EMERGING TECHNOLOGIES IN SPORT

IMPLICATIONS FOR SPORT MANAGEMENT

Edited by
Cheryl Mallen
Advances in technology have always had a significant impact on sport. This book surveys the next generation of emerging technologies and considers how sport managers, governing bodies and officials can meet the challenges that they pose for sport competition, participation and events.

It explores cutting edge developments in areas such as gene doping, vision and brain technologies, 3D printing technologies, molecular communication technologies and our ability to “rebuild” bodies. Each chapter considers the implications of a particular technology in terms of ethics, rules and regulations, facilities and resourcing, as well as the emergence of completely new forms of sport, and offers strategies for future sport management.

Emerging Technologies in Sport is a valuable resource for sport industry professionals, undergraduate students in the fields of sport management, sport tourism and sport business, and a fascinating read for anyone with an interest in sport and future applications of emerging technologies within sport.

Cheryl Mallen is an Associate Professor at Brock University, Canada. She teaches Sport Event Management, Sport Facility Management and Sport Ethics with an emphasis on emerging technologies and best practices in sport environmental sustainability. She has published three editions of Event Management for Sport, Recreation and Tourism: Theoretical and Practical Dimensions (Routledge, 2017).
Available in this series:

4 **Organisational Performance Management in Sport**
Ian O’Boyle

5 **Sport in Latin America**
Policy, Organization, Management
Edited by Gonzalo Bravo, Rosa Lopez de D’Amico and Charles Parrish

6 **Sports Agents and Labour Markets**
Evidence from World Football
Giambattista Rossi, Anna Semens and Jean Francois Brochard

7 **Managing Drugs in Sport**
Jason Mazanov

8 **Elite Youth Sport Policy and Management**
A Comparative Analysis
Edited by Elsa Kristiansen, Milena M. Parent and Barrie Houlihan

9 **Women in Sport Leadership**
Research and Practice for Change
Edited by Laura J. Burton and Sarah Leberman

10 **International Sports Betting**
Integrity, Deviance, Governance and Policy
Edited by Jean-Patrick Villeneuve and Martial Pasquier

11 **Emerging Technologies in Sport**
Implications for Sport Management
Edited by Cheryl Mallen
Emerging Technologies in Sport

Implications for Sport Management

Edited by Cheryl Mallen
To my family – your support means everything! Love you
Contents

Notes on contributors ix

1 Introduction to emerging technologies and their implications in sport management 1
 CHERYL MALLEN

PART I

Emerging performance-enhancing technologies 17

2 3D printing technologies and implications for sport management 19
 CHERYL MALLEN

3 Molecular communication technology and implications for sport management 33
 CHERYL MALLEN

4 Bionic vision technology and implications for sport management 51
 CHERYL MALLEN

5 Emerging blood doping technology and implications for sport management 65
 CHERYL MALLEN
Contents

PART II

Getting the competition results correct

6 Artificial intelligence and implications for sport officiating

CHERYL MALLEN

85

PART III

Safeguarding the natural environment for the future of sport

7 Sport and the emerging climate change reversal technologist or specialist

CHERYL MALLEN AND GREG DINGLE

107

PART IV

Impact of next generation technologies on sport events

8 The convoluted history of sex determination in sport: finding a way forward with current and emerging technologies

IAN RITCHIE AND LINDSAY PARKS PIEPER

127

9 The future role of the Paralympics in times of “rebuilt bodies”

ANGELA J. SCHNEIDER AND DARDA SALES

142

10 How emerging technologies are reframing sport

CHERYL MALLEN

156

11 Conclusions: “what could be”

CHERYL MALLEN

174

Index

181
Contributors

Greg Dingle is a Lecturer in Sport Management in the Department of Management, Sport and Tourism within the La Trobe Business School at La Trobe University, Australia. He is also a Research Associate of La Trobe University’s Centre for Sport and Social Impact where his expertise is in the fields of sport and climate change, sport management and environmental sustainability, and Education for Sustainability (EfS). His current research is focused on the vulnerability and resilience of community sport to climate change, and adaptive responses to such impacts.

