acidotellus acidotellus336Alicyclobacillus acidiphilus336Alicyclobacillus dauci336Alicyclobacillus fastidiosus337Alicyclobacillus herbarius337Alicyclobacillus sacchari33722.1.2.3Aneurinibacillus337						
22.1.2Taxonomy of spore-forming bacteria important in foods33522.1.2.1Aeribacillus33522.1.2.2Alicyclobacillus336Alicyclobacillus acidoterrestris336Alicyclobacillus acidocaldarius336Alicyclobacillus contaminans336Alicyclobacillus fastidiosus337Alicyclobacillus herbarius337Alicyclobacillus herbarius337Alicyclobacillus herbarius337Alicyclobacillus herbarius337Alicyclobacillus sacchari337Alicyclobacillus sacchari337Alicyclobacillus sacchari337					•	
22.1.2.1Aeribacillus33522.1.2.2Alicyclobacillus acidoterrestris336Alicyclobacillus acidoterrestris336Alicyclobacillus acidotaldarius336Alicyclobacillus acidiphilus336Alicyclobacillus contaminans336Alicyclobacillus dauci336Alicyclobacillus fastidiosus337Alicyclobacillus herbarius337Alicyclobacillus pomorum337Alicyclobacillus sacchari337Alicyclobacillus sacchari337			22.1.2			
22.1.2.2Alicyclobacillus335Alicyclobacillus acidoterrestris336Alicyclobacillus acidocaldarius336Alicyclobacillus acidiphilus336Alicyclobacillus contaminans336Alicyclobacillus dauci336Alicyclobacillus fastidiosus337Alicyclobacillus herbarius337Alicyclobacillus pomorum337Alicyclobacillus sacchari33722.1.2.3Aneurinibacillus337			22.1.2	•		
Alicyclobacillus acidoterrestris336Alicyclobacillus acidocaldarius336Alicyclobacillus acidiphilus336Alicyclobacillus contaminans336Alicyclobacillus dauci336Alicyclobacillus fastidiosus337Alicyclobacillus herbarius337Alicyclobacillus pomorum337Alicyclobacillus sacchari33722.1.2.3Aneurinibacillus						
Alicyclobacillus acidocaldarius336Alicyclobacillus acidiphilus336Alicyclobacillus contaminans336Alicyclobacillus dauci336Alicyclobacillus fastidiosus337Alicyclobacillus herbarius337Alicyclobacillus pomorum337Alicyclobacillus sacchari33722.1.2.3Aneurinibacillus				22.1.2.2		
Alicyclobacillus acidiphilus336Alicyclobacillus contaminans336Alicyclobacillus dauci336Alicyclobacillus fastidiosus337Alicyclobacillus herbarius337Alicyclobacillus pomorum337Alicyclobacillus sacchari33722.1.2.3Aneurinibacillus						
Alicyclobacillus contaminans336Alicyclobacillus dauci336Alicyclobacillus fastidiosus337Alicyclobacillus herbarius337Alicyclobacillus pomorum337Alicyclobacillus sacchari33722.1.2.3Aneurinibacillus						
Alicyclobacillus dauci336Alicyclobacillus fastidiosus337Alicyclobacillus herbarius337Alicyclobacillus pomorum337Alicyclobacillus sacchari33722.1.2.3Aneurinibacillus					<i>y</i> 1	
Alicyclobacillus fastidiosus337Alicyclobacillus herbarius337Alicyclobacillus pomorum337Alicyclobacillus sacchari33722.1.2.3Aneurinibacillus337						
Alicyclobacillus herbarius337Alicyclobacillus pomorum337Alicyclobacillus sacchari33722.1.2.3Aneurinibacillus337						
Alicyclobacillus pomorum337Alicyclobacillus sacchari33722.1.2.3Aneurinibacillus337						
Alicyclobacillus sacchari33722.1.2.3Aneurinibacillus337						
22.1.2.3 Aneurinibacillus 337						
				22.1.2.3		
<i>Incurinioucilius incrinioucrophilus 55</i> 6				-	Aneurinibacillus thermoaerophilus	338

22.2

22.3

	22.1.2.4	Anoxybacillus	338
		Anoxybacillus contaminans	338
		Anoxybacillus flavithermus	338
		Anoxybacillus tepidamans	339
	22.1.2.5	Bacillus	339
		Bacillus coagulans	339
		Bacillus smithii	340
		Bacillus sporothermodurans	340
	22.1.2.6	Brevibacillus	341
	22.1.2.7	Clostridium	341
		Clostridium botulinum	342
		Proteolytic clostridia	343
		Saccharolytic clostridia	343
		Psychrophilic and psychrotrophic clostridia that cause the	
		spoilage of refrigerated vacuum-packed meats	344
	22.1.2.8	Cohnella	344
	22.1.2.9	Desulfotomaculum	345
		Desulfotomaculum nigrificans	345
	22.1.2.10	Fictibacillus	345
		Fictibacillus gelatini	345
		Fictibacillus nanhaiensis	346
	22.1.2.11	Geobacillus	346
		Geobacillus stearothermophilus	346
	22.1.2.12	Hathewaya	347
	22.1.2.13	Jeotgalibacillus	347
	221112110	Jeotgalibacillus alimentarius	347
	22.1.2.14	Lentibacillus	347
	22.1.2.15	Lysinibacillus	348
	22.1.2.16	Moorella	348
	22.1.2.17	Oceanobacillus	349
	22.1.2.18	Paenibacillus	349
	22.1.2.19	Paraclostridium	349
	22.1.2.20	Sporolactobacillus	350
	22.1.2.20	Thermoanaerobacter	350
	22.1.2.21	Thermoanaerobacterium	350
	22,1,2,22	T. thermosaccharolyticum	350
	22.1.2.23	Virgibacillus	351
(revised)		HA 25:2015 and 26:2015 for spores of total and flat-sour	551
		sporeformers in foods	351
22.2.1		juired for analysis	352
22.2.1		or the analysis of sugar	352
22.2.2		or the analysis of starch	352
22.2.3		or the analysis of staten	572
22.2.4	and concen		353
22.2.5			
22.2.5		or the analysis of nonfat dry milk	353
22.2.6		or the analysis of milk cream	354
22.2.7		or the analysis of other foods and ingredients (general)	354
	ivietnoas AP	HA 27:2015 for spores of thermophilic anaerobic sporeformers	251
in foods	Mara 1		356
22.3.1	iviaterial rec	quired for analysis	356

		22.3.2	Procedure for the analysis of sugar and powdered milk	356
		22.3.3	Procedure for the analysis of starches and flours	357
		22.3.4	Procedure for the analysis of cereals and alimentary pastes	357
		22.3.5	Procedure for the analysis of fresh mushrooms	357
		22.3.6	Procedure for the analysis of "in-process" products	357
	22.4	(revised)	Methods APHA 28:2015 for spores of sulfide spoilage anaerobic sporeformers	
		in foods		357
		22.4.1	Material required for analysis	357
		22.4.2	Procedure for the analysis of sugar	357
		22.4.3	Procedure for the analysis of starch and flour	358
		22.4.4	Procedure for the analysis of skim milk powder	358
		22.4.5	Procedure for the analysis of soy protein isolates	358
	22.5	(revised)	Methods APHA 23:2015 for spores of mesophilic aerobic sporeformers in foods	359
		22.5.1	Material required for analysis	359
		22.5.2	Procedure for foods in general	359
		22.5.3	Procedure for the analysis of milk and dairy products	361
		22.5.4	Procedure for the analysis of water	361
	22.6	(revised)	Methods APHA 24:2015 for spores of mesophilic anaerobic sporeformers	
		in foods		361
		22.6.1	Material required for analysis	362
		22.6.2	Procedure for the analysis of sugar	362
		22.6.3	Procedure for the analysis of starch, flours and other cereal products	362
		22.6.4	Procedure for the analysis of dehydrated vegetables	363
		22.6.5	Procedure for the analysis of seasonings and spices	363
		22.6.6	Procedure for the analysis of egg powder, milk powder and other powdered	
			dairy products	363
		22.6.7	Procedure for the analysis of fluid milk and cheeses	363
		22.6.8	Other procedures for mesophilic anaerobic sporeformers	364
	22.7		s IFU 12:2007 for <i>Alicyclobacillus</i> in foods	364
		22.7.1	Material required for analysis	364
		22.7.2	Procedure for the analysis of raw material	365
		22.7.3	Procedure for analysis of the finished product	366
		22.7.4	Interpretation and calculation of the results	366
	22.8	Referenc	ces	367
23	Comn	nercial ste	rility	373
		on history	•	373
	23.1	Introduc		373
		23.1.1	Definition of commercial sterility	374
		23.1.2	Classification of commercially sterile foods	374
		23.1.3	Parameters for evaluating the heat resistance of microorganisms	374
			23.1.3.1 Survival curve and decimal reduction time (D value)	374
			23.1.3.2 Number of decimal reductions	376
			23.1.3.3 Thermal destruction curve and temperature coefficient (z value)	376
		23.1.4	D and z values of microorganisms of importance in foods	377
			Vegetative cells	378
			Heat-resistant mold spores	378
			Bacterial spores	378
			Strictly thermophilic aerobic spore-forming bacteria	378
			Strictly thermophilic anaerobic spore-forming bacteria	378
			-	

			Facultative	e thermophilic aerobic spore-forming bacteria	378
			Mesophili	c aerobic spore-forming bacteria	378
			Mesophili	c anaerobic spore-forming bacteria	379
		23.1.5	Dimensio	ning heat treatments and thermal processing	379
			23.1.5.1	Definition of the intensity of the thermal process	379
		23.1.6	Microbial	spoilage of canned foods	380
			23.1.6.1	Underprocessing	380
			23.1.6.2	Post process contamination (leakage)	380
			23.1.6.3	Spoilage by strictly thermophiles	380
			23.1.6.4	Microbial multiplication before heat treatment	381
			23.1.6.5	Non-microbial causes of spoilage	381
			Useful terr		381
	23.2			PHA:2015 for commercial sterility or cause of spoilage of low-acid	
		canned f			382
		23.2.1		equired for analysis	382
		23.2.2	Procedure		382
		23.2.3		tion of the results	386
	23.3			PHA:2015 for commercial sterility for cause of spoilage of acid	
		canned f			389
		23.3.1		equired for analysis	390
		23.3.2	Procedure		390
	22 6	23.3.3		tion of the results	394
	23.4	Referenc	es		396
24	Guidelines on preparation of culture media				399
		on history			399
	24.1	Introduc	tion		399
		24.1.1	Ingredient	ts used in the formulation of culture media	399
			24.1.1.1	(revised) Water for preparing media and reagents	399
			24.1.1.2	Nutrient sources for culture media	400
				Peptones	400
				Meat extract, yeast extract and malt extract	401
				Carbohydrates	402
				Minerals and essential metals	402
			24.1.1.3	Selective agents	402
				Antibiotics	402
				Bile and bile salts	402
			0/11/	Chemical compounds	402
			24.1.1.4	Differential agents	402
				pH indicators	403
				Hydrogen sulfide (H_2S) indicators	403
			2/115	Other differential agents	403
			24.1.1.5 24.1.1.6	Reducing agents	403 403
			24.1.1.0	Buffering agents	403
			27.1.1./	Chromogenic and fluorogenic substrates X-Glucuronide	403
				MUG	404 404
				ONPG	404
				Salmon-Gal	404
				X-Gal	404
					101

			X-Glu	404
			X-Alpha-glicoside	404
			X-Phos-inositol	404
		24.1.1.8	Agar	404
	24.1.2	(revised) Ty	rpes of culture media	404
			defined medium	404
		Chemically	undefined medium or partially undefined medium	404
			nic or fluorogenic medium	405
		Liquid med		405
		Solid and so	emisolid medium	405
		Transport n	nedium	405
		Preservation	n medium	405
		Suspension	medium (diluents)	405
		Resuscitatio	on medium	405
		Pre-enrichn	nent medium or enrichment medium	405
		Selective en	richment medium	405
		Non-selecti	ve enrichment medium	405
		Isolation m	edium	405
		Selective iso	plation medium	405
		Non-selecti	ve isolation medium	405
		Differential	medium	405
		Identificatio	on medium	406
		Ready-to-u	se medium	406
		Medium pr	epared from commercially dehydrated formulations	406
		-	epared from individual components	406
24.2	Procedu	e for prepara	tion of culture media	406
	24.2.1	• •	plies and ingredients for preparation of culture media	406
	24.2.2		nd rehydration	406
	24.2.3		and dispersion	407
	24.2.4		and adjustment of the pH before sterilization	407
	24.2.5	Distributio		407
	24.2.6		n by moist heat	407
	24.2.7		n by filtration	408
	24.2.8		after sterilization	408
	24.2.9	<u>^</u>	of supplements for culture media	409
	24.2.10	U	terilized media until the moment of use	409
		24.2.10.1	Recommendations from ISO 11133:2014	409
		24.2.10.2	(new) Recommendations from <i>Standard Methods for the Examination</i>	(
			of Water and Wastewater (Hunt, 2012)	409
	24.2.11		eparation of the media at the moment of use	410
			the agar in solid media	410
			f supplements to basal media	410
			n of solid media over plates	410
			nedia in plates intended for surface plating	410
0/0	D (of the media for anaerobic microorganisms	410
24.3	Referenc	es		410
Annex 1.	Preparatio	n of media a	and reagents	411
Revisi	on history			411
Acetai	nide agar/	oroth		412

Acetamide broth ISO	412
Acid phosphatase reagent	413
AE sporulation medium modified for Clostridium perfringens	413
Agar <i>Listeria</i> Ottaviani & Agosti (ALOA)	414
Agar plug (Agar 2%)	415
Agar plug with thioglycolate	415
Alcoholic solution of iodine	415
3:1 alcoholic solution of iodine	415
Alkaline peptone water (APW)	416
Alkaline saline peptone water (ASPW)	416
All purpose Tween (APT) agar/broth	416
All purpose Tween (APT) agar acidified	417
All purpose Tween (APT) agar sucrose BCP	417
All purpose Tween (APT) agar glucose	417
Ammonium iron (III) sulfate solution	417
Arginine glucose slants (AGS)	417
Asparagine broth	418
Bacillus acidoterrestris (BAT) agar/broth	418
Baird-Parker (BP) agar	418
Bile esculin agar	419
Bile esculin azide agar	419
Biosynth Chromogenic Medium (BCM®) Listeria monocytogenes (R&F Listeria monocytogenes)	420
Bismuth sulfite (BS) agar	420
Blood agar	421
Bolton Broth	421
Brain heart infusion (BHI) agar/broth	422
Brilliant green agar (BGA)	423
Brilliant green bile (BGB) broth	423
1% brilliant green solution	423
Brilliant green sulfa (BGS) agar	424
Brilliant green water	424
Bromcresol purple dextrose (BCP) broth	424
0.04% Bromothymol blue indicator	424
Buffered <i>Listeria</i> enrichment broth (BLEB)	425
Buffered peptone water (BPW)	425
Modifications	426
Buffered peptone water modified (mBPWp)	426
Butterfield's phosphate buffer (PB) (phosphate dilution water) (Butterfield's phosphate buffered	
dilution water)	426
Butterfield's phosphate buffer with 40% glucose	427
Carbohydrate fermentation medium	427
Cefsulodin irgasan novobiocin (CIN) agar	427
Cellobiose colistin (CC) agar	428
Cellulase solution	428
Cephalothin sodium fusidate cetrimide (CFC) agar	429
Christensen urea agar	429
CHROMagar TM Listeria	430
CHROMagar TM Vibrio	430
Citrate azide agar	430
Chromogenic coliform agar (CCA)	431

