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PREFACE

Approximately 1/3 of all housing units in the United States dispose of domestic wastewater through septic tank systems, and about 25 percent of all new homes being constructed are including them. Septic tank systems have been frequently identified as sources of localized and regional ground water pollution. Historical concerns have focused on bacterial and nitrate pollution; more recently, synthetic organic chemicals from septic tank cleaners have been identified. These systems represent a significant source of ground water pollution in the United States since many existing systems are exceeding their design life by several-fold, the usage of synthetic organic chemicals in the household and for system cleaning is increasing, and larger-scale systems are being designed and used. A key issue in siting new septic tank systems is related to evaluating their ground water pollution potential in the locality. This book summarizes existing literature relative to the types and mechanisms of ground water pollution from septic tank systems, and provides information on technical methodologies for evaluating the ground water pollution potential of such systems.

The book is organized into five chapters, with Chapter 1 including background information on the historical and current usage of septic tank systems, and Chapter 5 summarizing the key points of the book. Chapter 2 is related to the engineering design, placement, and operation and maintenance procedures for these systems.

Chapter 3 summarizes the types of pollutants and mechanisms of contamination via the unsaturated zone into the ground water system. The transport and fate of bacteria and viruses in soils and ground water are addressed along with inorganic contaminants such as phosphorus, nitrogen, chlorides, and metals, and contaminants such as cleaning agents and pesticides.

Chapter 4 is focused on the evaluation of septic tank system effects on ground water quality. Information on the Surface Impoundment Assessment methodology and the Soil-Waste Interaction Matrix methodology as applied to 13 septic tank system areas is described. Usage of the Hantush Analytical Model is demonstrated by example calculations for a system serving one household unit. Finally, the advantages and limitations of the Konikow and Bredehoeft Numerical Model are demonstrated by a case study wherein it was applied to a geographical area served by septic tank systems.
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CHAPTER 1

INTRODUCTION

The first reported use of a septic tank for serving the wastewater disposal needs of a household was in France about 1870. Septic tanks were introduced in the United States in 1884 through the use of a two-chamber tank utilizing an automatic siphon for intermittent effluent disposal (Cotteral and Norris, 1969). Since their introduction in the United States, septic tanks systems have become the most widely used method of on-site sewage disposal, with over 70 million people depending on them (Hershaft, 1976). Approximately 17 million housing units, or 1/3 of all housing units, dispose of domestic wastewater through the use of septic tank systems. About 25 percent of all new homes being constructed in the United States use septic tank systems for treatment prior to disposal of the home-generated wastewater (U.S. Environmental Protection Agency, October 1980). Figure 1 is a summary of the approximate populations in the United States utilizing septic tank systems. As can be seen, the greatest densities of usage occur in the east and southeast as well as the northern tier and northwest portions of the country.

[image: Image]

Figure 1:    Approximate Populations Using Septic Tanks

A septic tank system includes both the septic tank and the subsurface soil absorption system. Approximately 800 billion gallons of wastewater is discharged annually to the soil via tile fields following the 17 million septic tanks (Scalf, Dunlap and Kreissl, 1977). Of all ground water pollution sources, septic tank systems and cesspools rank highest in total volume of wastewater discharged directly to soils overlying ground water, and they are the most frequently reported sources of contamination (U.S. Environmental Protection Agency, 1977). Figure 2 displays the components of the septic tank system and indicates the general relationship between the soil absorption system and underlying ground water (Bouma, 1979). In sparsely populated urban and rural areas, septic tank systems that have been properly designed, constructed, and maintained are efficient and economical alternatives to public sewage disposal systems. However, due to poor locations for many septic tank systems, as well as poor designs and construction and maintenance practices, septic tank systems have polluted, or have the potential to pollute, underlying ground waters. It is estimated that only 40 percent of existing septic tanks function in a proper manner. A major concern in many locations is that the density of the septic tanks is greater than the natural ability of the subsurface environment to receive and purify system effluents prior to their movement into ground water. A related issue is that the design life of many septic tank systems is in the order of 10-15 years. Due to the rapid rate of placement of septic tank systems in the 1960’s, the usable life of many of the systems is being exceeded, and ground water contamination is beginning to occur.
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Figure 2:    Schematic Cross-Section Through a Conventional Septic Tank Soil Disposal System for On-Site Disposal and Treatment of Domestic Liquid Waste (Bouma, 1979)

A type of ground water pollution of historical as well as current concern is associated with bacterial contamination. Contamination of drinking supplies by malfunctioning septic tank systems has caused outbreaks of waterborne communicable diseases. Documented cases of infectious hepatitis (Hepatitis a) have been traced to contaminated water. In central Appalachia, where few people are served by sewers and septic tank systems often malfunction, the occurrence of infectious hepatitis is high. Many other pathogens, such as typhoid, cholera, streptococci, salmonella, poliomyelitis, and protozoans are also transmitted by septic tank system overflows. Many of these pathogenic organisms have a slow die-off rate in the subsurface environment.

