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See the World through Eyes  
that Know Physics

Dear Student,

You don’t have to struggle that hard to learn physics, if  you will take the time to read 
this book and go to class. As you begin each Chapter, respond to Chapter-Opening 
Questions, read the text carefully, answer Exercise questions, and follow in detail all 
worked-out Examples—they will teach you how to solve Problems and give you a deeper 
understanding of  the physics.

Be sure not to miss class meetings. Take notes; you will get more out of  the class if  you 
have read the Chapter first. Reread the Chapter—the reinforcement helps, and you might 
catch a crucial point missed the first time.

If  you are in engineering or medicine, and related fields, you have a responsibility 
towards the public who may be on a bridge or in a building you worked on, or be your 
patient; physics will help you fulfill that responsibility.

I hope you have fun discovering how fascinating it is to see the world through eyes that 
know physics. Physics is like climbing a mountain: it takes effort, and the rewards are great.

Your Author

Front cover photos: A basketball exhibiting projectile motion (Chapter 3); 
mirror array using solar energy focused onto a boiler to produce steam 
(Chapter 20); iron filings indicating the magnetic field due to a solenoid 
(Chapter 28); the most distant galaxies we can observe shining in a tiny 
region of sky (Chapter 44). In the center: Florence, Italy, where fine old 
buildings, even the great dome completed in 1436, have withstood the 
forces on and within them for centuries (Chapter 12). All these illustrations 
of physics are discussed in this book.
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Other Useful Data

Joule equivalent (1 cal) 4.186 J
Absolute zero (0 K) -273.15°C
Acceleration due to gravity 
  at Earth’s surface (avg.) 9.80 m >s2 ( = g)
Speed of sound in air (20°C) 343 m >s
Density of air (dry) 1.29 kg >m3

Earth: Mass 5.98 * 1024 kg
Radius (mean) 6.38 * 103 km

Moon: Mass 7.35 * 1022 kg
Radius (mean) 1.74 * 103 km

Sun: Mass 1.99 * 1030 kg
Radius (mean) 6.96 * 105 km

Earth – Sun distance (mean) 149.60 * 106 km
Earth – Moon distance (mean) 384 * 103 km

The Greek Alphabet

Alpha Α a Nu Ν n

Beta Β b Xi Ξ j

Gamma Γ g Omicron Ο o
Delta ∆ d Pi Π p

Epsilon Ε ϵ, e Rho Ρ r

Zeta Ζ z Sigma π s

Eta Η h Tau Τ t

Theta ϴ u Upsilon Υ y

Iota Ι i Phi Φ f, w
Kappa Κ k Chi Χ x

Lambda Λ l Psi Ψ c

Mu Μ m Omega Ω v

Values of Some Numbers

 p = 3.1415927  12 = 1.4142136 ln 2  = 0.6931472 log10 e = 0.4342945
 e = 2.7182818  13 = 1.7320508 ln 10 = 2.3025851 1 rad  = 57.2957795°

Properties of Water

Density (4°C) 1.000 * 103  kg>m3 
Heat of fusion (0°C) 334 kJ>kg

  (79.8 kcal>kg)
Heat of vaporization  
  (100°C)

2260 kJ>kg 
  (539.9 kcal>kg)

Specific heat (15°C) 4186 J>kg ⋅ C° 
  (1.00 kcal>kg ⋅ C°)

Index of refraction 1.33

Mathematical Signs and Symbols

r is proportional to … is less than or equal to
   = is equal to Ú is greater than or equal to
L is approximately equal to π sum of
≠ is not equal to x average value of x
7 is greater than ∆x change in x
W is much greater than ∆x 9   9T  0 ∆x approaches zero
6 is less than n! n(n - 1) (n - 2) c (1)
V is much less than

Fundamental Constants

Quantity Symbol Approximate Value Current Best Value†

Speed of light in vacuum c 3.00 * 108 m>s 2.99792458 * 108 m>s
Gravitational constant G 6.67 * 10-11 N ⋅ m2>kg2 6.67430 (15) * 10-11 N ⋅ m2>kg2

Avogadro’s number NA 6.02 * 1023 mol-1 6.02214076 * 1023 mol-1

Gas constant R 8.314 J>mol ⋅ K = 1.99 cal>mol ⋅ K
  = 0.0821 L ⋅ atm>mol ⋅ K

8.314462618 J>mol ⋅ K 

Boltzmann’s constant k 1.38 * 10-23 J>K 1.380649 * 10-23 J>K
Charge on electron e 1.60 * 10-19 C 1.602176634 * 10-19 C
Stefan-Boltzmann constant s 5.67 * 10-8 W>m2 ⋅ K4 5.670374419 * 10-8 W>m2 ⋅ K4

Permittivity of free space ϵ0 8.85 * 10-12 C2>N ⋅ m2 8.8541878128(13) * 10-12 C2>N ⋅ m2

Permeability of free space m0 1.26 * 10-6 T ⋅ m>A 1.25663706212(19) * 10-6 T ⋅ m >A
Planck’s constant h 6.63 * 10-34 J ⋅ s 6.62607015 * 10-34 J ⋅ s
Electron rest mass me 9.11 * 10-31 kg = 0.000549 u

  = 0.511 MeV>c2
9.1093837015(28) * 10-31 kg
  = 5.48579909065(16) * 10-4 u

Proton rest mass m p 1.6726 * 10-27 kg = 1.00728 u
  = 938.27 MeV>c2

1.67262192369(51) * 10-27 kg
  = 1.007276466621(53) u

Neutron rest mass m n 1.6749 * 10-27 kg = 1.008665 u
  = 939.57 MeV>c2

1.67492749804(95) * 10-27 kg
  = 1.00866491595(49) u

Atomic mass unit (1 u) 1.6605 * 10-27 kg = 931.49 MeV>c2 1.66053906660(50) * 10-27 kg
  = 931.49410242(28) MeV>c2

† Numbers in parentheses indicate  one-standard-deviation experimental uncertainties in final digits (2019, new SI). 
Values without parentheses are exact (i.e., defined quantities).

CVR_GIAN0279_05_GE_CVR_Neografia_IFC_IBC.indd   2-3 05/04/23   10:03 AM



Unit Conversions (Equivalents)

Time

 1 day = 8.640 * 104 s

 1 year = 365.242 days = 3.156 * 107 s

Length

 1 in. = 2.54 cm (defined)
 1 cm = 0.3937 in.
 1 ft = 30.48 cm
 1 m = 39.37 in. = 3.281 ft
 1 mi = 5280 ft = 1.609 km
 1 km = 0.6214 mi
 1 nautical mile = 1.151 mi = 6076 ft = 1.852 km
 1 fermi = 1 femtometer (fm) = 10-15 m
 1 angstrom (Å) = 10-10 m = 0.1 nm
 1 light-year (ly) = 9.461 * 1015 m

 1 parsec = 3.26 ly = 3.09 * 1016 m

Volume

 1 liter (L) = 1000 mL = 1000 cm3 = 1.0 * 10-3 m3 =  
   1.057 qt (U.S.) = 61.02 in.3

 1 gal (U.S.) = 4 qt (U.S.) = 231 in.3 = 3.785 L =  
   0.8327 gal (British)
 1 quart (U.S.) = 2 pints (U.S.) = 946 mL
 1 pint (British) = 1.20 pints (U.S.) = 568 mL

 1 m3 = 35.31 ft3

Speed

 1 mi>h = 1.4667 ft>s = 1.6093 km>h = 0.4470 m>s
 1 km>h = 0.2778 m>s = 0.6214 mi>h
 1 ft>s = 0.3048 m>s = 0.6818 mi>h = 1.0973 km>h
 1 m>s = 3.281 ft>s = 3.600 km>h = 2.237 mi>h
 1 knot = 1 nautical mile>h = 1.151 mi>h = 1.852 km>h

= 0.5144 m>s

Angle

 1 radian (rad) = 57.30° = 57°18′
 1° = 0.01745 rad

1 rev>min (rpm) = 0.1047 rad>s

Mass

 1 atomic mass unit (u) = 1.6605 * 10-27 kg
 1 kg = 0.06852 slug
 1 ton (metric) = 1000 kg

 [1 kg has a weight of 2.20 lb where g = 9.80 m>s2.]

Force

 1 lb = 4.44822 N
 1 N = 105 dyne = 0.2248 lb

 1 ton (U.S.) = 2000 lbs

Energy and Work

 1 J = 107 ergs = 0.7376 ft ⋅ lb
 1 ft ⋅ lb = 1.356 J = 1.29 * 10-3 Btu = 3.24 * 10-4 kcal
 1 kcal = 4.19 * 103 J = 3.97 Btu
 1 eV = 1.6022 * 10-19 J
 1 kWh = 3.600 * 106 J = 860 kcal

 1 Btu = 1.056 * 103 J

Power

 1 W = 1 J>s = 0.7376 ft ⋅ lb>s = 3.41 Btu>h
 1 hp = 550 ft ⋅ lb>s = 746 W

Pressure

  1 atm = 1.01325 bar = 1.01325 * 105 N>m2

  = 14.7 lb>in.2 = 760 torr
 1 lb>in.2 = 6.895 * 103 N>m2

 1 Pa = 1 N>m2 = 1.450 * 10-4 lb>in.2

Some SI Units in Terms of Base Units

    In Terms of 
 Quantity Unit Abbreviation Base Units†

 Force newton N kg ⋅ m>s2

 Energy and work joule J kg ⋅ m2>s2

 Power watt W kg ⋅ m2>s3

 Pressure pascal Pa kg > (m ⋅ s2)
 Frequency hertz Hz s-1

 Electric charge coulomb C A ⋅ s

 Electric potential volt V kg ⋅ m2> (A ⋅ s3)
 Electric resistance ohm Ω kg ⋅ m2> (A2 ⋅ s3)
 Capacitance farad F A2 ⋅ s4> (kg ⋅ m2)
 Magnetic field tesla T kg > (A ⋅ s2)
 Magnetic flux weber Wb kg ⋅ m2> (A ⋅ s2)

 Inductance henry H kg ⋅ m2> (A2 ⋅ s2)
† kg = kilogram (mass), m = meter (length), s = second (time), A = ampere (electric current) .

Metric (SI) Multipliers

 Prefix Abbreviation Value

 quetta Q 1030

 ronna R 1027

 yotta Y 1024

 zeta Z 1021

 exa E 1018

 peta P 1015

 tera T 1012

 giga G 109

 mega M 106

 kilo k 103

 hecto h 102

 deka da 101

 deci d 10-1

 centi c 10-2

 milli m 10-3

 micro m 10-6

 nano n 10-9

 pico p 10-12

 femto f 10-15

 atto a 10-18

 zepto z 10-21

 yocto y 10-24

 ronto r 10-27

 quecto q 10-30

A01_GIAN0279_05_GE_FM.indd   1 24/05/23   5:35 PM



A01_BOYL0302_14_GE_FM.indd   6A01_BOYL0302_14_GE_FM.indd   6 08/03/23   6:54 AM08/03/23   6:54 AM

This page is intentionally left blank



DOUGLAS GIANCOLI

PHYSICS
for SCIENTISTS and ENGINEERS

with MODERN PHYSICS

 

5th EDITION

Global Edition

A01_GIAN0279_05_GE_FM.indd   1 24/05/23   5:35 PM



Product Management: Shabnam Dohutia, K. K.
Neelakantan, and Shahana Bhattacharya
Content Production: Jayaprakash K
Product Marketing: Ellie Nicholls
Composition: Pradeep Subramani, Integra
Rights and Permissions: Anjali Singh and Ashish Vyas
Content Checking: Margy Kuntz, Andrea Giancoli
Interior Composition: Preparé Italia, Battipaglia (SA), 
Italy

Copyeditor: Joanna Dinesmore
Proofreaders: Andrea Giancoli, Carol Reitz, and Clare
Romeo
Art House: Lachina Creative
Design Managers: Mark Ong, Derek Bacchus, Emily 
Friel, SPi Global
SPi Global Photo Researcher: Eric Schrader and Mary
Teresa Giancoli

Please contact https://support.pearson.com/getsupport/s/ with any queries on this content.

Pearson Education Limited 
KAO Two
KAO Park
Hockham Way
Harlow, Essex
CM17 9SR
United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Douglas C. Giancoli 2023

The rights of Douglas C. Giancoli to be identified as the author of this work have been asserted by him in accordance with
the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Physics for Scientists and Engineers with Modern Physics, 
5th Edition, ISBN 978-0-13-437809-1 by Douglas C. Giancoli published by Pearson Education © 2022.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of
the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency
Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS. For information regarding permissions, request forms and the
appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit
www.pearsoned.com/permissions/.

Photo credits appear on page A–81, which constitutes a continuation of this copyright page.

PEARSON, ALWAYS LEARNING, and Mastering™ Physics are exclusive trademarks in the U.S. and/or other countries
owned by Pearson Education, Inc. or its affiliates.

Unless otherwise indicated herein, any third-party trademarks that may appear in this work are the property of their
respective owners and any references to third-party trademarks, logos or other trade dress are for demonstrative or
descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or
promotion of Pearson’s products by the owners of such marks, or any relationship between the owner and Pearson
Education, Inc. or its affiliates, authors, licensees, or distributors.

This eBook may be available as a standalone product or integrated with other Pearson digital products like MyLab and
Mastering. This eBook may or may not include all assets that were part of the print version. The publisher reserves the right
to remove any material in this eBook at any time.

ISBN 10 (Print): 1-292-44027-9
ISBN 13 (Print): 978-1-292-44027-9
ISBN 13 (uPDF eBook): 978-1-292-44035-4

British Library Cataloguing-in-Publication Data 
A catalogue record for this book is available from the British Library

eBook formatted by B2R Technologies Pvt. Ltd.

https://support.pearson.com/getsupport/s/
http://www.pearsonglobaleditions.com
http://www.pearsoned.com/permissions/


  3

Contents

Applications List 12
Preface 16
To Students  20
Use of Color  21

1 
Introduction, Measurement, 
Estimating 23

1  –  1 How Science Works 24
1  –  2 Models, Theories, and Laws 25
1  –  3 Measurement and Uncertainty; 

Significant Figures 25
1  –  4 Units, Standards, and the SI System 28
1  –  5 Converting Units 31
1  –  6 Order of Magnitude: Rapid Estimating 33
1  –  7 Dimensions and Dimensional Analysis 36

Questions, MisConceptions, Problems  37  –  41

2 
DescriBing Motion: Kinematics 
in One Dimension 42

2  –  1 Reference Frames and Displacement 43
2  –  2 Average Velocity 44
2  –  3 Instantaneous Velocity 46
2  –  4 Acceleration 49
2  –  5 Motion at Constant Acceleration 52
2  –  6 Solving Problems 55
2  –  7 Freely Falling Objects 59
2  –  8 Variable Acceleration; Integral Calculus 65

Questions, MisConceptions, Problems  67  –  75        

*

*

3 
Kinematics in Two or 
Three Dimensions; Vectors 76

3  –  1 Vectors and Scalars 77
3  –  2 Addition of Vectors—Graphical Methods 77
3  –  3 Subtraction of Vectors, and 

Multiplication of a Vector by a Scalar 79
3  –  4 Adding Vectors by Components 80
3  –  5 Unit Vectors 84
3  –  6 Vector Kinematics 84
3  –  7 Projectile Motion 87
3  –  8 Solving Problems Involving Projectile 

Motion 89
3  –  9 Relative Velocity 95

Questions, MisConceptions, Problems  98  –  106

4 Dynamics: Newton’s Laws 
of Motion 107

4  –  1 Force 108
4  –  2 Newton’s First Law of Motion 108
4  –  3 Mass 110
4  –  4 Newton’s Second Law of Motion 110
4  –  5 Newton’s Third Law of Motion 113
4  –  6 Weight—the Force of Gravity; 

and the Normal Force 116
4  –  7 Solving Problems with Newton’s Laws: 

Free-Body Diagrams 119
4  –  8 Problem Solving—A General Approach 126

Questions, MisConceptions, Problems  127  –  137

5 Using Newton’s Laws: Friction, 
Circular Motion, Drag Forces 138

5  –  1 Using Newton’s Laws with Friction 139
5  –  2 Uniform Circular Motion—Kinematics 145
5  –  3 Dynamics of Uniform Circular Motion 148
5  –  4 Highway Curves: Banked and Unbanked 152
5  –  5 Nonuniform Circular Motion 155
5  –  6 Velocity-Dependent Forces: 

Drag and Terminal Velocity 156
Questions, MisConceptions, Problems  158  –  166

*

  Estimate how much this lake weighs.

A01_GIAN0279_05_GE_FM.indd   3 24/05/23   5:35 PM



4  CONTENTS

 Gravitation and 
Newton’s Synthesis 167

6  –  1 Newton’s Law of Universal  Gravitation 168
6  –  2 Vector Form of Newton’s Law of 

Universal Gravitation 171
6  –  3 Gravity Near the Earth’s Surface 171
6  –  4 Satellites and “Weightlessness” 174
6  –  5 Planets, Kepler’s Laws, and 

 Newton’s Synthesis 177
6  –  6 Moon Rises an Hour Later Each Day 183
6  –  7 Types of Forces in Nature 183
6  –  8 Gravitational Field 184
6  –  9 Principle of Equivalence; 

Curvature of Space; Black Holes 185
Questions, MisConceptions, Problems  187  –  193

7 WorK and Energy 194
7  –  1 Work Done by a Constant Force 195
7  –  2 Scalar Product of Two Vectors 198
7  –  3 Work Done by a Varying Force 199
7  –  4 Kinetic Energy and the 

Work-Energy Principle 203
Questions, MisConceptions, Problems  208  –  215

8 Conservation of Energy 216
8  –  1 Conservative and  Nonconservative Forces 217
8  –  2 Potential Energy 219
8  –  3 Mechanical Energy and Its Conservation 222
8  –  4 Problem Solving Using 

Conservation of Mechanical Energy 223
8  –  5 The Law of Conservation of Energy 229
8  –  6 Energy Conservation with 

Dissipative Forces: Solving Problems 230
8  –  7 Gravitational Potential Energy and 

Escape Velocity 232
8  –  8 Power 235
8  –  9 Potential Energy Diagrams; 

Stable and Unstable  Equilibrium 237
8  –  10 Gravitational Assist (Gravitational Slingshot) 238

Questions, MisConceptions, Problems  240  –  248

*
*

*

 Linear Momentum 249
9  –  1 Momentum and Its Relation to Force 250
9  –  2 Conservation of Momentum 252
9  –  3 Collisions and Impulse 256
9  –  4 Conservation of Energy and 

Momentum in Collisions 257
9  –  5 Elastic Collisions in One Dimension 258
9  –  6 Inelastic Collisions 261
9  –  7 Collisions in 2 or 3 Dimensions 263
9  –  8 Center of Mass (CM) 266
9  –  9 Center of Mass and Translational Motion 270
9  –  10 Systems of Variable Mass; Rocket Propulsion 273

Questions, MisConceptions, Problems  276  –  285

10 Rotational Motion 286
10  –  1 Angular Quantities 287
10  –  2 Vector Nature of Angular  Quantities 292
10  –  3 Constant Angular Acceleration 292
10  –  4 Torque 293
10  –  5 Rotational Dynamics; Torque and 

Rotational Inertia 296
10  –  6 Solving Problems in Rotational Dynamics 298
10  –  7 Determining Moments of Inertia 301
10  –  8 Rotational Kinetic Energy 303
10  –  9 Rotational Plus Translational Motion; Rolling 305
10  –  10 Why Does a Rolling Sphere Slow Down?  311

Questions, MisConceptions, Problems  313  –  323

*

*

11 Angular Momentum; 
General Rotation 324

11  –  1 Angular Momentum : Objects 
Rotating About a Fixed Axis 325

11  –  2 Vector Cross Product; Torque as a Vector 329
11  –  3 Angular Momentum of a Particle 331
11  –  4 Angular Momentum and Torque for 

a System of Particles; General Motion 332
11  –  5 Angular Momentum and 

Torque for a Rigid Object 334
11  –  6 Conservation of Angular Momentum 337
11  –  7 The Spinning Top and Gyroscope 339
11  –  8 Rotating Frames of Reference; Inertial Forces 340
11  –  9 The Coriolis Effect 341

Questions, MisConceptions, Problems  344  –  352

*

*

A01_GIAN0279_05_GE_FM.indd   4 24/05/23   5:35 PM



CONTENTS  5

12  Static EquiliBrium;  
Elasticity and Fracture 353

12  –  1 The Conditions for Equilibrium 354
12  –  2 Solving Statics Problems 356
12  –  3 Applications to Muscles and Joints 361
12  –  4 Stability and Balance 363
12  –  5 Elasticity; Stress and Strain 364
12  –  6 Fracture 367
12  –  7 Trusses and Bridges 369
12  –  8 Arches and Domes 372

Questions, MisConceptions, Problems  375  –  386

*

*
*

14 Oscillations 421
14  –  1 Oscillations of a Spring 422
14  –  2 Simple Harmonic Motion 424
14  –  3 Energy in the Simple 

Harmonic Oscillator 430
14  –  4 Simple Harmonic Motion Related 

to Uniform Circular Motion 432
14  –  5 The Simple Pendulum 433
14  –  6 The Physical Pendulum and 

the Torsion Pendulum 434
14  –  7 Damped Harmonic Motion 436
14  –  8 Forced Oscillations; Resonance 439

Questions, MisConceptions, Problems  442  –  449

15 Wave Motion 450
15  –  1 Characteristics of Wave Motion 451
15  –  2 Types of Waves: 

Transverse and Longitudinal 453
15  –  3 Energy Transported by Waves 457
15  –  4 Mathematical Representation of a 

Traveling Wave 459
15  –  5 The Wave Equation 462
15  –  6 The Principle of Superposition 463
15  –  7 Reflection and Transmission 465
15  –  8 Interference 466
15  –  9 Standing Waves; Resonance 468
15  –  10 Refraction 471
15  –  11 Diffraction 472

Questions, MisConceptions, Problems  474  –  481

1  Sound 482
16  –  1 Characteristics of Sound 483
16  –  2 Mathematical Representation 

of Longitudinal Waves 484
16  –  3 Intensity of Sound: Decibels 486
16  –  4 Sources of Sound: Vibrating 

Strings and Air Columns 489
16  –  5 Quality of Sound, and Noise; 

Superposition 494
16  –  6 Interference of Sound Waves; Beats 495
16  –  7 Doppler Effect 498
16  –  8 Shock Waves and the Sonic Boom 502
16  –  9 Applications: Sonar,  Ultrasound, 

and Medical Imaging 503
Questions, MisConceptions, Problems  506  –  513

*

*

*

*
*

B2F5

m2 g5

B1F5

m1 g5

13 Fluids 387
13  –  1 Phases of Matter 388
13  –  2 Density and Specif ic Gravity 388
13  –  3 Pressure in Fluids 389
13  –  4 Atmospheric Pressure and 

Gauge Pressure 393
13  –  5 Pascal’s Principle 393
13  –  6 Measurement of Pressure; 

Gauges and the Barometer 394
13  –  7 Buoyancy; Archimedes’ Principle 396
13  –  8 Fluids in Motion; Flow Rate and 

the Equation of Continuity 400
13  –  9 Bernoulli’s Equation 402
13  –  10 Applications of  Bernoulli’s Principle: 

Torricelli,  Airplanes, Baseballs, 
Blood Flow 404

13  –  11 Viscosity 407
13  –  12 Flow in Tubes: Poiseuille’s Equation, 

Blood Flow 407
13  –  13 Surface Tension and Capillarity 408
13  –  14 Pumps, and the Heart 410

Questions, MisConceptions, Problems  412  –  420

*

*

A01_GIAN0279_05_GE_FM.indd   5 24/05/23   5:35 PM



6  CONTENTS

17
 Temperature, 
Thermal Expansion, 
and the Ideal Gas Law 514

17  –  1 Atomic Theory of Matter 515
17  –  2 Temperature and Thermometers 517
17  –  3 Thermal Equilibrium and the 

Zeroth Law of Thermodynamics 519
17  –  4 Thermal Expansion 519
17  –  5 Thermal Stresses 523
17  –  6 The Gas Laws and 

Absolute Temperature 524
17  –  7 The Ideal Gas Law 525
17  –  8 Problem Solving with the 

Ideal Gas Law 526
17  –  9 Ideal Gas Law in Terms of  Molecules: 

Avogadro’s Number 528
17  –  10 Ideal Gas Temperature Scale—

a Standard 529
Questions, MisConceptions, Problems  531  –  537

18 Kinetic Theory of Gases 538
18  –  1 The Ideal Gas Law and the Molecular 

Interpretation of Temperature 538
18  –  2 Distribution of Molecular Speeds 542
18  –  3 Real Gases and Changes of Phase 544
18  –  4 Vapor Pressure and Humidity 546
18  –  5 Temperature Decrease of Boiling Water 

with Altitude 548
18  –  6 Van der Waals Equation of State 549
18  –  7 Mean Free Path 550
18  –  8 Diffusion 552

Questions, MisConceptions, Problems  554  –  559

*

*

1  Heat and the First Law 
of Thermodynamics 560

19  –  1 Heat as Energy Transfer 561
19  –  2 Internal Energy 562
19  –  3 Specific Heat 563
19  –  4 Calorimetry—Solving  Problems 564
19  –  5 Latent Heat 567
19  –  6 The First Law of  Thermodynamics 571
19  –  7 Thermodynamic Processes and 

the First Law 573
19  –  8 Molar Specific Heats for Gases, 

and the Equipartition of Energy 578
19  –  9 Adiabatic Expansion of a Gas 581
19  –  10 Heat Transfer: Conduction, 

Convection, Radiation 582
Questions, MisConceptions, Problems  590  –  597

20 Second Law of 
Thermodynamics 598

20  –  1 The Second Law of 
Thermodynamics—Introduction 599

20  –  2 Heat Engines 600
20  –  3 The Carnot Engine; Reversible 

and Irreversible Processes 602
20  –  4 Refrigerators, Air Conditioners, and 

Heat Pumps 606
20  –  5 Entropy 609
20  –  6 Entropy and the Second Law of 

Thermodynamics 612
20  –  7 Order to Disorder 615
20  –  8 Unavailability of Energy; Heat Death 616
20  –  9 Statistical Interpretation of Entropy 

and the Second Law 617
20  –  10 Thermodynamic Temperature; 

Third Law of Thermodynamics  619
20  –  11 Thermal Pollution, Global Warming, 

and Energy Resources 620
Questions, MisConceptions, Problems  623  –  630

*

A01_GIAN0279_05_GE_FM.indd   6 24/05/23   5:35 PM



CONTENTS  7

24 Capacitance, Dielectrics,  
Electric Energy Storage 714 

24  –  1 Capacitors 714
24  –  2 Determination of Capacitance 716
24  –  3 Capacitors in Series and Parallel 720
24  –  4 Storage of Electric Energy 722
24  –  5 Dielectrics 725
24  –  6 Molecular Description of Dielectrics 728

Questions, MisConceptions, Problems  730  –  738
*

21 Electric Charge and  
Electric Field 631 

21  –  1 Static Electricity; Electric Charge and  
Its Conservation 632

21  –  2 Electric Charge in the Atom 633
21  –  3 Insulators and Conductors 633
21  –  4 Induced Charge; the Electroscope 634
21  –  5 Coulomb’s Law 635
21  –  6 The Electric Field 640
21  –  7 Electric Field Calculations for  

Continuous Charge Distributions 644
21  –  8 Field Lines 648
21  –  9 Electric Fields and Conductors 649
21  –  10 Motion of a Charged Particle in  

an Electric Field 650
21  –  11 Electric Dipoles 651
21  –  12 Electric Forces in Molecular Biology:  

DNA Structure and Replication 653
Questions, MisConceptions, Problems  656  –  664

22 Gauss’s Law 665 
22  –  1 Electric Flux 666
22  –  2 Gauss’s Law 667
22  –  3 Applications of Gauss’s Law 669
22  –  4 Experimental Basis of Gauss’s and  

Coulomb’s Laws 674
Questions, MisConceptions, Problems  675  –  681

23 Electric Potential 682 
23  –  1 Electric Potential Energy and  

Potential Difference 683
23  –  2 Relation between Electric Potential  

and Electric Field 686
23  –  3 Electric Potential Due to Point Charges 688
23  –  4 Potential Due to Any Charge Distribution 691
23  –  5 Equipotential Lines and Surfaces 692
23  –  6 Potential Due to Electric Dipole;  

Dipole Moment 693
23  –  7 E5 Determined from V 694
23  –  8 Electrostatic Potential Energy; the  

Electron Volt 696
23  –  9 Digital; Binary Numbers; Signal Voltage 698
23  –  10 TV and Computer Monitors 701
23  –  11 Electrocardiogram (ECG or EKG) 704

Questions, MisConceptions, Problems  706  –  713

*

*

*
*

25 Electric Current  
and Resistance 739 

25  –  1 The Electric Battery 740
25  –  2 Electric Current 742
25  –  3 Ohm’s Law: Resistance and Resistors 744
25  –  4 Resistivity 746
25  –  5 Electric Power 748
25  –  6 Power in Household Circuits 751
25  –  7 Alternating Current 752
25  –  8 Microscopic View of Electric Current 754
25  –  9 Superconductivity 757
25  –  10 Electrical Conduction in the Human  

Nervous System 758
Questions, MisConceptions, Problems  761  –  768

2  DC Circuits 769 
26  –  1 EMF and Terminal Voltage 770
26  –  2 Resistors in Series and in Parallel 771
26  –  3 Kirchhoff’s Rules 776
26  –  4 EMFs in Series and in Parallel;  

Charging a Battery 779
26  –  5 RC Circuits—Resistor and Capacitor  

in Series 781
26  –  6 Electric Hazards and Safety 786
26  –  7 Ammeters and Voltmeters—Measurement  

Affects Quantity Measured 789
Questions, MisConceptions, Problems  793  –  803

*
*

A01_GIAN0279_05_GE_FM.indd   7 24/05/23   5:35 PM



8  CONTENTS

2  Electromagnetic Induction and 
Faraday’s Law 860 

29  –  1 Induced EMF 861
29  –  2 Faraday’s Law of Induction; Lenz’s Law 862
29  –  3 EMF Induced in a Moving Conductor 867
29  –  4 Electric Generators 868
29  –  5 Back EMF and Counter Torque;  

Eddy Currents 870
29  –  6 Transformers and Transmission of Power 873
29  –  7 A Changing Magnetic Flux Produces an  

Electric Field 876
29  –  8 Information Storage: Magnetic and  

Semiconductor 878
29  –  9 Applications of Induction:  

Microphone, Seismograph, GFCI 880
Questions, MisConceptions, Problems  882  –  890

30 Inductance, Electromagnetic  
Oscillations, and AC Circuits 891 

30  –  1 Mutual Inductance 892
30  –  2 Self-Inductance; Inductors 894
30  –  3 Energy Stored in a Magnetic Field 896
30  –  4 LR Circuits 897
30  –  5 LC Circuits and Electromagnetic  

Oscillations 899
30  –  6 LC Oscillations with Resistance  

(LRC Circuit) 902
30  –  7 AC Circuits and Reactance 903
30  –  8 LRC Series AC Circuit; Phasor Diagrams 907
30  –  9 Resonance in AC Circuits 909
30  –  10 Impedance Matching 910
30  –  11 Three-Phase AC 911

Questions, MisConceptions, Problems  912  –  919

31 Maxwell’s Equations and  
Electromagnetic Waves 920

31  –  1 Changing Electric Fields Produce  
Magnetic Fields; Displacement  
Current 921

31  –  2 Gauss’s Law for Magnetism 924
31  –  3 Maxwell’s Equations 925
31  –  4 Production of Electromagnetic Waves 925
31  –  5 Electromagnetic Waves, and Their Speed,  

Derived from Maxwell’s Equations 927
31  –  6 Light as an Electromagnetic Wave  

and the Electromagnetic Spectrum 931
31  –  7 Measuring the Speed of Light 934
31  –  8 Energy in EM Waves; the Poynting Vector 935
31  –  9 Radiation Pressure 937
31  –  10 Radio and Television;  

Wireless Communication 939
Questions, MisConceptions, Problems  943  –  947

*

*

*

27 Magnetism  804 
27  –  1 Magnets and Magnetic Fields 804
27  –  2 Electric Currents Produce  Magnetic  

Fields 807
27  –  3 Force on an Electric Current in a  

Magnetic Field; Definition of B5  808
27  –  4 Force on an Electric Charge  

Moving in a Magnetic Field 810
27  –  5 Torque on a Current Loop;  

Magnetic Dipole Moment 815
27  –  6 Applications: Motors, Loudspeakers,  

Galvanometers 817
27  –  7 Discovery and Properties of the  

Electron 819
27  –  8 The Hall Effect 821
27  –  9 Mass Spectrometer 822

Questions, MisConceptions, Problems  824  –  832

28 Sources of Magnetic Field 833 
28  –  1 Magnetic Field Due to a Straight Wire 834
28  –  2 Force between Two Parallel Wires 835
28  –  3 Definitions of the Ampere and the  

Coulomb 836
28  –  4 Ampère’s Law 837
28  –  5 Magnetic Field of a Solenoid and  

a Toroid 841
28  –  6 Biot-Savart Law 843
28  –  7 Magnetic Field Due to a Single  

Moving Charge 846
28  –  8 Magnetic Materials—Ferromagnetism 846
28  –  9 Electromagnets and  

Solenoids—Applications 848
28  –  10 Magnetic Fields in Magnetic  

Materials; Hysteresis 849
28  –  11 Paramagnetism and Diamagnetism 850

Questions, MisConceptions, Problems  852  –  859
*

A01_GIAN0279_05_GE_FM.indd   8 24/05/23   5:35 PM



CONTENTS  9

34
 The Wave Nature of Light:  
Interference and 
Polarization 1017 

34  –  1 Waves vs. Particles; Huygens’  
Principle and Diffraction 1018

34  –  2 Huygens’ Principle and the Law of  
Refraction; Mirages 1019

34  –  3 Interference—Young’s Double-Slit  
Experiment 1020

34  –  4 Intensity in the Double-Slit  
Interference Pattern 1024

34  –  5 Interference in Thin Films 1026
34  –  6 Michelson Interferometer 1032
34  –  7 Polarization 1032
34  –  8 Liquid Crystal Displays (LCD) 1036
34  –  9 Scattering of Light by the Atmosphere 1037
34  –  10 Brightness: Lumens and Luminous Intensity 1038
34  –  11 Efficiency of Lightbulbs 1038

Questions, MisConceptions, Problems  1040  –  1046

*

*
*

*

32 Light: Reflection  
and Refraction 948 

32  –  1 The Ray Model of Light 949
32  –  2 Reflection; Image Formation by a  

Plane Mirror 949
32  –  3 Formation of Images by  

Spherical Mirrors 953
32  –  4 Seeing Yourself in a  

Magnifying Mirror (Concave) 958
32  –  5 Convex (Rearview) Mirrors 960
32  –  6 Index of Refraction 961
32  –  7 Refraction: Snell’s Law 961
32  –  8 The Visible Spectrum and Dispersion 963
32  –  9 Total Internal Reflection; Fiber Optics 965
32  –  10 Refraction at a Spherical Surface 968

Questions, MisConceptions, Problems  971  –  979

33 Lenses and Optical  
Instruments 980

33  –  1 Thin Lenses; Ray Tracing and  
Focal Length 981

33  –  2 The Thin Lens Equation 984
33  –  3 Combinations of Lenses 988
33  –  4 Lensmaker’s Equation 990
33  –  5 Cameras: Film and Digital 992
33  –  6 The Human Eye; Corrective Lenses 997
33  –  7 Magnifying Glass 1001
33  –  8 Telescopes 1002
33  –  9 Compound Microscope 1005
33  –  10 Aberrations of Lenses and Mirrors 1006

Questions, MisConceptions, Problems  1008  –  1016

*

35 Diffraction  1047
35  –  1 Diffraction by a Single Slit or Disk 1048
35  –  2 Intensity in Single-Slit Diffraction  

Pattern 1050
35  –  3 Diffraction in the Double-Slit Experiment 1053
35  –  4 Interference vs. Diffraction 1055
35  –  5 Limits of Resolution; Circular Apertures 1055
35  –  6 Resolution of Telescopes and  

Microscopes; the l Limit 1057
35  –  7 Resolution of the Human Eye and  

Useful Magnification 1059
35  –  8 Diffraction Grating 1059
35  –  9 The Spectrometer and Spectroscopy 1062
35  –  10 Peak Widths and Resolving Power for a  

Diffraction Grating 1063
35  –  11 X-Rays and X-Ray Diffraction 1065
35  –  12 X-Ray Imaging and Computed  

Tomography (CT Scan) 1067
35  –  13 Specialty Microscopes and Contrast 1070

Questions, MisConceptions, Problems  1071  –  1076

*

*

*

*

*

A01_GIAN0279_05_GE_FM.indd   9 24/05/23   5:35 PM



10  CONTENTS

39 Quantum Mechanics of
Atoms 1180

39  –  1 Quantum-Mechanical View of Atoms 1181
39  –  2 Hydrogen Atom: Schrödinger 

Equation and Quantum Numbers 1181
39  –  3 Hydrogen Atom Wave Functions 1185
39  –  4 Multielectron Atoms; the 

Exclusion Principle 1188
39  –  5 Periodic Table of Elements 1189
39  –  6 X-Ray Spectra and Atomic Number 1191
39  –  7 Magnetic Dipole Moment; Electron Spin 1193
39  –  8 Total Angular Momentum J5 1195
39  –  9 Fluorescence and Phosphorescence 1196
39  –  10 Lasers 1197
39  –  11 Holography 1200

Questions, MisConceptions, Problems  1202  –  1207
*

3  The Special Theory of
Relativity 1077

36  –  1 Galilean  –  Newtonian Relativity 1078
36  –  2 The Michelson  –  Morley Experiment 1080
36  –  3 Postulates of the Special Theory of Relativity 1083
36  –  4 Simultaneity 1084
36  –  5 Time Dilation and the Twin Paradox 1086
36  –  6 Length Contraction 1092
36  –  7 Four-Dimensional Space  –  Time 1094
36  –  8 Galilean and Lorentz Transformations 1094
36  –  9 Relativistic Momentum 1099
36  –  10 The Ultimate Speed 1101
36  –  11 E =  mc2; Mass and Energy 1102
36  –  12 Doppler Shift for Light 1107
36  –  13 The Impact of Special Relativity 1108

Questions, MisConceptions, Problems  1110  –  1116

37 Early Quantum Theory and 
Models of the Atom 1117

37  –  1 Blackbody Radiation;
Planck’s Quantum Hypothesis 1118

37  –  2 Photon Theory of Light and the 
Photoelectric Effect 1120

37  –  3 Energy, Mass, and Momentum of a 
Photon 1123

37  –  4 Compton Effect 1124
37  –  5 Photon Interactions; Pair Production 1126
37  –  6 Wave  –  Particle Duality; the Principle of 

Complementarity 1127
37  –  7 Wave Nature of Matter 1128
37  –  8 Electron Microscopes 1130
37  –  9 Early Models of the Atom 1132
37  –  10 Atomic Spectra: Key to the Structure 

of the Atom 1133
37  –  11 The Bohr Model 1135
37  –  12 de Broglie’s Hypothesis Applied to Atoms 1142

Questions, MisConceptions, Problems  1143  –  1149

38 Quantum Mechanics 1150
38  –  1 Quantum Mechanics—A New Theory 1151
38  –  2 The Wave Function and Its Interpretation; 

the Double-Slit Experiment 1151
38  –  3 The Uncertainty Principle 1153
38  –  4 Philosophic Implications; 

Probability versus Determinism 1157
38  –  5 The Schrödinger Equation in One 

Dimension—Time-Independent Form 1158
38  –  6 Time-Dependent Schrödinger Equation 1161
38  –  7 Free Particles; Plane Waves and Wave Packets 1162
38  –  8 Particle in an Infinitely Deep Square 

Well Potential (a Rigid Box) 1164
38  –  9 Finite Potential Well 1169
38  –  10 Tunneling through a Barrier 1171

Questions, MisConceptions, Problems  1174  –  1179

*

t-RNA

Anticodons

GCAAUG

New protein chain of
4 amino acids 
(a 5th is being added)

Ribosome

1

2

3

4 5

m-RNA

Codon
4

Codon
5

CGUUAC

C

G

U

U

A
C
A

C

A

C
C
T
G
C
A
A
T

G
T

G

A
Growing end
of m-RNA

DNA

Codon 5

Codon 4

40 Molecules and Solids 1208
40  –  1 Bonding in Molecules 1209
40  –  2 Potential-Energy Diagrams for Molecules 1211
40  –  3 Weak (van der Waals) Bonds 1214
40  –  4 Protein Synthesis 1216
40  –  5 Molecular Spectra 1218
40  –  6 Condensed-Matter Physics; Bonding 

in Solids 1224
40    –    7 Free-Electron Theory of Metals; 

Fermi Energy 1225
40  –  8 Band Theory of Solids 1230
40  –  9 Semiconductors and Doping 1232
40  –  10 Semiconductor Diodes, Photovoltaics, 

LEDs, OLEDs 1234
40  –  11 Transistors: Bipolar and MOSFETs 1240
40  –  12 Integrated Circuits, Chips, 3-nm Technology 1241

Questions, MisConceptions, Problems  1242  –  1247

*

A01_GIAN0279_05_GE_FM.indd   10 24/05/23   5:35 PM



CONTENTS  11

43 Elementary Particles 1311
43  –  1 High-Energy Particles and Accelerators 1312
43  –  2 Beginnings of Elementary Particle  

Physics—Particle Exchange 1318
43  –  3 Particles and Antiparticles 1321
43  –  4 Particle Interactions and  

Conservation Laws 1322
43  –  5 Neutrinos 1324
43  –  6 Particle Classification 1326
43  –  7 Particle Stability and Resonances 1328
43  –  8 Strangeness? Charm?  

Towards a New Model 1329
43  –  9 Quarks 1330
43  –  10 The Standard Model: QCD and  

Electroweak Theory 1333
43  –  11 Grand Unified Theories 1336
43  –  12 Strings and Supersymmetry 1339

Questions, MisConceptions, Problems  1340  –  1343

44 Astrophysics and  
Cosmology 1344

44  –  1 Stars and Galaxies 1345
44  –  2 Stellar Evolution: Birth and Death  

of Stars, Nucleosynthesis 1348
44  –  3 Distance Measurements 1354
44  –  4 General Relativity: Gravity and the  

Curvature of Space 1356
44  –  5 The Expanding Universe: Redshift  

and Hubble’s Law 1360
44  –  6 The Big Bang and the Cosmic  

Microwave Background 1364
44  –  7 The Standard Cosmological Model:  

Early History of the Universe 1367
44  –  8 Inflation: Explaining Flatness,  

Uniformity, and Structure 1370
44  –  9 Dark Matter and Dark Energy 1372
44  –  10 Large-Scale Structure of the Universe 1375
44  –  11 Gravitational Waves : LIGO and Virgo 1376
44  –  12 Finally . . . 1376

Questions, MisConceptions, Problems  1378  –  1382

Appendices
 A Mathematical Formulas A–1
 B Derivatives and Integrals A–6
 C Numerical Integration A–8
 D More on Dimensional Analysis A–12
 E Gravitational Force Due to a  

Spherical Mass Distribution A–13
 F Differential Form of Maxwell’s  

Equations A–16
 G Selected Isotopes A–18

Answers to Odd-Numbered Problems A–23
Index A–51
Photo Credits A–81

41 Nuclear Physics and  
Radioactivity 1248

41  –  1 Structure and Properties of the Nucleus 1249
41  –  2 Binding Energy and Nuclear Forces 1252
41  –  3 Radioactivity 1255
41  –  4 Alpha Decay 1256
41  –  5 Beta Decay 1259
41  –  6 Gamma Decay 1261
41  –  7 Conservation of Nucleon Number and  

Other Conservation Laws 1262
41  –  8 Half-Life and Rate of Decay 1262
41  –  9 Decay Series 1267
41  –  10 Radioactive Dating 1268
41  –  11 Detection of Particles 1270

Questions, MisConceptions, Problems  1272  –  1277

42 Nuclear Energy; Effects  
and Uses of Radiation 1278

42  –  1 Nuclear Reactions and the  
Transmutation of Elements 1279

42  –  2 Cross Section 1282
42  –  3 Nuclear Fission; Nuclear Reactors 1283
42  –  4 Nuclear Fusion 1288
42  –  5 Passage of Radiation through Matter;  

Biological Damage 1293
42  –  6 Measurement of Radiation—Dosimetry 1294
42  –  7 Radiation Therapy 1298
42  –  8 Tracers in Research and Medicine 1299
42  –  9 Emission Tomography: PET and SPECT 1300
42  –  10 Nuclear Magnetic Resonance (NMR) 1301
42  –  11 Magnetic Resonance Imaging (MRI) 1303

Questions, MisConceptions, Problems  1305  –  1310

*
*
*

*

A01_GIAN0279_05_GE_FM.indd   11 24/05/23   5:35 PM



12  APPLICATIONS

Chapter 1
Viruses attack cell 29
Heartbeats in a lifetime 34
Number of nucleons in human body 39
Lung capacity 41
Building collapse 24, 354, 368–9
The 8000-m peaks 31
Making estimates: volume of a lake 33
Page thickness 34
Building height by triangulation 34
Earth radius estimate 35, 40
Fermi estimates 35
Particulate pollution 40
Global positioning satellite 40
Computer chips 40

Chapter 2
Airport runway design 54
Car air bag inflation time 54, 276
Car braking distance 57, 205
CD bit size, bit rate, playing time 70, 75
Baseball 71, 104, 105, 106, 194
Basketball 72, 105, 131
Golf putt, uphill or down 74
Rapid transit system 75

Chapter 3 
Helicopter supply drop 76, 94, 105
Sports  76, 87, 91, 93, 98, 99, 101, 102, 103,  

 104, 405, 106
Kicked football 91, 93
Truck escape lane 101, 132
Golf on the Moon 104
Extreme sports 105

Chapter 4 
How we can walk 114
Whiplash 128
Force heart exerts 129
Rocket 107, 114, 130, 255, 274, 417
Skater pushoff 113
What force accelerates a car 114
You weigh less in a falling elevator 118
Hockey 120
Elevator, discomfort 123, 130
Mechanical advantage, pulley 124, 210
Accelerometer 124
Sports 128, 129, 130, 131, 132, 134
Bear sling 128, 377
Tug of war 128, 277
Car accident “g’s” 129
Optical tweezers 130, 938, 945
Tightrope walker 131
Basketball shot 131
Mountain climbers 132, 136, 137, 215, 392
City planning, cars on hill 134
Bicycling 134, 136

Supermarket ramp design 135
Doomsday asteroid 136, 284
Car stuck in mud 137
Chapter 5 
Centrifugation 148
Skiing 138, 143, 158
Push or pull a sled? 142
Skier speed in air vs. on snow 143
Simulating gravity 148, 158, 163, 190, 193
Uranium enrichment, reactor, bomb 148
Ferris wheel 151
Avoid skidding on a curve 152–4
Banked highway curves 154
Cross-country skiing friction 158
Rotating space station 158, 163, 190
Rotor ride 159, 165
Airplane bank /turn 159, 166
Roller coaster upside down 163
Car flying up off road 163
Rock climbing friction 165
Chapter 6
Weightlessness 176–7
Astronauts in orbit 167, 177, 187
Gravity on tall peaks 172
Oil and mineral exploration 172, 187, 189
Satellites, spacecraft 167, 174–7, 190, 191
Geostationary satellites 175
Free fall, for athletes 177
Planets 177–80, 189
Determining the Sun’s mass 180
Planets around other stars 180, 272, 284
Ocean tides 181, 187, 192
Lagrange point 182
Moon’s orbit, periods, phases, 

diagram 183, 191
Eclipses 183
Curved space 185–6
Black holes 186, 189
White dwarfs 189
Comets, asteroids, moons 190, 191, 193
GPS 191
Milky Way Galaxy 193
Chapter 7
Baseball pitch 194
Car stopping distance r v 2 205
Lever 209, 356
Pulley 210
Jet catapults 211
Bicycle, sprockets (teeth) 214, 221
Climbing rope stretch 215
Chapter 8
Stair-climbing power 235
ATP 238
Hike over logs 240

Pole vault 216, 225–6, (211)
Downhill ski runs 216
Roller coaster 220, 224, 221
Escape velocity from Earth  

or Moon 234
Power needs of car 236
Efficiency of engine 237
Gravitational assist 238–9, 246, 285
High jump 242
Bungee jump 243
Lunar module landing 244
Escape velocity from solar system 245
Ski jump 247
Long jump 247
Chapter 9
Impulse in fall: break a leg? 279
Billiard balls 249, 252, 259, 264
Tennis serve 251, 256
Rocket propulsion 255, 274, 417
Rifle recoil 255
Karate blow 257
Nuclear reactors 260
Nuclear collisions 260, 261, 263, 265
Ballistic pendulum, speed measured 262
Distant planet discovery 272, 284
Conveyor belt 275
Car crashworthiness 283
Asteroid danger 284
Force wind exerts 285
Bowling 285
Chapter 10
Acuity of bird’s eye 288
Centrifuge 293
Biceps, triceps, torque 295, 317, 361
Situps 313
Fast mammal 313
Rotating carnival rides 286, 289, 290
Tire iron extension 294
Flywheel, energy 304, 323
Yo-yo 309
Braking forces on a car 310–11
Bicycle odometer 313
Tightrope walking 313
Total solar eclipse 315
Wrench torque 316
Hammer throw 318
CD rotation frequency 320
Bicycle gears 321
Cue stick, ball roll 322
Bicycle turn angle 323
Chapter 11
Rotating skaters /divers 324, 326, 352
Neutron star collapse 327, 352
Strange spinning bike wheel 329, 336

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

Applications (Selected) to Medicine and Biology 
and to Engineering, Environment, Everyday Life, Etc. 
(Entries with a star * include material new to this edition)

A01_GIAN0279_05_GE_FM.indd   12 24/05/23   5:35 PM



APPLICATIONS  13

Automobile wheel balancing 336–7
Precessing top 339–40
Gyroscope 340
Hurricanes, cyclones, typhoons 343, 416
Anticyclonic weather 343
Precession of the equinoxes 349
SUV rollover 350
Baseball bat sweet spot 352

Chapter 12
Forces in muscles & joints 361, 380, (295)
What can make an athlete 361
Forces on the spine and back pain 362
Human balance with loads 364
Bone fracture 368, 381, 386
Buildings, statics 353–74
Lever, mechanical advantage 356
Balancing a seesaw 357
Cantilever 358
Fracture 367–9
Tragic collapse 368–9, (354)  
Trusses and bridges 369–71, 385
Architecture: arches and domes 372–4
Forces in a dome 374

Chapter 13
Pressure in cells 393
Blood flow 402, 406, 408
Human circulatory system 402
Blood loss to brain, TIA 406
Air flow in animal burrow 406
Heart disease, artery clogging 408
Walking on water, insect 409
Heart as a pump 410–11
Blood pressure measurement 411
Blood transfusion 417, 418
Water supply pressure 391
Atmospheric pressure decrease  

with elevation 392
Altitude where air pressure is half 392
Finger holds water in straw 393
Hydraulic lift 394
Hydraulic brakes 394
Pressure gauges 394–5
Barometer 395
Suction 396
Hydrometer 399
Continental drift, plate tectonics 400
Lake level change, rock  

thrown overboard 400, 412
Helium balloon lift 400
Heating duct 402
Hot-water heating system flow 404
Perfume atomizer 405
Airplane wing lift 405
Sailing upwind 405
Baseball curve 406
Why smoke goes up a chimney 406
Soaps and detergents 409
Pumps 410–11, (396)
Siphon 412
Hydraulic press 415

Rocket thrust 417
Reynolds number 417
Barrel broken by thin liquid column 419
Chapter 14
Spider web oscillations 427
Human leg as pendulum 446
Shock absorbers 421, 437
Unwanted floor vibrations 428
Loudspeaker 428–9
Pendulum clock 434, 443, 446
Geology 434, 437
Measure g with pendulum 434
Earthquake dampers 437
Child on a swing, resonance 439–40
Resonance damage 440
Q-value 441, 447, 918
Bungee jumper 444
Metronome  446
Natural stride 446
Tall building sway 448
Chapter 15
Echolocation by bats, dolphins,  

whales 456
Water waves 450, 457
Sound wave 453, 482 ff
Geology 457, 474, 479
Earthquake waves 457, 489, 472, 475
Square wave 464
Cell phone signal 473
AM and FM radio wave bending 474
Fish and fisher: internal reflection 478
Seismic reflection: oil prospecting 479
Coffee spill 479
Tsunami 481
Chapter 16
Wide range of human hearing 486
Sensitivity of the ear 489, (488)
Bats use Doppler 501
Doppler blood-flow meter 501, 513
Ultrasound medical imaging 504–5
Doppler ultrasound imaging 505
Stringed instruments 482, 490–91
Wind instruments 482, 491–94
Piano strings 482, 490, 491
Distance from lightning, seconds 483
Autofocusing camera 484
Loudspeaker output 487
Musical scale 490
Guitar, violin 490, 491, 506, 509
Organ pipes 493–4
Tuning with beats 497–8
Doppler in weather forecasting 502
Radar speed gun 502
Galaxy redshift 502
Sonic boom; sound barrier 503, 511
Sonar: depth in sea, Earth  

“soundings” 503–4, 511
Signal-to-noise ratio 508, 512, 701
Quartz oscillator clock 509
Motion sensor 511
Audio gain 512

Chapter 17
Life under ice 522–3
Molecules in one breath 529, 536
Snorkels are short 537
Hot-air balloon 514, 537
Expansion joints 517, 520, 523
Do holes expand? 521
Opening a tight lid 521
Gas tank overflow 522
Highway buckling 523
Closed jars in fires 525
Mass (weight) of air in a room 527
Cold and hot tire pressure 528
Thermostat 531
Pyrex glass 531
Tape measure inaccuracy 532, 535
Scuba 534, 535, 536, 537
Potato chip bag puff up 535

Chapter 18
KE of molecules in cells 541
Humidity, and comfort 547–8
Chromatography 553
Diffusion in living organisms 553–4, 558
Temperature effect on chemical 

reactions 543
Evaporation cools 546, 570
Humidity, weather 548
Temperature decrease of boiling  

water with altitude 548–9
Pressure cooker 557

Chapter 19
Working off Calories 562
Measuring Calorie content 567, 592
Evaporation and body  

temperature 570–1, (546)
Body heat: convection by blood 585, 596
Body’s radiative heat loss 586
Room comfort: cool air, warm walls 587
Medical thermography 589
Avoid plants freezing 590
Eating snow makes you colder 593
Heat conduction to skin,  

blood capillaries 595
Leaf’s energy absorption 597
Metabolizing fat 597
Cold tile, warm rugs 583
Heat loss through windows 584
Thermal windows (two panes) 584
How clothing insulates 584
R-values of thermal insulation 584
Ocean currents and wind 585
Convective home heating 585
Dark vs. light clothing 586
Radiation from the Sun, seasons 588
Astronomy—size of a star 588
Goose down loft 590
Thermos bottle 590
Emergency blanket 590
Air parcels, weather, adiabatic  

lapse rate 595

*

*
*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

A01_GIAN0279_05_GE_FM.indd   13 24/05/23   5:35 PM



14  APPLICATIONS

Chapter 20
Biological development, evolution 616
Trees offsetting CO2 buildup 630
Steam engine 598, 600, 604, 628
Internal combustion engines 

 600–2, 605–6
Engine efficiency 604–5
Refrigerators, air conditioners 606–8,  

 625
Heat pump 608–9, 625
SEER rating 609
Thermal pollution, climate 620–2
Carbon footprint 620
Energy resources 621, 627–8
Solar, thermal, wind energy 621, 627
Diesel engine 629, (597)
Stirling cycle 629
Jet engine, Brayton cycle 629
Dehumidifier 630, (559)

Chapter 21
Inside a cell: kinetic theory plus 

electrostatic force 653
DNA structure, replication 653–4, 662
Static electricity 631, 632, 657, 662
Photocopiers and printers 641
Electrical shielding, safety 650

Chapter 23
Electrocardiogram  

(ECG) 682, 704–5, 801
Dipoles in molecular biology 694
Heart beat, depolarization process 704–5
Common voltages 10-4 V to 108 V 685
Breakdown voltage 688
Lightning rods 688
Supply voltage, signal voltage 698
Digital, bits, bytes, binary numbers 698
Analog-to-digital converter (ADC) 698
Morse code 698
Bit-rate, TV transmission 698, 700–1, 704
Data compression, jpeg 699–700
Quantization error 699
Sampling rate, bit depth 699
Digital-to-analog converter (DAC) 

 699, 802
Bandwidth 700
Noise, bit-flips 700–1
Digital error correction, parity bit 700
Bit error rate 701
Signal-to-noise ratio  (S/ N)  701
TV and computer monitors 701–4
Digital TV, pixels, subpixels 702
Flat screens, HD 702–3
Addressing pixels 702–3
Data stream 703
Active matrix, TFT, data lines 703–4
TV refresh rate 704
Oscilloscope 704
ASCII code 710
Photocell 711

Chapter 24
Capacitor shocks, burns 725
Heart defibrillator 725, 734, 786
Capacitor use as power backup, 

surge protector, memory 714, 717
Condenser microphone 717
Computer key 717
Camera flash energy 723
Electrostatic air cleaner 732
Tiny distance measurement 732
Coaxial cable 736, 840, 896, 933
Dynamic random access  

memory (DRAM) 738, 879
Chapter 25
Electrical conduction in human 

nervous system, neurons 758–60
Action potential 759
Battery construction, terminals 740–1
Electric cars 742, 766
Battery connections 743, 746
Loudspeaker wire thickness 747
Heating element 748–50
Resistance thermometer 748
Lightning bolt 750, (712, 738)
Household circuits, shorts 751–2
Fuses, circuit breakers 751, 788
Safety—wires getting hot 751, 786–8
Extension cord danger 752
Hair dryer 754
Strain gauge 768
Chapter 26
Blood sugar phone app 769
Heart pacemaker 786
Electricity dangers to humans 786–8
Ventricular fibrillation 786
Two-speed fan 774–75
Car battery charging 779
Jump starting a car, safely 780–1
RC: sawtooth, flashers, wipers 785, 802
Hazards, electric safety 786–8
Proper grounding, plugs 787–8
Leakage current 788
Dangerous downed power line 788
Ammeters, voltmeters,  

ohmmeters 789–91
Meter connection, corrections 790–1, 803
Measurement affects quantity 

measured 791
Voltage divider 796
Solar panel 800
Potentiometer and bridge circuits 800–1
Car battery corrosion 802
Digital-to-analog converter (DAC) 

 802, (699)
Chapter 27
Electromagnetic blood pump 824
Blood flow rate, Hall effect 829
Use of a compass 806
Magnetic declination 806
Maps and true north 806

Aurora borealis 814
Electric motors, DC and AC 817–8
Loudspeakers and headsets 818

Chapter 28
Coaxial cable 840, 896, 933
Solenoid switches: doorbell, car starter 848
Magnetic circuit breakers 848
Relay (magnetic) 852

Chapter 29
EM blood-flow measurement 867
Induction stove 864
Generators, power plants 868–9
Alternators, in cars 870
Motor overload 871
Eddy-current damping 872, 883
Airport metal detector 872
Transformers, power transmission 873–5
Cell phone charger 874
Car ignition system 874
Wireless electric power  

transmission 876
Inductive charger 876
Magnetic information storage 878
Semiconductor memory 879–80
RAM, DRAM 879
Bit-line & word-line 879
Writing and reading memory 879
Volatile and nonvolatile memory 880
Flash memory, MOSFET, MRAM 880
Microphone 880
Card reader, magnetic strip 880
Seismograph 881
Ground fault circuit interrupter  

(GFCI) 881
Shielded cable 883
Recycling solid waste 883

Chapter 30
Electric car inductive charging 891
Surge protection 899
Capacitors as filters 906, 918, 919
Loudspeaker cross-over 906
Impedance matching 910
Three-phase AC 911
Q-value 918, (441, 447)
Filter circuit 918

Chapter 31
Optical tweezers 938, 945
TV from the Moon 920, 942, 946
Wireless devices, transmission   

 920, 939–42
Antennas 933, 941
Phone call time lag 934
Solar sail 938, 947
Radio and TV 939–41
AM and FM 940
Cell phones, remotes, cable TV,  

satellite TV 942
GPS 946
Solar power use 946

*

*

*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*

*

*

*

*

*

*

*

*
*
*
*
*
*

*

*

*

*

A01_GIAN0279_05_GE_FM.indd   14 24/05/23   5:35 PM



APPLICATIONS  15

Chapter 32
Medical endoscope, bronchoscope, 

colonoscope 967
How tall a mirror do you need 952
Seeing yourself in a magnifying  

mirror (concave) 958–9
Convex (rearview mirrors) 960
Optical illusions 962, 1020
Apparent water depth 961–62, 963
Rainbows 964, 979
Colors underwater 965
Diamonds sparkle 966
Prism binoculars 966
Fiber-optic cables 967, 976, 978
High-frequency trading,  

interception 967
Solar cooker 973
Washing machine water level  

detector 978
Road reflectors 979
Chapter 33
Human eye 997–1000
Fovea, denser in cones 998, 1059
Near- and far-sighted 998–1000
Corrective lenses 998–9, 1009
Contact lenses 1000
Seeing underwater 1000
Light microscopes 1005–6, 1070
Where your eye can see a  

lens image 983
Cameras, film and digital 992–7
CCD, CMOS sensors,  

potential well 992–3
Bayer pixels, Foveon 993
Digital artifacts 993
Camera adjustments, f-stop 993–5
Depth of field 995
Resolution, compression, JPEG,  

raw 995–6
Telephoto, wide angle 997
Optical vs. digital zoom 997
Magnifying glass 1001–2
Telescopes 1002–4
Microscopes 1005–6, 1070
Lens aberrations 1006–7
Film projector 1011
Pinhole camera 1012
Chapter 34
Soap bubbles, oil films,  

colors 1017, 1026–30
Highway mirages 1020
Lens coatings 1030–1
Polarizing sunglasses 1034–5
Liquid crystal displays, TV and 

computer screens 1036–7

Sky color 1037–8
Lightbulb efficiency, LED 1038–9
Stealth aircraft coating 1044
CD bits, pits and lands 1046
Chapter 35
Resolution of eye 1057, 1059
Useful magnification 1059
Spectroscopy in biology 1063
X-ray diffraction in biology 1066
Medical imaging: X-rays, CT 1067–9
Interference microscope 1070
Phase-contrast microscope 1070
Hubble space telescope 1056–7
Telescope and microscope  

resolution 1057–9
X-rays 1065–9
Tomography 1067–9
Chapter 36
Space travel 1089–90
Global position system (GPS) 1090–91
Fantasy supertrain 1093
Radar speed gun 1114
Chapter 37
Electron microscope image: blood vessel, 

clot, retina, viruses 1117, 1131, (29)
Photosynthesis 1123
Measuring bone density 1125
Electron microscopes (EM),  

TEM, SEM 1131, 1173, (1117)
Photocells 1120
Photodiodes, soundtracks 1123
Chapter 38
Scanning tunneling electron  

microscope 1173
Atomic force microscope 1173
Chapter 39
Fluorescence analysis 1196–7
Medical uses of lasers, surgery 1200, 1205
Neon lights 1180
Fluorescent lightbulbs 1197
Lasers 1197–201, 1238
Bar code readers 1199
DVD, CD, Blu-ray 1199–200
Holography 1200–1
Chapter 40
Cell energy—ATP 1214
Weak bonds, DNA 1214–6
Protein synthesis 1216–8
Pulse oximeter 1238
Computer processor chips 1208
Transparent objects 1232
Zener diode voltage  

regulator 1235–6, 1247
Rectifiers 1236

Photovoltaic cells 1236–7
LED displays, bulbs 1237–8
TV remote 1237, 1247
Solid-state lighting 1237–8
pn diode laser 1238
OLED, AMOLED displays 1238–9
Amplifiers 1240
MOSFET switch 1240–1
Technology generation 1241

Chapter 41
Earliest life 1270
Radiation film badges 1271, 1296
Smoke detector 1259
Radioactive activity and safety 1265–6
Carbon-14 dating 1268–9
Archeological and geological  

dating 1268–70
Oldest Earth rocks 1270
Geiger counter 1270
Rubidium–strontium dating 1275
Tritium dating 1276
Mass excess, mass defect 1276

Chapter 42
Biological radiation damage 1293–8
Radiation dosimetry, RBE 1294–8
Radon exposure 1296, 1298
Natural radioactive background 1296
Radiation exposure, film badge 1296
Radiation sickness 1296
Whole-body dose 1297
Radiation therapy 1298–9
Proton therapy 1299
Radioactive tracers 1299–300
Gamma camera 1300
Medical imaging, PET, SPECT, MRI 

 1300–4
Brain PET scan using cell phone 1301
Imaging resolutions compared 1304
Radiation and thyroid 1308
Nuclear reactors, power plants 

 1278, 1285–7, 1291–3
Breeder reactors 1287
Manhattan Project 1288
Nuclear fusion 1288–93
Why stars shine 1289–91
Thermonuclear devices 1291
Fusion energy reactors 1291–3

Chapter 43
Linacs and tumor irradiation 1316

Chapter 44
Stars and galaxies 1345–54
Black holes 1353, 1359–60
Big Bang storyline 1367–70

*

*

*

*

*

*

*
*

*

*
*

*
*
*

*
*

*

*

A01_GIAN0279_05_GE_FM.indd   15 24/05/23   5:35 PM



16  PREFACE

Preface
New Stuff!
 1. MisConceptual Questions, 10 or 15 at the end of each Chapter. The multiple-

choice answers include common misconceptions as well as correct responses. 
Pedagogically, asking students to think, to consider the options, is more  
effective than just telling them what is valid and what is wrong. (These are in 
addition to the one at the start of each Chapter).

