Practical Handbook of Earth Science

Jane H. Hodgkinson

20

CRC Press Taylor & Francis Group

-40

Practical Handbook of Earth Science

Practical Handbook of Earth Science

Jane H. Hodgkinson Frank D. Stacey

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-138-05444-8 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged, please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Hodgkinson, Jane H., author. | Stacey, F. D. (Frank D.) author. Title: Practical handbook of earth science / Jane H. Hodgkinson and Frank D. Stacey. Description: Boca Raton : Taylor & Francis, 2017. | "A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc." | Includes bibliographical references. Identifiers: LCCN 2017008776 | ISBN 9781138552234 (hardback : alk. paper) | ISBN 9781138054448 (paperback : alk. paper) Subjects: LCSH: Earth sciences--Handbooks, manuals, etc. Classification: LCC QE26.3 .H63 2017 | DDC 550--dc23 LC record available at https://lccn.loc.gov/2017008776

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Contents

Preface	xiii
Authors	XV

SECTION I Notation and Units

1	Physical Units and Constants		
	1.1	SI Units (Système International D'unités)	3
	1.2	Unit Conversions: SI Equivalents of Other Units	5
	1.3	Fundamental Constants	8
2	Son	ne Shorthand Conventions	11
	2.1	Selected Acronyms and Abbreviations	11
	2.2	The Greek Alphabet	15

SECTION II The Building Blocks: Elements to Planets

3	Eler	ments, Isotopes and Radioactivity	19
	3.1	Periodic Table of Elements: A Geochemical Classification	20
	3.2	Periodic Table of Elements: A Biological Classification	21
	3.3	Isotopes of the Naturally Occurring Elements	22
	3.4	Naturally Occurring Long-Lived Radioactive Isotopes	27
	3.5	Some Extinct Isotopes	28
	3.6	Short-Lived Isotopes	29
	3.7	Fission Products	30
	3.8	Radiogenic Heat	31
4	The	Solar System	33
	4.1	Physics	34
	4.2	Chemistry	36

SECTION III Global Geophysics

5	Whole Earth Properties			41
	5.1	Planeta	ry Parameters	41
	5.2	Global H	Energy	43
	5.3	Precessi	ion, Wobble and the Milankovitch Cycles	44
	5.4	Gravity	·	45
		5.4.1	Algebraic Forms of Spherical Harmonics	46
		5.4.2	Harmonic Coefficients of the Earth's Gravitational Potential	46
		5.4.3	Gravity Anomalies	48
	5.5	The Geo	magnetic Field	51
		5.5.1	The Main Field	51
		5.5.2	Spherical Harmonic Representation	52
		5.5.3	Geomagnetic Reference Field	54
		5.5.4	Secular Variation	55
		5.5.5	Geomagnetic Reversals	57
	5.6	The Mag	gnetosphere and Rapid Magnetic Variations	60

SECTION IV Major Subdivisions of the Earth: Structures and Properties

6	6 The Core			
	6.1 Core Details from the Preliminary Reference Earth Model	69		
	6.2 Core Properties	69		
	6.3 Core Energetics	69		
7	The Mantle	75		
	7.1 Reference Earth Model from Seismology	75		
	7.2 General Mantle Properties	76		
	7.3 Mantle Minerals and Phase Transitions	82		
	7.4 Energy Balance of the Mantle	84		
8	The Crust	87		
	8.1 A Veneer Displaying the History of the Earth	87		
	8.2 Average Crustal Structure and Isostasy	90		
	8.3 Heat Balance of the Crust	90		
	8.4 Elemental Composition of the Crust	91		

97
97
97
97
103
103
105
107
111
111
112
114
116
119
119
119
121
122
123
123
124
127
129
129
130
130
130

SECTION V Geological Activity: The Restless Earth

13	Tectonics		135
	13.1	The Surface Plates and Geometry	135
	13.2	Tectonic Energy and Mantle Viscosity	138

	13.3	Fault Stresses and Orientations and Seismic First Motions	139
		13.3.1 Faults as Responses to Stress	139
		13.3.2 Seismic First Motions	139
14	Eart	hquakes	143
	14.1	Measures of Size: Magnitudes, Moments, Energies,	
		Fault Dimensions and Frequency of Occurrence	143
	14.2	Historically Significant Events	146
		14.2.1 Earthquakes of Particular Scientific Interest	146
	14.3	Seismic Waves	148
	14.4	Slow Earthquakes and Non-Volcanic Tremor	148
	14.5	Seismic Tomography	150
15	Volca	anism	153
	15.1	Spreading Centres	153
	15.2	Subduction Zones	153
		15.2.1 Notable Subduction Zone Eruptions	155
	15.3	Flood Basalts, Hot Spots and Mass Extinctions	157
	15.4	Environmental Effects of Volcanism	158
		15.4.1 Volcanic Ash and Aircraft	161
16	Tsun	amis	163
	16.1	Wave Propagation	163
	16.2	Earthquake-Triggered Tsunamis	164
	16.3	Volcanically Generated Tsunamis	164
	16.4	Landslide/Ślump-Generated Tsunamis	165
17	Weat	thering, Erosion, Crustal Recycling and Regeneration	167
	17.1	Some Definitions and Specialist Jargon	167
	17.2	A Global Perspective	168
	17.3	Erosive Effect of Rainfall	169
	17.4	River and Stream Transport of Sediment	169
	17.5	Mass Wasting	171
	17.6	Igneous Regeneration of the Crust	174
		17.6.1 Continental Crust	174
		17.6.2 Oceanic Crust	174
18	Geol	ogical Time and the Fossil Record	175
	18.1	Definitions	175
	18.2	Geologic Record	177