Cheryl Mallen is an Associate Professor at Brock University, Canada. She teaches Sport Event Management, Sport Facility Management and Sport Ethics with an emphasis on emerging technologies and best practices in sport environmental sustainability. She has published three editions of *Event Management for Sport, Recreation and Tourism: Theoretical and Practical Dimensions* (Routledge, 2017).

Lindsay Parks Pieper is an Associate Professor of Sport Management at the University of Lynchburg, USA. She teaches sport governance, politics in sport, history, law and ethics. Her research interests include women’s sport history, sex and gender verification policies, and Olympic history.

Ian Ritchie is an Associate Professor in the Department of Kinesiology at Brock University, Canada. He teaches courses in Sport Sociology, Social Theory and Sociology of the Modern Olympic Games. Ian’s research interests include performance-enhancing drug use in sport, the history of anti-doping rules and policies, Canadian anti-doping policy, gender and sex determination policies, the history of the Olympic Games and social theory as it applies to sport and physical culture.

Darda Sales is a four-time Paralympian, gold and silver medallist and dual sport World Champion. She is currently a PhD student in the School of Kinesiology at Western University, Canada. Darda is passionate about improving the sport experience for coaches and athletes alike.
Angela J. Schneider is Associate Professor in the School of Kinesiology at Western University, Canada. She is a former World Anti-Doping Agency Director for Ethics and Education and the first woman to serve as a director at the World Anti-Doping Agency (WADA). Angela is also an Olympic Silver Medallist in Rowing and an athletes’ rights activist. Her teaching areas of focus include genetic doping in sport, Olympic studies, philosophy of sport and women, sport and embodiment.
Chapter 1

Introduction to emerging technologies and their implications in sport management

Cheryl Mallen

There are a myriad of dynamic technological innovations being introduced to the world. Examples include 3D printing, molecular communication, bionic vision and artificial intelligence. When these, and numerous other technologies, are utilized in sport, their impacts will significantly alter the future of sport.

Effects on sport from a wide-ranging variety of technological innovations will include, for example, expanded options for enhancing athletic performance. These options will impose pressure on those in sport management to readdress many policies and directives currently used to guide the development and conduct of sport. As such, there are governance implications that concern sport policy and the associated rules, regulations and procedures that affect those involved from athletes to sport competition officials. Other impacts extend to the multiple sport management sectors, such as the economic, financial, legal, marketing, public relations, sociological and sport development aspects. The repercussions from these impacts are expected to affect all age groups, leagues and levels of sport competition, and of course, there will be concerns for the health and safety of every athlete. Each bifurcation or division/branch of sport will not be impacted in the same way and the different sport organizations will choose their particular responses. The resulting array of options, influences and responses precipitated from the rise of emerging technologies will make finding "the way forward" for the future of sport a complex and controversial process.

A challenge is now presented for all of those in sport management, with the influence, opportunity and capacity, to provide leadership for managing emerging technologies in sport. Skilled and innovative leaders are needed to guide sport organizations as they navigate through the plethora of emerging technological advancements, their subsequent impacts on athletes, coaches, officials and policy-makers, to identify how to move forward. No sport organization, from the local amateur to the international and professional sporting ranks, will be able to escape the impacts of the profusion of technologies that will emerge. Leadership will be required by every sport organization in coming to grips with new realities deployed by these emerging technological innovations.

The leadership role encompasses multiple aspects, but certainly includes initiating and facilitating debates. The voice of every person involved in sport
management, including the directors and executives of the sport organizations, along with staff members, volunteers, coaches and high-performance directors, officials and spectators interested in the future direction of sport is important within the debates that need to be held to resolve how sport should manage the next generation of emerging technological innovations.

Whose voice will matter most when it comes to directing the future of sport? It is not known which voice will be able to present viable options – so all voices will need to be considered in a search for viable options. This means leaders need to create a climate and a process that accommodates multiple opinions but that also records the options and strategies being proposed. This process of debate needs to be instituted immediately due to the rapidly approaching wave of technological innovations.

It is vital for those interested in leading, or just being involved in debates on resolving the emerging technological issues in sport to educate themselves on the new technological innovations. Each technology must be considered based on its characteristics and potential impact on each individual sport. Without gaining intimate knowledge of these issues, effective debate cannot occur and realistic solutions and strategies will not be found.