 2. Digital is all around us. Yet that word is not always used carefully. In this 
new edition we have 20 new pages describing the basics from the ground 
up. Binary numbers, bits and bytes, are introduced in Chapter 23 along with 
analog-to-digital conversion (ADC), and vice versa, including digital audio  
and how video screens work. Also information compression, sampling rate, bit 
depth, pixel addressing, digital transmission and, in later chapters, information  
storage (RAM, DRAM, flash), digital cameras and their sensors (CCD, CMOS).

 3. Gravitational Assist (Slingshot) to accelerate spacecraft (Chapter 8).
 4. Magnetic field of a single moving charge, rarely treated (and if it is, maybe 

not well), and it shows the need for relativity theory.
 5. Seeing yourself in a magnifying mirror (concave), angular magnification and 

blurriness with a paradox. Also convex (rearview) mirrors (Chapter 32).
 6. Pedagogical clarification on defining potential energy, and energy itself 

(Chapter 8), and on hundreds of other topics.
 7. The Moon rises an hour later each day (Chapter 6), its phases, periods, and diagram.
 8. Efficiency of lightbulbs (Chapter 34).
 9. Idealization vs. reality emphasized—such as PV diagrams (Chapter 19) as an 

idealized approximation.
 10. Many new Problems ('  500) plus new Questions as well as the 500 or so 

MisConceptual Questions (point 1 above).
 11. Many new worked-out Examples.
 12. More math steps included in derivations and Examples.
 13. New phrases to remind students of our objective in the middle of a 

long discussion or derivation (it is so easy to lose track).
 14. State of a system and state variables clarified (Chapter 17).
 15. Contemporary physics: Gravitational waves, LIGO and Virgo, Higgs, WIMPS, 

OLEDS and other semiconductor physics, nuclear fusion updates, neutrino-less 
double beta decay.

 16. New SI units (Chapters 1, 21, Tables).
 17. Boiling temperature of water vs. elevation (Chapter 18).
 18. Modern physics in earlier classical Chapters (sometimes in Problems): Light-years,  

observable universe (Chapter 1); optical tweezers (Chapter 4); uranium  
enrichment (Chapter 5); black holes and curved space, white dwarfs (Chapter 6); 
crystal structure (Chapter 7); Yukawa potential, Lennard-Jones potential (Chap-
ter 8); neutrons, nuclear reactors, moderator, nuclear collisions, radioactive decay, 
neutron star collapse (Chapter 9); galaxy redshift (Chapter 16); gas diffusion of 
uranium (Chapter 18); quarks (Chapter 21); liquid-drop model of nucleus, Gei-
ger counter, Van de Graaff (Chapter 23); transistors (Chapters 23, 29); isotopes, 
cyclotron (Chapter 27); MOSFET (Chapter 29); semiconductor (camera sensor), 
photon (Chapter 33); line spectra, X-ray crystallography (Chapter 35).

 19. Second law of thermodynamics and heat energy reorganized (Chapter 20).
 20. Symmetry emphasized throughout.
 21. Uranium enrichment, % needed in reactors, bombs (Chapters 5, 42).
 22. Mass excess, mass defect (Chapter 41).
 23. The mole, more careful definition (Chapter 17).
 24. Liquid-gas ambiguity above critical temperature (Chapter 18).
 25. Measurement affects quantity measured, new emphasis.
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 26. New clarifications and reminders in longer discussions and derivations.  
Because students can lose track of what our aim is, it is mentioned again  
part way through (often replacing “it” or “this”).

 27. More New Applications:
• Ocean Tides (Chapter 6)
• Anticyclonic weather (Chapter 11)
• Jump starting a car safely (Chapter 26)
• Lightbulb efficiency (Chapter 34)
• Specialty microscopes and contrast (Chapter 35)
• Forces on Muscles and Joints (Chapter 12)
• Doppler ultrasound imaging (Chapter 16)
• Lake level change when rock thrown from boat (Chapter 13)
• Skier speed on snow vs. flying through the air (Chapter 5)
• Inductive charging (Chapter 29)
• Human body internal heat transfer is convection (blood) (Chapter 19)
• Blood pressure measurement (Chapter 13)
• Sports (lots)
• Voltage divider (Chapter 26, Problems)
• Flat screen TV (Chapters 23, 34, 40)
• Carbon footprint and climate (Chapter 20)
• Electrocardiogram (Chapter 23)
• Wireless from the Moon unimaginable (Chapter 31)
• Why snorkels are short (Chapter 17 Problem)
• Electric cars (Chapter 25)
• Digital (Chapters 23, 29, 33, 40) includes (in addition to details in point 2 

above) quantization error, digital error correction, noise, bit error rate, digi-
tal TV data stream, refresh rate, active matrix, thin film transistors, digital 
memory, bit-line, reading and writing of memory cells (MOSFET), floating 
gate, volatile and nonvolatile memory, Bayer, JPEG, ASCII code, and more.

• Importance of Latin, in footnote on page 1021. Other references on pages 
84, 354, 698, 805, 950, 997, 1069.

Seeing the World through Eyes that Know Physics
I was motivated to write a textbook for 2 reasons. First, non-physics students in engi-
neering, pre-med, biology, and architecture sometimes asked me “why do I have to take 
physics.” They were right a new textbook was needed that showed how physics is the 
basis for so much of their fields and in everyday life. More importantly, I saw that phys-
ics textbooks were in the style of an instruction manual. Even as a freshman in college 
I saw that physics books were not telling the truth about how physics is actually prac-
ticed. In this book I start each topic by appealing to the student’s intuition, which is how  
physics developed and is actually practiced. Instead of beginning formally and dog-
matically, I begin each topic with everyday observations and experiences the students 
can relate to: start with specifics, the real world, and then go to the great generalizations 
and more formal aspects of the physics, showing why we believe what we believe.

Much effort has gone into approaches for the practical techniques of solving prob-
lems: worked-out Examples, Problem Solving sections, and Problem Solving Strategies.

Chapter 1 is not a throwaway. It is fundamental to physics to realize that ev-
ery measurement has an uncertainty, and how significant figures are used. Being 
able to make rapid estimates is a powerful tool useful for every student, and used 
throughout the book starting in Chapter 1 (you can estimate the Earth’s radius!). 

Mathematics can be an obstacle to students. I have aimed at including all steps 
in a derivation. Important mathematical tools, such as addition of vectors and vector 
product, are incorporated in the text where first needed, so they come with a context 
rather than in a forbidding introductory Chapter. Appendices contain a basic math re-
view, derivatives and integrals, plus some more advanced topics including numerical 
integration, gravitational field of spherical mass distribution, Maxwell’s equations in 
differential form, and a Table of selected nuclear isotopes (carefully updated, as are the 
Periodic Table and the Fundamental Constants found inside the back and front covers).

Versions of this Book
Complete version: 44 Chapters 
including 9 Chapters of modern 
physics.

Volume 1: Chapters 1–20 on 
 mechanics, including fluids,  
oscillations, waves, plus heat  
and thermodynamics.

Volume 2: Chapters 21–35 on 
electricity and magnetism, plus 
light and optics.

Volume 3: Chapters 36–44 on  
modern physics: relativity,  
quantum theory, atomic physics,  
condensed matter, nuclear physics,  
elementary particles,  
cosmology and astrophysics.
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Some instructors may find this book contains more material than can be 
covered in their courses. The text offers great flexibility. Sections marked with 
a star * may be considered optional. These contain slightly more advanced 
physics material, or material not usually covered in typical courses, or interest-
ing applications; they contain no material needed in later Chapters (except 
perhaps in later optional Sections). For a brief course, all optional material 
could be dropped as well as significant parts of Chapters 13, 16, 26, 30, and 35, 
and selected parts of Chapters 9, 12, 19, 20, and 33. Topics not covered in class can 
be a valuable resource for outside study by students. Indeed, this text can serve 
as a useful reference for years because of its wide range of coverage.

Thanks
Many physics professors provided input or direct feedback on every aspect of this 
textbook. They are listed below, and I owe each a debt of gratitude.
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I owe special thanks to Prof. Bob Davis for much valuable input, and especially 
for working out all the Problems and producing the Solutions Manual for all 
Problems, as well as for providing the answers to odd-numbered Problems at the 
back of the book. Many thanks also to J. Erik Hendrickson who collaborated with 
Bob Davis on the solutions, and to the team they managed (Michael Ottinger, 
John Kinard, David Jones, Kristi Hatch, Lisa Will).

I am especially grateful to Profs. Lorraine Allen, Kathryn Dimiduk, Michael 
Strauss, Cindy Schwarz, Robert Coakley, Robert Pelcovitz, Mark Hollabaugh, 
Charles Hibbard, and Michael Winokur, who helped root out errors and offered 
significant improvements and clarifications.

For Chapters 43 and 44 on Particle Physics and Cosmology and Astrophys-
ics, I was fortunate to receive generous input from some of the top experts in 
the field, to whom I owe a debt of gratitude: Saul Perlmutter, George Smoot, 
Alex Filippenko, Paul Richards, Gabriel Orebi Gann, James Siegrist, and William 
Holzapfel (UC Berkeley), Andreí Linde (Stanford U.), Lyman Page (Princeton), 
Edward Wright (UCLA), Michael Strauss (University of Oklahoma), and Bob 
Jacobsen (UC Berkeley).

I also wish to thank many others at the University of California, Berkeley, 
Physics Department for helpful discussions, and for hospitality. Thanks also to 
Prof. Tito Arecchi at the Istituto Nazionale di Ottica, Florence, Italy.

Finally, I am grateful to the many people at Pearson Education with whom 
I worked on this project, especially Jeanne Zalesky and Paul Corey, and the 
perspicacious editors Margy Kuntz and Andrea Giancoli.

The final responsibility for all errors lies with me. I welcome comments, 
corrections, and suggestions as soon as possible to benefit students for the next 
reprint.

D.G.
email: chris.hess@pearson.com 
paper mail: Christopher Hess
 Pearson Education
 50 California Street
 San Francisco, CA 94111
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Advice for Students
HOW TO STUDY
 1. Read the Chapter. Learn new vocabulary and notation. Respond to questions and  

exercises as they occur. Follow carefully the steps of worked-out Examples and 
derivations. Avoid time looking at a screen. Paper is better than pixels when it 
comes to learning and thinking.

 2. Attend all class meetings. Listen. Take notes. Ask questions (everyone wants 
to, but maybe you will have the courage). You will get more out of class if you 
read the Chapter first.

 3. Read the Chapter again, paying attention to details. Follow derivations and 
worked-out Examples. Absorb their logic. Answer Exercises and as many of 
the end-of-Chapter Questions as you can, and all MisConceptual Questions.

 4. Solve at least 10 to 20 end-of-Chapter Problems, especially those assigned. In 
doing Problems you may find out what you learned and what you didn’t. Discuss  
them with other students. Problem solving is one of the great learning tools. 
Don’ t just look for a formula : it might be the wrong one. 

NOTES ON THE FORMAT AND PROBLEM SOLVING
 1. Sections marked with a star (*) may be considered optional or advanced. They can 

be omitted without interrupting the main flow of topics. No later material depends 
on them except possibly later starred Sections. They may be fun to read, though.

 2. The customary conventions are used: symbols for quantities (such as m for 
mass) are italicized, whereas units (such as m for meter) are not italicized. 
Symbols for vectors are shown in boldface with a small arrow above: F5.

 3. Few equations are valid in all situations. Where practical, the range of validity  
of important equations are stated in square brackets next to the equation. 
The equations that represent the great laws of physics are displayed with a 
tan background, as are a few other indispensable equations.

 4. At the end of each Chapter is a set of Questions you should try to answer. 
Attempt all the multiple-choice MisConceptual Questions, which are inten-
dend to get common misconceptions “out on the table” by including them 
as responses (temptations) along with correct answers. Most important are 
Problems which are ranked as Level I, II, or III, according to estimated dif-
ficulty. Level I Problems are easiest, Level II are standard Problems, and 
Level III are “challenge problems.” These ranked Problems are arranged by 
Section, but Problems for a given Section may depend on earlier material 
too. There follows a group of General Problems, not arranged by Section or 
ranked. Problems that relate to optional Sections are starred (*). Answers to 
odd-numbered Problems are given at the end of the book. 

 5. Being able to solve Problems is a crucial part of learning physics, and provides  
a powerful means for understanding the concepts and principles. This 
book contains many aids to problem solving: (a) worked-out Examples,  
including an Approach and a Solution, which should be studied as an integral  
part of the text; (b) some of the worked-out Examples are Estimation 
Examples, which show how rough or approximate results can be obtained even 
if the given data are sparse (see Section 1–6); (c) Problem Solving Strategies  
placed throughout the text to suggest a step-by-step approach to problem 
solving for a particular topic : but the basics remain the same; most of these 
“Strategies” are followed by an Example that is solved by explicitly following 
the suggested steps; (d) special problem-solving Sections; (e) “Problem Solv-
ing” marginal notes which refer to hints within the text for solving Problems; 
(f) Exercises within the text that you should work out immediately, and then 
check your response against the answer given at the bottom of the last page 
of that Chapter; (g) the Problems themselves at the end of each Chapter.

 6. Conceptual Examples pose a question which hopefully starts you to think 
about a response. Give yourself a little time to come up with your own 
response before reading the Response given.

 7. Math review, plus additional topics, are found in Appendices. Useful data,  
conversion factors, and math formulas are found inside the front and back covers.

20  PREFACE
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23

Introduction, 
Measurement, Estimating

C
H

A P T E

R

1
CHAPTER-OPENING QUESTIONS—Guess now!
1. How many cm3 are in 1.0 m3?

(a) 10.  (b) 100.  (c) 1000.  (d) 10,000.  (e) 100,000.  (f) 1,000,000.
2. Suppose you wanted to actually measure the radius of the Earth, at least 
roughly, rather than taking other people’s word for what it is. Which response 
below  describes the best approach?

(a) Use an extremely long measuring tape.
(b) It is only possible by flying high enough to see the actual curvature of the Earth.
(c) Use a standard measuring tape, a stepladder, and a large smooth lake.
(d) Use a laser and a mirror on the Moon or on a satellite.
(e) Give up; it is impossible using ordinary means.

[We start each Chapter with a Question : sometimes two. Try to answer right away. Don’t worry about 
getting the right answer now : the idea is to get your preconceived notions out on the table. If they 
are misconceptions, we expect them to be cleared up as you read the Chapter. You will get another 
chance at the Question later in the Chapter when the appropriate material has been covered. These 
Chapter-Opening Questions will also help you see the power and usefulness of physics.]

Image of the Earth from out in space. 
The sky appears black because 

there are so few molecules to 
refl ect light. (Why the sky 

appears blue to us on 
Earth has to do with 

scattering of light by 
molecules of the 

atmosphere, as 
discussed in 
Chapter 34.) 
Note the storm 
off the coast 
of Mexico.
Important 
physics is 
covered in 
this fi rst 
Chapter, 
including 
measurement 
uncertainty 
and how to 

make an 
estimate. For 

example, we can 
determine the 

radius of the Earth 
without going out in 

space, but just by being 
near a lake or bay.

CONTENTS
1–1 How Science Works

1–2 Models, Theories, and Laws

1–3 Measurement and  Uncertainty; 
Significant Figures

1–4 Units, Standards, and 
the SI System

1–5 Converting Units

1–6 Order of Magnitude: 
Rapid Estimating

1–7 Dimensions and  Dimensional 
Analysis

*
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P hysics is the most basic of the sciences. It deals with the behavior and structure  
of matter. The field of physics is usually divided into classical physics which 
includes motion, fluids, heat, sound, light, electricity and magnetism; and 

 modern physics which includes the topics of relativity, atomic structure, condensed 
matter, nuclear physics, elementary particles, and cosmology and astrophysics. We 
will cover all these topics in this book, beginning with motion (or mechanics, as it 
is often called) and ending with the most recent results in our study of the cosmos.

An understanding of physics is wonderfully useful for anyone making a 
career in science or technology. Engineers, for example, must know how to 
calculate the forces within a structure to design it so that it remains standing 
(Fig. 1 9 1a). Indeed, in Chapter 12 we will see a worked-out Example of how a 
simple physics  calculation : or even intuition based on understanding the physics 
of forces : would have saved hundreds of lives (Fig. 1 9 1b). We will see many 
examples in this book of how physics is useful in many fields, and in everyday life.

1–1 How Science Works
There is a real physical world out there. We could just walk through it, not thinking 
much about it. Or, we can instead examine it carefully. That is what scientists do. 
The aim of science is the search for order in our observations of the physical 
world so as to provide a deeper picture or description of this world around us. 
Sometimes we just want to understand how things work.

Some people seem to think that science is a mechanical process of collecting 
facts and devising theories. But it is not so simple. Science is a creative activity, 
and in many ways resembles other creative activities of the human mind.

One important aspect of science is observation of events (which great writers 
and artists also do), and includes the design and carrying out of experiments. But 
observation and experiment require imagination, because scientists can never 
include everything in a description of what they observe. In other words, scientists 
must make judgments about what is relevant in their observations and experiments.

Consider, for example, how two great minds, Aristotle (384 9 322 b.c.) and  Galileo 
(1564 9 1642), interpreted motion along a horizontal surface. Aristotle noted that objects 
given an initial push along the ground (or on a level tabletop) always slow down and 
stop. Consequently, Aristotle argued, the natural state of an object is to be at rest. 
Galileo, in his reexamination of horizontal motion in the 1600s, had the idea that 
friction is a kind of force like a push or a pull; and he imagined that if friction could be 
eliminated, an object given an initial push along a horizontal surface would continue 
to move indefinitely without stopping. He concluded that for an object to be in motion 
was just as natural as for it to be at rest. By inventing a new approach, Galileo founded 
our modern view of motion (Chapters 2, 3, and 4), and he did so with a leap of the 
imagination. Galileo made this leap conceptually, without actually eliminating friction.

Observation, with careful experimentation and measurement, is one side of 
the scientific process. The other side is the invention or creation of theories to 
explain and order the observations. Theories are never derived directly from 
observations. Observations may help inspire a theory, and theories are accepted 
or rejected based on the results of observation and experiment.

Theories are inspirations that come from the minds of humans. For example, 
the idea that matter is made up of atoms (the atomic theory) was not arrived 
at by direct observation of atoms. Rather, the idea sprang from creative minds. 
The theory of relativity, the electromagnetic theory of light, and Newton’s law of 
universal gravitation were likewise the result of human imagination. 

The great theories of science may be compared, as creative achievements, 
with great works of art or literature. But how does science differ from these other 
creative activities? One important difference is that science requires testing of its 
ideas or theories to see if their predictions are borne out by experiment.

But theories are not “proved” by testing. First of all, no  measuring instrument is 
perfect, so exact confirmation is not possible. Furthermore, it is not possible to test a 
theory in every single possible circumstance. Hence a  theory cannot be absolutely verified.  

C A U T I O N
Science is not static.  

It changes and develops

(a)

(b)

FIGURE 1 – 1  (a) This bridge over 
the River Tiber in Rome was built 
2000 years ago and still stands. 
(b) The Hartford Civic Center 
collapsed in 1978, just two years 
after it was built.
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Indeed, the history of science tells us that long-held theories can often be replaced  
by new ones.

1–2 Models, Theories, and Laws
When scientists are trying to understand a particular aspect of the physical world, 
they often make use of a model. A model, in the scientist’s sense, is a kind of 
analogy or mental image of the phenomena in terms of something we are familiar 
with. One example is the wave model of light. We cannot see waves of light as we 
can water waves. But it is valuable to think of light as made up of waves because 
experiments indicate that light behaves in many respects as water waves do.

The purpose of a model is to give us an approximate mental or visual  picture :  
something to hold on to : when we cannot see what actually is happening in the real 
world. Models often give us a deeper understanding: the analogy to a known system 
(for instance, water waves in the above example) can suggest new experiments to 
perform and can provide ideas about what other related phenomena might occur.

You may wonder what the difference is between a theory and a model. 
Usually a model is relatively simple and provides a structural similarity to the 
phenomena being studied. A theory is broader, more detailed, and can give 
 quantitatively testable predictions, often with great precision. 

It is important not to confuse a model or a theory with the real world and 
the phenomena themselves. Theories are descriptions of the physical world, and 
they are made up by us. Theories are  invented : usually by very smart people.

Scientists give the title law to certain concise but general statements about 
how nature behaves (that energy is conserved, for example). Sometimes the state-
ment takes the form of a relationship or equation between quantities (such as 
Newton’s second law,  F = ma).

To be called a law, a statement must be found experimentally valid over a  
wide range of observed phenomena. For less general statements, the term  principle 
is often used (such as Archimedes’ principle). We use “theory” to describe a more 
general picture of a large group of phenomena.

Scientific laws are different from political laws, which are prescriptive: they tell 
us how we ought to behave. Scientific laws are descriptive: they do not say how 
nature should behave, but rather are meant to describe how nature does behave. 
As with theories, laws cannot be tested in the infinite variety of cases possible. So  
we cannot be sure that any law is absolutely true. We use the term “law” when its 
validity has been tested over a wide range of situations, and when any limitations 
and the range of validity are clearly understood.

Scientists normally do their research as if the accepted laws and theories were 
true. But they are obliged to keep an open mind in case new information should 
alter the validity of any given law or theory. In other words, laws of physics, or 
the “laws of nature”, represent our descriptions of reality and are not inalterable 
facts that last forever. Laws are not lying there in nature, waiting to be discov-
ered. We humans, the brightest humans, invent the laws using observations and 
intuition as a basis. And we hope our laws provide a good description of nature, 
and at a minimum give us a reliable approximation of how nature really behaves.

1–3  Measurement and Uncertainty; 
Significant Figures

In the quest to understand the world around us, scientists seek to find relationships  
among physical quantities that can be measured.

Uncertainty
Reliable measurements are an important part of physics. But no measurement 
is absolutely precise. There is an uncertainty associated with every measure-
ment. Among the most important sources of uncertainty, other than blunders, 
are the  limited accuracy of every measuring instrument and the inability to read 

C A U T I O N
Theories and laws  
are NOT discovered.  
They are invented

SECTION 1–3 Measurement and Uncertainty; Significant Figures 25
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an instrument (such as a ruler) beyond some fraction of the smallest division 
shown. For example, if you were to use a centimeter ruler to measure the width 
of a board (Fig. 1 9 2), the result could be claimed to be precise to about 0.1 cm 
(1 mm), the smallest division on the ruler, although half of this value might be a 
valid claim as well. The reason is that it is difficult for the observer to estimate 
(or interpolate) between the smallest divisions. Furthermore, the ruler itself may 
not have been manufactured to an accuracy very much better than this.

When giving the result of a measurement, it is important to state the 
 estimated uncertainty in the measurement. For example, the width of a board 
might be written as  8.8 { 0.1 cm.  The {0.1 cm (“plus or minus 0.1 cm”) 
represents the estimated uncertainty in the measurement, so that the actual 
width most likely lies between 8.7 and 8.9 cm. The percent uncertainty is the ratio 
of the uncertainty to the measured value, multiplied by 100. For example, if the 
measurement is 8.8 and the uncertainty about 0.1 cm, the percent uncertainty is

0.1
8.8

* 100%  L   1%,

where L  means “is approximately equal to.”
Often the uncertainty in a measured value is not specified explicitly. In such 

cases, scientists follow a general rule that

uncertainty in a numerical value is assumed to be one or a few units in the 
last digit specified.

For example, if a length is given as 5.6 cm, the uncertainty is assumed to be about 
0.1 cm or 0.2 cm, or possibly 0.3 cm. It is important in this case that you do not 
write 5.60 cm, for this implies an uncertainty on the order of 0.01 or 0.02 cm; it 
assumes that the length is probably between about 5.58 cm and 5.62 cm, when 
actually you believe it is between about 5.4 and 5.8 cm.

Significant Figures
The number of reliably known digits in a number is called the number of 
 significant figures. Thus there are four significant figures in the number 23.21 cm 
and two in the number 0.062 cm (the zeros in the latter are merely place holders 
that show where the decimal point goes). The number of significant figures may 
not always be clear. Take, for example, the number 80. Are there one or two 
significant figures? We need words here: If we say it is roughly 80 km between 
two cities, there is only one significant figure (the 8) since the zero is merely a 
place holder. If there is no suggestion that the 80 is a rough approximation, then 
we can often assume (as we will in this book) that it has two significant figures: 
so it is 80 km within an accuracy of about 1 or 2 km. If it is precisely 80 km, to 
within {0.1 or {0.2 km, then we need to write 80.0 km (three significant figures).

When specifying numerical results, you should avoid the temptation to 
keep more digits in the final answer than is justified: see boldface statement 
above. For example, to calculate the area of a rectangle 11.3 cm by 6.8 cm, the 
result of multi plication would be 76.84 cm2. But this answer can not be accurate 
to the implied 0.01 cm2 uncertainty. Why? Because (using the outer limits of 
the assumed uncertainty for each measurement) the result could be between  
11.2 cm * 6.7 cm = 75.04 cm2  and  11.4 cm * 6.9 cm = 78.66 cm2.  At best, we 
can quote the answer as 77 cm2, which implies an uncertainty of about 1 or 2 cm2.  
The other two digits (in the number 76.84 cm2) must be dropped (rounded off) 
because they are not significant. As a rough general significant figures rule,

the final  result of a multiplication or division should have no more digits than 
the numerical value with the fewest significant figures.

In our example, 6.8 cm has the least number of significant figures, namely two. 
Thus the result 76.84 cm2 needs to be rounded off to 77 cm2.

EXERCISE A The area of a rectangle 4.5 cm by 3.25 cm is correctly given by (a) 14.625 cm2;   
(b) 14.63 cm2;  (c) 14.6 cm2;  (d) 15 cm2.

P R O B L E M  S O LV I N G
Significant figures rule:  

Number of significant figures in 
final result should be same as  

the least significant input value

FIGURE 1 – 2  Measuring the width 
of a board with a centimeter ruler. 
The uncertainty is about {1 mm. 

M01_GIAN0279_05_GE_C01.indd   26 5/26/23   11:16 AM



†Be careful also about other digital read-outs. If a digital bathroom scale shows 85.6, do not assume the 
uncertainty is {0.1 or {0.2; the scale was likely manufactured with an accuracy of perhaps only 1% or 
so: that is, {1 or {2. For digital scientific instruments, also be careful: the instruction manual should 
state the accuracy.

CONCEPTUAL EXAMPLE 1 – 1 Significant figures. Using a protractor 
(Fig.  1 9 4), you measure an angle to be 30°. (a) How many significant figures 
should you quote in this  measurement? (b) Use a calculator to find the cosine 
of the angle you measured.

RESPONSE (a) If you look at a protractor, you will see that the precision with 
which you can measure an angle is about one degree (certainly not 0.1°). So you 
can quote two significant figures, namely 30° (not 30.0°). (b) If you enter cos 30° 
in your calculator, you will get a  number like 0.866025403. But the angle you 
entered is known only to two significant figures, so its cosine is correctly given 
by 0.87; you must round your answer to two significant figures.

NOTE Trigonometric functions, like cosine, are reviewed in Appendix A.

FIGURE 1 – 4  Example 1 9 1.  
A protractor used to measure an 
angle.

EXERCISE C Do 0.00324 and 0.00056 have the same number of significant figures?

Scientific Notation
We commonly write numbers in “powers of ten,” or “scientific” notation : for instance 
36,900 as  3.69 * 104,  or 0.0021 as  2.1 * 10-3.  One advantage of scientific notation 
is that it allows the number of significant figures to be clearly expressed. For example, 
it is not clear whether 36,900 has three, four, or five significant figures. With powers 
of ten notation the ambiguity can be avoided: if the number is known to three signif-
icant figures, we write  3.69 * 104,  but if it is known to four, we write  3.690 * 104.

When adding or subtracting numbers, the final result should contain no more 
decimal places than the number with the fewest decimal places. For example, the 
result of subtracting 0.57 from 3.6 is 3.0 (not 3.03). Similarly  36 + 8.2 = 44,  not 44.2.

Be careful not to confuse significant figures with the number of decimal places. 
Significant figures are related to the expected uncertainty in any measured quantity.

EXERCISE B For each of the following numbers, state the number of significant figures  
and the number of decimal places: (a) 1.23; (b) 0.123; (c) 0.0123.

Keep in mind when you use a calculator that all the digits it produces may 
not be significant. When you divide 2.0 by 3.0, the proper answer is 0.67, and not 
0.666666666 as calculators give (Fig. 1 9 3a). Digits should not be quoted in a result 
unless they are truly significant figures. However, to obtain the most accurate 
result, you should normally keep one or more extra significant figures throughout a 
calculation, and round off only in the final result. (With a calculator, you can keep 
all its digits in intermediate results.) Calculators can also give too few significant 
figures. For example, when you multiply  2.5 * 3.2,  a calculator may give the 
answer as simply 8. See Fig. 1 9 3b. But the answer is  accurate to two significant 
figures, so the proper answer is 8.0.†

P R O B L E M  S O LV I N G
Significant figures when  
adding and subtracting

C A U T I O N
Calculators err with significant figures

P R O B L E M  S O LV I N G
Report only the proper number of 
significant figures in the final result. But  
keep extra digits during the calculation

FIGURE 1 – 3  These two calculators 
show the wrong number of 
significant figures. In (a), 2.0 was 
divided by 3.0. The correct final 
result should be stated as 0.67. In (b), 
2.5 was multiplied by 3.2. The correct 
result is 8.0. 

(a) (b)

SECTION 1–3 Measurement and Uncertainty; Significant Figures 27
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28 CHAPTER 1 Introduction, Measurement, Estimating

EXERCISE D Write each of the following in scientific notation and state the number of 
 significant figures for each: (a) 0.0258, (b) 42,300, (c) 344.50.

Percent Uncertainty versus Significant Figures
The significant figures rule is only approximate, and in some cases may under-
estimate the accuracy (or uncertainty) of the answer. Suppose for example we 
divide 97 by 92:

97
92

= 1.05  L   1.1.

Both 97 and 92 have two significant figures, so the rule says to give the 
answer as  1.1. Yet the numbers 97 and 92 both imply an uncertainty of {1 
if no other uncertainty is stated. Both  92 { 1  and  97 { 1  imply an uncer-
tainty of about 1%  (1>92 L 0.01 = 1%).  But the final result to two significant 
figures is  1.1, with an implied uncertainty of {0.1, which is an uncertainty of  
0.1>1.1 L 0.1 L 10%.  In this case it is better to give the answer as 1.05 (which 
is three significant figures). Why? Because 1.05 implies an uncertainty of {0.01 
which is  0.01>1.05 L 0.01 L 1%,  just like the uncertainty in the original numbers 
92 and 97.

SUGGESTION: Use the significant figures rule, but consider the % uncer-
tainty too, and add an extra digit if it gives a more realistic estimate of uncertainty.

Approximations
Much of physics involves approximations, often because we do not have the  
means to solve a problem precisely. For example, we may choose to ignore air 
resistance or friction in doing a Problem even though they are present in the real 
world, and then our calculation is only an estimate or approximation. In doing 
Problems, we should be aware of what approximations we are making, and be 
aware that the precision of our answer may not be nearly as good as the number 
of significant figures given in the result.

Accuracy versus Precision
There is a technical difference between “precision” and “accuracy.” Precision in 
a strict sense refers to the repeatability of the measurement using a given instru-
ment. For example, if you measure the width of a board many times, getting results 
like 8.81 cm, 8.85 cm, 8.78 cm, 8.82 cm (interpolating between the 0.1 cm marks 
as best as possible each time), you could say the measurements give a precision 
a bit better than 0.1 cm.  Accuracy refers to how close a measurement is to the 
true value. For example, if the ruler shown in Fig. 1 9 2 was manufactured with a 
2% error, the accuracy of its measurement of the board’s width (about 8.8 cm) 
would be about 2% of 8.8 cm or about {0.2 cm. Estimated uncertainty is meant 
to take both accuracy and precision into account.

1–4  Units, Standards, and the SI System
The measurement of any quantity is made relative to a particular standard or unit, 
and this unit must be specified along with the numerical value of the quantity. 
For example, we can measure length in British units such as inches, feet, or miles, 
or in the metric system in centimeters, meters, or kilometers. To specify that the 
length of a particular object is 18.6 is insufficient. The unit must be given, because 
18.6 meters is very different from 18.6 inches or 18.6 millimeters.

For any unit we use, such as the meter for distance or the second for time, 
we need to define a standard which defines exactly how long one meter or one 
second is. It is important that standards be chosen that are readily reproducible 
so that  anyone needing to make a very accurate measurement can refer to the 
standard in the laboratory and communicate results with other scientists.
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TABLE 1 – 1  Some Typical Lengths or Distances  
(order of magnitude)

Length (or Distance) Meters (approximate)

Neutron or proton (diameter) 10-15 m
Atom (diameter) 10-10 m
Virus [see Fig. 1 9 5a] 10-7 m
Sheet of paper (thickness) 10-4 m
Finger width 10-2 m
Football field length 102 m
Height of Mt. Everest [see Fig. 1 9 5b] 104 m
Earth diameter 107 m
Earth to Sun 1011 m
Earth to nearest star 1016 m
Earth to nearest galaxy 1022 m
Earth to farthest galaxy visible 1026 m

†Modern measurements of the Earth’s circumference reveal that the intended length is off by about 
one-fiftieth of 1%. Not bad!

Length
The first truly international standard was the meter (abbreviated m) established as the 
standard of length by the French Academy of Sciences in the 1790s. The standard meter 
was originally chosen to be one ten-millionth of the distance from the Earth’s equator 
to either pole,† and a platinum rod to represent this length was made. (One meter is, 
very roughly, the distance from the tip of your nose to the tip of your finger, with arm 
and hand stretched out horizontally.) In 1889, the meter was defined more precisely as 
the distance between two finely engraved marks on a particular bar of platinum 9 iridium 
alloy. In 1960, to provide greater precision and reproducibility, the meter was redefined 
as 1,650,763.73 wavelengths of a particular orange light emitted by the gas krypton-86.

In 1983 the meter was again redefined, this time in terms of the speed of light 
(whose best measured value in terms of the older definition of the meter was 
299,792,458 m>s, with an uncertainty of 1 m>s). The new definition reads: “The 
meter is the length of path traveled by light in vacuum during a time interval of  
1>299,792,458 of a second.” The new definition of the meter has the effect of 
giving the speed of light the exact value of 299,792,458 m>s. [The newer definitions 
provided greater precision than the 2 marks on the old platinum bar.]

British units of length (inch, foot, mile) are now defined in terms of the meter. 
The inch (in.) is defined as exactly 2.54 centimeters (cm;  1 cm = 0.01 m). One foot 
is exactly 12 in., and 1 mile is 5280 ft. Other conversion factors are given in the 
Table on the inside of the front cover of this book. Table 1 9 1 below presents some 
typical lengths, from very small to very large, rounded off to the nearest power of 
10. (We call this rounded off value the order of magnitude.) See also Fig. 1 9 5. (Note 
that the abbreviation for inches (in.) is the only one with a period, to distinguish 
it from the word “in”.) [The nautical mile = 6076 ft = 1852 km is used by ships 
on the open sea and was originally defined as 1>60 of a degree latitude on Earth’s 
surface. A speed of 1 knot is 1 nautical mile per hour. Weather forecasts use it too.] 

Time
The standard unit of time is the second (s). For many years, the second was defined as  
1>86,400 of a mean solar day  (24 h>day * 60 min>h * 60 s>min = 86,400 s>day).  
The standard second can be defined more precisely in terms of the frequency of 
radiation emitted by cesium atoms when they pass between two particular states. 
 [Specifically, one second is the time required for 9,192,631,770 periods of this radiation. 
This number was chosen to keep “one second” the same as in the old definition.] 
There are, by definition, 60 s in one minute (min) and 60 minutes in one hour (h). 
Table 1 9 2 presents a range of time intervals, rounded off to the nearest power of 10.

New definition of the meter

FIGURE 1 – 5  Some lengths: (a) viruses 
(about 10-7 m long) attacking a cell;  
(b) Mt. Everest’s height is on the order  
of 104 m (8850 m, to be precise). 

(a)

(b)

TABLE 1 – 2  Some Typical Time Intervals  
(order of magnitude)

Time Interval Seconds (approximate)

Lifetime of very unstable  
subatomic particle 10-23 s

Lifetime of radioactive elements 10-22 s to 1028 s
Lifetime of muon 10-6  s

Time between human heartbeats 100 s ( = 1 s)
One day 105 s
One year 3 * 107 s

Human life span 2 * 109 s
Length of recorded history 1011 s
Humans on Earth 1014 s
Life on Earth 1017 s

Age of Universe 4 * 1017 s

SECTION 1–4 Units, Standards, and the SI System 29
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30 CHAPTER 1

†Some exceptions are for angle (radians : see Chapter 10), solid angle (steradian), and sound level 
(bel or decibel, Chapter 16). 

*Some Sections of this book, such as this subsection, may be considered optional at the discretion of 
the instructor and they are marked with an asterisk (*). See the Preface for more details.

TABLE 1 – 3 Some Masses

Object
Kilograms  

(approximate)

Electron 10-30 kg
Proton, neutron 10-27 kg
DNA molecule 10-17 kg
Bacterium 10-15 kg
Mosquito 10-5 kg
Plum 10-1 kg
Human 102 kg
Ship 108 kg
Earth 6 * 1024 kg
Sun 2 * 1030 kg
Galaxy 1041 kg

TABLE 1 – 4 Metric (SI) Prefixes

Prefix Abbreviation Value

quetta Q 1030

ronna R 1027

yotta Y 1024

zetta Z 1021

exa E 1018

peta P 1015

tera T 1012

giga G 109

mega M 106

kilo k 103

hecto h 102

deka da 101

deci d 10-1

centi c 10-2

milli m 10-3

micro† m 10-6

nano n 10-9

pico p 10-12

femto f 10-15

atto a 10-18

zepto z 10-21

yocto y 10-24

ronto r 10-27

quecto q 10-30

†m is the Greek letter “mu.”

Mass
The standard unit of mass is the kilogram (kg). The standard mass has been, since 
1889, a particular platinum 9 iridium cylinder, kept at the International Bureau of 
Weights and Measures near Paris, France, whose mass is defined as exactly 1 kg.  
A range of masses is presented in Table 1 9 3. [For practical purposes, a 1 kg mass 
weighs about 2.2 pounds on Earth.]

1 metric ton is 1000 kg. In the British system of units, 1 ton is 2000 pounds.
When dealing with atoms and molecules, we usually use the unified atomic 

mass unit (u or amu). In terms of the kilogram,
1 u = 1.6605 * 10-27 kg.

(Precise values of this and other numbers are given inside the front cover.)  
The density of a uniform object is its mass divided by its volume, commonly 
expressed in kg>m3. 

Unit Prefixes
In the metric system, the larger and smaller units are defined in multiples of 10 
from the standard unit, and this makes calculation particularly easy. Thus 1 kilo- 
me ter (km) is 1000 m, 1 centimeter is 1

100 m, 1 millimeter (mm) is 1
1000 m or  

1
10 cm, and so on. The prefixes “centi-,” “kilo-,” and others are listed in Table 1 9 4 
and can be applied not only to units of length but to units of volume, mass, or 
any other unit. For example, a centiliter (cL) is 1

100 liter (L), and a kilogram (kg) 
is 1000 grams (g). An 8.2-megapixel camera has a detector with 8,200,000 pixels 
(individual “picture elements”).

In common usage,  1 mm (= 10 - 6 m)  is called 1 micron.

Systems of Units
When dealing with the laws and equations of physics it is very important to use  
a consistent set of units. Several systems of units have been in use over the years. 
Today the most important is the Système International (French for International 
System), which is abbreviated SI. In SI units, the standard of length is the meter, 
the standard for time is the second, and the standard for mass is the kilogram. 
This  system used to be called the MKS (meter-kilogram-second) system.

A second metric system is the cgs system, in which the centimeter, gram, and 
second are the standard units of length, mass, and time, as abbreviated in the title. 
The British engineering system (although more used in the U.S. than Britain) has 
as its standards the foot for length, the pound for force, and the second for time.

We use SI units almost exclusively in this book, although we often define the 
cgs and British units when a new quantity is introduced. In the SI, there have 
traditionally been seven base quantities, each defined in terms of a standard; 
seven is the smallest number of base quantities consistent with a full description 
of the physical world. See Table 1 9 5. All other quantities† can be defined in terms 
of seven base quantities; see the Table inside the front cover which lists many 
quantities and their units in terms of base units.

A New SI
As always in science, new ideas and approaches can produce better precision and 
closer correspondence with the real world. Even for units and standards.

International organizations on units have proposed further changes that 
should make standards more readily available and reproducible. To cite one 
example, the standard kilogram (see above) has been found to have changed 
slightly in mass ( contamination is one cause).

The new redefinition of SI standards follows the method already used for the 
meter as being related to the defined value of the speed of light, as we mentioned on  
page 29 under “Length”.  For example, the charge on the electron, e, instead of being a  
measured value, becomes defined as a certain value (its current value), and the unit 
of electric charge (the coulomb) follows from that. All units then become based on 

P R O B L E M  S O LV I N G
Always use a consistent set of units

*
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TABLE 1 – 5  
Traditional SI Base Quantities

Quantity Unit
Unit 

Abbreviation

Length meter m
Time second s
Mass kilogram kg
Electric  

current ampere A
Temperature kelvin K
Amount of  

substance mole mol
Luminous  

intensity candela cd

EXAMPLE 1 – 2 The 8000-m peaks. There are only 14 peaks whose summits 
are over 8000 m above sea level. They are the highest peaks in the world 
(Fig.  1 9 6 and Table 1 9 6) and are referred to as “eight-thousanders.” What is 
the elevation, in feet, of an elevation of 8000 m?

APPROACH We need to convert meters to feet, and we can start with the 
conversion factor  1 in. = 2.54 cm,  which is exact. That is,  1 in. = 2.5400 cm  to 
any number of significant figures, because it is defined to be.

SOLUTION One foot is defined to be 12 in., so we can write

1 ft =  (12  in. ) ¢2.54 
cm
 in. 

≤ = 30.48 cm = 0.3048 m,

which is exact. Note how the units cancel (colored slashes). We can rewrite this 
equation to find the number of feet in 1 meter:

1 m =
1 ft

0.3048
= 3.28084 ft.

(We could carry the result to 6 significant figures because 0.3048 is exact,  
0.304800 g.) We multiply this equation by 8000.0 (to have five significant figures):

8000.0 m =  (8000.0  m ) ¢3.28084 
ft

 m 
≤ = 26,247 ft.

An elevation of 8000 m is 26,247 ft above sea level.

NOTE We could have done the unit conversions all in one line:

8000.0 m =  (8000.0  m ) ¢ 100  cm 
1  m 

≤ ¢ 1  in. 
2.54  cm 

≤ ¢ 1 ft
12  in. 

≤ = 26,247 ft.

The key is to multiply conversion factors, each equal to one  (  = 1.0000),  and 
to make sure which units cancel.

P H Y S I C S  A P P L I E D
The world’s tallest peaks

FIGURE 1 – 6  The world’s second 
highest peak, K2, whose summit is 
considered the most difficult of the 
“8000-ers.” Example 1 9 2.

defined fundamental constants like e and the speed of light. Seven is still the number 
of basic standards. The new definitions maintain the values of the traditional defini-
tions: the “new” meter is the same length as the “old” meter. The new definitions do 
not change our understanding of what length, time, or mass means.

For us, using this book, the difference between the new SI and the traditional 
SI is highly technical and does not affect the physics we study. We include the 
traditional SI because there is some good physics in explaining it. [The Table of 
Fundamental Constants inside the front cover would look slightly different using 
the new SI. The value of the charge e on the electron, for example, is defined, and so 
would have no uncertainty attached to it; instead, our Table inside the front cover 
includes the traditional SI measured uncertainty (updated) of {98 * 10-29 C.]

1–5 Converting Units
Any quantity we measure, such as a length, a speed, or an electric current, consists 
of a number and a unit. Often we are given a quantity in one set of units, but we 
want it expressed in another set of units. For example, suppose we measure that 
a shelf is 21.5 inches wide, and we want to express this in centimeters. We must 
use a conversion factor, which in this case is, by definition, exactly

1 in. = 2.54 cm

or, written another way,

1 = 2.54 cm>in.

Since multiplying by the number one does not change anything, the width of our 
shelf, in cm, is

21.5 inches =  (21.5  in. ) * a2.54 
cm
 in. 

b = 54.6 cm.

Note how the units (inches in this case) cancelled out (thin red lines). A Table 
 containing many unit conversions is found inside the front cover of this book. 
Let’s consider some Examples.

TABLE 1 – 6 The 8000-m Peaks

Peak Height (m)

Mt. Everest 8850
K2 8611
Kangchenjunga 8586
Lhotse 8516
Makalu 8462
Cho Oyu 8201
Dhaulagiri 8167
Manaslu 8156
Nanga Parbat 8125
Annapurna 8091
Gasherbrum I 8068
Broad Peak 8047
Gasherbrum II 8035
Shisha Pangma 8013

SECTION 1–5 Converting Units 31
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32 CHAPTER 1 Introduction, Measurement, Estimating

EXERCISE E The names and elevations of the 14 eight-thousand-meter peaks in the 
world (see Example 1 9 2) are given in Table 1 9 6, repeated here. They are all in the Hima-
laya mountain range in India, Pakistan, Tibet, and China. Determine the elevation of the 
world’s three highest peaks in feet.

EXAMPLE 1 – 3 Apartment area. You have seen a nice apartment whose 
floor area is 880 square feet (ft2). What is its area in square meters?

APPROACH We use the same conversion factor,  1 in. = 2.54 cm,  but this time 
we have to use it twice.

SOLUTION Because  1 in. = 2.54 cm = 0.0254 m,  then

1 ft2 =  (12 in.) 2(0.0254 m>in.) 2 = 0.0929 m2.
So

880 ft2 =  (880 ft2) (0.0929 m2>ft2)   L   82 m2.

NOTE As a rule of thumb, an area given in ft2 is roughly 10 times the number 
of square meters (more precisely, about 10.8*).

Rule of thumb:
Floor area in ft 2 is about 10 * 
area in m2: 100 m2 L 1000 ft 2

EXAMPLE 1 – 4 Speeds. Where the posted speed limit is 55 miles per hour 
(mi>h or mph), what is this speed (a) in meters per second (m>s) and (b) in 
kilometers per hour (km>h)?

APPROACH We again use the conversion factor  1 in. = 2.54 cm,  and we recall 
that there are 5280 feet in a mile and 12 inches in a foot; also, one hour contains  
(60 min>h) * (60 s>min) = 3600 s>h.

SOLUTION (a) We can write 1 mile as

 1 mi =  (5280  ft ) ¢12 
 in. 
 ft 

≤ ¢2.54 
 cm 
 in. 

≤ ¢ 1 m
100  cm 

≤
 = 1609 m.

We also know that 1 hour contains 3600 s, so

55 
mi
h

= ¢55 
 mi 
 h 

≤ ¢1609 
m

 mi 
≤ ¢ 1  h 

3600 s
≤ = 25 

m
s

,

where we rounded off to two significant figures.

(b) Now we use  1 mi = 1609 m = 1.609 km;  then

55 
mi
h

= ¢55 
 mi 
h

≤ ¢1.609 
km
 mi 

≤ = 88 
km
h

.

NOTE Each conversion factor is equal to one. You can look up most conversion 
factors in the Table inside the front cover.

P R O B L E M  S O LV I N G
Conversion factors = 1

EXERCISE G Return to the first Chapter-Opening Question, page 23, and answer it again  
now. Try to explain why you may have answered differently the first time.

When changing units, you can avoid making an error in the use of conversion 
factors by checking that units cancel out properly. For example, in our conversion 
of 1 mi to 1609 m in Example 1 9 4(a), if we had incorrectly used the factor (100 cm

1 m ) 
instead of ( 1 m

100 cm), the centimeter units would not have cancelled out; we would not 
have ended up with meters.

TABLE 1 – 6 The 8000-m Peaks

Peak Height (m)

Mt. Everest 8850
K2 8611
Kangchenjunga 8586
Lhotse 8516
Makalu 8462
Cho Oyu 8201
Dhaulagiri 8167
Manaslu 8156
Nanga Parbat 8125
Annapurna 8091
Gasherbrum I 8068
Broad Peak 8047
Gasherbrum II 8035
Shisha Pangma 8013

The first two equations in Example 1 9 2 on the previous page show how to 
change from feet to meters, or meters to feet. For practical purposes

1 m = 3.28 ft  L   3.3 ft

which means that we can change any distance or height in meters to feet by 
multiplying by 3 and adding 10% (0.1). For example, a 3000-m-high peak in feet 
is 9000 ft + 900 ft L 10,000 ft .

P R O B L E M  S O LV I N G
Unit conversion is wrong  

if units do not cancel

EXERCISE F One hectare is defined as 1.000 * 104 m2. There are 640 acres in a square 
mile. Both units are used for land area. (a) How many acres are in one hectare? (b) What 
would be an easy everyday rule-of-thumb conversion factor?
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†Formulas like this for volume, area, etc., are found inside the back cover of this book.

EXAMPLE 1 – 5 ESTIMATE Volume of a lake. Estimate how much water 
there is in a  particular lake, Fig. 1 9 7a, which is roughly circular, about 1 km 
across, and you guess it has an average depth of about 10 m.

APPROACH No lake is a perfect circle, nor can lakes be expected to have a 
 perfectly flat  bottom. We are only estimating here. To estimate the volume, we can 
use a simple model of the lake as a cylinder: we multiply the average depth of the 
lake times its roughly circular surface area, as if the lake were a cylinder (Fig. 1 9 7b).

SOLUTION The volume V of a cylinder is the product of its height h times 
the area of its base:  V = hpr2,  where r is the radius of the circular base.† The 
radius r is  12 km = 500 m,  so the volume is approximately

V = hpr2  L    (10 m) * (3) * (5 * 102 m) 2  L   8 * 106 m3  L   107 m3,

where p was rounded off to 3. So the volume is on the order of 107 m3, ten 
million cubic meters. Because of all the estimates that went into this calculation,  
the order-of-magnitude estimate (107 m3) is probably better to quote than  
the 8 * 106 m3 figure.

NOTE To express our result in U.S. gallons, we see in the Table on the 
inside front cover that  1 liter = 10-3 m3 L 1

4 gallon.  Hence, the lake contains  
about (8 * 106 m3) (1 gallon>4 * 10 - 3 m3) L 2 * 109  gallons of water.

P H Y S I C S  A P P L I E D
Estimating the volume (or mass) of 
a lake; see also Fig. 1–7

(b)

(a)

10 m

r = 500 m

FIGURE 1 – 7  Example 1 9 5. (a) How much water is in this 
lake? (Photo is one of the Rae Lakes in the Sierra Nevada 
of California.) (b) Model of the lake as a cylinder. [We could go 
one step further and estimate the mass or weight of this lake. 
We will see later that water has a density of 1000 kg>m3,  
so this lake has a mass of about (103 kg>m3) (107 m3) L 1010 kg, 
which is about 10 billion kg or 10 million metric tons. 
(A metric ton is 1000 kg, about 2200 lb, slightly larger than a 
British ton, 2000 lb.)]

This is an exciting and powerful Section that will be useful throughout this book, 
and in real life. We will see how to make approximate calculations of quantities 
you may never have dreamed you could do. 

Also, we are sometimes interested only in an approximate value for a quantity, 
maybe because an accurate calculation would take more time than it is worth or 
requires data that are not available. In other cases, we may want to make a rough 
estimate in order to check a calculation made on a calculator, to make sure that 
no blunders were made when the numbers were entered.

A rough estimate can be made by rounding off all numbers to one significant 
figure and its power of 10, and after the calculation is made, again keeping only 
one significant figure. Such an estimate is called an order-of-magnitude estimate 
and can be accurate within a factor of 10, and often better. In fact, the phrase 
“order of  magnitude” is sometimes used to refer simply to the power of 10.

P R O B L E M  S O LV I N G
How to make a rough estimate

1–6  Order of Magnitude: Rapid Estimating

SECTION 1–6 Order of Magnitude: Rapid Estimating 33
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34 CHAPTER 1 Introduction, Measurement, Estimating

It cannot be emphasized enough how important it is to draw a diagram when 
solving a physics Problem, as the next Example shows.

EXAMPLE 1 – 7 ESTIMATE Height by triangulation. Estimate the height 
of the building shown in Fig. 1 9 9, by “triangulation,” with the help of a bus-stop 
pole and a friend.

APPROACH By standing your friend next to the pole, you estimate the height of 
the pole to be 3 m. You next step away from the pole until the top of the pole is  
in line with the top of the building, Fig. 1 9 9a. You are 5 ft 6 in. tall, so your eyes are 
about 1.5 m above the ground. Your friend is taller, and when she stretches out her 
arms, one hand touches you and the other touches the pole, so you estimate that 
distance as 2 m (Fig. 1 9 9a). You then pace off the distance from the pole to the 
base of the building with big, 1-m-long steps, and you get a total of 16 steps or 16 m.

SOLUTION Now you draw, to scale, the diagram shown in Fig. 1 9 9b using 
these measurements. You can measure, right on the diagram, the last side of 
the   triangle to be about  x L 13 or 14 m.  Alternatively, you can use similar 
triangles to obtain the height x:

1.5 m
2 m

=
x

18 m
,

so
x  L   13 12 m.

Finally you add in your eye height of 1.5 m above the ground to get your final 
result: the  building is about 15 m tall.

FIGURE 1 – 8  Example 1 9 6. 
Micrometer used for measuring 
small thicknesses.

FIGURE 1 – 9  Example 1 9 7. 
Diagrams are really useful!

16 m
18 m

2 m
1.5 m

(b)

x = ?

1.5 m

3 m

(a)

1.5 m

?

2 m

EXAMPLE 1 – 6 ESTIMATE Thickness of a sheet of paper. Estimate the 
thickness of a page of this book.

APPROACH At first you might think that a special measuring device, a 
 micro meter (Fig. 1 9 8), is needed to measure the thickness of one page since an  
ordinary ruler can not be read so finely. But we can use a trick or, to put it in  
physics terms, make use of a symmetry: we can make the reasonable  
assumption that all the pages of this book are equal in thickness.

SOLUTION We can use a ruler to measure hundreds of pages at once. If you 
measure the thickness of the first 500 pages of this book (page 1 to page 500), you 
might get something like 1.5 cm. Note that 500 numbered pages, counted front and 
back, is 250 separate pieces of paper. So one sheet must have a  thickness of about

1.5 cm
250 sheets

  L   6 * 10-3 cm = 6 * 10-2 mm,

or less than a tenth of a millimeter (0.1 mm).

EXAMPLE 1 – 8 ESTIMATE Total number of heartbeats. Estimate the 
total number of beats a typical human heart makes in a lifetime.

APPROACH A typical resting heart rate is 70 beats>min. But during exercise it 
can be a lot higher. A reasonable average might be 80 beats>min.

SOLUTION One year, in seconds, is  (24 h>d) (3600 s>h) (365 d) L 3 * 107 s.  
If an  average person lives  70 years =  (70 yr) (3 * 107 s>yr) L 2 * 109 s,  then 
the total number of heartbeats would be about¢80 

beats
min

≤ ¢ 1 min
60 s

≤ (2 * 109 s)   L   3 * 109,

or 3 billion.
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EXERCISE H Return to the second Chapter-Opening Question, page 23, and answer it 
again now. Try to explain why you may have answered differently the first time.

EXAMPLE 1 – 9 ESTIMATE Estimating the radius of Earth. Believe it  
or not, you can estimate the radius of the Earth without having to go into space 
(see the photograph on page 23). If you have ever been on the shore of a large lake,  
you may have noticed that you cannot see the beaches, piers, or rocks at water 
level across the lake on the opposite shore. The lake seems to bulge out between 
you and the opposite shore : a good clue that the Earth is round. Suppose you 
climb a stepladder and discover that when your eyes are 10 ft (3.0 m) above the 
water, you can just see the rocks at water level on the opposite shore. From a map, 
you estimate the distance to the opposite shore as  d L 6.1 km.  Use Fig. 1 9 10 
with  h = 3.0 m  to estimate the radius R of the Earth.

APPROACH We use simple geometry, including the theorem of Pythagoras,  
c2 = a2 + b2,  where c is the length of the hypotenuse of any right triangle, 
and a and b are the lengths of the other two sides.

SOLUTION For the right triangle of Fig. 1 9 10, the two sides are the radius of 
the Earth R and the distance  d = 6.1 km = 6100 m.  The hypotenuse is approx-
imately the length  R + h,  where  h = 3.0 m.  By the Pythagorean theorem,

 R2 + d2 L (R + h) 2

   L R2 + 2hR + h2.
We solve algebraically for R, after cancelled R2 on both sides:

 R  L   
d2 - h2

2h
=

(6100 m)2 - (3.0 m)2

6.0 m
 = 6.2 * 106 m
 = 6200 km.

NOTE Precise measurements give 6380 km. But look at your achievement! 
With a few simple rough measurements and simple geometry, you made a good 
 estimate of the Earth’s radius. You did not need to go out in space, nor did you 
need a very long measuring tape.†

Earth

Center
of Earth

Lake

R R

d

h

FIGURE 1 – 10  Example 1 9 9, but 
not to scale. You can just barely see 
rocks at water level on the opposite 
shore of a lake 6.1 km wide if you 
stand on a stepladder.

Another type of estimate, this one made famous by Enrico Fermi (1901 9 1954,  
Fig. 1 9 11), was to show his students how to estimate the number of piano tuners 
in a city, such as Chicago or San Francisco. To get a rough order-of-magnitude 
estimate of the number of piano tuners today in San Francisco, a city of about 
800,000 inhabitants, we can proceed by estimating the number of functioning 
pianos, how often each piano is tuned, and how many pianos each tuner can tune. 
To estimate the number of pianos in San Francisco, we note that certainly not 
everyone has a piano. A guess of 1 family in 3 having a piano would correspond 
to 1 piano per 12 persons, assuming an average family of 4 persons.

As an order of magnitude, let’s say 1 piano per 10 people. This is certainly 
more reasonable than 1 per 100 people, or 1 per every person, so let’s proceed 
with the estimate that 1 person in 10 has a piano, or about 80,000 pianos in San 
Francisco. Now a piano tuner needs an hour or two to tune a piano. So let’s 
 estimate that a tuner can tune 4 or 5 pianos a day. A piano ought to be tuned 
every 6 months or a year : let’s say once each year. A piano tuner tuning 4 pianos 
a day, 5 days a week, 50 weeks a year can tune about 1000 pianos a year. So San 
Francisco, with its (very) roughly 80,000 pianos, needs about 80 piano tuners. This 
is, of course, only a rough estimate.‡ It tells us that there must be many more than 
10 piano tuners, and surely not as many as 1000.

P R O B L E M  S O LV I N G
Estimating how many piano 
tuners there are in a city

FIGURE 1 – 11  Enrico Fermi. 
Fermi contributed significantly to 
both theoretical and experimental 
physics, a feat almost unique in 
modern times.

†As a teenager I had a summer job washing dishes at a camp located 350 m above famous Lake Tahoe 
in California. Starting the drive down to Lake Tahoe, the beaches across the lake were visible. But 
approaching the level of Lake Tahoe, the beaches across the lake were no longer visible! I realized 
that Lake Tahoe was bulging up in the middle, blocking the view. (“The Earth is round.”)
‡A search on the internet (done after this calculation) reveals over 50 listings. Each of these listings 
may employ more than one tuner, but on the other hand, each may also do repairs as well as tuning. 
In any case, our estimate is reasonable.

SECTION 1–6 Order of Magnitude: Rapid Estimating 35
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36 CHAPTER 1 Introduction, Measurement, Estimating

1–7  Dimensions and  
Dimensional Analysis

When we speak of the dimensions of a quantity, we are referring to the type of 
base units that make it up. The dimensions of area, for example, are always length 
squared, abbreviated [L2] using square brackets; the units can be square meters, 
square feet, cm2, and so on. Velocity, on the other hand, can be measured in units 
of km>h, m>s, or mi>h, but the dimensions are always a length [L] divided by a 
time [T ]: that is, [L>T  ] .

The formula for a quantity may be different in different cases, but the dimen-
sions remain the same. For example, the area of a triangle of base b and height h is   
A = 1

2 bh,  whereas the area of a circle of radius r is  A = pr2.  The formulas are 
 different in the two cases, but the dimensions of area are always [L2].