SECTION VI Rocks and Minerals

19	Mine	eral Types and Characteristics	181
	19.1	Descriptive Terms	181
		19.1.1 Colour of Mineral in Hand Specimen	181
		19.1.2 Mohs Hardness	181
		19.1.3 Streak	181
		19.1.4 Fracture	182
		19.1.5 Cleavage	182
		19.1.6 Mineral Habit	184
		19.1.7 Lustre	185
		19.1.8 Specific Gravity	185
	19.2	Crystal Systems	186
		19.2.1 Miller Indices	186
		19.2.2 Bravais Lattices and X-Ray Diffraction	187
	19.3	Silicates	189
	19.4	Carbonates, Phosphates, Borates and Sulphates	200
	19.5	Oxides, Hydroxides, Halides and Some Native Elements	204
20	Rocł	Types and Occurrences	209
	20.1	Igneous Rocks	209
		20.1.1 Classification by Mineral and Chemical Composition	209
		20.1.2 Basalt and Gabbro Classifications	210
		20.1.3 Some Other Rock Types Classified as Igneous	213
	20.2	Sedimentary Rocks	219
	20.3	Metamorphic Rocks	222
	20.4	Elemental Compositions of Rocks	224
21	Phys	ical Properties of Minerals and Rocks	229
	21.1	Elastic Properties	229
		21.1.1 Isotropic Materials	229
		21.1.2 Cubic Crystals	230
		21.1.3 More General Elastic Anisotropy	234
		21.1.4 Elasticity of a Composite	236
		21.1.5 Non-Linearity and Finite Strain	239
		21.1.6 Pressure Variation of Rigidity Modulus	243
		21.1.7 Inelasticity and Anelasticity	245
	21.2	Thermal Properties	248
		21.2.1 Relationships between Properties and Application	
		of the Thermodynamic Grüneisen Parameter	248

x Contents

	21.2.2	Specific Heat and Expansion Coefficient	254
	21.2.3	Melting	255
	21.2.4	Thermal Conduction	257
21.3	Electric	al Properties	260
	21.3.1	Dielectric Constants and Molecular Polarity	260
	21.3.2	Electrical Conduction in Minerals, Rocks and the Mantle	262
	21.3.3	Electrical Conductivities of Iron and the Core	263
21.4	Magnet	ic Properties	264
	21.4.1	Spontaneous Magnetisation	264
	21.4.2	Susceptibility and Remanent Magnetism	265
	21.4.3	Self-reversing Remanence	267
21.5	Optical	Properties	268
	21.5.1	Thin Sections	270

SECTION VII Resources

22 Elements as Resources				
22.1	A Surve	ev of the Elements: Their Occurrence, Properties and Uses	275	
22.2	Produc	tion of Selected Metals	315	
Rocł	ks and	Minerals as Resources	321	
23.1	The Irr	eversibility of Resource Use	321	
23.2	Minera	lisation Associated with Tectonic Settings	325	
	23.2.1	Crust–Mantle Separation	325	
	23.2.2	Tectonic Situations Identified with Mineralisation	325	
Foss	il Fuel	s	335	
24.1	Fuel Tv	mes and Basic Chemistry	335	
24.2	Coal	pes und Busic enemistry	336	
	24.2.1	Coal Grade and Non-Carbonaceous Constituents	338	
	24.2.2	Variations in Coal Formation with Time. Latitude and	000	
		Environmental Conditions	342	
24.3	Oil		344	
	24.3.1	Generation. Migration and Trapping	344	
	24.3.2	Variations in Oil Formation with Time and Latitude	345	
	24.3.3	Unconventional Oil	346	
24.4	Gas		347	
	24.4.1	Sources	347	
	24.4.2	Methane Clathrate	348	
	Elem 22.1 22.2 Rock 23.1 23.2 Foss 24.1 24.2 24.3	$\begin{array}{c c} \text{Elements a} \\ 22.1 & \text{A Surve} \\ 22.2 & \text{Produc} \\ 23.1 & \text{The Irr} \\ 23.2 & \text{Minera} \\ 23.2.1 \\ 23.2.1 \\ 23.2.2 \\ \end{array}$ $\begin{array}{c c} \text{Foss:I Fuel} \\ 24.1 & \text{Fuel Ty} \\ 24.2 & \text{Coal} \\ 24.2.1 \\ 24.2.2 \\ 24.3.1 \\ 24.3.2 \\ 24.3.3 \\ 24.4 & \text{Gas} \\ 24.4.1 \\ 24.4.2 \\ \end{array}$	 Elements as Resources 22.1 A Survey of the Elements: Their Occurrence, Properties and Uses 22.2 Production of Selected Metals Rocks and Minerals as Resources 23.1 The Irreversibility of Resource Use 23.2 Mineralisation Associated with Tectonic Settings 23.2.1 Crust-Mantle Separation 23.2.2 Tectonic Situations Identified with Mineralisation Fossil Fuels 24.1 Fuel Types and Basic Chemistry 24.2 Coal 24.2.1 Coal Grade and Non-Carbonaceous Constituents 24.2.2 Variations in Coal Formation with Time, Latitude and Environmental Conditions 24.3 Oil 24.3.1 Generation, Migration and Trapping 24.3.2 Variations in Oil Formation with Time and Latitude 24.3.3 Unconventional Oil 24.4 Gas 24.4.1 Sources 24.4.2 Methane Clathrate 	

	24.5	Fuel and	l Energy	349
		24.5.1	Physical Units and Conversion Factors	349
		24.5.2	Rates of Production	350
	24.6	Fossil F	uel Reserves	352
	24.7	Uses of t	the Fossil Fuels and CO ₂ Emission	354
	24.8	A Note of	on Terminology and Units Used in Oil/Gas Reservoir	
		Enginee	ring and Hydrogeology	357
		24.8.1	Darcy's Law of Fluid Flow in Porous Media	357
		24.8.2	Some Technical Jargon	358
25	Ener	αν Soι	rces Alternative to Fossil Fuels	359
	25.1	Energie	s of Some Natural Phenomena	359
	-011	25.1.1	Solar Energy	359
		25.1.2	Wind Power	360
		25.1.3	Tides	361
		25.1.4	Geothermal Power	361
		25.1.5	Tectonics	362
		25.1.6	River Flow	362
		25.1.7	Waves	363
		25.1.8	Atmospheric Electricity	363
	25.2	Generat	ion of Non-fossil Fuel Power	363
		25.2.1	Major Contributions: Nuclear and Hydropower	363
		25.2.2	Hydroelectric Installations	365
		25.2.3	Rapidly Expanding Sources: Solar and Wind	368
		25.2.4	Geographically Restricted Sources: Geothermal, Tides	
			and Waves	368
		25.2.5	Ethanol and Biodiesel	370
26	Land	Deara	adation. Waste Disposal and Recycling	373
	26.1	A Histor	rical Perspective	373
	26.2	Land Us	e and Usability	374
	26.3	Materia	l Recycling	375
		26.3.1	High-Volume Recyclables	375
		26.3.2	Rarer Elements	376
		26.3.3	Precious Metals	377
		26.3.4	Rare Earths and Other Elements with Special Uses	377
	26.4	A Watch	List of Elements with Supply Insecurity	378
	26.5	Some Pr	roblems	378
	Refer	ences		381
	26.5 Some Problems References		385	
				505