To this end, research is needed to advance knowledge about the emerging technologies. Sport organizations must generate partnerships to facilitate the development of this research to explicate the characteristics of each technology, as well as the advantages and vulnerabilities that arise when applied to their sport. Importantly, research needs to encompass the impacts on sport organizations and their events. This means that research needs to focus on options for management practices necessary for the integration or the prohibition of each technology into the sport milieu that includes events from the grassroots to major multi-sport events such as the Olympic Games, Paralympic Games and the Special Olympics. Further, research is needed to expound on the assumptions and implications of the technologies for professional sport. Finally, research is also required to foster multiple visions of what sport will look like in the future due to the sea of new technologies washing over it. Visioning aids in guiding decisions on strategies to be used to reach a desired direction.

Education and research are vital components in managing the challenging technological shift that will occur within sport. Additionally, leaders from a variety of sports must cooperate in an effort to share knowledge, assumptions, critical reflections and strategies on a number of emerging technologies. This sharing is required as it will be difficult for every sport organization to individually generate all of the educational opportunities and research projects necessary to address the range of fast-approaching emerging technologies that will challenge sport. This cooperative strategy is crucial for assisting leadership from a number of sports to make informed decisions on how to best manage the emerging technologies.

Once a direction has been selected for a particular emerging technology, an experimentation phase is necessary to aid sport in testing new rules and regulations during sport competitions to identify any unexpected impacts or
consequences. During this phase, several stakeholders, such as athletes, coaches, spectators, sponsors and sport facility managers, will surely express views on decisions and directions established for each technology. Challenges will arise. Leadership will be confronted with an array of complex issues, paradoxes, opinions and positions. Legal opinions will also form an integral part of the analysis of the selected directions. Overall, determining the preferred way forward and moving through an experimental phase will be an arduous task for leadership.

Sport has already proven that it can manage to adapt when it comes to the introduction of new technologies. To substantiate this point, a synopsis is offered on the historical integration of emerging technologies within sport. The synopsis illustrates that sport has generally managed emerging technologies well, but that in some cases decisions had to be revisited in an effort to, in the end, get it right.

Historical emerging technologies that have been integrated within sport management

For decades sport has had to contend with the introduction of new technologies and their impacts on sport organizations and their competitions. There has been an ever-evolving process of next-generation options for sport. We will now look at examples of where new technologies were adopted and integrated into sport.

Four historical examples are provided where emerging technologies were integrated within sport. The examples include golf ball technology, track/athletics competition surface technology, movement technology with a review of the development of wheelchairs to exoskeleton technology and, finally, timing equipment that is deployed to ensure correct competition results. Following these four examples will be a brief list of additional examples that illustrate when new technologies have been integrated within sport. And finally, an example is also highlighted whereby a new technology that was initially integrated within a sport was later prohibited.

Golf ball technology

The sport of golf was well established in parts of the British Isles by the fourteenth century. At that time and for generations to follow, the golf ball that was predominately used was a feather stuffed, leather covered version. As the sport progressed, it is widely accepted that the modern golf ball was the “Haskell” ball invented and patented by Coburn Haskell in 1899. This revolutionary golf ball used rubber wound ball technology that resulted in a ball that travelled farther. When a dimple pattern, invented by William Taylor, was added in 1908, the rubber wound ball achieved even greater distances. Fundamentally, the impact of the golf club onto the ball lasts only 1/2000 of a second, but that impact establishes the ball’s velocity, launch angle and spin rate. Then the dimple pattern technology comes into play as it causes the golf ball to fly even farther.
and straighter as the indentations on the ball produce more lift and less drag during the flight of the ball.6 Once airborne, the ball’s trajectory is controlled by gravity and aerodynamics. The dimples on the golf ball create a thin turbulent boundary of air that clings to the ball’s surface and allows the smoothly flowing air to follow the ball’s surface around the back of the ball thereby decreasing the size of its wake. The spin rate, or backspin, imparted on the golf ball generates the lift – the spinning action makes the air pressure on the bottom of the ball higher than the air pressure on top and this creates an upward force on the ball. The amount of backspin not only affects the height of the ball’s flight but also its ability to stop quicker; a back-spinning ball can “grab” the surface of the grass significantly slowing its spin rate causing the ball to stop quicker. This ability to “stop” the ball is a desirable characteristic to the most proficient golfer and affects strategy and club selection decisions by the player. The technological design of dimples on the golf ball proved to be revolutionary for the game of golf.