Dimensions can be used as a help in working out relationships, a procedure 
referred to as dimensional analysis. One useful technique is the use of dimensions 
to check if a relationship is incorrect. Note that we add or subtract quantities only 
if they have the same dimensions (we don’t add centimeters and hours); and the  
quantities on each side of an equals sign must have the same dimensions. (In numer-
ical calculations, the units must also be the same on both sides of an equation.)

For example, suppose you derived the equation  v = v0 + 1
2 at2,  where v is 

the velocity of an object after a time t, v0 is the object’s initial velocity, and the 
object  undergoes an acceleration a. Let’s do a dimensional check to see if this 
equation could be correct or is surely incorrect. Note that numerical factors, like 
the 1

2 here, do not affect dimensional checks. We write a dimensional equation as 
follows,  remembering that the dimensions of velocity are [L>T  ] and (as we shall 
see in Chapter 2) the dimensions of acceleration are [L>T 2]:

 B L
T
R   ≟   B L

T
R + B L

T 2 R [T 2]

 ≟   B L
T
R + [L].

The dimensions are incorrect: on the right side, we have the sum of quantities 
whose dimensions are not the same. Thus we conclude that an error was made 
in the derivation of the original equation.

A dimensional check can only tell you when a relationship is wrong. It can 
not tell you if it is completely right. For example, a dimensionless numerical factor 
(such as 1

2 or 2p) could be missing.
Dimensional analysis can also be used as a quick check on an equation you 

are not sure about. For example,  consider a simple pendulum of length ℓ. Suppose 
that you can’t remember whether the equation for the period T (the time to make 
one back-and-forth swing) is  T = 2p1ℓ>g  or  T = 2p1g>ℓ,  where g is the accel-
eration due to gravity and, like all accelerations, has dimensions [L>T 2]. (Do not 
worry about these formulas : the correct one will be derived in Chapter 11; what 
we are concerned about here is a person’s recalling whether it contains ℓ>g or g>ℓ.)  
A dimensional check shows that the former (ℓ>g)  is correct:

[T  ] = B [L]

[L>T 2]
= 2[T 2] = [T  ],

whereas the latter (g>ℓ)  is not:

[T  ]  ≠   C [L>T 2]
[L]

= B 1

[T 2]
=

1
[T  ]

⋅

The constant 2p has no dimensions and so can’t be checked using  dimensions.
Further uses of dimensional analysis are found in Appendix D.

*

*Some Sections of this book, such as this one, may be considered optional at the discretion of the 
 instructor, and they are marked with an asterisk (*). See the Preface for more details.
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Questions 37

EXAMPLE 1 – 10 Planck length. The smallest meaningful measure of length is 
called the “Planck length,” and is defined in terms of three fundamental  constants 
in nature: the speed of light  c = 3.00 * 10 8 m>s,  the gravitational constant  
G = 6.67 * 10-11 m3>kg # s2,  and Planck’s constant  h = 6.63 * 10-34 kg ⋅ m2>s.  
The Planck length lP (l is the Greek letter “lambda”) is given by the following 
combination of these three constants:

lP = AGh
c3

.

Show that the dimensions of lP are length [L], and find the order of magnitude of lP .

APPROACH We rewrite the above equation in terms of dimensions. The 
 dimensions of c are [L>T  ], of G are [L3>MT 2 ], and of h are [ML2>T ].

SOLUTION The dimensions of lP areC [L3>MT 2 ] [ML2>T ]
[L3>T 3 ]

= 2[L2 ] = [L]

which is a length. Good. The value of the Planck length is

lP = BGh
c3 = C (6.67 * 10-11 m3>kg # s2) (6.63 * 10-34 kg # m2>s)

(3.00 * 10 8 m>s)3   L   4 * 10-35 m,

which is on the order of 10-34 or 10-35 m.

NOTE Some recent theories (Chapters 43 and 44) suggest that the smallest 
 particles (quarks, leptons) have sizes on the order of the Planck length, 10-35 m. 
These  theories also suggest that the “Big Bang,” with which the Universe is believed 
to have begun, started from an initial size on the order of the Planck length.

Summary
[The Summary that appears at the end of each Chapter in this book 
gives a brief overview of the main ideas of the Chapter. The  Summary 
cannot serve to give an understanding of the material, which can be 
accomplished only by a detailed reading of the  Chapter.]

Physics, like other sciences, is a creative endeavor. It is not 
simply a collection of facts. Important theories are created with 
the idea of explaining observations. To be accepted, theories are 
tested by comparing their predictions with the results of actual 
experiments. Note that, in general, a theory cannot be “proved” 
in an absolute sense.

Scientists often devise models of physical phenomena.  
A model is a kind of picture or analogy that helps to describe 
the phenomena in terms of something we already know about.  
A theory, often developed from a model, is usually deeper and 
more complex than a simple model.

A scientific law is a concise statement, often expressed in the 
form of an equation, which quantitatively describes a wide range 
of phenomena.

Measurements play a crucial role in physics, but can never 
be perfectly precise. It is important to specify the uncertainty of 
a measurement either by stating it directly using the {  notation, 
and>or by keeping only the correct number of significant figures.

Physical quantities are always specified relative to a particular 
standard or unit, and the unit used should always be stated. The 
commonly accepted set of units today is the Système  International 
(SI), in which the standard units of length, mass, and time are the 
meter, kilogram, and second.

When converting units, check all conversion factors for  correct 
cancellation of units.

Making rough, order-of-magnitude estimates is a very useful 
technique in science as well as in everyday life.

[*The dimensions of a quantity refer to the combination of 
base quantities that comprise it. Velocity, for example, has dimen-
sions of [length>time] or [L>T ]. Working with only the dimensions 
of the various quantities in a given relationship : this technique is 
called dimensional analysis : makes it possible to check a relation-
ship for correct form.]

Questions
 1. What are the merits and drawbacks of using a person’s foot as 

a standard? Consider both (a) a particular person’s foot, and 
(b) any person’s foot. Keep in mind that it is advantageous 
that fundamental standards be accessible (easy to compare to), 
invariable (do not change), indestructible, and reproducible.

 2. What is wrong with this road sign:
Memphis 7 mi (11.263 km)?

 3. Why is it incorrect to think that the more digits you include 
in your answer, the more accurate it is?

 4. For an answer to be complete, units need to be specified. Why?
 5. You measure the radius of a wheel to be 4.16 cm. If you 

 multiply by 2 to get the diameter, should you write the 
result as 8 cm or as 8.32 cm? Justify your answer.

 6. Express the sine of 30.0° with the correct number of signif-
icant figures.

 7. List assumptions useful to estimate the number of car 
mechanics in (a) San Francisco, (b) your hometown, and 
then make the estimates.
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38 CHAPTER 1 Introduction, Measurement, Estimating

MisConceptual Questions
[List all answers that are valid.]
 1. The laws of physics

(a) are permanent and unalterable.
(b) are part of nature and are waiting to be discovered.
(c) can change, but only because of evidence that convinces 

the community of physicists.
(d) apply to physics but not necessarily to chemistry or 

other fields.
(e) were basically complete by 1900, and have undergone 

only minor revisions since.
(f ) are accepted by all major world countries, and cannot 

be changed without international treaties.
 2. How should we write the result of the following calculation, 

being careful about significant figures?
(3.84 s) (37 m>s) +  (5.3 s) (14.1 m>s) =

(a) 200 m.
(b) 210 m.
(c) 216.81 m.

(d) 217 m.
(e) 220 m.

 3. Four students use different instruments to measure the 
length of the same pen. Which measurement implies the 
greatest precision? 
(a) 160.0 mm. 
(b) 16.0 cm. 
(c) 0.160 m. 

(d) 0.00016 km.
(e) Need more 

information.
 4. The number 0.0078 has how many significant figures? 

(a) 1.
(b) 2.

(c) 3.
(d) 4.

 5. How many significant figures does  1.362 + 25.2  have?
(a) 2.
(b) 3.

(c) 4.
(d) 5.

 6. Accuracy represents 
(a) repeatability of a measurement, using a given  instrument. 
(b) how close a measurement is to the true value. 
(c) an ideal number of measurements to make. 
(d) how poorly an instrument is operating. 

 7. Precision represents
(a) repeatability of a measurement, using a given  instrument. 
(b) how close a measurement is to the true value. 
(c) an ideal number of measurements to make. 
(d) how poorly an instrument is operating. 

 8. To convert from ft2 to yd2, you should
(a) multiply by 3.
(b) multiply by 1>3.
(c) multiply by 9.

(d) multiply by 1>9.
(e) multiply by 6.
(f ) multiply by 1>6.

 9. Which is not true about an order-of-magnitude estimation?
(a) It gives you a rough idea of the answer.
(b) It can be done by keeping only one significant figure.
(c) It can be used to check if an exact calculation is reasonable.
(d) It may require making some reasonable assumptions in 

order to calculate the answer.
(e) It will always be accurate to at least two significant  figures.

 10. [L2] represents the dimensions for which of the following?
(a) cm2.
(b) square feet. 

(c) m2.
(d) All of the above.

Problems
[The Problems at the end of each Chapter are ranked I, II, or III 
according to estimated difficulty, with (I) Problems being  easiest. 
Level III are meant as challenges for the best students. The Problems 
are arranged by Section, meaning that the reader should have read up 
to and including that Section, but not only that Section : Problems 
often depend on earlier material. Next is a set of “General Problems” 
not arranged by Section and not ranked.]

1 – 3  Measurement, Uncertainty, Significant Figures
(Note: In Problems, assume a number like 6.4 is accurate to {0.1;  
and 950 is accurate to 2 significant figures ({10) unless 950 is said to  
be “precisely” or “very nearly” 950, in which case assume  950 { 1.)

 1. (I) How many significant figures do each of the  following 
numbers have: (a) 777, (b) 81.60, (c) 7.03, (d) 0.03, (e) 0.0086, 
(f ) 6465, and (g) 8700?

 2. (I) Write the following numbers in powers of 10 notation:  
(a) 5.859, (b) 21.8, (c) 0.0068, (d) 328.65, (e) 0.219, (f ) 444.

 3. (I) Write out the following numbers in full with the 
correct number of zeros: (a) 8.69 * 10 5,  (b) 9.1 * 10 3, 
(c) 2.5 * 10-1,  (d) 4.76 * 10 2,  and (e) 3.62 * 10-5.

 4. (II) What is the percent uncertainty in the measurement  
3.25 { 0.35 m?

 5. (II) Time intervals measured with a physical stopwatch 
typically have an uncertainty of about 0.2 s, due to human 
reaction time at the start and stop moments. What is the 
percent uncertainty of a hand-timed measurement of  
(a) 4.5 s, (b) 45 s, (c) 4.5 min?

 6. (II) Add  (9.2 * 10 3 s) + (6.3 * 10 4 s) + (0.008 * 10 6 s).

 7. (II) Multiply  4.079 * 10 2 m  by  0.057 * 10-1 m, taking into 
account significant figures.

 8. (II) What, approximately, is the percent uncertainty for 
a measurement given as 1.27 m2?

 9. (II) For small angles u, the numerical value of sin u is 
approximately the same as the numerical value of tan u. 
Find the largest angle for which sine and tangent agree to 
within two significant figures.

 10. (II) A report stated that “a survey of 215 students found that 
37.2% had bought a sugar-rich soft drink the day before.” 
(a) How many students bought a soft drink? (b) What is 
wrong with the original statement?

 11. (II) A watch manufacturer claims that its watches gain or 
lose no more than 9 seconds in a year. How accurate are 
these watches, expressed as a percentage?

 12. (III) What is the area, and its approximate uncertainty, of 
a circle of radius  5.1 * 10 4 cm?

 13. (III) What, roughly, is the percent uncertainty in the volume 
of a spherical beach ball of radius  r = 0.64 { 0.04 m?

1 – 4 and 1 – 5  Units, Standards, SI, Converting Units
 14. (I) Write the following as full (decimal) numbers without 

prefixes on the units: (a) 286.6 mm, (b) 74 mV, (c) 430 mg, 
(d) 47.2 ps, (e) 22.5 nm, (f ) 2.50 gigavolts.

*
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 15. (I) Express the following using the prefixes of Table 1 9 4:  
(a) 3 * 106 volts, (b) 2 * 10-6 meters, (c) 5 * 103 days,  
(d) 18 * 102 bucks, and (e) 9 * 10-7 seconds.

 16. (I) Determine your own height in meters, and your mass 
in kg.

 17. (II) To the correct number of significant figures, use the 
information inside the front cover of this book to deter-
mine the ratio of (a) the surface area of Earth compared 
to the surface area of the Moon, (b) the volume of Earth 
compared to the volume of the Moon.

 18. (II) Would a driver traveling at 15 m>s in a 35 mi>h zone be  
exceeding the speed limit? Why or why not?

 19. (II) The age of the universe is thought to be about  
14 billion years. Assuming two significant figures, write this 
in powers of 10 in (a) years, (b) seconds.

 20. (II) The Sun, on average, is 93 million miles from Earth. 
How many meters is this? Express (a) using powers of  
10, and (b) using a metric prefix (km).

 21. (II) Express the following sum with the correct number of 
significant figures:  1.90 m + 142.5 cm + 6.27 * 105 mm.

 22. (II) A typical atom has a diameter of about  1.0 * 10-10 m.   
(a) What is this in inches? (b) Approximately how many 
atoms are along a 1.0-cm line, assuming they just touch?

 23. (II) Determine the conversion factor between  (a) km>h 
and mi>h, (b) m>s and  ft>s, and (c) km>h and m>s.

 24. (II) What is the conversion factor between (a) ft2 and yd2,  
(b) m2 and ft2?

 25. (II) A light-year is the distance light travels in one year  
(at speed = 2.998 * 108 m>s).  (a) How many meters are 
there in 1.00 light-year? (b) An astronomical unit (AU) is the 
 average distance from the Sun to Earth,  1.50 * 108 km.  How 
many AU are there in 1.00 light-year?

 26. (II) How much longer (percentage) is a one-mile race than 
a 1500-m race (“the metric mile”)?

 27. (II) How many wavelengths of orange krypton-86 light 
(Section 1 9 4) would fit into the thickness of one page of 
this book? See Example 1 9 6.

 28. (II) Using the French Academy of Sciences’ original defi-
nition of the meter, calculate Earth’s circumference and 
radius in those meters. Give % error relative to today’s 
accepted values (inside front cover).

 29. (II) A passenger jet uses about 12 liters of fuel per km of 
flight. What is that value expressed as miles per gallon?

 30. (II) American football uses a field that is 100.0 yd long, 
whereas a soccer field is 100.0 m long. Which field is longer, 
and by how much (give yards, meters, and percent)?

 31. (II) (a) How many seconds are there in 1.00 year? (b) How 
many nanoseconds are there in 1.00 year? (c) How many 
years are there in 1.00 second?

 32. (II) Use Table 1 9 3 to estimate the total number of protons  
or neutrons in (a) a bacterium, (b) a DNA molecule,  
(c) the human body, (d) our Galaxy.

 33. (II) The diameter of the planet Mercury is 4879 km. 
(a) What is the surface area of Mercury? (b) How many 
times larger is the surface area of the Earth?

 34. (III) A standard baseball has a circumference of approx-
imately 23 cm. If a baseball had the same mass per unit 
 volume (see Tables in Section 1 9 4) as a neutron or a proton, 
about what would its mass be?

1 – 6 Order-of-Magnitude Estimating
(Note: Remember that for rough estimates, only round numbers 
are needed both as input to calculations and as final results.)

 35. (I) Estimate the order of magnitude (power of 10) of:  
(a) 3200, (b) 86.30 * 103,  (c) 0.076, and (d) 15.0 * 108.

 36. (II) Estimate how many books can be shelved in a  college 
library with 6500 m2 of floor space. Assume 8 shelves high, 
having books on both sides, with corridors 1.5 m wide. 
Assume books are about the size of this one, on average.

 37. (II) Estimate how many hours it would take to run (at 
10 km>h) across the U.S. from New York to California.

 38. (II) Estimate the number of liters of water a human drinks 
in a lifetime.

 39. (II) Estimate the number of cells in an adult human body, 
given that a typical cell has a diameter of about 10 mm, and 
the human body has a density of about 1000 kg>m3 .

 40. (II) Estimate how long it would take one person to mow a 
football field using an ordinary home lawn mower (Fig. 1 9 12). 
(State your assumptions, such as the mower moves with a 
1@km>h speed, and 
has a 0.5-m width.)

 41. (II) Estimate the number of gallons of gasoline consumed 
by the total of all automobile drivers in the U.S., per year.

 42. (II) Estimate the number of dentists (a) in San Francisco 
and (b) in your town or city.

 43. (II) Estimate how many kilograms of laundry soap are 
used in the U.S. in one year (and therefore pumped out of 
washing machines with the dirty water). Assume each load 
of laundry takes 0.1 kg of soap.

 44. (II) How big is a ton (1000 kg)? That is, what is the volume 
of something that weighs a ton? To be specific, estimate the 
diameter of a 1-ton rock, but first make a wild guess: will it  
be 10 cm across, 1 m, or the size of a car? [Hint: Rock has mass 
per volume about 3 times that of water, which is 1 kg per  
liter (103 cm3).]

 45. (II) A hiking trail is 270 km long through varying terrain. 
A group of hikers cover the first 49 km in two and a half 
days. Estimate how much time they should allow for the 
rest of the trip.

 46. (II) Estimate how many days it would take to walk around 
the circumference of the Earth, assuming 12 h walking per 
day at 4 km>h.

 47. (II) Estimate the number of jelly beans  
in the jar of Fig. 1 9 13.

FIGURE 1 – 13   
Problem 47. Estimate 
the number of jelly 
beans in the jar.

FIGURE 1 – 12   
Problem 40.

Problems 39
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 48. (II) Estimate the number of bus drivers (a) in Washington, 
D.C., and (b) in your town.

 49. (III) You are in a hot air balloon, 300 m above the flat 
Texas plains. You look out toward the horizon. How far out 
can you see : that is, how far is your horizon? The Earth’s 
radius is about 6400 km.

 50. (III) I agree to hire you for 30 days. You can decide between 
two methods of payment: either (1) $1000 a day, or (2) one 
penny on the first day, two pennies on the second day and 
continue to double your daily pay each day up through day 
30. Use quick estimation to make your decision, and justify it.

 51. (III) The rubber worn from tires mostly enters the atmosphere 
as particulate pollution. Estimate how much rubber (in kg) is 
put into the air in the United States every year. To get started, 
a good estimate for a tire tread’s depth is 1 cm when new, and 
rubber has a mass of about 1200 kg per m3 of volume.

 52. (III) Many sailboats are docked at a marina 4.4 km away on 
the opposite side of a lake. You stare at one of the sailboats 
because, when you are lying flat at the water’s edge, you 
can just see its deck but none of the side of the sailboat. 
You then go to that sailboat on the other side of the 
lake and  measure that the deck 
is 1.5 m above the level of the 
water. Using Fig. 1 9 14, where  
h = 1.5 m,  estimate the radius R  
of the Earth.

 53. (III) You are lying on a beach, your eyes 20 cm above 
the sand. Just as the Sun sets, fully disappearing over the 
 horizon, you immediately jump up, your eyes now 150 cm 
above the sand, and you can again just see the top of the 
Sun. If you count the number of seconds  (= t)   until the 
Sun fully disappears again, you can estimate the Earth’s 
radius. But for this Prob lem, use the known radius of the 
Earth to calculate the time t.

1 – 7 Dimensions
 54. (I) What are the dimensions of density, which is mass per 

 volume?
 55. (II) The speed v of an object is given by the equation  

v = At3 - Bt,  where t refers to time. (a) What are the 
dimensions of A and B? (b) What are the SI units for the 
constants A and B?

 56. (II) Three students derive the following equations in which 
x refers to distance traveled, v the speed, a the acceleration 
(m>s2), t the time, and the subscript zero (0) means a quantity 
at time  t = 0.  Here are their equations:  (a) x = vt2 + 2at,  
(b) x =  v0 t +  

1
2 at2,  and (c) x =  v0 t +  2at2.  Which of these could  

possibly be  correct according to a dimensional check, and why?
 57. (II) (a) Show that the following combination of the three 

fundamental constants of nature that we used in Example 1 9 10 
(that is G, c, and h) forms a quantity with the dimensions 
of time:

tP = AGh

c5
.

This quantity, tP, is called the Planck time and is thought 
to be the earliest time, after the creation of the Universe, at 
which the currently known laws of physics can be applied. 
(b) Estimate the order of magnitude of tP using values given 
inside the front cover (or Example 1 9 10).

General Problems
 58. Global positioning satellites (GPS) can be used to determine 

your position with great accuracy. If one of the satellites is 
20,000 km from you, and you want to know your position  
to {2 m, what percent uncertainty in the distance is required? 
How many significant figures are needed in the distance?

 59. One mole of atoms consists of  6.02 * 1023  individual atoms. 
If a mole of atoms were spread uniformly over the Earth’s 
surface, how many atoms would there be per square meter?

 60. Computer chips (Fig. 1 9 15) can be etched on circular silicon 
wafers of thickness 0.300 mm that are sliced from a solid 
cylindrical silicon crystal of 
length  25 cm. If each wafer 
can hold 750 chips, what is 
the maximum number of chips 
that can be produced from one 
entire cylinder?

 61. If you used only a keyboard to enter data, how many 
years would it take to fill up a hard drive in a computer 
that can store 1.0 terabytes  (1.0 * 1012 bytes)   of data? 
Assume 40-hour work weeks, and that you can type 150 
characters per minute, and that one byte is one keyboard 
character.

 62. An average family of four uses roughly 1200 L (about 
300 gallons) of water per day  (1 L = 1000 cm3).  How much 
depth would a lake lose per year if it covered an area of  
60 km2 with uniform depth and supplied a local town with  
a population of 40,000 people? Consider only population 
uses, and neglect evaporation, rain, creeks and rivers.

 63. A certain compact disc (CD) contains 783.216 megabytes 
of digital information. Each byte consists of exactly 8 bits. 
When played, a CD player reads the CD’s information  
at a constant rate of 1.4 megabits per second. How many 
 minutes does it take the player to read the entire CD?

 64. An angstrom (symbol Å) is a unit of length, defined as 
10-10 m, which is on the order of the diameter of an atom. 
(a) How many nanometers are in 1.0 angstrom? (b) How 
many femtometers or fermis (the common unit of length 
in nuclear physics) are in 1.0 angstrom? (c) How many 
 angstroms are in 1.0 m? (d) How many angstroms are in 
1.0 light-year (see Problem 25)?

*
*

*

*

*

Earth

Earth center

Lake

R R

d

h

FIGURE 1 – 14  Problem 52.  
You see a sailboat across a lake 
(not to scale). R is the radius of the 
Earth. Because of the curvature of 
the Earth, the water “bulges out” 
between you and the boat. 

FIGURE 1 – 15  Problem 60. The 
wafer held by the hand is shown 
below, enlarged and  illuminated 
by colored light. Visible are rows 
of integrated circuits (chips).
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 65. A typical adult human lung contains about 300 million tiny 
cavities called alveoli. Estimate the average diameter of a 
single alveolus.

 66. Hold a pencil in front of your eye at a position where its 
blunt end just blocks out the Moon (Fig. 1 9 16). Make appro-
priate measurements to estimate the diameter of the Moon, 
given that the Earth 9 Moon distance is  3.8 * 105 km.

 67. A storm dumps 1.0 cm of rain on a city 5 km wide 
and 7 km long in a 2-h period. How many metric tons  
(1 metric ton = 103 kg)  of water fell on the city? (1 cm3 of  
water has a mass of  1 g = 10-3 kg.)   How many gallons 
of water was this?

 68. Greenland’s ice sheet covers over  1.7 * 106 km2  and is 
approximately 2.5 km thick. If it were to melt completely then 
by how much would you expect the ocean to rise? Assume 2

3 
of Earth’s surface is ocean. See Tables inside front and back 
covers.

 69. Noah’s ark was ordered to be 300 cubits long, 50 cubits wide, 
and 30 cubits high. The cubit was a unit of measure equal 
to the length of a human forearm, elbow to the tip of the 
 longest finger. Express the dimensions of Noah’s ark in 
meters, and estimate its volume (m3).

 70. One liter (1000 cm3) of oil is spilled onto a smooth lake. If 
the oil spreads out uniformly until it makes an oil slick just 
one molecule thick, with adjacent molecules just touching, 
estimate the diameter of the oil slick. Assume the oil mole-
cules have a diameter of  2 * 10-10 m.

 71. If you walked north along one of Earth’s lines of longitude 
until you had changed latitude by 1 minute of arc (there are 
60 minutes per degree), how far would you have walked (in 
miles)? This distance is a nautical mile (page 29).

 72. Determine the percent uncertainty in u, and in sin u, when 
(a) u = 15.0° { 0.5°,  (b) u = 75.0° { 0.5°.

 73. Jim stands beside a wide river and wonders how wide it  
is. He spots a large rock on the bank directly across from 
him. He then walks upstream 85 strides and judges that 
the angle between him and 
the rock, which he can still 
see, is now at an angle of 
30° downstream (Fig. 1 9 17). 
Jim measures his stride to be 
about 0.8 m long. Estimate 
the width of the river.

 74. Make a rough estimate of the volume of your body (in m 3).
 75. Estimate the number of plumbers in San Francisco.
 76. Estimate the ratio (order of magnitude) of the mass of a 

human to the mass of a DNA molecule. [Hint: Check the 
Tables in this Chapter.]

 77. The following formula estimates an average person’s lung 
capacity V (in liters, where  1 L = 10 3 cm 3) :

V = 4.1H - 0.018A - 2.7,

where H and A are the person’s height (in meters) and age 
(in years), respectively. In this formula, what are the units 
of the numbers 4.1, 0.018, and 2.7?

 78. The density of an object is defined as its mass divided by its 
volume. Suppose a rock’s mass and volume are measured to 
be 6 g and 2.8325 cm3. To the correct number of significant 
figures, determine the rock’s density (mass>volume).

 79. Recent findings in astrophysics suggest that the observ-
able universe can be modeled as a sphere of radius 
R = 13.7 * 109 light-years = 13.0 * 10 25 m  with an average 
total mass density of about  1 * 10-26 kg>m 3.  Only about 4% 
of total mass is due to “ordinary” matter (such as protons, 
neutrons, and electrons). Estimate how much ordinary 
matter (in kg) there is in the observable universe. (For the 
light-year, see Problem 25.)

A N S W E R S  T O  E X E R C I S E S
A: (d).
B: All three have three significant figures; the number of 

decimal places is (a) 2, (b) 3, (c) 4.
C: No: they have three and two, respectively.
D: (a) 2.58 * 10-2,  3;  (b) 4.23 * 104,  3 (probably);  

(c) 3.4450 * 102, 5.

E: Mt. Everest, 29,035 ft; K2, 28,251 ft; Kangchenjunga, 28,169 ft.
F: (a) 2.47 acres in 1 hectare; (b) 2 12 or even just 2 acres in 

1 hectare. 
G: (f ) 1,000,000; that is, one million.
H: (c).

FIGURE 1 – 16   
Problem 66. How big 
is the Moon?

FIGURE 1 – 17   
Problem 73. 85 Strides

30°

General Problems 41
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CHAPTER-OPENING QUESTION—Guess now!
[Don’t worry about getting the right answer now : you will get another chance later in the 
Chapter. See also page 23 of Chapter 1 for more explanation.]

Two small heavy balls have the same diameter but one weighs twice as much as 
the other. The balls are dropped from a second-story balcony at the exact same 
time. The time to reach the ground below will be:

(a) twice as long for the lighter ball as for the heavier one.
(b) longer for the lighter ball, but not twice as long.
(c) twice as long for the heavier ball as for the lighter one.
(d) longer for the heavier ball, but not twice as long.
(e) nearly the same for both balls.

T he motion of objects : baseballs, automobiles, joggers, and even the Sun and 
Moon : is an obvious part of everyday life. It was not until the sixteenth 
and seventeenth centuries that our modern understanding of motion was 

established. Many individuals contributed to this understanding, particularly 
Galileo Galilei (1564 9 1642) and Isaac Newton (1642 9 1727).

The study of the motion of objects, and the related concepts of force and energy, 
form the fi eld called mechanics. Mechanics is customarily divided into two parts: 
 kinematics, which is the description of how objects move, and dynamics, which deals 
with force and why objects move as they do. This Chapter and the next deal with 
kinematics.

A space shuttle has released 
a parachute to reduce its 
speed quickly. The directions 
of the shuttle’s velocity and 
acceleration are shown by 
the green (v5) and gold (a5) 
arrows.

Motion is described using 
the concepts of velocity and 
acceleration. In the case 
shown here, the velocity v5 is 
to the right, in the direction 
of motion. The acceleration 
a5 is in the opposite direction 
from the velocity v5, which 
means the object is slowing 
down.

We examine in detail 
motion with constant 
acceleration, including the 
vertical motion of objects 
falling under gravity.

va

Describing Motion: 
Kinematics in One Dimension
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SECTION 2–1 Reference Frames and Displacement 43

For now we only discuss objects that move without rotating (Fig. 2 9 1a). 
Such motion is called translational motion. In this Chapter we will be concerned 
with describing an object that moves along a straight-line path, which is one- 
dimensional translational motion. In Chapter 3 we will describe translational 
motion in two (or three) dimensions along paths that are not straight. (Rotation, 
shown in Fig. 2 9 1b, is discussed in Chapters 10 and 11.)

We will often use the concept, or model, of an idealized particle which is 
considered to be a mathematical point with no spatial extent (no size). A point 
particle can undergo only translational motion. The particle model is useful in 
many real situations where we are interested only in translational motion and 
the object’s size is not signifi cant. For example, we might consider a billiard ball, 
or even a spacecraft traveling toward the Moon, as a particle for many purposes.

2–1 Reference Frames and Displacement
Any measurement of position, distance, or speed must be made with respect to 
a reference frame, or frame of reference. For example, while you are on a train 
traveling at 80 km>h, suppose a person walks past you toward the front of the 
train at a speed of, say, 5 km>h (Fig. 2 9 2). This 5 km>h is the person’s speed with 
respect to the train as frame of reference. With respect to the ground, that person 
is moving at a speed of  80 km>h + 5 km>h = 85 km>h.  It is always important to 
specify the frame of reference when stating a speed. In everyday life, we usually 
mean “with respect to the Earth” without even thinking about it, but the reference 
frame must be specifi ed whenever there might be confusion.

(a) (b)

FIGURE 2 – 1  A falling pinecone 
undergoes (a) pure translation; 
(b) it is rotating as well as translating.

FIGURE 2 – 2  A person walks toward the front of a train at 5 km>h. 
The train is moving at 80 km>h with respect to the ground, so the 
walking person’s speed, relative to the ground, is 85 km>h.

When specifying the motion of an object, it is important to specify not only the 
speed but also the direction of motion. Often we can specify a direction by using 
north, east, south, and west, and by “up” and “down.” In physics, we often draw 
a set of coordinate axes, as shown in Fig. 2 9 3, to represent a frame of reference. 
We can always place the origin 0, and the directions of the x and y axes, as we 
like for convenience. The x and y axes are always perpendicular to each other. 
The origin is where  x = 0,  y = 0.  Objects positioned to the right of the origin 
of   coordinates (0) on the x axis have an x coordinate which we almost always 
choose to be positive;  objects at points to the left of 0 have a negative x  coordinate. 
The position along the y axis is usually considered positive when above 0, and 
negative when below 0, although the reverse convention can be used if convenient. 
Any point on the xy plane can be specifi ed by giving its x and y coordinates. In 
three dimensions, a z axis perpendicular to the x and y axes is added.

For one-dimensional motion, we often choose the x axis as the line along 
which the motion takes place. Then the position of an object at any moment is 
given by its x coordinate. If the motion is vertical, as for a dropped object, we 
usually use the y axis.

FIGURE 2 – 3  Standard set of xy 
coordinate axes, sometimes called 
“rectangular coordinates.” [Also 
called Cartesian coordinates, after 
René Descartes (1596 9 1650), who 
invented them.]

- y

+ y

+ x- x
0
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44 CHAPTER 2 Describing Motion: Kinematics in One Dimension

We need to make a distinction between the distance an object has traveled 
and its displacement, which is defined as the change in position of the object. 

That is, displacement is how far the object is from its starting point. To see the 
distinction between total distance and displacement, imagine a person walking 70 m 
to the east and then turning around and walking back (west) a distance of 30 m (see  
Fig. 2 9 4). The total distance traveled is  70 m + 30 m = 100 m,  but the displace-
ment is only 40 m since the person is now only 40 m from the starting point.

Displacement is a quantity that has both magnitude and direction. Such quan-
tities are called vectors, and are represented by arrows in diagrams. For example, 
in Fig. 2 9 4, the blue arrow represents the displacement whose magnitude is 40 m 
and whose direction is to the right (east).

We will deal with vectors more fully in Chapter 3. For now, we deal only with 
motion in one dimension, along a line. In this case, vectors which point in one 
direction will be positive (usually to the right along the x axis). Vectors that point 
in the opposite direction will have a negative sign in front of their magnitude.

Consider the motion of an object over a particular time interval. Suppose 
that at some initial time, call it t1 , the object is on the x axis at the position x1 
in the coordinate system shown in Fig. 2 9 5. At some later time, t2 , suppose the 
object has moved to position x2 . The displacement of our object is  x2 - x1 ,  and is 
represented by the arrow pointing to the right in Fig. 2 9 5. It is convenient to write

∆x = x2 - x1 ,

where the symbol ∆ (Greek letter delta) means “change in.” Then ∆x means 
“the  change in x,” or “change in position,” which is in fact the displacement. 
The change in any quantity means the final value of that quantity, minus the initial 
value. Suppose x1 = 10.0 m  and  x2 = 30.0 m,  as in Fig. 2 9 5. Then

∆x = x2 - x1 = 30.0 m - 10.0 m = 20.0 m,

so the displacement is 20.0 m in the positive direction, Fig. 2 9 5.
Now consider an object moving to the left as shown in Fig. 2 9 6. Here the object, 

a person, starts at  x1 = 30.0 m  and walks to the left to the point  x2 = 10.0 m.  In 
this case her displacement is

∆x = x2 - x1 = 10.0 m - 30.0 m = -20.0 m,

and the blue arrow representing the vector displacement points to the left. For 
one-dimensional motion along the x axis, a vector pointing to the right is positive, 
whereas a vector pointing to the left has a negative sign.

EXERCISE A An ant starts at  x = 20 cm  on a piece of graph paper and walks along the 
x axis to  x = -20 cm.  It then turns around and walks back to  x = -10 cm.  Determine 
(a) the ant’s displacement and (b) the total distance traveled.

2–2 Average Velocity
An important aspect of the motion of a moving object is how fast it is moving : its 
speed or velocity.

The term “speed” refers to how far an object travels in a given time interval, 
regardless of direction. If a car travels 240 kilometers (km) in 3 hours (h), we 
say its average speed was 80 km>h. In general, the average speed of an object is 
defined as the total distance traveled along its path divided by the time it takes to 
travel this distance:

average speed =
distance traveled

time elapsed
. (2 – 1)

The terms “velocity” and “speed” are often used interchangeably in ordi-
nary language. But in physics we make a distinction between the two. Speed 
is simply a positive number, with units. Velocity, on the other hand, is used to 
signify both the magnitude (numerical value) of how fast an object is moving 
and also the direction in which it is moving. Velocity is therefore a vector. 

C A U T I O N
The displacement may not equal the 

total distance traveled

x
0

70 m

West East40 m

Displacement

30 m

y

FIGURE 2 – 4  A person walks 70 m 
east, then 30 m west. The total distance 
traveled is 100 m (path is shown dashed  
in black); but the displacement, shown 
as a solid blue arrow, is 40 m to the east.

FIGURE 2 – 5  The arrow represents 
the displacement  x2 - x1 .   
Distances are in meters.

x

y

x1 x2

100 20 30 40
Distance (m)

FIGURE 2 – 6  For the displacement 
∆x = x2 - x1 = 10.0 m - 30.0 m,  
the displacement vector points left.

y

x

x2 x1

100 20 30 40
Distance (m)

∆x
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SECTION 2–2 Average Velocity 45

There is a second difference between speed and velocity: namely, the average 
velocity is defined in terms of displacement, rather than total distance traveled:

average velocity =
displacement

time elapsed
=

final position - initial position

time elapsed
.

Average speed and average velocity have the same magnitude when the 
motion is all in one direction. In other cases, they may differ: recall the walk we 
described earlier, in Fig. 2 9 4, where a person walked 70 m east and then 30 m 
west. The total distance traveled was  70 m + 30 m = 100 m,  but the displacement 
was 40 m. Suppose this walk took 70 s to complete. Then the average speed was:

distance
time elapsed

=
100 m
70 s

= 1.4 m>s.

The magnitude of the average velocity, on the other hand, was:
displacement

time elapsed
=

40 m
70 s

= 0.57 m>s.

In everyday life, we are usually interested in average speed. If this second equation 
on average velocity seems strange, we will see its usefulness in the next Section. 

To discuss one-dimensional motion of an object in general, suppose that at 
some moment in time, call it t1 , the object is on the x axis at position x1 in a coordi-
nate system, and at some later time, t2 , suppose it is at position x2 . The elapsed time  
(= change in time) is  ∆t = t2 - t1 .  During this time interval the displacement of 
our object is  ∆x = x2 - x1 .  Then the average velocity, defined as the displacement 
divided by the elapsed time, can be written

v =
x2 - x1

t2 - t1
=

∆x
∆t

, [average velocity]  (2 – 2)

where v stands for velocity and the bar ( ) over the v is a standard symbol 
meaning “average.”

It is always important to choose (and state) the elapsed time, or time interval, 
t2 - t1 ,  the time that passes during our chosen period of observation.

C A U T I O N
Average speed is not necessarily 
equal to the magnitude of the 
average velocity

C A U T I O N
Time interval = elapsed time

EXAMPLE 2 – 1 Runner’s average velocity. The position of a runner is 
plotted as moving along the x axis of a coordinate system. During a 3.00-s time 
interval, the runner’s position changes from  x1 = 50.0 m  to  x2 = 30.5 m,  as 
shown in Fig. 2 9 7.  What is the runner’s average velocity?

APPROACH We want to find the average velocity, which is the displacement 
divided by the elapsed time.

SOLUTION The displacement is

 ∆x = x2 - x1

 = 30.5 m - 50.0 m = -19.5 m.

In this case the displacement is negative.
The elapsed time, or time interval, is given as  ∆t = 3.00 s.  The average 

velocity (Eq. 2 9 2) is

v =
∆x
∆t

=
-19.5 m

3.00 s
= -6.50 m>s.

The displacement and average velocity are negative: that is, the runner is moving 
to the left along the x axis, as indicated by the arrow in Fig. 2 9 7. The runner’s 
average velocity is 6.50 m>s to the left.

FIGURE 2 – 7  Example 2 9 1.  
A person runs from  x1 = 50.0 m   
to  x2 = 30.5 m.  The displacement 
is -19.5 m.

y

x
100 20 30 40 50 60

Distance (m)

Start
(x1)

Finish
(x2)

∆x

For one-dimensional motion in the usual case of the +x axis to the right,  
if x2 is less than x1 , then the object is moving to the left, and  ∆x = x2 - x1  
is less than zero. The sign of the displacement, and thus of the average velocity, 
indicates the direction: the average velocity is positive for an object moving to the 
right along the x axis and negative when the object moves to the left. The direction 
of the average velocity is always the same as the direction of the displacement.

P R O B L E M  S O LV I N G
+ or - sign can signify the direction 
for linear motion
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46 CHAPTER 2 Describing Motion: Kinematics in One Dimension

2–3 Instantaneous Velocity
If you drive a car along a straight road for 150 km in 2.0 h, the magnitude of 
your average velocity is 75 km>h. It is unlikely, though, that you were moving 
at precisely 75 km>h at every instant. To describe this situation we need the 
concept of instantaneous velocity, which is the velocity at any instant of time. 
(Its magnitude is the number, with units, indicated by a speedometer, Fig. 2 9 8.) 
More precisely, the  instantaneous velocity at any moment is defined as the average 
velocity over an infinitesimally short time interval. That is, Eq. 2 9 2 is to be evalu-
ated in the limit of ∆t becoming extremely small, approaching zero. We can write 
the definition of instantaneous velocity, v, for one-dimensional motion as

v = lim
∆tS0

 
∆x
∆t

. [instantaneous velocity]  (2 – 3)

The notation lim∆tS0 means the ratio ∆x>∆t is to be evaluated in the limit of ∆t 
approaching zero. But we do not simply set  ∆t = 0  in this definition, for then  
∆x would also be zero, and we would not be able to evaluate it. Rather, we 
consider the ratio ∆x>∆t, as a whole. As we let ∆t approach zero, ∆x approaches 
zero as well. But the ratio ∆x>∆t approaches some definite value, which is the 
instantaneous velocity at a given instant.

In Eq. 2 9 3, the limit as  ∆t S 0  is written in calculus notation as dx>dt and is  
called the derivative of x with respect to t:

v = lim
∆tS0

 
∆x
∆t

=
dx
dt

. (2 – 4)

This equation is the definition of instantaneous velocity for one-dimensional 
motion.

For instantaneous velocity we use the symbol v, whereas for average velocity 
we use v, with a bar above. In the rest of this book, when we use the term 
“velocity” it will refer to instantaneous velocity. When we want to speak of the 
average velocity, we will make this clear by including the word “average.”

Note that the instantaneous speed always equals the magnitude of the instan-
taneous velocity. Why? Because as the time interval becomes infinitesimally small 
(∆t S 0), an object has no time to change speed or direction, and so the distance 
traveled and the magnitude of the  displacement have to be the same.

EXAMPLE 2 – 2 Distance a cyclist travels. How far can a cyclist travel in 
2.5 h along a straight road if her average velocity is 18 km>h?

APPROACH We want to find the distance traveled, which in this case equals 
the displacement ∆x , so we solve Eq. 2 9 2 for ∆x.

SOLUTION In Eq. 2 9 2,  v = ∆x>∆t,  we multiply both sides by ∆t and obtain

∆x = v ∆t =  (18 km>h) (2.5 h) = 45 km.

EXAMPLE 2 – 3 Car changes speed. A car travels at a constant 50 km>h for 
100 km. It then speeds up to 100 km>h and is driven another 100 km. What is 
the car’s average speed for the 200-km trip?

APPROACH At 50 km>h, the car takes 2.0 h to travel 100 km. At 100 km>h, it 
takes only 1.0 h to travel 100 km. We use the definition of average velocity, Eq. 2 9 2.

SOLUTION Average velocity (Eq. 2 9 2) is

v =
∆x
∆t

=
100 km + 100 km

2.0 h + 1.0 h
= 67 km>h.

NOTE Averaging the two speeds,  (50 km>h + 100 km>h) >2 = 75 km>h,  gives 
a wrong answer. Can you see why? You must use the definition of v, Eq. 2 9 2.

FIGURE 2 – 8  Car speedometer 
showing mi>h in white, and km>h  
in orange.
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SECTION 2–3 Instantaneous Velocity 47

If an object moves at a uniform (that is, constant) velocity during a partic-
ular time interval, then its instantaneous velocity at any instant is the same as its 
average velocity (see Fig. 2 9 9a). But in many situations this is not the case. For 
example, a car may start from rest, speed up to 50 km>h, remain at that velocity 
for a time, then slow down to 20 km>h in a traffic jam, and finally stop at its 
destination after traveling a total of 15 km in 30 min. This trip is plotted on the 
graph of Fig. 2 9 9b. Also shown on the graph is the average velocity (dashed line), 
which is  v = ∆x>∆t = 15 km>0.50 h = 30 km>h.

To better understand instantaneous velocity, let us consider a graph of the 
 position versus time (x vs. t) of a particle moving along the x axis, as shown in 
Fig. 2 9 10. (Note that this is different from showing the “path” of a particle moving in  
two dimensions on an x vs. y plot.) The particle is at position x1 at time t1 , and at posi-
tion x2 at time t2 .  P1 and P2 represent these two points on the graph. A straight line  
drawn from point P1 (x1 , t1) to point P2 (x2 , t2) forms the hypotenuse of a right 
triangle whose sides are ∆x and ∆t . The ratio ∆x>∆t is the slope of the straight 
line P1 P2 . But ∆x>∆t is also the average velocity of the particle during  
the time interval  ∆t = t2 - t1 .  Therefore, we conclude that the average velocity of a  
particle during any time interval  ∆t = t2 - t1  is equal to the slope of the straight  
line (or chord) connecting the two points (x1 , t1)  and (x2 , t2)  on an x vs. t graph.

Consider now a time ti , intermediate between t1 and t2 , at which time the 
particle is at xi (Fig. 2 9 11). The slope of the straight line P1 Pi is less than the slope 
of P1 P2 in this case. Thus the average velocity during the time interval  ti - t1  is 
less than during the time interval  t2 - t1 .

Now let us imagine that we take the point Pi in Fig. 2 9 11 to be closer and closer  
to point P1 . That is, we let the interval  ti - t1 ,  which we now call ∆t , become 
smaller and smaller. The slope of the line connecting the two points becomes 
closer and closer to the slope of a line tangent to the curve at point P1 . The 
average velocity (equal to the slope of the chord) thus approaches the slope of 
the tangent at point P1 . The definition of the instantaneous velocity (Eq. 2 9 3) is 
the limiting value of the average velocity as ∆t approaches zero. Thus the instan-
taneous velocity equals the slope of the tangent to the x vs. t curve at that point 
(which we can simply call “the slope of the curve” at that point).

Because the velocity at any instant equals the slope of the tangent to the x 
vs. t graph at that instant, we can obtain the velocity at any instant from such a 
graph. For example, in Fig. 2 9 12 (which shows the same curve as in Figs. 2 9 10 and  
2 9 11), the slope continually increases as our object moves from x1 to x2 , so the 
velocity is increasing. For times after t2 , however, the slope begins to decrease 
and in fact reaches zero (so  v = 0)  where x has its maximum value, at point P3 
in Fig. 2 9 12. Beyond this point, the slope is negative, as for point P4 . The velocity 
is therefore negative, which makes sense since x is now decreasing : the particle 
is moving to the left on a standard xy plot, toward decreasing values of x.

If an object moves with constant velocity over a particular time interval, 
its instantaneous velocity is equal to its average velocity. The graph of x vs. t 
in this case will be a straight line whose slope equals the velocity. The curve 
of Fig. 2 9 10 has no straight sections, so there are no time intervals when the 
velocity is constant.

FIGURE 2 – 10  Graph of a particle’s 
position x vs. time t. The slope of 
the straight line P1 P2 represents the 
average velocity of the particle  
during the time interval ∆t = t2 - t1 .
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P2

∆x = x2 - x1

∆t = t2 - t1

t2t1

x1

x2

0

x

t

FIGURE 2 – 11  Same position vs.  
time curve as in Fig. 2–10, but 
including an intermediate time ti . 
Note that the average velocity over 
the time interval  ti - t1  (which is the  
slope of P1 Pi) is less than the average 
velocity over the time interval  t2 - t1 .   
The slope of the thin line tangent 
to the curve at point P1 equals the 
instantaneous velocity at time t1 .
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FIGURE 2 – 12  Same x vs. t curve as in 
Figs. 2 9 10 and 2 9 11, but here showing 
the slope at four different points:  
At P3 , the slope is zero, so  v = 0.   
At P4 the slope is negative, so  v 6 0.
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FIGURE 2 – 9  Velocity of a car as 
a function of time: (a) at constant 
velocity; (b) with velocity varying 
in time.
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48 CHAPTER 2 Describing Motion: Kinematics in One Dimension

EXERCISE B What is your speed at the instant you turn around to move in the opposite 
direction? (a) Depends on how quickly you turn around; (b) always zero; (c) always 
negative; (d) none of the above.

The derivatives of various functions are studied in calculus courses, and you 
can find a review in this book in Appendix B. The derivatives of polynomial 
functions (which we use a lot) are:

d
dt

 (Ctn) = nCtn - 1 and 
dC
dt

= 0,

where C is any constant.

EXAMPLE 2 – 4 Given x as a function of t. A jet engine moves along an 
experimental track (which we call the x axis) as shown in Fig. 2 9 13a. We will 
treat the engine as if it were a particle. Its position as a function of time is 
given by the equation  x = At2 + B, where  A = 2.10 m>s2  and  B = 2.80 m,  
and this equation is plotted in Fig. 2 9 13b. (a) Determine the displacement of the 
engine during the time interval from  t1 = 3.00 s  to  t2 = 5.00 s. (b) Determine 
the average velocity during this time interval. (c) Determine the magnitude of 
the instantaneous velocity at  t = 5.00 s.

APPROACH (a) We substitute values for t1 and t2 in the given equation for x 
to obtain x1 and x2 . (b) The average velocity can be found from Eq. 2 9 2. (c) To 
find the instantaneous velocity, we take the derivative of the given x equation 
with respect to t using the formulas given above.

SOLUTION (a) At  t1 = 3.00 s,  the position (point P1 in Fig. 2 9 13b) is

x1 = At1
2 + B =  (2.10 m>s2) (3.00 s) 2 + 2.80 m = 21.7 m.

At  t2 = 5.00 s,  the position (P2 in Fig. 2 9 13b) is

x2 =  (2.10 m>s2) (5.00 s) 2 + 2.80 m = 55.3 m.

The displacement is thus

x2 - x1 = 55.3 m - 21.7 m = 33.6 m.

(b) The magnitude of the average velocity can then be calculated as

v =
∆x
∆t

=
x2 - x1

t2 - t1
=

33.6 m
2.00 s

= 16.8 m>s.

This equals the slope of the straight line joining points P1 and P2 shown in Fig. 2 9 13b.
(c) The instantaneous velocity at  t = t2 = 5.00 s  equals the slope of the tangent 
to the curve at point P2 shown in Fig. 2 9 13b. We could measure this slope off 
the graph to obtain v2 . But we can calculate v more precisely for any time t, 
using the given formula

x = At2 + B,

which is the engine’s position x as a function of time t. We take the derivative 
of x with respect to time (see formulas at top of this page):

v =
dx
dt

=
d
dt

 (At2 + B) = 2At.

We are given  A = 2.10 m>s2, so for  t = t2 = 5.00 s,

v2 = 2At = 2(2.10 m>s2) (5.00 s) = 21.0 m>s.

FIGURE 2 – 13  Example 2 9 4.  
(a) Engine traveling on a straight track. 
(b) Graph of x vs. t: x = At2 + B.
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SECTION 2–4 Acceleration 49

2–4 Acceleration
An object whose velocity is changing is said to be accelerating. For instance, a 
car whose velocity increases in magnitude from zero to 80 km>h is accelerating. 
 Acceleration specifies how rapidly the velocity of an object is changing.

Average Acceleration
Average acceleration is defined as the change in velocity divided by the time 
taken to make this change:

average acceleration =
change of velocity

time elapsed
.

In symbols, the average acceleration over a time interval  ∆t = t2 - t1  during 
which the velocity changes by  ∆v = v2 - v1  is defined as

a =
v2 - v1

t2 - t1
=

∆v
∆t

. (2 – 5)

Because velocity is a vector, acceleration is a vector too. But for one-dimensional 
motion, we need only use a plus or minus sign to indicate acceleration direction 
relative to a chosen coordinate axis.

EXAMPLE 2 – 5 Average acceleration. A car accelerates along a straight road 
from rest to 90 km>h in 5.0 s, Fig. 2 9 14. What is the magnitude of its average 
acceleration?

APPROACH Average acceleration is the change in velocity divided by the 
elapsed time, 5.0 s. The car starts from rest, so  v1 = 0.  The final velocity is
v2 = 90 km>h = 90 * 103 m>3600 s = 25 m>s.

SOLUTION From Eq. 2 9 5, the average acceleration is

a =
v2 - v1

t2 - t1
=

25 m>s - 0 m>s
5.0 s

= 5.0 
m>s

s
.

This is read as “five meters per second per second” and means that, on average, 
the velocity changed by 5.0 m>s during each second. That is, assuming the 
acceleration was constant, during the first second the car’s velocity increased 
from zero to 5.0 m>s. During the next second its velocity increased by another  
5.0 m>s, reaching a velocity of 10.0 m>s at  t = 2.0 s, and so on. See Fig. 2 9 14.

FIGURE 2  –  14  Example 2 9 5. The 
car is shown at the start with  v1 = 0  
at  t1 = 0.  The car is shown three 
more times, at  t = 1.0 s,  t = 2.0 s,  
and at the end of our time interval, 
t2 = 5.0 s.  The green arrows 
represent the velocity vectors, whose 
length represents the magnitude of 
the velocity at that moment and get 
longer with time. The acceleration 
vector is the orange arrow, whose 
magnitude is constant and is found 
to equal 5.0 m>s2. Distances are not 
to scale.

Acceleration

[a  =  5.0 m>s2]
v1  =  0
t1  =  0

at  t  =  2.0 s
    v  =  10.0 m>s

at  t  =  1.0 s
    v  =  5.0 m>s

at  t = t2  =  5.0 s
     v = v2 =  25 m>s
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CONCEPTUAL EXAMPLE 2 – 6 Velocity and acceleration. (a) If the velo-
ci ty of an object is zero, does it mean that the acceleration is zero? (b) If the 
acceleration is zero, does it mean that the velocity is zero? Think of some examples.

RESPONSE A zero velocity does not necessarily mean that the acceleration 
is zero, nor does a zero acceleration mean that the velocity is zero. (a) For 
example, when you put your foot on the gas pedal of your car which is at rest, 
the velocity starts from zero but the acceleration is not zero since the velocity 
of the car changes. (How else could your car start forward if its velocity weren’t 
changing : that is, accelerating?) (b) As you cruise along a straight highway at 
a constant velocity of 100 km>h, your acceleration is zero:  a = 0,  v ≠  0.

EXERCISE C A powerful car is advertised to go from zero to 60 mi>h in 5.4 s. What does 
this say about the car: (a) it is fast (high speed); or (b) it accelerates well?

EXAMPLE 2 – 7 Car slowing down. An automobile is moving to the right 
along a straight highway, which we choose to be the positive x axis (Fig. 2 9 15). 
Then the driver puts on the brakes. If the initial velocity (when the driver hits 
the brakes) is  v1 = 15.0 m>s, and it takes 5.0 s to slow down to  v2 = 5.0 m>s,  
what was the car’s average acceleration?

APPROACH We put the given initial and final velocities, and the elapsed time, into  
Eq. 2 9 5 for a.

SOLUTION In Eq. 2 9 5, we call the initial time  t1 = 0,  and set  t2 = 5.0 s.  
(Note that our choice of  t1 = 0  doesn’t affect the calculation of a because only  
∆t = t2 - t1  appears in Eq. 2 9 5.) Then

a =
5.0 m>s - 15.0 m>s

5.0 s
= -2.0 m>s2.

The negative sign appears because the final velocity is less than the initial velocity. In 
this case the direction of the acceleration is to the left (in the negative x direction) :  
even though the velocity is always pointing to the right. We say that the acceleration 
is 2.0 m>s2 to the left, and it is shown in Fig. 2 9 15 as an orange arrow.

Acceleration

a = -2.0 m>s2
v1  =  15.0 m>s

at  t1  =  0

v2  =  5.0 m>s
at  t2  =  5.0 s

FIGURE 2 – 15  Example 2 9 7,  
showing the position of the car 
at times t1 and t2 , as well as the 
car’s velocity represented by the 
green arrows. We calculate that the 
acceleration vector (orange) points to 
the left as the car slows down while 
moving to the right.

“Deceleration”
When an object is slowing down, we sometimes say it is decelerating. In physics, 
the concept of acceleration is all we need: it can be + or  - . But if the word 
“deceleration” is used, be careful: deceleration does not mean that the acceleration 
is necessarily negative, as in Example 2 9 7. The velocity of an object moving to 
the right along the positive x axis is positive; if the object is slowing down (as 
in Fig. 2 9 15), the acceleration is negative. But the same car moving to the left 
(decreasing x), and slowing down, has positive acceleration that points to the 
right, as shown in Fig. 2 9 16. We have a deceleration whenever the magnitude 
of the velocity is decreasing; thus the velocity and acceleration point in opposite 
directions when there is deceleration.

We almost always write the units for acceleration as m>s2 (meters per second 
squared) instead of m>s>s. This is possible because:

m>s
s

=
m

s ⋅ s
=

m
s2

.

According to the calculation in Example 2 9 5, the velocity changed on average 
by 5.0 m>s during each second, for a total change of 25 m>s over the 5.0 s; the 
average acceleration was 5.0 m>s2.

Note that acceleration tells us how quickly the velocity changes, whereas 
velocity tells us how quickly the position changes.

C A U T I O N
Distinguish velocity from acceleration

C A U T I O N
If v or a is zero, is the other zero too?

FIGURE 2 – 16  The car of  
Example 2 9 7, now moving to the left 
and decelerating. The acceleration is

 a =
v2 -  v1

∆t

 a =
( -5.0 m>s) - ( -15.0 m>s)

5.0 s

 =
-5.0 m>s +  15.0 m>s

5.0 s
=  +2.0 m>s2.

v1  =  -15.0 m>sv2  =  -5.0 m>s

a
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EXERCISE D A car moves along the x axis. What is the sign of the car’s acceleration if 
it is moving in the positive x direction with (a) increasing speed or (b) decreasing speed? 
What is the sign of the acceleration if the car moves in the negative x direction with 
(c) increasing speed or (d) decreasing speed?

Instantaneous Acceleration
The instantaneous acceleration, a, is defined as the limiting value of the average 
acceleration as we let ∆t approach zero:

a = lim
∆tS0

 
∆v
∆t

=
dv
dt

. (2 – 6)

This limit, dv>dt, is the derivative of v with respect to t. We will use the term 
“acceleration” to refer to the instantaneous value. If we want to discuss the 
average  acceleration, we will always include the word “average.”

If we draw a graph of the velocity, v, vs. time, t, as shown in Fig. 2 9 17, then 
the average acceleration over a time interval  ∆t = t2 - t1  is represented by 
the slope of the straight line connecting the two points P1 and P2 in Fig. 2 9 17. 
[Compare this to the position vs. time graph of Fig. 2 9 10 for which the slope of 
the straight line represents the average velocity.] The instantaneous  acceleration 
at any time, say t1 , is the slope of the tangent to the v vs. t curve at time t1 , 
which is also shown in Fig. 2 9 17. In Fig. 2 9 17, as we go from time t1 to time t2  
the velocity continually increases, but the acceleration (the rate at which the 
velocity changes) is decreasing since the slope of the curve is decreasing.

EXAMPLE 2 – 8 Acceleration given x (t). A particle is moving in a straight line 
so that its position is given by the relation  x = (2.10 m>s2)t2 + (2.80 m),  as in  
Example 2 9 4. Calculate (a) its average acceleration during the time interval from  
t1 = 3.00 s  to  t2 = 5.00 s,  and (b) its instantaneous acceleration as a function 
of time.

APPROACH To determine acceleration, we first must find the velocity at t1 
and t2 by differentiating x:  v = dx>dt.  Then we use Eq. 2 9 5 to find the average 
acceleration, and Eq. 2 9 6 to find the instantaneous acceleration.

SOLUTION (a) The velocity at any time t is

v =
dx
dt

=
d
dt

 [ (2.10 m>s2)t2 + 2.80 m] =  (4.20 m>s2)t,

as we already saw in Example 2 9 4c. Therefore, at time  t1 = 3.00 s, 
v1 = (4.20 m>s2) (3.00 s) = 12.6 m>s    and  at  t2 = 5.00 s,  v2 = 21.0 m>s.  
Therefore,

a =
∆v
∆t

=
21.0 m>s - 12.6 m>s

5.00 s - 3.00 s
= 4.20 m>s2.

(b) With  v =  (4.20 m>s2)t,  the instantaneous acceleration at any time is

a =
dv
dt

=
d
dt

 [ (4.20 m>s2)t ] = 4.20 m>s2.

The acceleration in this case is constant; it does not depend on time. Figure 2 9 18 
shows graphs of (a) x vs. t (the same as Fig. 2 9 13b), (b) v vs. t, which is linearly 
increasing as calculated above, and (c) a vs. t, which is a horizontal straight line 
because  a = constant.

P1

P2

Slope is average acceleration
during ∆t = t2 - t1

Slope is
instantaneous
acceleration
at t1

t20 t1

v1

v2

v

t

∆v = v2 - v1

∆t = t2 - t1

FIGURE 2 – 17  A graph of velocity 
v vs. time t. The average acceleration 
over a time interval  ∆t = t2 - t1  is 
the slope of the straight line P1 P2 : 
a = ∆v>∆t.  The instantaneous 
acceleration at time t1 is the slope of 
the v vs. t curve at that instant.

FIGURE 2 – 18  Example 2 9 8. 
Graphs of (a) x vs. t, (b) v vs. t,  
and (c) a vs. t for the motion 
x = At2 + B.  Note that v increases 
linearly with t and that the 
acceleration a is constant. Also, v is 
the slope of the x vs. t curve, whereas 
a is the slope of the v vs. t curve.
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Like velocity, acceleration is a rate. The velocity of an object is the rate at which 
its displacement changes with time; its acceleration, on the other hand, is the rate 
at which its velocity changes with time. In a sense, acceleration is a “rate of a rate.”  
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FIGURE 2 – 19  Example 2 9 9.

CONCEPTUAL EXAMPLE 2 – 9 Analyzing with graphs. Figure 2 9 19 shows 
the velocity as a function of time for two cars accelerating from 0 to 100 km>h in 
a time of 10.0 s. Compare for the two cars: (a) the average acceleration; (b) the 
instantaneous acceleration; and (c) the total distance traveled.

RESPONSE (a) Average acceleration is ∆v>∆t. Both cars have the same  
∆v (100 km>h) and the same ∆t (10.0 s), so the average acceleration is the same 
for both cars. (b) Instantaneous acceleration is the slope of the tangent to the  
v vs. t curve. For about the first 4 s, the top curve is steeper than the bottom curve, 
so car A has a greater instantaneous acceleration during this interval. The bottom 
curve is steeper during the last 6 s, so car B has the larger acceleration during this 
period. (c) Except at  t = 0  and  t = 10.0 s,  car A is always going faster than car B. 
Since it is going faster, it will go farther in the same time. Notice what marvelous 
information we can get from a graph.

2–5 Motion at Constant Acceleration
We now examine motion in a straight line when the magnitude of the acceleration 
is constant. In this case, the instantaneous and average acceleration are  equal. 
We  use the definitions of average velocity and acceleration to derive a set of   
valuable equations that relate x, v, a, and t when a is constant, allowing us 
to  determine any one of these variables if we know the others.

Notation in physics varies from book to book; and different instructors use 
different notation. We are now going to change our notation, to simplify it a bit 
for our discussion here of motion at constant acceleration. First we choose the 
initial time in any discussion to be zero, and we call it t0 . That is,  t1 = t0 = 0. 
(This is effectively starting a stopwatch at t0 .) We can then let  t2 = t   be the 
elapsed time. The initial position (x1)  and the initial velocity (v1)  of an object 
will now be represented by x0 and v0 , since they represent x and v at  t = 0.  
At time t the position and velocity will be called x and v (rather than x2 and v2). 
The average velocity during the time interval  t - t0  will be (Eq. 2 9 2)

v =
∆x
∆t

=
x - x0

t - t0
=

x - x0

t
since we chose  t0 = 0.  The acceleration, assumed constant in time, is  a = ∆v>∆t 
(Eq. 2 9 5), so

a =
v - v0

t
.