Preface

Specialised subject dictionaries, encyclopaedias and data compilations are generally multi-authored, and even multi-volumed, collections of quasiindependent components of their disciplines. There remains a need for smaller handbooks, compiled from the perspective of subject overviews but with the coherence that is more readily achieved with one or two authors. Our attempt to address this need for Earth Science originated from our colleagues' comments on several editions of a geophysics text by one of us. They were not using it as a text but as a source of data and reported that they found the appendices to be the most useful parts of the book. Although this may appear to make a case for a separate collection of such material, that would not be satisfactory. The appendices were found to be useful in the context of the textbook but would not have been effective out of context. Nevertheless, there is a message. Although simple numbers or facts sometimes satisfy enquiries, more often clarification of significance or connections with other facts are needed. We have taken the position that a stand-alone reference work is most useful if it is a partial compromise with the style of a textbook, but without the exhaustive approach of an encyclopaedia.

Our subject matter encompasses geology and geophysics, including the oceans and atmosphere, with attention to environmental implications and resources. It emphasises basic science with no coverage of exploration or instrumentation. To cover this range in a small book, some corners have been cut. A few essential references are added but we resisted the urge to include extensive citation lists, which fill large parts of some reference works. We have aimed for self-contained, concise explanations without citing data sources that may be neither readily accessible nor straightforward. For inconsistent data, as far as possible, we have checked original observations and report only those we judge to be most reliable, in some cases with our own recalculations. We hope, in this way, to present to time-constrained enquirers, who may be active in related or overlapping disciplines, the best currently available data and insights on topics encompassed by the broad term 'Earth Science'.

We appreciate the interest expressed in this project by many colleagues and thank especially James Boland, Michael Cooke, Paul Davis, John Griffiths, Micaela Grigorescu, Jonathan Hodgkinson, Cameron Huddlestone-Holmes, Mark Maxwell, Graham O'Brien, Brett Poulsen and Antonio Valero for helpful comments on a draft manuscript.

> Jane H. Hodgkinson Frank D. Stacey

Authors

Jane Helen Hodgkinson was born and brought up in London and, following her early education, began a career in merchant banking and the commodity markets. Seeking intellectual stimulation, she undertook a degree course in geology on an evening and part-time basis at Birkbeck College, London. This was a highly successful move and she graduated with first class honours in 2003, setting herself up for her second career, as a geologist. Seeing opportunities in Australia, she undertook a PhD at the Queensland

University of Technology, completed in 2008, and was appointed to CSIRO, Australia's national science agency, as a research geologist. Much of her work has been concerned with the problems and opportunities presented to the mining industry by climate change and to a study of the CO_2 geosequestration potential of Queensland geology.

Frank Donald Stacey was born and educated in London, with BSc (Hons physics) 1950, PhD 1953, DSc 1968. Following appointments at the University of British Columbia, the Australian National University and the Meteorological Office research unit in Cambridge, he joined the University of Queensland, becoming Professor of Applied Physics in 1971. Since 1956, all his research has been in geophysics, initially as an experimenter in rock magnetism and subse-

quently in a range of other subjects, with an increasing theoretical interest. He is most widely known for his textbook, *Physics of the Earth*, which is now in its fourth edition. Retiring from the university in 1996, he joined CSIRO as honorary fellow, to continue fundamental research, especially applications of thermodynamics to the Earth.

This is the authors' second joint book. The first presented a global perspective on the environment: *The Earth as a Cradle for Life: the Origin, Evolution and Future of the Environment* (World Scientific, 2013).

Section I

Notation and Units

Chapter 1

Physical Units and Constants

1.1 SI UNITS (SYSTÈME INTERNATIONAL D'UNITÉS)

There is nothing fundamental about the SI system. It is simply the result of a decision to produce a single universal system of units to replace multiple alternative systems. Modifications/additions have been introduced from time to time and the system is not without its difficulties. In the Earth sciences, the greatest difficulty is experienced in geomagnetism and rock magnetism, but practitioners in these disciplines are constrained by a consensus favouring a common system of units across all science. Some flexibility is assumed, and Table 1.1 presents some SI equivalents to the formal units with multiplying factors in Table 1.2. Thus, the geomagnetic field strength is generally expressed in millitesla, although the formal SI prescription is ampere/metre, both being SI units. Caution is required in the use of the mole as a chemical unit of material quantity because it refers to mass in grams, not the SI unit, kilograms, and is a survivor from the centimetre-gram-second system. Radiation intensity is most conveniently expressed in watts, W/unit solid angle or W/m² at a specified distance, without reference to its wavelength, avoiding the generally impractical SI definition of the candela. Units applied to radioactive exposure doses are not listed here. Conversions from units in common non-SI systems are listed in Section 1.2 with more details for fossil fuels in Section 24.5.1.