Columbia Blood Agar (CBA)	431
Congo red magnesium oxalate (CR-MOX) agar	432
Cooked meat medium (CMM)	432
Coomassie brilliant blue solution	432
Chromogenic Cronobacter isolation (CCI) agar	433
<i>Cronobacter</i> selective broth (CSB)	433
Decarboxylase broth Falkow	434
Decarboxylation medium	434
Dextrose tryptone agar (DTA), dextrose tryptone broth (DTB)	435
DFI chromogenic agar	435
Dichloran 18% glycerol (DG18) agar	435
Dichloran rose Bengal chloramphenicol (DRBC) agar	436
Diluent with α -amylase	436
Dilution water (see magnesium chloride phosphate buffer, PBMgCl)	436
Dipotassium hydrogen phosphate solution (K ₂ HPO ₄)	436
Dipotassium hydrogen phosphate (K_2 HPO ₄) solution with antifoam agent	437
Double modified lysine iron agar (DMLIA)	437
<i>E. coli</i> (EC) broth	438
<i>E. coli</i> broth with 4-methylumbelliferyl-β-D-glucuronide (EC-MUG)	438
Elliker agar/broth	438
Enterobacteriaceae enrichment broth (EEB)	439
m- <i>Enterococcus</i> agar (Slanetz & Bartley Medium)	439
Ethanol 70%	439
Fermentation medium for Clostridium perfringens	440
Ferric chloride solution 10%	440
Formalinized physiological saline solution	440
Fraser broth	441
β-Galactosidase reagent (ONPG reagent) (<i>o</i> -nitrophenyl-β-d-galactopyranoside)	441
Glucose agar	442
α -Glucosidase enzymatic assay solution	442
Glycerol salt solution buffered	443
Gram-stain reagents (Hucker)	443
Gum tragacanth and gum arabic mixture	444
Half Fraser broth (demi-Fraser broth)	444
Halotolerance saline peptone water	445
Hektoen enteric (HE) agar	445
Horse blood overlay medium (HL)	446
m-HPC agar	446
Hydrochloric acid solution	446
3% hydrogen peroxide (H_2O_2)	446
Indole Kovac's reagent (5% <i>p</i> -dimethylaminobenzaldehyde solution)	447 447
Indoxyl acetate discs (2.5 to 5.0 mg)	447
Irgasan ticarcillin potassium chlorate (ITC) broth Iron milk medium modified	447
	448
K agar KE Structure agar	448
KF <i>Streptococcus</i> agar KF <i>Streptococcus</i> broth	449
	449
Kim-Goepfert (KG) agar King's B medium	449
Koser's citrate broth	450
ixosers ciriate broth	4)0

Lactose broth (LB)	451
Lactose broth supplemented with anionic Tergitol 7 or Triton X-100	451
Lactose broth supplemented with cellulase solution	451
Lactose broth supplemented with papain solution	451
Lactose gelatin medium	451
Lactose sulfite (LS) medium (LS)	452
Lauryl sulfate tryptose (LST) broth	452
Levine's eosin-methylene blue (L-EMB) agar	453
Liver broth	453
Liver veal agar (LVA)	454
Lysine iron agar (LIA)	454
MacConkey (MAC) agar	454
MacFarland standards	455
Magnesium chloride phosphate (PBMgCl) buffer	455
Malonate broth	455
Malt acetic agar (MAA)	456
Malt extract agar (MEA) with antibiotics	456
Malt extract broth (MEB)	457
Malt extract yeast extract 40% glucose (MY40G)	457
Mannitol egg yolk polymyxin (MYP) agar	457
de Man Rogosa & Sharpe (MRS) agar/broth	458
m- <i>Enterococcus</i> agar (Slanetz & Bartley Medium)	458
Methyl red solution	459
Modified cellobiose polymyxin colistin (mCPC) agar	459
Modified charcoal cefoperazone deoxycholate (mCCDA) agar	460
Modified Oxford (MOX) agar	460
Modified semisolid Rappaport-Vassiliadis (MSRV) agar	461
Modified University of Vermont (UVM) broth	462
Morpholinepropanesulfonic acid-buffered <i>Listeria</i> enrichment broth (MOPS-BLEB)	463
Motility medium for Bacillus cereus	463
Motility nitrate medium	463
Motility test medium	464
Motility test medium ISO	464
MR-VP broth	465
Muller-Kauffmann tetrathionate novobiocin (MKTTn) broth	465
Nessler reagent	466
Ninhydrin solution (3.5% mass/volume)	466
Nitrate broth	466
Nitrate test reagents	467
Nitrate test reagents ISO 7937:2004	467
Nutrient agar (NA), nutrient broth (NB)	468
Nutrient agar with manganese (NAMn)	468
Nutrient agar with trypan blue	468
Nutrient broth with lysozyme	468
NWRI agar (HPCA)	468
Orange serum agar (OSA), orange serum broth (OSB)	468
Oxford agar (OXA)	469
Oxidase Kovac's reagent (1% N,N,N,N-tetramethyl-p-phenilenediamine dihydrochoride	
aqueous solution)	470
Oxidation fermentation (OF) glucose agar	470

Oxoid Chromogenic <i>Listeria</i> Agar (OCLA)	470
Papain solution 5%	471
PE-2 medium	471
Penicillin pimaricin agar (PPA)	471
Peptone sorbitol bile (PSB) broth	472
Peptone water (PW)	472
Phenol red carbohydrate broth	472
Phenylalanine (tryptophane) deaminase agar	473
Phosphate buffered saline (PBS)	473
Phosphate buffered solution according to ISO 6887-4:2017	474
Phosphate buffered solution according to ISO 6887-5:2010	474
Phosphate saline buffer 0.02M (pH 7.3 to 7.4)	474
Plate count agar (PCA) standard methods agar (SMA), (tryptone glucose yeast extract agar)	475
Plate count agar (PCA) supplemented with 0.1% soluble starch	475
Plate count agar (PCA) with chloramphenicol (100 mg/L)	475
Potassium cyanide broth (KCN)	475
0.5% Potassium hydroxide saline solution	476
Potato dextrose agar (PDA) acidified	476
Potato dextrose agar (PDA) with antibiotics	477
Preservative-resistant yeast (PRY) medium	477
Preston broth	478
Pseudomonas CN agar	478
Purple agar/broth for carbohydrate fermentation	479
Pyrazinamidase agar	479
R2A agar	480
Rapid'L.mono agar	480
Rappaport-Vassiliadis (R-10) broth	481
Rappaport-Vassiliadis (RV) medium	481
Rappaport-Vassiliadis soya (RVS) broth	482
Reconstituted nonfat dry milk	483
Reinforced clostridial medium (RCM)	483
Reinforced clostridial medium (RCM) with lactate	484
R&F Cronobacter Chromogenic Agar	484
R&F Listeria monocytogenes (see Biosynth Chromogenic Medium (BCM [®]) Listeria monocytogenes)	484
Ringer's solution quarter strength	484
Rogosa SL agar/broth	485
Saline decarboxylase broth	485
Saline nutrient agar (SNA)	486
Saline peptone water (SPW) (peptone salt solution)	486
Saline tryptophan broth	486
Selenite cystine (SC) broth	487
Sheep blood agar Simmong sitesta agar	488 488
Simmons citrate agar Sadium airrate solution (Na C H Q 22H Q)	488
Sodium citrate solution (Na ₃ C ₆ H ₅ O ₇ ·2H ₂ O)	489
0.5% Sodium desoxycholate solution	489
Sodium dodecyl sulfate polymixin sucrose (SDS) agar Sodium hippurate solution	489
Sodium hydroxide solutions	490 490
Sodium tripolyphosphate solution	490 490
Spore stain reagents (Ashby's)	490
opore statut reacentes (2 totto) sy	170

Trypticase soy agar/broth with 0.6% yeast extract (TSA-YE or TSB-YE) Trypticase soy broth (TSB) with 10% NaCl and 1% sodium pyruvate	497 497
Trypticase soy broth (TSB) with 20% NaCl	497 407
Trypticase soy broth (TSB) with polymyxin	497
Trypticase soy broth (TSB) with 0.5% potassium sulfite (K_2SO_3)	497
Trypticase soy broth (TSB) with 35 mg/L ferrous sulfate	497
Trypticase soy agar (TSA) with 5% sheep blood	497
Tryptone glucose extract (TGE) agar	497
Tryptone glucose yeast extract acetic (TGYA) agar	498
Tryptone glucose yeast extract acetic broth (TGYAB)	498
Tryptone (tryptophan) broth	498
Tryptose sulfite cycloserine (TSC) agar	499
Tween esterase test medium	500
Tyrosine agar	500
Universal pre-enrichment broth	500
Urea agar (Christensen)	501
Urea broth	501
Urea broth rapid	502
Vaspar	502
Violet red bile (VRB) agar	502
Violet red bile glucose (VRBG) agar	502
Voges-Proskauer (VP) broth modified for <i>Bacillus</i>	503
Voges-Proskauer (VP) test reagents (5% α -naphthol alcoholic solution, 40% potassium	909
hydroxide aqueous solution)	503
Xylose lysine desoxycholate agar (XLD)	504
Xylose lysine Tergitol 4 (XLT4) agar	504
Yeast extract starch glucose (YSG) agar/broth	504
Annex 2. Sampling plans and microbiological limits recommended by ICMSF for foods	507
Index	515

About the authors

Neusely da Silva is a scientific researcher at the Food Technology Institute (ITAL), a government research agency of the State of São Paulo, Brazil. She graduated in Food Engineering and has a PhD in Food Science from the State University of Campinas (UNICAMP, Brazil). Director of the Microbiology Reference Laboratory of the Food Technology Institute from 1995 to 2007, she was responsible for the accreditation of the laboratory assays according to ISO 17025. She is author of over 70 publications in the area of Food Microbiology and her major research areas are bacterial physiology and methods for detection of bacteria responsible for food-borne diseases and bacteria responsible for food spoilage. E-mail: neusely@ital.sp.gov.br.

Marta Hiromi Taniwaki, PhD, is a scientific researcher at the Food Technology Institute (ITAL) at the Center of Quality and Food Science in Campinas, Brazil. She graduated in Biology and has a PhD in Food Science and Technology from the University of New South Wales, Australia She is author of over 100 publications in the area of Food Mycology, Mycotoxins and Food Microbiology. She is member of the International Commission on Food Mycology (ICFM) since 1997; member of the Brazilian delegation at the Codex Contaminants in Food (CCCF) since 2006; Member of the International Commission on Microbiological Specifications for Foods (ICMSF) since 2010 and editorial board of Mycotoxin Research since 2012. Her major research areas are: fungi and mycotoxins in foods; biodiversity of toxigenic fungi in foods, fungal physiology and mycotoxin production, polyphasic approach to biosystematics of *Aspergillus* species. E-mail: marta@ital.sp.gov.br

Valéria Christina Amstalden Junqueira was a scientific researcher at the Food Technology Institute (ITAL) at the Center of Quality and Food Science (CCQA) in Campinas, SP, Brazil from 1988 to 2016 and Director of the Microbiology Reference Laboratory at ITAL from 2011 to 2015. She graduated in Biology and has PhD in Food Technology from the State University of Campinas (UNICAMP, Brazil) in the area of hygiene and legislation of foods. She has been a member of the Brazilian delegation at the Codex Committee on Food Hygiene (CCFH) since 2002. Her major research activities are on the control of the microbiological quality of food with an emphasis on anaerobic bacteria, spoilage microorganisms of processed foods, microbiological quality of water and non-alcoholic beverages. E-mail: valeriacaj@gmail.com.

Neliane Ferraz de Arruda Silveira is a scientific researcher at the Food Technology Institute (ITAL) at the Center of Quality and Food Science in Campinas, Brazil. She is a biologist with PhD in Food Technology from the State University of Campinas (UNICAMP, Brazil), in the area of hygiene and legislation of foods. Her major research areas are the control of microbiological quality of food with emphasis on fish and fish products, minimally processed vegetables, foods served in collective meals, meat products and bacteriological quality of drinking water. E-mail: neliane@ital.sp.gov.br

Margarete Midori Okazaki is a scientific researcher at the Food Technology Institute (ITAL), at the Center of Quality and Food Science in Campinas, Brazil. She graduated in Food Engineering and has a Master Science degree (Msc.) in Food Technology from the State University of Campinas (UNICAMP, Brazil).

She is vice director of the Microbiology Reference Laboratory of the Food Technology Institute and concentrates her activities on the control of the microbiological quality of food and water and on technical training focused on microbiological examination methods. E-mail: okazaki@ital.sp.gov.br

Renato Abeilar Romeiro Gomes is a scientific researcher at the Food Technology Institute (ITAL), Campinas, Brazil. He graduated in Agricultural Engineer and has a Master's degree in Agricultural Engineering from the Federal University of Viçosa, with MBA specialization. He is currently a researcher at the Dairy Technology Center of the Food Technology Institute. E-mail: rarg@ital.sp.gov.br.

Preface

This manual was prepared with standardized methods published by renowned international organizations such as International Organization for Standardization (ISO), American Public Health Association (APHA), AOAC International, Food and Drug Administration (FDA) and United States Department of Agriculture (USDA).

The manual Includes methods for the enumeration of indicator microorganisms of general contamination (total aerobic mesophilic bacteria, lactic acid bacteria, yeasts and molds), indicators of hygiene and sanitary conditions (coliforms, *E. coli*, enterococci), spore-forming bacteria (aerobic thermophilic and mesophilic bacteria, anaerobic thermophilic and mesophilic bacteria, *Alicyclobacillus*), spoilage fungi (thermoresistant molds, osmophilic yeasts, preservative resistant yeasts) and pathogenic bacteria (*Salmonella, Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, Clostridium perfringens, Cronobacter, Campylobacter, Yersinia enterocolitica, Vibrio cholerae, Vibrio parahae-molyticus*). The chapter covering the examination of water includes methods for the detection and determination of coliforms, *E. coli, Pseudomonas aeruginosa, Clostridium perfringens* and enterococci.

The major objective of the book is to provide an illustrated laboratory manual with an overview of current standard microbiological methods for the examination of food and water. The didactic setup and the visualization of procedures in step-by-step schemes allows student and practitioner to quickly perceive and execute the procedure intended. Each chapter provides numerous methods for a certain examination, and also provides simple or quick alternatives. The chapters' introductions summarize the existing knowledge regarding the target microorganism(s) and present the most useful information available in literature.

The book is intended for laboratory education of undergraduate and graduate students in food engineering and related disciplines and as an up-to-date practical companion for researchers, analysts, technicians and teachers.

In this second edition several methods have been revised according to new editions of the references used, including:

- The *Compendium of Methods for the Microbiological Examination of Foods*, 5th edition (2015), from American Public Health Association (APHA).
- The *Standard Methods for the Examination of Water & Wastewater*, 22nd edition (2012), from American Public Health Association (APHA), American Water Works Association (AWWA) & Water Environment Federation (WEF).
- The Official Methods of Analysis of AOAC International, 20th edition (2016), from AOAC International.
- The *Bacteriological Analytical Manual* [BAM Online] from Food and Drug Administration (last update).
- The *Microbiology Laboratory Guidebook* [MLG Online], from Food Safety and Inspection Service, United States Department of Agriculture (last update).