A common problem is to determine the velocity of an object after any elapsed 
time t, when we are given the object’s constant acceleration. We can solve such 
problems by solving for v in the last equation: first we multiply both sides by t , 
which gives at = v - v0 , and then

v = v0 + at. [constant acceleration]  (2 – 7)

If an object, such as a motorcycle, starts from rest  (v0 = 0)  and accelerates  

This can be expressed in equation form: since  a = dv>dt  and  v = dx>dt,  then

a =
dv
dt

=
d
dt

 ¢dx
dt

≤ =
d2x
dt2

.

Here d2x>dt2 is the second derivative of x with respect to time: we first take the 
derivative of x with respect to time (dx>dt), and then we again take the derivative 
with respect to time, (d>dt) (dx>dt), to get the acceleration.

EXERCISE E The position of a particle is given by the following equation:

x = (2.00 m>s3)t3 + (2.50 m>s)t.

What is the acceleration of the particle at  t = 2.00 s?  Choose one: (a) 13.0 m>s2;  
(b) 22.5 m>s2; (c) 24.0 m>s2; (d) 2.00 m>s2; (e) 21.0 m>s2.

108642
0

100

t (s)

v 
(k

m
>h

)

Car A

Car B
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at 4.0 m>s2, then after an elapsed time  t = 6.0 s  its velocity will be  
v = 0 + at =  (4.0 m>s2) (6.0 s) = 24 m>s.

Next, let us see how to calculate the position x of an object after a time t  
when it undergoes constant acceleration. The definition of average velocity  
(Eq. 2 9 2) is  v = (x - x0) >t,  which we can rewrite by multiplying both sides by t  :

x = x0 + vt. (2 – 8)

Because the velocity increases at a uniform rate, the average velocity,  v,  will be 
midway between the initial and final velocities:

v =
v0 + v

2
. [constant acceleration]  (2 – 9)

(Careful: Equation 2 9 9 is not necessarily valid if the acceleration is not constant.) 
We combine the last two Equations with Eq. 2 9 7 and find, starting with Eq. 2 9 8,

 x = x0 + vt

 = x0 + ¢ v0 + v
2

≤  t

 = x0 + ¢ v0 + v0 + at
2

≤  t

or
 x = x0 + v0 t + 1

2 at2. [constant acceleration]  (2 – 10)

Equations 2 9 7, 2 9 9, and 2 9 10 are three of the four most useful equations for 
motion at constant acceleration. We now derive the fourth equation, which is useful 
in situations where the time t is not known. We substitute Eq. 2 9 9 into Eq. 2 9 8:

x = x0 + vt = x0 + ¢ v + v0

2
≤  t.

Next we solve Eq. 2 9 7 for t, obtaining

t =
v - v0

a
,

and substituting this into the previous equation we have

x = x0 + ¢ v + v0

2
≤ ¢ v - v0

a
≤ = x0 +

v2 - v0
2

2a
.

We solve this for v2 and obtain

v2 = v0
2 + 2a(x - x0), [constant acceleration]  (2 – 11)

which is the other useful equation we sought.
We now have four equations relating position, velocity, acceleration, and time, 

when the acceleration a is constant. We collect these kinematic equations for 
constant acceleration here in one place for further reference (the tan background 
is used to emphasize their importance):

 v = v0 + at [a = constant] (2 – 12a)

 x = x0 + v0 t + 1
2 at2 [a = constant] (2 – 12b)

 v2 = v0
2 + 2a(x - x0)  [a = constant] (2 – 12c)

 v =
v + v0

2
. [a = constant] (2 – 12d)

These useful equations are not valid unless a is a constant. In many cases we can 
set  x0 = 0,  and this simplifies the above equations a bit. Note that x represents 
position (not distance), and that  x - x0  is the displacement, whereas t is the 
elapsed time. 

Equations 2 9 12 are useful also when a is approximately constant, in order  
to obtain  reasonable estimates.

C A U T I O N
Average velocity, but only if 
a = constant

Kinematic equations  

for constant acceleration  

(we’ll use them a lot)

SECTION 2–5 Motion at Constant Acceleration 53
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54 CHAPTER 2 Describing Motion: Kinematics in One Dimension

P H Y S I C S  A P P L I E D
Airport design

EXAMPLE 2 – 10 Runway design. You are designing an airport for small 
planes. One kind of airplane that might use this airfield must reach a speed 
before takeoff of at least 27.8 m>s (100 km>h), and can accelerate at 2.00 m>s2. 
(a) If the runway is 150 m long, can this airplane reach the required speed for 
takeoff? (b) If not, what minimum length must the runway have?

APPROACH Assuming the plane’s acceleration is constant, we use the kinematic 
equations for constant acceleration. In (a), we want to find v, and we are given:

Known Wanted

 x0 = 0 v
 v0 = 0
 x = 150 m
 a = 2.00 m>s2

SOLUTION (a) Of the four kinematic equations on page 53, Eq. 2 9 12c will give 
us v when we know v0 , a, x, and x0 :

 v2 = v0
2 + 2a(x - x0)

 = 0 + 2(2.00 m>s2)(150 m) = 600 m2>s2

 v = 2600 m2>s2 = 24.5 m>s.

This runway length is not sufficient, because the minimum speed is not reached.
(b) Now we want to find the minimum runway length,  x - x0 ,  for a plane to 
reach v = 27.8 m>s,  given  a = 2.00 m>s2.  We again use Eq. 2 9 12c, but rewritten as

(x - x0) =
v2 - v0

2

2a
=

(27.8 m>s)2 - 0

2(2.00 m>s2)
= 193 m.

A 200-m runway is more appropriate for this plane.

NOTE We did this Example as if the plane were a particle, so we round off our 
answer to 200 m.

P R O B L E M  S O LV I N G
Equations 2–12 are valid only when 

the acceleration is constant, which we 
assume in this Example

FIGURE 2 – 20  Example 2 9 11. An 
air bag deploying on impact.

EXAMPLE 2 – 11 ESTIMATE Air bags. Suppose you want to design an 
air bag system that can protect the driver at a speed of 100 km>h (60 mph) if 
the car hits a brick wall. Estimate how fast the air bag must inflate (Fig. 2 9 20) to  
effectively protect the driver. How does the use of a seat belt help the driver?

APPROACH We assume the acceleration is roughly constant, so we can use 
Eqs. 2 9 12. Both Eqs. 2 9 12a and 2 9 12b contain t, our desired unknown. They both 
contain a, so we must first find a, which we can do using Eq. 2 9 12c if we know the 
distance x over which the car crumples. A rough estimate might be about 1 meter. 
We choose the time interval to start at the instant of impact with the car moving at  
v0 = 100 km>h,  and to end when the car comes to rest  (v = 0)  after traveling 1 m.

SOLUTION  We convert the given initial speed to SI units:  
100 km>h = 100 * 103 m>3600 s = 28 m>s.  We then find the acceleration from 
Eq. 2 9 12c:

a = -  
v0

2

2x
= -  

(28 m>s) 2

2.0 m
= -390 m>s2.

This enormous acceleration takes place in a time given by (Eq. 2 9 12a):

t =
v - v0

a
=

0 - 28 m>s
-390 m>s2 = 0.07 s.

To be effective, the air bag would need to inflate faster than this.
What does the air bag do? It spreads the force over a large area of the chest 

(to avoid puncture of the chest by the steering wheel). The seat belt keeps the 
person in a stable position directly in front of the expanding air bag.

P H Y S I C S  A P P L I E D
Car safety : air bags
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SECTION 2–6 Solving Problems 55

EXERCISE F A car starts from rest and accelerates at a constant 10 m>s2 during a  
1
4-mile (402 m) race. How fast is the car going at the finish line? (a) 8040 m>s; (b) 90 m>s; 
(c) 81 m>s; (d) 804 m>s.

2–6 Solving Problems
Before doing more worked-out Examples, let us look at how to approach problem 
solving. First, it is important to note that physics is not a collection of equations to be 
memorized. Simply searching for an equation that might work can lead you to a wrong 
result and will not help you understand physics (Fig. 2 9 21). A better approach is to 
use the following (rough) procedure, which we present as a special “Problem Solving 
Strategy.” (Other such Problem Solving Strategies will be found throughout the book.)

FIGURE 2 – 21  Read each Chapter of 
this book, study it by reading it again 
carefully, and work the Problems 
using your reasoning abilities.

an applicable  equation that involves only known 
quantities and one desired unknown, solve the 
equation algebraically for the unknown. Some-
times several sequential calculations, or a combi-
nation of equations, may be needed. It is often 
preferable to solve algebraically for the desired 
unknown before putting in numerical values.

 7. Carry out the calculation if it is a numerical 
problem. Keep one or two extra digits during the 
calculations, but round off the final answer(s) to the 
correct number of significant figures (Section 1 9 3). 

 8. Think carefully about the result you obtain: 
Is it reasonable? Does it make sense according to 
your own intuition and experience? A good check 
is to do a rough estimate using only powers of 10, 
as discussed in Section 1 9 6. Often it is preferable 
to do a rough estimate at the start of a numer-
ical problem because it can help you focus your 
attention on finding a path toward a  solution.

 9. A very important aspect of doing problems is 
keep ing track of units. An equals sign implies the 
units on each side must be the same, just as the 
numbers must. If the units do not balance, a mistake 
has been made. This can serve as a check on your 
solution (but it only tells you if you’re wrong, not if 
you’re right).  Always use a consistent set of units. 

      P
R

O
B

L
E

M

 S O L V I N G

 1. Read and reread the whole problem carefully 
before trying to solve it. 

 2. Decide what object (or objects) you are 
going to study, and for what time interval. You 
can often choose the initial time to be  t = 0.

 3. Draw a diagram or picture of the situation, 
with coordinate axes wherever applicable. [You 
can place the origin of coordinates and the axes 
wherever you like to make your calculations 
easier. You also choose which direction is positive 
and which is negative. Usually we choose the x 
axis to the right as positive.]

 4. Write down what quantities are “known” or 
“given,” and then what you want to know (“unknowns”).  
Consider quantities both at the beginning and 
at the end of the chosen time interval. You may 
need to “translate” language into physical terms,  
such as “starts from rest” means  v0 = 0.

 5. Think about which principles of physics apply 
in this problem. Use common sense and your own 
experiences. Then plan an approach. 

 6. Consider which equations (and>or defini-
tions) relate the quantities involved. Before using 
them, be sure their range of validity includes your 
 problem (for example, Eqs. 2 9 12 are valid only 
when the acceleration is constant). If you find 
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56 CHAPTER 2 Describing Motion: Kinematics in One Dimension

EXAMPLE 2 – 12 Acceleration of a car. How long does it take a 4.0-m-long car 
to cross a 26.0-m-wide intersection after the light turns green, if the car accelerates 
from rest at a constant 2.00 m>s2? The car has to travel  26.0 m + 4.0 m = 30.0 m   
to clear the intersection.

APPROACH We follow the Problem Solving Strategy on the previous page.

SOLUTION
 1. Reread the problem. Be sure you understand what it asks for (here, a time 

interval: “how long does it take”).
 2. The object under study is the car. We need to choose the time interval during 

which we look at the car’s motion: we choose  t = 0,  the initial time, to be 
the moment the car starts to accelerate from rest  (v0 = 0);  the time t is the 
instant the car has traveled the full 30.0 m of the intersection.

 3. Draw a diagram: the situation is shown in Fig. 2 9 22 where the car is shown 
moving along the positive x axis. We choose  x0 = 0  at the front bumper of 
the car before it starts to move.

 4. The “knowns” and the “wanted” information are shown in the Table in the 
margin. Note that “starting from rest” means  v = 0  at  t = 0;  that is,  v0 = 0.  
The wanted time t is how long it takes the car to travel 30.0 m.

 5. The physics: the car, starting from rest (at  t0 = 0),  increases in speed as it 
covers more distance. The acceleration is constant, so we can use the kine-
matic equations, Eqs. 2 9 12.

 6. Equations: we want to find the time, given the distance and acceleration; 
Eq. 2 9 12b  (x = x0 + v0 t + 1

2 at2)  is perfect since the only unknown quantity 
is t. Setting  v0 = 0  and  x0 = 0  in Eq. 2 9 12b, we have

x = 1
2 at2.

  We solve for t

t = A2x
a

.

 7. The calculation:

t = A2x
a

= D2(30.0 m)

2.00 m>s2 = 5.48 s.

  This is our answer. Note that the units come out correctly.
 8. We can check the reasonableness of the answer by doing an alternate  

calculation: we use our result in step 7 and check if the distance traveled 
turns out to be 30.0 m. First we find the final velocity (Eq. 2 9 12a),

v = at =  (2.00 m>s2) (5.48 s) = 10.96 m>s,

  and then find the distance traveled using the definition of average velocity 
(see Eq. 2 9 8).

x = x0 + vt = 0 + 1
2 (10.96 m>s + 0) (5.48 s) = 30.0 m,

  which checks with our given distance.
 9. We checked the units in step 7, and they came out correctly (seconds).

NOTE In steps 6 and 7, when we took the square root, we should have  
written  t = {12x>a = {5.48 s.  Mathematically there are two solutions. But 
the second  solution,  t = -5.48 s,  is a time before our chosen time interval and 
makes no sense physically. We say it is “unphysical” and ignore it.

P R O B L E M  S O LV I N G
“Starting from rest” means   

v = 0  at  t = 0  [i.e.,  v0 = 0]

P R O B L E M  S O LV I N G
Check your answer

P R O B L E M  S O LV I N G
“Unphysical” solutions

FIGURE 2 – 22  Example 2 9 12. (Not 
to scale.)

Known Wanted

 x0 = 0 t
 x = 30.0 m
 a = 2.00 m>s2

 v0 = 0

We explicitly followed the steps of the Problem Solving Strategy in 
Example 2 9 12. In upcoming Examples, we will use our usual “Approach” and 
“Solution” to avoid being wordy.

a =  2.00 m>s2

0

a =  2.00 m>s2

x0 = 0
v

x =
30.0 m=  0
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EXAMPLE 2 – 13 ESTIMATE Braking distances. Estimate the minimum 
stopping distance for a car, which is important for traffic safety and traffic design. 
The problem is best dealt with in two parts, two separate time intervals. (1) The first 
time interval begins when the driver decides to hit the brakes, and ends when the 
foot touches the brake pedal. This is the “reaction time” during which the speed is 
constant, so  a = 0.  (2) The second time interval is the actual braking period when 
the vehicle slows down  (a ≠  0)  and comes to a stop. The stopping distance depends 
on the reaction time of the driver, the initial speed of the car (the final speed is 
zero), and the deceleration of the car. For a dry road and good tires, good brakes 
can decelerate a car at a rate of about 5 m>s2 to 8 m>s2. Calculate the total stopping 
distance for an initial velocity of 50 km>h  (  = 14 m>s L 31 mi>h)  and assume the 
acceleration of the car is -6.0 m>s2 (the minus sign appears because the velocity 
is taken to be in the positive x direction and its magnitude is decreasing). Reaction 
time for typical drivers varies from perhaps 0.3 s to about 1.0 s; take it to be 0.50 s.

APPROACH During the “reaction time,” part (1), the car moves at constant 
speed of 14 m>s, so  a = 0.  Once the brakes are applied, part (2), the accelera-
tion is  a = -6.0 m>s2  and is constant over this time interval. For both parts a 
is constant, so we can use Eqs. 2 9 12.

SOLUTION Part (1). We take  x0 = 0  for the first time interval, when the driver 
is reacting (0.50 s): the car travels at a constant speed of 14 m>s so  a = 0.  See 
Fig.  2 9 23 and the Table in the margin. To find x, the position of the car at 
t = 0.50 s  (when the brakes are first applied), we cannot use Eq. 2 9 12c because 
x is multiplied by a, which is zero. But Eq. 2 9 12b works:

x = v0 t + 0 = (14 m>s) (0.50 s) = 7.0 m.

Thus the car travels 7.0 m during the driver’s reaction time, until the instant the 
brakes are applied. We will use this result as input to part (2).
Part (2). During the second time interval, the brakes are applied and the car is 
brought to rest. The initial position is  x0 = 7.0 m  (result of part (1)), and other 
variables are shown in the second Table in the margin. Equation 2 9 12a doesn’t 
contain x ; Eq. 2 9 12b contains x but also the unknown t. Equation  2 9 12c, 
v2 - v0

2 =  2a(x - x0),  is what we want; after setting  x0 = 7.0 m,  we solve 
for x, the final position of the car (where it stops):

 x = x0 +
v2 - v0

2

2a
   

 = 7.0 m +
0 - (14 m>s)2

2( -6.0 m>s2)
= 7.0 m +

-196 m2>s2

-12 m>s2

  = 7.0 m + 16 m = 23 m.

The car traveled 7.0 m while the driver was reacting and another 16 m during 
the braking period before coming to a stop, for a total distance traveled of 23 m. 
Figure 2 9 24 shows graphs of (a) v vs. t (we were given that v is constant from  t = 0  
until t = 0.50 s,  and after  t = 0.50 s  it decreases linearly to zero), and (b) x vs. t.

NOTE From the equation above for x, we see that the stopping distance after the  
driver hit the brakes  (   = x - x0)   increases with the square of the initial speed, 
not just linearly with speed. If you are traveling twice as fast, it takes four times 
the distance to stop (when braking at the same rate, a).

P H Y S I C S  A P P L I E D
Car stopping distances

Part 1: Reaction time

Known Wanted

 t = 0.50 s x
 v0 = 14 m>s
 v = 14 m>s
 a = 0

 x0 = 0

Part 2: Braking

Known Wanted

 x0 = 7.0 m x
 v0 = 14 m>s
 v = 0
 a = -6.0 m>s2

FIGURE 2 – 23  Example 2 9 13: 
stopping distance for a braking car.

Travel during
reaction time

Travel during
braking x

v decreases from 14 m>s to zero
a = -6.0 m>s2

v = constant = 14 m>s
t  = 0.50 s
a = 0

FIGURE 2 – 24  Example 2 9 13. 
Graphs of (a) v vs. t and (b) x vs. t.
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58 CHAPTER 2 Describing Motion: Kinematics in One Dimension

FIGURE 2 – 25  Example 2 9 14.

x v v
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0 15 s
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0

Police

Speeder Speeder

ttt

(c)

0

Police

EXAMPLE 2 – 14 ESTIMATE Two Moving Objects: Police and Speeder.  
A car speeding at 150 km>h (over 90 mph) passes a still police car which immedi-
ately takes off in hot pursuit. Using simple assumptions, such as that the speeder 
continues at constant speed, estimate how long it takes the police car to overtake 
the speeder. Then estimate the police car’s speed at that moment and decide if 
the assumptions were reasonable.

APPROACH When the police car takes off, it accelerates, and the simplest 
assumption is that its acceleration is constant. This may not be reasonable, but 
let’s see what happens. We can estimate the acceleration if we have noticed 
automobile ads, which claim cars can accelerate from rest to 100 km>h in 5.0 s. 
So the average acceleration of the police car could be approximately

aP =
100 km>h

5.0 s
= 20 

km>h
s

 ¢ 1000 m
1 km

≤ ¢ 1 h
3600 s

≤ = 5.6 m>s2.

SOLUTION We need to set up the kinematic equations to determine the unknown 
quantities, and since there are two moving objects, we need two separate sets of 
equations. We denote the speeding car’s position by xS and the police car’s position 
by xP . Because we are interested in solving for the time when the two vehicles 
arrive at the same position on the road, we use Eq. 2 9 12b for each car (x0 = 0  for 
both cars): 

 xS = v0 S t + 1
2 aS t2  =  (150 km>h)t + 0 =  (42 m>s)t

 xP = v0 P t + 1
2 aP t2 = 0 + 1

2  (5.6 m>s2)t2,

where we have set  v0 P = 0  and  aS = 0  (speeder assumed to move at constant 
speed). We want the time when the cars meet, so we set  xS = xP  and solve for t:

(42 m>s)t =  (2.8 m>s2)t2.

The solutions are

t = 0 and t =
42 m>s

2.8 m>s2 = 15 s.

The first solution corresponds to the instant the speeder passed the police car. 
The second solution tells us when the police car catches up to the speeder, 15 s 
later. This is our answer, but is it reasonable? The police car’s speed at  t = 15 s  is

vP = v0 P + aP t = 0 +  (5.6 m>s2) (15 s) = 84 m>s
or 300 km>h ( L   190 mi>h). Not reasonable, and highly dangerous.

NOTE More reasonable is to give up the assumption of constant acceleration. The 
police car surely cannot maintain constant acceleration at high speed. Also, the 
speeder, if a reasonable person, would slow down upon hearing the police siren. 
Figure 2 9 25 shows (a) x vs. t and (b) v vs. t graphs, based on the original assump-
tion of  aP = constant,  whereas (c) shows v vs. t for more reasonable assumptions.

P R O B L E M  S O LV I N G
Guess the acceleration

C A U T I O N
Initial assumptions need to be 

checked out for reasonableness
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2–7 Freely Falling Objects
One of the most common examples of uniformly accelerated motion is that of 
an object allowed to fall freely near the Earth’s surface. That a falling object is 
accelerating may not be obvious at first. And beware of thinking, as was widely 
believed before the time of Galileo (Fig. 2 9 26), that heavier objects fall faster 
than lighter objects and that the speed of fall is proportional to how heavy the 
object is. Wrong. The speed of a falling object is not proportional to its mass.

Galileo made use of his new technique of imagining what would happen 
in idealized (simplified) cases. For free fall, he postulated that all objects would 
fall with the same constant acceleration in the absence of air or other resistance. 
He showed that this postulate predicts that for an object falling from rest, the 
distance traveled will be proportional to the square of the time (Fig. 2 9 27); that 
is, d r t2. We can see this from Eq. 2 9 12b for constant acceleration; but Galileo 
was the first to deduce this mathematical relation.

To support his claim that falling objects increase in speed as they fall, Galileo 
made use of a clever argument: a heavy stone dropped from a height of 2 m will 
drive a stake into the ground much further than if the same stone is dropped from 
a height of only 0.2 m. Clearly, the stone must be moving faster in the former case.

Galileo claimed that all objects, light or heavy, fall with the same acceleration, 
at least in the absence of air. If you hold a piece of paper flat and horizontal in 
one hand, and a heavier object like a baseball in the other, and release them at the 
same time as in Fig. 2 9 28a, the heavier object will reach the ground first. But if you 
repeat the experiment, this time crumpling the paper into a small wad, you will 
find (see Fig. 2 9 28b) that the two objects reach the floor at nearly the same time.

Galileo was sure that air acts as a resistance to very light objects that have a 
large surface area. But in many ordinary circumstances this air resistance is negli-
gible. In a chamber from which the air has been removed, even light objects like a 
feather or a horizontally held piece of paper will fall with the same acceleration as  
any other object (see Fig. 2 9 29). Such a demonstration in vacuum was not possible 
in Galileo’s time, which makes Galileo’s achievement all the greater. Galileo is 
often called the “father of modern science,” not only for the content of his science: 
astronomical discoveries, inertia, free fall; but also for his new methods of doing 
science: idealization and simplification, mathematization of theory, theories that 
have testable consequences, experiments to test theoretical predictions.

FIGURE 2 – 26  Painting of Galileo demonstrating to the Grand Duke of Tuscany 
his argument for the action of gravity being uniform acceleration. He used a wooden 
inclined plane (center) to slow down the action. A ball rolling down the plane still 
accelerates. Tiny bells placed at equal distances along the inclined plane would ring at 
shorter time intervals as the ball “fell,” indicating that the speed was increasing.

FIGURE 2 – 27  Multiflash photograph 
of a falling apple, at equal time  
intervals. The apple falls farther  
during each successive interval,  
which means it is accelerating.

FIGURE 2 – 28  (a) A ball and a light  
piece of paper are dropped at the  
same time. (b) Repeated, with the  
paper wadded up. 

(a) (b)

FIGURE 2 – 29  A rock and a feather 
are dropped simultaneously  
(a) in air, (b) in a vacuum.

Air-filled tube

(a)

Evacuated tube

(b)
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60 CHAPTER 2 Describing Motion: Kinematics in One Dimension

EXAMPLE 2 – 15 Falling from a tower. Suppose that a ball is dropped 
 (v0 = 0)   from a tower. How far will it have fallen after a time  t1 = 1.00 s,  
t2 = 2.00 s,  and  t3 = 3.00 s? Ignore air resistance.

APPROACH Let us take y as positive downward, so the acceleration is 
a = g = +9.80 m>s2. We set  v0 = 0  and  y0 = 0.  We want to fi nd the position y 
of the ball after three different time intervals. Equation 2 9 12b, with x replaced 
by y, relates the given quantities (t, a, and v0) to the unknown y.

SOLUTION We set  t = t1 = 1.00 s  in Eq. 2 9 12b:

 y1 = v0 t1 + 1
2 at2

1

 = 0 + 1
2 at2

1 = 1
2  (9.80 m>s2) (1.00 s) 2 = 4.90 m.

The ball has fallen a distance of 4.90 m during the time interval  t = 0  to 
t1 = 1.00 s.  Similarly, after 2.00 s  (   = t2),  the ball’s position is

y2 = 1
2 at2

2 = 1
2  (9.80 m>s2) (2.00 s) 2 = 19.6 m.

Finally, after 3.00 s  (   = t3),  the ball’s position is (see Fig. 2 9 30a)

y3 = 1
2 at3

2 = 1
2  (9.80 m>s2) (3.00 s) 2 = 44.1 m.

NOTE Whenever we say “dropped,” it means  v0 = 0.  Note also the graph of 
y vs. t (Fig.  2 9 30b): the curve is not straight but bends upward because y is 
proportional to t2.

NOTE Because of air resistance, all of the distances in Fig. 2 9 30, y1 , y2 , y3 , would 
be smaller than shown (and as just calculated); but the difference will be small 
for a reasonably heavy (but small) object.

Galileo’s specifi c contribution to our understanding of the motion of falling 
objects can be summarized as follows:

at a given location on the Earth and in the absence of air resistance, all 
objects fall with the same constant acceleration.

We call this acceleration the acceleration due to gravity at the surface of the 
Earth, and we give it the symbol g. Its magnitude is approximately

g = 9.80 m>s2.

In British units g is about 32 ft>s2. Actually, g varies slightly according to latitude 
and elevation above sea level on the Earth’s surface, but these variations are so 
small that we will ignore them for most purposes. (Acceleration of gravity out 
in space beyond the Earth’s surface is treated in Chapter 6.) Air resistance acts 
to reduce the speed of a falling object, but this effect is often small, and we will 
neglect it for the most part. However, air resistance will be noticeable even on a 
reasonably heavy object if the velocity becomes large.† 

Acceleration due to gravity is a vector, as is any acceleration, and its direction 
is downward toward the center of the Earth.

When dealing with freely falling objects we can make use of Eqs. 2 9 12, where 
for a we use the value of g given above. Also, since the motion is vertical we will 
substitute y in place of x, and y0 in place of x0 . We take  y0 = 0  unless otherwise 
specifi ed. It is arbitrary whether we choose y to be positive in the upward direc-
tion or in the downward direction; but we must be consistent about it throughout 
a problem’s solution.

EXERCISE G Return to the Chapter-Opening Question, page 42, and answer it again 
now, assuming minimal air resistance. Try to explain why you may have answered differ-
ently the fi rst time.

[ acceleration due to gravity]at surface of Earth 

P R O B L E M  S O LV I N G
You can choose y to be positive 

either up or down

FIGURE 2 – 30  Example 2 9 15. (a) An 
object dropped from a tower falls 
with progressively greater speed 
and covers greater distance with 
each successive second. (See also 
Fig. 2 9 27.) (b) Graph of y vs. t (y is +  
downward).

(a)

(b)

40
30
20
10

y (m)

20 1 3
t (s)

y = 0

y3 = 44.1 m
(After 3.00 s)

y2 = 19.6 m
(After 2.00 s)

y1 = 4.90 m
(After 1.00 s)

+y

Acceleration
due to
gravity

+y

†The speed of an object falling in air (or other fl uid) does not increase indefi nitely. If the object 
falls far enough, it will reach a maximum velocity called the terminal velocity due to air resistance. 
(Section 5 9 6 deals directly with air resistance.)
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SECTION 2–7 Freely Falling Objects 61

EXAMPLE 2 – 16 Thrown down from a tower. Suppose the ball in  
Example 2 9 15 is thrown downward with an initial velocity of 3.00 m>s, instead 
of being dropped. (a) What then would be its position after 1.00 s and 2.00 s? 
(b) What would its speed be after 1.00 s and 2.00 s? Compare with the speeds 
of a dropped ball.

APPROACH Again we use Eq. 2 9 12b, but now v0 is not zero, it is  v0 = 3.00 m>s.

SOLUTION (a) At  t1 = 1.00 s,  the position of the ball as given by Eq. 2 9 12b is

y = v0 t + 1
2 at2 =  (3.00 m>s) (1.00 s) + 1

2  (9.80 m>s2) (1.00 s) 2 = 7.90 m.

At  t2 = 2.00 s  (time interval  t = 0  to  t = 2.00 s),  the position is

y = v0 t + 1
2 at2 =  (3.00 m>s) (2.00 s) + 1

2  (9.80 m>s2) (2.00 s) 2 = 25.6 m.

As expected, the ball falls farther each second than when it is dropped with 
v0 = 0,  Example 2 9 15.
(b) The velocity is obtained from Eq. 2 9 12a:

 v = v0 + at
 = 3.00 m>s +  (9.80 m>s2) (1.00 s) = 12.8 m>s [at  t1 = 1.00 s]
 = 3.00 m>s +  (9.80 m>s2) (2.00 s) = 22.6 m>s. [at  t2 = 2.00 s]

In Example 2 9 15, when the ball was dropped  (v0 = 0),  the first term (v0)  in 
these  equations was zero, so

 v = 0 + at
 =  (9.80 m>s2) (1.00 s) = 9.80 m>s      [at  t1 = 1.00 s]
 =  (9.80 m>s2) (2.00 s) = 19.6 m>s.     [at  t2 = 2.00 s]

NOTE For both Examples 2 9 15 and 2 9 16 the speed increases linearly in time 
by 9.80 m>s during each second. But the speed of the downwardly thrown 
ball at any instant is always 3.00 m>s (its initial speed) greater than that of a 
dropped ball.

FIGURE 2 – 31  An object thrown 
into the air leaves the thrower’s  
hand at A, reaches its maximum 
height at B, and returns to the 
original position at C.  
Examples 2 9 17, 2 9 18, 2 9 19, 2 9 20,  
and 2 9 21.

A C

(v = 0)B

v v

g g

+y
EXAMPLE 2 – 17 Ball thrown upward. A person throws a ball upward into 
the air with an initial velocity of 15.0 m>s. Calculate how high it goes. Ignore air 
resistance.

APPROACH We are not concerned here with the throwing action, but only with 
the motion of the ball after it leaves the thrower’s hand (Fig. 2 9 31) at point A. Let 
us choose y to be positive in the upward direction and negative in the downward 
direction. (This is a different convention from that used in Examples 2 9 15 and 
2 9 16, and so illustrates our options.) The acceleration due to gravity is downward 
and so will have a negative sign,  a = -g = -9.80 m>s2.  As the ball rises, its speed 
decreases until it reaches the highest point (B in Fig. 2 9 31), where its speed is zero 
for an instant; then it descends, with increasing speed.

SOLUTION We consider the time interval from when the ball leaves the throw-
er’s hand until the ball reaches the highest point. To determine the maximum 
height, we calculate the position of the ball when its velocity equals zero  
(v = 0  at the highest point). At  t = 0  (point A in Fig. 2 9 31) we set  y0 = 0,  
v0 = 15.0 m>s,  and  a = -9.80 m>s2.  At time t (maximum height),  v = 0,  
a = -9.80 m>s2,  and we wish to find y. We use Eq. 2 9 12c, replacing x with y:  
v2 = v0

2 + 2ay.  We solve this equation for y:

y =
v2 - v0

2

2a
=

0 - (15.0 m>s) 2

2( -9.80 m>s2)
= 11.5 m.

The ball reaches a height of 11.5 m above the hand.
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62 CHAPTER 2 Describing Motion: Kinematics in One Dimension

We did not consider the throwing action in these Examples. Why? Because during 
the throw, the thrower’s hand is touching the ball and accelerating the ball at a 
rate unknown to us : the acceleration is not g. We consider only the time when 
the ball is in the air and the acceleration is equal to g.

Every quadratic equation (where the variable is squared) mathematically 
produces two solutions. In physics, sometimes only one solution corresponds  
to the real situation, as we saw in Example 2 9 12, in which case we ignore the 
“unphysical” solution. But here in Example 2 9 18, both solutions to our equation 
in t2 are physically meaningful:  t = 0  and  t = 3.06 s.

CONCEPTUAL EXAMPLE 2 – 19 Two possible misconceptions. Give 
examples to show the error in these two common misconceptions: (1) that accel-
eration and velocity are always in the same direction, and (2) that an object 
thrown upward has zero acceleration at the highest point (B in Fig. 2 9 31).

RESPONSE Both are wrong. (1) Velocity and acceleration are not necessarily 
in the same direction. When the ball in Fig. 2 9 31 is moving upward, its velocity 
is positive (upward), whereas the acceleration is negative (downward). (2) At 
the highest point (B in Fig. 2 9 31), the ball has zero velocity for an instant. 
Is the acceleration also zero at this point? No. The velocity near the top of 
the arc points upward, then becomes zero for an instant (zero time) at the 
highest point, and then points downward. Gravity does not stop acting, so  
a = -g = -9.80 m>s2  even there. Thinking that  a = 0  at point B would lead 
to the conclusion that upon reaching point B, the ball would stay there: if the 
acceleration (  = rate of change of velocity) were zero, the velocity would stay 
zero at the highest point, and the ball would stay up there without falling. 
Remember: the acceleration of gravity always points down toward the center 
of the Earth, even when the object is moving up.

C A U T I O N
(1) Velocity and acceleration are  
not always in the same direction;  

the acceleration (of gravity)  
always points down

(2) a ≠  0 even at the highest point of  
 a trajectory

A C

(v = 0)B

v v

g g

+y

FIGURE 2 – 31  (Repeated.)  
An object thrown into the air leaves 
the thrower’s hand at A, reaches its 
maximum height at B, and returns to 
the original position at C.  
Examples 2 9 17, 2 9 18, 2 9 19, 2 9 20,  
and 2 9 21.

C A U T I O N
Quadratic equations have two 
solutions. Sometimes only one 

corresponds to reality,  
sometimes both

EXAMPLE 2 – 18 Ball thrown upward, II. In Example 2 9 17, Fig. 2 9 31 (shown 
here again), how long is the ball in the air before it comes back to the hand?

APPROACH We need to choose a time interval to calculate how long the ball is 
in the air before it returns to the hand. We could do this calculation in two parts 
by first determining the time required for the ball to reach its highest point, and 
then determining the time it takes to fall back down. However, it is simpler to 
consider the time interval for the entire motion from A to B to C (Fig. 2 9 31) in  
one step and use Eq. 2 9 12b. We can do this because y is position (or displace-
ment from the origin), and not the total distance traveled. Thus, at both 
points A and C we have  y = 0.

SOLUTION We use Eq. 2 9 12b with  a = -9.80 m>s2  and find

 y = y0 + v0 t + 1
2 at2

 0 = 0 +  (15.0 m>s)t + 1
2  ( -9.80 m>s2)t2.

This equation can be factored (we factor out one t):

(15.0 m>s - 4.90 m>s2 t)  t = 0.

There are two solutions:

t = 0 and t =
15.0 m>s
4.90 m>s2 = 3.06 s.

The first solution  (t = 0)   corresponds to the initial point (A) in Fig. 2 9 31, 
when the ball was first thrown from  y0 = 0.  The second solution,  t = 3.06 s,  
corresponds to point C, when the ball has returned to  y = 0.  Thus the ball 
is in the air 3.06 s.

NOTE We have ignored air resistance in these last two Examples, which could 
be significant, so our result is only an approximation to a real, practical situation.
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SECTION 2–7 Freely Falling Objects 63

The acceleration of objects such as rockets and fast airplanes is often 
given as a multiple of  g = 9.80 m>s2.  For example, an airplane pulling out of 
a  dive (see Fig. 2 9 32) and undergoing 3.00 g’s would have an acceleration 
of (3.00)(9.80 m>s2) = 29.4 m>s2 .

P R O B L E M  S O LV I N G
Acceleration in g’s

FIGURE 2 – 32  Several airplanes, 
in formation, are just coming out 
of a downward dive.

EXAMPLE 2 – 20 Ball thrown upward, III. Let us consider again the ball 
thrown upward of Examples 2 9 17 and 2 9 18, and make more calculations. Calcu-
late (a) how much time it takes for the ball to reach the maximum height 
(point B in Fig. 2 9 31), and (b) the velocity of the ball when it returns to the 
thrower’s hand (point C).

APPROACH Again we assume the acceleration is constant, so we can use 
Eqs. 2 9 12. We have the maximum height of 11.5 m and initial speed of 15.0 m>s 
from Example 2 9 17. Again we take y as positive upward.

SOLUTION (a) We consider the time interval between the throw  (t0 = 0,  
v0 = 15.0 m>s)  and the top of the path  (y = +11.5 m,  v = 0),  and we want to 
fi nd t. The acceleration is constant at  a = -g = -9.80 m>s2.  Both Eqs. 2 9 12a 
and 2 9 12b contain the time t with other quantities known. Let us use Eq. 2 9 12a 
with  a = -9.80 m>s2,  v0 = 15.0 m>s,  and  v = 0:

v = v0 + at;

setting  v = 0  gives  0 = v0 + at,  which we rearrange to solve for t:  at  =  -v0  
or

 t = -  
v0

a
 = -  

15.0 m>s
-9.80 m>s2 = 1.53 s.

This is just half the time it takes the ball to go up and fall back to its original 
position [3.06 s, calculated in Example 2 9 18]. Thus it takes the same time to 
reach the maximum height as to fall back to the starting point. We might have 
guessed this from the symmetry of the motion. But be careful. When air 
 resistance cannot be neglected, the symmetry is no longer perfect.
(b) To fi nd the ball’s velocity when it returns to the hand (point C), we consider 
the time interval from the throw  (t0 = 0,  v0 = 15.0 m>s)  until the ball’s return 
to the hand, which occurs at  t = 3.06 s  (as calculated in Example 2 9 18). We use 
Eq. 2 9 12a again to fi nd v when  t = 3.06 s:

 v = v0 + at
 = 15.0 m>s -  (9.80 m>s2)(3.06 s) = -15.0 m>s.

NOTE The ball has the same speed (magnitude of velocity) when it returns 
to the starting point as it did initially, but in the opposite direction (this is the 
meaning of the negative sign). And, as we saw in part (a), the time is the same 
up as down. Thus the motion is symmetrical about the maximum height.
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64 CHAPTER 2 Describing Motion: Kinematics in One Dimension

FIGURE 2 – 33  Graphs of (a) y vs. t, (b) v vs. t, for a ball thrown upward, 
Examples 2 9 17, 2 9 18, 2 9 20, and 2 9 21.
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EXAMPLE 2 – 21 Ball thrown upward, IV; the quadratic formula. For the 
ball in Example 2 9 20, calculate at what time t the ball passes a point 8.00 m 
above the person’s hand. (See Fig. 2 9 31, repeated below.)

APPROACH We choose the time interval from the throw  (t0 = 0,  v0 = 15.0 m>s)   
until the time t (to be determined) when the ball is at position  y = 8.00 m,  using 
Eq. 2 9 12b.

SOLUTION We want to find t, given  y = 8.00 m,  y0 = 0,  v0 = 15.0 m>s,  and  
a = -9.80 m>s2. We use Eq. 2 9 12b:

 y = y0 + v0 t + 1
2 at2

 8.00 m = 0 +  (15.0 m>s)t + 1
2  ( -9.80 m>s2)t2.

To solve any quadratic equation of the form  at2 + bt + c = 0,  where a, b, and 
c are constants (a is not acceleration here), we use the quadratic formula:

t =
-b { 2b2 - 4ac

2a
.

We rewrite our y equation just above in standard form,  at2 + bt + c = 0:

(4.90 m>s2)t2 -  
 (15.0 m>s)t +  (8.00 m) = 0.

So the coefficient a is  4.90 m>s2,  b is  -15.0 m>s,  and c is 8.00 m. Putting these 
into the quadratic formula, we obtain

t =
15.0 m>s { 2( -15.0 m>s)2 - 4(4.90 m>s2)(8.00 m)

2(4.90 m>s2)
,

which gives us  t = 0.69 s  and  t = 2.37 s.  Are both solutions valid? Yes, because 
the ball passes  y = 8.00 m  when it goes up  (t = 0.69 s)  and again when it comes 
down  (t = 2.37 s).

NOTE Figure 2 9 33 shows graphs of (a) y vs. t and (b) v vs. t for the ball thrown 
upward in Fig. 2 9 31, incorporating the results of Examples 2 9 17, 2 9 18, 2 9 20, and 2 9 21.

P R O B L E M  S O LV I N G
Quadratic formula  

is a very useful tool

EXAMPLE 2 – 22 Ball thrown upward at edge of cliff. Suppose that the 
person of Examples 2 9 17, 2 9 18, 2 9 20, and 2 9 21 is standing on the edge of a 
cliff, so that the ball can fall to the base of the cliff 50.0 m below, as shown in 
Fig. 2 9 34. (a)  How long does it take the ball to reach the base of the cliff? 
(b) What is the total distance traveled by the ball? Ignore air resistance (likely 
to be significant, so our result is an approximation).

APPROACH We again use Eq. 2 9 12b, but this time we set  y = -50.0 m,  the 
bottom of the cliff, which is 50.0 m below the initial position  (y0 = 0).

A C

(v = 0)B

v v

g g

+y

FIGURE 2 – 31  (Repeated.)  
An object thrown into the air leaves 
the thrower’s hand at A, reaches its 
maximum height at B, and returns to 
the original position at C.  
Examples 2 9 17, 2 9 18, 2 9 19, 2 9 20,  
and 2 9 21.
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*SECTION 2–8 Variable Acceleration; Integral Calculus 65

SOLUTION (a) We use Eq. 2 9 12b with  a = -9.80 m>s2,  v0 = 15.0 m>s,  y0 = 0,  
and y = -50.0 m:

 y = y0 + v0 t + 1
2 at2

 -50.0 m = 0 +  (15.0 m>s)t - 1
2  (9.80 m>s2)t2.

Rewriting in the standard form we have

(4.90 m>s2)t2 -  (15.0 m>s)t -  (50.0 m) = 0.

Using the quadratic formula, we fi nd as solutions  t = 5.07 s  and  t = -2.01 s.  The 
fi rst solution,  t = 5.07 s,  is the answer we are seeking: the time it takes the ball 
to rise to its highest point and then fall to the base of the cliff. To rise and fall back to 
the top of the cliff took 3.06 s (Example 2 9 18); so it took an additional 2.01 s to fall to 
the base. But what is the meaning of the other solution,  t = -2.01 s?  This is a time 
before the throw, when our calculation begins, so it isn’t relevant here. It is outside 
our chosen time interval, and so is an unphysical solution just as in Example 2 9 12.
(b) For the total distance traveled, Example 2 9 17 told us that the ball moves 
up 11.5 m, falls 11.5 m back down to the top of the cliff; it then falls down 
another 50.0 m to the base of the cliff, for a total distance traveled of 
2 (11.5 m) + 50.0 m = 73.0 m. Note that the displacement, however, was -50.0 m. 
Figure 2 9 34b shows the y vs. t graph for this situation.

NOTE The solution  t = -2.01 s  in part (a) could be meaningful in a different 
physical situation. Suppose that a person standing on top of a 50.0-m-high cliff 
sees a rock pass by her at t = 0  moving upward at 15.0 m>s; at what time did 
the rock leave the base of the cliff, and when did it arrive back at the base of 
the cliff? The equations will be precisely the same as for our original Example, 
and the answers  t = -2.01 s  and  t = 5.07 s  will be the correct answers. Note 
that we cannot put all the information for a problem into the mathematics, so 
we have to use common sense in interpreting results.

EXERCISE H Two balls are thrown from a cliff. One is thrown directly up, the other 
directly down, each with the same initial speed, and both hit the ground below the cliff. 
Which ball hits the ground at the greater speed: (a) the ball thrown upward, (b) the ball 
thrown downward, or (c) both the same? Ignore air resistance.
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FIGURE 2 – 34  Example 2 9 22. 
(a) A person stands on the edge 
of a cliff. A ball is thrown upward, 
and then falls back down past the 
thrower to the base of the cliff, 
50.0 m below. (b) The y vs. t graph.

2–8  Variable Acceleration; 
Integral Calculus

In this brief optional Section we use integral calculus to derive the kinematic 
equations for constant acceleration, Eqs. 2 9 12a and b. We also show how calculus 
can be used when the acceleration is not constant. If you have not yet studied 
simple integration in your calculus course, you may want to postpone reading 
this Section until you have. We discuss integration in more detail in Section 7 9 3, 
where we begin to use it in the physics.

First we derive Eq. 2 9 12a, assuming as we did in Section 2 9 5 that an object 
has velocity v0 at  t = 0  and a constant acceleration a. We start with the defi nition 
of instantaneous acceleration,  a = dv>dt,  which we rewrite as

dv = a dt.

We take the defi nite integral of both sides of this equation, using the same notation 
we did in Section 2 9 5, from  v = v0  at  t0 = 0  to some velocity v at time t:

3
v

v = v0

dv = 3
t

t0 = 0
a dt

which gives, since  a = constant,

v - v0 = at.

This is Eq. 2 9 12a,  v = v0 + at.

*
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Next we derive Eq. 2 9 12b starting with the definition of instantaneous velocity,  
Eq. 2 9 4,  v = dx>dt.  We rewrite this as

 dx = v dt
or

 dx =  (v0 + at)dt

where we substituted in Eq. 2 9 12a.
Now we integrate from  x = x0  at  t0 = 0  to an arbitrary position x at time t:

 3
x

x = x0

dx = 3
t

t0 = 0
(v0 + at)dt

 x - x0 = 3
t

t0 = 0
v0 dt + 3

t

t0 = 0
at dt

 x - x0 = v0 t + 1
2 at2

since v0 and a are constants. This result is just Eq. 2 9 12b,  x = x0 + v0 t + 1
2 at2.

Finally let us use calculus to find velocity and displacement, given an accel-
eration that is not constant but varies in time.

Some problems in kinematics can be solved using Numerical Integration, which 
is discussed in Appendix C.

EXAMPLE 2 – 23 Integrating a time-varying acceleration. An experimental 
vehicle starts from rest  (v0 = 0)  at  t = 0  and accelerates for a few seconds at a 
rate given by  a = (7.00 m>s3)t.  What is (a) its velocity and (b) its displacement 
2.00 s later?

APPROACH We cannot use Eqs. 2 9 12 because a is not constant. We integrate 
the acceleration  a = dv>dt  over time to find v as a function of time; and then 
integrate  v = dx>dt to get the displacement.

SOLUTION From the definition of acceleration,  a = dv>dt,  we have

dv = a dt.

We take the integral of both sides from  v = 0  at  t = 0  to velocity v at an 
arbitrary time t:

 3
v

0

dv = 3
t

0

a dt

 v = 3
t

0

(7.00 m>s3)t dt

 = (7.00 m>s3) ¢ t2

2
≤ 2

0

t
=  (7.00 m>s3) ¢ t2

2
- 0≤ =  (3.50 m>s3)t2.

At  t = 2.00 s,  v = (3.50 m>s3)(2.00 s)2 = 14.0 m>s.
(b) To get the displacement, we assume  x0 = 0  and start with  v = dx>dt  which we 
rewrite as  dx = v dt.  Then we integrate from  x = 0  at  t = 0  to position x at time t:

 3
x

0

dx = 3
t

0

v dt

 x = 3
2.00 s

0

(3.50 m/s3)t2 dt = (3.50 m/s3) 
t3

3
 2

0

2.00 s

= 9.33 m.

In sum, at  t = 2.00 s,  v = 14.0 m>s  and  x = 9.33 m.
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Summary
[The Summary that appears at the end of each Chapter in this book 
gives a brief overview of the main ideas of the Chapter. The Summary 
cannot serve to give an understanding of the material, which can be 
accomplished only by a detailed reading of the Chapter.]

Kinematics deals with the description of how objects move. 
The description of the motion of any object must always be 
given relative to some particular reference frame.

The displacement of an object is the change in position of 
the object.

Average speed is the distance traveled divided by the 
elapsed time or time interval, ∆t, the time period over which we 
choose to make our observations. An object’s average velocity 
over a particular time interval ∆t is its displacement ∆x during 
that time interval, divided by ∆t:

v =
∆x
∆t

. (2 – 2)

The instantaneous velocity, whose magnitude is the same as 
the instantaneous speed, is defined as the average velocity taken 
over an infinitesimally short time interval  (∆t S 0):

v = lim
∆tS0

 
∆x
∆t

=
dx
dt

, (2 – 4)

where dx>dt is the derivative of x with respect to t.
On a graph of position vs. time, the slope is equal to the 

instantaneous velocity.

Acceleration is the change of velocity per unit time. An 
object’s average acceleration over a time interval ∆t is

a =
∆v
∆t

, (2 – 5)

where ∆v is the change of velocity during the time interval ∆t.
Instantaneous acceleration is the average acceleration taken 

over an infinitesimally short time interval:

a = lim
∆tS0

 
∆v
∆t

=
dv
dt

. (2 – 6)

On a graph of velocity vs. time, the slope is equal to the 
instantaneous acceleration.

If an object has position x0 and velocity v0 at time  t = 0  and 
moves in a straight line with constant acceleration, the velocity 
v and position x at a later time t are related to the acceleration 
a, the initial position x0 , and the initial velocity v0 by Eqs. 2 9 12:

 v = v0 + at,  
 x = x0 + v0 t + 1

2 at2,  

 v2 = v0
2 + 2a(x - x0), (2 – 12)

 v =
v + v0

2
.  

Objects that move vertically near the surface of the Earth, 
either falling or having been projected vertically up or down, 
move with the constant downward acceleration due to gravity, 
whose magnitude is  g = 9.80 m>s2  if air resistance can be ignored.

[*Integral calculus can be used to derive the kinematic 
Equations 2 9 12 and to solve Problems involving varying accel-
eration. Numerical integration is also a useful tool.]

Questions
 1. Does a car speedometer measure speed, velocity, or both? 

Explain.
 2. Can an object have a varying speed if its velocity is constant? 

Can it have varying velocity if its speed is constant? If yes, 
give examples in each case.

 3. When an object moves with constant velocity, does its 
average velocity during any time interval differ from its 
instantaneous velocity at any instant? Explain.

 4. If one object has a greater speed than a second object, does 
the first necessarily have a greater acceleration? Explain, 
using examples.

 5. Compare the acceleration of a motorcycle that accelerates 
from 80 km>h to 90 km>h with the acceleration of a bicycle 
that accelerates from rest to 10 km>h in the same time.

 6. Can an object have a northward velocity and a southward 
acceleration? Explain.

 7. Can the velocity of an object be negative when its accel-
eration is positive? What about vice versa? If yes, give 
examples.

 8. Give an example where both the velocity and acceleration 
are negative.

 9. Two cars emerge side by side from a tunnel. Car A is 
traveling with a speed of 60 km>h and has an accelera-
tion of 40 km>h>min. Car B has a speed of 40 km>h and 
has an acceleration of 60 km>h>min. Which car is passing 
the other as they come out of the tunnel? Explain your 
reasoning.

 10. Can an object be increasing in speed as its acceleration 
decreases? If so, give an example. If not, explain.

 11. A baseball player hits a ball straight up into the air. It leaves 
the bat with a speed of 120 km>h. Ignoring air resistance, 
how fast would the ball be traveling when the catcher 
catches it (at the same height it left the bat)? Explain.

 12. As a freely falling object speeds up, what is happening to its 
acceleration : does it increase, decrease, or stay the same? 
(a) Ignore air resistance. (b) Consider air resistance.

 13. You travel from point A to point B in a car moving at 
a constant speed of 70 km>h. Then you travel the same 
distance from point B to another point C, moving at a 
constant speed of 90 km>h. Is your average speed 80 km>h 
for the entire trip from A to C? Explain why or why not.

 14. Can an object have zero velocity and nonzero acceleration 
at the same time? Give examples.

 15. Can an object have zero acceleration and nonzero velocity 
at the same time? Give examples.

 16. Which of these motions is not at constant acceleration: a 
rock falling from a cliff, an elevator moving from the second 
floor to the fifth floor making stops along the way, a dish 
resting on a table? Explain your answers.

 17. Discuss two conditions given in Section 2 9 7 for being able to 
use a constant acceleration of magnitude  g = 9.8 m>s2.  Give 
an example in which one of these conditions would not be met 
and would not even be a reasonable approxima tion of motion. 
[Hint: Carefully read Section 2 9 7, especially page 60.]
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68 CHAPTER 2 Describing Motion: Kinematics in One Dimension

 18. Describe in words the motion plotted in Fig. 2 9 35 in terms 
of velocity, acceleration, etc. [Hint: First try to duplicate the 
motion plotted by walking or moving your hand.]

20
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0
0 10 20 30 40 50

t (s)

x 
(m

)

FIGURE 2 – 35  Question 18.

 19. Describe in words the motion of the object graphed in  
Fig. 2 9 36.

   
v 

(m
>s)

t (s)
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FIGURE 2 – 36  Question 19.

MisConceptual Questions
[List all answers that are valid, and ignore air resistance.]
 1. In which of the following cases does a car have a negative 

velocity and a positive acceleration? A car that is traveling 
in the
(a) -x direction at a constant 20 m>s.
(b) -x direction increasing in speed. 
(c) +x direction increasing in speed. 
(d) -x direction decreasing in speed.
(e) +x direction decreasing in speed. 

 2. At time  t = 0  an object is traveling to the right along the 
+x axis at a speed of 10.0 m>s with constant acceleration 
of -2.0 m>s2. Which statement is true?
(a) The object will slow down, eventually coming to a 

 complete stop.
(b) The object cannot have a negative acceleration and be 

moving to the right.
(c) The object will continue to move to the right, slowing 

down but never coming to a complete stop.
(d) The object will slow down, momentarily stopping, then 

pick up speed moving to the left. 
 3. You drive 4 km at 30 km>h and then another 4 km at 50 km>h. 

What is your average speed for the whole 8-km trip? 
(a) More than 40 km>h. (c) Less than 40 km>h.
(b) Equal to 40 km>h. (d) Not enough information.

 4. Two cars start from rest and travel a distance d with constant 
acceleration. The acceleration of car B is four times that of 
car A. After each has traveled distance d,
(a) car B is moving 16 times as fast as car A.
(b) car B is moving 8 times as fast as car A.
(c) car B is moving 4 times as fast as car A.
(d) car B is moving 2 times as fast as car A.

 5. A rock is thrown straight up rising to a maximum height 
before falling back down.
(a) The acceleration is constant for the entire trip.
(b) The velocity is constant for the entire trip.
(c) The magnitudes of both the velocity and acceleration 

decrease on the way up and increase on the way down.
(d) The acceleration is constant for the entire trip except 

at the top where it is 0.

 6. A ball is dropped from the top of a tall building. At the 
same instant, a second ball is thrown upward from ground 
level. When the two balls pass one another, one on the way 
up, the other on the way down, compare the magni tudes of 
their acceleration:
(a) The acceleration of the dropped ball is greater.
(b) The acceleration of the ball thrown upward is greater. 
(c) The acceleration of both balls is the same.
(d) The acceleration changes during the motion, so you 

 cannot predict the exact value when the two balls pass 
each other. 

(e) The accelerations are in opposite directions. 

 7. You drop a rock off a bridge. When the rock has fallen 4 m, 
you drop a second rock. As the two rocks continue to fall, 
what happens to their velocities?
(a) Both increase at the same rate.
(b) The velocity of the first rock increases faster than the 

velocity of the second.
(c) The velocity of the second rock increases faster than 

the velocity of the first.
(d) Both velocities stay constant. 

 8. Two objects are dropped from a bridge, an interval of 1.0 s 
apart. During the time that both objects continue to fall, 
their separation
(a) decreases at first, but then stays constant.
(b) increases at first, but then stays constant.
(c) decreases.
(d) stays constant. 
(e) increases. 

 9. A ball is thrown downward at a speed of 20 m>s. Choosing 
the +y axis pointing up and neglecting air resistance, 
which equation(s) would correctly describe the motions? 
The acceleration due to gravity is  g = 9.8 m>s2  downward.
(a) v =  (20 m>s) - gt.
(b) y = y0 +  ( -20 m>s)t -  (1>2)gt2.
(c) v2 =  (20 m>s) 2 - 2g(y - y0).
(d) (20 m>s) = (v + v0) >2.
(e) All of the above.
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Problems 69

 10. A car travels along the x axis with increasing speed.  
We are not sure if it is moving to the left or to the right. 
Which of the graphs in Fig. 2 9 37 could possibly represent 
the motion of the car?

 11. Two objects start at the same place at the same time and 
move along the same straight line (the x axis). Figure 2 9 38 
shows the position x as a function of time t for each object. 
At point A, what must be true about the motion of the 
objects? (More than one statement may be correct.)
(a) Both have the same instantaneous speed.
(b) Both have the same instantaneous velocity. 
(c) Both are at the same position.
(d) Both have traveled the same total distance. 
(e) With respect to the start, both have the same average 

velocity. 

O

x

A

t

FIGURE 2 – 38  MisConceptual Question 11.

Problems
[The Problems at the end of each Chapter are ranked I, II, or III according 
to estimated difficulty, with level I Problems being easiest. Level III are meant 
as challenges for the best students. The Problems are arranged by Section, 
meaning that the reader should have read up to and including that Section, 
but not only that Section : Problems often depend on earlier material. Next 
is a set of “General Problems” not arranged by Section and not ranked.]

(Note: In Problems, assume a number like 6.4 is accurate to  {0.1;  
and 950 is {10 unless 950 is said to be “precisely” or “very nearly” 950, 
in which case assume  950 { 1.  See Section 1 9 3.)

2 – 1 to 2 – 3 Speed and Velocity
 1. (I) If you are driving 85 km>h along a straight road and you 

look to the side for 2.0 s, how far do you travel during this 
inattentive period? 

 2. (I) What must your car’s average speed be in order to travel 
235 km in 2.85 h? 

 3. (I) A particle at  t1 = -2.0 s  is at  x1 = 5.2 cm  and at 
t2 = 3.4 s  is at  x2 = 8.5 cm.  What is its average velocity 
over this time interval? Can you calculate its average speed 
from these data? Why or why not?

 4. (II) According to a rule-of-thumb, each five seconds 
between a lightning flash and the following thunder gives 
the distance to the flash in miles. (a) Assuming that the light 
from the flash arrives in essentially no time at all, estimate 
the speed of sound in m>s from this rule. (b) What would 
be the rule for kilometers? 

 5. (II) You are driving home from school steadily at 95 km>h 
for 210 km. It then begins to rain and you slow to 65 km>h. 
You arrive home after driving 4.5 h. (a) How far is your 
hometown from school? (b) What was your average speed? 

 6. (II) A horse trots away from its trainer in a straight  
line, moving 38 m away in 7.4 s. It then turns abruptly and 
gallops halfway back in 1.8 s. Calculate (a) its average 
speed and (b) its average velocity for the entire trip, using 
“away from the trainer” as the positive direction. 

 7. (II) A person jogs eight complete laps around a 400-m 
track in a total time of 14.5 min. Calculate (a) the average 
speed and (b) the average velocity, in m>s.

 8. (II) Every year the Earth travels about 109 km as it orbits 
the Sun. What is Earth’s average speed in km>h?

 9. (II) A car traveling 95 km>h is 310 m behind a truck  traveling 
75 km>h. How long will it take the car to reach the truck? 

 10. (II) Calculate (a) the average speed and (b) average velocity 
of a round trip: the outgoing 280 km is covered at 95 km>h, 
followed by a 1.0-h lunch break, and the return 280 km is 
covered at 55 km>h.

 11. (II) Two locomotives approach each other on parallel 
tracks. Each has a speed of 155 km>h with respect to the 
ground. If they are initially 9.5 km apart, how long will it 
be before they reach each other? (See Fig. 2 9 39.)

9.5 km

v  =
155 km>h

v  =  
155 km>h

FIGURE 2 – 39  Problem 11.
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t
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FIGURE 2 – 37   
MisConceptual Question 10.
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70 CHAPTER 2 Describing Motion: Kinematics in One Dimension

 12. (II) Digital bits on a 12.0-cm diameter audio CD are 
encoded along an outward spiraling path that starts at 
radius  R1 = 2.5 cm  and finishes at radius  R2 = 5.8 cm.  The 
dis tance between the centers of neighboring spiral- windings 
is 1.6 mm  (   = 1.6 * 10-6 m).  (a) Determine the total length 
of the spiraling path. [Hint: Imagine “unwinding” the spiral 
into a straight path of width 1.6 mm, and note that the 
 original spiral and the straight path both occupy the same 
area.] (b) The CD player adjusts the rotation of the CD so 
that the player’s readout laser reads along the spiral path 
at a constant rate of about 1.2 m>s. Estimate the maximum 
playing time of such a CD. 

 13. (II) The position of a small object is given by 
x = 27 + 10 t - 2 t3,  where t is in seconds and x in meters.  
(a) Plot x as a function of t from  t = 0  to  t = 3.0 s.  (b) Find  
the average velocity of the object between 0 and 3.0 s.  
(c) At what time between 0 and 3.0 s is the  instantaneous 
velocity zero?

 14. (II) An airplane travels 1900 km at a speed of 720 km>h, 
and then encounters a tailwind that boosts its speed to 
990 km>h for the next 2700 km. What was the total time 
for the trip? What was the average speed of the plane for 
this trip? [Hint: Does Eq. 2 9 12d apply?]

 15. (II) Two ships need to arrive at a site in the middle of the  
ocean at the same time. They start out at the same time 
from positions equally distant from the arrival site. They 
travel at different velocities but both go in a straight line. 
The first ship travels at an average velocity of 20 km>h  
for the first 600 km, 40 km>h for the next 800 km,  
and 20 km>h for the final 600 km. The second ship can 
only sail at constant velocity. What is the magnitude of  
that velocity?

 16. (II) The position of an object along a straight tunnel as a 
function of time is plotted in Fig. 2 9 40. What is its instanta-
neous velocity (a) at  t = 10.0 s  and (b) at t = 30.0 s?  What 
is its average velocity (c) between  t = 0  and  t = 5.0 s,  
(d)  between  t = 25.0 s  and  t = 30.0 s,  and (e) between 
t = 40.0 s  and  t = 50.0 s?

20

10

0
0 10 20 30 40 50

t (s)

x 
(m

)

FIGURE 2 – 40  Problems 16, 17, and 18.

 17. (II) In Fig. 2 9 40, (a) during what time intervals, if any, is the 
velocity constant? (b) At what time is the velocity greatest? (c) At  
what time, if any, is the velocity zero? (d) Does the object move 
in one direction or in both directions during the time shown? 

 18. (III) Sketch the v vs. t graph for the object whose displace-
ment as a function of time is given by Fig. 2 9 40.