While localized incidents of ground water pollution from septic tank systems are of concern, regional problems have also been recognized in areas of high septic tank system density. Within the United States there are four counties (Nassau and Suffolk, New York; Dade, Florida; and Los Angeles, California) with more than 100,000 housing units served by septic tank systems and cesspools. In addition, there are 23 counties with more than 50,000 housing units served by septic tank systems and cesspools (U.S. Environmental Protection Agency, 1977). Table 1 summarizes relevant county statistics and the density (number per square mile) of septic tank systems and cesspools (U.S. Department of Commerce, 1980; and Newspaper Enterprise Association, Inc., 1982). Densities range from as low as 2 to greater than 346 per square mile. It should be noted that the densities were calculated based on assuming an even distribution of the septic tank systems and cesspools throughout the county. If they are localized in segments of the county the actual densities could be several times greater than those shown in Table 1. Density ranges can be considered as low (less than 10 per square mile or 3.8 per square kilometer), intermediate (between 10 and 40 per square mile, or 3.8 and 15 per square kilometer), and high (greater than 40 per square mile or 15 per square kilometer). Areas with more than 40 per square mile can be considered to have potential contamination problems. Actual densities in areas with documented problems have considerably exceeded the arbitrary 40 per square mile indicator (U.S. Environmental Protection Agency, 1977). Another means of expressing density is by the number per acre, with 40 per square mile equalling 0.062 per acre. The maximum density shown in Table 1 is 346 per square mile, or 0.54 per acre. Considering septic tank system localization within a county, or nonuniform distribution, it would be possible for several counties listed in Table 1 to have densities of greater than 1 septic tank system per acre. 

Table 1:    Densities of Septic Tank Systems and Cesspools for Counties with More than 50,000 Housing Units Served by These Systems
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(1)  Counties from Jefferson, Alabama through Pierce, Washington have more than 50,000 housing units, but less than 100,000 housing units, served by septic tank systems.

(2)  First number is based on 50,000 housing units served by septic tank systems, and second number by 100,000 housing units served by septic tank systems.

(3)  Calculated based on 2.46 persons per housing unit; this value based on reported data for counties of Jefferson, Alabama; Riverside and San Bernardino, California; Broward, Duval, and Hillsborough, Florida; Jefferson, Kentucky; Genesee and Oakland, Michigan; Monmouth, New Jersey; Westmoreland, Pennsylvania; and King and Pierce, Washington.

(4)  Counties from Los Angeles, California through Suffolk, New York have more than 100,000 housing units served by septic tank systems.

SEPTIC TANK SYSTEM REGULATION

Several types of institutional arrangements have been developed for regulating septic tank system design and installation, operation and maintenance, and failure detection and correction. Most of the regulatory activities are conducted by state and local governments. Design and siting regulations exist in most states for both individual housing unit systems as well as systems serving clusters of up to several hundred housing units (U.S. Environmental Protection Agency, 1977). Site inspection and installation permit issuance is handled either by the state, regional authority, county, or town, or by a joint effort by two or more of these entities. A state or local governmental entity may regulate all domestic and industrial septic tank system installations; or it may regulate only systems serving multiple housing units and/or industries; or it may regulate only installations in certain critical areas. Where regulations exist, the associated inspections may range from minimal checking to comprehensive evaluations. State regulation and inspection of septic tank installation is generally considered to be more effective than local regulation (U.S. Environmental Protection Agency, 1977).

Operation and maintenance of single housing unit septic tank systems is largely not regulated and is left to the judgment of the system owner. Systems serving multiple housing units or industries may be subject to routine inspections and reporting requirements. Failure detection and correction is difficult to regulate and is typically handled on an individual complaint basis or when a health hazard arises (U.S. Environmental Protection Agency, 1977).