4 Practical Handbook of Earth Science

TABLE 1.1 SI UNITS			
Quantity	Unit	Symbol	Equivalents
Distance	metre	m	
Mass	kilogram	kg	1000 g
Time	second	s	
Temperature	kelvin	K	°C + 273.15
Substance unit	mole	mol	10 ⁻³ kg mol
Electric current	ampere	А	C/s
Light intensity	candela	cd	
Angle	radian	rad	$180^{\circ}/\pi$
Frequency	hertz	Hz	S^{-1}
Force	newton	Ν	kg·m/s ²
Energy	joule	J	N·m
Power	watts	W	J/s
Pressure	pascal	Ра	N/m^2
Viscosity	pascal-second	Pa s	
Electric charge	coulomb	С	A·s
Electric potential	volt	V	J/C
Electric resistance	ohm	Ω	V/A
Electric conductance	siemen	S	$1/\Omega$
Electric resistivity	ohm-metre	Ω-m	
Electric conductivity	siemen/metre	S m ⁻¹	1/(Ω-m)
Electric capacitance	farad	F	C/V
Magnetic field strength	ampere/metre	$A m^{-1}$	
Magnetic flux	weber	Wb	V·s
Magnetic intensity (flux density)	tesla	Т	Wb/m^2
Magnetisation	ampere metre	Am	
Inductance	henry	Н	V·s/A

MULTIPLYING FACTORS		
Multiplying Factor	Prefix	Symbol
1018	exa	Е
1015	peta	Р
1012	tera	Т
109	giga	G
106	mega	М
10 ³	kilo	k
10 ²	hecto	h
10	deka	da
10-1	deci	d
10 ⁻²	centi	с
10 ⁻³	milli	m
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	n
10-12	pico	р
10-15	femto	f
10-18	atto	a

TABLE 1.2UNIT PREFIXES FORMULTIPLYING FACTORS

Note: Some of these (such as millimetres and kilowatts) are widely used and generally familiar, but others are not and should be used sparingly or defined with their use.

1.2 UNIT CONVERSIONS: SI EQUIVALENTS OF OTHER UNITS

Length, area, angle

$= 10^{-10} \text{ m}$
= 0.0254 m (exact)
= 0.3048 m
= 0.9144 m
= 20.1168 m
= 201.168 m

6 Practical Handbook of Earth Science

1 statute mile (1760 yards)	= 1609.344 m (exact)
1 nautical mile	= 1852 m (originally 1 minute of latitude)
1 league (3 nautical miles)	= 5556 m
1 fathom (6 feet, water depth)	= 1.8288 m
1 astronomical unit (AU)	= 1.495978707 × 10 ¹¹ m (defined)
(≈ semi-major axis of Earth's orbit)	
1 light year	$= 9.460895 \times 10^{15} \mathrm{m}$
1 parsec	$= 3.085678 \times 10^{16} \mathrm{m}$
1 barn (nuclear cross section)	$= 10^{-28} \text{ m}^2$
1 square (100 square feet)	$= 9.2903 \text{ m}^2$
1 hectare	$= 10^4 \mathrm{m}^2 = 0.01 \mathrm{km}^2$
1 acre	$= 4046.856 \text{ m}^2$
1 degree (angle)	$= \pi/180$ radian
1 arc sec (1/3600 degree)	$= \pi/648,000 \text{ rad} = 4.848 \times 10^{-6} \text{ rad}$

Volume, mass

volume, mass	
1 litre	$= 10^{-3} m^3$
1 fluid ounce (Imperial)	= 0.028349523 L
1 fluid ounce (US)	= 0.029535296 L
1 acre-foot	$= 1233.48 \text{ m}^3$
1 gallon (Imperial)	= 4.5359237 L
1 gallon (US) (231 cubic inches)	= 3.7854118 L
1 barrel (oil) (~42 US gallons)	= 158.99 L
1 barrel (oil)	= 0.146 toe = 6.113 GJ
[For other fossil fuel unit conversion	ns see Section 24.5]
1 tonne of oil equivalent (toe)	= 41.868 GJ
1 toe coal	= 1.428 tonnes of coal
1 grain	$= 6.4798918 \times 10^{-5} \text{ kg}$
1 ounce (Avoirdupois, 437.5 grains)	= 0.028349323 kg
1 dram (1/16 ounce)	= 1.7718327×10^{-3} kg
1 ounce (Troy, 480 grains)	= 0.031034768 kg
1 carat (gem stones, 1/5 gram)	$= 2 \times 10^{-4} \text{ kg}$
1 pound (lb, 7000 grains)	= 0.45359237 kg
1 tonne	= 1000 kg
1 ton (Imperial) (2240 lb)	= 1016.0469 kg
1 ton (US) (2000 lb)	= 907.18474 kg
1 hundredweight, hwt (1/20 ton)	
Imperial, 112 lb	= 50.802345 kg
US, 100 lb	= 45.359237 kg
1 stone (14 lb, 1/8 Imp hwt)	= 6.35029318 kg

Time, speed	
1 sidereal year	= 3.155815×10^7 s = 365.25636 days
1 tropical year (equinox to equinox)	= 365.24219 days
1 sidereal day	= 86164.091 s
1 solar day	= 86,400 s
1 km/hour	$= 0.277778 \text{ m s}^{-1}$
1 mile/hour	$= 0.44704 \text{ m s}^{-1}$
1 knott (nautical mile/hour)	$= 0.51444 \text{ m s}^{-1}$
Force, pressure, energy	
1 dyne	$= 10^{-5} \mathrm{N}$
1 Gal (gravity)	= 10^{-2} m s ⁻² (1 mGal = 10^{-5} m s ⁻²)
1 atmosphere	= 101,325 Pa
1 bar	$= 10^5 \mathrm{Pa}$
1 psi (lb/square inch)	= 6894.8 Pa
1 dyne/cm ²	= 0.1 Pa
1 torr (1 mm of mercury)	= 133.3 Pa
1 erg	$= 10^{-7} \mathrm{J}$
1 electron volt (eV)	$= 1.60217657 \times 10^{-19} \mathrm{J}$
1 calorie, international steam thermochemical (USA)	= 4.1868 J = 4.184 J
1 British thermal unit (BTU)	= 1055.06 J
1 quad (quadrillion BTU) (10 ¹⁵ BTU)	= 1055 PI
1 kilowatt-hour	$= 3.6 \times 10^{6}$ J
1 horsepower	= 745.7 W
1 heat flux unit [1 μcalorie/(cm ² s)]	= $4.1868 \times 10^{-2} \mathrm{W} \mathrm{m}^{-2}$
Fluid flow	
1 poise	= 0.1 Pa s
1 darcy	$= 0.987 \times 10^{-12} \mathrm{m}^2 \approx (1 \mu\mathrm{m}^2)$ (see Section 24.8.1)
1 Sverdrup (Sv, ocean flow)	$= 10^6 \text{ m}^3 \text{ s}^{-1}$
Electromagnetism	
1 coulomb	= 1 ampere × 1 second
1 gauss	$= 10^{-4} T (tesla) = 10^{5} nT (gamma)$
1 gamma	$= 10^{-9} \mathrm{T}$
1 oersted	= $10^3/4\pi \mathrm{A}\mathrm{m}^{-1}$ (ampere-turn/metre)
1 gauss – cm ³ (magnetic moment)	$= 10^{-3} \mathrm{A} \mathrm{m}^2$
1 e.m.u. of magnetisation	$= 10^3 \mathrm{A} \mathrm{m}^{-1}$
$1 \mu\mathrm{S} \mathrm{cm}^{-1}$	$= 10^{-4} \mathrm{S} \mathrm{m}^{-1}$
1 esu, electric charge	$= 3.33564 \times 10^{-10}$ coulomb