Golf ball manufacturers continue to seek new materials to produce golf balls that perform better, more consistently, but also to reduce production costs and increase durability. In so doing, discoveries of new materials and production processes led to improved understanding of the chemistry for constructing and the physics of the golf ball. In the 1960s a modern two-piece ball was developed that included a core and durable covering that offered more efficient transfer of energy into the ball – resulting in greater distance.7 The company, DuPont, was influential in the development of this golf ball when they created their “surlyn” cover with a chemistry influenced by resins “of high-performance ethylene-co-polymers containing acid groups partially neutralized using metal salts such as zinc, sodium and others … [for] outstanding resilience, broad hardness and stiffness, and excellent resistance to cuts and abrasion”8.

Today, golf balls are constructed with a combination of layers such as a single core or multiple cores, along with two, three or even five different layers of material.9 Each combination provides different playability characteristics, such as the durability, and degree of launch angle off the clubface which has led to the ball travelling farther, higher and with backspin rates permitting the ball to stop quicker.

In sport management, the golf ball technology has translated to distance performance characteristics that resulted in the need to lengthen the distance of golf holes to protect the integrity of “par” as an appropriate score on a given hole. To date, the governing bodies that oversee the sport of golf at its amateur and professional levels have not fully concluded their position concerning the question of controlling the performance characteristics of golf balls – but the idea has been raised.10 Recently, the Royal and Ancient Golf Club at St. Andrews (R&A) published statistics that indicated “between 2003 and the end of 2016 season, average driving of five of the seven tours has increased by approximately 1.2 per cent or around 0.2 yards per year”.11 Despite calls from golf experts to protect the integrity of the game by controlling the distance a
Introduction

The initial statistics do not suggest such limiting is warranted. It will be interesting to follow the issue of golf ball technology and its effect on the game into the future. Will the governing bodies in golf decide to limit manufacturers from increasing the performance characteristics of the golf ball from its current standards? Or, will the sport adapt by continuing to add length to the fairways of the golf courses?

Track surface technology

The surfaces upon which races have been conducted to identify the fastest human have continually evolved since the inception of such contests. Over this time period, what has become evident is that the properties of certain types of materials used in the construction of the surface of a track has been proven to impact an athlete’s speed performance. Over the years these tracks have been constructed with a variety of materials that range from cinder, to grass, clay, dirt or burnt pieces of wood, and starting in the 1950s, with asphalt and rubber or a combination of asphalt and sand. By the 1960s, artfully developed synthetic surfaces of polyurethane began to be put to use when 3M developed the “Tartan” track that saw installations worldwide, including at the stadium for the 1968 Mexico City Olympics. Polyurethanes can be made in a soft or hard form, or a combination that can provide a smoothly crafted surface. Technological advancements in track surfaces proliferated from this point forward.

The track used most often for international competitions now is produced by an Italian company, Mondo. The “Mondotrack” has been used in every Olympic Summer Games for over two decades. Bomfim (2016) explains that modern tracks illustrate Newton’s third law of motion that states “for every action, there is an equal and opposite reaction”. In the case of the Mondotrack, the technology features a “backing with elongated diamond shaped cells … that flex easily in any direction … and the material comes back quickly enough to act like a springboard underfoot”. This means that as the foot impacts the surface, the air-filled cells are pressured to compress and absorb the impact of the force, along with the vibrations; and further, as the foot leaves the surface the compressed air causes the cells to spring back propelling the athlete up and forward. This energy transfer process is also noted as limiting the lateral movement of the foot thereby reducing the lateral movement of the lower leg resulting in a more efficient running performance. Mondotrack construction also uses 35 per cent recycled materials. It appears that the design engineers are demonstrating not only a consciousness of the runners’ needs but that of society as well, given the environmentally friendly aspects of the Mondotrack materials.

The advancements in new track surface and construction technologies are such that they allow the track to be interactive and indeed contribute to an athlete running faster. Will this strategy continue and the next generation of track surfaces provide even more assistance to the runner? What is the upper
limit for this surface rebound effect as track composition and construction aids in contributing to the utmost in human running performance? Will those in sport management need to devise rules and regulations that curtail or set an upper limit on this impact in the future? Time will tell!