New methods have also been described, including:

- Aerobic mesophilic bacteria in foods plate count methods ISO 4833-1/2:2013
- Method ISO 21528-1/2:2017 for Enterobacteriaceae in Foods
- Method BAM/FDA:2017 for Coliforms and E. coli in Food
- Method ISO 9308-1:2014 for Coliforms and E. coli in Water
- Method BAM/FDA:2012 for *Cronobacter* in Infant Formula
- Clostridium perfringens in water membrane filtration method ISO 14189:2013
- *Clostridium perfringens* in foods plate count method ISO 7937:2004
- Lactic acid bacteria in foods Plate count method ISO 15214:1998

Tables

Table 3.1Examples for calculating the pour plate results in not ideal conditions.34Table 3.2Weighted means and confidence intervals for relevant numbers of colonies according to ISO 14461-2:2005.37Table 4.1Guide for the use of the MPN tables.51Table 4.2Examples for use the MPN tables.52Table MPN-1Most probable number (MPN) and 95% confidence intervals for three tubes each at 0.1, 0.01, and 0.001 g or mL inocula.54Table MPN-2Most probable number (MPN) and 95% confidence intervals for five tubes each at 0.1, 0.01, and 0.001 g or mL inocula.55Table MPN-3Most probable number (MPN) and 95% confidence intervals for 10 tubes at 10 mL inocula.56Table MPN-4Most probable number (MPN) and 95% confidence intervals for five tubes at 20 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 20 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula.56Table 6.1Typical mesophilic aerobic plate counts of selected foods.66Table 6.2FAO/WHO microbiological specifications for foods.66Table 6.3APHA standards for mesophilic aerobic plate count in milk and dairy products.66Table 6.4Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.67Table 6.5Analytical kits adopted as AOAC Official Methods for mesophile aerobic plate count in foods.68 <tr <td="">68<</tr>
to ISO 14461-2:2005. 37 Table 4.1 Guide for the use of the MPN tables. 51 Table 4.2 Examples for use the MPN tables. 52 Table MPN-1 Most probable number (MPN) and 95% confidence intervals for three tubes each at 0.1, 0.01, and 0.001 g or mL inocula. 54 Table MPN-2 Most probable number (MPN) and 95% confidence intervals for five tubes each at 0.1, 0.01, and 0.001 g or mL inocula. 55 Table MPN-3 Most probable number (MPN) and 95% confidence intervals for 10 tubes at 10 mL inocula. 56 Table MPN-4 Most probable number (MPN) and 95% confidence intervals for five tubes at 20 mL inocula. 56 Table MPN-5 Most probable number (MPN) and 95% confidence intervals for five tubes at 20 mL inocula. 56 Table MPN-5 Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula. 56 Table MPN-5 Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula. 56 Table MPN-5 Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula. 56 Table 6.1 Typical mesophilic aerobic plate counts of selected foods. 66 Table 6.2 FAO/WHO microbiological specifications for foods. 66 Table 6.3 APHA standards for mesophilic aerobic plate count in milk and dairy products. 66 Table 6.4 Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water. 67 Table 6.5 Analytical kits adopted as AOAC Official Methods for mesophilic aerobic plate count in foods. 68
Table 4.1Guide for the use of the MPN tables.51Table 4.2Examples for use the MPN tables.52Table MPN-1Most probable number (MPN) and 95% confidence intervals for three tubes each at 0.1, 0.01, and 0.001 g or mL inocula.54Table MPN-2Most probable number (MPN) and 95% confidence intervals for five tubes each at 0.1, 0.01, and 0.001 g or mL inocula.55Table MPN-3Most probable number (MPN) and 95% confidence intervals for 10 tubes at 10 mL inocula.56Table MPN-4Most probable number (MPN) and 95% confidence intervals for five tubes at 20 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 20 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula.56Table 6.1Typical mesophilic aerobic plate counts of selected foods.66Table 6.2FAO/WHO microbiological specifications for foods.66Table 6.3APHA standards for mesophilic aerobic plate count in milk and dairy products.66Table 6.4Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.67Table 6.5Analytical kits adopted as AOAC Official Methods for mesophilc aerobic plate count in foods.68
Table 4.2Examples for use the MPN tables.52Table MPN-1Most probable number (MPN) and 95% confidence intervals for three tubes each at 0.1, 0.01, and 0.001 g or mL inocula.54Table MPN-2Most probable number (MPN) and 95% confidence intervals for five tubes each at 0.1, 0.01, and 0.001 g or mL inocula.55Table MPN-3Most probable number (MPN) and 95% confidence intervals for 10 tubes at 10 mL inocula.56Table MPN-4Most probable number (MPN) and 95% confidence intervals for five tubes at 20 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 20 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula.56Table 6.1Typical mesophilic aerobic plate counts of selected foods.66Table 6.2FAO/WHO microbiological specifications for foods.66Table 6.3APHA standards for mesophilic aerobic plate count in milk and dairy products.66Table 6.4Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.67Table 6.5Analytical kits adopted as AOAC Official Methods for mesophile aerobic plate count in foods.68
Table MPN-1Most probable number (MPN) and 95% confidence intervals for three tubes each at 0.1, 0.01, and 0.001 g or mL inocula.54Table MPN-2Most probable number (MPN) and 95% confidence intervals for five tubes each at 0.1, 0.01, and 0.001 g or mL inocula.55Table MPN-3Most probable number (MPN) and 95% confidence intervals for 10 tubes at 10 mL inocula.56Table MPN-4Most probable number (MPN) and 95% confidence intervals for 10 tubes at 20 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 20 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula.56Table 6.1Typical mesophilic aerobic plate counts of selected foods.66Table 6.2FAO/WHO microbiological specifications for foods.66Table 6.3APHA standards for mesophilic aerobic plate count in milk and dairy products.66Table 6.4Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.67Table 6.5Analytical kits adopted as AOAC Official Methods for mesophile aerobic plate count in foods.68
at 0.1, 0.01, and 0.001 g or mL inocula.54Table MPN-2Most probable number (MPN) and 95% confidence intervals for five tubes each at 0.1, 0.01, and 0.001 g or mL inocula.55Table MPN-3Most probable number (MPN) and 95% confidence intervals for 10 tubes at 10 mL inocula.56Table MPN-4Most probable number (MPN) and 95% confidence intervals for five tubes at 20 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 20 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula.56Table 6.1Typical mesophilic aerobic plate counts of selected foods.66Table 6.2FAO/WHO microbiological specifications for foods.66Table 6.3APHA standards for mesophilic aerobic plate count in milk and dairy products.66Table 6.4Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.67Table 6.5Analytical kits adopted as AOAC Official Methods for mesophilic aerobic plate count in foods.68
Table MPN-2Most probable number (MPN) and 95% confidence intervals for five tubes each at 0.1, 0.01, and 0.001 g or mL inocula.55Table MPN-3Most probable number (MPN) and 95% confidence intervals for 10 tubes at 10 mL inocula.56Table MPN-4Most probable number (MPN) and 95% confidence intervals for five tubes at 20 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 20 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula.56Table 6.1Typical mesophilic aerobic plate counts of selected foods.66Table 6.2FAO/WHO microbiological specifications for foods.66Table 6.3APHA standards for mesophilic aerobic plate count in milk and dairy products.66Table 6.4Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.67Table 6.5Analytical kits adopted as AOAC Official Methods for mesophilic aerobic plate count in foods.68
at 0.1, 0.01, and 0.001 g or mL inocula.55Table MPN-3Most probable number (MPN) and 95% confidence intervals for 10 tubes at 10 mL inocula.56Table MPN-4Most probable number (MPN) and 95% confidence intervals for five tubes at 20 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula.56Table 6.1Typical mesophilic aerobic plate counts of selected foods.66Table 6.2FAO/WHO microbiological specifications for foods.66Table 6.3APHA standards for mesophilic aerobic plate count in milk and dairy products.66Table 6.4Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.67Table 6.5Analytical kits adopted as AOAC Official Methods for mesophilic aerobic plate count in foods.68
Table MPN-3Most probable number (MPN) and 95% confidence intervals for 10 tubes at 10 mL inocula.56Table MPN-4Most probable number (MPN) and 95% confidence intervals for five tubes at 20 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula.56Table 6.1Typical mesophilic aerobic plate counts of selected foods.66Table 6.2FAO/WHO microbiological specifications for foods.66Table 6.3APHA standards for mesophilic aerobic plate count in milk and dairy products.66Table 6.4Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.67Table 6.5Analytical kits adopted as AOAC Official Methods for mesophilic aerobic plate count in foods.68
inocula.56Table MPN-4Most probable number (MPN) and 95% confidence intervals for five tubes at 20 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula.56Table 6.1Typical mesophilic aerobic plate counts of selected foods.66Table 6.2FAO/WHO microbiological specifications for foods.66Table 6.3APHA standards for mesophilic aerobic plate count in milk and dairy products.66Table 6.4Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.67Table 6.5Analytical kits adopted as AOAC Official Methods for mesophilic aerobic plate count in foods.68
Table MPN-4Most probable number (MPN) and 95% confidence intervals for five tubes at 20 mL inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula.56Table 6.1Typical mesophilic aerobic plate counts of selected foods.66Table 6.2FAO/WHO microbiological specifications for foods.66Table 6.3APHA standards for mesophilic aerobic plate count in milk and dairy products.66Table 6.4Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.67Table 6.5Analytical kits adopted as AOAC Official Methods for mesophilic aerobic plate count in foods.68
inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula.56Table 6.1Typical mesophilic aerobic plate counts of selected foods.66Table 6.2FAO/WHO microbiological specifications for foods.66Table 6.3APHA standards for mesophilic aerobic plate count in milk and dairy products.66Table 6.4Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.67Table 6.5Analytical kits adopted as AOAC Official Methods for mesophilic aerobic plate count in foods.68
inocula.56Table MPN-5Most probable number (MPN) and 95% confidence intervals for five tubes at 10 mL inocula.56Table 6.1Typical mesophilic aerobic plate counts of selected foods.66Table 6.2FAO/WHO microbiological specifications for foods.66Table 6.3APHA standards for mesophilic aerobic plate count in milk and dairy products.66Table 6.4Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.67Table 6.5Analytical kits adopted as AOAC Official Methods for mesophilic aerobic plate count in foods.68
inocula.56Table 6.1Typical mesophilic aerobic plate counts of selected foods.66Table 6.2FAO/WHO microbiological specifications for foods.66Table 6.3APHA standards for mesophilic aerobic plate count in milk and dairy products.66Table 6.4Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.67Table 6.5Analytical kits adopted as AOAC Official Methods for mesophilc aerobic plate count in foods.68
inocula.56Table 6.1Typical mesophilic aerobic plate counts of selected foods.66Table 6.2FAO/WHO microbiological specifications for foods.66Table 6.3APHA standards for mesophilic aerobic plate count in milk and dairy products.66Table 6.4Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.67Table 6.5Analytical kits adopted as AOAC Official Methods for mesophilc aerobic plate count in foods.68
Table 6.2FAO/WHO microbiological specifications for foods.66Table 6.3APHA standards for mesophilic aerobic plate count in milk and dairy products.66Table 6.4Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.67Table 6.5Analytical kits adopted as AOAC Official Methods for mesophilic aerobic plate count in foods.68
Table 6.2FAO/WHO microbiological specifications for foods.66Table 6.3APHA standards for mesophilic aerobic plate count in milk and dairy products.66Table 6.4Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.67Table 6.5Analytical kits adopted as AOAC Official Methods for mesophile aerobic plate count in foods.68
Table 6.3APHA standards for mesophilic aerobic plate count in milk and dairy products.66Table 6.4Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.66Table 6.5Analytical kits adopted as AOAC Official Methods for mesophilc aerobic plate count in foods.66
Table 6.4Media and incubation conditions recommended by APHA, FDA and ISO methods for plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.67Table 6.5Analytical kits adopted as AOAC Official Methods for mesophilc aerobic plate count in foods.68
plate count of aerobic mesophilic and psychrotrophic bacteria in foods and water.67Table 6.5Analytical kits adopted as AOAC Official Methods for mesophilc aerobic plate count67in foods.68
Table 6.5Analytical kits adopted as AOAC Official Methods for mesophilc aerobic plate count in foods.68
in foods. 68
Table 7.1 Media and incubation conditions recommended by APHA, FDA and ISO methods
for analysis of yeasts and molds in foods.
Table 7.2 Analytical kits adopted as AOAC Official Methods for the yeasts and molds count
in foods.
Table 7.3Tolerance of heat-resistant molds isolated from foods and beverages.84
Table 8.1 Media and incubation conditions recommended by APHA, AOAC and ISO methods
for <i>Enterobacteriaceae</i> in foods.
Table 9.1 Media and incubation conditions recommended by APHA and ISO methods for total
coliforms, thermotolerant coliforms and <i>E. coli</i> in foods and water. 118
Table 9.2Analytical kits adopted as AOAC Official Methods for coliforms and <i>E. coli</i> in foods.120
Table 10.1 Biochemical and growth characteristics of the species and subspecies of coagulase
positive <i>Staphylococcus</i> . 136
Table 10.2 Analytical kits adopted as AOAC Official Methods for Staphylococcus aureus in foods. 139
Table 11.1Differential characteristics of the species of Bacillus cereus group.150
Table 12.1 Classification of <i>C. perfringens</i> into types based on the production of the alpha, beta,
epsilon, and iota toxins.
Table 12.2 Media and incubation conditions recommended by APHA, FDA and ISO methods
for sulfite reducing clostridia and <i>Clostridium perfringens</i> in foods and water. 163
Table 13.1Characteristics most used to differentiate <i>Enterococcus</i> from group bovis <i>Streptococcus</i> .180
Table 13.2 Media and incubation conditions recommended by APHA, APHA/AWWA/WEF
and ISO methods for enterococci and fecal streptococci in foods and water. 181