In terms of protection of ground water quality, this is best accomplished by system design, site selection, and installation regulations. Consideration should also be given to the septic tank system density in an area. The U.S. Environmental Protection Agency can become a participant in the regulatory process based on the provision of funding for septic tank systems. Sections 201(h) and (j) of the Clean Water Act of 1977 (P.L. 95-217) authorized construction grants funding of privately owned treatment works serving individual housing units or groups of housing units (or small commercial establishments), provided that a public entity (which will ensure proper operation and maintenance) apply on behalf of a number of such individual systems (Bauer, Conrad and Sherman, 1979). One of the major concerns related to funding applications is to evaluate the ground water pollution potential of the proposed system or systems. This issue becomes even more important for larger systems serving several hundred housing units. To serve as an illustration of possible system size, the U.S. Environmental Protection Agency has funded a system located in the northeastern United States with a design flow of 100,000 gpd (Thomas, 1982).

To provide a basis for evaluation of the ground water pollution potential of septic tank systems, the U.S. Environmental Protection Agency requires that the ground water quality resulting from land utilization practices (septic tank systems) meet the standards for chemical quality (inorganic chemicals) and pesticides (organic chemicals) specified in the EPA Manual for Evaluating Public Drinking Water Supplies in the case of ground water which potentially can be used for drinking water supply. In addition to the standards for chemical quality and pesticides, the bacteriological standards (microbiological contaminants) specified in the EPA Manual for Evaluating Drinking Water Supplies are required in the case of ground water which is presently being used as a drinking water supply (U.S. Environmental Protection Agency, 1976). Tables 2, 3, and 4 summarize the inorganic, organic, and bacteriological standards, respectively, which should be used in the evaluation process. Current and potential ground water usage should be considered in the evaluation of septic tank systems. The U.S. Environmental Protection Agency requirements have been stated in terms of three cases (U.S. Environmental Protection Agency, 1976):



Case 1: The ground water can potentially be used for drinking water supply.

(1)  The maximum contaminant levels for inorganic chemicals and organic chemicals specified for drinking water supply systems as shown in Tables 2 and 3 should not be exceeded.

(2)  If the existing concentration of a parameter exceeds the maximum contaminant levels for inorganic chemicals or organic chemicals, there should not be an increase in the concentration of that parameter due to land utilization practices.

Case 2: The ground water is used for drinking water supply.

(1)  The criteria for Case 1 should be met.

(2)  The maximum microbiological contaminant levels specified for drinking water supply systems as shown in Table 4 should not be exceeded in cases where the ground water is used without disinfection.

Case 3: Uses other than drinking water supply.

(1)  Ground water criteria should be established by the EPA Regional Administrator based on the present or potential use of the ground water.




The EPA Regional Administrator in conjunction with the appropriate State officials and the grantee shall determine on a site-by-site basis the areas in the vicinity of a specific land utilization site where the criteria in Case 1, 2 and 3 shall apply. Specifically determined shall be the monitoring requirements appropriate for the project site. This determination shall be made with the objective of protecting the ground water for use as a drinking water supply and/or other designated uses as appropriate and preventing irrevocable damage to ground water. Requirements shall include provisions for monitoring the effect on the native ground water (U.S. Environmental Protection Agency, 1976).

Tables 2 through 4 are based on the National Interim Primary Drinking Water Regulations (40 CFR 141). Any amendments of the National Interim Primary Drinking Water Regulations and any National Revised Primary Drinking Water Regulations hereafter issued by EPA prescribing standards for public water system relating to inorganic chemicals, organic chemicals or microbiological contamination shall automatically apply in the same manner as the National Interim Primary Drinking Water Regulations (U.S. Environmental Protection Agency, 1976).

Table 2:    Maximum Contaminant Levels for Inorganic Chemicals (U.S. Environmental Protection Agency, 1976)



	Contaminant

	Level (mg/1)




	Arsenic

	0.05




	Barium

	1.




	Cadmium

	0.010




	Chromium

	0.05




	Lead

	0.05




	Mercury

	0.002




	Nitrate (as N)

	10.