8 Practical Handbook of Earth Science

Temperature	
X°C	= (X + 273.15) K
X°F	= (5/9)(X + 459.67) K
Other	
1 Dobson unit (ozone/unit area)	= 2.69×10^{20} molecules/m ²
	$(2.69 imes 10^{16} ozone molecules/cm^2)$

1.3 FUNDAMENTAL CONSTANTS

Mathematical constants:

$$\pi = 4(1-1/3 + 1/5 - 1/7 + 1/9 - 1/11 + ...) = 3.141592654...$$

$$e = 1 + \frac{1}{1} + \frac{1}{1 \times 2} + \frac{1}{1 \times 2 \times 3} + \frac{1}{1 \times 2 \times 3 \times 4} + \dots = 2.718281828\dots$$

$$\log_{e}(x) \equiv \ln(x) = \ln(10) \times \log_{10}(x) = 2.302585093 \times \log_{10}(x)$$

Defined constants:

Speed of light in vacuum <i>c</i>	= $2.99792458 \times 10^8 \text{ m s}^{-1}$
Permeability of free space μ_0	$= 4\pi \times 10^{-7} \text{ H m}^{-1}$
Permittivity of free space ε_0	$= 1/\mu_0 c^2 = 8.8541878 \times 10^{-12} \mathrm{F} \mathrm{m}^{-1}$

NOTE: A change to the SI system is planned for 2018, when μ_0 and ε_0 will no longer be defined constants, but will have uncertainties subject to the condition $(\mu_0 \varepsilon_0) = 1/c^2$. At the same time, *h*, *k*, *e* and *N*_A will become defined constants with the best values then prevailing in the present system, which will be very close to those listed here (Newell 2014).

Physical constants: CODATA values from the NIST (National Institute of Standards and Technology) 2014 listing (with uncertainties in the last digits in parentheses):

gravitational constant, G	= $6.67408(31) \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2} (\text{N} \text{ m}^2 \text{kg}^{-2})$
Planck constant, <i>h</i>	$= 6.62607040(81) \times 10^{-34} \text{ J s}$
elementary charge, <i>e</i>	= $1.6021766208(98) \times 10^{-19} \text{ C}$
electron mass, $m_{\rm e}$	$= 9.10938356(11) \times 10^{-31} \text{ kg}$
proton mass, $m_{\rm p}$	$= 1.672621898(21) \times 10^{-27} \text{ kg}$
neutron mass, m_n	$= 1.674927471(21) \times 10^{-27} \text{ kg}$
atomic mass constant, u (¹² C mass/12)	$= 1.660539040(20) \times 10^{-27} \text{ kg}$

Avogadro's number, $N_A = (1/u)$	$= 6.022140857(74) \times 10^{23} \text{ mol}^{-1}$
	$= 6.022140857(74) \times 10^{26} (\text{kg mol})^{-1}$
gas constant, <i>R</i>	$= 8.3144598(48) \text{ J mol}^{-1}\text{K}^{-1}$
	$= 8.3144598(48) \times 10^{3} \mathrm{J} (\mathrm{kg} \mathrm{mol})^{-1} \mathrm{K}^{-1}$
Boltzmann's constant, $k = R/N_A$	$= 1.38064852(79) \times 10^{-23} \text{ J K}^{-1}$
Stefan–Boltzmann constant,	
$\sigma = 2\pi^5 k^4 / 15 h^3 c^2$	$= 5.670367(13) \times 10^{-8} \mathrm{Wm^{-2}K^{-4}}$
Faraday constant, $F = (e/u) = N_A e$	$= 9.648533289(59) \times 10^4 \mathrm{C} \mathrm{mol}^{-1}$
	= $9.648533289(59) \times 10^7 \text{ C} (\text{kg mol})^{-1}$
inverse fine structure constant,	
$\alpha^{-1} = 2h/\mu_0 ce^2$	= 137.035999139(31)
Bohr magneton, $\mu_{\rm B} = (eh/4\pi m_{\rm e})$	$= 9.27401000(6) \times 10^{-24} \text{ A m}^2$
Lorenz number, $L = (\pi k/e)^2/3$	= $2.443003 \times 10^{-8} \mathrm{W} \Omega \mathrm{K}^{-2}$
(This is a coefficient relating the el	ectron component, κ_{e} , of thermal conduc

(This is a coefficient relating the electron component, κ_e , of thermal conductivity to the electrical conductivity, σ_e , of a metal by the Wiedemann–Franz law: $\kappa_e = L \sigma_e T$.)