Table 14.1	Main characteristics of the lactic acid bacteria associated with foods.	190
Table 14.2	Culture media for lactic acid bacteria counts in foods, their main applications	
	and forms of use.	197
Table 15.1	Biochemical and growth characteristics of the species and subspecies of Campylobacter	
	described by 2 nd edition of <i>Bergey's Manual of Systematic Bacteriology</i> .	208
Table 15.2	Characteristics of <i>Campylobacter</i> species growing at 41.5°C.	213
Table 16.1	Biochemical characteristics used to differentiate the new genus Cronobacter from some	
	other genera of the <i>Enterobacteriaceae</i> family.	218
Table 16.2	Biochemical tests used to differentiate the species and subspecies of the genus Cronobacter.	219
Table 16.3	Microbiological criteria applied by the Codex Alimentarius to powdered infant formulae	
	(finished product).	220
Table 16.4	Media and incubation conditions recommended by ISO and FDA methods for	
	Cronobacter in foods.	221
Table 16.5	Guide for the interpretation of <i>Cronobacter</i> spp. confirmatory tests according	
	the method ISO 22964:2017.	223
Table 17.1	Changes in the nomenclature of members of the genus <i>Pseudomonas</i> .	228
Table 17.2	Characteristics differentiating the strains of Group III Shewanella putrefaciens	001
T11 17 2	"senso stricto," Shewanella algae, Shewanella baltica and Shewanella putrefaciens.	231
Table 17.3	Guide for the interpretation of <i>Pseudomonas aeruginosa</i> confirmatory tests according	226
T11 10 1	the method ISO 16266:2006.	236
Table 18.1	Characteristics for differentiating the six original species of the genus <i>Listeria</i> described	245
T11 10 2	until the publication of the 2^{nd} Edition of <i>Bergey's Manual of Systematic Bacteriology</i> .	245
Table 18.2	Characteristics used by Weller <i>et al.</i> (2015) for differentiating <i>Listeria</i> species,	
	including those described after the publication of the 2^{nd} Edition of <i>Bergey's Manual</i>	245
T-11- 10-2	of Systematic Bacteriology.	245
Table 18.3	Media and incubation conditions recommended by FDA, USDA and ISO methods	247
Table 10 /	for <i>Listeria monocytogenes</i> in foods.	247 249
Table 18.4 Table 18.5	Analytical kits adopted as AOAC Official Methods for <i>Listeria monocytogenes</i> in foods.	249
Table 10.)	Guide for the interpretation of <i>Listeria monocytogenes</i> and <i>Listeria</i> spp. confirmatory tests according the method ISO 11290-2:2017.	260
Table 19.1	The two systems of validly published names of <i>Salmonella</i> .	260
Table 19.2	Biochemical reactions of <i>Salmonella</i> species, subspecies and serovars important	207
Table 17.2	epidemiologically.	271
Table 19.3	Media and incubation conditions recommended by ISO, FDA and USDA methods	2/1
10010 17.5	for <i>Salmonella</i> in foods.	273
Table 19.4	Analytical kits adopted as AOAC Official Methods for <i>Salmonella</i> in foods.	275
Table 19.5.A	Guide for the interpretation of <i>Salmonella</i> confirmatory biochemical tests according	2/)
14010 170701	the method ISO 6579-1:2017.	281
Table 19.5.B	Guide for the interpretation of <i>Salmonella</i> confirmatory serological tests according	
	the method ISO 6579-1:2017.	281
Table 19.6	Guide for selecting pre-enrichment broths, dilution ratios and eventual variations in	
	the pre-enrichment procedure for <i>Salmonella</i> analysis using the BAM/FDA method.	284
Table 19.7	Guide for selecting TSI and LIA cultures for confirmation tests according the method	
	BAM/FDA 2011.	288
Table 19.8	Guidance for sample preparation and pre-enrichment of <i>Salmonella</i> in method MLG/	
	USDA:2017.	294
Table 19.9	Guide for selecting TSI and LIA cultures for confirmation tests according	
	the method MLG/USDA:2018.	295
Table 20.1	Key characteristics used to differentiate the pathogenic Vibrio in groups.	301
Table 20.2	Biochemical characteristics of pathogenic Vibrio.	302

Table 20.3	Characteristics used to differentiate V. cholerae O1 biotypes classic and El-Tor.	304
Table 20.4	Characteristics of the colonies of some species of <i>Vibrio</i> on CHROMagar and TCBS.	306
Table 20.5	Guide for the interpretation of presumptive potentially enteropathogenic V. cholerae	
	or V. parahaemolyticus confirmatory tests according the method ISO 21872-1:2017.	322
Table 21.1	Differential characteristics of the species of the genus Yersinia.	326
Table 21.2	Differentiation of biogroups of Yersinia enterocolitica.	327
Table 21.3	The biovars of Yersinia enterocolitica according the ISO 10273:2017.	332
Table 22.1	Guide for the interpretation of Alicyclobacillus confirmatory tests according	
	the method IFU 12:2007.	367
Table 23.1	D and z values of several microorganisms of importance in foods.	377
Table 23.2	Keys to probable cause of spoilage in low acid canned foods.	387
Table 23.3	Keys to probable cause of spoilage in acid or acidified canned foods.	395
Table 24.1	Condition recommended in the 22 nd Edition of the Standard Methods for	
	the Examination of Water and Wastewater (Hunt, 2012) for storage of culture media	
	(part 9020B, Table 9020:V).	409

Figures

Figure 2.1	Points recommended by ISO 17604:2015 for swab sampling of bovine carcasses.	12
Figure 2.2	Points recommended ISO 17604:2015 for swab sampling of swine carcasses.	12
Figure 5.1	Streak plating technique for obtaining pure cultures.	63
Figure 6.1	Scheme of analysis for enumeration of aerobic mesophilic bacteria in foods using	
0	the plate count method APHA 8:2015.	70
Figure 6.2	Scheme of analysis for enumeration of aerobic psychrotrophic bacteria in foods using	
	the plate count method APHA 13.61:2015.	74
Figure 6.3	Scheme of analysis for the enumeration of aerobic mesophilic bacteria in foods using	
	the plate count method ISO 4833-1:2013 or ISO 4833-2:2013/Corr.1:2014.	76
Figure 6.4	Scheme of analysis for enumeration of aerobic mesophilic bacteria in frozen, chilled,	
	precooked or prepared foods using the plate count method BAM/FDA:2001.	77
Figure 7.1A	Scheme of analysis for enumeration of yeasts and molds in foods using the plate count	
	method APHA 21:2015.	88
Figure 7.1B	Scheme of analysis for enumeration of yeasts and molds in foods using the plate count	
	methods ISO 21527-1:2008 and ISO 21527-2:2008.	91
Figure 7.2	Scheme of analysis for enumeration of psychrotrophic fungi in foods using the plate	
U	count method APHA 13:2015.	94
Figure 7.3	Scheme of analysis for enumeration of heat-resistant molds in foods using the plate count	
U	method APHA 22.4:2015.	96
Figure 7.4A	Scheme of analysis for determination of preservative-resistant yeasts in foods using	
U	the presence/absence method described by Pitt and Hocking (2009).	97
Figure 7.4B	Scheme of analysis for determination of preservative-resistant yeasts in foods using	
C	the plate count method described by Pitt and Hocking (2009).	98
Figure 7.5	Scheme of analysis for the enumeration of osmophilic yeasts in foods using the	
-	membrane filtration or the plate count method APHA 17.3:2015.	100
Figure 8.1	Scheme of analysis for the enumeration of <i>Enterobacteriaceae</i> in foods using	
-	the plate count method APHA 9.62:2015.	105
Figure 8.2	Scheme of analysis for the enumeration of Enterobacteriaceae in foods using	
-	the MPN method APHA 9.61:2015.	107
Figure 8.3	Scheme of analysis for the enumeration of Enterobacteriaceae in foods using	
2	the plate count method ISO 21528-2:2017.	110
Figure 8.4	Scheme of analysis for the enumeration of <i>Enterobacteriaceae</i> in foods using the P/A	
C	or MPN method ISO 21528-1:2017.	112
Figure 9.1	Scheme of analysis for the enumeration of total and thermotolerant coliforms	
C	and <i>E. coli</i> in foods using the MPN method APHA 9:2015.	121
Figure 9.2	Scheme of analysis for the enumeration of total coliforms and presumptive	
	E. coli in foods using the most probable number (MPN) methods ISO 4831:2006	
	and ISO 7251:2005.	124
Figure 9.3	Scheme of analysis for the enumeration total and thermotolerant coliforms and E. coli	
	in water using the most probable number (MPN) method APHA/AWWA/WEF:2012.	127
Figure 9.4	Scheme of analysis for the enumeration of total coliforms in foods using the plate	
	count method APHA:2015.	131
Figure 9.5	Scheme of analysis for the enumeration of coliforms and <i>E. coli</i> in water using	
	the membrane filtration method ISO 9308-1:2014/Amd.1:2016.	133

XXXVI Figures

Figure 10.1	Scheme of analysis for the enumeration of coagulase positive staphylococci and	
	Staphylococus aureus in foods using the plate count method APHA 39.63:2015.	141
Figure 10.2	Scheme of analysis for the enumeration of coagulase positive staphylococci and	
	Staphylococcus aureus in foods using the most probable number (MPN) method	
	APHA 39.62:2015.	144
Figure 10.3	Scheme of analysis for the detection of coagulase positive staphylococci and	
	<i>Staphylococcus aureus</i> in foods using the presence/absence method APHA 29.61:2015.	146
Figure 11.1	Scheme of analysis for the enumeration of <i>Bacillus cereus</i> in foods using the plate	
_	count method APHA 31.61:2015.	155
Figure 11.2	Scheme of analysis for the enumeration of <i>Bacillus cereus</i> in foods using the Most	
	Probable Number (MPN) method APHA 31.62:2015.	158
Figure 12.1	Scheme of analysis for the enumeration of <i>Clostridium perfringens</i> in foods using	
F : (2.2.2)	the plate count method APHA 33.72:2015.	166
Figure 12.2	Scheme of analysis for the detection of <i>Clostridium perfringens</i> in foods using	1.60
F: 10.2	the presence/absence method APHA 33.71:2015.	168
Figure 12.3	Scheme of analysis for the enumeration of <i>Clostridium perfringens</i> in water using	174
F: 12.1	the membrane filtration method ISO 14189:2013.	174
Figure 13.1	Scheme of analysis for the enumeration of enterococci and fecal streptococci in foods	100
E: 12.2	using the plate count method APHA 10.5:2015.	182
Figure 13.2	Scheme of analysis for the enumeration of enterococci and fecal streptococci using	102
Eigung 12.2	the most probable number (MPN) method APHA 10.2:2015. Scheme of analysis for the enumeration of enterococci and fecal streptococci using	183
Figure 13.3	the membrane filtration method APHA/AWWA/WEF 9230C.3.c:2012.	185
Figure 13.4	Scheme of analysis for the enumeration of intestinal enterococci in water using	10)
figure 15.4	the membrane filtration method ISO 7899-2:2000.	186
Figure 14.1	Scheme of analysis for the enumeration of lactic acid bacteria in foods using the plate	100
riguie 11.1	count method APHA 19.52:2015.	199
Figure 14.2	Scheme of analysis for the enumeration of heterofermentative lactic acid bacteria in foods	1//
8	using the most probable number (MPN) method APHA 19.526:2015 with MRS broth.	201
Figure 14.3	Scheme of analysis for the enumeration of lactic acid bacteria in foods using the most	
8	probable number (MPN) method APHA 19.524:2015 with Rogosa SL broth.	203
Figure 14.4	Scheme of analysis for enumeration of lactic acid bacteria in foods using the plate	
U	count methods ISO 15214:1998.	204
Figure 15.1	Scheme of analysis for detection of thermotolerant <i>Campylobacter</i> in foods using	
C	the presence/absence method ISO 10272-1:2017.	211
Figure 15.2	Scheme of analysis for detection of thermotolerant <i>Campylobacter</i> in foods using	
	the plate count method ISO 10272-2:2017.	215
Figure 16.1	Scheme of analysis for detection of Cronobacter in foods using the presence/absence	
	method ISO 22964:2017.	222
Figure 16.2	Scheme of analysis for detection of <i>Cronobacter</i> in dehydrated powdered infant formula	
	using the presence/absence method BAM/FDA:2012.	224
Figure 17.1	Scheme of analysis for the enumeration of <i>Pseudomonas aeruginosa</i> in water using	
	the Most Probable Number (MPN) method APHA/AWWA/WEF 9213:2012.	233
Figure 17.2	Scheme of analysis for the enumeration of <i>Pseudomonas aeruginosa</i> in water using	
_	the membrane filtration method ISO 16266:2006.	235
Figure 17.3	Scheme of analysis for the enumeration of presumptive <i>Pseudomonas</i> spp. in meat	
	and meat products using the plate count method ISO 13720:2010.	238
Figure 17.4	Scheme of analysis for the enumeration of <i>Pseudomonas</i> spp. in milk and milk products	
	using the plate count method ISO 11059:2009.	239

Scheme of analysis for detection of <i>Listeria monocytogenes</i> in foods using the presence/absence method BAM/EDA:2017	251
18.2 Scheme of analysis for detection of <i>Listeria monocytogenes</i> in foods using	
	255
	2(1
	261
Scheme of analysis for detection of <i>Salmonella</i> in foods using the presence/absence method ISO 6579-1:2017.	278
gure 19.2 Scheme of analysis for detection of <i>Salmonella</i> in foods using the presence/absence method BAM/FDA:2018	
	283
method MLG/USDA:2017.	293
Scheme of analysis for detection of <i>Vibrio cholerae</i> in foods using the presence/absence	
method BAM/FDA 2004.	308
Scheme of analysis for detection of Vibrio cholerae in foods and water using	
the presence/absence method APHA 40.61:2015.	311
Scheme of analysis for the enumeration of <i>Vibrio parahaemolyticus</i> in foods using	
the most probable number (MPN) method BAM/FDA 2004.	314
Scheme of analysis for the enumeration of <i>Vibrio parahaemolyticus</i> in foods using	
the presence/absence method APHA 40.62/40.63:2015.	317
Scheme of analysis for detection of presumptive enteropathogenic <i>Vibrio cholerae</i> and <i>Vibrio parahaemolyticus</i> in foods using the presence/absence method	
	319
Scheme of analysis for the enumeration of spores of total and "flat sour" thermophilic	
aerobic sporeformers in foods using the methods APHA 26:2015.	355
Scheme of analysis for the enumeration of mesophilic aerobic sporeformers in foods	
	360
	375
	376
	202
	383
	384
foods using the method APHA:2015.	391
	the presence/absence method BAM/FDA:2017. Scheme of analysis for detection of <i>Listeria monocytogenes</i> in foods using the presence/absence method USDA/MLG:2017. Scheme of analysis for detection of <i>Listeria monocytogenes</i> in foods using the presence/absence method ISO 11290-1:2017. Scheme of analysis for detection of <i>Salmonella</i> in foods using the presence/absence method ISO 6579-1:2017. Scheme of analysis for detection of <i>Salmonella</i> in foods using the presence/absence method BAM/FDA:2018. Scheme of analysis for detection of <i>Salmonella</i> in foods using the presence/absence method MLG/USDA:2017. Scheme of analysis for detection of <i>Salmonella</i> in foods using the presence/absence method MLG/USDA:2017. Scheme of analysis for detection of <i>Vibrio cholerae</i> in foods using the presence/absence method BAM/FDA 2004. Scheme of analysis for detection of <i>Vibrio cholerae</i> in foods and water using the presence/absence method APHA 40.61:2015. Scheme of analysis for the enumeration of <i>Vibrio parahaemolyticus</i> in foods using the most probable number (MPN) method BAM/FDA 2004. Scheme of analysis for detection of presumptive enteropathogenic <i>Vibrio cholerae</i> and <i>Vibrio parahaemolyticus</i> in foods using the presence/absence method APHA 40.62/40.63:2015. Scheme of analysis for the enumeration of <i>Vibrio parahaemolyticus</i> in foods using the presence/absence method APHA 40.62/40.63:2015. Scheme of analysis for the enumeration of spores of total and "flat sour" thermophilic aerobic sporeformers in foods using the methods APHA 26:2015. Scheme of analysis for the enumeration of mesophilic aerobic sporeformers in foods using the methods APHA 23:2015. Survival curve and determination of the 2 value. Scheme of analysis for the enumeration of mesophilic aerobic sporeformers in foods using the methods APHA 23:2015. Survival curve and determination of the z value. Scheme of analysis for testing commercial sterility or cause of spoilage of low-acid canned foods using the method APHA:2015. Sanitary (bacteriological) can opener for openin

1 Sampling, transport and storage of samples for analysis

Revision history

Item 1.2.1.c (revised) Sterilization of flasks and utensils should be done at $121\pm3^{\circ}$ C for at least 15 minutes in autoclave. In sterilization oven should be made at $170\pm10^{\circ}$ C for at least one hour (ISO 7218:2007/Amd.1:2013).

Item 1.2.4 (revised) Suppressed in the 22nd edition *Standard Methods for the Examination of Water and Wastewater* (Hunt, 2012) the recommendation to add EDTA to water samples with high metal content.

Item 1.3.5 (revised) The storage temperature of water samples under refrigeration recommended by the 22nd edition of the *Standard Methods for the Examination of Water and Wastewater* (Hunt, 2012) changed from 10°C to 8°C, emphasizing the recommendation that these samples should not be frozen.