	Selenium

	0.01




	Silver

	0.05





The maximum contaminant levels for fluoride are:



	Temperature Degrees Fahrenheit1

	Degrees Celsius

	Level (mg/1)




	53.7 and below

	12 and below

	2.4




	53.8 to 58.3

	12.1 to 14.6

	2.2




	58.4 to 63.8

	14.7 to 17.6

	2.0




	63.9 to 70.6

	17.7 to 21.4

	1.8




	70.7 to 79.2

	21.5 to 26.2

	1.6




	79.3 to 90.5

	26.3 to 32.5

	1.4





1 Annual average of the maximum daily air temperature.




Table 3:    Maximum Contaminant Levels for Organic Chemicals (U.S. Environmental Protection Agency, 1976)



	Chemical

	Level (mg/1)




	Chlorinated hydrocarbons

	



	Endrin (1,2,3,4,10,10-Hexachloro-6,7 - epoxy - 1,4,4a,5,6,7,8,8a-octahydro-1,4-endo, endo - 5,8,-di-methano naphthalene)

	0.0002




	Lindane (1,2,3,4,5,6 - Hexachloro-cyclohexane, gamma isomer)

	0.004




	Methoxychlor (1,1,1-Trichloro-2, 2-bis (p-methoxyphenyl) ethane)

	0.1




	Toxaphene (C10H10C18 - Technical chlorinated camphene, 67 to 69 percent chlorine)

	0.005




	Chlorophenoxys

	



	2,4-D (2,4-Dichlorophenoxyacetic acid)

	0.1




	2,4,5-TP Silvex (2,4,5-Trichloro-phenoxypropionic acid)

	0.01





Table 4:    Maximum Bacteriological Contaminant Levels (U.S. Environmental Protection Agency, 1976)



	The maximum contaminant levels for coliform bacteria, applicable to community water systems and noncommunity water systems are as follows:

1.  When the membrane filter technique is used, the number of coliform bacteria shall not exceed any of the following:

(a)  One per 100 milliliters as the arithmetic mean of all samples examined per month.

(b)  Four per 100 milliliters in more than one sample when less than 20 or more are examined per month.

(c)  Four per 100 milliliters in more than five percent of the samples when 20 or more are examined per month.

2.  (a)  When the fermentation tube method and 10 milliliter standard portions are used, coliform bacteria shall not be present in any of the following:

(1)  More than 10 percent of the portions in any month;

(2)  Three or more portions in more than one sample when less than 20 samples are examined per month; or

(3)  Three or more portions in more than five percent of the samples when 20 or more samples are examined per month.

(b)  When the fermentation tube method and 100 milliliter standard portions are used, coliform bacteria shall not be present in any of the following :

(1)  More than 60 percent of the portions in any month;

(2)  Five portions in more than one sample when less than five samples are examined per month; or

(3)  Five portions in more than 20 percent of the samples when five or more samples are examined per month.

3.  For community or noncommunity systems that are required to sample at a rate of less than 4 per month, compliance with Paragraphs 1, 2(a), or (b) shall be based upon sampling during a 3 month period, except that, at the discretion of the State, compliance may be based upon sampling during a one-month period.






ORGANIZATION OF BOOK

The objective of this book is to summarize the types and mechanisms of ground water pollution from septic tank systems, and to provide information on technical methodologies for evaluating the ground water pollution potential of septic tank systems. Chapter 1 provides an introduction to the book and includes background information on the use of septic tank systems. Chapter 2 summarizes septic tank system design practices, site selection and evaluation criteria, and operation and maintenance procedures for minimizing ground water pollution concerns. Chapter 3 includes information on the types of pollutants and mechanisms of contamination via migration of pollutants through the unsaturated zone into the ground water system. The transport and fate of bacteria and viruses in soils and ground water are addressed along with similar information on inorganic contaminants such as phosphorus, nitrogen, chlorides, and metals. Information is also included on the transport and fate of organic contaminants.

Chapter 4 represents the focal chapter in terms of the evaluation of septic tank system effects on ground water quality. Information on the Surface Impoundment Assessment methodology and the Soil-Waste Interaction Matrix methodology are included along with descriptions of the Hantush Analytical Model and the Konikow and Bredehoeft Numerical Model. Applications of the two methodologies to 13 septic tank system areas are described. Usage of the Hantush Analytical Model is demonstrated by example calculations for a system serving one household unit. Finally, the advantages and limitations of the Konikow and Bredehoeft Numerical Model are demonstrated through its application to a geographical area served by septic tank systems.