Chapter 2

Char Some Shorthand Conventions

2.1 SELECTED ACRONYMS AND ABBREVIATIONS

ACC	Antarctic circumpolar current (now Antarctic polar frontal zone)
AGU	American Geophysical Union
ALT	altitude, altimeter
AMSL	above mean sea level
APW	apparent polar wander
ATM	atmosphere, atmospheric
AU	astronomical unit (radius of Earth's orbit)
BABI	basaltic achondrite best initial ratio ⁸⁷ Sr/ ⁸⁶ Sr (primordial)
BCC	body-centred cubic
BCF	billion cubic feet
BIFs	banded iron formations
BIRPS	British Institutions Reflection Profiling Syndicate
BGL	below ground level
BLS	below land surface
BSE	bulk silicate Earth
C1	type 1 carbonaceous chondrite (composition)
CAIs	calcium- and aluminium-rich inclusions (in meteorites)
CBM	coal bed methane (CSG)
CCD	carbonate compensation depth
CCNs	cloud condensation nuclei
CDIAC	Carbon Dioxide Information Analysis Center
CFCs	chlorofluoro carbons
СМВ	core-mantle boundary
СМЕ	coronal mass ejection
COCORP	Consortium for Continental Reflection Profiling
CODATA	Committee for Data on Science and Technology
СОНМАР	Cooperative Holocene Mapping Project
COSPAR	Committee on Space Research

12 Practical Handbook of Earth Science

СРХ	clinopyroxene				
CSG	coal seam gas (CBM)				
D ″	lowermost layer of the mantle				
DTR	daily temperature range				
DVI	dust veil index (volcanic)				
EDAX	energy dispersive X-ray analysis				
EDM	electronic distance measurement				
EOS, EoS	equation of state				
EPMA	electron probe microanalysis				
ERI	Earthquake Research Institute (Tokyo)				
ESA	European Space Agency				
ESRL	Earth System Research Laboratory (NOAA)				
EUG	European Union of Geosciences				
FAO	Food and Agriculture Organization				
FCC	face-centred cubic				
GAD	geocentric axial dipole				
GCM	global circulation model (atmosphere or ocean)				
GISP	Greenland Ice Sheet Project (USA)				
GPR	ground-penetrating radar				
GPS	global positioning system				
GRACE	Gravity Recovery And Climate Experiment				
GRIP	Greenland Ice Core Project (Europe)				
НСР	hexagonal close-packed				
HFU	heat flux unit [1 calorie/(cm ² s)]				
HIMU	high µ (²³⁸ U/ ²⁰⁴ Pb)				
HREE	heavy rare earth elements				
HS	high spin (state of electron spin alignment in Fe ²⁺ ions)				
IAG	International Association of Geodesy				
IAGA	International Association of Geomagnetism and Aeronomy				
IAHS	International Association of Hydrological Sciences				
IAMAP	International Association of Meteorology and Atmospheric				
	Physics				
IAPSO	International Association of Physical Sciences of the Oceans				
IASPEI	International Association of Seismology and Physics of the Earth's				
	Interior				
IAVCEI	International Association of Volcanology and Chemistry of				
	the Earth's interior				
ICB	inner core boundary				
ICS	International Commission on Stratigraphy				
ICSU	International Council of Scientific Unions				
IGRF	International Geomagnetic Reference Field				

IGY	International Geophysical Year (July 1957–December 1958)				
ILP	International Lithosphere Programme				
IPCC	International Panel on Climate Change				
IR	infra-red				
IRIS	Incorporated Research Institutions for Seismology				
ITCZ	Inter-Tropical Convergence Zone (atmospheric)				
IUGG	International Union of Geodesy and Geophysics				
IUGS	International Union of Geological Sciences				
JMA	Japan Meteorological Agency				
JOIDES	Joint Oceanographic Institutions for Deep Earth Sampling				
KREEP	K+REE+P-rich late solidification from magma				
K-T	cretaceous-tertiary (boundary)				
LFG	landfill gas (largely methane)				
LGM	last glacial maximum				
LHB	late heavy bombardment (of the Moon)				
LID	seismologically observed lithosphere				
LIL	large-ion lithophile ('incompatible' with mantle minerals)				
LNG	liquefied natural gas				
LOD	length-of-day				
LPG	liquefied petroleum gas				
LREE	light rare earth elements				
LS	low spin (state of electron spin alignment in Fe ²⁺ ions)				
LVZ	low-velocity zone (asthenosphere)				
m _b	body wave magnitude (earthquake)				
MHD	magnetohydrodynamics				
MIZ	marginal ice zone				
Moho	Mohorovičić discontinuity (crust–mantle boundary)				
MORB	mid-ocean ridge basalt				
Ms	surface wave magnitude (earthquake)				
MSL	mean sea level				
МТ	magneto-telluric (electromagnetic prospecting method)				
M _w	moment magnitude (earthquake)				
mw	magnesiowustite/ferropericlase (Mg,Fe)O				
MWP	medieval warm period (~900–1200 AD)				
NADW	North Atlantic deep water				
NASA	National Aeronautics and Space Administration				
NDS	non-linear dynamical system				
NEA	near-earth asteroid				
NGRIP	North Greenland Ice Core Project				
NIST	National Institute of Standards and Technology				
NMR	nuclear magnetic resonance				

14 Practical Handbook of Earth Science

NOAA	National Oceanic and Atmospheric Administration				
NRM	natural remanent magnetisation				
NSIDC	National Snow and Ice Data Center				
NTU	Nephelometric Turbidity Unit				
ODP	ocean drilling program				
OIB	ocean island basalt				
OLR	outgoing long wavelength radiation				
OPX	orthopyroxene				
P waves	primary (compressional) waves (seismology)				
рН	'power of hydrogen' (a numerical measure of acidity)				
PKIKP	P waves entering the inner core				
PKP	P waves entering the core				
PREM	Preliminary Reference Earth Model (Dziewonski and Anderson				
	1981)				
pv	silicate perovskite				
Pyrolite	pyroxene-olivine (model of mantle composition)				
QBO	quasi-biennial oscillation (stratosphere)				
Qtz	quartz				
REE	rare earth elements				
RMS	root mean square				
S waves	secondary (shear) waves (seismology)				
SAR	synthetic aperture radar				
SCAR	Scientific Committee on Antarctic Research				
SH	horizontally polarised shear wave				
sial	Si–Al crustal composition				
SIO	Scripps Institution of Oceanography				
sima	Si–Mg mantle composition				
SKS	shear waves penetrating the core				
SLR	satellite laser ranging				
SNC	shergottite, nakhlite, chassignite (Martian meteorite types)				
Sq	solar quiet				
SSC	sudden commencement (magnetic storm)				
SSSI	site of special scientific interest				
SST	sea surface temperature				
SV	vertically polarised shear wave				
TRM	thermo-remanent magnetisation				
USGS	United States Geological Survey				
UTC	Coordinated Universal Time				
UV	ultra-violet				
VEI	volcanic explosivity index				
VLBI	very long baseline interferometry				