 19. (III) A bowling ball traveling with constant speed hits the 
pins at the end of a bowling lane 16.5 m long. The bowler 
hears the sound of the ball hitting the pins 2.75 s after the 
ball is released from his hands. What is the speed of the 
ball, assuming the speed of sound is 340 m>s?

 20. (III) An automobile traveling 95 km>h overtakes a 1.50-km- 
long train traveling in the same direction on a track parallel 
to the road. If the train’s speed is 75 km>h, how long does it 
take the car to pass it, and how far will the car have traveled 
in this time? See Fig. 2 9 41. What are the results if the car 
and train are traveling in opposite  directions?

= 95 km>h

= 75 km>h
1.50 km

v

v

FIGURE 2 – 41  Problem 20.

2 – 4 Acceleration
 21. (I) A sprinter accelerates from rest to 9.00 m>s in 1.48 s. 

What is her acceleration in (a) m>s2; (b) km>h2?

 22. (I) A bicyclist in the Tour de France crests a mountain pass 
as he moves at 15 km>h. At the bottom, 4.0 km farther, his 
speed is 65 km>h. Estimate his average acceleration (in m>s2)   
while riding down the mountain.

 23. (II) A sports car moving at constant velocity travels 120 m 
in 5.0 s. If it then brakes and comes to a stop in 3.7 s, what 
is the magnitude of its acceleration (assumed constant) in 
m>s2, and in g’s  (g = 9.80 m>s2)?

 24. (II) At highway speeds, a particular automobile is capable 
of an acceleration of about 1.8 m>s2. At this rate, how long 
does it take to accelerate from 65 km>h to 120 km>h?

 25. (II) A car moving in a straight line starts at  x = 0  when  
t0 = 0. It passes the point  x = 25.0 m  with a speed of 
11.0 m>s at  t = 3.00 s.  It passes the point  x = 385 m  with 
a speed of 45.0 m>s at  t = 20.0 s.  Find (a) the average 
velocity, and (b) the average acceleration, between 
t = 3.00 s  and t = 20.0 s.

 26. (II) A particle moves along the x axis. Its position as a 
function of time is given by  x = 4.8 t + 7.3 t2,  where t is 
in seconds and x is in meters. What is the acceleration as a 
function of time?

 27. (II) The position of an object is given by  x = At + Bt2,  
where x is in meters and t is in seconds. (a) What are the 
units of A and B? (b) What is the acceleration as a func-
tion of time? (c) What are the velocity and acceleration at 
t = 6.0 s?  (d) What is the velocity as a function of time if 
x = At + Bt -3?

 28. (II) The position of a race car, which starts from rest at   
t = 0  and moves in a straight line, is given as a function of 
time in the following Table. Estimate (a) its velocity and  
(b) its acceleration as a function of time. Display each in a 
Table and on a graph.

t  (s) 0 0.25 0.50 0.75 1.00 1.50 2.00 2.50
x  (m) 0 0.11 0.46 1.06 1.94 4.62 8.55 13.79

t  (s) 3.00 3.50 4.00 4.50 5.00 5.50 6.00
x  (m) 20.36 28.31 37.65 48.37 60.30 73.26 87.16

 29. (II) A car traveling 25.0 m>s passes a second car which is at 
rest. When the cars are right next to each other, the first car 
slows down at a constant rate of 2.0 m>s2 and the second 
car starts to accelerate at the same constant rate. When will 
the two cars be next to each other again?
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 30. (II) Figure 2 9 42 shows the velocity of a train as a function of 
time. (a) At what time was its velocity greatest? (b) During 
what periods, if any, was the velocity constant? (c)  During 
what periods, if any, was the acceleration constant? (d) When 
was the magnitude of the acceleration greatest?

 31.  (II) A sports car accelerates approximately as shown in the 
velocity 9 time graph of Fig. 2 9 43. (The short flat spots in the 
curve represent manual shifting of the gears.) Estimate the car’s 
average acceleration in (a) second gear and (b) fourth gear. 
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 32. (III) A fugitive tries to hop on a freight train traveling at a constant 
speed of 5.0 m>s. Just as an empty box car passes him, the 
fugitive starts from rest and accelerates at  a = 1.4 m>s2  to 
his maximum speed of 6.0 m>s, which he then maintains.  
(a) How long does it take him to catch up to the empty box 
car? (b) What is the distance traveled to reach the box car? 

2 – 5 to 2 – 6 Motion at Constant Acceleration
 33. (I) A car slows down from 26 m>s to rest in a distance of 

88 m. What was its acceleration, assumed constant? 
 34. (I) A car slows down from 28 m>s to rest in 6.3 s. What was 

its (constant) acceleration? 
 35. (I) A car accelerates from 13 m>s to 22 m>s in 6.5 s. What 

was its acceleration? How far did it travel in this time? 
Assume constant acceleration. 

 36. (II) A world-class sprinter can reach a top speed (of about 
11.5 m>s) in the first 18.0 m of a race. What is the average 
acceleration of this sprinter and how long does it take her 
to reach that speed? 

 37. (II) A car slows down uniformly from a speed of 28.0 m>s 
to rest in 8.60 s. How far did it travel in that time? 

 38. (II) In coming to a stop, an old truck leaves skid marks 45 m 
long on the highway. Assuming a deceleration of 6.00 m>s2, 
estimate the speed of the truck just before braking. 

 39. (II) A baseball pitcher throws a baseball with a speed of 
43 m>s. Estimate the average acceleration of the ball during 
the throwing motion. In throwing the baseball, the pitcher 
accelerates it through a displacement of about 3.5 m, from 
behind the body to 
the point where it is 
released (Fig. 2 9 44).

 40.  (II) A car traveling at 95 km>h strikes a tree. The front end 
of the car compresses and the driver comes to rest after 
traveling 0.80 m. What was the magnitude of the average 
acceleration of the driver during the collision? Express the 
answer in terms of “g’s,” where  1.00 g = 9.80 m>s2.

 41.  (II) A car traveling 85 km>h slows down at a constant 0.50 m>s2 
just by “letting up on the gas.” Calculate (a) the distance the car 
coasts before it stops, (b) the time it takes to stop, and (c) the 
distance it travels during the first and fifth seconds. 

 42.  (II) Determine the stopping distances for an automobile 
going a constant initial speed of 95 km>h in the +x direction, 
and human reaction time of 0.40 s: (a) for an acceleration  
a = -2.5 m>s2;  (b) for a = -5.5 m>s2.

 43.  (II) A driver is traveling 18.0 m>s when she sees a red 
light ahead. Her car is capable of decelerating at a rate 
of 3.65 m>s2. If it takes her 0.380 s to get the brakes on 
and she is 24.0 m from the intersection when she sees 
the light, will she be able to stop in time? How far from 
the beginning of the intersection will she be, and in which 
direction? 

 44. (II) Show that  v = (v + v0) >2  (see Eq. 2 9 12d) is not valid 
when the acceleration  a = A + Bt,  where A and B are 
non-zero constants.

 45. (II) An 85-m-long train begins uniform acceleration from 
rest. The front of the train has a speed of 18 m>s when it 
passes a railway worker who is standing 180 m from where 
the front of the train started. What will be the speed of the 
last car as it passes the worker? (See Fig. 2 9 45.)

85 m

v = 18 m>s

FIGURE 2 – 45  Problem 45.

 46. (II) A space vehicle accelerates uniformly from 85 m>s 
at t = 0  to 162 m>s at  t = 10.0 s.  How far did it move 
between t = 2.0 s  and  t = 7.0 s?

 47. (II) A runner hopes to complete the 10,000-m run in less 
than 30.0 min. After running at constant speed for exactly 
27.0 min, there are still 1200 m to go. The runner must then 
accelerate at 0.20 m>s2 for how many seconds in order to 
achieve the desired time? 
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FIGURE 2 – 42  Problem 30.

3.5 m

FIGURE 2 – 44  Problem 39.

FIGURE 2 – 43  Problem 31. The velocity of a car 
as a function of time, starting from a dead stop. 
The flat spots in the curve represent gear shifts.
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72 CHAPTER 2 Describing Motion: Kinematics in One Dimension

 48.  (III) Mary and Sally are in a foot race (Fig. 2 9 46). When 
Mary is 22 m from the fi nish line, she has a speed of 4.0 m>s 
and is 5.0 m behind Sally, who has a speed of 5.0 m>s. Sally 
thinks she has an easy win and so, during the remaining 
portion of the race, slows down at a constant rate of 
0.40 m>s2 to the fi nish line. What constant acceleration does 
Mary now need during the remaining portion of the race, if 
she wishes to cross the fi nish line side-by-side with Sally? 

Finish

5.0 m

22 m

Mary Sally
4.0 m>s 5.0 m>s

FIGURE 2 – 46  Problem 48.

 49.  (III) An unmarked police car traveling a constant 95 km>h 
is passed by a speeder traveling 135 km>h. Precisely 1.00 s 
after the speeder passes, the police offi cer steps on the 
accelerator; if the police car’s acceleration is 2.60 m>s2, 
how much time passes before the police car overtakes the 
speeder (assumed moving at constant speed)? 

 50. (III) Assume in Problem 49 that the speeder’s speed is not 
known. If the police car accelerates uniformly at 2.60 m>s2 
and overtakes the speeder after accelerating for 7.00 s, 
what was the speeder’s speed?

 51. (III) A runner completes a 400-meter race in 55.0 s. The 
55.0 seconds is made up of a 0.15 s reaction time from the 
starting sound until the runner starts moving followed by 
30.0 m of constant acceleration and then 370 m at constant 
speed. What are the values of the acceleration and the 
constant speed?

2 – 7 Freely Falling Objects (neglect air resistance)
 52. (I) A stone is dropped from the top of a cliff. It is seen to 

hit the ground below after 3.25 s. How high is the cliff? 
 53. (I) Estimate (a) how long it took King Kong to fall straight 

down from the top of the Empire State Building (380 m 
high), and (b) his velocity just before “landing.”

 54. (I) If a car rolls gently  (v0 = 0)  off a vertical cliff, how long 
does it take it to reach 55 km>h?

 55. (II) A ball player catches a ball 2.6 s after throwing it verti-
cally upward. With what speed did he throw it, and what 
height did it reach? 

 56. (II) A baseball is hit almost straight up into the air 
with a speed of 22 m>s. Estimate (a) how high it goes, 
and (b) how long it is in the air. (c) What factors make 
this an estimate?

 57. (II) A kangaroo jumps straight up to a vertical height 
of 1.45 m. How long was it in the air before returning to 
Earth? 

 58. (II) The best rebounders in basketball have a vertical leap 
(that is, the vertical movement of a fi xed point on their 
body) of about 120 cm. (a) What is their initial “launch” 
speed off the ground? (b) How long are they in the air? 

 59. (II) A stone is thrown vertically upward with a speed of 
18.0 m>s. (a) How fast is it moving when it is at a height of 
11.0 m? (b) How much time is required to reach this height? 
(c) Why are there two answers to (b)? 

 60. (II) For an object falling freely from rest, show that the 
distance traveled during each successive second increases 
in the ratio of successive odd integers (1, 3, 5, etc.). (This 
was fi rst shown by Galileo.) See Figs. 2 9 27 and 2 9 30.

 61. (II) If there were no air resistance, how long would it take 
a free-falling skydiver to fall from a plane at 3800 m to an 
altitude of 450 m, where she will open her parachute? What 
would her speed be at 450 m? (In reality, air resistance will 
restrict her speed to perhaps 150 km>h.)

 62. (II) Pelicans tuck their wings and free-fall straight down 
when diving for fi sh. Suppose a pelican starts its dive 
from a height of 16.0 m and cannot change its path once 
committed. If it takes a fi sh 0.20 s to perform evasive action, 
at what minimum height must it spot the pelican to escape? 
Assume the fi sh is at the surface of the water.

 63. (II) A stone is thrown ver tically upward with a speed of 
15.5 m>s from the edge of a cliff 75.0 m high (Fig. 2 9 47). 
(a)  How much later 
does it reach the bottom 
of the cliff? (b) What is 
its speed just before 
hitting? (c)  What total 
distance did it travel? 

 64. (II) A rocket rises vertically, from rest, with an accelera-
tion of 3.2 m>s2 until it runs out of fuel at an altitude of 
725 m. After this point, its acceleration is that of gravity, 
downward. (a) What is the velocity of the rocket when it 
runs out of fuel? (b) How long does it take to reach this 
point? (c) What maximum altitude does the rocket reach? 
(d) How much time (total) does it take to reach maximum 
altitude? (e) With what velocity does it strike the Earth? 
(f ) How long (total) is it in the air? 

 65. (II) Suppose you adjust your garden hose nozzle for a fast 
stream of water. You point the nozzle vertically upward at 
a height of 1.8 m above the 
ground (Fig.  2 9 48). When 
you quickly turn off the 
nozzle, you hear the water 
striking the ground next to 
you for another 2.5 s. What 
is the water speed as it 
leaves the nozzle? 

FIGURE 2 – 47  
Problem 63.

y

y = 0

y = -75 m

FIGURE 2 – 48  
Problem 65.

1.8 m
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 66. (II) A helicopter is ascending vertically with a constant 
speed of 6.40 m>s. At a height of 105 m above the Earth, a 
package is dropped from the helicopter. How much time 
does it take for the package to reach the ground? [Hint: 
What is v0 for the pack age?]

 67. (II) Roger sees water balloons fall past his window. He 
notices that each balloon strikes the sidewalk 0.83 s after 
passing his window, 15 m above the sidewalk. (a) How fast 
are the balloons traveling when they pass Roger’s window? 
(b)  Assuming the balloons are being released from rest, 
from what height are they being released? 

 68. (II) A baseball is seen to pass upward by a window with a 
vertical speed of 13 m>s. If the ball was thrown by a person 
18 m below on the street, (a) what was its initial speed, 
(b) what altitude does it reach, (c) when was it thrown, and 
(d) when does it reach the street again? 

 69. (III) A falling stone takes 0.28 s to travel past a window 2.2 m 
tall (Fig. 2 9 49). From what height above the top of the window 
did the stone fall? 

 70. (III) A toy rocket moving vertically upward passes by a 2.0-m-
high window whose base is 8.0 m above the ground. The rocket 
takes 0.15 s to travel the 2.0 m height of the window. What 
was the launch speed of the rocket, and how high will it go? 
Assume the propellant is burned very quickly at blastoff.

 71. (III) A ball is dropped from the top of a 55.0-m-high cliff. 
At the same time, a carefully aimed stone is thrown straight 
up from the bottom of the cliff with a speed of 24.0 m>s. 
The stone and ball collide part way up. How far above the 
base of the cliff does this happen?

2 – 8 Variable Acceleration; Calculus
 72. (II) Given  v(t) = 25 + 18 t,  where v is in m>s and t is in s,  

use calculus to determine the total displacement from 
t1 = 1.3 s  to  t2 = 3.6 s.

 73. (III) The acceleration of a particle is given by  a = A1t  
where  A = 3.0 m>s5>2 .  At  t = 0,  v = 7.5 m>s  and  x = 0.  
(a) What is the velocity as a function of time? (b) What is 
the displacement as a function of time? (c) What are the 
acceleration, velocity, and displacement at  t = 5.0 s?

 74. (III) Air resistance acting on a falling body can be taken into 
account by the approximate relation for the  acceleration:

a =
dv
dt

= g - kv,

where k is a constant. (a) Derive a formula for the velocity 
of the body as a function of time assuming it starts from 
rest  (v = 0  at  t = 0).  [Hint: Change variables by setting 
u = g - kv.] (b) Determine an expression for the terminal 
velocity, which is the maximum value the velocity reaches.

General Problems
 75. The acceleration due to gravity on the Moon is about 

one-sixth what it is on Earth. If an object is thrown verti-
cally upward on the Moon, how many times higher will it go 
than it would on Earth, assuming the same initial velocity? 

 76. A person jumps out a fourth-story window 18.0 m above 
a firefighter’s safety net. The survivor stretches the net 1.0 m 
before coming to rest, Fig. 2 9 50. (a) What was the average 
deceleration experienced by the survivor when she was 
slowed to rest by the net? (b) What would you do to make 
it “safer” (that is, to generate a smaller deceleration): would 
you stiffen or loosen 
the net? Explain. 

 77. A person who is properly restrained by an over-the-shoulder  
seat belt has a good chance of surviving a car collision if the 
deceleration does not exceed 30 “g’s”  (1.00 g = 9.80 m>s2). 
Assuming uniform deceleration at 30 g’s, calculate the dis tance 
over which the front end of the car must be designed to 
collapse if a crash brings the car to rest from 95 km>h.

 78. The position of a ball rolling in a straight line is given by 
x = 2.0 - 3.6 t + 1.7t2,  where x is in meters and t in seconds. 
(a) What do the numbers 2.0, 3.6, and 1.7 refer to? (b) What 
are the units of each of these numbers? (c) Determine the 
position of the ball at  t = 1.0 s,  2.0 s, and 3.0 s. (d) What is 
the average velocity over the interval  t = 1.0 s  to  t = 3.0 s?

 79. In a lecture demonstration, a 3.0-m-long vertical string with 
ten bolts tied to it at equal intervals is dropped from the 
 ceiling of the lecture hall. The string falls on a tin plate, and 
the class hears the clink of each bolt as it hits the plate. 
(a) The sounds will not occur at equal time inter vals. Why? 
(b) Will the time between clinks increase or decrease as 
the string falls? (c) How could the bolts be tied so that 
the clinks occur at equal intervals? (Assume the string is 
vertical with the bottom bolt touching the tin plate when 
the string is released.)

 80. Two students are asked to find the height of a particular 
building using a barometer. Instead of using the barometer 
as an altitude-measuring device, they take it to the roof of the 
building and drop it off, timing its fall. One student reports a 
fall time of 2.0 s, and the other, 2.3 s. What % difference does 
the 0.3 s make for the estimates of the building’s height?

*
*

*

*
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FIGURE 2 – 49   
Problem 69.

To
travel
this
distance
took
0.28 s

2.2 m

18.0 m

1.0 m

FIGURE 2 – 50   
Problem 76.
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74 CHAPTER 2 Describing Motion: Kinematics in One Dimension

 81. Consider the street pattern shown in Fig. 2 9 51. Each inter-
section has a traffic signal, and the speed limit is 40 km>h. 
Suppose you are driving from the west at the speed limit. 
When you are 10.0 m from the first intersection, all the lights 
turn green. The lights are green for 13.0 s each. (a) Calculate 
the time needed to reach the third stoplight. Can you make 
it through all three lights without stopping? (b) Another car 
was stopped at the first light when all the lights turned green. 
It can accelerate at the rate of 2.00 m>s2 to the speed limit. 
Can the second car make it through all three lights without 
stopping? By how many seconds would it make it, or not 
make it?

EastWest

Speed limit
40 km>h

50 m
15 m

Your
car

15 m
70 m

15 m
10 m

FIGURE 2 – 51  Problem 81.

 82. Suppose a car manufacturer tested its cars for front-end 
collisions by hauling them up on a crane and dropping them 
from a certain height. (a) Show that the speed just before a 
car hits the ground, after falling from rest a vertical distance 
H, is given by 12gH . What height corresponds to a colli-
sion at (b) 35 km>h? (c) 95 km>h?

 83. A stone is dropped from the roof of a high building. A 
second stone is dropped 1.50 s later. How far apart are 
the stones when the second one has reached a speed of 
12.0 m>s?

 84. A person jumps off a diving board 4.0 m above the 
water’s surface into a deep pool. The person’s downward 
motion stops 1.8 m below the surface of the water. Esti-
mate the average deceleration of the person while under 
the water. 

 85. A police car at rest is passed by a speeder traveling at 
a  constant 140 km>h. The police officer takes off in hot 
pursuit and catches up to the speeder in 850 m, maintaining 
a constant acceleration. (a) Qualitatively plot the position 
vs. time graph for both cars from the police car’s start to 
the catch-up point. Calculate (b) how long it took the police 
officer to overtake the speeder, (c) the required police car 
acceleration, and (d) the speed of the police car at the over-
taking point. (e) This last result is unrealistic : so which 
assumptions do we have to reconsider?

 86. Agent Bond is standing on a bridge, 15 m above the road 
below, and his pursuers are getting too close for comfort. 
He spots a flatbed truck approaching at 25 m>s, which he 
measures by knowing that the telephone poles the truck is 
passing are 25 m apart in this region. The roof of the truck 
is 3.5 m above the road, and Bond quickly calculates how 
many poles away the truck should be when he drops down 
from the bridge onto the truck, making his getaway. How 
many poles is it? 

 87. Two children are playing on two trampolines. The first child 
bounces up one-and-a-half times higher than the second 
child. The initial speed upwards of the second child is 4.0 m>s.  
(a) Find the maximum height the second child reaches.  
(b) What is the initial speed of the first child? (c) How long 
was the first child in the air? 

 88. In putting, the force with which a golfer strikes a ball is 
planned so that the ball will stop within some small distance 
of the cup, say 1.0 m long or short, in case the putt is missed. 
Accomplishing this from an uphill lie (that is, putting the 
ball downhill, see Fig. 2 9 52) is more difficult than from a 
downhill lie. To see why, assume that on a particular “green” 
the ball decelerates constantly at 1.8 m>s2 going downhill, 
and constantly at 2.6 m>s2 going uphill. Suppose we have an 
uphill lie 7.0 m from the cup. Calculate the allowable range 
of initial velocities we may impart to the ball so that it stops 
in the range 1.0 m short to 1.0 m long of the cup. Do the 
same for a downhill lie 7.0 m from the cup. What in your 
results suggests that the downhill putt is more difficult?

7.0 m

7.0 mDownhill
lie

Green

Uphill
lie

FIGURE 2 – 52  Problem 88.

 89. A person driving her car at  35 km>h  approaches an intersec-
tion just as the traffic light turns yellow. She knows that the 
yellow light lasts only 2.0 s before turning to red, and she is 
28 m away from the near side of the intersection (Fig. 2 9 53). 
Should she try to stop, or should she speed up to cross the 
intersection before the light turns red? The intersection is 
15 m wide. Her car’s maximum deceleration is -5.8 m>s2, 
whereas it can accelerate from 45 km>h to 65 km>h in 6.0 s. 
Ignore the length of her car and her  reaction time. 

15 m28 m
+x

FIGURE 2 – 53  Problem 89.

 90. A car is behind a truck going 18 m>s on the highway. The 
car’s driver looks for an opportunity to pass, guessing that 
his car can accelerate at 0.60 m>s2 and that he has to cover 
the 20-m length of the truck, plus 10 m of extra space at 
the rear of the truck and 10 m more at the front of it. In the 
oncoming lane, he sees a car approaching, probably at the 
speed limit, 25 m>s (55 mph). He estimates that the car is 
about 500 m away. Should he attempt the pass? Give details. 

 91. A rock is dropped from a sea cliff and the sound of it 
striking the ocean is heard 4.1 s later. If the speed of sound is  
340 m>s, how high is the cliff?

 92. A conveyor belt is used to send burgers through a grill ing 
machine. If the grilling machine is 1.2 m long and the 
burgers require 2.8 min to cook, how fast must the conveyor 
belt travel? If the burgers are spaced 25 cm apart, what is 
the rate of burger production (in burgers>min)?
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 93. A rock is thrown vertically upward with a speed of 15.0 m>s.  
Exactly 1.00 s later, a ball is thrown up vertically along the 
same path with a speed of 22.0 m>s. (a) At what time will 
they strike each other? (b) At what height will the collision 
occur? (c) Answer (a) and (b) assuming that the order is 
reversed: the ball is thrown 1.00 s before the rock.

 94. Figure 2 9 54 is a position versus time graph for the motion of 
an object along the x axis. Consider the time interval from 
A to B. (a) Is the object moving in the positive or negative 
x direction? (b) Is the object speeding up or slow ing down? 
(c)  Is the acceleration of the object positive or negative? 
Now consider the time interval from D to E. (d) Is the object 
moving in the positive or negative x direc tion? (e) Is the object 
speed ing up or slowing down? ( f ) Is the acceleration of the 
object positive or 
negative? (g)  Finally, 
answer these same 
three questions for 
the time interval from 
C to D. 

 95. In the design of a rapid transit system, it is necessary to 
balance the average speed of a train against the distance 
between station stops. The more stops there are, the slower 
the train’s average speed. To get an idea of this problem, 
calculate the time it takes a train to make a 15.0-km trip in 
two situations: (a) the stations at which the trains must stop 
are 3.0 km apart (a total of 6 stations, including those at 
the ends); and (b) the stations are 5.0 km apart (4 stations 
total). Assume that at each station the train accelerates at 
a rate of 1.1 m>s2 until it reaches 95 km>h, then stays at 
this speed until its brakes are applied for arrival at the next 
station, at which time it decelerates at -2.0 m>s2. Assume 
it stops at each intermediate station for 22 s. 

 96. A race car driver must average 200.0 km>h over the course 
of a time trial lasting ten laps. If the first nine laps were 
done at an average speed of 196.0 km>h, what average 
speed must be maintained for the last lap? 

 97. A parachutist bails out of an airplane, and freely falls 75 m 
(ignore air friction). Then the parachute opens, and her 
acceleration is -1.5 m>s2 (up). The parachutist reaches the 
ground with a speed of 1.5 m>s. (a) From how high did she 
bail out of the plane? (b) How much time did her fall take?

 98. You stand at the top of a cliff while your friend stands on 
a beach below you. You drop a ball from rest and see that 
she catches it 1.4 s later. Your friend then throws the ball 
up to you, and it comes to rest just as it reaches your hand. 
What is the speed with which your friend threw the ball? 

 99. A robot used in a pharmacy picks up a medicine bottle at   
t = 0.  It accelerates at 0.20 m>s2 for 4.5 s , then travels 
without acceleration for 68 s and finally decelerates at 
-0.40 m>s2 for 2.5 s to reach the counter where the phar-
macist will take the medicine from the robot. From how 
far away did the robot fetch the medicine?

 100. Bill can throw a ball vertically at a speed 1.5 times faster 
than Joe can. How many times higher will Bill’s ball go 
than Joe’s?

 101. On an audio compact disc (CD), digital bits of  information 
are encoded sequentially along a spiral path. Each bit 
 occupies about 0.28 mm. A CD player’s readout laser scans 
along the spiral’s sequence of bits at a constant rate of 
about 1.2 m>s as the CD spins. (a) Determine the number N 
of digital bits that a CD player reads every second. (b) The 
audio information is sent to each of the two loudspeakers 
44,100 times per second. Each of these samplings requires 
16 bits, and so you might expect the required bit rate for a 
CD player to be

N0 =  2a   44,100 
samplings

s
b a   16 

bits
sampling

b  =  1.4 *  106 
bits

s
,

where the 2 is for the 2 loudspeakers (the 2 stereo   
channels).  Note that N0 is less than the number N of 
bits actually read per second by a CD player. The excess 
number of bits (   = N - N0)  is needed for encoding and 
error  correction. What percentage of the bits on a CD are 
 dedicated to encoding and error correction?

 102. Figure 2 9 55 shows the position vs. time graph for two bicy-
cles, A and B. (a) Identify any instant at which the two 
bicycles have the same velocity. (b) Which bicycle has the 
larger acceleration? (c) At which instant(s) are the bicycles 
passing each other? Which bicycle is passing the other? 
(d) Which bicycle has the larger instantaneous velocity? 
(e) Which bicycle has the larger average velocity?

 103. You are traveling at a constant speed vM, and there is a 
car in front of you traveling with a speed vA. You realize 
that  vM 7 vA,  so you start slowing down with a constant 
acceleration a when the distance between you and the 
other car is x. What relationship between a and x deter-
mines whether or not you run into the car in front of you?

A N S W E R S  T O  E X E R C I S E S
A: (a) displacement = -30 cm;  (b) total distance = 50 cm. 
B: (b). 
C: (b). 
D: (a) + ; (b) - ; (c) - ; (d) + .

E: (c). 
F: (b).
G: (e).
H: (c).
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(b)(a)

A B

(c) (d) (e)

Kinematics in Two or 
Three Dimensions; Vectors

CHAPTER-OPENING QUESTION—Guess now!
[Don’t worry about getting the right answer now : you will get another chance later in the 
Chapter. See also page 23 of Chapter 1 for more explanation.]

A small heavy box of emergency supplies is dropped from a moving helicopter at  
point A as it flies at constant speed in a horizontal direction. Which path in  
the drawing below best describes the path of the box (neglecting wind and air 
resistance) as seen by a person standing on the ground?

CONTENTS
3–1 Vectors and Scalars

3–2 Addition of Vectors :  
Graphical Methods

3–3 Subtraction of Vectors, and 
Multiplication of a Vector  
by a Scalar

3–4 Adding Vectors by 
Components

3–5 Unit Vectors

3–6 Vector Kinematics

3–7 Projectile Motion

3–8 Solving Problems Involving 
Projectile Motion

3–9 Relative Velocity

I n Chapter 2 we dealt with motion along a straight line. We now consider the 
motion of objects that move in paths in two (or three) dimensions. In particular, 
we discuss an important type of motion known as projectile motion: objects 

projected outward near the Earth’s surface, such as struck baseballs and golf balls, 
kicked footballs, and other projectiles. Before beginning our discussion of motion 
in two dimensions, we will need to discuss vectors, and how to add them.

C

H
A P T E

R

3

A basketball flying through  
the air is an example of motion 
in two dimensions. In the 
absence of air resistance, the 
path would be a perfect 
parabola. The gold arrow 
represents the downward  
acceleration of gravity, g5. 

Galileo analyzed the motion 
of objects in two dimensions 
under the action of gravity near 
the Earth’s surface (now called 
“projectile motion”) by 
separating its horizontal and 
vertical components.

We will discuss how to 
manipulate vectors and how to 
add them. Besides analyzing 
projectile motion, we will also 
discuss unit vectors and vector 
kinematics, plus see how to work 
with relative velocity.

gg55
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SECTION 3–2 Addition of Vectors—Graphical Methods 77

3–1 Vectors and Scalars
We mentioned in Chapter 2 that the term velocity refers not only to how fast an 
object is moving but also to its direction. A quantity such as velocity, which has 
direction as well as magnitude, is a vector quantity. Other quantities that are also 
vectors are displacement, force, and momentum. However, many quantities have no 
direction associated with them, such as mass, time, and temperature. They are spec-
ified completely by a number and units. Such quantities are called scalar quantities.

Drawing a diagram of a particular physical situation is always helpful in 
physics, and this is especially true when dealing with vectors. On a diagram, each 
vector is represented by an arrow. The arrow is always drawn so that it points in 
the direction of the vector quantity it represents. The length of the arrow is drawn 
proportional to the magnitude of the vector quantity. For example, in Fig. 3 9 1, 
green arrows have been drawn representing the velocity of a car at various places 
as it rounds a curve. The magnitude of the velocity at each point can be read off 
Fig. 3 9 1 by measuring the length of the corresponding arrow and using the scale 
shown (1 cm = 90 km>h).

When we write the symbol for a vector, we will always use boldface type, with 
a tiny arrow over the symbol. Thus for velocity we write v5. If we are concerned 
only with the magnitude of the vector, we will write simply v, in italics, as we do 
for other symbols.

3–2  Addition of Vectors—Graphical 
Methods

Because vectors are quantities that have direction as well as magnitude, they must 
be added in a special way. In this Chapter, we will deal mainly with displacement 
vectors, for which we now use the symbol D5 , and velocity vectors, v5. But the 
results apply for acceleration and other vectors we will encounter later.

We use simple arithmetic for adding scalars. Simple arithmetic can also 
be used for adding vectors if they are in the same direction. For example, if a 
person walks 8 km east one day, and 6 km east the next day, the person will be 
8 km + 6 km = 14 km  east of the point of origin. We say that the net or resultant 
displacement is 14 km to the east (Fig. 3 9 2a). If, on the other hand, the person 
walks 8 km east on the first day, and 6 km west (in the reverse direction) on the 
second day, then the person will end up 2 km from the origin (Fig. 3 9 2b), so the 
resultant displacement is 2 km to the east. In this case, the resultant displacement 
is obtained by subtraction:  8 km - 6 km = 2 km.

But simple arithmetic cannot be used if the two vectors are not along the 
same line. For example, suppose a person walks 10.0 km east and then walks 
5.0 km north. These displacements can be represented on a graph in which the 
positive y axis points north and the positive x axis points east, Fig. 3 9 3. On this 
graph, we draw an arrow, labeled D5 1 , to represent the 10.0-km displacement to 
the east. Then we draw a second arrow, D5 2 , to represent the 5.0-km displacement 
to the north. Both vectors are drawn to scale, as shown in Fig. 3 9 3.

Scale for velocity:
1 cm = 90 km>h

FIGURE 3 – 1  Car traveling on a 
road, slowing down to round the 
curve. The green arrows represent 
the velocity vector at each position.

FIGURE 3 – 2  Combining vectors in 
one dimension.

Resultant  = 14 km (east) 

Resultant  = 2 km (east) 
6 km

8 km

8 km

6 km
x (km)
East

x (km)
East

(a)

(b)

0

0

FIGURE 3 – 3  A person walks 10.0 km east and then 5.0 km 
north. These two displacements are represented by the 
vectors D5 1 and D5 2 , which are shown as arrows. Also shown  
is the resultant displacement vector, D5R, which is the  
vector sum of D5 1 and D5 2 . Measurement on the graph  
with ruler and protractor shows that D5R has a magnitude  
of 11.2 km and points at an angle  u = 27°  north of east.
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78 CHAPTER 3 Kinematics in Two or Three Dimensions; Vectors

After taking this walk, the person is now 10.0 km east and 5.0 km north of the 
point of origin. The resultant displacement is represented by the arrow labeled D5R 
in Fig. 3 9 3. (The subscript R stands for resultant.) Using a ruler and a protractor, 
you  can measure on this diagram (Fig. 3 9 3 on previous page) that the person 
is 11.2 km from the origin at an angle  u = 27°  north of east. In other words, the resul-
tant displacement vector has a magnitude of 11.2 km and makes an angle  u = 27°   
with the positive x axis. The magnitude (length) of D5R can also be obtained using 
the theorem of  Pythagoras in this case, because D1 ,  D2 , and DR form a right triangle 
with DR as the  hypotenuse. Thus

 DR = 2D1
2 + D2

2 = 2(10.0 km) 2 + (5.0 km) 2

 = 2125 km2 = 11.2 km.

You can use the Pythagorean theorem only when the vectors are perpendicular 
to each other.

The resultant displacement vector, D5R, is the sum of the vectors D5 1 and D5 2 . 
That is,

D5R = D5 1 + D5 2 .

This is a vector equation. An important feature of adding two vectors that are not 
along the same line is that the magnitude of the resultant vector is not equal to the  
sum of the magnitudes of the two separate vectors, but is smaller than their sum. 
That is,

DR  …    (D1 + D2),

where the equals sign applies only if the two vectors point in the same  direction. 
In our example (Fig. 3 9 3),  DR = 11.2 km,  whereas  D1 + D2  equals   15 km,  
which is the total distance traveled.  Note also that we cannot set D5R equal to  
11.2 km, because we have a vector equation and 11.2 km is only a part of the 
resultant vector, its magnitude. We could write something like this, though:  
D5R = D5 1 + D5 2 = (11.2 km, 27° N of E).

Figure 3 9 3 illustrates the general rules for graphically adding two vectors 
together, no matter what angles they make, to get their sum. The rules are as 
follows:

1. On a diagram, draw one of the vectors : call it D5 1 : to scale.
2. Next draw the second vector, D5 2 , to scale, placing its tail at the tip of the  

first vector and being sure its direction is correct.
3. The arrow drawn from the tail of the first vector to the tip of the second 

vector represents the sum, or resultant, of the two vectors.

The length of the resultant vector represents its magnitude. Note that vectors can  
be moved parallel to themselves on paper (maintaining the same length and 
angle) to accomplish these manipulations. The length of the resultant can be 
measured with a ruler and compared to the scale. Angles can be measured 
with a protractor. This method is known as the tail-to-tip method of adding  
vectors.

The resultant is not affected by the order in which the vectors are added. 
For example, a displacement of 5.0 km north, to which is added a displacement 
of 10.0 km east, yields a resultant of 11.2 km and angle  u = 27°  (see Fig. 3 9 4), 
the same as when they were added in reverse order (Fig. 3 9 3). Thus we can write,  
using V5  to represent any type of vector,

V51 + V52 = V52 + V51 , [commutative property]  (3 – 1a)

which is known as the commutative property of vector addition.
The tail-to-tip method of adding vectors can be extended to three or more 

vectors. The resultant is drawn from the tail of the first vector to the tip of the last  

FIGURE 3 – 4  If the vectors are 
added in reverse order, the resultant 
is the same. (Compare to Fig. 3 9 3.)
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SECTION 3–3 Subtraction of Vectors, and Multiplication of a Vector by a Scalar 79

It is a common error to draw the sum vector as the diagonal running between 
the tips of the two vectors, as in Fig. 3 9 6c. This is incorrect: it does not represent 
the sum of the two vectors. (In fact, it represents their difference,  V52 - V51 ,  as 
we will see in the next Section.)

C A U T I O N
Be sure to use the correct diagonal  
on the parallelogram to get the resultant

FIGURE 3 – 6  Vector addition by 
two different methods, (a) and (b). 
Part (c) is incorrect.

CONCEPTUAL EXAMPLE 3 – 1 Range of vector lengths. Suppose two 
vectors each have length 3.0 units. What is the range of possible lengths for the 
vector representing the sum of the two?

RESPONSE The sum can take on any value from 6.0  (   = 3.0 + 3.0)  where 
the vectors point in the same direction, to 0  (   = 3.0 - 3.0)  when the vectors 
are antiparallel. Magnitudes between 0 and 6.0 occur when the two vectors are 
at an angle other than 0° and 180°.

EXERCISE A  If the two vectors of Example 3 9 1 are perpendicular to each other, what 
is the resultant vector length?

3–3 Subtraction of Vectors, and 
Multiplication of a Vector by a Scalar
Given a vector V5 , we define the negative of this vector ( -V5 ) to be a vector with 
the same magnitude as V5  but opposite in direction, Fig. 3 9 7. Note, however, that 
no vector is ever negative in the sense of its magnitude: the magnitude of every 
vector is positive. Rather, a minus sign tells us about its direction.

FIGURE 3 – 7  The negative of a 
vector is a vector having the same 
length but opposite direction.

–V5V5

FIGURE 3 – 5  The resultant of three vectors: 
V5R = V51 + V52 + V53 .
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RV5
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one added. An example is shown in Fig. 3 9 5; the three vectors could represent 
displacements (northeast, south, west) or perhaps three forces. Check for yourself  
that you get the same resultant no matter in which order you add the three 
vectors; that is,

(V51 + V52) + V53 = V51 + (V52 + V53), [associative property]  (3 – 1b)

which is known as the associative property of vector addition.
A second way to add two vectors is the parallelogram method. It is fully 

equivalent to the tail-to-tip method. In this method, the two vectors are drawn 
starting from a common origin, and a parallelogram is constructed using these 
two vectors as adjacent sides as shown in Fig. 3 9 6b. The resultant is the diagonal 
drawn from the common origin. In Fig. 3 9 6a, the tail-to-tip method is shown, and 
we can see that both methods yield the same result.
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80 CHAPTER 3 Kinematics in Two or Three Dimensions; Vectors

We can now define the subtraction of one vector from another: the difference 
between two vectors  V52 - V51  is defined as

V52 - V51 = V52 +  ( -V51).

That is, the difference between two vectors is equal to the sum of the first plus  
the negative of the second. Thus our rules for addition of vectors can be applied as  
shown in Fig. 3 9 8 using the tail-to-tip method.

A vector V5  can be multiplied by a scalar c. We define their product so that cV5   
has the same direction as V5  and has magnitude cV. That is, multiplication of a vector 
by a positive scalar c changes the magnitude of the vector by a factor c but doesn’t 
alter the direction. If c is a negative scalar, the magnitude of the product cV5  is still 
0 c 0V (where 0 c 0  means the magnitude of c), but the direction is precisely opposite 
to that of V5 . See Fig. 3 9 9.

EXERCISE B What does the “incorrect” vector in Fig. 3 9 6c represent? (a) V52 - V51 ,  
(b) V51 - V52 , (c) something else (specify).

3–4 Adding Vectors by Components
Adding vectors graphically using a ruler and protractor is often not sufficiently 
accurate and is not useful for vectors in three dimensions. We discuss now a more 
powerful and precise method for adding vectors. But do not forget graphical 
methods : they are useful for visualizing, for checking your math, and thus for 
getting the correct result.

Consider first a vector V5  that lies in a particular plane, and we have chosen an x 
and a y axis on this plane. Then V5  can be expressed as the sum of two other vectors, 
called the components of the original vector, which are usually chosen to be along 
the x and y axes. The process of finding the components is known as resolving the 
vector into its components. An example is shown in Fig. 3 9 10; the vector V5  could 
be a displacement vector that points at an angle  u = 30°  north of east, where we  
have chosen the  positive x axis to be to the east and the positive y axis north. 
This vector V5  is resolved into its x and y components by drawing dashed lines  
out from the tip (A) of the vector (lines AB and AC), making them perpendicular to  
the x and y axes. Then the lines 0B and 0C represent the x and y components  
of V5 , respectively, as shown in Fig. 3 9 10b. These vector components are written  
V5x and V5y . In this book we usually show vector components as arrows, like vectors, 
but dashed. The scalar components, Vx and Vy , are the magnitudes of the vector 
components, with units, accompanied by a  positive or negative sign depending on 
whether they point along the positive or negative x or y axis. As can be seen in 
Fig. 3 9 10,  V5x + V5y = V5   by the parallelogram method of adding vectors.

Space is made up of three dimensions, and sometimes it is necessary to 
resolve a vector into components along three mutually perpendicular directions. 
In rectangular coordinates the components are V5x , V5y , and V5z .

FIGURE 3 – 9  Multiplying a vector V5   
by a scalar c gives a vector whose 
magnitude is c times greater and in 
the same direction as V5  (or opposite 
direction if c is negative).
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FIGURE 3 – 8  Subtracting two 
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FIGURE 3 – 10  Resolving a vector V5  into its  
components along a chosen set of x and y axes.  
The components, once found, themselves  
represent the vector. That is, the components  
contain as much information as the vector itself.
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SECTION 3–4 Adding Vectors by Components 81

The use of trigonometric functions for finding the components of a vector is 
illustrated in Fig. 3 9 11, where a vector and its two components are thought of as 
making up a right triangle. (See also Appendix A for other details on trigono-
metric functions and identities.) We then see that the sine, cosine, and tangent are 
as given in Fig. 3 9 11, where u is the angle V5  makes with the +x axis, measured 
positive counterclockwise. If we multiply the definition of  sin u = Vy>V  by V on 
both sides, we get

Vy = V sin u. (3 – 2a)

Similarly, from the definition of cos u, we obtain

Vx = V cos u. (3 – 2b)

Keep in mind that u is chosen (by convention) to be the angle that the vector 
makes with the positive x axis, measured positive counterclockwise.

The components of a given vector will be different for different choices of 
coordinate axes. It is therefore crucial to specify the choice of coordinate system 
when giving the components.

There are two ways to specify a vector in a given coordinate system:

1. We can give its components, Vx and Vy .
2. We can give its magnitude V and the angle u it makes with the positive x axis.

We can shift from one description to the other using Eqs. 3 9 2, and, for the reverse, 
by using the theorem of Pythagoras† and the definition of tangent:

 V = 2Vx     2 + Vy     2 (3 – 3a)

 tan u =
Vy

Vx
 (3 – 3b)

as can be seen in Fig. 3 9 11.
We can now discuss how to add vectors using components. The first step is to 

resolve each vector into its components, Eqs. 3 9 2. Next we can see, using Fig. 3 9 12, 
that the addition of any two vectors V51 and V52 to give a resultant  V5R = V51 +  V52 ,  
implies that

 VR x = V1 x + V2 x 

 VR y = V1 y + V2 y . 
(3 – 4)

That is, the sum of the x components equals the x component of the resultant 
vector, and the sum of the y components equals the y component of the resultant 
vector, as can be verified by a careful examination of Fig. 3 9 12. Note that we 
do not add x components to y components.

If the magnitude and direction of the resultant vector are desired, they can 
be obtained using Eqs. 3 9 3.

Vy

V
sin     =

Vx
V

cos     =

Vy

Vx
tan     =

V2 = V2 + V2

90°

yx

x

y

0
x

y

V5

V5

V5

u

u

u

u

FIGURE 3 – 11  Finding the 
components of a vector using 
trigonometric functions. The 
equations are valid only if u is the 
angle V5  makes with the positive  
x axis.

†In three dimensions, the theorem of Pythagoras becomes  V = 3Vx     2 + Vy     2 + Vz     2 ,  where Vz is the 
 component along the third, or z, axis.

FIGURE 3 – 12  The components  
of V5R  = V51  + V52  are 
 VR x = V1 x + V2 x 
 VR y = V1 y + V2 y .
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82 CHAPTER 3 Kinematics in Two or Three Dimensions; Vectors

The components of a given vector depend on the choice of coordinate axes. 
You can often reduce the work involved in adding vectors by a good choice of 
axes : for example, by choosing one of the axes to be in the same direction as 
one of the vectors. Then that vector will have only one nonzero component.

EXAMPLE 3 – 2 Mail carrier’s displacement. A rural mail carrier leaves the 
post office and drives 22.0 km in a northerly direction. She then drives in a 
direction 60.0° south of east for 47.0 km (Fig. 3 9 13a). What is her displacement 
from the post office?

APPROACH We choose the positive x axis to be east and the positive y axis to 
be north, since those are the compass directions used on most maps. The origin 
of the xy coordinate system is at the post office. We resolve each vector into its 
x and y components. We add the x components together, and then the y compo-
nents together, giving us the x and y components of the resultant.

SOLUTION Resolve each displacement vector into its components, as shown 
in Fig. 3 9 13b. Since D5 1 has magnitude 22.0 km and points north, it has only a 
y component:

D1 x = 0,  D1 y = 22.0 km.

D5 2 has both x and y components:

 D2 x  =   + (47.0 km) (cos 60°)    =   + (47.0 km) (0.500)   =   +23.5 km

 D2 y  =   - (47.0 km) (sin 60°)    =   - (47.0 km) (0.866)   =   -40.7 km.

Notice that D2 y is negative because this vector component points along the 
negative y axis. The resultant vector, D5R, has components:

 DR x  =   D1 x + D2 x   =   0 km  + 23.5 km  =   +23.5 km

 DR y  =   D1 y + D2 y   =   22.0 km + ( -40.7 km)   =   -18.7 km.

This specifies the resultant vector completely:

DR x = 23.5 km,  DR y = -18.7 km.

We can also specify the resultant vector by giving its magnitude and angle using 
Eqs. 3 9 3:

 DR  =   2DR x
2 + DR y

2   =   2(23.5 km) 2 +  ( -18.7 km) 2  =   30.0 km

 tan u  =   
DR y

DR x
  =   

-18.7 km
23.5 km

  =   -0.796.

A calculator with a key labeled inv tan, or arc tan, or tan-1 gives  
u = tan-1 ( -0.796) = -38.5°.  The negative sign means  u = 38.5°  below the 
x axis, Fig. 3 9 13c. So, the resultant displacement is 30.0 km directed at 38.5° in 
a southeasterly  direction.

NOTE Always be attentive about the quadrant in which the resultant vector lies. An 
 electronic calculator does not fully give this information, but a good diagram does.

y

x
East

(a)

y

x

(b)

0

0

0

D2x

y

x

(c)

D2y

Post
of�ce

North

60°

60°

1

2

2

2

1

1

D5

D5

D5

D5

D5

DR
5

D5
u

FIGURE 3 – 13  Example 3 9 2.  
(a) The two displacement vectors, 
D5 1 and D5 2 . (b) D5 2 is resolved into 
its components. (c) D5 1 and D5 2 are  
added graphically to obtain the  
resultant D5R. The component 
method of adding the vectors is 
explained in the Example.

As we saw in Example 3 9 2, any component that points along the negative 
x or y axis gets a minus sign. The signs of trigonometric functions depend on which  
“quadrant” the angle falls in: for example, the tangent is positive in the first and 
third quadrants (from 0° to 90°, and 180° to 270°), but negative in the second and  
fourth quadrants; see Appendix A 9 9, Fig. A 9 6. The best way to keep track of angles, 
and to check any vector result, is always to draw a vector diagram, like Fig. 3 9 13.  
A vector diagram gives you something tangible to look at when analyzing a problem, 
and provides a check on the results.

The following Problem Solving Strategy should not be considered a prescrip-
tion. Rather it is a summary of things to do to get you thinking and involved in 
the problem at hand.

P R O B L E M  S O LV I N G
Identify the correct quadrant by 

drawing a careful diagram
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EXAMPLE 3 – 3 Three short trips. An airplane trip involves three legs, with 
two stopovers, as shown in Fig. 3 9 14a. The first leg is due east for 620 km; the 
second leg is southeast (45°) for 440 km; and the third leg is at 53° south of west, 
for 550 km, as shown. What is the plane’s total displacement?
APPROACH We follow the steps in the Problem Solving Strategy above.
SOLUTION
 1. Draw a diagram such as Fig. 3 9 14a, where D5 1 ,  D5 2 , and D5 3 represent the 

three legs of the trip, and D5R is the plane’s total displacement.
 2. Choose axes: Axes are also shown in Fig. 3 9 14a: x is east, y north.
 3. Resolve components: It is imperative to draw a good diagram. The compo-

nents are drawn in Fig. 3 9 14b. Instead of drawing all the vectors starting from 
a common origin, as we did in Fig. 3 9 13b, here we draw them “tail-to-tip” 
style, which is just as valid and may make it easier to see.

 4. Calculate the components:

 D5 1 : D1 x = +D1 cos 0°  = D1 = 620 km   
 D1 y = +D1 sin 0°  = 0 km   

 D5 2 : D2 x = +D2 cos 45° = + (440 km) (0.707) = +311 km
 D2 y = -D2 sin 45°  = - (440 km) (0.707) = -311 km

 D5 3 : D3 x = -D3 cos 53° = - (550 km) (0.602) = -331 km
 D3 y = -D3 sin 53°  = - (550 km) (0.799) = -439 km.

  We have given a minus sign to each component that in Fig. 3 9 14b points in 
the -x or -y direction. The components are shown in the Table in the margin.

 5. Add the components: We add the x components together, and we add the 
y components together to obtain the x and y components of the resultant:

 DR x =  D1 x + D2 x + D3 x =  620 km + 311 km - 331 km  =  600 km
 DR y =  D1 y + D2 y + D3 y =  0 km - 311 km - 439 km  =  -750 km.

  The x and y components of the resultant are 600 km and -750 km, and point 
 respectively to the east and south. This is one way to give the answer.

 6. Magnitude and direction: We can also give the answer as

 DR = 2DR x
2 + DR y

2 = 2(600) 2 +  ( -750) 2 km = 960 km

 tan u =
DR y

DR x
=

-750 km
600 km

= -1.25, so  u = -51°.

  Thus, the total displacement has magnitude 960 km and points 51° below 
the x axis (south of east), as was shown in our original sketch, Fig. 3 9 14a.

 Components
Vector x (km) y (km)

D5 1 620 0
D5 2 311 -311
D5 3 -331 -439

D5R 600 -750
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FIGURE 3 – 14  Example 3 9 3.

SECTION 3–4 Adding Vectors by Components 83

 Pay careful attention to signs: any component that 
points along the negative x or y axis gets a minus sign.

 5. Add the x components together to get the 
x component of the resultant. Similarly for y:

  VR x = V1 x + V2 x + any others
  VR y = V1 y + V2 y + any others.

 This is the answer: the components of the resultant 
vector. Check signs to see if they fit the quadrant 
shown in your diagram (point 1 above).

 6. If you want to know the magnitude and 
 direction of the resultant vector, use Eqs. 3 9 3:

 VR = 2V R x
2 + VR y

2 ,  tan u =
VR y

VR x

.

 The vector diagram you already drew helps to obtain 
the correct position (quadrant) of the angle u.

      P
R

O
B

L
E

M

 S O L V I N G

 Here is a brief summary of how to add two or more 
vectors using components:

 1. Draw a diagram, adding the vectors graphically 
by either the parallelogram or tail-to-tip method.

 2. Choose x and y axes. Choose them in a way, if 
possible, that will make your work easier. (For example, 
choose one axis along the direction of one of the 
vectors, which then will have only one component.)

 3. Resolve each vector into its x and y  components, 
showing each component along its appropriate 
(x or y) axis as a (dashed) arrow.

 4. Calculate each component (when not given) 
using sines and cosines. If u1 is the angle that vector V51  
makes with the positive x axis, then:

 V1 x = V1 cos u1 ,  V1 y = V1 sin u1 .

Adding Vectors
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84 CHAPTER 3 Kinematics in Two or Three Dimensions; Vectors

3–5 Unit Vectors
Vectors can be conveniently written in terms of unit vectors. A unit vector is defined 
to have a magnitude exactly equal to one (1). (The word “unit” comes from the Latin, 
unus, meaning “one”.) It is useful to define unit vectors that point along coordinate 
axes, and in an x, y, z rectangular coordinate system these unit vectors are called 
iN, jN, and kN . They point, respectively, along the positive x, y, and z axes as shown in 
Fig. 3 9 15. Like other vectors, iN, jN, and kN  do not have to be placed at the origin, but 
can be placed elsewhere as long as the direction and unit length remain unchanged. 
It is common to write unit vectors with a “hat”: iN, jN, kN  (and we will do so in this 
book) as a reminder that each has magnitude of exactly one unit.

Because of the definition of multiplication of a vector by a scalar (Section 3 9 3), the  
components of a vector V5  can be written  V5x = Vx iN,  V5y = Vy   jN,  and  V5z = Vz kN .  
Hence any vector V5  can be written in terms of its components as

V5 = Vx iN + Vy   jN + Vz kN . (3 – 5)

Unit vectors are helpful when adding vectors analytically by components. For 
example, Eq. 3 9 4 can be seen to be true by using unit vector notation for each 
vector (which we write for the two-dimensional case, with the extension to three 
dimensions being straightforward): 

 V5R =  (VR x)  iN +  (VR y)  jN = V51 + V52

 = (V1 x iN + V1 y   jN) +  (V2 x iN + V2 y   jN)
 = (V1 x + V2 x)  iN +  (V1 y + V2 y)  jN.

Comparing the first line to the third line, we get Eqs. 3 9 4.

j

ik

y

x

z

ˆ ˆ

ˆ

FIGURE 3 – 15  Unit vectors iN, jN, and 
kN  along the x, y, and z axes.

EXAMPLE 3 – 4 Using unit vectors. Write the vectors of Example 3 9 2 in 
unit vector notation, and perform the addition.

APPROACH We use the components we found in Example 3 9 2,
D1 x = 0, D1 y = 22.0 km, and D2 x = 23.5 km, D2 y = -40.7 km,

and we now write them in the form of Eq. 3 9 5.

SOLUTION We have
 D5 1 = 0 iN + 22.0 km jN

 D5 2 = 23.5 km iN - 40.7 km jN.
Then the resultant displacement is

 D5R = D5 1 + D5 2 =  (0 + 23.5)  km iN +  (22.0 - 40.7)  km jN

 = 23.5 km iN - 18.7 km jN.
The components of the resultant displacement, D5R, are  Dx = 23.5 km  and  Dy  = 

 -18.7 km.  The magnitude of  D5R  is  DR = 1(23.5 km) 2 +  (18.7 km) 2 = 30.0 km,   
just as in Example 3 9 2.

3–6 Vector Kinematics
We can now extend our definitions of velocity and acceleration in a formal way to 
two- and three-dimensional motion. Suppose a particle follows a path in the xy plane 
as shown in Fig. 3 9 16. At time t1 , the particle is at point P1 , and at time t2 , it is at 
point P2 . The vector r51 is the position vector of the particle at time t1 (it represents 
the displacement of the particle from the origin of the coordinate system). And r52 is 
the position vector at time t2 .

In one dimension, we defined displacement as the change in position of the 
particle. In the more general case of two or three dimensions, the displacement 
vector is defined as the vector representing change in position. We call it ∆r5,† where

∆r5 = r52 - r51 .
This represents the displacement during the time interval  ∆t = t2 - t1 .

FIGURE 3 – 16  Path of a particle in  
the xy plane. At time t1 the particle 
is at point P1 given by the position 
vector r51 ; at t2 the particle is at 
point P2 given by the position 
vector r52 . The displacement vector 
for the time interval  t2 - t1   
is  ∆r5 = r52 - r51 . The actual 
distance traveled along the path 
between P1 and P2 is D  l.

†We used D5  for the displacement vector earlier in the Chapter for illustrating vector addition. The 
new notation here, ∆r5, emphasizes that it is the difference between two position vectors.0

y
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P2

2
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SECTION 3–6 Vector Kinematics 85

In unit vector notation, we can write

r51 = x1 iN + y1 jN + z1 kN , (3 – 6a)

where x1 , y1 , and z1 are the coordinates of point P1 . Similarly,

r52 = x2 iN + y2  jN + z2 kN .
Hence

∆r5 =  (x2 - x1)  iN +  (y2 - y1)  jN +  (z2 - z1)  kN . (3 – 6b)

If the motion is along the x axis only, then  y2 - y1 = 0,  z2 - z1 = 0,  and the 
magnitude of the displacement is  ∆r = x2 - x1 ,  which is consistent with our 
earlier one-dimensional equation (Section 2 9 1). Even in one dimension, displace-
ment is a vector, as are velocity and acceleration.

The average velocity vector over the time interval  ∆t = t2 - t1  is defined as

average velocity =
∆r5
∆t

. (3 – 7)

Now let us consider shorter and shorter time intervals : that is, we let ∆t approach 
zero so that the distance between points P2 and P1 also approaches zero, Fig. 3 9 17a. 
We define the instantaneous velocity vector as the limit of the average velocity 
as ∆t approaches zero:

v5  =   lim
∆tS0

 
∆r5
∆t

  =   
d r5
dt

. (3 – 8)

The direction of v5 at any moment is along the line tangent to the path at that 
moment (Fig. 3 9 17b).

Note that the magnitude of the average velocity in Fig. 3 9 16 is not equal 
to the average speed, which is the actual distance traveled along the path,  D  l, 
divided by ∆t. In some special cases, the average speed and average velocity are 
equal in magnitude (such as motion along a straight line in one direction), but 
in general they are not. However, in the limit  ∆t S 0, ∆r  always approaches   D  l, 
so the instantaneous speed always equals the magnitude of the instantaneous 
velocity at any time.

The instantaneous velocity (Eq. 3 9 8) is equal to the derivative of the position 
vector with respect to time. Equation 3 9 8 can be written in terms of components 
starting with Eq. 3 9 6a as:

v5  =   
d r5
dt

  =   
dx
dt

 iN +
dy

dt
  jN +

dz
dt

 kN   =   vx iN + vy  jN + vz kN ,  (3 – 9)

where  vx = dx>dt,  vy = dy>dt,  vz = dz>dt  are the x, y, and z components of the 
velocity. Note that  d  iN>dt = d  jN>dt = d  kN >dt = 0  since these unit vectors are 
constant in both magnitude and direction.

Acceleration in two or three dimensions is treated in a similar way. The 
average acceleration vector, over a time interval  ∆t = t2 - t1  is defined as

average acceleration  =   
∆v5
∆t

  =   
v52 - v51

t2 - t1

, (3 – 10)

where ∆v5 is the change in the instantaneous velocity vector during that time 
interval:  ∆v5 = v52 - v51 .  Note that v52 in many cases, such as in Fig. 3 9 18a, may 
not be in the same direction as v51 . Hence the average acceleration vector may be 
in a different direction from either v51 or v52 (Fig. 3 9 18b). Furthermore, v52 and v51 
may have the same magnitude but different directions, and the difference of two 
such vectors will not be zero. Hence acceleration can result from either a change 
in the magnitude of the velocity, or from a change in direction of the velocity, or 
from a change in both.

The instantaneous acceleration vector is defined as the limit of the average 
acceleration vector as the time interval ∆t is allowed to approach zero:

a5  =   lim
∆tS0

 
∆v5
∆t

  =   
dv5
dt

, (3 – 11)

and is thus the derivative of v5 with respect to t.

FIGURE 3 – 18  (a) Velocity vectors 
v51 and v52 at instants t1 and t2 for 
a particle at points P1 and P2, as 
in Fig. 3 9 16. (b) The direction of 
the average acceleration is in the 
direction of  ∆v5 = v52 - v51 .

0 (a)

(b)

y

P1

∆
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FIGURE 3 – 17  (a) As we take ∆t 
and ∆r5 smaller and smaller [compare 
to Fig. 3 9 16] we see that the direction 
of ∆r5 and of the instantaneous 
velocity (∆r5>∆t, where ∆t S 0) is  
(b) tangent to the curve at P1.
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86 CHAPTER 3 Kinematics in Two or Three Dimensions; Vectors

We can write a5 using components:

 a5  =   
dv5
dt 

  =   
dvx

dt  
 iN +

dvy

dt  
 jN +

dvz

dt  
 kN  

 =   ax iN + ay jN + az kN ,  (3 – 12a)

where  ax = dvx>dt,  etc. Because  vx = dx>dt,  then  ax = dvx>dt = d2x>dt2,  as we  
saw in Section 2 9 4. Thus we can also write the acceleration as 

a5 =
d2x
dt2 

 iN +
d2y
dt2 

 jN +
d2z
dt2 

 kN . (3 – 12b)

The instantaneous acceleration will be nonzero not only when the magnitude of 
the velocity changes, but also if its direction changes. For example, a person riding 
in a car traveling at constant speed around a curve, or a child riding on a merry-go-
round, will both experience an acceleration because of a change in the direction of 
the velocity, even though the speed may be constant. (More on this in Chapter 5.)

In general, we will use the terms “velocity” and “acceleration” to mean the instan-
taneous values. If we want to discuss average values, we will use the word “average.”

EXAMPLE 3 – 5 Position given as a function of time. The position of a 
particle as a function of time is given by

r5 =  [ (5.0 m>s)t +  (6.0 m>s2)t2 ]  iN +  [ (7.0 m) -  (3.0 m>s3)t3 ]  jN,

where r is in meters and t is in seconds. (a) What is the particle’s displacement 
between  t1 = 2.0 s  and  t2 = 3.0 s?  (b) Determine the particle’s instantaneous 
velocity and acceleration as a function of time. (c) Evaluate v5 and a5 at  t = 3.0 s.

APPROACH For (a), we find  ∆r5 = r52 - r51 ,  inserting  t1 = 2.0 s  for finding r51 , 
and t2 = 3.0 s  for r52 . For (b), we take derivatives (Eqs. 3 9 9 and 3 9 12), and for 
(c) we substitute  t = 3.0 s  into our results in (b).

SOLUTION (a) We insert  t1 = 2.0 s  into the given equation for r5:

 r51  =   [ (5.0 m>s) (2.0 s)  +   (6.0 m>s 2) (2.0 s) 

2 ]  iN +  [ (7.0 m)  -  (3.0 m>s 3) (2.0 s) 

3 ]  jN

  =   (34 m)  iN -   (17 m)  jN.

Similarly, at  t2 = 3.0 s,

r52  =    (15 m + 54 m)  iN +  (7.0 m - 81 m)  jN  =    (69 m)  iN -  (74 m)  jN.