Chapter 5 contains the summary of the key points of the book. Appendix A is an annotated bibliography of published reference materials on septic tank systems and ground water modeling. Appendix B provides information on the characteristics of 13 septic tank system areas located in the central Oklahoma study area, while Appendix C provides specific information on the use of the matrix empirical assessment methodology for these 13 areas. Appendix D contains the error function used in the Hantush Analytical Model. Finally, Appendix E has the Fortran IV program for the Konikow and Bredehoeft Numerical Model.
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CHAPTER 2

DESIGN OF SEPTIC TANK SYSTEMS

Septic tank systems consist of the septic tank and associated soil absorption system. Sound principles of engineering should be used in designing both system components. In addition, site suitability criteria should be applied for system location, and routine operational checks and maintenance activities should be conducted. The purpose of this chapter is to summarize design factors, locational criteria, and operational and maintenance measures for septic tank systems. The focus will be on those factors, criteria, and measures which will provide appropriate ground water quality protection. The chapter will begin with some general information on septic tank systems and be followed by sections on septic tank design and operation and subsurface disposal system design and operation. The final section will address a variation of the basic system -- the septic tank-mound system popularized in Wisconsin.

OVERVIEW OF SEPTIC TANK SYSTEMS

The basic septic tank system consists of a buried tank where waterborne wastes are collected, and scum, grease and settleable solids are removed from the liquid by gravity separation; and a subsurface drain system where clarified effluent percolates into the soil. System performance is essentially a function of the design of the system components, construction techniques employed, characteristics of the wastes, rate of hydraulic loading, climate, areal geology and topography, physical and chemical composition of the soil mantle, and care given to periodic maintenance (Cotteral and Norris, 1969). A typical on-site system is shown in Figure 3 (Scalf, Dunlap and Kreissl, 1977). The system consists of a building sewer, laid to specified grade, which discharges to the inlet of a septic tank. The septic tank effluent discharges to a series of distribution pipes laid in trenches (absorption trenches) or to a single large excavation (seepage) bed.

[image: Image]

Figure 3:    Typical On-Site System (Scalf, Dunlap and Kreissl, 1977)

The system as displayed in Figure 3 is basically for a single housing unit. Similar systems have been applied at industrial plants and for multiple housing units in a given area, and for small communities with wastewater flows as large as 100,000 gpd (Thomas, 1982). The basic components of larger systems are similar to those for the individual home system; namely, a septic tank and a soil absorption system. Primary differences are associated with the size of the components of the system.

The general advantages of septic tank systems include the following:



1.  Minimal maintenance is required for the system, with potential pumpage of septage required every three to five years. While there are requirements for removal of septage, there is less sludge produced per person through use of a septic tank system than through use of a centralized mechanical plant such as an activated sludge plant.

2.  The cost of individual or community septic tank systems is less than the cost of central wastewater collection facilities and treatment plants.

3.  The septic tank system represents a low technology system, thus the possibility for long term operation without extensive periods of shutdown is enhanced.

4.  The energy requirements of septic tank systems are low in comparison to centralized wastewater treatment facilities.

The general disadvantages of septic tank systems include:

1.  The potential for ground water pollution depending upon the soil characteristics and density of systems in a given geographical area.

2.  System overflows and pollution of adjacent water wells and surface water courses if the systems are not properly maintained.

3.  Cleaners used for maintenance of septic tank systems may create difficulties in terms of ground water pollution, particularly cleaners that have organic solvent bases.



These advantages and disadvantages of septic tank systems must be considered as general statements, with the specific decision to locate a system in a given geographical area based on site suitability and costs relative to other on-site disposal options and central collection and treatment systems.

SEPTIC TANK DESIGN

Septic tanks are buried, water-tight receptacles designed and constructed to receive wastewater from one to multiple housing units or industrial processes. A typical two-compartment septic tank for a housing unit is shown in Figure 4 (Cotteral and Norris, 1969). Heavier sewage solids in the influent settle to the bottom of the tank forming a blanket of sludge. The lighter solids, which includes fats and greases, rise to the surface and form a layer of scum. A considerable portion of the sludge and scum is liquified through decomposition and digestion processes. Gas is liberated from the sludge in this process, carrying some of these solids to the surface where they accumulate with the scum. Further digestion may occur in the scum, and part of the solids may settle again to the sludge layer below. This process may be retarded if there is an excess of grease in the scum layer. The partially clarified liquid between the sludge and scum flows through an outlet located below the scum layer. Proper use of baffles within the septic tank will minimize scum outflow to the soil absorption system. In summary, the septic tank provides for separation of sludges and floatable materials from the wastewater, and an anaerobic environment for decomposition of both retained sludge and nonsettleable materials within the scum layer. Some anaerobic decomposition of the intermediate liquid layer also occurs.

[image: Image]

Figure 4:    Typical Two Compartment Septic Tank (Cotteral and Norris, 1969)

Design considerations related to a septic tank include determination of the appropriate volume, a choice between single and double compartments, selection of the construction material, and placement on the site.
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