1.1 Introduction

Most of the recommendations and guidelines contained in this chapter are taken from the American Public Health Association (APHA), as described in the 5th Edition of the Compendium of Methods for Microbiological Examination of Foods (Salfinger and Tortorello, 2015). When different from or complementary to those of the Compendium, they were complemented with information and recommendations from the 22nd Edition of the Standard Methods for the Examination of Water and Wastewater (Hunt, 2012), specific to the analysis of water, the 17th Edition of the Standard Methods for the Examination of Dairy Products (Wehr and Frank, 2004), specific to the microbiological examination of dairy products and the standards of the International Organization for Standardization (ISO 6887-4:2017; ISO 7218:2007/ Amd.1:2013), recommended for performing tests using ISO methods.

Some of the terms used throughout this text come from the terminology used by the International Commission on Microbiological Specification for Foods (ICMSF, 1986) for lot sampling, and their meaning should be thoroughly understood.

1.1.1 Lot

A lot is defined as an amount of food of the same composition and physical, chemical and sensory characteristics, produced and handled in one and the same production run and under exactly the same processing conditions. In practice, a lot generally is the quantity of food produced within a certain time interval during an uninterrupted period of processing of a production line.

1.1.2 Lot sample and sample unit

A lot sample is a fraction of the total amount produced, withdrawn randomly, to evaluate the conditions of the lot. In the case of foods filled into individual packages, a lot sample is composed of n individual packages. In the case of bulk foods, which are not filled into individual packages, a lot sample is composed of n aliquots of a measured volume or weight of the product. Individual packages or aliquots are called sample units and – for the purpose of assessing the lot – are examined individually. From the combined results of analysis relative to n sample units, it is possible to infer the characteristics

of the lot as a whole, although the result of the examination of one single sample unit may never be taken as representative of the lot.

In *Salmonella* tests the criterion for foods is absence in any of the sample units examined. In such a case it is common to composite (mix together) sample units to perform one single analysis. The presence of *Salmonella* in the composite sample is unacceptable, irrespective of how many or which sample units are contaminated. Greater details will be presented in the specific chapter on *Salmonella*.

1.1.3 Lot sampling plans

Whenever the goal is to evaluate lots or batches, the taking of n sample units must follow a statistically adequate sampling plan. The most commonly used are the two- or three-class plans established by the International Commission on Microbiological Specifications for Foods (ICMSF, 2002, 2011).

The two-class sampling plan classifies lots into two categories, acceptable or unacceptable, depending on the analysis results of n sample units. Two-class sampling plans are used more in the case of presence/ absence tests, such as *Salmonella*, for example, in which absence is acceptable and the presence in any of the n sample units is unacceptable.

The three-class sampling plan classifies the lots into one of three categories: (1) acceptable; (2) intermediate quality but marginally acceptable; and (3) unacceptable. Three-class sampling plans are recommended for quantitative tests, for which the goal or standard is not the absence, but values that fall within a range between m and M. The parameters used in these plans for making decisions regarding the lots tested are:

n: the number of sample units that need to be randomly taken from one and the same lot and which are to be examined individually. The *n* sample units constitute the representative sample of the lot. As for non-quantitative and presence/absence tests (*Salmonella* or *Listeria monocytogenes*, for example) the sample units may be composite or pooled and subjected to a single analysis. However, when pooling or compositing samples the instructions and guidelines described in the chapters dealing with the specific tests in question should be consulted and strictly adhered to.

<u>m</u>: the microbiological-limiting criterion established for a given microorganism, in a given food. In a threeclass sampling plan, this value separates an acceptable lot from a lot of intermediate but marginally acceptable quality.

M: a tolerable limit, above the microbiological limiting criterion m, and which may be reached by a certain number (c) of sample units, but may not be exceeded by any of these. In a two-class plan, M separates an acceptable lot from an unacceptable one. In a three-class plan, M separates a lot of intermediate but marginally acceptable quality from an unacceptable lot.

 \underline{c} : among the *n* sample units that constitute a representative sample of the lot, *c* is the maximum number of units that may be accepted with counts above the limiting criterion *m*, provided none of these units exceed the *M* limit. In those cases in which the microbiological criterion is absence, *c* is equal to zero, and consequently, the two-class sampling plan is to be applied.

1.1.4 Analytical unit

A sample unit generally contains a quantity of product greater than necessary for performing the analysis, for the simple reason that, when collecting a sample unit, it is important to collect quantities enough to allow for storing counter-samples and preventing accidental losses. The analytical unit is the amount of food that is actually used to perform one or more tests on the sample unit. The number of analytical units necessary for the analysis depends on the number and types of tests that will be performed on one and the same sample unit; that is, one for general quantification tests (total aerobic mesophilic counts, yeast and mold counts, total coliform/fecal coliform/Escherichia coli counts, Staphylococcus aureus counts, Bacillus cereus counts, Clostridium perfringens counts), one for each presence/absence test (Salmonella, Listeria monocytogenes and all the tests requiring enrichment in specific broth) and one for any other test that requires the sample to be subjected to a differentiated treatment (counts of spore-forming bacteria, counts of heat-resistant molds and others).

1.2 Collecting samples for analysis

Chapter 2 of the *Compendium* (Taylor *et al.*, 2015) recommends that, whenever possible, samples packaged in individual packages should be collected and sent to the laboratory in their original commercial packaging, sealed and intact. Each packaging unit of an individual package of the product constitutes a sample unit and as many sample units should be collected as required by the sampling plan. If the packaging unit or individual package contains an amount of food insufficient for performing the required analyses and the keeping of counter-samples, a sufficient number of individual packages should be collected as part of one and the same sample unit. At the time of analysis, the contents of these individual packages should be placed together in one single sterile flask, which must be subsequently thoroughly mixed before withdrawing an analytical unit of the mixture. If the product does not allow for such mixing, the analyst should take, from each of the individual packages, portions of approximately equal weight, to compose or complete the analytical unit for that particular sample unit.

In the case of foods contained in vats, tanks or large containers, impossible to be transported to the laboratory, representative portions should be transferred from the bulk product to sterile collecting flasks or bags under aseptic conditions.

1.2.1 Selection and preparation of containers for the sampling of foods contained in nonindividual packages

- a) Use flasks or bags with leak-proof caps, made from non-toxic material approved for food contact and, preferably, autoclavable or pre-sterilized. The use of glass flasks or containers is not recommended due to the risk of breakage, contamination of the sampling environment with pieces of broken glass and loss of sample material.
- b) Choose flasks of appropriate size for the amount of food to be collected. To determine the quantity of sample to be collected, consider that each sample unit should contain, at least, twice the number of analytical units that will be used in the tests and, preferably, three or four times that amount (to allow for proper separation of counter-samples and prevention of possible spills or losses). Also consider that only three-quarters of the sampling flasks capacity should be filled with the sample (to prevent overflow and to allow proper mixing of sample before withdrawing the analytical units).
- c) Non-pre-sterilized flasks and utensils that will be used to collect food samples (such as spatulas, spoons, scissors, tweezers, openers, corer samplers, etc.) should, preferably, be sterilized individually in

an autoclave at $121 \pm 3^{\circ}$ C for at least 15 minutes or in a sterilizing oven at $170 \pm 10^{\circ}$ C for at least 1 hour (ISO 7218:2007/Amd.1:2013). Some other methods may be used as an alternative, such as flame sterilization, immersion in ethanol and alcohol combustion, and treatment(s) using disinfectant solutions. In the latter case, only disinfectants approved for use on food-contact surfaces should be used, in strict adherence to the manufacturer's instructions and followed by 12 rinsing cycles with sterile distilled water to remove all residues. Nonsterile flasks or bags showing - after having been subjected to an internal surface washing test - counts of viable microorganisms smaller than 1 CFU/mL of their holding capacity, may be used directly without previous sterilization.

1.2.2 Procedures for the sampling of foods contained in nonindividual packages

- a) Before starting to collect the sample unit, the whole mass of the food should be thoroughly mixed, to ensure that the microorganisms will be evenly distributed throughout the food. Next, using appropriate utensils or instruments, withdraw the amount of product necessary to compose or complete the sample unit.
- b) If it is not possible to thoroughly mix the food mass before initiating sampling, portions should be taken from different parts of the content, until obtaining the amount of product appropriate to compose or complete the sample unit. Avoid withdrawing portions of the regions close to the surface or opening of the tank or container.
 - **b.1)** To collect powder samples from different parts of tanks or large packages, corer samplers or vertical double-tube samplers, long enough to reach the center of the food mass, may be used. A different sterile sampler or sampling device should be used for each sample unit to be collected, or the instrument should be sterilized between one sampling operation and the next.
 - **b.2)** To compose or complete a sample unit with portions taken from different points of foods that consist of one large solid piece, sterile knives, tweezers and forceps should be used to cut the food into smaller pieces.

- **b.3**) In the case of large blocks of frozen foods, such as frozen fish blocks and frozen seafood blocks, volumes of frozen liquid egg, etc., the most adequate procedure is to use an electric drill (with a previously sterilized drill bit) in combination with a sterile funnel. Insert the drill bit in the funnel (the lower opening inside diameter of which should be only slightly greater than the diameter of the drill bit) and position the bit onto the point of the block from which a sample is to be taken. Turn on the drill and scrapings of the frozen food will move towards the surface and accumulate in the funnel, from where they can be transferred to an adequate collecting flask.
- **b.4**) When samples are collected using faucets or tubes, the outer part of the outlet should be cleaned with ethanol 70% and sterilized by flame, if the material is fire resistant. The initial amount of product should be discarded before starting collection of the sample material. This will wash out the pipe and remove any accumulated dirt or residue particles.
- **b.5)** For the sampling of margarine and similar products ("spreads") ISO 6887-4:2017 recommends removing the external layer (3 to 5 mm) and withdraw the sample units using a previously sterilized corer sampler. Insert the instrument diagonally, without reaching the bottom, rotate it in a complete circle and pull the sampler out, lifting out a conical portion of the product.
- c) Remember that the external surface of collecting flasks and bags is not sterile. For that reason, do not hold flasks or bags directly above the mass of food, as contaminants may fall or otherwise be introduced into the product. Likewise, never insert a collecting flask directly into the product, but use an appropriate utensil instead to withdraw the sample units.
- d) When withdrawing the collecting instrument filled with collected product, do not hold it above the other pre-sterilized instruments, because spatters of the food may contaminate the instruments that will be utilized later on.
- e) Open the collecting flasks or bags only as far or wide enough to insert the product and close/seal immediately.

- f) Do not touch the internal surface of collecting flasks or bags and their respective caps or closures.
- g) Contaminated foods may contain microorganisms that are harmful to health. These samples should be collected by staff who are well trained in the handling of microorganisms and who are aware of the care required for protecting their health and safety. In case of doubt, each sample should be treated as if it were contaminated.

1.2.3 Sampling of foods involved *in foodborne diseases*

Chapter 2 of the *Compendium* (Taylor *et al.*, 2015) recommends that samples of all suspected foods should be collected and analyzed as soon as possible. However, it is of no use to collect samples that have undergone temperature abuse or that are already in a state of partial deterioration. The results of such analyses will be of no or little use to the conclusions of the investigation. If there are not any leftovers from suspected meals, one of the following alternatives may be tried: collect samples from similar meals, prepared at a later point in time but under the same conditions, collect samples of the ingredients and raw materials used in the preparation of the suspected meals and collect all containers and cooking utensils used to hold or prepare the suspected meals.

1.2.4 Sampling of water

Chapter 60 of the 5th Edition of the *Compendium* (Robin and Feng, 2015) deals with the collecting of samples of bottled water, which is considered a food by the Codex Alimentarius. These samples must be collected from their original sealed packaging. If there is any interest or need to collect smaller volumes from packaging of greater holding capacities, the entire content should be homogenized by inverting the packaging several times in quick succession. Next, the mouth or outlet should be disinfected with ethanol 70% and, under aseptic conditions, the seal broken open with a sterile or flame-sterilized knife or pair of scissors. Do not collect but dispose of the initial volume or runoff and then collect the sample in an adequate sterile flask.

To collect other kinds of water, section 9060A of the 22^{nd} Edition of the *Standard Methods for the*

Examination of Water and Wastewater (Hunt, 2012) provides the following guidelines:

To collect samples from faucets or pipes, clean the external area of the outlet with a solution of 100 mg/L sodium hypochlorite or ethanol 70%, in addition to flame-sterilizing it if it is made of fire-resistant material. Open the faucet completely and let the water run for approximately 2 to 3 minutes to flush out any debris or impurities and clean out the piping system. Reduce the flow of water to collect a sample without spilling water droplets out of the collecting flask.

To collect water from wells or cisterns with a pump, the water should be pumped out for at least 5 to 10 minutes to allow the temperature of the water to stabilize before starting the actual sampling. In case there is no pump available, collecting flasks should be prepared by attaching a weight onto the base or bottom and then introducing the flask directly into the well. Care is needed not to contaminate the sample with material and impurities that may have accumulated onto the surface of the water.

To collect water from rivers, lakes or water reservoirs, hold the collecting flask by its base and then lower it into the water until it is totally immersed and covered by the water surface with the mouth of the bottle turned downward. Turn the mouth of the flask into the direction of the water flow with a slightly upward slope, so that the water will be retained. If there is no water flow or current, push the flask forward horizontally, in the direction opposite to that of the hand.

Samples of chlorinated water should have any residual chlorine neutralized immediately after the samples are taken, to immediately eliminate its bactericidal effect against the microbiota present. To that purpose, the collecting flasks should have 0.1 mL of a 3% sodium thiosulfate (Na2S2O3) solution added (before sterilization) for each 100 mL of sample to be collected. This amount is sufficient to neutralize 5 mg of residual chlorine per liter of sample. In situations in which the concentration of residual chlorine exceeds 5 mg/L, utilize 0.1 mL of a 10% sodium thiosulfate solution for each 100 mL sample. This quantity is enough to neutralize 15 mg residual chlorine per liter of sample. Sterile plastic bags or flasks, which are commercially available and already contain sodium thiosulfate, may also be used. If the sample is collected and sent to the laboratory by the interested person, without previous neutralization of the chlorine, a sterile sodium thiosulfate solution should be added immediately upon arrival of the sample, under aseptic conditions.

1.3 Transportation and storage of samples until analysis

As a general rule, food samples should always be transported and stored in exactly the same way and under the same conditions the food is transported and stored until marketed. The guidelines below should be followed to ensure the integrity of the product until the time of analysis.

1.3.1 Foods with low water activity

Foods with low water activity (dehydrated, dried or concentrated), which are microbiologically stable, may be transported and stored at room temperature, although they should be protected against moisture.

1.3.2 Frozen foods

Frozen foods should be transported and kept frozen until the time of analysis. Chapter 2 of the Compendium (Taylor et al., 2015) recommends storage at -20°C. ISO 7218:2007/Amd.1:2013 recommends -15°C, preferably -18°C. The transportation should be carried out in Styrofoam boxes with dry ice with certain precautions and care. The product should not come into contact with the dry ice because the absorption of CO₂ may change the pH. If the lid does not make the packaging airtight and gas proof and/or if the packaging is gas permeable and/or becomes fragile or brittle at low temperatures, a secondary packaging should be used. Generally, wrapping in thick paper or paperboard is sufficient to avoid this problem. Labels and tags used to identify the samples should be waterproof, smudge proof and fade proof to avoid the loss of important data.