Thus

∆r5  =   r52 - r51  =   (69 m - 34 m)  iN +  ( -74 m + 17 m)  jN =   (35 m)  iN -  (57 m)  jN.

That is,  ∆x = 35 m,  and  ∆y = -57 m.
(b) To find velocity, we take the derivative of the given r5 with respect to time, 
noting ( Appendix B 9 2) that  d  (t2) >dt = 2t,  and  d  (t3) >dt = 3t2:

v5  =   
d r5
dt 

  =   [5.0 m>s +  (12 m>s 2)t ] iN + [0 -  (9.0 m>s 3)t2 ] jN.

The acceleration is (keeping only two significant figures):

a5  =   
dv5
dt 

  =    (12 m>s 2)  iN -  (18 m>s 3)t   jN.

Thus  ax = 12 m>s 2  is constant; but  ay = - (18 m>s 3)t  depends linearly on time, 
increasing in magnitude with time in the negative y direction.
(c) We substitute  t = 3.0 s  into the equations we just derived for v5 and a5:

 v5  =     (5.0 m>s + 36 m>s)  iN -  (81 m>s)  jN  =    (41 m>s)  iN - (81 m>s)  jN

 a5  =    (12 m>s 2)  iN -  (54 m>s 2)  jN.

Their magnitudes at  t = 3.0 s  are  v = 2(41 m>s) 2 +  (81 m>s) 2 = 91 m>s,  and 
a = 2(12 m>s2) 

2 +  (54 m>s 2) 

2 = 55 m>s 2.
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SECTION 3–7 Projectile Motion 87

Constant Acceleration
In Chapter 2 we studied the important case of one-dimensional motion for 
which the acceleration is constant. In two or three dimensions, if the accel-
eration vector, a5, is constant in magnitude and direction, then  ax = constant,  
ay = constant,  az = constant.  The average acceleration in this case is equal 
to the instantaneous acceleration at any moment. The equations we derived 
in Chapter 2 for one dimension, Eqs. 2 9 12a, b, and c, apply separately to 
each perpendicular component of two- or three-dimensional motion. 

In two dimensions we let  v50 = vx 0 iN + vy 0  jN  be the initial velocity, and we  
apply Eqs.  3 9 6a, 3 9 9, and 3 9 12b for the position vector r5, velocity v5, and 
 acceleration a5. We can then write Eqs. 2 9 12a, b, and c for two dimensions as 
shown in Table 3 9 1.

TABLE 3 – 1 Kinematic Equations for Constant Acceleration in 2 Dimensions

x component (horizontal) y component (vertical)

 vx = vx 0 + ax t (Eq. 2 9 12a)  vy = vy 0 + ay t
 x = x0 + vx 0 t + 1

2 ax t2 (Eq. 2 9 12b)  y = y0 + vy 0 t + 1
2 ay t2

 vx
2 = vx 0

2 + 2ax  (x - x0) (Eq. 2 9 12c)  vy
2 = vy 0

2 + 2ay  (y - y0)

The first two of the equations in Table 3 9 1 can be written more formally in 
vector notation.

 v5 = v50 + a5 t [a5 = constant]  (3 – 13a)

 r5 = r50 + v50 t + 1
2 a5 t2. [a5 = constant]  (3 – 13b)

Here, r5 is the position vector at any time, and r50 is the position vector at  t = 0.  
These equations are the vector equivalent of Eqs. 2 9 12a and b. In practical situ-
ations, we usually use the component form given in Table 3 9 1.

3–7  Projectile Motion
In Chapter 2, we studied one-dimensional motion of an object in terms of 
displacement, velocity, and acceleration, including purely vertical motion of 
a falling object undergoing acceleration due to gravity. Now we examine the 
more general translational motion of objects moving through the air in two 
dimensions near the Earth’s surface, such as a golf ball, a thrown or batted base-
ball, kicked footballs, and speeding bullets. These are all examples of projectile 
motion (see Fig. 3 9 19), which we can describe as taking place in two dimensions 
if there is no wind.

Although air resistance is often important, in many cases its effect can be 
ignored, and we will ignore it in the following analysis. We will not be concerned 
now with the process by which the object is thrown or projected. We consider 
only its motion after it has been projected, and before it lands or is caught : that 
is, we analyze our projected object only when it is moving freely through the  
air under the action of gravity alone. Then the acceleration of the object is  
that due to gravity, which acts downward with magnitude  g = 9.80 m>s 2,  and 
we assume it is constant.†

Galileo was the first to describe projectile motion accurately. He showed that 
it could be understood by analyzing the horizontal and vertical components of 
the motion separately. For convenience, we assume that the motion begins at time  
t = 0  at the origin of an xy coordinate system (so  x0 = y0 = 0).

†This restricts us to objects whose distance traveled and maximum height above the Earth are small 
 compared to the Earth’s radius (6400 km).

(b)

(a)

FIGURE 3 – 19  Photographs of  
(a) a bouncing ball and (b) a 
snowboarder, each showing the  
characteristic “parabolic” path of 
projectile motion.
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88 CHAPTER 3 Kinematics in Two or Three Dimensions; Vectors

Let us look at a (tiny) ball rolling off the end of a horizontal table with an initial 
velocity in the horizontal (x) direction, v5x 0 . See Fig. 3 9 20, where an object falling 
vertically is also shown for comparison. The velocity vector v5 at each instant points 
in the direction of the ball’s motion at that instant and is thus always tangent to the 
path. Like Galileo, we treat the horizontal and vertical components of the velocity 
and acceleration separately, and we apply the kinematic equations (Eqs. 2 9 12) to 
the x and y components of the motion.

First we examine the vertical ( y ) component of the motion. At the instant the 
ball leaves the table’s top  (t = 0),  it has only an x component of velocity. Once the 
ball leaves the table (at  t = 0),  it experiences a vertically downward acceleration g,  
the acceleration due to gravity. Thus vy is initially zero  (vy 0 = 0)  but increases 
 continually in the downward direction (until the ball hits the ground). Let us take y 
to be positive upward. Then the acceleration due to gravity is in the -y direction, so  
ay = -g.  From Eq. 2 9 12a (using y in place of x) we can write  vy = vy 0 + ay t = -gt  
since we set  vy 0 = 0.  The vertical displacement is given by Eq. 2 9 12b written in terms 
of y:  y = y0 + vy 0 + 1

2 ay t2.  Given  y0 = 0,  vy 0 = 0,  and  ay = -g,  then  y = -  12 gt2.
In the horizontal direction, the acceleration is zero (ignoring air resistance).  

With  ax = 0,  the horizontal component of velocity, vx , remains constant, equal to 
its initial value, vx 0 , and thus has the same magnitude at each point on the path. The  
horizontal displacement (with  ax = 0)  is given by  x = vx 0 t + 1

2 ax t2 = vx 0 t.  
The two vector components, v5x and v5y , can be added vectorially at any instant 

to obtain the velocity v5 at that time (each point on the path), as shown in Fig. 3 9 20.
One result of this analysis, which Galileo himself predicted, is that an object 

projected horizontally will reach the ground in the same time as an object dropped 
vertically. The vertical motions are the same in both cases, as shown in Fig. 3 9 20. 
Figure 3 9 21 is a multiple-exposure photograph of an experiment that confirms this.

If an object is projected at an upward angle, as in Fig. 3 9 22, the analysis is 
similar, but now there is an initial vertical component of velocity, vy 0 . Because of the 
 downward acceleration of gravity, the upward component of velocity vy gradually 
decreases with time until the object reaches the highest point on its path, at which 
point  vy = 0.  The object then moves downward (Fig. 3 9 22) and vy increases in the 
downward direction (becoming more negative). As before, vx remains constant.

FIGURE 3 – 21  Multiple-exposure 
photograph showing positions of two 
balls at equal time intervals. One 
ball was dropped from rest at the 
same time the other was projected 
horizontally outward. The vertical 
position of each ball is seen to be the 
same at each instant. 

FIGURE 3 – 22  Path of a projectile fired 
with initial velocity v50 at angle u0 to the 
horizontal. Path is shown dashed in black, 
the velocity vectors are green arrows, 
and velocity components are dashed. The 
acceleration  a5 = d v5>dt  is downward. That 
is,  a5 = g5 = -g   jN  where jN is the unit vector 
in the positive y direction. Not shown is 
where the projectile hits the ground (at 
that point projectile motion ceases).
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FIGURE 3 – 20  Projectile motion of a small  
ball projected horizontally with initial 
velocity v5 = v5x 0 .  The dashed black line 
represents the path of the object. The 
velocity vector v5 is in the direction of 
motion at each point, and thus is tangent to  
the path. The velocity vectors are green 
arrows, and velocity components are dashed. 
(A vertically falling object starting from rest  
at the same place and time is shown at the  
left for comparison; vy is the same at each  
instant for the falling object and the 
projectile.)
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CONCEPTUAL EXAMPLE 3 – 6 Where does the apple land? A child sits 
upright in a wagon that moves to the right at constant speed, Fig. 3 9 23. The child extends 
her hand and throws an apple straight up (from her own point of view, Fig. 3 9 23a), 
as the wagon moves forward at constant speed. Neglecting air resistance, will the 
apple land (a) behind the wagon, (b) in the wagon, or (c) in front of the wagon?

RESPONSE The child throws the apple straight up in her own reference frame 
with initial velocity v5y 0 (Fig. 3 9 23a). But when viewed by someone on the ground, 
the apple also has an initial horizontal component of velocity equal to the velocity 
of the wagon, v5x 0 . Thus, to a person on the ground, the apple follows the path of a  
projectile as shown in Fig. 3 9 23b. The apple experiences no horizontal accelera-
tion, so v5x 0 stays constant, equal to the speed of the wagon. As the apple follows 
its arc, the wagon will be directly under the apple at all times because they have 
the same horizontal velocity. When the apple comes down, it will drop right into 
the outstretched hand of the child. The answer is (b).

y

x

(b) Ground reference frame

(a) Wagon reference frame

vy05

v05vy05

vx05

vx05

FIGURE 3 – 23  Example 3 9 6.

3–8  Solving Problems Involving Projectile Motion

 5. Examine the horizontal (x) and vertical (y) motions 
separately. If you are given the initial velocity, you may 
want to resolve it into its x and y components.

 6. List the known and unknown quantities, choosing  
ax = 0  and  ay = -g  or  +g,  where  g = 9.80 m>s2,  
depending on choice of y positive up or down.  
Recall: vx never changes throughout the trajectory,  
and  vy = 0  at the highest point of any trajectory that 
returns downward. The velocity just before landing is 
generally not zero.

 7. Think for a minute before jumping into the equations.  
Apply the relevant equations (Table 3 9 2), combining 
them if necessary. You may need to combine components 
of a vector to get magnitude and direction (Eqs. 3 9 3). 

      P
R

O
B

L
E

M

 S O L V I N G

 Our approach to solving Problems in Section 2 9 6 also 
applies here. Solving projectile motion Problems can 
require creativity, and cannot be done just by follow-
ing rules. You must avoid just plugging numbers into 
equations that seem to “work.”

 1. As always, read carefully; choose the object  
(or objects) you are going to analyze.

 2. Draw a careful diagram showing what is happening.
 3. Choose an origin and an xy coordinate system.
 4. Decide on the time interval, which for projec-

tile motion can only include motion under the effect 
of gravity alone, not throwing or landing. The time 
interval must be the same for the x and y analyses. The 
x and y motions are connected by the common time, t.

Projectile Motion

TABLE 3 – 2  Kinematic Equations for Projectile Motion 
( y positive upward;  ax = 0,  ay = −g = −9.80 m ,s2)

Horizontal Motion  
(ax = 0,  vx = constant) 

Vertical Motion†

(ay = −g = constant)
 vx = vx 0 (Eq. 2 9 12a)  vy = vy 0 - gt
 x = x0 + vx 0 t (Eq. 2 9 12b)  y = y0 + vy 0 t - 1

2 gt2

(Eq. 2 9 12c)  vy
2 = vy 0

2 - 2g  (y - y0)
†If y is taken positive downward, the minus ( - )  signs in front of g become plus ( + )  signs.

EXERCISE C Return to the Chapter-Opening Question, page 76, and answer it again 
now. Try to explain why you may have answered differently the first time. Describe the 
role of the helicopter in this example of projectile motion.

We can simplify Eqs. 2 9 12 (Table 3 9 1) for the case of projectile motion because 
we can set  ax = 0.  See Table 3 9 2, which assumes y is positive upward, so 
ay = -g = -9.80 m>s2.  If u is chosen relative to the +x axis, as in Fig. 3 9 22, then

vx 0 = v0 cos u0 ,  and  vy 0 = v0 sin u0 .

In doing Problems involving projectile motion, we must consider a time interval for 
which our chosen object is in the air, influenced only by gravity. We do not consider 
the throwing (or projecting) process, nor the time after the object lands or is caught, 
because then other influences act on the object, and we can no longer set  a5 = g5.

P R O B L E M  S O LV I N G
Choice of time interval
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EXAMPLE 3 – 7 Driving off a cliff. A movie stunt driver on a motorcycle 
speeds horizontally off a 50.0-m-high cliff. How fast must the motorcycle leave 
the clifftop to land on level ground below, 90.0 m from the base of the cliff where 
the cameras are? Ignore air resistance.

APPROACH We explicitly follow the steps of the Problem Solving Strategy on 
the previous page.

SOLUTION
 1. and 2. Read, choose the object, and draw a diagram. Our object is the motor-

cycle and driver, taken as a single unit. The diagram is shown in Fig. 3 9 24.
 3. Choose a coordinate system. We choose the y direction to be positive 

upward, with the top of the cliff as  y0 = 0.  The x direction is horizontal 
with  x0 = 0  at the point where the motorcycle leaves the cliff.

 4. Choose a time interval. We choose our time interval to begin  (t = 0)  just 
as the motorcycle leaves the clifftop at position  x0 = 0,  y0 = 0.  Our time 
interval ends just before the motorcycle touches the ground below.

 5. Examine x and y motions. In the horizontal (x) direction, the acceleration  
ax = 0,  so the velocity is constant. The value of x when the motorcycle reaches 
the ground is  x = +90.0 m.  In the vertical direction, the acceleration is the 
acceleration due to gravity,  ay = -g = -9.80 m>s2.  The value of y when the 
motorcycle reaches the ground is  y = -50.0 m.  The initial velocity is hori-
zontal and is our unknown, vx 0 ; the initial vertical velocity is zero,  vy 0 = 0.

 6. List knowns and unknowns. See the Table in the margin. Note that in 
addition to not knowing the initial horizontal velocity vx 0 (which stays 
constant until landing), we also do not know the time t when the motor-
cycle reaches the ground.

 7. Apply relevant equations. The motorcycle maintains constant vx as 
long as it is in the air. The time it stays in the air is determined by the 
y motion : when it reaches the ground. So we fi rst fi nd the time using the 
y motion, and then use this time value in the x equations. To fi nd out how 
long it takes the motorcycle to reach the ground below, we use Eq. 2 9 12b 
(Table 3 9 2) for the vertical (y) direction with  y0 = 0  and  vy 0 = 0:

 y = y0  + vy 0 t + 1
2 ay t2

 =  0  +    0  + 1
2  ( -g)t2

  or
 y = -  12 gt2.

  We solve for t and set  y = -50.0 m:

t = A 2y
-g

= B2( -50.0 m)

-9.80 m>s2 = 3.19 s.

  To calculate the needed initial velocity, vx 0 , we again use Eq. 2 9 12b, but 
this time for the  horizontal (x) direction, with  ax = 0  and  x0 = 0:

 x = x0 + vx 0 t + 1
2 ax t2

 = 0  + vx 0 t + 0
  or

 x = vx 0 t.

  So the motorcycle needs to leave the clifftop with a speed

vx 0 =
x
t

=
90.0 m
3.19 s

= 28.2 m>s,

  which is about 100 km>h (roughly 60 mi>h).

NOTE In the time interval of the projectile motion, the only acceleration is g 
in the negative y direction. The acceleration in the x direction is zero.

y = -50.0 m

50.0 m

= g5a5

90.0 m

+ x

+ y

FIGURE 3 – 24  Example 3 9 7.

Known Unknown

 x0 = y0 = 0 vx 0
 x = 90.0 m t 
 y = -50.0 m

 ax = 0

 ay = -g = -9.80 m>s2

 vy 0 = 0
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EXAMPLE 3 – 8 A kicked football. A football is kicked at an angle  u0 = 37.0°  
with a velocity of 20.0 m>s, as shown in Fig. 3 9 25. Calculate (a) the maximum 
height, (b) the time of travel before the football hits the ground, and (c) how 
far away it hits the ground. Assume the ball leaves the foot at ground level, and 
ignore air resistance, wind, and rotation of the ball.

APPROACH This may seem difficult at first because there are so many  questions. 
But we can deal with them one at a time. We take the y direction as positive 
upward, and treat the x and y motions separately. The total time in the air is 
again determined by the y motion. The x motion occurs at constant velocity. 
The y component of velocity varies, being positive (upward) initially, decreasing 
to zero at the highest point, and then becoming negative as the football falls.

SOLUTION We resolve the initial velocity into its components (Fig. 3 9 25):

 vx 0 = v0 cos 37.0° = (20.0 m>s) (0.799) = 16.0 m>s
 vy 0 = v0 sin 37.0°  = (20.0 m>s) (0.602) = 12.0 m>s.

(a) To find the maximum height, we consider a time interval that begins just after 
the football loses contact with the foot until the ball reaches its maximum height. 
During this time interval, the acceleration is g downward. At the maximum 
height, the velocity is horizontal (Fig. 3 9 25), so  vy = 0;  and this occurs at a 
time given by  vy = vy 0 - gt  with  vy = 0  (see Eq. 2 9 12a in Table 3 9 2). Thus

t =
vy 0

g
=

(12.0 m>s)

(9.80 m>s2)
= 1.224 s  L   1.22 s.

From Eq. 2 9 12b, with  y0 = 0,  we can solve for y at this time  t = vy 0>g :

 y = vy 0 t - 1
2 gt2 =

vy 0
2

g
-

1
2

 
vy 0

2

g
=

vy 0
2

2g
=

(12.0 m>s) 2

2 (9.80 m>s 2)
= 7.35 m.

The maximum height is 7.35 m. [Solving Eq. 2 9 12c for y gives the same result.]
(b) To find the time it takes for the ball to return to the ground, we consider 
a  different time interval, starting at the moment the ball leaves the foot 
(t = 0,  y0 = 0)  and ending just before the ball touches the ground  (y = 0  
again). We can use Eq. 2 9 12b with  y0 = 0  and also set  y = 0  (ground level):

 y = y0 + vy 0 t - 1
2 gt2

 0 = 0 + vy 0 t - 1
2 gt2.

This equation can be easily factored:

t  (1
2 gt - vy 0) = 0.

There are two solutions,  t = 0  (which corresponds to the initial point, y0), and

t =
2vy 0

g
=

2(12.0 m>s)

(9.80 m>s2)
= 2.45 s,

which is the total travel time of the football.
(c) The total distance traveled in the x direction is found by applying Eq. 2 9 12b 
with x0 = 0,  ax = 0,  vx 0 = 16.0 m>s,  and  t = 2.45 s:

x = vx 0 t =  (16.0 m>s) (2.45 s) = 39.2 m.

NOTE In (b) the time needed for the whole trip,  t = 2vy 0 >g = 2.45 s,  is double 
the time to reach the highest point, calculated in (a). That is, the time to go up 
equals the time to come back down to the same level (ignoring air resistance).

P H Y S I C S  A P P L I E D
Sports

FIGURE 3 – 25  Example 3 9 8.
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92 CHAPTER 3 Kinematics in Two or Three Dimensions; Vectors

EXAMPLE 3 – 10 Range of a cannon ball. Suppose one of Napoleon’s 
cannons had a muzzle speed, v0 , of 60.0 m>s. At what angle should it have 
been aimed (ignore air resistance) to strike a target 320 m away?

APPROACH We use the equation just derived for the range,  R = v0
2 sin 2u0>g,  

with R = 320 m.

SOLUTION We solve for sin 2u0 in the range formula:

sin 2u0 =
Rg

v0
2 =

(320 m) (9.80 m>s 2)
(60.0 m>s) 2 = 0.871.

We want to solve for an angle u0 that is between 0° and 90°, which means 2u0 in this 
equation can be as large as 180°. Then  sin-1(0.871) = 2u0 = 60.6°  is a solution, 

EXERCISE D In Example 3 9 8, what is (a) the velocity vector at the maximum height, 
and (b) the acceleration vector at maximum height?

In Example 3 9 8 we treated the football as if it were a particle, ignoring its 
rotation. We also ignored air resistance. Because air resistance is significant on a 
football, our results are only estimates (mainly overestimates). We also ignored 
any wind. If there happened to be a cross-wind, we would need a third axis for 
such 3-dimensional motion.

EXERCISE E Two balls are thrown in the air at different angles, but each reaches the 
same height. Which ball remains in the air longer: the one thrown at the steeper angle 
or the one thrown at a shallower angle?

CONCEPTUAL EXAMPLE 3 – 9 The wrong strategy. A boy on a small hill 
aims his water-balloon slingshot horizontally, straight at a second boy hanging from a 
tree branch a distance d away, Fig. 3 9 26. At the instant the water balloon is released, 
the second boy lets go and falls from the tree, hoping to avoid being hit. Show that 
he made the wrong move. (He hadn’t studied physics yet.) Ignore air resistance.

RESPONSE Both the water balloon and the boy in the tree start falling at the 
same instant, and in a time t they each fall the same vertical distance  y = 1

2 gt2,  
much like Fig. 3 9 21. In the time it takes the water balloon to travel the hori-
zontal distance d, the balloon will have the same y position as the falling boy. 
Splat. If the boy had stayed in the tree, he would have avoided the  humiliation.

0
v0

y

d

FIGURE 3 – 26  Example 3 9 9.

Level Horizontal Range
The total distance the football traveled in Example 3 9 8 is called the horizontal 
range R. We now derive a formula for the range, which applies to a projectile that 
lands at the same level it started  (= y0) :  that is,  y(final) = y0  (see Fig. 3 9 27a). 
Looking back at Example 3 9 8 part (c), we see that  x = R = vx 0 t  where (from 
part b) t = 2vy 0>g.  Thus

R = vx 0 t = vx 0¢ 2vy 0

g
≤ =

2vx 0 vy 0

g
=

2v0
2 sin u0 cos u0

g
, [y = y0]

where  vx 0 = v0 cos u0  and  vy 0 = v0 sin u0 .  This can be rewritten, using the trigo-
nometric identity  2 sin u cos u = sin 2u  (Appendix A or inside the rear cover):

R =
v0

2 sin 2u0

g
. [only if  y(final) = y0]

Note that the maximum range, for a given initial velocity v0 , is obtained when 
sin 2u takes on its maximum value of 1.0, which occurs for  2u0 = 90°;  so

u0 = 45°  for maximum range, and  Rmax = v0
2>g.

The maximum range increases by the square of v0 , so doubling the initial velocity 
of a projectile increases its maximum range by a factor of 4.

When air resistance is important, the range is less for a given v0 , and the 
maximum range is obtained at an angle smaller than 45°.

FIGURE 3 – 27  (a) The range R of 
a projectile. (b) There are generally 
two angles u0 that will give the  
same range. If one angle is u0 1 , the 
other is  u0 2 = 90° - u0 1 .  Also see 
Example 3 9 10.

y = 0 again here
(where x = R)

y

x

x0 = 0
y0 = 0

(b)

60°

30°

y

x

(a)
R

45°

u0
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SECTION 3–8 Solving Problems Involving Projectile Motion 93

FIGURE 3 – 28  Example 3 9 11: the 
football leaves the punter’s foot 
at  y = 0,  and reaches the ground 
where  y = -1.00 m.

The level range formula applies only if takeoff and landing are at the same 
height  (y = y0).  Example 3 9 11 below considers a case where they are not equal 
heights  (y ≠ y0).

EXAMPLE 3 – 11 A punt. Suppose the football in Example 3 9 8 was punted 
and left the punter’s foot at a height of 1.00 m above the ground. How far did 
the football travel before hitting the ground? Set  x0 = 0,  y0 = 0.

APPROACH The x and y motions are again treated separately. But we cannot use 
the range formula as in Example 3 9 10 because the range formula is valid only if  
y(final) = y0 , which is not the case here. Now we have  y0 = 0,  and the football 
hits the ground where y = -1.00 m  (see Fig. 3 9 28). We choose our time interval 
to start when the ball leaves his foot  (t = 0,  y0 = 0,  x0 = 0)  and end just before 
the ball hits the ground  (y = -1.00 m).  We can get x from Eq. 2 9 12b,  x = vx 0 t,  
and we saw that  vx 0 = 16.0 m>s  in Example 3 9 8. But first we must find t,  
the time at which the ball hits the ground, which we obtain from the y motion.

P H Y S I C S  A P P L I E D
Sports

P R O B L E M  S O LV I N G
Do not use any formula unless you 
are sure its range of validity fits the 
problem; the range formula does not 
apply here because  y ≠ y0

Ground

y

x
y0 =  0

y  =  -1.00 m

so the cannon should be aimed at  u0 = 30.3°.  But 2u0 = 180° - 60.6° = 119.4°  
is also a solution (see Appendix A 9 9), so u0 can also be  u0 = 59.7°.  In general we 
have two solutions (see Fig. 3 9 27b), which in the present case are given by

u0 = 30.3° or 59.7°.

Either angle gives the same range. Only when  sin 2u0 = 1  (so  u0 = 45°)  is there 
a single solution (that is, both solutions are the same).

SOLUTION To find t  with  y = -1.00 m  and  vy 0 = 12.0 m>s  (see Example 3 9 8), 
we use the  equation

y = y0 + vy 0 t - 1
2 gt2,

and obtain
-1.00 m = 0 +  (12.0 m>s)t -  (4.90 m>s2)t2.

We rearrange this equation into standard form  (ax2 + bx + c = 0)  so we 
can use the  quadratic formula:

(4.90 m>s2)t2 -  (12.0 m>s)t -  (1.00 m) = 0.

The quadratic formula (Appendix A 9 1) gives

 t =
12.0 m>s { 2( -12.0 m>s) 2 - 4(4.90 m>s 2) ( -1.00 m)

2(4.90 m>s2)
 = 2.53 s or -0.081 s.

The second solution would correspond to a time prior to our chosen time 
interval that begins at the kick  (t  =  0) ,  so it doesn’t apply. With  t  =  2.53 s  
for the time at which the ball touches the ground, the horizontal distance the 
ball traveled is (using  vx 0 = 16.0 m>s  from  Example 3 9 8):

x = vx 0 t =  (16.0 m>s) (2.53 s) = 40.5 m.

Our assumption in Example 3 9 8 that the ball leaves the foot at ground level gives a  
result (39.2 m) that is an underestimate of about 1.3 m in the distance our punt 
traveled. (But Example 3 9 8 would apply for a kickoff or field goal in American 
football.)
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94 CHAPTER 3 Kinematics in Two or Three Dimensions; Vectors

EXAMPLE 3 – 12 Rescue helicopter drops supplies. A rescue helicopter 
wants to drop a package of supplies to isolated mountain climbers on a rocky 
ridge 200 m below. If the helicopter is traveling horizontally with a speed of 
70 m>s (250 km>h), (a) how far in advance of the recipients (horizontal distance) 
must the package be dropped (Fig. 3 9 29a)? (b) Suppose, instead, that the heli-
copter releases the package a horizontal distance of 400 m in advance of the 
mountain climbers. What vertical velocity should the package be given (up or 
down) so that it arrives precisely at the climbers’ position (Fig. 3 9 29b)? (c) With 
what speed does the package land in the latter case?

APPROACH We choose the origin of our xy coordinate system at the initial position 
of the helicopter, taking +y upward, and use the kinematic equations (Table 3 9 2).

SOLUTION (a) We can fi nd the time to reach the climbers using the vertical 
distance of 200 m. The package is “dropped” so initially it has the velocity of 
the helicopter, vx 0 = 70 m>s,  vy 0 = 0.  Then, since  y = -  12 gt2,  we have

t = B-2y
g

= B-2( -200 m)

9.80 m>s2 = 6.39 s.

The horizontal motion of the falling package is at constant speed of 70 m>s. So

x = vx 0 t = (70 m>s) (6.39 s) = 447 m  L   450 m,

assuming the given numbers were good to two signifi cant fi gures.
(b) We are given  x = 400 m,  vx 0 = 70 m>s,  y = -200 m,  and we want to fi nd vy 0 
(see Fig. 3 9 29b). Like most problems, this one can be approached in various 
ways. Instead of searching for a formula or two, let’s try to reason it out in a 
simple way, based on what we did in part (a). If we know t, perhaps we can get 
vy 0 . Since the horizontal motion of the package is at constant speed (once it is 
released we don’t care what the helicopter does), we have  x = vx 0 t,  so

t =
x

vx 0
=

400 m
70 m>s = 5.71 s.

Now let’s try to use the vertical motion to get  vy 0 : y = y0 + vy 0 t - 1
2 gt2.  Since  

y0 = 0  and  y = -200 m,  we can solve for vy 0 :

vy 0 =
y + 1

2 gt2

t
=

-200 m + 1
2  (9.80 m>s2) (5.71 s) 

2

5.71 s
= -7.0 m>s.

Thus, in order to arrive at precisely the mountain climbers’ position, the package 
must be thrown downward from the helicopter with a speed of 7.0 m>s.
(c) We want to know v of the package at  t = 5.71 s.  The components are:

 vx = vx 0 = 70 m>s
 vy = vy 0 - gt = -7.0 m>s -  (9.80 m>s2) (5.71 s) = -63 m>s.

So  v = 2(70 m>s) 2 +  ( -63 m>s) 2 = 94 m>s.  (Better not to release the package 
from such an altitude, or use a parachute.)

P H Y S I C S  A P P L I E D
Reaching a target from a 

moving helicopter

“Dropped”
(vy0 = 0)

200 m 200 m

(a)

x

y

Thrown upward?
(vy0 7 0)

400 m

(b)

Thrown downward?
(vy0 6 0)

vx0

FIGURE 3 – 29  Example 3 9 12.
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SECTION 3–9 Relative Velocity 95

Projectile Motion Is Parabolic
We now show that the path followed by any projectile is a parabola, if we can 
ignore air resistance and can assume that only gravity is acting with g5 constant. 
To do so, we need to find y as a function of x by eliminating t between the two 
equations for horizontal and vertical motion (Eq. 2 9 12b in Table 3 9 2), and for 
simplicity we set  x0 = y0 = 0 :

 x = vx 0 t

 y = vy 0 t - 1
2 gt2.

From the first equation, we have  t = x>vx 0 ,  and we substitute this into the second 
equation to obtain

y = ¢ vy 0

vx 0
≤ x - ¢ g

2vx 0
2 ≤ x2. (3 – 14)

We see that y as a function of x has the form

y = Ax - Bx2,

where A and B are constants for any specific projectile motion. This is the well-
known equation for a parabola. See Figs. 3 9 19 and 3 9 30.

The idea that projectile motion is parabolic was at the forefront of physics 
research in Galileo’s day. Today we discuss it in Chapter 3 of introductory physics!

3–9 Relative Velocity
We now consider how observations made in different frames of reference are 
related to each other. For example, consider two trains approaching one another, 
each with a speed of 80 km>h with respect to the Earth. Observers on the Earth 
beside the train tracks will measure 80 km>h for the speed of each of the trains. 
Observers on either one of the trains (different frames of reference) will measure 
a speed of 160 km>h for the other train approaching them.

Similarly, when one car traveling 90 km>h passes a second car traveling in the 
same direction at 75 km>h, the first car has a speed relative to the second car of 
90 km>h - 75 km>h = 15 km>h.

When the velocities are along the same line, simple addition or subtraction 
is sufficient to obtain the relative velocity. But if they are not along the same 
line, we must make use of vector addition. We emphasize, as mentioned in 
Section 2 9 1, that when specifying a velocity, it is important to specify what the 
reference frame is.

When determining relative velocity, it is easy to make a mistake by adding 
or subtracting the wrong velocities. It is important, therefore, to draw a diagram 
and use a careful labeling process. Each velocity is labeled by two subscripts: 
the first refers to the object, the second to the reference frame in which it has this 
velocity. For example, suppose a boat heads directly across a river, as shown in 
Fig. 3 9 31. We let v5BW be the velocity of the Boat with respect to the Water. (This 
is also what the boat’s velocity would be relative to the shore if the water were 
still.) Similarly, v5BS is the velocity of the Boat with respect to the Shore, and v5WS 
is the velocity of the Water with respect to the Shore (this is the river  current). 
Note that v5BW is what the boat’s motor produces (against the water), whereas v5BS 
is equal to v5BW plus the effect of the current, v5WS. Therefore, the  velocity of the 
boat relative to the shore is (see vector diagram, Fig. 3 9 31)

v5BS = v5BW + v5WS. (3 – 15)

By writing the subscripts using this convention, we see that the inner subscripts (the 
two W’s) on the right-hand side of Eq. 3 9 15 are the same; also, the outer subscripts 
on the right of Eq. 3 9 15 (the B and the S) are the same as the two  subscripts for 
the sum vector on the left, v5BS. 

FIGURE 3 – 30  Examples of 
projectile motion: (a) a boy leaping, 
(b) glowing lava from the volcano 
Stromboli.

FIGURE 3 – 31  A boat heads north 
directly across a river which flows 
west. Velocity vectors are shown as 
green arrows:
   v5BS =  velocity of Boat with  

respect to the Shore,
   v5BW =  velocity of Boat with  

respect to the Water,
   v5WS =  velocity of Water with  

respect to the Shore  
(river current).

As it crosses the river, the boat  
is dragged downstream by the 
current (v5WS).

E

N

W

S

BS
BW

WSv5

v5
v5

River current

u

(a)

(b)
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96 CHAPTER 3 Kinematics in Two or Three Dimensions; Vectors

By following this convention (first subscript for the object, second for the reference 
frame), you can write down the correct equation relating velocities in different 
reference frames.† 

Figure 3 9 32 gives a derivation of Eq. 3 9 15,  v5BS = v5BW + v5WS, but using 
different subscripts.

Equation 3 9 15 is valid in general and can be extended to three or more velocities. 
For example, if a fisherman on a boat walks with a velocity v5FB rela tive to the boat, 
his velocity relative to the shore is  v5FS = v5FB + v5BW + v5WS.  The equations involving 
relative velocity will be correct when adjacent inner subscripts are identical and when 
the outermost ones correspond exactly to the two on the velocity on the left of the 
equation. But this works only with plus signs (on the right), not minus signs.

It is often useful to remember that for any two objects or reference frames, 
A and B, the velocity of A relative to B has the same magnitude, but opposite 
direction, as the velocity of B relative to A:

v5BA = -v5AB. (3 – 16)

For example, if a train is traveling 100 km>h relative to the Earth in a certain 
direction, objects on the Earth (such as trees) appear to an observer on the train 
to be traveling 100 km>h in the opposite direction.

FIGURE 3 – 32  Derivation of relative velocity equation (Eq. 3 9 15), in this case for a 
person walking along the corridor in a train. We are looking down on the train and  
two reference frames are shown: xy on the Earth and x′y′ fixed on the train. We have:

 r5PT = position vector of person (P) relative to train (T),

 r5PE = position vector of person (P) relative to Earth (E),

 r5TE = position vector of train’s coordinate system (T) relative to Earth (E).

From the diagram we see that

r5PE = r5PT + r5TE.

We take the derivative with respect to time to obtain
d
dt

 ( r5PE) =
d
dt

 ( r5PT) +
d
dt

 ( r5TE),

or, since  d  r5>dt = v5,

v5PE = v5PT + v5TE.

This is the equivalent of Eq. 3 9 15 for the present situation (check the subscripts!).

†We thus can see, for example, that the equation  v5BW = v5BS + v5WS  is wrong: the inner subscripts 
are not the same, and the outer ones on the right do not correspond to the subscripts on the left.

y

x
0

y¿

x¿
0¿

rPE5 rPT5

rTE5

vTE5

EXAMPLE 3 – 13 Heading upstream. A boat’s speed in still water is 
vBW = 1.85 m>s. If the boat is to travel north directly across a river whose 
westward current has speed vWS = 1.20 m>s,  at what upstream angle must the 
boat head? See Fig. 3 9 33.

APPROACH If the boat heads straight across the river, the current will drag the 
boat downstream (westward). To overcome the river’s current, the boat must 
have an upstream (eastward) component of velocity as well as a cross-stream 
(northward) component. Figure 3 9 33 has been drawn with v5BS, the velocity of 
the Boat relative to the Shore, pointing directly across the river because this is 
where the boat is supposed to go. Note that  v5BS = v5BW + v5WS.

SOLUTION Vector v5BW points upstream at angle u as shown. From the diagram,

sin u =
vWS

vBW
=

1.20 m>s
1.85 m>s = 0.6486.

Thus  u = 40.4°,  so the boat must head upstream at a 40.4° angle.

E

N

W

S

BS BW

WS

v5

v5

v5

River current

u

FIGURE 3 – 33  Example 3 9 13. A 
boat, in order to go directly across 
a moving river current, must head 
upstream.
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EXAMPLE 3 – 14 Heading across the river. The same boat  (vBW = 1.85 m>s)  
now heads directly across the river whose current is still 1.20 m>s. (a) What is 
the velocity (magnitude and direction) of the boat relative to the shore? (b) If 
the river is 110 m wide, how long will it take to cross and how far downstream 
will the boat be then?

APPROACH The boat now heads directly across the river and is pulled down-
stream by the current, as shown in Fig. 3 9 34. The boat’s velocity with respect 
to the shore, v5BS, is the sum of the boat’s velocity with respect to the water, 
v5BW, plus the velocity of the water with respect to the shore, v5WS (= the river’s 
current). Just as before,

v5BS = v5BW + v5WS.

SOLUTION (a) Since v5BW is perpendicular to v5WS, we can get vBS using the 
theorem of  Pythagoras:

vBS = 2v  BW
2 + v  WS

2 = 2(1.85 m>s) 2 +  (1.20 m>s) 2 = 2.21 m>s.

We can obtain the angle (note how u is defined in Fig. 3 9 34) from:

tan u = vWS>vBW =  (1.20 m>s) > (1.85 m>s) = 0.6486.

A calculator with a key such as  inv tan   or   arc tan   or   tan−1 gives
u = tan-1(0.6486) = 33.0°.  Note that this angle is not equal to the angle calcu-
lated in Example 3 9 13.
(b) To find the travel time for the boat to cross the river, recall the river’s 
width  D = 110 m,  and use the velocity component that points directly across 
the river,  vBW = D>t.  Solving for t, we get  t = 110 m> (1.85 m>s) = 59.5 s.   
Also, the boat will have been  carried downstream, in this time, a distance

d = vWS t =  (1.20 m>s) (59.5 s) = 71.4 m  L   71 m.

NOTE There is no acceleration in this Example, so the motion involves only 
constant velocities (of the boat or of the river).

BS
BW

WSv5

v5
v5

River current

u

FIGURE 3 – 34  Example 3 9 14.  
A boat heading directly across a river 
whose current moves at 1.20 m>s.

EXAMPLE 3 – 15 Car velocities at 90°. Two cars approach a street corner 
at right angles to each other with the same speed of  40.0 km>h (   = 11.11 m>s)  
relative to the ground, as shown in Fig. 3 9 35a. What is the relative velocity of 
car 1 as seen by car 2?

APPROACH Figure 3 9 35a shows the situation in a reference frame fixed to the 
Earth. But we want to view the situation from a reference frame in which car 2 is 
at rest, and this is shown in Fig. 3 9 35b. In this reference frame (the world as seen 
by the driver of car 2), the Earth moves toward car 2 with velocity v5E 2 (speed 
of 40.0 km>h), which is of course equal and opposite to v52 E , the velocity of car 2 
with respect to the Earth (Eq. 3 9 16):

v52 E = -v5E 2 .

Then the velocity of car 1 as seen by car 2 is (see Eq. 3 9 15)

v51 2 = v51 E + v5E 2 .

SOLUTION Because  v5E 2 = -v52 E ,  then

v51 2 = v51 E - v52 E .

That is, the velocity of car 1 as seen by car 2 is the difference of their veloci-
ties,  v51 E - v52 E , both measured relative to the Earth; see Fig. 3 9 35c. Since the 
magnitudes of v51 E ,  v52 E , and v5E 2 are equal  (40.0 km>h = 11.11 m>s),  we see 
(Fig. 3 9 35b) that v51 2 points at a 45° angle toward car 2; the speed is

v1 2 = 2(11.11 m>s) 2 +  (11.11 m>s) 2 = 15.7 m>s (   = 56.6 km>h).

(a)

1 

2

(b)

1 

2
At
rest

(c)

v2 E5 

v1 E5

vE 25 vE 25

v1 25

v1 E5

-v2 E5

   1 2 =
 1 E - v2 E

v1 E5

v 55
v5

FIGURE 3 – 35  Example 3 9 15.
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Summary
A quantity such as velocity, that has both a magnitude and a 
direction, is called a vector. A quantity such as mass, that has 
only a magnitude, is called a scalar. On diagrams, vectors are 
represented by arrows.

Addition of vectors can be done graphically by placing the 
tail of each successive arrow at the tip of the previous one. The 
sum, or resultant vector, is the arrow drawn from the tail of the 
first vector to the tip of the last vector. Two vectors can also be 
added using the parallelogram method.

Vectors can be added more accurately by adding their 
components along chosen axes with the aid of trigonometric 
functions. A vector of magnitude V making an angle u with the 
+x axis has components

Vx = V cos u,  Vy = V sin u. (3 – 2)

Given the components, we can find a vector’s magnitude and 
direction from

V = 2V
 x
2 + V

 y
2 ,  tan u =

Vy

Vx
. (3 – 3)

It is often helpful to express a vector in terms of its components 
along chosen axes using unit vectors, which are vectors of unit 
length along the chosen coordinate axes; for Cartesian coordinates 
the unit vectors along the x, y, and z axes are called iN, jN, and kN .

The general definitions for the instantaneous velocity, v5, and 
acceleration, a5, of a particle (in one, two, or three dimensions) are

 v5 =
d r5
dt 

 (3 – 8)

 a5 =
d v5
dt 

, (3 – 11)

where r5 is the position vector of the particle. The kinematic equa-
tions for motion with constant acceleration can be written for 
each of the x, y, and z components of the motion and have the 
same form as for one-dimensional motion (Eqs. 2 9 12). Or they 
can be written in the more general vector form:

 v5 = v50 + a5 t
 r5 = r50 + v50 t + 1

2 a5 t2.
 (3 – 13)

Projectile motion is the motion of an object in the air near 
the Earth’s surface under the effect of gravity alone. It can be 
analyzed as two separate motions if air resistance can be ignored. 
The horizontal component of motion is at constant velocity, 
whereas the vertical component is at constant acceleration, g5, 
just as for an object falling vertically under the action of gravity.

The velocity of an object relative to one frame of refer-
ence can be found by vector addition if its velocity relative to a 
second frame of reference, and the relative velocity of the two 
reference frames, are known.

Questions
 1. One car travels due east at 40 km>h, and a second car travels 

north at 40 km>h. Are their velocities equal? Explain.
 2. Can you conclude that a car is not accelerating if its speed-

ometer indicates a steady 60 km>h? Explain.
 3. Give several examples of an object’s motion in which a 

great distance is traveled but the displacement is zero.
 4. Can the displacement vector for a particle moving in two 

dimensions be longer than the length of path traveled by the 
particle over the same time interval? Can it be less? Discuss.

 5. During baseball practice, a player hits a very high fly ball 
and then runs in a straight line and catches it. Which had 
the greater displacement, the player or the ball? Explain.

 6. If  V5 = V51 + V52 ,  is V necessarily greater than V1 and>or 
V2 ? Discuss.

 7. Two vectors have lengths  V1 = 4.5 km  and  V2 = 5.0 km.  
What are the maximum and minimum magnitudes of their 
vector sum?

 8. Can two vectors, of unequal magnitude, add up to give the zero 
vector? Can three unequal vectors? Under what  conditions?

 9. Can the magnitude of a vector ever (a) equal, or (b) be less 
than, one of its components?

 10. Does the odometer of a car measure a scalar or a vector 
quantity? What about the speedometer?

 11. How could you determine the speed a slingshot imparts to 
a rock, using only a meter stick, a rock, and the slingshot?

 12. In archery, should the arrow be aimed directly at the target? 
How should your angle of aim depend on the distance to 
the target?

 13. Where in Fig. 3 9 22 is (a)  v5 = 0, (b) vy = 0, (c) vx = 0?
 14. It was reported in World War I that a pilot flying at an alti-

tude of 2 km caught in his bare hands a bullet fired at the 
plane! Using the fact that a bullet slows down considerably 
due to air resistance, explain how this incident occurred.

 15. You are on the street trying to hit a friend in his dorm 
window with a water balloon. He has a similar idea and 
is aiming at you with his water balloon. You aim straight 
at each other and throw at the same instant. Do the water 
balloons hit each other? Explain why or why not.

 16. A projectile is launched at an upward angle of 30° to the 
horizontal with a speed of 30 m>s. How does the horizon tal 
component of its velocity 1.0 s after launch compare with its 
horizontal component of velocity 2.0 s after launch, ignoring 
air resistance? Explain.

 17. A projectile has the least speed at what point in its path?
 18. Two cannonballs, A and B, are fired from the ground 

with identical initial speeds, but with uA larger than uB. 
(a) Which cannonball reaches a higher elevation? (b) Which 
stays longer in the air? (c) Which travels farther? Explain.

 19. A person sitting in an enclosed train car, moving at constant 
velocity, throws a ball straight up into the air in her reference 
frame. (a) Where does the ball land? What is your answer 
if the car (b) accelerates, (c) decelerates, (d) rounds a curve, 
(e) moves with constant velocity but is open to the air?

 20. If you are riding on a train that speeds past another train 
moving in the same direction on an adjacent track, it 
appears that the other train is moving backward. Why?

 21. Two rowers, who can row at the same speed in still water, 
set off across a river at the same time. One heads straight 
across and is pulled downstream somewhat by the cur rent. 
The other one heads upstream at an angle so as to arrive 
at a point opposite the starting point. Which rower reaches 
the opposite side first? Explain.

 22. If you stand motionless under an umbrella in a rainstorm 
where the drops fall vertically, you remain relatively dry. 
However, if you start running, the rain begins to hit your 
legs even if they remain under the umbrella. Why?

M03_GIAN0279_05_GE_C03.indd   98 12/04/23   4:24 PM
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MisConceptual Questions
 1. You are adding vectors of length 20 and 40 units. Which of 

the following choices is a possible resultant magnitude?
(a) 0.  (b) 18.  (c) 37.  (d) 64.  (e) 100.

 2. The magnitude of a component of a vector must be
(a) less than or equal to the magnitude of the vector.
(b) equal to the magnitude of the vector.
(c) greater than or equal to the magnitude of the vector.
(d) less than, equal to, or greater than the magnitude of the 

vector.
 3. You are in the middle of a large fi eld. You walk in a straight 

line for 100 m, then turn left and walk 100 m more in a 
straight line before stopping. When you stop, you are 100 m 
from your starting point. By how many degrees did you turn?
(a) 90°.  (b) 120°.  (c) 30°.  (d) 180°.
(e) This is impossible. You cannot walk 200 m and be only 

100 m away from where you started.
 4. Which of the following equations correctly expresses the 

relation between vectors A5 , B5 , and C5 , shown in Fig. 3 9 36?
(a) A5 = B5 + C5 .
(b) B5 = A5 + C5 .
(c) C5 = A5 + B5 .
(d) A5 + B5 + C5 = 0.

FIGURE 3 – 36  
MisConceptual Question 4. B5

A5

C5

 5. A car is driven at a constant speed of 10.0 m>s around a 
circle of radius 20.0 m. As it goes 1

4 of the way around,
(a) the magnitude of the average velocity is 0.
(b) the magnitude of the average velocity is 10 m>s.
(c) the magnitude of the average velocity is between 0 and 

10 m>s.
(d) the magnitude of the average velocity is greater than 

10 m>s.
 6. A bullet fi red horizontally from a rifl e begins to fall 

(a) as soon as it leaves the barrel.
(b) after air friction reduces its speed.
(c) not at all if air resistance is ignored.

 7. A baseball player hits a ball that soars high into the air. 
After the ball has left the bat, and while it is traveling 
upward (at point P in Fig. 3 9 37), 
what is the direction of accelera-
tion? Ignore air resistance.

 8. One ball is dropped vertically from a window. At the same 
instant, a second ball is thrown horizontally from the same 
window. Which ball has the greater speed at ground level?
(a) The dropped ball.
(b) The thrown ball.
(c) Neither : they both have the same speed on impact.
(d) It depends on how hard the ball was thrown.

 9. Two balls having different speeds roll off the edge of a hori-
zontal table at the same time. Which hits the fl oor sooner? 
(a) The faster one.
(b) The slower one.
(c) Both the same.

 10. You are riding in an enclosed train car moving at 90 km>h. If 
you throw a baseball straight up, where will the baseball land?
(a) In front of you.
(b) Behind you.
(c) In your hand.
(d) Can’t decide from the given information.

11. Which of the three kicks in Fig. 3 9 38 is in the air for the 
longest time? They all reach the same maximum height h. 
Ignore air resistance.
(a), (b), (c), or 
(d) all the same time.

h

(a) (b) (c)

FIGURE 3 – 38  MisConceptual Question 11.

12. A baseball is hit high and far. Which of the following 
 statements is true? At the highest point,
(a) the magnitude of the acceleration is zero.
(b) the magnitude of the velocity is zero.
(c) the magnitude of the velocity is the slowest.
(d) more than one of the above is true.
(e) none of the above are true.

13. A hunter is aiming horizontally at a monkey who is sitting 
in a tree. The monkey is so terrifi ed when it sees the gun 
that it falls off the tree. At that very instant, the hunter pulls 
the trigger. What will happen?
(a) The bullet will miss the monkey because the monkey 

falls down while the bullet speeds straight forward.
(b) The bullet will hit the monkey because both the monkey 

and the bullet are falling downward at the same rate 
due to gravity.

(c) The bullet will miss the monkey because although both 
the monkey and the bullet are falling downward due to 
gravity, the monkey is falling faster.

(d) It depends on how far the hunter is from the monkey.
14. Which statements are not valid for a projectile? Take up as 

positive and ignore air resistance.
(a) The projectile has the same x velocity at any point on 

its path.
(b) The acceleration of the projectile is positive and decreasing 

when the projectile is moving upwards, zero at the top, and 
increasingly negative as the projectile descends.

(c) The acceleration of the projectile has a constant negative 
value.

(d) The y component of the velocity of the projectile is zero 
at the highest point of the projectile’s path.

(e) The velocity at the highest point is zero.
15. A car travels 10 m>s east. Another car travels 10 m>s north. 

The relative speed of the fi rst car with respect to the second is
(a) less than 20 m>s.  
 (b) exactly 20 m>s.   
(c) more than 20 m>s.

FIGURE 3 – 37  
MisConceptual 
Question 7.

P

(b)(a) (c)

P

(b)(a) (c)
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Problems

3 – 2 to 3 – 5 Vector Addition; Unit Vectors
 1. (I) A car is driven 245 km west and then 118 km southwest 

(45.0°). What is the displacement of the car from the point 
of origin (magnitude and direction)? Draw a diagram.

 2. (I) A delivery truck travels 21 blocks north, 16 blocks east, 
and 26 blocks south. What is its final displacement from the 
origin? Assume the blocks are equal length.

 3. (I) If  Vx = 9.40 units  and  Vy = -6.80 units,  determine 
the magnitude and direction of V5 .

 4. (II) Graphically determine the resultant of the following 
three vector displacements: (1) 24 m, 36° north of east; 
(2) 18 m, 37° east of north; and (3) 26 m, 33° west of south.

 5. (II) V5  is a vector 21.8 units in magnitude and points at an 
angle of 23.4° above the negative x axis. (a) Sketch this 
vector. (b) Calculate Vx and Vy . (c) Use Vx and Vy to obtain 
(again) the magnitude and direction of V5 . [Note: Part (c) is a 
good way to check if you’ve resolved your vector  correctly.]

 6. (II) Vector V51 is 6.2 units long and points along the  nega tive 
x axis. Vector V52 is 8.1 units long and points at +55° to the 
positive x axis. (a) What are the x and y components of 
each vector? (b) Determine the sum  V51 + V52  (magnitude 
and angle).

 7. (II) Figure 3 9 39 shows two vectors, A5  and B5 , whose magni -
tudes are  A = 6.8 units  and  B = 5.5 units.  Determine 
C5  if (a)  C5 = A5 + B5 ,  (b)  C5 = A5 - B5 ,  (c)  C5 = B5 - A5 .  
Give the magnitude and direction for each.

x 

y

A5 B5

FIGURE 3 – 39  Problem 7.

 8. (II) An airplane is traveling 815 km>h in a direction 41.5° 
west of north (Fig. 3 9 40). (a) Find the components of the 
velocity vector in the northerly and westerly direc tions. 
(b) How far north and how far west has the plane  traveled 
after 1.75 h?

 9. (II) The summit of a mountain, 2450 m above base camp, 
is measured on a map to be 4580 m horizontally from 
the camp in a direction 38.4° west of north. What are the 
compo nents of the displacement vector from camp to 
summit? What is its magnitude? Choose the x axis east, 
y axis north, and z axis up.

 10. (II) Three vectors are shown in Fig. 3 9 41. Their magnitudes 
are given in arbitrary units. Determine the sum of the three 
vectors. Give the resultant in terms of (a)  components, 
(b) magnitude and angle with the +x axis.

 11. (II) (a) Given the vectors A5  and B5  shown in Fig. 3 9 41,  
determine  B5 - A5 .  (b) Determine  A5 - B5  without using your  
answer in (a). (c) Compare your results and see if they are 
opposite.

 12. (II) Determine the vector  A5 - C5 ,  given the vectors A5  
and C5  in Fig. 3 9 41.

 13. (II) For the vectors shown in Fig. 3 9 41, determine  
(a) B5 - 3A5 , (b) 2A5 - 3B5 + 2C5 , and (c) C5 - A5 - B5 .

 14. (II) Let  V51 = -6.0  iN + 8.0  jN  and  V52 = -4.5  iN - 5.0  jN. 
Determine the magnitude and direction of (a) V51 , (b) V52 ,  
(c) V51 + V52 ,  and (d) V51 - V52 .

 15. (II) (a) Determine the magnitude and direction of the 
sum of the three vectors  V51 = 4.0  iN - 8.0  jN,  V52 = iN + jN,  
and V53 = -2.0  iN + 4.0  jN.  (b) Determine  V51 - V52 + V53 .

 16. (II) Suppose a vector V5  makes an angle f with respect to 
the y axis. What could be the x and y components of the 
vector V5?

 17. (II) Two vectors, V51 and V52 , add to a resultant  V5R = V51 + V52 .   
Describe V51 and V52 if (a)  VR = V1 + V2 ,  (b)  V R

2 = V 1
2 + V 2

2 ,   
(c)  V1 + V2 = V1 - V2 .

 18. (III) You are given a vector in the xy plane that has a 
magnitude of 95.0 units and a y component of -60.0 units. 
(a) What are the two possibilities for its x component? 
(b)  Assuming the x component is known to be positive, 
specify the vector which, if you add it to the original one, 
would give a resultant vector that is 80.0 units long and 
points entirely in the -x direction.

3 – 6 Vector Kinematics
 19. (I) The position of a particular particle as a function 

of time is given by  r5 =  (9.60 t   iN + 6.45  jN - 1.50 t2 kN )  m.  
Determine the particle’s velocity and acceleration as a 
function of time.

 20. (I) What was the average velocity of the particle in 
Problem 19 between  t = 1.00 s  and  t = 3.00 s?  What is 
the magnitude of the instantaneous velocity at  t = 2.00 s?

 21. (II) A car is moving with speed 16.0 m>s due south at one 
moment and 25.7 m>s due east 8.00 s later. Over this time 
interval, determine the magnitude and direction of (a) its 
average velocity, (b) its average acceleration. (c) What is its 
average speed? [Hint: Can you determine all these from the 
information given?]

FIGURE 3 – 40   
Problem 8.

E

N

W

S

(815 km>h)
41.5°v5

(C = 31.0)C5

(B
 = 29.7)

(A = 42.0)

B5
A5

x

y

56.0° 28.0°

FIGURE 3 – 41  Problems 
10, 11, 12, and 13. Vector 
magnitudes are given in 
arbitrary units.
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FIGURE 3 – 44   
Problem 37. 2.5 m

u0
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 22. (II) At  t = 0,  a particle starts from rest at  x = 0,  y = 0,  
and moves in the xy plane with an acceleration 
a5 =  (4.0  iN + 3.0  jN)  m>s 2.  Determine (a) the x and y compo- 
nents of velocity, (b) the speed of the particle, and  
(c) the position of the particle, all as a function of time. 
(d) Evaluate all the above at  t = 2.0 s.

 23. (II) (a) A skier is accelerating down a 30.0° hill at 
1.80 m>s2 (Fig. 3 9 42). What is the vertical component of 
her acceleration? (b) How long will it take her to reach 
the bottom of the 
hill, assuming she 
starts from rest 
and accelerates 
uniformly, if the 
elevation change 
is 125 m?

 24. (II) A hiker follows a winding trail for 5.5 hours while 
climbing a mountain. The distance along the trail is 11.5 km 
and the summit is 850 m above and 8.0 km due north of the 
starting point. What are the average speed and the magnitude 
and direction of the average velocity vector?

 25. (II) An ant walks on a piece of graph paper straight along the 
x axis a distance of 10.0 cm in 2.40 s. It then turns left 40.0° 
and walks in a straight line another 10.0 cm in 1.80 s. Finally, 
it turns another 70.0° to the left and walks another 10.0 cm 
in 1.55 s. Determine (a) the x and y components of the ant’s 
average velocity, and (b) its magnitude and direction.

 26. (II) Suppose the position of an object is given  
by  r5  = (3.0 t2 iN - 6.0 t3 jN)  m.  (a) Determine its velocity v5  
and acceleration a5, as a function of time. (b) Determine r5 
and v5 at time  t = 3.5 s.

 27. (II) A particle’s position as a function of time t is given by 
r5 =  (5.0 t + 6.0 t2)  m  iN +  (7.0 - 3.0 t3)  m  jN.  At  t = 5.0 s,  
find the magnitude and direction of the particle’s displace-
ment vector ∆r5 relative to the point  r50 =  (2.0  iN + 7.0  jN)  m.

 28. (II) On mountainous downhill roads, an escape lane is 
sometimes placed to the side of the road for trucks whose 
brakes might fail. Assuming a constant upward slope of 26°, 
calculate the horizontal and vertical components of the 
acceleration of a truck that slowed from 110 km>h to rest 
in 7.0 s. See Fig. 3 9 43.

 29. (II) A light plane is headed due south with a speed relative 
to still air of 185 km>h. After 1.25 h, the pilot notices that 
they have covered only 135 km and their direction is not 
south but 15.0° east of south. What is the wind velocity?

 30. (III) An object, which is at the origin at time  t = 0,  has initial 
velocity  v50 =  ( -14.0  iN - 7.0  jN)  m>s  and constant accelera-
tion  a5 =  (6.0  iN + 3.0  jN)  m>s2.  Find the position r5 where the 
object comes to rest (momentarily).

 31. (III) A particle starts from the origin at  t = 0  with an 
initial velocity of 5.0 m>s along the positive x axis. If the 
acceleration is  ( -3.0  iN + 4.5  jN)  m>s2,  determine the velocity 
and position of the particle at the moment it reaches its 
maximum x coordinate.

3 – 7 and 3 – 8 Projectile Motion (neglect air resistance)
 32. (I) A tiger leaps horizontally from a 7.5-m-high rock with 

a speed of 3.0 m>s. How far from the base of the rock will 
she land?

 33. (I) A diver running 2.5 m>s dives out horizontally from the 
edge of a vertical cliff and 3.5 s later reaches the water below. 
How high was the cliff and how far from its base did the 
diver hit the water?

 34. (II) A ball is thrown horizontally from the roof of a building 
7.5 m tall and lands 9.5 m from the base. What was the ball’s 
initial speed?

 35. (II) A ball thrown horizontally at 10.8 m>s from the roof of 
a building lands 21.0 m from the base of the building. How 
high is the building?

 36. (II) A football is kicked at ground level with a speed of 
18.0 m>s at an angle of 31.0° to the horizontal. How much 
later does it hit the ground?

 37. (II) A fire hose held near the ground shoots water at a 
speed of 6.5 m>s. At what angle(s) should the nozzle point 
in order that the water land  
2.5 m away (Fig. 3 9 44)? Why 
are there two different angles? 
Sketch the two trajectories.

 38. (II) You buy a plastic dart gun, and being a clever physics 
student you decide to do a quick calculation to find its 
maximum horizontal range. You shoot the gun straight up, 
and it takes 3.4 s for the dart to land back at the barrel. 
What is the maximum horizontal range of your gun?

 39. (II) A projectile is fired with an initial speed of 38.8 m>s 
at  an angle of 42.2° above the horizontal on a long flat 
firing range. Determine (a) the maximum height reached 
by the projectile, (b) the total time in the air, (c) the total 
horizontal distance covered (that is, the range), and (d) the 
speed of the projectile 1.50 s after firing.

 40. (II) A diver leaves the end of a diving board that is 2.0 m 
above the surface of the water. Her dive takes her 1.2 m 
above the board, and then into the water a horizontal 
 distance of 2.2 m from the end of the board. At what speed 
and angle did she leave the board?

 41. (II) The maximum range of a projectile is found to be 95 m. 
If the projectile strikes the ground a distance of 68 m away, 
what was the angle of launch?

Main road
downhill

Escape
route

FIGURE 3 – 43  Problem 28.

FIGURE 3 – 42   
Problem 23.

30.0°

a = 1.80 m>s2
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45°

2.5 m

10.0 m

FIGURE 3 – 49  Problem 53.
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 42. (II) A projectile is shot from the edge of a cliff 125 m 
above ground level with an initial speed of 62.0 m>s at an 
angle of 35.0° with the horizontal, as shown in Fig. 3 9 45.
(a) Determine the time taken by the projectile to hit point P 
at ground level. (b) Determine the distance X of point P 
from the base of the vertical cliff. At the instant just before 
the projectile hits point P, fi nd (c) the horizontal and the 
vertical components of its velocity, (d) the magnitude of the 
velocity, and (e) the angle made by the velocity vector with 
the horizontal. (f ) Find the maximum height above the cliff 
top reached by the projectile.

 43. (II) An athlete performing a long jump leaves the ground 
at a 27.0° angle and lands 7.80 m away. (a) What was the 
takeoff speed? (b) If this speed were increased by just 5.0%, 
how much longer would the jump be?

 44. (II) In Example 3 9 11 we chose the x axis to the right and 
y axis up. Redo this problem by defi ning the x axis to the 
left and y axis down, and show that the conclusion remains 
the same : the football lands on the ground 40.5 m to the 
right of where it departed the punter’s foot.