Wheelchair to exoskeleton technology

Tremendous strides have been made in Paralympic sports technology. One such area involves wheelchairs or adapted sleds that are used in many of the para-sports, such as basketball, rugby, sledge hockey, soccer, softball and tennis. The goal of the technology is to develop “an efficient human-machine system in which the person and the wheelchair work in close coordination” and, also, to allow the varied movements required for high performance sport competition. Over the years, the advances have included the use of tubular steel that first offered the ability to move the wheelchair for outdoor use. Further, the wheelchair design was adapted from rigid style frames to ultralight materials. Also, electric options, along with a hybrid version with both manual and electric characteristics called the “push-rim-activated power-assisted wheelchair” have assisted sport competitors. Recent advances have allowed wheelchairs to navigate better outside on soft surfaces, such as sandy beaches. This option included the introduction of the Beach Bomber, providing better navigation on sand with its wider rims and “balloon-type tires”. A multitude of other adjustments have been noted as making the wheelchair a more efficient transportation aid. For instance, wheel spokes have been changed from steel to lighter composite materials and tires are low in resistance. Further, technological advances have enabled the chairs to fold for easier transport to sport competitions. Importantly, there have been technological designs developed for specific sports and the precise movement requirements for which wheelchairs will be used in competition. For instance, a handle is added for tennis players to be able to more efficiently extend their body and racquet to return a ball. Also, the wheel design for basketball has six wheels with “2 swivel casters in front, 2 drive wheels; and 2 swivel casters in the rear … this allows the drive wheels to be placed at or very close to the centre of gravity of the basketball player”. One key driver of new wheelchair technology has been computer-aided design (CAD) that can develop simulations of various designs to allow for more personalization as they seek to determine the best level of strength and rigidity in materials in an effort to find optimum manoeuvrability.

The next generation in human movement technology is now in the marketplace. In the spring of 2018, Simon Kindelysides completed the Virgin London Marathon held in London, England – but what is remarkable is that he is paralyzed from the waist down and utilized an exoskeleton suit to walk the race course. An exoskeleton suit is a device that a person climbs into and straps on. This exterior skeleton is designed with a metal frame and straps that provide
scaffolding type support of the feet, legs, hips and torso. Learning to coordinate the motion from the different body parts allows the person to walk with the hydraulically and electrically powered support system built into the suit. This bionically engineered system has only recently become available for use by athletes that are movement challenged. The rules and regulations of the marathon race allows for individual competitors to walk the course, or to be assisted with the use of a wheelchair, and now the exoskeleton apparatus represents the next stage of human assisted movement technology in sport. As this type of technology is utilized in other sports beyond the marathon, it will be interesting to see how sport adapts for its inclusion – especially as researchers are working to advance the movement with the use of the device, including supporting running and jumping activities.

Timing equipment technology

Omega has been the official timekeeper for the Olympic Games since 1932. During this time period, manual timing systems (stopwatches) have been replaced by electronic systems that have improved the accuracy of the race times achieved and recorded. By the 2010 Winter Olympic Games that were held in Vancouver, Canada, the timing system for the luge and bobsleigh competitions involved

> 42 pairs of infrared emitters and receivers that [sent] a time-tagged message along a wire to a central computer in the on-site control/timing tower each time the light beam [was] broken … [with] a master and a backup [system] – placed exactly 1 cm apart.

It is now common for race starts to employ an electronic start system that utilizes a flash gun with numerous speakers linked to the start signal so that contestants hear the start signal at precisely the same time the timing clock begins. Also, in an attempt to gain accurate records of athletic performance times, many starting platforms in swimming, or blocks in track, are now equipped with laser photocells that act as tripwires to report false starts should they occur. Further, wearable running chip-based timing technology ensures each athlete crossing the finish line has an accurate time despite a staggered start process. Additionally, timing systems can be supported with photo-finish cameras that capture 3,000 and 5,000 frames per second and, now, up to 10,000th of a second to aid in determining a winner. Recently, Omega boasted “that their new Quantum timer captures data down to the millionth of a second.”