VMS	volcanic massive sulphide				
WHOI	Woods Hole Oceanographic Institution				
WMO	World Meteorological Organization				
WWRP	World Weather Research Programme				
WWSSN	Worldwide Standardized Seismographic Network				
XRD	X-ray diffraction				
XRF	X-ray fluorescence spectroscopy				
z term	an annual cycle in apparent latitude synchronous at all				
	observatories				

2.2 THE GREEK ALPHABET

Alpha	α	А	Nu	ν	Ν
Beta	β	В	Xi	ξ	Ξ
Gamma	γ	Γ	Omicron	0	0
Delta	δ	Δ	Pi	π	П
Epsilon	ε	Е	Rho	ρ	Р
Zeta	ζ	Z	Sigma	σ	Σ
Eta	η	Н	Tau	τ	Т
Theta	θ	Θ	Upsilon	υ	Y
Iota	ι	Ι	Phi	ф	Φ
Карра	κ	Κ	Chi	χ	Х
Lambda	λ	Λ	Psi	Ψ	Ψ
Mu	μ	М	Omega	ω	Ω

Section II

The Building Blocks

Elements to Planets

Chapter 3

Elements, Isotopes and Radioactivity

3.1 PERIODIC TABLE OF ELEMENTS: A GEOCHEMICAL CLASSIFICATION (Figure 3.1)

Figure 3.1 A geochemical classification of the elements.

3.2 PERIODIC TABLE OF ELEMENTS: A BIOLOGICAL CLASSIFICATION (Figure 3.2)

Figure 3.2 A biological classification of the elements.

3.3 ISOTOPES OF THE NATURALLY OCCURRING ELEMENTS

TABLE 3.1 ISOTOPIC ABUNDANCES AND MEAN ATOMIC WEIGHTS			
Atomic No. z	Element	Symbol (mean atomic wt., in units of <i>u</i> = 1.66053878 × 10 ⁻²⁷ kg)	Isotopic Masses, with Abundances in Atomic % in Parentheses
0	Neutron	n ^a (1.0886)	
1	Hydrogen	Н (1.0079)	1 (99.985), 2 (0.015), 3ª (atmospheric trace from cosmic ray bombardment)
2	Helium	He (4.00260)	3 (0.00013), 4 (99.99987)
3	Lithium	Li (6.940)	6 (7.59), 7 (92.41)
4	Beryllium	Be (9.01218)	9 (100), 10ª (atmospheric trace from cosmic ray bombardment)
5	Boron	B (10.811)	10 (19.9), 11 (80.1)
6	Carbon	C (12.0107)	12 (98.93), 13 (1.07), 14 ^a (1.6 × 10 ⁻¹⁰ in atmosphere)
7	Nitrogen	N (14.0067)	14 (99.635), 15 (0.365)
8	Oxygen	O (15.9994)	16 (99.757), 17 (0.038), 18 (0.205)
9	Fluorine	F (18.99480)	19 (100)
10	Neon	Ne (20.1797)	20 (90.48), 21 (0.27), 22 (9.25)
11	Sodium	Na (22.9898)	23 (100)
12	Magnesium	Mg (24.3050)	24 (78.99), 25 (10.00), 26 (11.01)
13	Aluminium	Al (26.98154)	27 (100)
14	Silicon	Si (28.0855)	28 (92.22), 29 (4.69), 30 (3.09)
15	Phosphorus	P (30.97376)	31 (100)
16	Sulphur	S (32.065)	32 (94.93), 33 (0.76), 34 (4.29), 36 (0.02)
17	Chlorine	Cl (35.453)	35 (75.76), 37 (24.24)
18	Argon		
	Atmosphere	Ar (39.948)	36 (0.337), 38 (0.063), 40 (99.600)
	Solar wind	Ar (36.67)	36 (75.3), 38 (14.2), 40 (10.5)

TABLE 3.1 (Continued) ISOTOPIC ABUNDANCES AND MEAN ATOMIC WEIGHTS				
Atomic No. <i>z</i>	Element	Symbol (mean atomic wt., in units of <i>u</i> = 1.66053878 × 10 ⁻²⁷ kg)	Isotopic Masses, with Abundances in Atomic % in Parentheses	
19	Potassium	K (39.0983)	39 (93.258), 40ª (0.01167), 41 (6.730)	
20	Calcium	Ca (40.078)	40 (96.94), 42 (0.65), 43 (0.13), 44 (2.09), 46 (0.0041), 48 ^b (0.19)	
21	Scandium	Sc (44.95591)	45 (100)	
22	Titanium	Ti (47.867)	46 (8.25), 47 (7.44), 48 (73.72), 49 (5.41), 50 (5.18)	
23	Vanadium	V (50.9415)	50 ^b (0.25), 51 (99.75)	
24	Chromium	Cr (51.996)	50 (4.35), 52 (83.79), 53 (9.50), 54 (2.36)	
25	Manganese	Mn (54.93804)	55 (100)	
26	Iron	Fe (55.845)	54 (5.84), 56 (91.75), 57 (2.12), 58 (0.28)	
27	Cobalt	Co (58.93319)	59 (100)	
28	Nickel	Ni (58.6934)	58 (68.077), 60 (26.223), 61 (1.140), 62 (3.634), 64 (0.926)	
29	Copper	Cu (63.546)	63 (69.2), 65 (30.8)	
30	Zinc	Zn (65.409)	64 (48.27), 66 (27.98), 67 (4.10), 68 (19.02), 70 (0.63)	
31	Gallium	Ga (69.723)	69 (60.108), 71 (39.892)	
32	Germanium	Ge (72.63)	70 (20.38), 72 (27.31), 73 (7.76), 74 (36.72), 76 ^b (7.83)	
33	Arsenic	As (74.9216)	75 (100)	
34	Selenium	Se (78.96)	74 (0.89), 76 (9.37), 77 (7.63), 78 (23.77), 80 (49.61), 82 ^b (8.73)	
35	Bromine	Br (79.904)	79 (50.69), 81 (49.31)	
36	Krypton	Kr (83.798)	78 (0.35), 80 (2.29), 82 (11.59), 83 (11.50), 84 (56.99), 86 (17.28)	
37	Rubidium	Rb (85.4678)	85 (72.165), 87 ^a (27.835)	
38	Strontium	Sr (87.62)	84 (0.56), 86 (9.86), 87 (7.00), 88 (82.58)	