1.3.3 Refrigerated foods

Refrigerated foods should be transported and kept under refrigeration from the moment they are collected until the time of analysis. Chapter 2 of the *Compendium* (Taylor *et al.*, 2015) recommends, as a general rule, that these samples be transported and stored at a temperature between 0°C and 4.4°C with a maximum time interval of 36 hours between sampling and analysis. If it is impossible to perform the analysis within 36 hours, the samples should be frozen or retained at refrigeration temperatures for up to 18 hours, depending on the type of product, the reason for analysis and the type of analysis. ISO 7218:2007/Amd.1:2013 recommends that this kind of food sample be transported at a temperature between 1°C and 8°C and stored at 3 ± 2 °C, with a maximum interval of 36 hours between sampling and analysis (24 hours in the case of highly perishable samples). In case it is impossible to perform the analysis within the maximum time interval stipulated, the samples should be frozen and kept under the same conditions as those described for frozen samples (-15°C, preferably -18°C), provided freezing does not interfere with recovery of the target microorganism(s) (see the exceptions below).

Chapter 2 of the Compendium (Taylor et al., 2015) recommends that transportation be carried out in Styrofoam boxes containing ice. The Compendium further recommends the use of reusable gel ice packs, to avoid liquid from accumulating inside the boxes. If gel ice is not available, common ice may be used, provided it is pre-packed in plastic bags. Tightly closed Styrofoam boxes, with ample space inside for ice, in amounts sufficient enough to cover all sample-containing flasks, can keep the samples at appropriate refrigeration temperatures for up to 48 hours, in most situations. As a general rule, these samples should not be frozen, and for that reason, the use of dry ice inside the Styrofoam boxes is not recommended. If the transport of the samples requires a prolonged period of time, making the use of dry ice necessary, the sample packages should not come into direct contact with the dry ice packs, to avoid freezing. Labels and tags used to identify the samples should be waterproof, smudge proof and fade proof to avoid losing important data.

Exceptions: For certain microorganisms, differentiated rules apply, specified in the specific chapters. Samples of shellfish should be analyzed within 6 hours after sampling, and should not be frozen (Taylor et al., 2015). Samples of refrigerated liquid egg should be analyzed, if possible, within 4 hours after sampling, and should not be frozen (Ricke et al., 2015). Samples of non-heattreated fermented or acidified products of plant origin should be stored under refrigeration for no longer than 24 hours, and should not be frozen (Pérez-Diaz et al., 2015). ISO 6887-3:2017 recommends that the transport of raw fish, crustaceans, cephalopods, bivalve mollusks, gastropods, tunicates and echinoderms be done between 0°C and 10°C, without freezing. Laboratory samples shall be stored at $3 \pm 2^{\circ}$ C, and microbiological examination should be initiated within 24 hours of collection.

1.3.4 Commercially sterile foods in sealed packages

Commercially sterile foods in sealed packages under normal circumstances may be transported and stored at room temperature, and should be protected against exposure to temperatures above 40°C (ISO 7218:2007/ Amd.1:2013). Samples of bottled carbonated soft drinks, sold at room temperature, may also be transported and stored under these same conditions. Blown packages should be placed inside plastic bags due to the danger of leakage of materials of high microbiological risk. Transportation and storage can be carried out under refrigeration, to prevent explosion. However, if there is any suspicion of spoilage caused by thermophilic bacteria, refrigeration is not indicated because it may destroy vegetative cells (Parkinson and Francis, 2015).

1.3.5 Water samples

For water samples Chapter 60 of the 5th Edition of the *Compendium* (Robin and Feng, 2015) recommends that bottled water in its original, sealed packaging may be transported and stored at room temperature, without the need of refrigeration. Water contained in opened packages or water samples transferred to other containers should be transported and stored under refrigeration (temperature not specified). The samples should be analyzed within an interval of preferably 8 hours, but not exceeding 24 hours.

For other types of water, part 9060B of the 22nd Edition of the *Standard Methods for the Examination of Water and Wastewater* (Hunt, 2012) provides the following guidelines:

- a) Drinking water for compliance purposes. Preferably hold samples at temperatures below 8°C (without freezing) during transit to the laboratory. Do not exceed a 30-hour holding time from collection to analysis for coliform bacteria. Do not exceed an 8-hour holding time for heterotrophic plate counts.
- **b)** Nonpotable water for compliance purposes. Hold samples at temperatures below 8°C (without freezing), during a maximum transport time of six hours.
- c) Other water types. Hold samples at temperatures below 8°C (without freezing) during transport and until time of analysis. Holding time should not exceed 24 hours.

1.4 References

- Hunt, M.E. (2012) Microbiological examination. In: Rice, E.W., Baird, R.B., Eaton, A.D. & Clesceri, L.S. (eds) *Standard Methods for the Examination of Water & Wastewater*. 22nd edition. American Public Health Association (APHA), American Water Works Association (AWWA) & Water Environment Federation (WEF), Washington, DC, USA. Part 9000, pp. 9.1–9.224.
- ICMSF (International Commission on Microbiological Specifications for Foods) (ed) (1986) *Microorganisms in Foods 2: Sampling* for Microbiological Analysis: Principles and Specific Applications. 2nd edition. Blackwell Scientific Publications, Oxford, England.
- ICMSF (International Commission on Microbiological Specifications for Foods) (ed) (2002) Microorganisms in Foods 7: Microbiological Testing in Food Safety Management. Kluwer Academic & Plenum Publishers, New York, NY, USA.
- ICMSF (International Commission on Microbiological Specifications for Foods) (ed) (2011) Microorganisms in Foods 8: Use of Data for Assessing Process Control and Product Acceptance. Springer, New York, NY, USA.
- International Organization for Standardization (2013) ISO 7218: 2007/Amd.1:2013. *Microbiology of Food and Animal Feeding Stuffs: General Requirements and Guidance for Microbiological Examination*. 3rd edition:2007, Amendment 1:2013. ISO, Geneva, Switzerland.
- International Organization for Standardization (2017) ISO 6887-3:2017. Microbiology of the Food Chain: Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination, Part 3: Specific Rules for the Preparation of Fish and Fishery Products. 2nd edition. ISO, Geneva, Switzerland.
- International Organization for Standardization (2017) ISO 6887-4:2017. Microbiology of the Food Chain: Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological

Examination, Part 4: Specific Rules for the Preparation of Miscellaneous Products. 2nd edition. ISO, Geneva, Switzerland.

- Parkinson, N.G. & Francis, K. (2015) Canned foods: Tests for cause of spoilage. In: Salfinger, Y. & Tortorello, M.L. (eds) Compendium of Methods for the Microbiological Examination of Foods. 5th edition. American Public Health Association, Washington, DC, USA. Chapter 62, pp. 805–821.
- Pérez-Diaz, I.M., Breidt, F., Jr., Buescher, R.W. et al. (2015) Fermented and acidified vegetables. In: Salfinger, Y. & Tortorello, M.L. (eds) Compendium of Methods for the Microbiological Examination of Foods. 5th edition. American Public Health Association, Washington, DC, USA. Chapter 51, pp. 697–718.
- Ricke, S.C., Jones, D.R. & Gast, R.K. (2015) Egg and egg products. In: Salfinger, Y. & Tortorello, M.L. (eds) *Compendium of Methods for the Microbiological Examination of Foods*. 5th edition. American Public Health Association, Washington, DC, USA. Chapter 46, pp. 633–643.
- Robin, L.P. & Feng, P. (2015) Bottled water. In: Salfinger, Y. & Tortorello, M.L. (eds) *Compendium of Methods for the Microbiological Examination of Foods*. 5th edition. American Public Health Association, Washington, DC, USA. Chapter 60, pp. 791–796.
- Salfinger, Y. & Tortorello, M.L. (eds) (2015) Compendium of Methods for the Microbiological Examination of Foods. 5th edition. American Public Health Association, Washington, DC, USA.
- Taylor, T.M., Sofos, J.N., Bodnaruk, P. & Acuff, G.R. (2015) Sampling plans, sample collection, shipment, and preparation for analysis. In: Salfinger, Y. & Tortorello, M.L. (eds) *Compendium of Methods for the Microbiological Examination of Foods*. 5th edition. American Public Health Association, Washington, DC, USA. Chapter 2, pp. 13–25.
- Wehr, H.M. & Frank, J.F. (eds) (2004) Standard Methods for the Examination of Dairy Products. 17th edition. American Public Health Association, Washington, DC, USA.

2 Preparation of samples for analysis

Revision history

Figures 2.1 e 2.2 (revised) Figures revised according to ISO 17604:2015.

Item 2.2.2 (revised) The procedure recommended for homogenization and withdrawal of analytical units from frozen solid foods was revised according the 2nd edition of ISO 6887-1:2017 and ISO 6887-3:2017.

Item 2.3.3 (revised) The diluents recommended by different regulatory agencies for food analysis was revised according the new editions of publications and standards.

Item 2.4 (revised) The uncertainty of volume measurement allowed by ISO 6887-1:2017 is 2%. The resuscitation step recommended by ISO 6887-4:2017 before preparing the second dilution of hard and dry products and for low moisture products is about one hour at ambient temperature (18-27°C).

Annex 2.1. (revised) The procedures recommended by different regulatory agencies for homogenizing the content and withdrawal of the analytical unit of different types of foods for analysis was revised according the new editions of publications and standards.

Annex 2.2. (revised) Variations recommended by different regulatory agencies for the preparation of the first dilution of different types of foods for analysis was revised according the new editions of publications and standards.

2.1 Introduction

Most of the guidelines contained in this chapter were taken from the American Public Health Association (APHA), as described in the 5th Edition of the Compendium of Methods for Microbiological Examination of Foods (Salfinger and Tortorello, 2015). When different from or complementary to those of the Compendium, they were completed with information and recommendations from the 22nd Edition of the Standard Methods for the Examination of Water and Wastewater (Hunt, 2012), specific to the microbiological examination of water, the 17th Edition of the Standard Methods for the Examination of Dairy Products (Wehr and Frank, 2004), specific to the examination of dairy products and several standards developed by the International Organization for Standardization (ISO 6887-1:2017; ISO 6887-2:2017; ISO 6887-3:2017; ISO 6887-4:2017; ISO 6887-5:2010; ISO 7218:2007/

Amd.1:2013; ISO 17604:2015), recommended for tests performed using ISO method(s).

The preparation of samples for analysis involves three steps: (1) homogenization of the content and withdrawal of the analytical unit, (2) preparation of the first dilution of the analytical unit and (3) the preparation of serial decimal dilutions for inoculation into or onto culture media.

Before starting procedures certain precautions are recommended, to ensure that all activities be conducted under aseptic conditions:

Make sure that the work area is clean and that all doors and windows are closed to avoid air currents.

Disinfect all working surfaces with an appropriate disinfectant (ethanol 70%, 500 ppm benzalkonium chloride solution, 200 ppm sodium hypochlorite solution or any other chlorine-based compound is adequate).

Wash and disinfect your hands with a disinfectant appropriate and safe for skin contact. Verify the necessity or not to use gloves in the chapters specifically dealing with pathogen tests.

Work inside vertical laminar flow cabinets to prevent contamination of the sample by the environment and contamination of the environment and the analyst by the sample. In case a vertical laminar flow cabinet is not available, work in an area located as close as possible to the flame of a Bunsen burner, which, when working well, will produce a steady blue flame. When handling powdered samples, it is not recommended to work very close to the flame of a Bunsen burner. ISO 7218:2007 stipulates the use of a separated area or a laminar flow cabinet.

Avoid the formation of aerosols when opening tubes, flasks or plates after agitating or releasing the content of pipettes or flame-sterilizing inoculation loops.

Never use a pipette by mouth; use mechanical pipettes instead.

After use, place the pipettes and other utensils in disposable trays and not directly onto the surface of the bench.

All instruments and utensils used to open packages and withdraw analytical units (scissors, tweezers, knives, spatulas, etc.) must be previously sterilized (in an autoclave or sterilization oven) or immersed in ethanol 70% and flame sterilized at the time of use.

Before opening the packages, disinfect the external area with ethanol 70%, maintaining contact until the alcohol has fully evaporated. In the case of flexible packages, cut open with a sterile pair of scissors. In the case of rigid packages with a screw cap, unscrew and remove the cap aseptically. In the case of cans that come with an "easy open" lid with wide opening, open the can aseptically and remove the lid. In the case of cans without an "easy open" feature, use a sterile can opener. In the case of cans, glass containers, boxes and other packaging intended to be subjected to the commercial sterility test, differentiated guidelines should be followed, as described in a specific chapter. The objective of these procedures is to ensure the integrity of the sealing system, for later analyses of the package, if necessary. Observe and note any abnormality concerning either the package itself or its content, such as blowing, leakage, off-odors and/or strange or atypical appearance, the presence of foreign objects and so on.

2.2 Homogenization of samples and withdrawal of the analytical unit

The analytical unit is the amount of material withdrawn from a sample to be subjected to one or more tests. The

number of analytical units that should be withdrawn and the amount of material of each analytical unit depends on the number and types of tests that will be performed on the same sample. In general, the following items are necessary:

- a) Analytical units for presence/absence tests with enrichment in specific broth. One analytical unit is required for each test (*Salmonella*, *Listeria* and others). The quantity of material of each of these analytical units is defined in the chapters specifically dedicated to these tests.
- b) Analytical units for tests requiring differentiated treatment of the sample. One analytical unit is required for each test (commercial sterility, bacterial spore counts, thermoresistant mold counts and others). The quantity of material of each of these analytical units is also defined in the chapters specifically dedicated to these tests.
- Analytical units for general quantification **c**) tests. General quantification tests usually comprise total aerobic mesophilic or psychrotrophic counts and counts of yeasts and molds, lactic acid bacteria, enterococci, Enterobacteriaceae, coliform and/or Escherichia coli, Staphylococcus aureus, Bacillus cereus, Clostridium perfringens and Pseudomonas spp. These tests are performed with the same analytical unit, which, most commonly, consists of 25 g or 25 mL of the sample. According to ISO 6887-1:2017 the minimum of 10 g is specified for enumeration tests in many specific standards. For qualitative tests the size is normally 25 g (or 25 mL), although alternative quantities can be used. Chapter 2 of the Compendium (Taylor et al., 2015) recommends that the minimum amount or volume of the analytical unit be at least 50 g for solid foods and 10 mL, 11 mL or 50 mL for liquid products. However, in the specific chapters, the recommended amount for most cases is 25 g or less. For more information on these exceptions see Annex 2.2.

Before withdrawing the analytical unit(s), the content of the sample should be well homogenized to ensure that the portion to be removed will be representative for the material as a whole. The procedures to achieve good homogenization are different for liquid products, solid products and products with a predominantly surface contamination, as will be further specified in the following sections.

2.2.1 Procedure for homogenization and withdrawal of analytical units from liquid products

If the liquid product (viscosity not greater than that of milk) is filled in containers with enough inner space to allow for agitation, invert the packaging 25 times. If the container is filled to more than two-thirds of its inner space, invert the package 25 times in a 30-cm arc within 7 seconds. If there is not enough free space for agitation, then use a second, sterile container and transfer the sample from one container to the other, for three consecutive times. If foam is formed, let it subside by standing until totally dispersed. As for gasified samples (carbonated soft drinks and similar products), transfer the content to a sterile container with a wide mouth and, with the cap slightly open, agitate using a shaker until the gas is completely expelled (this step is unnecessary if the analytical unit is transferred directly to the filtration flask, in the tests using the membrane filtration method).

Withdraw the analytical unit with a pipette, inserting the tip of the pipette to a depth not greater than 2.5 cm below the surface of the liquid. The measurement should be volumetric and the time interval between the homogenization of the sample and the withdrawal of the analytical unit should not exceed 3 minutes. The *Compendium* (Taylor *et al.*, 2015) does not set a limit for the uncertainty of the measurement of the volume, which, according to ISO 6887-1:2017, should not be greater than 5%.