 45. (II) A stunt driver wants to make his car jump over 8 cars 
parked side by side below a horizontal ramp (Fig. 3 9 46). 
(a) With what minimum speed must he drive off the hori-
zontal ramp? The vertical height of the ramp is 1.5 m above 
the car roofs and the horizontal distance he must clear is 22 m. 
(b) If the ramp is now tilted upward, so that “takeoff angle” is 
9.0° above the horizontal, what is the new minimum speed?

22 m

Must clear
this point!

1.5 m

FIGURE 3 – 46  Problem 45.
 46. (II) A baseball is hit with a speed of 27.0 m>s at an angle 

of 45.0°. It lands on the fl at roof of a 12.5-m-tall nearby 
building. If the ball was hit when it was 1.2 m above the 
ground, what horizontal distance does it travel before it 
lands on the building?

 47. (II) A rescue plane wants to drop supplies to isolated moun-
tain climbers on a rocky ridge 265 m below. If the plane is 
traveling horizontally with a speed of 125 km>h , how far in 
advance of the recipients (horizontal distance) must the goods 
be dropped?

 48. (II) Show that the time required for a projectile to reach 
its highest point is equal to the time for it to return to its 
original height if air resistance is negligible.

 49. (II) Exactly 3.0 s after a projectile is fi red into the 
air from the ground, it is observed to have a velocity 
v5 =  (7.8 iN + 5.2 jN)  m>s,  where the x axis is horizontal and 
the y axis is positive upward. Determine (a) the horizontal 
range of the projectile, (b) its maximum height above the 
ground, and (c) its speed and angle of motion just before 
it strikes the ground.

 50. (II) At what projection angle will the range of a projectile 
equal its maximum height?

 51. (II) A ball is thrown horizontally from the top of a cliff with 
initial speed v0 (at  t = 0).  At any moment, its direction 
of motion makes an angle u to the horizontal (Fig. 3 9 47). 
Derive a formula for u as a function of time, t, as the ball 
follows a projectile’s path.

 52. (II) Romeo is throwing pebbles gently up to Juliet’s window, 
and he wants the pebbles to hit the window with only  a 
horizontal component of velocity. He is standing at 
the edge of a rose garden 8.0 m below her window 
and 8.5 m from the base 
of the wall (Fig. 3 9 48). 
How fast are the  pebbles 
going when they hit her 
window?

 53. (II) (a) A long jumper leaves the ground at 45° above the hori-
zontal and lands 8.0 m away. What is her “takeoff” speed v0 ? 
(b) Now she is out on a hike and comes to the left bank of a 
river. There is no bridge and the right bank is 10.0 m away hori-

zontally and 2.5 m vertically 
below. If she  jumps from 
the edge of the left bank 
at 45° with the speed 
calculated in (a), how 
long, or short, of the 
opposite bank will she 
land (Fig. 3 9 49)?

35.0°

P

h =  125 m

X

  0 = 62.0 m>sv

FIGURE 3 – 45  Problem 42.

v5

u

FIGURE 3 – 47  Problem 51.

FIGURE 3 – 48  
Problem 52. 8.5 m

8.0 m
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Problems 103

 54. (II) Show that the speed with which a projectile leaves the 
ground is equal to its speed just before it strikes the ground 
at the end of its journey, assuming the firing level equals the 
landing level.

 55. (II) If a ball is kicked from ground level at 15.0 m>s, there 
are two launch angles that will make the ball land 20.0 m 
away. (a) What are the two angles? (b) What maximum 
height does the ball reach in each case? (c) How long is 
the ball in the air for each case? Ignore air resistance.

 56. (II) At serve, a tennis player aims to hit the ball horizontally. 
What minimum speed is required for the ball to clear the 
0.90-m-high net about 15.0 m from the server if the ball is 
“launched” from a height of 2.30 m? Where will the ball land 
if it just clears the net (and will it be “good” in the sense that 
it lands within 7.0 m of the net)? How long will it be in the 
air? See Fig. 3 9 50.

 57. (II) An Olympic long jumper is capable of jumping 8.0 m. 
Assuming his horizontal speed is 9.1 m>s as he leaves the 
ground, how long is he in the air and how high does he go? 
Assume that he lands standing upright : that is, the same way 
he left the ground.

 58. (III) Revisit Example 3 9 9, and assume that the boy with 
the slingshot is below the boy in the tree (Fig. 3 9 51) and 
so aims upward, directly at the boy in the tree. Show that 
again the boy in the tree makes the wrong move by letting 
go at the moment the water balloon is shot.

   u0

v0

FIGURE 3 – 51  Problem 58.

 59. (III) Suppose the kick in Example 3 9 8 is attempted 36.0 m 
from the goalposts, whose crossbar is 3.05 m above the 
ground. If the football is directed perfectly between the 
goalposts, will it pass over the bar and be a field goal? Show 
why or why not. If not, from what horizontal distance must 
this kick be made if it is to score?

 60. (III) A person stands at the base of a hill that is a straight 
incline making an angle f with the horizontal (Fig. 3 9 52). 
For a given initial speed v0 , at what angle u (to the hori-
zontal) should objects be thrown so that the distance d they 
land up the hill is as large as possible?

f
u

dFIGURE 3 – 52  Problem 60. 
Given f and v0 , determine u 
to make d maximum.

 61. (III) Derive a formula for the horizontal range R of a 
projectile when it lands at a height h above its initial point. 
(For h 6 0, it lands a distance -h below the starting point.) 
Assume it is projected at an angle u0 with initial speed v0 .

3 – 9 Relative Velocity
 62. (I) A person going for a morning jog on the deck of a 

cruise ship is running toward the bow (front) of the ship at 
2.5 m>s while the ship is moving ahead at 8.8 m>s. What is 
the velocity of the jogger relative to the water? Later, the 
jogger is moving toward the stern (rear) of the ship. What 
is the jogger’s velocity relative to the water now?

 63. (I) Huck Finn walks at a speed of 0.70 m>s across his raft (that 
is, he walks perpendicular to the raft’s motion relative to the 
shore). The heavy raft 
is traveling down the 
Mississippi River at a 
speed of 1.50 m>s rela-
tive to the river bank 
(Fig. 3 9 53). What is  
Huck’s veloc ity (speed 
and direction) relative 
to the river bank?

 64. (II) Determine the speed of the boat with respect to the 
shore in Example 3 9 13.

 65. (II) A motorboat whose speed in still water is 4.30 m>s 
must aim upstream at an angle of 23.5° (with respect to a 
line perpendicular to the shore) in order to travel directly 
across the stream. (a) What is the speed of the current? 
(b) What is the resultant speed of the boat with respect to 
the shore? (See Fig. 3 9 33.)

 66. (II) A passenger on a boat moving at 1.70 m>s on a still lake 
walks up a flight of stairs at a speed of 0.60 m>s, Fig. 3 9 54. 
The stairs are angled at 45° pointing in the direction of 
motion as shown. Write the vector velocity of the passenger 
relative to the water.

0.60 m>s = 1.70 m>s
45° x

y v

FIGURE 3 – 54  Problem 66.

 67. (II) An airplane is heading due south at a speed of 688 km>h. 
If a wind begins blowing from the southwest at a speed of 
85.0 km>h (average), calculate (a) the velocity (magnitude and 
direction) of the plane, relative to the ground, and (b) how far 
from its intended position it will be after 11.0 min if the pilot 
takes no corrective action. [Hint: First draw a  diagram.]

 68. (II) In what direction should the pilot aim the plane in 
Problem 67 so that it will fly due south?

FIGURE 3 –53   
Problem 63.

River
current

0.70 m>s
15.0 m 7.0 m

2.30 m

FIGURE 3 – 50  Problem 56.
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FIGURE 3 – 58  Problem 81.
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 69. (II) Raindrops make an angle u with the vertical when viewed 
through a moving train window (Fig. 3 9 55). If the speed 
of the train is vT, what is the speed of the raindrops in the 
reference frame of 
the Earth in which 
they are assumed to 
fall vertically?

 70. (II) A boat, whose speed in still water is 2.80 m>s, must cross 
a 265-m-wide river and arrive at a point 118 m upstream 
from where it starts 
(Fig. 3 9 56). To do so, 
the pilot must head 
the boat at a 45.0° 
upstream angle. What 
is  the speed of the 
river’s current?

 71. (II) A swimmer is capable of swimming 0.60 m>s in still 
water. (a) If she aims her body directly across a 55-m-wide 
river whose current is 0.50 m>s, how far downstream (from 
a point opposite her starting point) will she land? (b) How 
long will it take her to reach the other side?

72. (II) (a) At what upstream angle must the swimmer in 
Problem 71 aim, if she is to arrive at a point directly across 
the stream? (b) How long will it take her?

73. (II) Two cars approach a street corner at right angles to each 
other (Fig. 3 9 57). Car 1 travels at a speed relative to Earth 
v1 E = 35 km>h,  and car 2 at  v2 E = 55 km>h.  What is the 
relative velocity of car 1 
as seen by car 2? What 
is the velocity of car 2 
relative to car 1?

 74. (III) An airplane, whose air speed is 560 km>h, is supposed 
to fly in a straight path 38.0° N of E. But a steady 82 km>h 
wind is blowing from the north. In what direction should 
the plane head? [Hint: Use the law of sines, Appendix A 9 9.]

 75. (III) Point B is located across the river from point A and at a 
42.0° angle upstream from A. A boat travels from point A to 
point B, sailing at 18.0 km>h relative to the water. The current 
in the river flows at 5.60 km>h. The river is 1.45 km  wide. 
(a) At what angle should the boat head? (b) What will be 
the boat’s speed relative to the ground? (c) How much time 
does the trip from point A to point B take?

General Problems
 76. A plumber steps out of his truck, walks 55 m east and 38 m 

south, and then takes an elevator 12 m into the subbasement 
of a building where a bad leak is occurring. What is the 
displacement of the plumber relative to his truck? Give your 
answer in components. Also give the magnitude and angles, 
with respect to the x axis, in the vertical and horizontal planes.  
Assume x is east, y is north, and z is up.

 77. Apollo astronauts took a “nine iron” to the Moon and 
hit a  golf ball about 180 m. Assuming that the swing, 
launch angle, and so on, were the same as on Earth where 
the same astronaut could hit it only 32 m, estimate the 
 accel eration due to gravity on the surface of the Moon. 
(We neglect air resistance in both cases, but on the Moon 
there is none.)

 78. A car moving at 95 km>h passes a 1.40-km-long train traveling 
in the same direction on a track that is parallel to the road. If 
the speed of the train is 75 km>h, how long does it take the 
car to pass the train, and how far will the car have traveled in 
this time? What are the results if the car and train are instead 
traveling in opposite  directions?

 79. When Babe Ruth hit a homer over the 8.0-m-high right-field 
fence 98 m from home plate, roughly what was the minimum 
speed of the baseball when it left the bat? Assume the ball 
was hit 1.0 m above the ground and its path initially made a 
36° angle with the ground.

 80. A child runs down a 12° hill and then suddenly jumps upward 
at a 15° angle above horizontal and lands 1.3 m down the hill 
as measured along the hill. What was the child’s initial speed  
at the jump?

 81. Here is something to try at a sporting event. Show that 
the  maximum height h attained by an object projected 
into  the air, such as a baseball, football, or soccer ball, is 
approximately given by

h  L   1.2 t2 m,
  where t is the total time of flight for the object in sec onds. 

Assume that the object returns to the same level as  that 
from which it was launched, as in Fig. 3 9 58. For example, 
if you count seconds and find that a baseball was in 
the air  for  t = 5.0 s,  the maximum height attained was  
h = 1.2 *  (5.0) 2 = 30 m.  The fun of this relation is that 
h can be determined without knowledge of the launch speed 
v0 or launch angle u0 . Why is that exactly? See Section 3 9 8.

FIGURE 3 – 57  Problem 73.
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FIGURE 3 – 56   
Problem 70.

uFIGURE 3 – 55   
Problem 69.
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135 m

195 m
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v0

u

FIGURE 3 – 64  
Problem 92.

12.0 m>s

5.0 m

35 m

General Problems 105

 82. The cliff divers of Acapulco push off hori-
zontally from rock platforms about 35 m 
above the water, but they must clear 
rocky outcrops at water level that extend 
out into the water 5.0 m from the base 
of the cliff directly under their launch 
point. See Fig.  3 9 59. What minimum 
pushoff speed is necessary to clear the 
rocks? How long are they in the air?

 83. A grasshopper hops along a level road. On each hop, the 
grasshopper launches itself at angle  u0 = 45°  and achieves 
a range  R = 0.80 m.  What is the average horizontal speed 
of the grasshopper as it hops along the road? Assume that 
the time spent on the ground between hops is negligible.

 84. Spymaster Andrea, fl ying a constant 208 km>h horizontally in 
a low-fl ying helicopter, wants to drop secret documents into 
her contact’s open car which is traveling 135 km>h on a level 
highway 78.0 m below. At what angle (with the hori zontal) 
should the car be in her sights when the packet is released 
(Fig. 3 9 60)?

135 km>h

78.0 m

208 km>h

u

FIGURE 3 – 60  Problem 84.

 85. A basketball leaves a player’s hands at a height of 2.10 m 
above the fl oor. The basket is 3.05 m above the fl oor. The 
player likes to shoot the ball at a 38.0° angle. If the shot is 
made from a horizontal distance of 11.00 m and must be 
accurate to {0.22 m (horizontally), what is the range of 
initial speeds allowed to make the basket?

 86. Extreme-sports enthusiasts have been known to jump off 
the top of El Capitan, a sheer granite cliff of height 910 m in 
Yosemite National Park. Assume a jumper runs horizontally 
off the top of El Capitan with speed 4.0 m>s and enjoys a 
free fall until she is 150 m above the valley fl oor, at which 

point she opens her para-
chute (Fig. 3 9 61). (a) How 
long is the jumper in free 
fall? Ignore air resistance. 
(b)  It is important to be 
as far away from the cliff 
as possible before opening 
the parachute. How 
far from the cliff is this 
jumper when she opens 
her chute?

 87. If a baseball pitch leaves the pitcher’s hand horizontally at 
a velocity of 130 km>h, by what % will the pull of gravity 
change the magnitude of the velocity when the ball reaches 
the batter, 18 m away? For this estimate, ignore air resis-
tance and spin on the ball.

 88. A projectile is launched from ground level to the top of a cliff 
which is 195 m away and 135 m high (see Fig. 3 9 62). If the 
projectile lands on top of the cliff 6.6 s after it is fi red, fi nd the 
initial velocity of the 
projectile (magni-
tude and direc-
tion). Neglect 
air resistance.

 89. A diver leaves the end of a 3.5-m-high diving board and 
strikes the water 1.3 s later, 3.0 m beyond the end of the 
board. Considering the diver as a particle, determine: 
(a) her initial velocity, v50 ; (b) the maximum height reached; 
and (c) the velocity v5f with which she enters the water.

 90. A basketball is shot from an initial height of 2.40 m 
(Fig. 3 9 63) with an initial speed  v0 = 12 m>s  directed at 
an angle  u0 = 35°  above the horizontal. (a) How far from 
the basket was the player if he made a basket? (b) At what 
angle to the horizontal did the ball enter the basket?

 91. A hunter aims directly at a target (on the same level) 38.0 m 
away. (a) If the arrow leaves the bow at a speed of 21.3 m>s, 
by how much will it miss the target? (b) At what angle 
should the bow be aimed so the target will be hit?

 92. A person in the passenger basket of a hot-air balloon 
throws a ball horizontally outward from the basket with 

speed 12.0 m>s (Fig. 3 9 64). What 
initial velocity  (magnitude and 

direction) does the ball have 
relative to a person standing 
on the ground (a) if the 
hot-air balloon is rising 
at 3.0 m>s relative to the 
ground during this throw, 
and (b)  if the hot-air 
balloon is descending at 
3.0 m>s relative to the 
ground?

FIGURE 3 – 59  
Problem 82.

4.0 m>s

150 m

910 m

FIGURE 3 – 61  
Problem 86.

35°

x = ?

v0 = 12 m>s

10 ft
= 3.05 m2.40 m

FIGURE 3 – 62  
Problem 88.

FIGURE 3 – 63  
Problem 90.
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FIGURE 3 – 66   
Problem 97.

22°

Fielder runs
to here from here

55°

85 m

 93. A rock is kicked horizontally at 15 m>s from a hill with a 
45° slope (Fig. 3 9 65). How long does it take for the rock to  
hit the ground?

 94. A batter hits a fly ball which leaves the bat 0.90 m above 
the ground at an angle of 64° with an initial speed of 28 m>s 
heading toward centerfield. Ignore air resistance. (a) How 
far from home plate would the ball land if not caught? 
(b) The ball is caught by the centerfielder who, starting at 
a distance of 105 m from home plate just as the ball was 
hit, runs straight toward home plate at a constant speed and 
makes the catch at ground level. Find his speed.

 95. A ball is shot from the top of a building with an initial 
velocity of 24 m>s at an angle  u = 42°  above the  horizontal. 
(a) What are the horizontal and vertical components of the 
initial velocity? (b) If a nearby building is the same height 
and 65 m away, how far below the top of the building will 
the ball strike the nearby building?

 96. The speed of a boat in still water is v. The boat is to make a 
round trip in a river whose current travels at speed u. Derive 
a formula for the time needed to make a round trip of total 
distance D if the boat makes the round trip by moving 
(a) upstream and back downstream, and (b) directly across 
the river and back. We must assume  u 6 v ;  why?

 97. At  t = 0  a batter hits a baseball with an initial speed of  
28 m>s at a 55° angle to the horizontal. An outfielder is 85 m 
from the batter at  t = 0  and, as seen from home plate, the 
line of sight to the outfielder makes a horizontal angle of 22° 
with the plane in which the ball moves (see Fig. 3 9 66). What 
speed and direction must the fielder take to catch the ball at 
the same height from which it was struck? Give the angle 
with respect to the outfielder’s line of sight to home plate.

 98. A child, who is 45 m from the bank of a river, is being 
carried helplessly downstream by the river’s swift current of 
1.0 m>s. As the child passes a lifeguard on the river’s bank, 
the lifeguard starts swimming in a straight line (Fig. 3 9 67) 
until she reaches the child at a point downstream. If the 
lifeguard can swim at a speed of 2.0 m>s relative to the 
water, how long does it take her to reach the child? How 
far downstream does the lifeguard intercept the child?

 99. A particle has a velocity of  v5 =  ( -3.0  iN + 4.5t   jN)  m>s.   
The particle starts at  r5 =  (2.5  iN - 3.1  jN)  m  at  t = 0.  Give 
the position and acceleration as a function of time. What 
is the shape of the resulting path?

 100. In hot pursuit, Agent Logan of the FBI must get directly 
across a 1300-m-wide river in minimum time. The river’s 
current is 0.80 m>s, he can row a boat at 1.60 m>s, and he 
can run 3.00 m>s. Describe the path he should take (rowing 
plus running along the shore) for the minimum crossing time, 
and determine the minimum time.

 101. You are driving south on a highway at 12 m>s (approxi-
mately 25 mi>h) in a snowstorm. When you last stopped, 
you noticed that the snow was coming down vertically, but 
it is passing the windows of the moving car at an angle of 
9.0° to the horizontal. Estimate the speed of the vertically 
falling snowflakes relative to the ground. [Hint: Construct 
a relative velocity diagram similar to Fig. 3 9 33 or 3 9 34. Be 
careful about which angle is the angle given.]

 102. A boat is traveling where there is a current of 0.20 m>s east  
(Fig. 3 9 68). To avoid some offshore rocks, the boat must 
clear a buoy that 
is NNE (22.5°) 
and 2.8 km away. 
The boat’s speed 
through still water 
is 2.1 m>s. If the 
boat wants to 
pass the right side 
of the buoy by 
0.15 km, at what 
angle should the 
boat head?

15 m>s

45°

FIGURE 3 – 65  Problem 93.

45 m

2.0 m>s

1.0 m>s

FIGURE 3 – 67  Problem 98.

A N S W E R S  T O  E X E R C I S E S
A: 3.0 12 L 4.2 units.
B:  (a).
C:  (d). Helicopter provides the initial velocity of the box.

D:  (a)  v = vx 0 = 16.0 m>s,  horizontal; (b) 9.80 m>s2 down.
E: Both balls reach the same height, so are in the air for the 

same length of time.

Buoy

22.5°
N

0.20 m>s
Current

FIGURE 3 – 68  Problem 102.
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CHAPTER-OPENING QUESTIONS—Guess now!
1. A 150-kg football player collides head-on with a 75-kg running back. During 
the collision, the heavier player exerts a force of magnitude FA on the smaller 
player. If the smaller player exerts a force FB back on the heavier player, which 
response is most accurate?

(a) FB = FA.
(b) FB 6 FA.
(c)  FB 7 FA.
(d) FB = 0.
(e)  We need more information.

2. A line by the poet T. S. Eliot (from Murder in the Cathedral) has the women 
of Canterbury say “the earth presses up against our feet.” What force is this?

(a) Gravity.
(b) The normal force.
(c) A friction force.
(d) Centrifugal force.
(e) No force : they are being poetic.

A space shuttle is carried  
out into space by powerful 
rockets. They are 
accelerating, increasing in 
speed rapidly. To do so, a 
force must be exerted on 
them according to Newton’s 
second law,  πF5 = ma5. 
What exerts this force? The 
rocket engines exert a force 
on the gases they push out 
(expel) from the rear of the 
rockets (labeled F5GR). 
According to Newton’s third 
law, these ejected gases exert 
an equal and opposite force 
on the rockets in the forward 
direction. This “reaction” 
force exerted on the rockets 
by the gases, labeled F5RG, is 
the net force on the rockets 
and accelerates the rockets. 
(Any other forces, such as 
gravity, are assumed small  
in comparison.)
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108 CHAPTER 4 Dynamics: Newton’s Laws of Motion

W e have discussed how motion is described in terms of velocity and 
acceleration. Now we deal with the question of why objects move as 
they do: What makes an object at rest begin to move? What causes 

an object to accelerate or decelerate? What is involved when an object moves 
in a curved path? We can answer in each case that a force is required. In this 
Chapter,† we will investigate the connection between force and motion, which is 
the subject called dynamics.

4–1 Force
Intuitively, we experience force as any kind of a push or a pull on an object. When 
you push a stalled car or a grocery cart (Fig. 4 9 1), you are exerting a force on it. 
When a motor lifts an elevator, or a hammer hits a nail, or the wind blows the 
leaves of a tree, a force is being exerted. We often call these contact forces because 
the force is exerted when one object comes in contact with another object. On 
the other hand, we say that an object falls because of the force of gravity (which 
is not a contact force).

If an object is at rest, to start it moving requires force : that is, a force is 
needed to accelerate an object from zero velocity to a nonzero velocity. For an 
object already moving, if you want to change its velocity : either in direction 
or in magnitude : a force is required. In other words, to accelerate an object, a 
force is always required. In Section 4 9 4 we discuss the precise relation between 
acceleration and net force, which is Newton’s second law.

One way to measure the magnitude (or strength) of a force is to use a spring 
scale (Fig. 4 9 2). Normally, such a spring scale is used to fi nd the weight of an 
object; by weight we mean the force of gravity acting on the object (Section 4 9 6). 
The spring scale, once calibrated, can be used to measure other kinds of forces 
as well, such as the pulling force shown in Fig. 4 9 2.

A force exerted in a different direction has a different effect. Force has direc-
tion as well as magnitude, and is indeed a vector that follows the rules of vector 
addition discussed in Chapter 3. We can represent any force on a diagram by an 
arrow, just as we did with velocity. The direction of the arrow is the direction of the 
push or pull, and its length is drawn proportional to the magnitude of the force. 
Force vectors in this book are drawn as red in color, velocity is green.

†We treat everyday objects in motion here. When velocities are extremely high, close to the speed of 
light (3.0 * 108  m>s), we use the theory of relativity (Chapter 36), and in the submicroscopic world 
of atoms and molecules we use quantum theory (Chapter 37 ff).

FIGURE 4 – 1  A force exerted on a 
grocery cart : in this case exerted by 
a person.

FIGURE 4 – 2  A spring scale 
used to measure a force.

4–2 Newton’s First Law of Motion
What is the relationship between force and motion? The ancient Greeks, including 
Aristotle (384 9 322 b.c.), believed that a force was required to keep an object 
moving along a horizontal plane. To  Aristotle, the natural state of an object was 
at rest, and a force was thought necessary to keep an object in motion. Aristotle 
also argued that the greater the force on the object, the greater its speed.

Some 2000 years later, in the early 1600s, Galileo disagreed. Galileo main-
tained that it is just as natural for an object to be in motion with a constant 
velocity as it is for it to be at rest. See Section 1 9 1, page 24.

0 1 2 3 4 5 6 7 8 9 10
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SECTION 4–2 Newton’s First Law of Motion 109

To understand Galileo’s idea, consider the following observations involving 
motion along a horizontal plane. To push an object with a rough surface along a 
tabletop at constant speed requires a certain amount of force. To push an equally 
heavy object with a very smooth surface across the table at the same speed will 
require less force. If a layer of oil or other lubricant is placed between the surface 
of the object and the table, then almost no force is required to keep the object 
moving. Notice that in each successive step, less force is required. As the next 
step, we imagine there is no friction at all, that the object does not rub against the 
table : or there is a perfect lubricant between the object and the table : and 
theorize that once started, the object would move across the table at constant 
speed with no force applied. A steel ball bearing rolling on a hard horizontal 
 surface approaches this situation. So does a puck on an air table, in which a thin 
layer of air reduces friction almost to zero.

It was Galileo’s genius to imagine such an idealized world : in this case, one 
where there is no friction : and to see that it could lead to a more accurate and 
richer understanding of the real world. This idealization led him to his remarkable 
conclusion that if no force is applied to a moving object, it will continue to move 
with constant speed in a straight line. An object slows down only if a force is exerted 
on it. Galileo thus interpreted friction as a force akin to ordinary pushes and pulls.

To push an object across a table at constant speed requires a force from your 
hand that can balance the force of friction (Fig. 4 9 3). When the object moves at 
constant speed, your pushing force is equal in magnitude to the friction force; 
but these two forces are in opposite directions, so the net force on the object (the 
vector sum of the two forces) is zero. This is consistent with Galileo’s viewpoint: 
the object moves with constant velocity when no net force is exerted on it.

Upon this foundation laid by Galileo, Isaac Newton (Fig. 4 9 4) built his great 
theory of motion. Newton’s analysis of motion is summarized in his famous “three 
laws of motion.” In his great work, the Principia (published in 1687), Newton 
readily acknowledged his debt to Galileo. In fact, Newton’s fi rst law of motion is 
close to Galileo’s conclusions. It states that

Every object continues in its state of rest, or of uniform velocity in a straight 
line, as long as no net force acts on it.

The tendency of an object to maintain its state of rest or of uniform velocity in a 
straight line is called inertia. Newton’s fi rst law is thus often called the law of inertia.

F

Ffr

5

5

FIGURE 4 – 3  F5 represents the 
force applied by the person and F5fr 
represents the force of friction.

FIGURE 4 – 4  
Isaac Newton (1642 9 1727). Besides 
developing mechanics, including his 
three great laws of motion and the law 
of universal gravitation, he also tried 
to understand the nature of light.

NEWTON’S FIRST LAW 
OF MOTION

Inertial Reference Frames
Newton’s fi rst law does not hold in every reference frame. For example, if your 
reference frame is an accelerating car, an object such as a cup resting on the 
dashboard may begin to move toward you (it stayed at rest as long as the car’s 
velocity remained constant). The cup accelerated toward you, but neither 
you nor anything else exerted a force on it in that direction. Similarly, in the 
reference frame of the decelerating bus in Example 4 9 1, there was no force 
pushing the backpacks forward. In accelerating reference frames, Newton’s fi rst 
law does not hold. Physics is easier in reference frames in which Newton’s fi rst 
law does hold, and they are called inertial reference frames (the law of inertia 
is valid in them). For most purposes, we usually make the approximation that 
a reference frame fi xed on the Earth is an inertial frame. This is not precisely 
true, due to the Earth’s rotation, but usually it is close enough.

CONCEPTUAL EXAMPLE 4 – 1 Newton’s fi rst law. A school bus comes 
to a sudden stop, and all of the backpacks on the fl oor start to slide forward. 
What force causes them to do that?

RESPONSE It isn’t “force” that does it. By Newton’s fi rst law, the backpacks 
continue their state of motion, maintaining their velocity. The backpacks slow 
down if a force is applied, such as friction with the fl oor.
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110 CHAPTER 4 Dynamics: Newton’s Laws of Motion

Any reference frame that moves with constant velocity (say, a car or an 
airplane) relative to an inertial frame is also an inertial reference frame. Reference 
frames where the law of inertia does not hold, such as the accelerating reference 
frames discussed above, are called noninertial reference frames. How can we be 
sure a reference frame is inertial or not? By checking to see if Newton’s fi rst law 
holds. Thus Newton’s fi rst law serves as the defi nition of inertial reference frames.

4–3 Mass
Newton’s second law, which we come to in the next Section, makes use of the 
concept of mass. Newton used the term mass as a synonym for “quantity of matter.” 
This intuitive notion of the mass of an object is not very precise because the  concept 
“quantity of matter” is not very well defi ned. More precisely, we can say that mass 
is a measure of the inertia of an object. The more mass an object has, the greater 
the force needed to give it a particular acceleration. It is harder to start it moving 
from rest, or to stop it when it is moving, or to change its velocity sideways out of 
a straight-line path. A truck has much more inertia than a baseball moving at the 
same speed, and a much greater force is needed to change the truck’s velocity at 
the same rate as the ball’s. The truck therefore has much more mass.

To quantify the concept of mass, we must defi ne a standard. In SI units, the 
unit of mass is the kilogram (kg) as we discussed in Chapter 1, Section 1 9 4.

The terms mass and weight are often confused with one another, but it is 
 important to distinguish between them. Mass is a property of an object itself 
(a measure of an object’s inertia, or its “quantity of matter”). Weight, on the 
other hand, is a force, the pull of gravity acting on an object. To see the differ-
ence,  suppose we take an object to the Moon. The object will weigh only about 
one-sixth as much as it did on Earth, since the force of gravity is weaker. But its 
mass will be the same. It will have the same amount of matter as on Earth, and 
will have just as much inertia. It will be just as hard to start it moving on the 
Moon as on Earth. (More on weight in Section 4 9 6.)

4–4 Newton’s Second Law of Motion
Newton’s fi rst law states that if no net force is acting on an object at rest, the 
object remains at rest; or if the object is moving, it continues moving with 
constant speed in a straight line. But what happens if a net force is exerted on 
an object? Newton perceived that the object’s velocity will change (Fig. 4 9 5). 
A net force exerted on an object may make its velocity increase. Or, if the net 
force is in a direction opposite to the motion, that force will reduce the object’s 
velocity. If the net force acts sideways on a moving object, the direction of the 
object’s velocity changes. That change in the direction of the velocity is also an 
acceleration. So a sideways net force on an object also causes acceleration. In 
general, we can say that a net force causes acceleration.

What precisely is the relationship between acceleration and force? Everyday 
experience can suggest an answer. Consider the force required to push a cart when 
friction is small enough to ignore. (If there is friction, consider the net force, which 
is the force you exert minus the force of friction.) If you push the cart horizontally 
with a gentle but constant force for a certain period of time, you will make the cart 
accelerate from rest up to some speed, say 3 km>h. If you push with twice the force, 
the cart will reach 3 km>h in half the time. The accel eration will be twice as great. 
If you triple the force, the acceleration is tripled, and so on. Thus, the acceleration 
of an object is directly proportional to the net applied force. But the acceleration 
depends on the mass of the object as well. If you push an empty grocery cart with 
the same force as you push one that is fi lled with groceries, you will fi nd that the 
full cart has a smaller acceleration. The greater the mass, the less the acceleration 
for the same net force. The mathematical relation, as Newton argued, is that the 

C A U T I O N
Distinguish mass from weight

FIGURE 4 – 5  The bobsled 
accelerates because the team exerts 
a force.
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SECTION 4–4 Newton’s Second Law of Motion 111

acceleration of an object is inversely proportional to its mass. These relationships 
are found to hold in general and can be summarized as follows:

The acceleration of an object is directly proportional to the net force acting 
on it, and is inversely proportional to the object’s mass. The direction of the 
 acceleration is in the direction of the net force acting on the object.

This is Newton’s second law of motion.
Newton’s second law can be written as an equation:

a5 =
πF5

m
,

where a5 stands for acceleration,  m for the mass, and πF5 for the net force on the object. 
The symbol π (Greek “sigma”) stands for “sum of”;  F5 stands for force, so πF5 means 
the vector sum of all forces acting on the object, which we define as the net force.

We rearrange this equation to obtain the familiar statement of Newton’s 
 second law:

πF5 = ma5.  (4 – 1a)

Newton’s second law relates the description of motion (acceleration) to the cause 
of motion (force). It is one of the most fundamental relationships in physics. From 
Newton’s second law we can make a more precise definition of force as an action 
capable of accelerating an object.

Every force F5 is a vector, with magnitude and direction. Equation 4 9 1a 
is a vector equation valid in any inertial reference frame. It can be written in 
component form in rectangular coordinates as

πFx = max ,  πFy = may ,  πFz = maz , (4 – 1b)
where

F5 = Fx iN + Fy jN + Fz kN .
The component of acceleration in each direction is affected only by the compo-
nent of the net force in that direction. (See Section 3 9 5 for unit vectors iN, jN, kN .)

If the motion is all along a line (one-dimensional), we can leave out the 
subscripts and simply write  πF = ma.  Again, a is the acceleration of an object of  
mass m, and πF includes all the forces acting on that object, and only forces acting  
on that object. Sometimes the net force πF is written as Fnet ,  so  Fnet = ma.

In SI units, with the mass in kilograms, the unit of force is called the newton (N). 
One newton is the force required to impart an acceleration of 1 m>s2 to a mass of 
1 kg. Thus  1 N = 1 kg ⋅ m>s2.

In cgs units, the unit of mass is the gram (g), which is 1
1000 of a kilogram.† 

The unit of force is the dyne, which is defined as the net force needed to impart  
an acceleration of 1 cm>s2 to a mass of 1 g.  Thus  1 dyne = 1 g ⋅ cm>s2.  Because   
1 g = 10-3 kg  and  1 cm = 10-2 m,  then 1 dyne = 10-5 N.

In the British system, which we rarely use, the unit of force is the pound (abbre-
viated lb),‡ where  1 lb = 4.44822 N L 4.45 N.  The unit of mass is the slug, which 
is defined as that mass which will undergo an acceleration of 1 ft>s2 when a force 
of 1 lb is applied to it.  Thus  1 lb = 1 slug ⋅ ft>s2.  Table 4 9 1 summarizes the units in 
the different systems.

It is very important that only one set of units be used in a given calculation or 
problem, with the SI being what we almost always use. If the force is given in, say, 
newtons, and the mass in grams, then before attempting to solve for the acceleration 
in SI units, we must change the mass to kilograms. For example, if the force is given 
as 2.0 N along the x axis and the mass is 500 g, we change the latter to 0.50 kg, and the 
acceleration will then automatically come out in m>s2 when Newton’s second law is used:

ax =
πFx

m
=

2.0 N
0.50 kg

=
2.0 kg ⋅ m>s2

0.50 kg
= 4.0 m>s2,

where we set  1 N = 1 kg ⋅ m>s2.

NEWTON’S SECOND LAW  
OF MOTION

NEWTON’S SECOND LAW  
OF MOTION

TABLE 4–1  
Units for Mass and Force

System Mass Force

SI kilogram  
 (kg)

newton (N)   
  (   = kg ⋅ m>s2)

cgs gram (g) dyne   
  (   = g ⋅ cm>s2)

British slug pound (lb)

Conversion factors:  1 dyne = 10-5 N;
  1 lb L 4.45 N;
  1 slug L 14.6 kg.

P R O B L E M  S O LV I N G
Use a consistent set of units

†Be careful not to confuse g for gram with g for the acceleration due to gravity. The latter is always 
 italicized (or boldface when shown as a vector).
‡The abbreviation lb for pound comes from the Latin (language of the ancient Romans) word “libra.”
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112 CHAPTER 4 Dynamics: Newton’s Laws of Motion

Newton’s second law, like the first law, is valid only in inertial reference frames 
(Section 4 9 2). In the noninertial reference frame of a car that begins accelerating, 
a cup on the dashboard starts sliding : it accelerates : even though the net force 
on it is zero. Thus  πF5 = ma5  does not work in such an accelerating reference 
frame ( πF5 = 0,  but a5 ≠ 0 in this noninertial frame).

EXERCISE A Suppose you watch a cup slide on the (smooth) dashboard of an acceler-
ating car as we just discussed, but this time from an inertial reference frame outside the 
car, on the street. From your inertial frame, Newton’s laws are valid. What force pushes 
the cup off the dashboard?

Precise Definition of Mass
As mentioned in Section 4 9 3, we can quantify the concept of mass using its defi-
nition as a measure of inertia. How to do this is evident from Eq. 4 9 1a, where 
we see that the acceleration of an object is inversely proportional to its mass.  

*

EXAMPLE 4 – 3 Force to stop a car. What average net force is required to 
bring a 1500-kg car to rest from a speed of 100 km>h within a distance of 55 m?

APPROACH We use Newton’s second law,  πF = ma,  to determine the force, but 
first we need to calculate the acceleration a. We assume the acceleration is constant 
so that we can use the kinematic equations, Eqs. 2 9 12, to calculate it.

v = 0v0 = 100 km>h

x = 0 x = 55m
x (m)

FIGURE 4 – 6   
Example 4 9 3.

SOLUTION We assume the motion is along the +x axis (Fig. 4 9 6). We are given 
the initial velocity  v0 = 100 km>h = 27.8 m>s  (Section 1 9 5), the final velocity  
v = 0,  and the distance traveled  x - x0 = 55 m.  From Eq. 2 9 12c, we have

 v2 = v0
2 + 2a  (x - x0) ,

so

 a =
v2 - v0

2

2(x - x0)
=

0 -  (27.8 m>s) 2

2(55 m)
= -7.0 m>s2.

The net force required is then

πF = ma =  (1500 kg) ( -7.0 m>s2) = -1.1 * 104 N,

or 11,000 N. The force must be exerted in the direction opposite to the initial 
velocity, which is what the negative sign means.

NOTE If the acceleration is not precisely constant, then we are determining an 
“average” acceleration and we obtain an “average” net force.

EXAMPLE 4 – 2 ESTIMATE Force to accelerate a fast car. Estimate the 
net force needed to accelerate (a) a 1000-kg car at 1

2 g; (b) a 200-gram apple 
at the same rate.

APPROACH We use Newton’s second law to find the net force needed for each 
object; we are given the mass and the acceleration. This is an estimate (the 1

2 is 
not said to be precise) so we round off to one significant figure.

SOLUTION (a) The car’s acceleration is  a = 1
2 g = 1

2  (9.8 m>s2) L 5 m>s2.  We 
use Newton’s second law to get the net force needed to achieve this acceleration:

πF = ma  L    (1000 kg) (5 m>s2) = 5000 N.

(If you are used to British units, to get an idea of what a 5000-N force is, you 
can divide by 4.45 N>lb and get a force of about 1000 lb.)
(b) For the apple,  m = 200 g = 0.2 kg,  so

πF = ma  L    (0.2 kg) (5 m>s2) = 1 N.
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SECTION 4–5 Newton’s Third Law of Motion 113

If the same net force πF acts to accelerate each of two masses, m1 and m2 , then 
the ratio of their masses can be defined as the inverse ratio of their accelerations:

m2

m1
=

a1

a2

.

If one of the masses is known (it could be the standard kilogram) and the two 
 accelerations are precisely measured, then the unknown mass is obtained from this 
definition. For example, if  m1 = 1.00 kg,  and for a particular force  a1 = 3.00 m>s2 
and  a2 = 2.00 m>s2,  then  m2 = 1.50 kg.

4–5 Newton’s Third Law of Motion
Newton’s second law of motion describes quantitatively how forces affect motion. 
But where do forces come from? Observations suggest that a force exerted on any 
object is always exerted by another object. A horse pulls a wagon, a person pushes 
a grocery cart, a hammer pushes on a nail, a magnet attracts a paper clip. In each of 
these examples, a force is exerted on one object, and that force is exerted by another 
object. The force exerted on the nail is exerted by the hammer.

But Newton realized that things are not so one-sided. True, the hammer exerts 
a force on the nail (Fig. 4 9 7). But the nail evidently exerts a force back on the 
hammer as well, for the hammer’s speed is rapidly reduced to zero upon contact. 
Only a strong force could cause such a rapid deceleration of the hammer. Thus, 
said Newton, the two objects must be treated on an equal basis. The hammer 
exerts a force on the nail, and the nail exerts a force back on the hammer. This 
is the essence of Newton’s third law of motion:

Whenever one object exerts a force on a second object, the second object 
exerts an equal force in the opposite direction on the first.

This law is sometimes stated as “to every action there is an equal and opposite 
reaction.”  But to avoid confusion, it is very important to remember that the 
“action” force and the “reaction” force are acting on different objects.

Force exerted
on hand
by desk

Force exerted
on desk by hand

FIGURE 4 – 8  If your hand pushes 
against the edge of a desk (the force 
vector is shown in red), the desk 
pushes back against your hand (this 
force vector is shown in a different 
color, violet, to remind us that this 
force acts on a different object).

As evidence for the validity of Newton’s third law, look at your hand when 
you push against the edge of a desk, Fig. 4 9 8. Your hand’s shape is distorted, clear 
evidence that a force is being exerted on it. You can see the edge of the desk 
pressing into your hand. You can even feel the desk exerting a force on your hand; 
it hurts! The harder you push against the desk, the harder the desk pushes back 
on your hand. (You only feel forces exerted on you; when you exert a force on 
another object, what you feel is that object pushing back on you.)

The force the desk exerts on your hand has the same magnitude as the force 
your hand exerts on the desk. This is true not only if the desk is at rest but is true 
even if the desk is accelerating due to the force your hand exerts.

As another demonstration of Newton’s third law, consider the ice skater in  
Fig. 4 9 9. There is very little friction between her skates and the ice, so she will 
move freely if a force is exerted on her. She pushes against the wall; and then  
she starts moving backward. The force she exerts on the wall cannot make her start 
moving, because that force acts on the wall. Something had to exert a force on her 
to start her moving, and that force could only have been exerted by the wall. The 
wall pushes on her with a force, by Newton’s third law, equal and  opposite to the 
force she exerts on the wall.

NEWTON’S THIRD LAW  
OF MOTION

C A U T I O N
Action and reaction forces act 
on different objects

FIGURE 4 – 7  A hammer striking a 
nail. The hammer exerts a force on the 
nail and the nail exerts a force back on 
the hammer. The latter force decelerates 
the hammer and brings it to rest.

FIGURE 4 – 9  An example of 
Newton’s third law: when an ice 
skater pushes against the wall, the 
wall pushes back and this force 
causes her to accelerate away.

Force
on

skater

Force
on

wall
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114 CHAPTER 4 Dynamics: Newton’s Laws of Motion

When a person throws a package out of a small boat (initially at rest), the 
boat starts moving in the opposite direction. The person exerts a force on the 
package. The package exerts an equal and opposite force back on the person, and 
this force propels the person (and the boat) backward slightly.

Rocket propulsion also is explained using Newton’s third law (Fig. 4 9 10). 
A common misconception is that rockets accelerate because the gases rushing 
out the back of the engine push against the ground or the atmosphere. Not 
true. What happens, instead, is that a rocket exerts a strong force on the gases, 
expel ling them; and the gases exert an equal and opposite force on the rocket. 
It is this latter force that propels the rocket forward : the force exerted on 
the rocket by the gases (see  Chapter-Opening Photo, page 107). Thus, a space 
vehicle is maneuvered in empty space by firing its rockets in the direction 
opposite to that in which it needs to accelerate. When the rocket pushes on 
the gases in one direction, the gases push back on the rocket in the opposite 
direction. Jet aircraft too accelerate because the gases they thrust out back-
wards exert a forward force on the engines (Newton’s third law).

Consider how we walk. A person begins walking by pushing with the foot 
backward against the ground. The ground then exerts an equal and opposite 
force forward on the person (Fig. 4 9 11), and it is this force, on the person, that 
moves the person forward. (If you doubt this, try walking normally where there 
is no friction, such as on very smooth slippery ice.) In a similar way, a bird flies 
forward by exerting a backward force on the air, but it is the air pushing forward 
(Newton’s third law) on the bird’s wings that propels the bird forward.

FIGURE 4 – 10  Another example of 
Newton’s third law: the launch of a 
rocket. The rocket engine pushes the 
gases downward, and the gases exert 
an equal and opposite force upward 
on the rocket, accelerating it upward. 
(A rocket does not accelerate as a 
result of its expelled gases pushing 
against the ground.)

FIGURE 4 – 11  We can walk forward 
because, when one foot pushes 
 backward against the ground, the 
ground pushes forward on that foot 
(Newton’s third law). The two forces 
shown act on different objects.

Horizontal
force exerted
on the
ground by
person’s foot

Horizontal
force exerted
on the
person’s foot
by the ground

FGP
5 FPG

5

We tend to associate forces with active objects such as humans, animals, engines, 
or a moving object like a hammer. It is often difficult to see how an inanimate object 
at rest, such as a wall or a desk (Fig. 4 9 8), or the wall of an ice rink (Fig. 4 9 9), can 
exert a force. The explanation is that every material, no matter how hard, is elastic 
(springy) at least to some degree. A stretched rubber band can exert a force on 
a wad of paper and accelerate it to fly across the room. Other materials may not 
stretch as readily as rubber, but they do stretch or  compress when a force is applied 
to them. And just as a stretched rubber band exerts a force, so does a stretched (or 
compressed) wall, desk, or car fender.

From the examples discussed above, we can see how important it is to 
remember on what object a given force is exerted and by what object that force 
is exerted. A force influences the motion of an object only when it is applied on 
that object. A force exerted by an object does not influence that same object; it 
only influences the other object on which it is exerted. Thus, to avoid confusion, 
the two prepositions on and by must always be used : and used with care.

One way to keep clear which force acts on which object is to use double 
subscripts. For example, the force exerted on the Person by the Ground as the 
person walks in Fig. 4 9 11 can be labeled F5PG. And the force exerted on the ground 
by the person is F5GP. By Newton’s third law

F5GP = -F5PG.  (4 – 2)

F5GP and F5PG have the same magnitude (Newton’s third law), and the minus sign 
reminds us that these two forces are in opposite directions.

C A U T I O N
Distinguish on what object a force  

is exerted, and by what object

NEWTON’S THIRD LAW  
OF MOTION

CONCEPTUAL EXAMPLE 4 – 4 What exerts the force to move a car?  
What makes a car go forward?

RESPONSE A common answer is that the engine makes the car move forward. 
But it is not so simple. The engine makes the wheels and tires go around. But if 
the tires are on slick ice or wet mud, they just spin. Friction is needed. On firm 
ground, the tires push backward against the ground because of friction between 
the tires and the ground. By Newton’s third law, the ground pushes on the tires 
in the opposite direction, accelerating the car forward.
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SECTION 4–5 Newton’s Third Law of Motion 115

CONCEPTUAL EXAMPLE 4 – 5 Third law clarification. Michelangelo’s 
 assistant has been assigned the task of moving a block of marble using a sled 
(Fig. 4 9 12). He says to his boss, “When I exert a forward force on the sled, the sled 
exerts an equal and opposite force backward. So how can I ever start it  moving? No 
matter how hard I pull, the backward reaction force always equals my forward force, 
so the net force must be zero. I’ll never be able to move this load.” Is he correct?

RESPONSE No. Although it is true that the action and reaction forces are equal 
in magnitude, the assistant has forgotten that they are exerted on different objects. 
The forward (“action”) force is exerted by the assistant on the sled (Fig. 4 9 12), 
whereas the backward “reaction” force is exerted by the sled on the assistant. To 
determine if the assistant moves or not, we must consider only the forces on the 
assistant and then apply  πF5 = ma5,  where πF5 is the net force on the assistant, 
a5 is the acceleration of the assistant, and m is the assistant’s mass. There are two 
forces on the assistant that affect his forward motion; they are shown as bright  
red (magenta) arrows in Figs. 4 9 12 and 4 9 13: they are (1) the hori zontal force F5AG 
exerted on the assistant by the ground (the harder he pushes backward against 
the ground, the harder the ground pushes forward on him : Newton’s third law), 
and (2) the force F5AS exerted on the assistant by the sled, pulling backward on 
him; see Fig. 4 9 13. If he pushes hard enough on the ground, the force on him 
exerted by the ground, F5AG, will be larger than the sled pulling back, F5AS, and 
the assistant accelerates forward (Newton’s second law). The sled, on the other 
hand, accelerates forward when the force on it exerted by the assistant is greater 
than the frictional force exerted backward on it by the ground (that is, when F5SA 
has greater magnitude than F5SG in Fig. 4 9 12).

P R O B L E M  S O LV I N G
A study of Newton’s second and 
third laws

Using double subscripts to clarify Newton’s third law can become cumbersome, 
and we won’t usually use them in this way. We will usually use a single subscript 
referring to what exerts the force on the object being discussed. Nevertheless, if 
there is any confusion in your mind about a given force, go ahead and use two 
subscripts to identify on what object and by what object the force is exerted.

EXERCISE B A tennis ball collides head-on with a more massive baseball. (i) Which ball 
experiences the greater force of impact? (ii) Which experiences the greater acceleration 
during the impact? (iii) Which of Newton’s laws are useful to obtain the correct answers?

EXERCISE C If you push on a heavy desk, does it always push back on you? (a) No. 
(b) Yes. (c) Not unless someone else also pushes on it. (d) Yes, if it is out in space. 
(e) A desk never pushes.

Force on
assistant
exerted
by sled

Force on
assistant 
exerted 
by ground

FAG
5

FAS
5

FIGURE 4 – 13  Example 4 9 5. The 
horizontal forces on the assistant.

Force on sled
exerted by
assistant

Force on
assistant
exerted
by sled

Friction
force on
sled exerted 
by ground

Force on
assistant 
exerted 
by ground

Force on
ground
exerted 
by sled

(= -

GS (= -   SG)

Force on
ground 
exerted 
by assistant

FSA
5

FAS)5
FAS
5

FSG
5 F5 F5 FGA

5 FAG
5

(= - FAG)5

FIGURE 4 – 12  Example 4 9 5, 
showing only horizontal forces. 
Michelangelo has selected a fine  
block of marble for his next 
sculpture. Shown here is his assistant  
pulling it on a sled away from the 
quarry. Forces on the assistant are 
shown as red (magenta) arrows. 
Forces on the sled are purple arrows. 
Forces acting on the ground are 
orange arrows. Action 9 reaction 
forces that are equal and opposite 
are labeled by the same subscripts but 
reversed (such as F5GA and F5AG)  
and are of different colors because 
they act on different objects.

Note carefully that the two forces shown in Fig. 4 9 11 act on different objects : to 
emphasize this we used slightly different colors for the vector arrows representing 
these forces. These two forces would never appear together in a sum of forces in 
Newton’s second law,  πF5 = ma5.  Why not? Because they act on different objects: 
a5 is the acceleration of one particular object, and πF5 must include only the forces 
on that one object.

C A U T I O N
The 2 forces in Newton’s third law act 
on different bodies. Only one can be 
included in  πF = ma  for an object
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116 CHAPTER 4 Dynamics: Newton’s Laws of Motion

EXERCISE D Return to the first Chapter-Opening Question, page 107, and answer it again 
now. Try to explain why you may have answered differently the first time.

4–6  Weight—the Force of Gravity;  
and the Normal Force

As we saw in Chapter 2, Galileo claimed that all objects dropped near the surface 
of the Earth would fall with the same acceleration, g5, if air resistance was negligible. 
The force that causes this acceleration is called the force of gravity or gravitational 
force. What exerts the gravitational force on an object? It is the Earth, as we will 
discuss in Chapter 5, and the force acts vertically† downward, toward the center of 
the Earth. Let us apply Newton’s second law to an object of mass m falling freely 
due to gravity. For the acceleration, a5, we use the downward acceleration due to 
gravity, g5. Thus, the gravitational force on an object, F5G, can be written as

F5G = mg5. (4 – 3)

The direction of this force is down toward the center of the Earth. The magnitude 
of the force of gravity on an object, mg, is commonly called the object’s weight.

In SI units,  g = 9.80 m>s2 = 9.80 N>kg,‡  so the weight of a 1.00-kg mass on 
Earth is  1.00 kg * 9.80 m>s2 = 9.80 N.  We will mainly be concerned with the 
weight of objects on Earth, but we note that on the Moon, on other planets,  
or in space, the weight of a given mass will be different than it is on Earth. For 
example, on the Moon the acceleration due to gravity is about one-sixth what it  
is on Earth, and a 1.0-kg mass weighs only 1.6 N. Although we will not use British 
units, we note that for practical purposes on the Earth, a mass of 1.0 kg weighs  
about 2.2 lb. (On the Moon, 1 kg weighs only about 0.4 lb.)

The force of gravity acts on an object when it is falling. When an object is at 
rest on the Earth, the gravitational force on it does not disappear, as we know if 
we weigh it on a spring scale. The same force, given by Eq. 4 9 3, continues to act. 
Why, then, doesn’t the object move? From Newton’s second law, the net force on 
an object that remains at rest is zero. There must be another force on the object to 
balance the gravitational force. For an object resting on a table, the table exerts this  
upward force; see Fig. 4 914a. The table is compressed slightly beneath the object, and  
due to its elasticity, it pushes up on the object as shown. The force exerted by the 
table is often called a contact force, since it occurs when two objects are in contact. 
(The force of your hand pushing on a cart is also a contact force.) When a contact 
force acts perpendicular to the common surface of contact, it is referred to as the 
normal force (“normal” means perpendicular); hence it is labeled F5N in Fig. 4 9 14a.

The two forces shown in Fig. 4 9 14a are both acting on the statue, which remains  
at rest, so the vector sum of these two forces must be zero (Newton’s second law). 
Hence F5G and F5N must be of equal magnitude and in opposite directions. But they 
are not the equal and opposite forces spoken of in Newton’s third law. The action and 
reaction forces of Newton’s third law act on different objects, whereas the two forces 
shown in Fig. 4 9 14a act on the same object. For each of the forces shown in Fig. 4 9 14a, 
we can ask, “What is the reaction force?” The upward force F5N on the statue is exerted  
by the table. The reaction to this force is a force exerted by the statue downward on 
the table. It is shown in Fig. 4 9 14b, where it is labeled F5N

= . This force, F5N
= , exerted  

on the table by the statue, is the reaction force to F5N in accord with Newton’s third  
law. What about the other force on the statue, the force of gravity F5G exerted by the 
Earth? Can you guess what the reaction is to this force? We will see in Chapter 5  
that the reaction force is also a gravitational force, exerted on the Earth by the statue.

C A U T I O N
Weight and normal force are not 

action–reaction pairs

†The concept of “vertical” is tied to gravity. The best definition of vertical is that it is the direction in 
which objects fall. A surface that is “horizontal,” on the other hand, is a surface on which a round 
object won’t start rolling: gravity has no effect. Horizontal is perpendicular to vertical.
‡Since  1 N = 1 kg ⋅ m>s2  (Section 4 9 4), then  1 m>s2 = 1 N>kg.

(a)

F

(b)

5

FG
5

FN
5FN

FG
5

FN
5

FIGURE 4 – 14  (a) The net force on 
an object at rest is zero according 
to Newton’s second law. Therefore 
the downward force of gravity 

 (F5G)  on an object at rest must be 
balanced by an upward force (the 
normal force F5N) exerted by the 
table in this case. (b) F5N

=  is the force 
exerted on the table by the statue 
and is the reaction force to F5N by 
Newton’s third law. (F5N

=  is shown in 
a different color to remind us it acts 
on a different object.)  The reaction 
force to F5G is not shown.
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SECTION 4–6 Weight—the Force of Gravity; and the Normal Force 117

EXERCISE E Return to the second Chapter-Opening Question, page 107, and answer it 
again now. Try to explain why you may have answered differently the fi rst time.

EXAMPLE 4 – 6 Weight, normal force, and a box. A friend has given you 
a special gift, a box of mass 10.0 kg with a mystery surprise inside. The box is 
resting on the smooth (frictionless) horizontal surface of a table (Fig. 4 9 15a). 
(a) Determine the weight of the box and the normal force exerted on it by 
the table. (b) Now your friend pushes down on the box with a force of 40.0 N, 
as in Fig. 4 9 15b. Again determine the normal force exerted on the box by the 
table. (c) If your friend instead pulls upward on the box with a force of 40.0 N 
(Fig. 4 9 15c), what now is the normal force exerted on the box by the table?

APPROACH The box is at rest on the table, so the net force on the box in each 
case is zero (Newton’s fi rst or second law). The weight of the box has magni tude 
mg in all three cases.

SOLUTION (a) The weight of the box is  mg =  (10.0 kg) (9.80 m>s2) = 98.0 N,  
and this force acts downward. The only other force on the box is the normal 
force F5N exerted upward on it by the table, as shown in Fig. 4 9 15a. We choose the 
upward direction as the positive y direction; then the net force πFy on the box 
is  πFy = FN - mg;  the minus sign means mg acts in the negative y direction 
(m and g are magnitudes). The box is at rest, so the net force on it must be zero 
(Newton’s second law,  πFy = may ,  and  ay = 0).  Thus

 πFy = may

 FN - mg = 0,

so we have

FN = mg.

The normal force on the box, exerted by the table, is 98.0 N upward, and has 
magnitude equal to the box’s weight.
(b) Your friend is pushing down on the box with a force of 40.0 N. So instead 
of only two forces acting on the box, now there are three forces acting on the 
box, as shown in Fig. 4 9 15b. The weight of the box is still  mg = 98.0 N.  The 
net force is  πFy = FN - mg - 40.0 N,  and is equal to zero because the box 
remains at rest  (a = 0).  Newton’s second law gives

πFy = FN - mg - 40.0 N = 0.

We solve this equation for the normal force:

FN = mg + 40.0 N = 98.0 N + 40.0 N = 138.0 N,

which is greater than in (a). The table pushes back with more force when a person 
pushes down on the box. The normal force is not always equal to the weight!
(c) The box’s weight is still 98.0 N and acts downward. The force exerted by your 
friend and the normal force both act upward (positive direction), as shown in 
Fig. 4 9 15c. The box doesn’t move since your friend’s upward force is less than the 
weight. The net force, again set to zero in Newton’s second law because  a = 0,  is

πFy = FN - mg + 40.0 N = 0,
so

FN = mg - 40.0 N = 98.0 N - 40.0 N = 58.0 N.

The table does not push against the full weight of the box because of the upward 
force exerted by your friend.

NOTE The weight of the box  (= mg)  does not change as a result of your 
friend’s push or pull. Only the normal force is affected.

C A U T I O N
The normal force FN is not 
always equal to the weight

40.0 N

40.0 N

y

y

y

FN
5

FN
5

FN
5

mg5

mg5

mg5

(b)

(a)

(c)

ΣFy = FN - mg - 40.0 N = 0

ΣFy = FN - mg + 40.0 N = 0

ΣFy = FN - mg = 0

FIGURE 4 – 15  Example 4 9 6. 
(a) A 10-kg gift box is at rest on a 
table. (b) A person pushes down on 
the box with a force of 40.0 N. 
(c) A person pulls upward on the 
box with a force of 40.0 N. The forces 
are all assumed to act along a line; 
they are shown slightly displaced 
in order to be distinguishable. Only 
forces acting on the box are shown.
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118 CHAPTER 4 Dynamics: Newton’s Laws of Motion

Recall that the normal force is elastic in origin (the table in Fig. 4 9 15 sags 
slightly under the weight of the box). The normal force in Example 4 9 6 is vertical, 
 perpendicular to the horizontal table. The normal force is not always vertical, 
however. When you push against a wall, for example, the normal force with which 
the wall pushes back on you is horizontal (see Fig. 4 9 9). If an object is on a plane 
inclined at an angle to the horizontal, such as a skier or car on a hill, the normal 
force acts perpendicular to the plane and so is not vertical.

C A U T I O N
The normal force, F5N, is 

not necessarily vertical

EXAMPLE 4 – 7 Accelerating the box. What happens when a person pulls 
upward on the box in Example 4 9 6c with a force equal to, or greater than, the 
box’s weight? For example, let FP = 100.0 N  (Fig. 4 9 16) rather than the 40.0 N 
shown in Fig. 4 9 15c.

APPROACH We can start just as in Example 4 9 6, but be ready for a surprise.

SOLUTION The net force on the box is

 πFy = FN - mg + FP
 = FN - 98.0 N + 100.0 N,

and if we set this equal to zero (thinking the acceleration might be zero), we 
would get FN = -2.0 N.  This is nonsense, since the negative sign implies FN 
points downward, and the table surely cannot pull down on the box (unless 
there’s glue on the table). The least FN can be is zero, which it will be in this 
case,  FN = 0.  What really happens here is that the box leaves the table and 
accelerates upward (a ≠ 0, see gold vector in Fig. 4 9 16) because the net force 
is not zero. The net force (setting the normal force  FN = 0)  is

 πFy = FP - mg = 100.0 N - 98.0 N
 = 2.0 N

upward. See Fig. 4 9 16. We apply Newton’s second law and see that the box moves 
upward with an acceleration

 ay =
πFy

m
=

2.0 N
10.0 kg

 = 0.20 m>s2 .

EXAMPLE 4 – 8 Apparent weight loss. A 65-kg woman descends in an  elevator 
that briefl y accelerates at 0.20 g downward. She stands on a scale that reads in kg. 
(a) During this acceleration, what is her weight and what does the scale read? (b) What 
does the scale read when the elevator descends at a constant speed of 2.0 m>s?

APPROACH Figure 4 9 17 shows all the forces that act on the woman (and only those 
that act on her). The direction of the acceleration is downward, so we choose the 
positive direction as down (this is the opposite choice from Examples 4 9 6 and 4 9 7).

SOLUTION (a) From Newton’s second law,

 πF = ma
 mg - FN = m(0.20 g).

We solve for FN :

 FN = mg - 0.20 mg
 = 0.80 mg,

and it acts upward. The normal force F5N is the force the scale exerts on 
the person, and it is equal and opposite to the force she exerts on the 
scale:  FN

= = 0.80 mg  downward. Her weight (force of gravity on her) is still 
mg =  (65 kg) (9.8 m>s2) = 640 N.  But the scale, needing to exert a force of 
only  0.80 mg,  will give a reading of  0.80 m = 52 kg.
(b) Now there is no acceleration,  a = 0,  so by Newton’s second law,  mg - FN = 0  
and FN = mg.  The scale reads her true mass of 65 kg.

NOTE The scale in (a) gives a reading of 52 kg (as an “apparent mass”), but her 
mass doesn’t change as a result of the acceleration: it stays at 65 kg.

(100.0 N)

(98.0 N)

FP
5

mg5

a5

FIGURE 4 – 16  Example 4 9 7.  The 
box accelerates upward because 
FP 7 mg.

FIGURE 4 – 17  Example 4 9 8. The 
acceleration vector is shown in gold 
to distinguish it from the red force 
vectors.