Another example of using timing in sport involves shot clocks. This type of clock was introduced in sports such as basketball and lacrosse to prescribe a time period within which a shot attempt must be taken or risk forfeiture of possession of the ball. In the 2016–2017 National Basketball Association (NBA) season, a new shot clock system was introduced that “simultaneously transmits exact
timing data to all in-arena scoreboards and video equipment … [controlled by] TISSOT’s proprietary software”.36

Modern timing systems are not, however, without issues. Earp (2012) outlined that false signals were an issue (i.e. a hand going over the finish line first can trip the system early).37 So, a two-beam system was devised and both must be activated to generate a timed result – and this has helped in reducing the false signals issue.38 Research by Finn (2016), however, found that despite the technological advances in timing equipment, multiple international sport organizations continue to have to adjudicate disputes concerning the timing of elite level athletes’ performances.39 This illustrates that a fail-safe timing system has yet to be created and the push for continuously improving the timing technology for sport still exists. Timing technology and its accuracy in identifying the winner of a race or competition or its use in accurately denoting the time period of play, such as quarters in basketball and American football or periods in ice hockey, will continue to evolve. There are, however, situations where manual timing is still utilized, such as in the extra time determined by a referee in soccer. The issue of the accuracy of timing is one that will linger long into the future.

Technological adaptations in sport constantly push sport managers to determine the use of such advanced technology in sport and, if approved, to consider reworking the rules and regulations to allow their inclusion. This cycle is never-ending. A further list of examples of additional integrations of technology within sport over time is offered below.

Examples of other technological advances

An abundance of technologies has been incorporated into sport as they have emerged over time. Consider the examples outlined below of technologies that have already been introduced and adapted into sport including:

- the addition of break-away rims in basketball to prevent the rims from breaking when athletes dunked the ball;
- the evolution of wood, fibreglass and then carbon fibre designs for skis and snowboards to make them lighter, more consistent and customizable;
- cross-country skis that now feature high-performance waxless technology and different types of speed increasing “sidecuts”;
- snow sheets that allow skiing on a hill all year round as promoted by 365winterworld.com;
- the move from single to double strung tennis racquets and the use of multiple products to make the strings, such as nylon, polyester and kevlar seeking to improve the tension, durability, elasticity, rebound properties and the cost of the racquet;
- the transition from wood, then moulded plastic frames or “heads” of a lacrosse stick, along with leather runners and then the use of nylon mesh
pockets making the stick lighter and more consistent compared to the previously hand-made versions;

• evolving from the human line judge to using the “Hawkeye” line judgement system in cricket, tennis and other sports to make line calls more accurate and eliminate athlete–line judge disputes;

• a movement from the rigid fixed blade on a skate used in speed skating to the clap skate that allows an athlete to extend each stride for the purpose of gaining speed;

• a movement from wood to composite materials in ice hockey sticks that made them lighter and more customizable;

• hockey skate boots that have been made lighter and form-fitting to the foot for more efficient propulsion;

• wooden clubheads and hickory wooden shafts in golf, to steel shafts and on to titanium or stainless steel clubheads with graphite shafts that make the club lighter and theoretically allow the player to swing the club faster without giving up the strength of steel;

• the movement from rigid American football helmets to ones that offer flexible protection that are intended to absorb the force of hits to the head to aid in reducing concussions;

• ergonomically designed archery bows that draw silently and easily with hi-tech arrows made of carbon, aluminium and fibreglass that are tip-weighted to improve the accuracy of a shot;

• the move from tube-based tires to tubeless designs that allow for changing tires quickly in cycling, along with an option to move from mechanical to electronic gears to improve the efficiency and speed;

• aerodynamics, ergonomics and sled-runner development in bobsleigh to minimize friction and maximize speed;

• the move from steel pipes that were placed into a fixed socket to hold an ice hockey net in place, to a magnetized anchoring system, and then to a plastic break-away peg that allows the net to be dislodged should an athlete come in contact with it.

I am sure you can think of additional technologies that have been incorporated into sport. Not all of the technologies, however, were merged easily within sport. Controversies have ensued over the introduction of technologies. An example offered below involves swim suit technology that was allowed in competition, and then was subsequently prohibited from use. Another example offered involves the skeleton event. Both of these examples will now be outlined.

Controversy with respect to incorporating technology in sport

Starting in 1992, Speedo began to make swim suits that generated a controversy. Their swim suit involved what they called the S2000 fabric. This