2.2.2 Procedure for homogenization and withdrawal of analytical units from solid or concentrated liquid products

In the case of solid or concentrated liquid products, follow the guidelines contained in Annex 2.1, which defines the procedures most appropriate for homogenizing and withdrawing the analytical unit of different types of foods. The *Compendium* (Taylor *et al.*, 2015) recommends that the uncertainty of mass or weight measurement be not greater than 0.1 g. ISO 6887-1:2017 recommends this measurement uncertainty not to exceed 5%.

If the sample is frozen, the *Compendium* (Taylor *et al.*, 2015) recommends thawing in the original packaging under refrigeration temperatures ($\leq 4.4^{\circ}$ C) for no

longer than 18 hours. Alternatively, higher temperatures may be used, but not higher than 40°C, and for no longer than 15 minutes. In this case, frequent agitation of the sample is required to facilitate thawing. The use of a controlled temperature water bath and agitation is recommended. ISO 6887-1:2017 recommends thawing under refrigeration (5 \pm 3°C for no longer than 24 hours), in the original packaging. Alternatively, higher temperatures may be used (18°C to 27°C for no longer than 3 hours), but, unlike the Compendium, ISO 6887-1:2017 does not recommend defrosting in water bath or under running cold water, as this can result in contamination of the sample if the packaging is not completely watertight. In the case of large blocks of frozen foods, which cannot be thawed under the conditions described above, the procedure recommended by ISO 6887-1:2017 can be used: with an electric drill (fitted with a previously sterilized drill bit) or a hand drill, make holes in several points of the piece. Set the speed of the drill to not more than 900 rpm to avoid fusion or dispersion of the shavings. Using a sterile spatula, collect the shavings in a sterile container or plastic bag, from which the required number of analytical units can be taken. The entire sampling operation shall not cause a significant increase in the temperature of the sample. For frozen fish, crustaceans, mollusks, tunicates and echinoderms, ISO 6887-3:2017 recommends either taking the test portion using a drill or defrost at ambient temperature (18°C to 27°C) for approximately 60 minutes but no more than 3 hours.

If the sample is heterogeneous, consisting of different layers, each of which is of a distinct and clearly different composition (filled cakes, pies, desserts and other ready-to-eat foods), the analytical unit should be put together using portions of the different layers, taking into account the actual proportion of each layer in the product. Alternatively, homogenize the entire content of the sample and withdraw the analytical unit from the macerate (ISO 6887-4:2017).

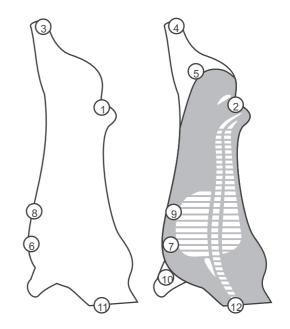
If the amount of sample sent for analysis is smaller than the analytical unit(s) required, the *Compendium* (Taylor *et al.*, 2015) recommends subjecting half of the available amount of sample material for analysis and reserving the other half as a counter-sample. If homogenization is done using a blender, the quantity of sample plus diluent (first dilution 10^{-1}) in the jar of the blender should be sufficient to cover the cutting blades of the apparatus. For meat products, ISO 6887-2:2017 recommends using all of the material for the tests.

2.2.3 Procedure for withdrawing the analytical unit using the surface swabbing technique

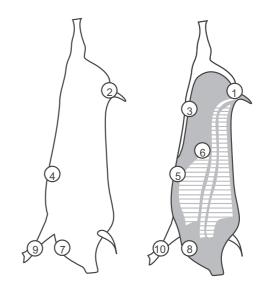
The surface swabbing technique applies to foods of which most microbial contamination is predominantly present or concentrated on the surface, such as bovine, swine, poultry and fish carcasses. It also applies to the analysis of the surfaces of pieces of equipment, tables, utensils and packaging.

Rubbing can be done with sterile swabs or, if the area to be sampled is large, with sterile sponges. This material can be purchased in individual, sterile packages. The sponges may be replaced by sterile cotton pads, prepared in the laboratory. The swabs may also be prepared in the laboratory, with wooden shafts of approximately 15 cm in length by 3 mm in diameter and the absorbent part in cotton measuring approximately 2 cm in length by 5 mm in diameter.

2.2.3.1 Swab sampling


Prepare tubes or flasks with 10 mL of an appropriate diluent. The *Compendium* (Taylor *et al.*, 2015) recommends 0.1% peptone water (PW) or Butterfield's phosphate buffer, and ISO 6887-1:2017 recommends saline peptone water (SPW) or buffered peptone water (BPW). Remove the swab from its sterile package, holding it by the shaft at the edge opposite to the cotton tip. Moisten the cotton in the diluent, pressing it against the walls of the flask to remove any excess liquid.

Using a sterile frame of 50 cm^2 in size, delimit the area to be sampled, holding the frame firmly against the surface. Rub the swab with pressure, moving from left to right and then from bottom to top. Rotate the cotton swab tip continuously as you wipe, so that the entire surface of the cotton comes into contact with the sample. Upon completion of the rubbing or wiping, transfer the swab to the tube or flask containing the diluent, breaking off the hand-manipulated part of the wooden shaft against the inside of the flask tube, before immersing the remainder of the swab in the diluent.


Repeat this procedure one more time, covering the same sample surface area, using a dry swab this time. Place and keep the second swab in the same flask or tube containing diluent.

The liquid collected by the swabs can be used in general quantification tests or in presence/absence tests. In the second case, follow the guidelines and instructions in each of the specific chapters. This procedure samples a total surface area of 50 cm² and each milliliter of diluent, upon removal of the swabs, corresponds to 5 cm^2 of the sampled surface. Both the sampled surface area as the volume of diluent may vary, in accordance with the needs or the characteristics of the sample.

For the swabbing of half bovine or swine carcasses using the same procedure, ISO 17604:2015 recommends sampling the points indicated in Figures 2.1 and 2.2. Use one swab for each point and, between one point and the next, immerse the frame in ethanol 70% and flame sterilize. The swabs may be placed and kept in one and the same

Figure 2.1 Points recommended by ISO 17604:2015 for swab sampling of bovine carcasses.

Figure 2.2 Points recommended ISO 17604:2015 for swab sampling of swine carcasses.

flask containing a total volume of diluent corresponding to a multiple of 10 mL diluent for each pair of swabs.

2.2.3.2 Sponge swab sampling

Prepare tubes or flasks with 25 mL of one of the diluents recommended for swabs. Open the plastic bag containing the sterile sponge (or cotton pad) and add an amount of diluent sufficient to moisten the sponge, without leaving behind any visible excess fluid. Hold the bag by its outside surface and massage the sponge to moisten it evenly. Thoroughly wash your hands before putting on a pair of sterile gloves and remove the sponge from the bag.

Using a sterile frame measuring 10×10 cm, delimit the area to be sampled by holding the frame firmly against the surface. Rub the sponge under pressure, moving it 10 times from left to right and 10 times from bottom to top. Upon completing this procedure, place the sponge back again into the bag and add the remainder of the diluent, until completing 25 mL.

The liquid collected by the sponges can be used in general quantification tests or in presence/absence tests. In the second case, follow the guidelines and instructions in each of the specific chapters. This procedure samples a total surface area of 100 cm^2 , and each milliliter of diluent, after the sponge is removed, corresponds to 4 cm^2 of the sample surface. Both the sampled surface area as the volume of diluent may vary, in accordance with the needs or the characteristics of the sample.

2.2.4 Procedure for withdrawing the analytical unit using the surface washing technique

The surface washing technique is used for taking food samples of which most microbial contamination is predominantly present or concentrated on the surface, such as whole poultry carcasses, poultry cuts, fish, egg shells, grains, seeds, nuts and peanuts, which may be immersed in an adequate diluent contained in a sterile bag. The method is also used for the analysis of packages that can be closed and agitated with the diluent inside, for washing the package and collecting the sample to be examined.

2.2.4.1 Procedure for washing poultry carcasses

The following procedure is from MLG/FSIS (2017) to be used for the simultaneous examination of *Salmonella*

and other microorganisms. It is also recommended by ISO 17604:2015.

Aseptically drain excess fluid from the carcass and transfer the carcass to a sterile plastic bag. Pour 400 mL of buffered peptone water (BPW) into the cavity of the carcass contained in the bag. Rinse the bird inside and out with a rocking motion for 1 minute (ca. 35 rpm). This is done by grasping the broiler carcass in the bag with one hand and the closed top of the bag with the other. Rock the carcass with a reciprocal motion in about an 18- to 24-inch arc, ensuring that all surfaces (interior and exterior of the carcass) are rinsed. Transfer the sample rinse fluid to a sterile container. Use 30 ± 0.6 mL of the sample rinse fluid obtained above for Salmonella analysis. Add 30 ± 0.6 mL of sterile BPW, and mix well. For analyses other than Salmonella, the dilutions can be made directly from the BPW rinse. Alternatively, the carcass may be rinsed in Butterfield's phosphate buffer instead of BPW. In this case, for Salmonella analysis add 30 ± 0.6 mL of double concentration BPW to 30 ± 0.6 mL of carcass-rinse fluid and mix well.

In this procedure each milliliter of washing liquid corresponds to the weight of the carcass divided by 400. For example, if the carcass weighs 1600 g, each milliliter of the washing liquid corresponds to 4 g of the sample.

2.2.4.2 Procedure for washing other foods

Transfer the sample to a sterile bag and weigh. Using the same diluents recommended for swabs, add to the bag the amount of diluent required for an initial 1:1 dilution (1 mL of diluent per gram of sample). Closing the mouth or opening of the bag with one hand, agitate the sample and massage the pieces inside the bag with the other hand from the outside, taking the necessary care and precautions to avoid that pointed or other protuberant parts come to pierce or puncture the package. In the case of grains, seeds, nuts and similar products, the sample may also be placed in a flask containing the diluent and agitated for 10 minutes in a laboratory shaker.

The liquid produced by this washing procedure may be used for general quantification tests or for presence/ absence tests. In the second case, follow the guidelines and instructions in each of the specific chapters. In this procedure each milliliter of the washing liquid corresponds to 1 g of sample.

The volume of diluent may vary, in accordance with the needs or the characteristics of the sample.

2.2.4.3 Procedure for washing packages

This procedure is recommended for packages with a leak-proof cap or closure system. In the case of packages that do not have any cap/closure system or caps that are not leak proof, use the swabbing method.

Using the same diluents as those recommended for swabs, add to the package an amount of diluent sufficient to wash the entire internal surface by agitation (one-fifth of the package's holding capacity, for example). Close the package tightly and, with the hands agitate and swirl the package vigorously to remove the microorganisms adhered to the inner surface. Try to reach all the points of the inner surface, so as to guarantee complete removal of the contaminants present.

The liquid obtained by this washing procedure may be used for general quantification tests or for the presence/absence tests. In the second case, follow the guidelines and instructions in each specific chapter. In this procedure each milliliter of the washing liquid corresponds to the holding capacity of the package divided by the volume of the diluent. For example, if the holding capacity of the package is 500 mL and the volume of diluent is equal to 100 mL, each milliliter of the washing liquid corresponds to 5 cm³.

2.2.5 Keeping of counter-samples

After withdrawing the analytical unit(s), store the remaining material under the same conditions utilized prior to analysis (ISO 7218:2007). Perishable samples need to be frozen, but it is important to know that thawing of counter-samples for the purpose of repeating microbiological test(s) is not an acceptable practice, due to the possible death of part of the microbial populations that were originally present. In the case of frozen products, this problem can be resolved by thawing for analysis only the portion required for the test(s). The remaining quantity, which was not thawed, may be kept frozen to be used as a counter-sample for later repetitions of the test(s), if necessary. In the case of refrigerated products, there is no acceptable way to keep counter-samples without freezing. In case test(s) need to be repeated, the result(s) should be interpreted taking into account the fact that population(s) of the target microorganism(s) may have been reduced due to freezing.

In the case of samples the analytical unit of which has been collected by surface swab or sponge rubbing technique or the surface washing technique, the part of the diluent retaining the contaminants and not used for subsequent microbiological testing should be frozen to serve as a counter-sample. Also in this case, it should be taken into consideration that the population(s) of the target microorganism(s) may have been reduced due to freezing.

The minimum time for keeping counter-samples is the time required for obtaining the results of the tests, but should be set at the discretion of the laboratory. The samples may be disposed of by throwing them in a dumpster, but samples deteriorated or suspected of containing microorganisms that are harmful to health should be decontaminated in an autoclave (121°C for 30 minutes) prior to final disposal (ISO 7218:2007).

2.3 Preparation of the first dilution of the analytical unit

To proceed with the analysis, the analytical unit must be diluted and homogenized with an adequate diluent, to allow inoculation into or onto culture media. The recommended diluents and initial dilution ratios vary with the type of sample and the type of test that will be performed, as described below.

2.3.1 Diluents for presence/absence tests

These tests are performed with dilution and homogenization directly in enrichment broth, specified in the corresponding chapters.

2.3.2 Diluents for tests requiring differentiated handling of the sample

Also for these tests the specific chapters should be consulted.

2.3.3 Diluents for general quantification tests

For these tests the recommendations showed at Table 2.1 apply.

Regulatory agency publication	Matrix to which it applies	Diluent recommended
APHA, Compendium of Methods for Microbiological	Foods	0.1% peptone water (PW) or
Examination of Foods (Taylor et al., 2015)		Butterfield's phosphate buffer
APHA, Standard Methods for the Examination of Water &	Water	0.1% peptone water (PW) or
Wastewater (Hunt, 2012)		magnesium chloride phosphate buffer
APHA, Standard Methods for the Examination of Dairy	Milk and dairy products	Butterfield's phosphate buffer or
Products (Davis and Hickey, 2004)		magnesium chloride phosphate buffer
ISO 6887-1:2017	Foods	Saline peptone water (SPW) or
		buffered peptone water (BPW)
	Foods pH below 4.5	Double-strength buffered peptone water [BPW] ²
ISO 6887-2:2017	Meat and meat products	Saline peptone water (SPW) or
		buffered peptone water (BPW)
ISO 6887-3:2017	Fish and fishery products	Saline peptone water (SPW) or
		buffered peptone water (BPW)
ISO 6887-4:2017	Miscellaneous products	Saline peptone water (SPW) or
		buffered peptone water (BPW)
	Foods pH below 4.5	Double-strength buffered peptone water [BPW] ²
ISO 6887-5:2010	Milk and dairy products	0.1% peptone water (PW) or
		buffered peptone water (BPW) or
		saline peptone water (SPW) or
		Ringer's solution quarter-strength or
		phosphate buffer acc. ISO 6887-5
ISO 6887-6:2013	Samples from the	Saline peptone water (SPW) or
	primary production	buffered peptone water (BPW)
	stage (from farm to	
	slaughterhouse)	

Table 2.1 Diluents recommended by different regulatory agencies for food and water analysis.

The *Compendium* (Taylor *et al.*, 2015) recommends, for general use in the examination of foods, 0.1% peptone water (PW) or Butterfield's phosphate buffer.

Section 4.030 of the *Standard Methods for the Examination of Dairy Products* (Davis and Hickey, 2004) recommends, for general use in the examination of dairy products, Butterfield's phosphate buffer (called phosphate dilution water) or magnesium chloride phosphate buffer (called phosphate and magnesium chloride dilution water).