TABLE 3.1 (Continued) ISOTOPIC ABUNDANCES AND MEAN ATOMIC WEIGHTS			
Atomic No. <i>z</i>	Element	Symbol (mean atomic wt., in units of <i>u</i> = 1.66053878 × 10 ⁻²⁷ kg)	Isotopic Masses, with Abundances in Atomic % in Parentheses
39	Yttrium	Y (88.90585)	89 (100)
40	Zirconium	Zr (91.224)	90 (51.45), 91 (11.22), 92 (17.15), 94 (17.38), 96 ^b (2.80)
41	Niobium	Nb (92.90638)	93 (100)
42	Molybdenum	Mo (95.96)	92 (14.77), 94 (9.23), 95 (15.90), 96 (16.68), 97 (9.56), 98 (24.19), 100 ^a (9.67)
43	Technetium	Тс	No naturally occurring isotope
44	Ruthenium	Ru (101.07)	96 (5.44), 98 (1.87), 99 (12.76), 100 (12.60), 101 (17.06), 102 (31.55), 104 (18.62)
45	Rhodium	Rh (102.90550)	103 (100)
46	Palladium	Pd (106.42)	102 (1.02), 104 (11.14), 105 (22.33), 106 (27.33), 108 (26.46), 110 (11.72)
47	Silver	Ag (106.8682)	107 (51.839), 109 (48.161)
48	Cadmium	Cd (112.411)	$\begin{array}{l} 106\ (1.25),\ 108\ (0.89),\ 110\ (12.49),\ 111\\ (12.80),\ 112\ (24.13),\ 113^{\rm b}\ (12.22),\\ 114^{\rm b}\ (28.72),\ 116^{\rm b}\ (7.49) \end{array}$
49	Indium	In (114.818)	113 (4.29), 115 ^b (95.71)
50	Tin	Sn (118.71)	112 (0.97), 114 (0.66), 115 (0.34), 116 (14.54), 117 (7.68), 118 (24.22), 119 (8.59), 120 (32.58), 122 (4.63), 124 (5.79)
51	Antimony	Sb (121.60)	121 (57.21), 123 (47.79)
52	Tellurium	Te (127.60)	$\begin{array}{l} 120\ (0.09),\ 122\ (2.55),\ 123\ (0.89),\\ 124\ (4.74),\ 125\ (7.07),\ 126\ (18.84),\\ 128^{\mathrm{b}}\ (31.74),\ 130^{\mathrm{b}}\ (30.08) \end{array}$
53	Iodine	I (126.90448)	127 (100)
54	Xenon	Xe (131.293)	124 (0.095), 126 (0.089), 128 (1.910), 129 (26.401), 130 (4.071), 131 (21.232), 132 (26.909), 134 (10.436), 136 ^b (8.857)

 TABLE 3.1 (Continued)
 ISOTOPIC ABUNDANCES AND MEAN ATOMIC WEIGHTS

TABLE 3.1 (Continued) ISOTOPIC ABUNDANCES AND MEAN ATOMIC WEIGHTS			
Atomic No. z	Element	Symbol (mean atomic wt., in units of $u =$ 1.66053878 × 10^{-27} kg)	Isotopic Masses, with Abundances in Atomic % in Parentheses
55	Caesium	Cs (132.90552)	133 (100)
56	Barium	Ba (137.327)	130 ^b (0.106), 132 (0.101), 134 (2.417), 135 (6.592), 136 (7.854), 137 (11.232), 138 (71.698)
57	Lanthanum	La (138.90547)	138 ^a (0.090), 139 (99.910)
58	Cerium	Ce (140.116)	136 (0.190), 138 (0.251), 140 (88.450), 142 (11.114)
59	Praseodymium	Pr (140.90765)	141 (100)
60	Neodymium	Nd (144.242)	142 (27.2), 143 (12.2), 144 ^b (23.8), 145 (8.23), 146 (17.2), 148 (5.72), 150 ^b (5.60)
61	Promethium	Pm	No naturally occurring isotope
62	Samarium	Sm (150.36)	144 (3.07), 146 ^a (trace), 147 ^a (14.99), 148 ^b (11.24), 149 (13.82), 150 (7.38), 152 (26.75), 154 (22.75)
63	Europium	Eu (151.964)	151 ^b (47.81), 153 (52.19)
64	Gadolinium	Gd (157.25)	152 ^b (0.20), 154 (2.18), 155 (14.80), 156 (20.47), 157 (15.65), 158 (24.84), 160 (21.86)
65	Terbium	Tb (158.92535)	159 (100)
66	Dysprosium	Dy (162.500)	156 (0.056), 158 (0.095), 160 (2.329), 161 (18.889), 162 (25.475), 163 (24.896), 164 (28.260)
67	Holmium	Ho (164 93032)	165 (100)
68	Erbium	Er (167.259)	162 (0.139), 164 (1.601), 166 (33.503), 167 (22.869), 168 (26.978), 170 (14.910)
69	Thulium	Tm (168.9342)	169 (100)
70	Ytterbium	Yb (173.04)	168 (0.13), 170 (3.04), 171 (14.28), 172 (21.83), 173 (16.13), 174 (31.83), 176 (12.76)
71	Lutetium	Lu (174.967)	175 (97.41), 176 ^a (2.59)
72	Hafnium	Hf (178.49)	174 ^b (0.162), 176 (5.26), 177 (18.60), 178 (27.28), 179 (13.63), 180 (35.08)