The Standard Methods for the Examination of Water & Wastewater (Hunt, 2012) recommends, for general use in the examination of water samples, 0.1% peptone water (PW) or magnesium chloride phosphate buffer (called buffered water).

ISO 6887-1:2017 recommends saline peptone water (SPW) or buffered peptone water (BPW) for general use in the examination of foods. For foods with pH below 4.5 recommends BPW double strength.

ISO 6887-2:2017 and ISO 6887-3:2017 also recommend saline peptone water (SPW) or buffered peptone water (BPW) for general use in the examination of meat and meat products, and fish and fishery products. ISO 6887-4:2017 recommends saline peptone water (SPW) or buffered peptone water (BPW) for general use in the examination of miscellaneous products and BPW double strength for foods with pH below 4.5.

ISO 6887-5:2010 recommends, for general use in the examination of milk and dairy products, 0.1% peptone water (PW), buffered peptone water (BPW), saline peptone water (SPW), Ringer's solution quarter-strength or phosphate buffered solution according ISO 6887-5.

There are special cases for which a different diluent is recommended. For more details on these exceptions see Annex 2.2.

2.3.4 How to prepare an initial 1:10 (10⁻¹) dilution

The initial dilution recommended for most samples is 1:10 (10^{-1}) , obtained by adding *m* grams or milliliters of the sample to $9 \times m$ milliliters of diluent. For example, for 25 g of sample, add 9×25 mL of diluent (225 mL). There are situations in which the diluent and the initial dilution are different. For more details on these exceptions see Annex 2.2.

2.3.5 How to prepare an initial dilution different from 1:10

In some special situations the first dilution is different from 1:10. To determine the volume of diluent necessary to obtain a predetermined 1:*k* dilution of the sample, use the v = [(k.m) - m] ratio. For example, to obtain a 1:50 dilution of an analytical unit of 10 g, add $[(50 \times 10) - 10]$ mL of diluent (490 mL). To obtain the same dilution for an analytical unit of 20 g, add $[(50 \times 20) - 20]$ mL of the diluent (980 mL).

2.3.6 Procedure for the preparation of the first dilution of liquid samples

In the case of liquid foods, transfer the analytical unit directly to tubes or flasks containing the amount of diluent necessary for a 1:10 dilution. Homogenize the sample with the diluent by agitation, inverting the container or package 25 times. To allow for perfect homogenization, use tubes or flasks with screw caps. They should be of a size sufficiently great to ensure that no more than two-thirds of their holding capacity is taken up by the analytical unit plus the diluent. There are special cases that require a different initial dilution. For further details on these exceptions see Annex 2.2.

2.3.7 Procedure for the preparation of the first dilution of solid or concentrated liquid samples

In the case of solid or concentrated liquid foods, transfer the analytical unit to a sterile homogenization flask or bag. Add to the sample the amount of diluent necessary to obtain a 1:10 dilution. Homogenize the analytical unit with the diluent, which can be achieved by manual agitation, shaking the flask in an inverted position 25 times through a 30-cm arc within 7 seconds (concentrated liquids, soluble powders), agitation in a peristaltic homogenizer (better known as stomacher) for 1 to 2 minutes (soft foods, pasty foods, ground or minced foods, poorly soluble powders) or in a blender (hard foods). In the case of homogenization using a blender, the Compendium (Taylor et al., 2015) recommends using high speed during the first few seconds and low speed (8,000 rpm) for the remaining time, which should not exceed 2 minutes. If a more prolonged homogenization is necessary, it is important to prevent excessive heating of the material. For that purpose, the *Compendium* (Taylor *et al.*, 2015) recommends cooling the diluent in an ice bath before use, while ISO 6887-4:2017 recommends not homogenizing for periods longer than 2.5 minutes. There are special cases that require a different initial dilution. For further details on these exceptions see Annex 2.2.

2.3.8 Procedure for the preparation of the first dilution of samples obtained by surface swabbing or surface washing

The diluent retaining the contamination collected with swabs, sponges or surface washing is, in itself, already the first dilution of the sample. The subsequent treatment of serial decimal dilution is performed using this suspension as point of departure. Since the initial dilution is not the standard 1:10 dilution, this difference must be taken into account when doing the final calculations of the results, as described in Chapters 3 and 4.

2.4 Serial decimal dilution of the sample

The preparation and inoculation of serial dilutions of the sample are required for quantitative tests, to reduce the number of microorganisms per unit of volume and to make it possible to count them. This series of dilutions is generally decimal or 10-fold for ease of calculation of final results.

The number of dilutions necessary depends on the expected level of contamination and should be such as to allow for, in plate counts, obtaining plates with numbers of colonies varying between 25–30 and 250–300 (see Chapter 3) or between 15 and 150 in yeast and mold counts. In counts by the most probable number (MPN) method, the number of dilutions must allow for obtaining positive tubes at the lowest dilutions and negative tubes at the highest dilutions (see Chapter 4).

According to the general procedure described by the *Compendium* (Petran *et al.*, 2015), the second dilution is to be initiated immediately upon completion of the first dilution. The duration of the complete procedure, from the preparation of the first dilution until inoculation of all culture media, should not exceed 20 minutes (except when described in case-specific chapters).

According to the general procedure described by ISO 6887-1:2017, the duration of the complete procedure should not exceed 45 minutes and the time interval between the end of the preparation of the first dilution and the beginning of the second and subsequent dilutions should not exceed 30 minutes (except when specified in specific procedures).

For hard and dry products and for low-moisture products, ISO 6887-4:2017 recommends a resuscitation step before preparing the second dilution. In general, leave the sample to rest at laboratory temperature (18°C to 27°C) for about 1 hour (20 to 30 minutes in case of flours, cereal grains and by-products and animal feeds).

In all cases in which volumes are transferred, the uncertainty of the measurement must not exceed 2% (ISO 6887-1:2017).

How to prepare the second dilution (10^{-2}) : Transfer aseptically 1 mL of the first dilution (10^{-1}) to 9 mL of diluent. The diluents are the same as those recommended for the first dilution. In the second dilution there are no special cases in which a different diluent is required from the one used to prepare the first dilution.

Do not dip the tip of the pipette to a depth of more than 1 cm when pipetting the volume from the first to the second dilution (ISO 6887-1:2017). If the first dilution does not contain suspended particles, the material may be agitated before transferring the volume from the first to the second dilution. If there are suspended particles, ISO 6887-1:2017 recommends not to agitate and wait until the suspended particles settle to the bottom before transferring the volume. In the case of viscous samples, which adhere to the internal wall of the pipette, ISO 6887-5:2010 recommends dispensing the volume and subsequently washing the pipette with diluent (by aspirating several times) to ensure that all the material be transferred to the second dilution.

How to prepare subsequent dilutions: Transfer 1 mL of the previous dilution to 9 mL of diluent. Before withdrawing the volume to be transferred, agitate the tube vigorously, inverting it 25 times in a 30-cm arc (within 7 seconds) or using a laboratory vortex mixer (15 seconds).

2.5 References

Davis, G.L. & Hickey, P.J. (2004) Media and dilution water preparation. In: Wehr, H.M. & Frank, J.F. (eds) *Standard Methods for the Examination of Dairy Products*. 17th edition. American Public Health Association, Washington, DC, USA. Chapter 4, pp. 93–101.

- Duncan, S.E., Yaun, B.R. & Sumner, S.S. (2004) Microbiological methods for dairy products. In: Wehr, H.M. & Frank, J.F. (eds) *Standard Methods for the Examination of Dairy Products*. 17th edition. American Public Health Association, Washington, DC, USA. Chapter 9, pp. 249–268.
- Frank, J.F. & Yousef, A.E. (2004) Tests for groups of microrganisms. In: Wehr, H.M. & Frank, J.F. (eds) *Standard Methods for the Examination of Dairy Products*. 17th edition. American Public Health Association, Washington, DC, USA. Chapter 8, pp. 227–248.
- Hayman, M.M., Pinkas, J.M. & Gray, R.J.H. (2015) Gums and spices. In: Salfinger, Y. & Tortorello, M.L. (eds) *Compendium of Methods for the Microbiological Examination of Foods*. 5th edition. American Public Health Association, Washington, DC, USA. Chapter 52, pp. 719–729.
- Hunt, M.E. (2012) Microbiological examination. In: Rice, E.W., Baird, R.B., Eaton, A.D. & Clesceri, L.S. (eds) *Standard Methods* for the Examination of Water & Wastewater. 22nd edition. American Public Health Association (APHA), American Water Works Association (AWWA) & Water Environment Federation (WEF), Washington, DC, USA. Part 9000, pp. 9.1–9.224.
- International Organization for Standardization (2010) ISO 6887-5:2010. *Microbiology of Food and Animal Feeding Stuffs: Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination, Part 5: Specific Rules for the Preparation of Milk and Milk Products.* 1st edition. ISO, Geneva, Switzerland.
- International Organization for Standardization (2013) ISO 7218:2007/Amd.1:2013. *Microbiology of Food and Animal Feeding Stuffs: General Requirements and Guidance for Microbio logical Examination.* 3rd edition:2007, Amendment 1:2013. ISO, Geneva, Switzerland.
- International Organization for Standardization (2015) ISO 17604:2015. *Microbiology of the Food Chain: Carcass Sampling for Microbiological Analysis.* 2nd edition. ISO, Geneva, Switzerland.
- International Organization for Standardization (2017) ISO 6887-1:2017. Microbiology of the Food Chain: Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination, Part 1: General Rules for the Preparation of the Initial Suspension and Decimal Dilutions. 2nd edition. ISO, Geneva, Switzerland.
- International Organization for Standardization (2017) ISO 6887-2:2017. *Microbiology of the Food Chain: Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination, Part 2: Specific Rules for the Preparation of of Meat and Meat Products.* 2nd edition. ISO, Geneva, Switzerland.
- International Organization for Standardization (2017) ISO 6887-3:2017. Microbiology of the Food Chain: Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination, Part 3: Specific Rules for the Preparation of Fish and Fishery Products. 2nd edition. ISO, Geneva, Switzerland.
- International Organization for Standardization (2017) ISO 6887-4:2017. Microbiology of the Food Chain: Preparation of Test Samples, Initial Suspension and Decimal Dilutions for Microbiological Examination, Part 4: Specific Rules for the Preparation of Miscellaneous Products. 2nd edition. ISO, Geneva, Switzerland.
- Laird, D.T., Gambrel-Lenarz, S.A., Scher, F.M., Graham, T.E. & Reddy, R. (2004) Microbiological count methods. In: Wehr, H.M. & Frank, J.F. (eds) *Standard Methods for the Examination of*

Dairy Products. 17th edition. American Public Health Association, Washington, DC, USA. Chapter 6, pp. 153–186.

- MLG/FSIS (2017) Isolation and identification of *Salmonella* from meat, poultry, pasteurized egg, and siluriformes (fish) products and carcass and environmental sponges. In: Microbiology Laboratory Guidebook. [Online] Food Safety and Inspection Service, United States Department of Agriculture, Washington, DC, USA. Available from: www.fsis.usda.gov/wps/wcm/connect/ 700c05fe-06a2-492a-a6e1-3357f7701f52/MLG-4. pdf?MOD=AJPERES [accessed 3rd February 2017].
- Njongmeta, N.A., Hall, P.A., Ledenbach, L. & Flowers, R.S. (2015) Acid producing microorganisms. In: Salfinger, Y. & Tortorello, M.L. (eds) *Compendium of Methods for the Microbiological Examination of Foods*. 5th edition. American Public Health Association, Washington, DC, USA. Chapter 19, pp. 229–236.
- Petran, R.L., Grieme, L.E. & Foong-Cunningham, S. (2015) Culture methods for enumeration of microrganisms. In: Salfinger, Y. & Tortorello, M.L. (eds) *Compendium of Methods for the Microbiological Examination of Foods*. 5th edition. American Public Health Association, Washington, DC, USA. Chapter 6, pp. 75–87.
- Ricke, S.C., Jones, D.R. & Gast, R.K. (2015) Egg and egg products. In: Salfinger, Y. & Tortorello, M.L. (eds) *Compendium of Methods for the Microbiological Examination of Foods*. 5th edition. American Public Health Association, Washington, DC, USA. Chapter 46, pp. 633–643.
- Salfinger, Y. & Tortorello, M.L. (eds) (2015) Compendium of Methods for the Microbiological Examination of Foods. 5th edition. American Public Health Association, Washington, DC, USA.
- Taylor, T.M., Sofos, J.N., Bodnaruk, P. & Acuff, G.R. (2015) Sampling plans, sample collection, shipment, and preparation for analysis. In: Salfinger, Y. & Tortorello, M.L. (eds) *Compendium of Methods for the Microbiological Examination of Foods*. 5th edition. American Public Health Association, Washington, DC, USA. Chapter 2, pp. 13–25.
- Wehr, H.M. & Frank, J.F. (eds) (2004) Standard Methods for the Examination of Dairy Products. 17th edition. American Public Health Association, Washington, DC, USA.

Annex 2.1 Procedures for homogenizing the content and withdrawal of the analytical unit of different types of foods

a) Powdered products: Homogenize the sample by vigorously agitating and inverting the package with your hands until well mixed or stir the content with a sterile spatula or glass rod. If there is not enough free space inside the package to allow for appropriate homogenization, transfer the whole content to a larger flask and proceed in exactly the same way (ISO 6887-5:2010). Withdraw the analytical unit with a sterile spatula.

b) Pasty or ground products: Stir the content with a sterile spatula or glass rod until well homogenized. Withdraw the analytical unit with a sterile spatula (Taylor *et al.*, 2015).

c) Yogurts with fruit pieces: For yogurt containing fruit pieces, the *Standard Methods for the Examination of Dairy Products* (Duncan *et al.*, 2004) recommends homogenizing the entire content of the sample unit in a blender for 1 minute before withdrawing the analytical unit.

d) Cheeses: The *Standard Methods for the Examination of Dairy Products* (Duncan *et al.*, 2004) recommends macerating the whole content of the sample unit (with a sterile spatula) and withdrawing the analytical unit from the mixture.

e) Very hard food products: ISO 6887-1:2017 and ISO 6887-4 2017 recommends grinding the sample until a homogeneous mixture is obtained. To avoid excessive heat in this process, do not homogenize for more than 1 minute at a time.

It is also possible to place samples inside a sterile plastic bag and beat the material with a sterile hammer, crumbling it into small bits and pieces. Mix well the fragmented sample, withdraw the analytical unit with a sterile spatula and, after addition of the diluent, keep the sample homogenized for 1 hour at 18°C to 27°C for the recovery of stressed cells (ISO 6887-4:2017).

ISO 6887-1:2017 and ISO 6887-5:2010 recommend when using a stomacher to place the sample and diluent in two or more sterile bags to prevent puncturing and possible sample spillage. When using rotary homogenizer do not homogenize for more than 2.5 minutes at a time.

f) Pieces of solid foods: Chapter 2 of the *Compendium* (Taylor *et al.*, 2015) recommends using a suitable instrument (knife, sterile scissors) to break or cut smaller pieces from various points in the piece until the required amount is obtained.

g) Eggs in the shell: For analysis of the internal content, Chapter 46 of the *Compendium* (Ricke *et al.*, 2015) recommends to remove any adherent material from the shell surface with a brush, immerse the eggs in ethanol 70% for 10 seconds and flame sterilize, or, alternatively, to immerse in 3:1 alcoholic solution of iodine for 10 seconds and allow to dry. Using sterile gloves open the eggs aseptically and place the internal content inside a sterile flask or bag, separating the yolk from the egg white if the analysis requires. Mix well and withdraw the analytical unit from the mixture.