FN
5

a5
mg5

+y
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SECTION 4–7 Solving Problems with Newton’s Laws: Free-Body Diagrams 119

4–7  Solving Problems with Newton’s Laws: 
Free-Body Diagrams

Newton’s second law tells us that the acceleration of an object is proportional to the 
net force acting on the object. The net force, as mentioned earlier, is the vector sum of 
all forces acting on the object. Indeed, extensive experiments have shown that forces 
do add together as vectors precisely according to the rules we developed in Chapter 3. 
For example, in Fig. 4 9 18, two forces of equal magnitude (100 N each) are shown 
acting on an object at right angles to each other. Intuitively, or from symmetry, we can 
see that the object will start moving at a 45° angle and thus the net force acts at a 45° 
angle. This is just what the rules of vector addition give. From the theorem of Pythag-
oras, the magnitude of the resultant force is  FR = 1(100 N) 2 +  (100 N) 2 = 141 N.

When solving problems involving Newton’s laws and force, it is very important 
to draw a diagram showing all the forces acting on each object involved. Such a 
diagram is called a free-body diagram, or force diagram: choose one object, and 
draw an arrow to represent each force acting on it. Include every force acting on 
that object. Do not show forces that the chosen object exerts on other objects. To 
help you identify each and every force that is exerted on your chosen object, ask 
yourself what other objects could exert a force on it. If your problem involves more 
than one object, a separate free-body diagram is needed for each object. For now, 
the likely forces that could be acting are gravity and contact forces (one object 
pushing or  pulling another, normal force, friction). Later we will consider other 
types of force such as buoyancy, fluid pressure, and electric and magnetic forces.

P R O B L E M  S O LV I N G
Free-body diagram

EXAMPLE 4 – 9 Adding force vectors. Calculate the sum of the two forces 
exerted on the boat by workers A and B in Fig. 4 9 19a.

APPROACH We add force vectors like any other vectors as described in 
 Chapter 3. The first step is to choose an xy coordinate system (see Fig. 4 9 19a), 
and then resolve vectors into their components.

SOLUTION The two force vectors are shown resolved into components in Fig. 4 9 19b. 
We add the forces using the method of components. The components of F5A are

 FA x = FA cos 45.0° = (40.0 N) (0.707) = 28.3 N,

 FA y = FA sin 45.0°  = (40.0 N) (0.707) = 28.3 N.

The components of F5B are

 FB x = +FB cos 37.0° = + (30.0 N) (0.799) = +24.0 N,

 FB y = -FB sin 37.0°  = - (30.0 N) (0.602) = -18.1 N.

FBy is negative because it points along the negative y axis. The components of 
the resultant force are (see Fig. 4 9 19c)

 FR x = FA x + FB x = 28.3 N + 24.0 N = 52.3 N,

 FR y = FA y + FB y = 28.3 N - 18.1 N = 10.2 N.

To find the magnitude of the resultant force, we use the Pythagorean theorem,

FR = 2FR x
2 + FR y

2 = 2(52.3) 2 +  (10.2) 2 N = 53.3 N.

The only remaining question is the angle u that the net force F5R makes with the x axis,  
Fig. 4 9 19c. We use:

tan u =
FR y

FR x
=

10.2 N
52.3 N

= 0.195,

and  tan-1( 0.195) = 11.0°.  The net force on the boat has magnitude 53.3 N and 
acts at an 11.0° angle to the x axis.

FB = 100 N

FA = 100 N

(a) (b)

45°

R
=

+
B

A

F5

F5

F5

FA
5

FB
5

FIGURE 4 – 18  (a) Two horizontal 
forces, F5A and F5B, exerted by 
workers A and B, act on a crate 
(we are looking down from above). 
(b) The sum, or resultant, of F5A  
and F5B is F5R.

FIGURE 4 – 19  Example 4 9 9: Two 
force vectors act on a boat.

(b)

(c)

(a)

y

x

y

x

45.0°
37.0°

FA  =  40.0 N

FB  =  30.0 N

y

x

A

B

FA
5

FAy5

FAx5

FBy5 FBx5
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5

FRy5 FR
5

FRx5
u
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120 CHAPTER 4 Dynamics: Newton’s Laws of Motion

CONCEPTUAL EXAMPLE 4 – 10 The hockey puck. A hockey puck is 
sliding at constant velocity across a flat horizontal ice surface that is assumed 
to be frictionless. Which of the sketches in Fig. 4 9 20 is the correct free-body 
diagram for this puck? What would your answer be if the puck slowed down?

RESPONSE Did you choose (a)? If so, can you answer the question: what exerts 
the  horizontal force labeled F5 on the puck? If you say that it is the force needed 
to maintain the motion, ask yourself: what exerts this force? Remember that 
another object must exert any force : and there simply isn’t any possi bility here. 
Therefore, (a) is wrong. Besides, the force F5 in Fig. 4 9 20a would give rise to an 
acceleration by Newton’s second law. It is (b) that is correct. No net force acts on 
the puck, and the puck slides at constant velocity across the ice.

In the real world, where even smooth ice exerts at least a tiny friction force, 
(c) is the correct answer. The tiny friction force is in the direction opposite to 
the motion, and the puck’s velocity decreases, even if very slowly.

object that force acts, and by what object that force 
is exerted. Only forces acting on a given object 
can be included in  πF5 = ma5  for that object.

 3. Newton’s second law involves vectors, and it is 
usually important to resolve vectors into compo-
nents. Choose x and y axes in a way that simplifies 
the  calculation. For example, it often saves work if 
you choose one coordinate axis to be in the direc-
tion of the acceleration (if known).

 4. For each object, apply Newton’s second law to 
the x and y components separately. That is, the x 
component of the net force on that object is related 
to the x component of that object’s acceleration: 
πFx = max ,  and similarly for the y direction.

 5. Solve the equation or equations for the 
unknown(s). Put in numerical values only at the 
end, and keep track of units.

      P
R

O
B

L
E

M

 S O L V I N G

 1. Draw a sketch of the situation, after carefully 
reading the problem at least twice.

 2. Consider only one object (at a time), and 
draw a free-body diagram for that object, showing 
all the forces acting on that object. Include any 
unknown forces that you have to solve for. Do not 
show any forces that the chosen object exerts on 
other objects.

  Draw the arrow for each force vector reason-
ably accurately for direction and magnitude. Label 
each force acting on the object, including forces 
you must solve for, according to its source (gravity, 
person, friction, and so on).

  If several objects are involved, draw a free-
body diagram for each object separately. For each 
object, show all the forces acting on that object 
(and only forces acting on that object). For each 
(and every) force, you must be clear about: on what 

Newton’s Laws; Free-Body Diagrams

This Problem Solving Strategy should not be considered a prescription. 
Rather it is a summary of things to do that will start you thinking and getting 
involved in the problem at hand.

When we are concerned only about translational motion, all the forces on a 
given object can be drawn as acting at the center of the object, thus treating the object 
as a point particle. However, for problems involving rotation or statics, the place 
where each force acts is also important, as we shall see in Chapters 10, 11, and 12.

In the Examples in this Section, we assume that all surfaces are very smooth 
so that friction can be ignored. (Friction, and Examples using it, are discussed 
in Chapter 5.)

C A U T I O N
Treating an object as a particle

FIGURE 4 – 20  Example 4 9 10. 
Which is the correct free-body 
diagram for a hockey puck sliding 
across frictionless ice?

(b) (c)(a)

MotionMotion Motion
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5

F5

FG
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5
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5
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EXERCISE F If the force F5P (Fig. 4 9 21) exerted by the person is doubled in magnitude, 
what now will be the normal force?

EXERCISE G A 10.0-kg box is dragged on a horizontal frictionless surface by a hori-
zontal force of 10.0 N. If the applied force is doubled, the normal force on the box will 
(a) increase; (b) remain the same; (c) decrease.

Tension in a Flexible Cord
When a fl exible cord pulls on an object, the cord is said to be under tension, and 
the force it exerts on the object is the tension FT. If the cord has negligible mass, the 
force exerted at one end is transmitted undiminished to each adjacent piece of 
cord along the entire length to the other end. Why? Because  πF5 = ma5 = 0  for 
the cord if the cord’s mass m is zero (or negligible) no matter what a5 is. Hence the 
forces  pulling on the cord at its two ends must add up to zero (FT and -FT). Note 
that  fl exible cords and strings can only pull. They can’t push because they bend.

P R O B L E M  S O LV I N G
Cords can pull but can’t push; 
tension exists throughout a taut cord

EXAMPLE 4 – 11 Pulling the mystery box. Suppose a friend asks to examine the 
10.0-kg box you were given (Example 4 9 6, Fig. 4 9 15), hoping to guess what is inside; 
and you respond, “Sure, pull the box over to you.” She then pulls the box by the attached 
cord, as shown in Fig. 4 9 21a, along the smooth surface of the table. The magnitude of 
the force exerted by the  person is  FP = 40.0 N,  and it is exerted at a 30.0° angle as 
shown. Calculate (a) the acceleration of the box, and (b) the magnitude of the upward 
force FN exerted by the table on the box. Assume that friction can be neglected.
APPROACH We follow the Problem Solving Strategy on the previous page.
SOLUTION
 1. Draw a sketch: The situation is shown in Fig. 4 9 21a; it shows the box and 

the force applied by the person, FP.
 2. Free-body diagram: Figure 4 9 21b shows the free-body diagram of the box. To 

draw it correctly, we show all the forces acting on the box and only the forces 
acting on the box. They are: the force of gravity mg5; the normal force exerted by 
the table F5N ; and the force exerted by the person F5P. We are interested only in 
translational motion, so we can show the three forces acting at a point, Fig. 4 9 21c.

 3. Choose axes and resolve vectors: We expect the motion to be horizontal, so 
we choose the x axis horizontal and the y axis vertical. The pull of 40.0 N 
has components

 FP x =  (40.0 N) (cos 30.0°)  = (40.0 N) (0.866)  = 34.6 N,
 FP y =  (40.0 N) (sin 30.0°) = (40.0 N) (0.500)  = 20.0 N.

  In the horizontal (x) direction, F5N and mg5 have zero components. Thus the 
horizontal component of the net force is FPx .

 4. (a) Apply Newton’s second law to determine the x component of the  acceleration:
FPx = max .

 5. (a) Solve:
ax = FPx>m = 34.6 N>10.0 kg = 3.46 m>s2 .

  The acceleration of the box is 3.46 m>s2 to the right.
  (b) Next we want to fi nd FN.
 4. ′  (b) Apply Newton’s second law to the vertical (y) direction, with upward as 

positive:
 πFy = may

 FN - mg + FPy = may .

 5. ′  (b) Solve: We have  mg = (10.0 kg)(9.80 m>s2) = 98.0 N  and, from step 3 
above, FPy = 20.0 N.  Furthermore, since FPy 6 mg, the box does not move 
vertically,  so ay = 0.  Thus

FN - 98.0 N + 20.0 N = 0,
  so FN = 78.0 N.
NOTE FN is less than mg: the table does not push against the full weight of the 
box because part of the pull exerted by the person is in the upward direction.

30.0°

30.0°

FP = 40.0 N

y

y

(b)

x

(c)

x

(a)

m

m

FP
5

FN
5

FN
5

FPy5

FPx5

g5

g5

FP
5

FIGURE 4 – 21  (a) Pulling the box, 
Example 4 9 11; (b) is the free-body 
diagram for the box, and (c) is the 
free-body diagram considering 
all the forces to act at a point 
(translational motion only, which is 
what we have here).
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122 CHAPTER 4 Dynamics: Newton’s Laws of Motion

Our next Example involves two boxes connected by a cord. We can refer to 
this group of objects as a system. A system is any group of one or more objects 
we choose to consider and study.

EXAMPLE 4 – 12 Two boxes connected by a cord. Two boxes, A and B, are 
connected by a lightweight cord and are resting on a smooth (frictionless) table. The 
boxes have masses of 12.0 kg and 10.0 kg. A horizontal force FP of 40.0 N is applied 
to the 10.0-kg box by a person pulling on a cord, as shown in Fig. 4 9 22a. Find (a) the 
acceleration of each box, and (b) the tension in the cord connecting the boxes.

APPROACH We streamline our approach by not listing each step. We have two 
boxes so we draw a free-body diagram for each. To draw them correctly, we must 
consider the forces on each box by itself, so that Newton’s second law can be 
applied to each. The person exerts a force FP on box A. Box A exerts a force FT on 
the connecting cord, and the cord exerts an opposite but equal magnitude force FT 
back on box A (Newton’s third law). The two horizontal forces on box A are shown in 
Fig. 4 9 22b, along with the force of gravity mA g5 downward and the normal force F5AN 
exerted upward by the table. The cord is light, so we neglect its mass. The tension at each 
end of the cord is thus the same. Hence the cord exerts a force FT on the second box. 
Figure 4 9 22c shows the forces on box B, which are F5T, mB g5 , and the normal force F5BN. 
There will be only horizontal motion. We take the positive x axis to the right.

SOLUTION (a) We apply  πFx = max  to box A:

πFx = FP - FT = mA aA. [box A]

For box B, the only horizontal force is FT, so

πFx = FT = mB aB. [box B]

The boxes are connected, and if the cord remains taut and doesn’t stretch, then 
the two boxes will have the same acceleration a. Thus  aA = aB = a.  We now 
have 2 unknowns, FT and a, and the two equations above to solve for them. We 
are given  mA = 10.0 kg  and  mB = 12.0 kg. We can add the two equations above 
to eliminate an unknown (FT) and obtain

(mA + mB)  a = FP - FT + FT 

= FP
or

a =
FP

mA + mB
=

40.0 N
22.0 kg

= 1.82 m>s2.

This is what we sought.
(b) From the equation for box B above  (FT = mB aB),  the tension in the cord is

FT = mB a =  (12.0 kg) (1.82 m>s2) = 21.8 N.

Thus,  FT 6 FP (   = 40.0 N),  as we expect, since FT acts to accelerate only mB.

Alternate Solution to (a) We would have obtained the same result had we 
considered a single system, of mass mA + mB, acted on by a net horizontal force 
equal to FP. (The tension forces FT would then be considered internal to the 
system as a whole, and summed together would make zero contribution to the 
net force on the whole system.)

NOTE It might be tempting to say that the force the person exerts, FP, acts not 
only on box A but also on box B. It doesn’t. FP acts only on box A. It affects box 
B via the tension in the cord, FT, which acts on box B and accelerates it. (You 
could look at it this way: FT 6 FP because FP accelerates both boxes whereas 
FT only accelerates box B.)

C A U T I O N
For any object, use only the 

forces on that object in 
calculating πF = ma

FIGURE 4 – 22  Example 4 9 12. (a) Two boxes, 
A and B, are connected by a cord. A person pulls 
horizontally on box A with force  FP = 40.0 N.  
(b) Free-body diagram for box A. (c) Free-body 
diagram for box B.
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x
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Elevator
car

mE =
1150 kg

Counterweight
mC = 1000 kg

mE mC

FT
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g5 g5

aE5
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FIGURE 4 – 23  Example 4 9 13. 
(a) Atwood machine in the form of 
an elevator 9 counterweight system. 
(b) and (c) Free-body diagrams for 
the two objects.

EXAMPLE 4 – 13 Elevator and counterweight (Atwood machine). A system 
of two objects suspended over a pulley by a flexible cable, as shown in Fig. 4 9 23a, is 
sometimes referred to as an Atwood machine. Consider the real-life appli cation of 
an elevator (mE) and its counterweight (mC). To minimize the work done by the 
motor to raise and lower the elevator safely, mE and mC are made similar in mass. 
We leave the motor out of the system for this calculation, and assume that the cable’s 
mass is negligible and that the mass of the pulley, as well as any friction, is small 
and ignorable. These assumptions ensure that the tension FT in the cable has the 
same magnitude on both sides of the pulley. Let the mass of the counterweight be 
mC = 1000 kg.  Assume the mass of the empty  elevator is 850 kg, and its mass when 
carrying four passengers is  mE = 1150 kg.  For the latter case  (mE = 1150 kg),  
calculate (a) the acceleration of the elevator and (b) the tension in the cable.

APPROACH Again we have two objects, and we will need to apply Newton’s 
second law to each of them separately. Each mass has two forces acting on 
it: gravity downward and the cable tension pulling upward, F5T. Figures 4 9 23b 
and c show the free-body diagrams for the elevator (mE)  and for the coun-
terweight (mC). The elevator, being the heavier, will accelerate downward, 
whereas the counterweight will accelerate upward. The magnitudes of their 
accelerations will be equal (we assume the cable is massless and doesn’t stretch). 
For the counterweight,  mC g = (1000 kg) (9.80 m>s2) = 9800 N,  so FT must be 
greater than 9800 N (in order that mC will accelerate upward). For the elevator,  
mE g = (1150 kg) (9.80 m>s2) = 11,300 N, which must have greater magnitude 
than FT so that mE accelerates downward. Thus our calculation must give FT 
between 9800 N and 11,300 N.

SOLUTION (a) To find FT as well as the acceleration a, we apply Newton’s 
second law, πF = ma,  to each object. We take upward as the positive y direc-
tion for both objects. With this choice of axes,  aC = a  because mC accelerates 
upward, and  aE = -a  because mE accelerates downward. Thus

 FT - mE g = mE aE = -mE a

 FT - mC g = mC aC = +mC a.

We can subtract the first equation from the second to get

(mE - mC)g = (mE + mC)a,

where a is now the only unknown. We solve this for a:

a =
mE - mC

mE + mC
 g =

1150 kg - 1000 kg

1150 kg + 1000 kg
 g = 0.070 g = 0.68 m>s2.

The elevator (mE) accelerates downward (and the counterweight mC upward) 
at a = 0.070 g = 0.68 m>s2.
(b) The tension in the cable FT can be obtained from either of the two  πF = ma  
equations at the start of our solution, setting  a = 0.070 g = 0.68 m>s2:

 FT = mE g - mE a = mE (g - a)

 = 1150 kg (9.80 m>s2 - 0.68 m>s2) = 10,500 N,
or

 FT = mC g + mC a = mC (g + a)

 = 1000 kg (9.80 m>s2 + 0.68 m>s2) = 10,500 N,

which are consistent. As predicted, our result lies between 9800 N and 11,300 N.

NOTE We can check our equation for the acceleration a in this Example by 
noting that if the masses were equal  (mE = mC), then our equation above for 
a would give  a = 0,  as we should expect. Also, if one of the masses is zero (say,  
mC = 0),  then the other mass (mE ≠ 0) would be predicted by our equation 
to accelerate at  a = g,  again as expected.

P H Y S I C S  A P P L I E D
Elevator (as Atwood machine)

P R O B L E M  S O LV I N G
Check your result by seeing if it  
works in situations where the 
answer is easily guessed
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FIGURE 4 – 24  Example 4 9 14.

FIGURE 4 – 25  Example 4 9 15.
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CONCEPTUAL EXAMPLE 4 – 14 The advantage of a pulley. A mover is 
trying to lift a piano (slowly) up to a second-story apartment (Fig. 4 9 24). He is 
using a rope looped over two pulleys as shown. What force must he exert on 
the rope to slowly lift the piano’s 1600-N weight?

RESPONSE The magnitude of the tension force FT within the rope is the same 
at any point along the rope if we assume we can ignore the mass of the rope 
and pulleys. First notice the forces acting on the lower pulley at the piano. The 
weight of the piano  (=  mg)  pulls down on the pulley. The tension in the rope, 
looped through this pulley, pulls up twice, once on each side of the pulley. Let 
us apply Newton’s second law to the pulley 9 piano combination (of mass m), 
choosing the upward direction as positive:

2FT - mg = ma.

To move the piano with constant speed (set  a = 0  in this equation) thus requires 
a tension in the rope, and hence a pull on the rope, of  FT = mg>2.  The piano 
mover can exert a force equal to half the piano’s weight. 

NOTE We say the pulley has given a mechanical advantage of 2, since without 
the pulley the mover would have to exert twice the force.

EXAMPLE 4 – 15 Accelerometer. A small mass m hangs from a thin string  
and can swing like a pendulum. You attach it above the window of your car 
as shown in Fig. 4 9 25a. When the car is at rest, the string hangs vertically. 
What angle u does the string make (a) when the car accelerates at a constant  
a = 1.20 m>s2,  and (b) when the car moves at constant velocity,  v = 90 km>h?

APPROACH The free-body diagram of Fig. 4 9 25b shows the pendulum at some 
angle u  relative to the vertical, and the forces on it: mg5 downward, and the 
 tension F5T in the cord (including its components). These forces do not add up 
to zero if  u ≠ 0;  and since we have an acceleration a, we expect  u ≠ 0. 

SOLUTION (a) The acceleration  a = 1.20 m>s2  is horizontal  (=  ax) ,  and 
the only horizontal force is the x component of  F5T :  FT sin u (Fig. 4 9 25b). Then 
from Newton’s second law,

 ma = FT sin u.

The vertical component of Newton’s second law gives, since  ay = 0,

 0 = FT cos u - mg.
So

 mg = FT cos u.

Dividing the two equations involving FT, we obtain

 tan u =
FT sin u
FT cos u

=
ma
mg

=
a
g

or

 tan u =
1.20 m>s2

9.80 m>s2

 = 0.122,
so

u = 7.0°.

(b) The velocity is constant, so  a = 0  and therefore  tan u = 0.  Hence the 
pendulum hangs vertically (u = 0°).

NOTE This simple device is an accelerometer : it can be used to determine 
acceleration, by measuring the angle u.

P H Y S I C S  A P P L I E D
Accelerometer
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Inclines
Now we consider what happens when an object slides down an incline, such as 
a hill or ramp. Such problems are interesting because gravity is the accelerating 
force, yet the acceleration is not vertical. Solving problems is usually easier if 
we choose the xy coordinate system so the x axis points along the incline (the 
direction of motion) and the y axis is perpendicular to the incline, as shown in 
Fig. 4 9 26a. Note also that the normal force is not vertical, but is perpendicular to 
the sloping surface of the plane, along the y axis in Fig. 4 9 26b.

P R O B L E M  S O LV I N G
Good choice of coordinate system 
simplifi es the calculation
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m

(b)

m
g 

co
s u

mg sin u
y

x

y

xmg5

FN
5

u

u

u

(a)

m
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FIGURE 4 – 26  Example 4 9 16. 
(a) Box sliding on inclined plane. 
(b) Free-body diagram of box.

EXAMPLE 4 – 16 Box slides down an incline. A box of mass m is placed 
on a smooth (frictionless) incline that makes an angle u with the horizontal, as 
shown in Fig. 4 9 26. (a) Determine the normal force on the box. (b) Determine 
the box’s acceleration. (c) Evaluate for a mass  m = 10 kg  and an incline of  
u = 30°.

APPROACH We expect the motion to be along the incline, so we choose the 
x axis along the slope, positive down the slope (the direction of motion). The y axis 
is perpendicular to the incline, positive upwards. The free-body diagram is shown 
in Fig. 4 9 26b. The forces on the box are its weight mg5 vertically downward, which 
is shown resolved into its components parallel and perpendicular to the incline, 
and the normal force F5N along the +y axis. The components of mg5 along the x 
and y axes are found using the defi nitions of sine (“side opposite”) and cosine 
(“side adjacent”):  (mg)

 x = mg sin u ,  and  (mg)
 y = mg cos u. (The angle u of the 

plane equals the angle between mg5 and its y component because the left sides of 
the two angles are perpendicular to each other and so are the right sides : see 
Appendix A 9 6, Fig. A 9 2.)

SOLUTION (a) There is no motion in the y direction, so  ay = 0.  Applying 
Newton’s second law we have

 Fy = may

 FN - mg cos u = 0,

where FN and the y component of gravity (mg cos u) are all the forces acting on 
the box in the y direction. Thus the normal force is given by

FN = mg cos u.

Note carefully that unless  u = 0°,  FN  has magnitude less than the weight mg.
(b) In the x direction the only force acting is the x component of mg5 , which is 
mg sin u. The acceleration a is in the x direction so

 Fx = max

 mg sin u = ma,

and we see that the acceleration down the plane is

a = g sin u.

Thus the acceleration along an incline is always less than g, except at  u = 90°,  
for which sin u = 1  and  a = g.  This makes sense since  u = 90°  is pure vertical 
fall. For  u = 0°, a = 0,  which makes sense because  u = 0°  means the plane is 
horizontal so gravity causes no acceleration. Note too that the acceleration does 
not depend on the mass (m).
(c) For  u = 30°,  cos u = 0.866  and  sin u = 0.500,  so

FN = 0.866 mg = 85 N,
and

a = 0.500 g = 4.9 m>s2.
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126 CHAPTER 4 Dynamics: Newton’s Laws of Motion

EXERCISE H Is the normal force always perpendicular to an inclined plane? Is it always 
vertical?

We will discuss more Examples of motion on an incline in the next Chapter, 
where friction will be included.

4–8  Problem Solving—A General Approach
A basic part of a physics course is solving problems effectively. The approach 
discussed here, though emphasizing Newton’s laws, can be applied generally for 
other topics discussed throughout this book.

to know the limitations of each formula or rela-
tionship : when it is valid and when not. In this 
book, the more general equations have been given 
numbers, but even these can have a limited range 
of validity (often stated in brackets to the right of 
the equation).

 6. Try to solve the problem approximately, to see 
if it is doable (to check if enough information has 
been given) and reasonable. Use your intuition, and 
make rough calculations : see “Order of  Magnitude 
Estimating” in Section 1 9 6. A rough calculation, 
or  a reasonable guess about what the range of 
final answers might be, is very useful. And a rough 
calculation can be checked against the final answer 
to catch errors in calculation, such as in a decimal 
point or the powers of 10.

 7. Solve the problem, which may include alge-
braic manipulation of equations and>or numerical 
calculations. Recall the mathematical rule that 
you need as  many independent equations as you 
have unknowns; if you have three unknowns, for 
example, then you need three independent equa-
tions. It is usually best to work out the algebra 
symbolically before putting in the numbers. Why? 
Because (a) you can then solve a whole class of 
similar problems with different numerical values; 
(b) you can check your result for cases already 
understood (say,  u = 0°  or 90°); (c) there may be 
cancellations or other simplifications; (d) there is 
usually less chance for numerical error; and (e) you 
may gain better insight into the problem.

 8. Be sure to keep track of units, for they can 
serve as a check (they must balance on both sides 
of any equation).

 9. Again consider if your answer is reasonable. 
The use of dimensional analysis, described in 
Section 1 9 7, can also serve as a check for many 
problems.

      P
R

O
B

L
E

M

 S O L V I N G

 1. Read and reread written problems carefully. 
A  common error is to skip a word or two when 
 reading, which can completely change the meaning 
of a problem.

 2. Draw an accurate picture or diagram of the 
 situation. (This is probably the most overlooked, 
yet most crucial, part of solving a problem.) Use 
arrows to represent vectors such as velocity or 
force, and label the vectors with appropriate 
symbols. When dealing with forces and applying 
Newton’s laws, make sure to include all forces on 
a given object, including unknown ones, and make 
clear what forces act on what object (otherwise 
you may make an error in determining the net 
force on a particular object).

 3. A separate free-body diagram needs to be 
drawn for each object involved, and it must show 
all the forces acting on a given object (and only on 
that object). Do not show forces that act on other 
objects.

 4. Choose a convenient xy coordinate system (one 
that makes your calculations easier, such as one 
axis in the direction of the acceleration). Vectors 
are to be resolved into components along the 
coordinate axes. When using Newton’s second law, 
apply  πF5 = ma5  separately to x and y components, 
remembering that x direction forces are related to 
ax , and similarly for y. If more than one object is 
involved, you can choose different (convenient) 
coordinate systems for each.

 5. List the knowns and the unknowns (what you 
are trying to determine), and decide what you 
need in order to find the unknowns. For prob-
lems in the present Chapter, we use Newton’s laws. 
More generally, it may help to see if one or more 
 relationships (or equations) relate the unknowns 
to the knowns. But be sure each relationship is 
applicable in the given case. It is very important 

In General

M04_GIAN0279_05_GE_C04.indd   126 13/04/23   5:42 PM



Questions 127

Summary
Newton’s three laws of motion are the basic classical laws 
describing motion.

Newton’s first law (the law of inertia) states that if the net 
force on an object is zero, an object originally at rest remains 
at rest, and an object in motion remains in motion in a straight 
line with constant velocity.

Newton’s second law states that the acceleration of an 
object is directly proportional to the net force acting on it, and 
inversely proportional to its mass:

πF5 = ma5. (4 – 1a)

Newton’s second law is one of the most important and funda-
mental laws in classical physics.

Newton’s third law states that whenever one object exerts 
a force on a second object, the second object always exerts a 
force on the first object which is equal in magnitude but oppo-
site in direction:

F5AB = -F5BA, (4 – 2)

where F5BA is the force on object B exerted by object A. 

This is true even if objects are moving and accelerating, and>or  
have  different masses.

The tendency of an object to resist a change in its motion 
is called inertia. Mass is a measure of the inertia of an object.

Weight refers to the gravitational force on an object, and is 
equal to the product of the object’s mass m and the acceleration 
of gravity g5:

F5G = mg5 . (4 – 3)

Force, which is a vector, can be considered as a push or 
pull; or, from Newton’s second law, force can be defined as an 
action capable of giving rise to acceleration. The net force on 
an object is the vector sum of all forces acting on that object.

For solving problems involving the forces on one or 
more objects, it is essential to draw a free-body diagram for 
each object, showing all the forces acting on only that object. 
Newton’s second law can be applied to the vector components 
for each object.

Questions
 1. Why does a child in a wagon seem to fall backward when 

you give the wagon a sharp pull forward?
 2. A box rests on a frictionless part of a truck bed. The truck  

driver starts the truck and accelerates forward. The box 
immediately starts to slide toward the rear of the truck bed. 
Discuss the motion of the box, in terms of Newton’s laws, 
as seen (a) by Francesca standing on the ground beside the 
truck, and (b) by Phil who is riding on the truck (Fig. 4 9 27).

 3. If an object is moving, is it possible for the net force acting 
on it to be zero? Explain.

 4. If the acceleration of an object is zero, are no forces acting 
on it? Explain.

 5. Only one force acts on an object. Can the object have zero 
acceleration? Can it have zero velocity? Explain.

 6. When a golf ball is dropped to the pavement, it bounces 
back up. (a) Is a force needed to make it bounce back up? 
(b) If so, what exerts the force?

 7. If you walk on a log floating on a lake, why does the log 
move in the opposite direction?

 8. (a) Why do you push down harder on the pedals of a 
bicycle when first starting out than when moving at constant 
speed? (b) Why do you need to pedal at all when cycling 
at constant speed?

 9. A stone hangs by a fine thread from the ceiling, and a 
 section of the same thread dangles from the bottom of  
the stone (Fig. 4 9 28). If a person gives a sharp pull on the 
dangling thread, where is the thread likely to break: below 
the stone or above it? What if the person gives a slow and 
steady pull? Explain your answers.

FIGURE 4 – 28   
Question 9.

 10. The force of gravity on a 2-kg rock is twice as great as 
that on a 1-kg rock. Why then doesn’t the heavier rock fall 
faster?

 11. You pull a box with a constant force across a frictionless 
table using an attached rope held horizontally. If you now 
pull the rope with the same force at an angle to the hori-
zontal (with the box remaining flat on the table), does the 
acceleration of the box increase, decrease, or remain the 
same? Explain.

 12. When an object falls freely under the influence of gravity 
there is a net force mg exerted on it by the Earth. Yet by 
Newton’s third law the object exerts an equal and opposite 
force on the Earth. Does the Earth move? Explain.

 13. Compare the effort (or force) needed to lift a 10-kg object 
when you are on the Moon with the force needed to lift it 
on Earth. Compare the force needed to throw a 2-kg object 
horizontally with a given speed on the Moon and on Earth.

a5

Box

FIGURE 4 – 27   
Question 2.
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FIGURE 4 – 33   
MisConceptual 
Question 4.

FIGURE 4 – 30   
MisConceptual 
Question 1.

 14. According to Newton’s third law, each team in a tug of war 
(Fig. 4 9 29) pulls with equal force on the other team. What, 
then, determines which team will win?

FIGURE 4 – 29  Question 14. A tug of war. Describe 
the forces on each of the teams and on the rope.

 15. When you stand still on the ground, how large a force does 
the ground exert on you? Why doesn’t this force make you 
rise up into the air?

 16. Whiplash sometimes results from an automobile accident 
when the victim’s car is struck violently from the rear. 
Explain why the head of the victim seems to be thrown 
backward in this situation. Is it really?

 17. Mary exerts an upward force of 40 N to hold a bag of 
 groceries. Describe the “reaction” force (Newton’s third 
law) by stating (a) its magnitude, (b) its direction, (c) 
on what object it is exerted, and (d) by what object it is 
exerted.

 18. A father and his young daughter are ice skating. They 
face each other at rest and then push each other so they 
begin moving in opposite directions. Which one has the 
greater speed? Explain.

 19. What would your bathroom scale read if you weighed your-
self on an inclined plane? Assume the mechanism functions 
properly, even at an angle.

 20. Which of the following objects weighs about 1 N: (a) an 
apple, (b) a mosquito, (c) this book, (d) you?

 21. Why might your foot hurt if you kick a heavy desk or a wall?
 22. When you are running and want to stop quickly, you must 

decelerate quickly. (a) What is the origin of the force that 
causes you to stop? (b) Estimate (using your own expe-
rience) the maximum rate of deceleration of a person 
running at top speed to come to rest.

 23. Suppose that you are standing on top of a cardboard carton 
that just barely supports you. What would happen to it if 
you jumped up into the air? It would: (a) collapse; (b) be 
unaffected; (c) spring upward a bit; (d) move sideways. 
Explain your answer.

MisConceptual Questions
 1. A truck is traveling horizontally to the right (Fig. 4 9 30). 

When the truck starts to slow down, the crate on the 
 frictionless truck bed starts to slide. In what direction  
could the net force be on the crate? 
(a) No direction. The net force is zero. 
(b) Straight down (gravity). 
(c) Straight up (the normal force). 
(d) Horizontal and to the right. 
(e) Horizontal and to the left.

 2. George, in the foreground of Fig. 4 9 31, is able to move the 
large truck because 
(a) he is stronger than the truck. 
(b) he is heavier in some respects than the truck. 
(c) the truck offers no resistance because its brakes are off. 
(d) the ground exerts a greater friction force on George than 

it does on the truck. 
(e) he exerts a greater 

force on the truck 
than the truck 
exerts back on 
him.

 3. A bear sling, Fig. 4 9 32, is used in some national parks for 
placing backpackers’ food out of the reach of bears. As the 
backpacker raises the pack by pulling down on the rope, 
the force F needed: 
(a) decreases as the pack rises until the rope is straight across. 
(b) doesn’t change. 
(c) increases until the rope is straight. 
(d) increases but the rope always sags where the pack hangs.

FIGURE 4 – 32   
MisConceptual  
Question 3.

F5

 4. What causes the boat in Fig. 4 9 33 to move forward? 
(a) The force the man exerts on the paddle. 
(b) The force the paddle exerts on the water. 
(c) The force the water exerts on the paddle. 
(d) The motion of the water itself.

FIGURE 4 – 31   
MisConceptual  
Question 2.
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 5. You are trying to push your stalled car. Although you apply 
a horizontal force of 400 N on the car, it doesn’t budge, 
and neither do you. What other force(s) must also have a 
magnitude of 400 N?
(a) The force exerted by the car on you.
(b) The friction force exerted by the car on the road.
(c) The normal force exerted by the road on you.
(d) The friction force exerted by the road on you.

 6. When a skier skis down a hill, the normal force exerted on 
the skier by the hill is 
(a) equal to the weight of the skier. 
(b) greater than the weight of the skier. 
(c) less than the weight of the skier.

 7. A golf ball is hit with a golf club. While the ball flies 
through the air, which forces act on the ball? Neglect air 
resistance.
(a) The force of the golf club acting on the ball.
(b) The force of gravity acting on the ball.
(c) The force of the ball moving forward through the air.
(d) All of the above.
(e) Both (a) and (b).

 8. Suppose an object is accelerated by a force of 100 N. 
Suddenly a second force of 100 N in the opposite direc-
tion is exerted on the object, so that the forces cancel. The 
object 
(a) quickly stops. 
(b) decelerates gradually to rest. 
(c) continues at the velocity it had before the second force 

was applied. 
(d) is gradually brought to rest and then accelerates in the 

 direction of the second force. 

 9. You are pushing a heavy box across a rough floor. When 
you are initially pushing the box and it is accelerating, 
(a) you exert a force on the box, but the box does not exert 

a force on you.
(b) the box is so heavy it exerts a force on you, but you do 

not exert a force on the box.
(c) the force you exert on the box is greater than the force 

of the box pushing back on you.
(d) the force you exert on the box is equal to the force of 

the box pushing back on you.
(e) the force that the box exerts on you is greater than the 

force you exert on the box.

 10. Two 5-newton boxes are attached to opposite ends of 
a spring scale and suspended from pulleys as shown in 
Fig. 4 9 34. What is the reading on the scale?
(a) 0 N.
(b) Between 0 and 5 N.
(c) 5 N.

(d) Between 5 and 10 N.
(e) 10 N.

5 N5 N

FIGURE 4 – 34  MisConceptual Question 10.

 11. Two tug of war opponents each pull with a force of 500 N 
on opposite ends of a rope. Assume the rope is massless. 
What is the tension in the rope?
(a) 0 N.
(b) 250 N.
(c) 500 N.

(d) 1000 N.
(e) Impossible to tell.

 12. The normal force on an extreme skier descending a very 
steep slope (Fig. 4 9 35) can be zero if 
(a) his speed is great enough. 
(b) he leaves the slope (no longer touches the snow). 
(c) the slope is greater than 75°. 
(d) the slope is vertical (90°).

FIGURE 4 – 35  MisConceptual Question 12.

 13. To pull an old stump out of the ground, you and a friend tie 
two ropes to the stump. You pull on it with a force of 500 N 
to the north while your friend pulls with a force of 450 N to 
the northwest. The total force exerted by the two ropes is
(a) less than 950 N.
(b) exactly 950 N.

(c) more than 950 N.

Problems
4 – 4 to 4 – 6  Newton’s Laws, Gravitational Force,  

Normal Force [Assume no friction.]
 1. (I) What net force is needed to accelerate a 45@kg sled at 

1.4 m>s2 on horizontal frictionless ice?
 2. (I) What is the weight of a 74-kg astronaut (a) on Earth, 

(b) on the Moon  (g = 1.7 m>s2),  (c) on Mars  (g = 3.7 m>s2), 
(d) in outer space traveling with constant velocity?

 3. (I) How much tension must a rope withstand if it is used 
to accelerate a 1210-kg car horizontally along a frictionless 
surface at 1.35 m>s2?

 4. (I) A net force of 215 N accelerates a bike and rider at 
2.30 m>s2. What is the mass of the bike and rider together?

 5. (II) What average force is required to stop a 950-kg car in 
8.0 s if the car is traveling at 95 km>h?

 6. (II) According to a simplified model of a mammalian heart, 
at each pulse approximately 20 g of blood is accelerated from 
0.25 m>s to 0.35 m>s during a period of 0.10 s. What is the 
magnitude of the force exerted by the heart muscle?

 7. (II) Superman must stop a 120@km>h train in 150 m to keep 
it from hitting a stalled car on the tracks. If the train’s mass 
is 3.6 * 105 kg,  how much force must he exert? Compare to 
the weight of the train (give as %). How much force does 
the train exert on Superman?
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FIGURE 4 – 36  Problem 13.

 8. (II) A person has a reasonable chance of surviving an 
 automobile crash if the deceleration is no more than 30 g’s. 
Calculate the force on a 65-kg person accelerating at this 
rate. What distance is traveled if brought to rest at this 
rate from 85 km>h?

 9. (II) Estimate the average force exerted by a shot-putter on a 
7.0-kg shot if the shot is moved through a distance of 2.8 m and 
is released with a speed of 13 m>s.

 10. (II) A 0.140-kg baseball traveling 35.0 m>s strikes the catcher’s 
mitt, which, in bringing the ball to rest, recoils backward 11.0 cm. 
What was the average force applied by the ball on the glove?

 11. (II) A fi sherman yanks a fi sh vertically out of the water with 
an acceleration of 2.5 m>s2 using very light fi shing line that has 
a breaking strength of 18 N ( L  4 lb). The fi sherman unfortu-
nately loses the fi sh as the line snaps. What can you say about 
the mass of the fi sh?

 12. (II) How much tension must a cable withstand if it is used to 
accelerate a 1400-kg car vertically upward at 0.70  m>s2?

 13. (II) A 20.0-kg box rests on a table. (a) What is the weight 
of the box and the normal force acting on it? (b) A 10.0-kg 
box is placed on top of the 20.0-kg box, as shown in Fig. 4 9 36. 
Determine the normal force that the table exerts on the 20.0-kg 
box and the normal force that the 20.0-kg box exerts on the 
10.0-kg box.

20.0 kg

10.0 kg

 
 14. (II) A particular race car can cover a quarter-mile track 

(402 m) in 6.40 s starting from a standstill. Assuming the 
 acceleration is constant, how many horizontal “g’s” does 
the driver  experience? If the combined mass of the driver 
and race car is 535 kg, what horizontal force must the road 
exert on the tires? Ignore air resistance.

 15. (II) A 14.0-kg bucket is lowered vertically by a rope in 
which there is 132 N of tension at a given instant. What is 
the acceleration of the bucket? Is it up or down?

 16. (II) A 75-kg petty thief wants to escape from a third-story 
jail window. Unfortunately, a makeshift rope made of sheets 
tied together can support a mass of only 62 kg. How might 
the thief use this “rope” to escape? Give a quantitative 
answer.

 17. (II) A woman stands on a bathroom scale in a motionless 
elevator. When the elevator begins to move, the scale briefl y 
reads only 0.75 of her regular weight. Calculate the acceler-
ation of the elevator, and fi nd the direction of acceleration.

 18. (II) Can cars “stop on a dime”? Calculate the acceleration 
of a 1400-kg car if it can stop from 35 km>h on a dime 
(diameter = 1.7 cm).  How many g’s is this? What is the 
force felt by the 68-kg occupant of the car?

 19. (II) The cable supporting a 2375-kg elevator has a maximum 
strength of 24,950 N. What maximum upward acceleration 
can it give the elevator without breaking?

 20. (II) Using focused laser light, optical tweezers can apply a 
force of about 10 pN (piconewtons) to a 1.0@mm-diameter 
polystyrene bead, which has a density about equal to that 
of water: a volume of 1.0 cm3 has a mass of about 1.0 g. 
Estimate the bead’s acceleration in g’s.

 21. (II) A rocket with a mass of 2.45 * 106 kg is launched by 
exerting a vertical force of 3.55 * 107 N on the gases it 
expels. Determine (a) the acceleration of the rocket, (b) its 
velocity after 8.0 s, and (c) how long it takes to reach an 
altitude of 9500 m. Assume g remains constant, and ignore 
the mass of gas expelled (not realistic).

 22. (II) (a) What is the acceleration of two falling sky divers 
(total  mass = 148 kg  including parachute) when the 
upward force of air resistance is equal to one-fourth of 
their weight? (b) After opening the parachute, the divers 
descend leisurely to the ground at constant speed. What 
now is the force of air resistance on the sky divers and 
their parachute? 

 23. (II) An elevator (mass 4850 kg, with people) is to be designed so 
that the maximum acceleration is 0.0640 g. What are the 
maximum and minimum forces the motor should exert 
on the supporting cable?

 24. (II) An exceptional standing jump would raise a person 0.80 m 
off the ground. To do this, what force must a 68-kg person 
exert against the ground? Assume the person crouches a 
distance of 0.20 m prior to jumping, and thus the upward force 
has this distance to act over before he leaves the ground.

 25. (II) High-speed elevators function under two limitations: 
(1) the maximum magnitude of vertical acceleration that 
a  typical human body can experience without discomfort 
is about 1.2 m>s2 , and (2) the typical maximum speed 
 attainable is about 9.0 m>s. You board an elevator on a 
skyscraper’s ground fl oor and are transported 180 m above 
the ground level in three steps: acceleration of magnitude 
1.2 m>s2 from rest to 9.0 m>s, followed by constant upward 
velocity of 9.0 m>s, then deceleration of magnitude 1.2 m>s2 
from 9.0 m>s to rest. (a) Determine the elapsed time for 
each of these 3 stages. (b) Determine the change in the 
magnitude of the normal force, expressed as a % of your 
normal weight during each stage. (c) What fraction of the 
total transport time does the normal force not equal the 
person’s weight?

 26. (III) The 100-m dash can be run by the best sprinters in 10.0 s. 
A 66-kg sprinter accelerates uniformly for the fi rst 45 m to 
reach top speed, which he maintains for the remaining 55 m. 
(a) What is the average horizontal component of force exerted 
on his feet by the ground during acceleration? (b) What is 
the speed of the sprinter over the last 55 m of the race (that 
is, his top speed)?

 27. (III) A person jumps from the roof of a house 2.8 m high. 
When he strikes the ground below, he bends his knees so 
that his torso decelerates over an approximate distance of 
0.70 m. If the mass of his torso (excluding legs) is 42 kg, 
fi nd (a) his velocity just before his feet strike the ground, 
and (b) the average force exerted on his torso by his legs 
during  deceleration.
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FIGURE 4 – 38  
Problem 29.

FIGURE 4 – 40  
Problem 33.

FIGURE 4 – 41  
Problems 34 and 35.

FIGURE 4 – 37  
Problem 28.

32°48°

L

Top view

FA
5

FB
5

4 – 7 Newton’s Laws and Vectors [Ignore friction.]
 28. (I) A box weighing 66.0 N rests on a table. A rope tied to 

the box runs vertically upward over a pulley and a weight 
is hung from the other end (Fig. 4 9 37). 
Determine the force that the table 
exerts on the box if the weight hanging 
on the other side of the pulley weighs 
(a) 30.0 N, (b) 60.0 N, and (c) 90.0 N.

 29. (I) Draw the free-body  diagram for a basketball player 
(a) just before leaving the ground on a jump, and (b) while 
in the air. See Fig. 4 9 38.

 30. (I) A 650-N force acts in a northwesterly direction. A 
second 650-N force must be exerted in what direction so 
that the resultant of the two forces points westward? Illus-
trate your answer with a vector diagram.

 31. (I) Sketch the free-body diagram of a baseball (a) at the 
moment it is hit by the bat, and again (b) after it has left the 
bat and is fl ying toward the outfi eld. Ignore air  resistance.

 32. (II) Arlene is to walk across a “high wire” strung horizontally 
between two buildings 10.0 m apart. The sag in the rope when 
she is at the midpoint is 10.0°, as shown in Fig. 4 9 39. If her 
mass is 50.0 kg, what is the tension in the rope at this point?

10.0°

FIGURE 4 – 39  Problem 32.
 33. (II) A window washer pulls herself upward using the 

 bucket 9 pulley apparatus shown in Fig. 4 9 40. (a) How 
hard must she pull downward to raise herself 
slowly at constant speed? (b) If she increases 
this force by 15%, what will her acceleration 
be? The mass of the person plus the bucket 
is 78 kg.

 34. (II) One 3.2-kg paint bucket is hanging by 
a massless cord from another 3.2-kg paint 
bucket, also hanging by a massless cord, as 
shown in Fig. 4 9 41. (a)  If the  buckets are at 
rest, what is the tension in each cord? (b) If 
the two buckets are pulled upward with an 
acceleration of 1.45 m>s2 by the upper cord, 
calculate the tension in each cord.

 35. (II) The cords accelerating the buckets in Problem 34b, 
Fig. 4 9 41, each have a weight of 2.0 N. Determine the 
tension in each cord at the three points of attachment.

 36. (II) Two large snowcats are towing a housing unit north, as 
shown in Fig. 4 9 42. The sum of the forces F5A and F5B exerted on 
the unit by the hori-
zontal cables is north, 
parallel to the line L, 
and  FA = 4200 N.  
Determine FB and 
the magnitude of 
F5A + F5B.

 37. (II) A train locomotive is pulling two cars of the same mass 
behind it, Fig. 4 9 43. Determine the ratio of the tension in 
the coupling (think of it as a cord) between the locomotive 
and the fi rst car (F T1)  to that between the fi rst car and the 
 second car (F T2), for any nonzero acceleration of the train.

FT2
5 FT1

5Car 2 Car 1

FIGURE 4 – 43  Problem 37.

 38. (II) The two forces F51 and F52 shown in Fig. 4 9 44a and b 
 (looking down) act on an 18.5-kg object on a frictionless 
tabletop. If  F1 = 10.4 N  and  F2 = 16.2 N,  fi nd the net 
force on the object and its acceleration for (a) and (b).

90°

x

y

120°

x

y

(a) (b)

F1
5

F2
5

F2
5

F1
5

FIGURE 4 – 44  Problem 38.

 39. (II) A skateboarder, with an initial speed of 2.0 m>s, rolls virtu-
ally friction free down a straight incline of length 18 m in 3.3 s. 
At what angle u is the incline oriented above the horizontal?

FIGURE 4 – 42  
Problem 36.
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a5

2.20 2.15 2.10 2.05 2.00 kg

 40. (II) At the instant a race began, a 65-kg sprinter exerted a 
force of 720 N on the starting block at a 22° angle with respect 
to the ground. (a) What was the horizontal  acceleration of 
the sprinter? (b) If the force was exerted for 0.32 s, with what 
speed did the sprinter leave the starting block?

 41. (II) A mass m is at rest on a horizontal frictionless surface 
at  t = 0.  Then a constant force F0 acts on it for a time t0 . 
Suddenly the force doubles to 2F0 and remains constant 
until  t = 2 t0 .  Determine the total distance traveled from  
t = 0  to  t = 2 t0 .

 42. (II) A 3.0-kg object has the following two forces acting on it:

 F51 =  (16  iN + 12  jN)  N

 F52 =  ( -10  iN + 22  jN)  N
If the object is initially at rest, determine its velocity v⃗ at 
t = 4.0 s.

 43. (II) A 27-kg chandelier hangs from a ceiling on a vertical 
3.4-m-long wire. (a) What horizontal force would be neces-
sary to displace its position 0.15 m to one side? (b) What 
will be the tension in the wire?

 44. (II) Redo Example 4 9 13 but (a) set up the equations so that  
the direction of the acceleration a5 of each object is in the 
direction of motion of that object. (In Example 4 9 13, we 
took a5 as positive upward for both masses.) (b) Solve the 
equations to obtain the same answers as in Example 4 9 13.

 45. (II) The block shown in Fig. 4 9 45 has mass m = 7.0 kg and 
lies on a fixed smooth frictionless plane tilted at an angle 
u = 22.0° to the horizontal. (a) Determine the acceleration 
of the block as it slides down the plane. (b) If the block starts 
from rest 12.0 m up the plane from its base, what will be the 
block’s speed when it reaches the bottom of the incline?

u

y

x

m

FIGURE 4 – 45  Block on inclined 
plane. Problems 45 and 46.

 46. (II) A block is given an initial speed of 5.2 m>s up the 22.0° 
plane shown in Fig. 4 9 45. (a) How far up the plane will it  
go? (b) How much time elapses before it returns to its 
starting point? Ignore friction.

 47. (II) An object is hanging by a string from your rearview 
mirror. While you are accelerating at a constant rate from 
rest to 28 m>s in 5.0 s, what angle u does the string make 
with the vertical? See Fig. 4 9 46.

y

x
FT5

a5
u

mg5

FIGURE 4 – 46  Problem 47. 

 48. (II) A 2.0-kg purse is dropped from the top of the Lean ing 
Tower of Pisa and falls 55 m before reaching the ground with a 
speed of 27 m>s. What was the average force of air resistance?

 49. (II) Bob traverses a chasm by stringing a rope between a 
tree on one side of the chasm and a tree on the opposite 
side, 25 m away, Fig. 4 9 47. Assume the rope can provide 
a tension force of up to 31 kN before breaking, and use 
a “safety factor” of 10 (that is, the rope should only be 
required to undergo a tension force of 3.1 kN). (a) If Bob’s 
mass is 72.0 kg, determine the distance x that the rope must 
sag at a point halfway across if it is to be within its recom-
mended safety range. (b) If the rope sags by only one-fourth 
the distance found in (a), determine the tension force in the 
rope. Will the rope break?

x

FIGURE 4 – 47  Problem 49.

 50. (II) As shown in Fig. 4 9 48, five balls (masses 2.00, 2.05, 2.10, 
2.15, 2.20 kg) hang from a crossbar. Each mass is supported 
by “5-lb test” fishing line which will break when its  tension 
force exceeds  22.2 N (   = 5.00 lb).  
When this device is placed in an 
elevator, which accelerates 
upward, only the lines 
attached to the 2.05 
and 2.00 kg masses do 
not break. Within what 
range is the elevator’s 
acceleration?

 51. (II) A high-speed 14-car Italian train has a mass of 640 metric 
tons (640,000 kg). It can exert a maximum force of 400 kN 
horizontally against the tracks, whereas at maximum constant 
velocity (300 km>h), it exerts a force of about 150 kN. Calcu-
late (a) its maximum acceleration, and (b) estimate the total 
force of friction and air resistance at top speed.

 52. (II) A 450-kg piano is being unloaded from a truck by 
rolling it down a ramp inclined at 15°. There is negligible 
friction and the ramp is 4.0 m long. Two workers slow the 
rate at which the piano moves by pushing with a combined 
force of 1020 N parallel to the ramp. If the piano starts from 
rest, how fast is it moving at the bottom?

 53. (II) Uphill escape ramps are sometimes provided to the side 
of steep downhill highways for trucks with overheated brakes. 
For a simple 11° upward ramp, what length would be needed 
to stop a runaway truck traveling 140 km>h? Note the large 
size of your calculated length. (If sand is used for the bed of 
the ramp, its length can be reduced by a factor of about 2.)

 54. (II) A child on a sled reaches the bottom of a hill with a 
velocity of 10.0 m>s and travels 25.0 m along a horizontal 
straightaway to a stop. If the child and sled together have a 
mass of 60.0 kg, what is the average retarding force on the 
sled on the horizontal straightaway?

FIGURE 4 – 48   
Problem 50.
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FIGURE 4 – 54  
Problem 62.

m

M
F5

u
FIGURE 4 – 50  
Problem 58.

4.2 kg

C

2.2 kg

 55. (II) Figure 4 9 49 shows a block (mass mA) on a smooth 
hori zontal surface, connected by a thin cord that passes over 
a pulley to a second block (mB), which hangs vertically. 
(a) Draw a free-body diagram for each block, showing the 
force of gravity on each, the force (tension) exerted by the 
cord, and any normal force. (b) Apply Newton’s second law 
to fi nd formulas for the acceleration of the system and for 
the tension in the cord. Ignore friction and the masses of the 
pulley and cord.

mB

mA

FIGURE 4 – 49  
Problems 55, 56, 
and 57. Mass mA 
rests on a smooth 
horizontal 
surface; mB 
hangs vertically.

 56. (II) (a) If  mA = 14.0 kg  and  mB = 5.0 kg  in Fig. 4 9 49, 
determine the acceleration of each block. (b) If initially mA 
is at rest 1.250 m from the edge of the table, how long does 
it take to reach the edge of the table if the system is allowed 
to move freely? (c) If  mB = 1.0 kg,  how large must mA be 
if the acceleration of the system is to be kept at 1

100 g?
 57. (III) Determine a formula for the acceleration of the 

system shown in Fig. 4 9 49 (see Problem 55) if the cord has 
a non-negligible mass mC. Specify in terms of lA and lB, 
the lengths of cord from the respective masses to the pulley. 
(The total cord length is  l = lA + lB.)

 58. (III) Suppose the pulley in Fig. 4 9 50 is suspended by a 
cord C. Determine the tension in this cord after the masses 
are released and before 
one hits the ground. Ignore 
the mass of the pulley and 
cords.

 59. (III) Suppose two boxes on a frictionless table are 
connected by a heavy cord of mass 1.0 kg. Calculate the 
acceleration of each box and the tension at each end of 
the cord, using the free-body diagrams shown in Fig. 4 9 51. 
Assume  FP = 40.0 N,  and ignore sagging of the cord. 
Compare your results to Example 4 9 12 and Fig. 4 9 22.

 60. (III) Three blocks on a frictionless horizontal surface are 
in contact with each other as shown in Fig. 4 9 52. A force 
F5 is applied to block A (mass mA). (a) Draw a free-body 
diagram for each block. Determine (b) the acceleration of 
the system (in terms of mA, mB, and mC), (c) the net force 
on each block, and (d) the force of contact that each block 
exerts on its neighbor. (e) If  mA = mB = mC = 10.0 kg  
and  F = 96.0 N,  give numerical answers to (b), (c), and 
(d). Explain how your answers make sense intuitively.

mA mCmBF5

FIGURE 4 – 52  Problem 60.
 61. (III) A 2.5-kg block is placed on a frictionless table. The block 

is connected by massless ropes over massless pulleys to a 5.0-kg 
block on the right, and a 3.0-kg block on the left, as shown in 
Fig. 4 9 53. Find the acceleration of the block on the table.

FIGURE 4 – 53  Problem 61.

 62. (III) A small block of mass m rests on the sloping side of 
a triangular block of mass M which itself rests on a hori-
zontal table as shown in Fig. 4 9 54. Assuming all surfaces 
are  frictionless, determine the magnitude of the force F5 that 

must be applied to M so that m remains in 
a fi xed position relative to M (that is, m 

doesn’t move on the incline). [Hint: 
Take x and y axes horizontal 

and vertical.]

FIGURE 4 – 51  Problem 59. Free-body diagrams for each of the objects of the system shown in 
Fig. 4 9 22a. Vertical forces, F5N and F5G, are not shown.

y

x
 Cord

mC = 1.0 kg

(c)(b)(a)

FBT
5 FTB

5 FTA
5 FAT

5 FP
5

mB =
12.0 kg 

mA =
10.0 kg
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mC

mA mB

FTA

FTC

FIGURE 4 – 55   
Problem 63.

FIGURE 4 – 57  Problem 65.

3.1 kg1.7 kg

1.8 m

4.8 m

FIGURE 4 – 58   
Problem 67.

 63. (III) The double Atwood  
machine shown in Fig. 4 9 55 
has frictionless, massless 
pulleys and cords. Deter-
mine (a) the acceleration of 
masses mA, mB, and mC, 
and (b)  the tensions F TA 
and F TC in the cords.

 64. (III) Determine a formula for the magnitude of the force F5  
exerted on the large block (mC) in Fig. 4 9 56 so that the  
mass mA does not move relative to mC. Ignore all friction. 
Assume mB does not make contact with mC.

F5 mB
mC

mA

FIGURE 4 – 56  Problem 64.

 65. (III) The two masses shown in Fig. 4 9 57 are each initially 
1.8 m above the ground, and the massless frictionless pulley 
is 4.8 m above the ground. What maximum height does the 
lighter object reach after the system is released? [Hint: First 
determine the acceleration of the lighter mass and then its 
velocity at the moment the heavier one hits the ground. 
This is its “launch” speed. Assume the mass doesn’t hit the 
pulley or the ceiling. Ignore the mass of the cord.]

 66. (III) A particle of mass m, initially at rest at  x = 0,  is 
 accelerated by a force that increases in time as  F = Ct2 . 
Determine its velocity v and position x as a function of 
time.

General Problems
 67. A crane’s trolley at point P in Fig. 4 9 58 moves for a few 

seconds to the right with constant acceleration, and the 780-kg 
load hangs on a light cable at a 5.0° angle to the vertical as 
shown. What is the acceleration of the trolley and load?

5.0°

P

 68. A 75.0-kg person stands on a scale in an elevator. What 
does the scale read (in N and in kg) when (a) the elevator 
is at rest, (b) the elevator is climbing at a constant speed 
of 2.0 m>s, (c) the elevator is descending at 2.0 m>s, (d) the 
elevator is accelerating upward at 2.0 m>s2, (e) the elevator 
is accelerating downward at 2.0 m>s2?

 69. A city planner is working on the redesign of a hilly por tion 
of a city. An important consideration is how steep the 
roads can be so that even low-powered cars can get up the 
hills without slowing down. A particular small car, with a 
mass of 920 kg, can accelerate on a level road from rest to 
21 m>s (75 km>h) in 14.5 s. Using these data, calculate the 
maximum steepness of a hill.

 70. If a bicyclist of mass 65 kg (including the bicycle) can 
coast down a 6.5° hill at a steady speed of 6.0 km>h 
because of air resistance, how much force must be 
applied to climb the hill at the same speed (and the 
same air resistance)?

 71. Tom’s hang glider supports his weight using the six ropes 
shown in Fig. 4 9 59. Each rope is designed to support an 
equal fraction of Tom’s weight. Tom’s mass is 78.0 kg. What 
is the tension in each of the support ropes?

30°
30° 30°

30°

30°

c b a a b c
30°

FIGURE 4 – 59  Problem 71.

 72. A wet bar of soap  (m = 150 g)  slides freely down a ramp 
3.0 m long inclined at 8.5°. How long does it take to reach 
the bottom? How would this change if the soap’s mass were 
250 g?

 73. A parent pulls his child in a wagon across a floor. The child 
and wagon have a combined mass of 35 kg. The wagon 
handle is inclined at 55° to the horizontal, and the child 
and wagon (whose wheels are nearly frictionless) are accel-
erating at 0.42 m>s2. With what force is the parent pulling 
on the wagon handle?
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FIGURE 4 – 64  
Problem 79.

FT1FT2

FT4

F

FT3

24°

FT
5

a5

mg5
FIGURE 4 – 61  
Problem 75.

mBmA

uBuA

FIGURE 4 – 66  Problem 82.

FT
5

a5

mg5

mB

mA

uFIGURE 4 – 62  
Problems 76 and 77.

FIGURE 4 – 63  
Problem 78.

 74. Two equal masses in contact on a frictionless surface are 
acted on by the forces F1 and F2 as shown in Fig. 4 9 60. 
Determine the magnitude of the contact force exerted on 
each mass by the other when (a)  F2 = F1 ;  (b)  F2 = 1

2 F1 ; 
(c)  F2 = 0.  Express your answer in terms of m and F1 .

F1
5 F2

5m m

FIGURE 4 – 60  Problem 74.

 75. Andrea dangles her watch from a thin piece of string while 
the jetliner she is in accelerates for takeoff, which takes 
about 21 s. Estimate the takeoff speed 
of the aircraft if the string makes an 
angle of 24° with respect to the vertical, 
Fig. 4 9 61.

 76. A block (mass mA) lying on a fi xed frictionless inclined plane 
is connected to a mass mB by a cord passing over a pulley, as 
shown in Fig. 4 9 62. (a) Determine a formula for the acceler-
ation of the system in terms of mA, mB, u, and g. (b) What 
conditions apply to masses mA and mB for the acceleration to 
be in one direction (say, mA down the plane), or in the oppo-
site direction? Ignore the mass of the cord and pulley.

 77. (a) In Fig. 4 9 62, if  mA = mB = 1.00 kg  and  u = 38.0°,  what 
will be the acceleration of the system? (b) If  mA = 1.00 kg 
and the system remains at rest, what must the mass mB be? 
(c) Calculate the tension in the cord for (a) and (b).

 78. The masses mA and mB slide on the smooth (frictionless) 
inclines fi xed as shown in Fig. 4 9 63. (a) Determine a formula 
for the acceleration of the system in terms of mA, mB, uA, uB, 
and g. (b) If  uA = 34°,  uB = 21°,  and  mA = 5.0 kg,  what 
value of mB would keep the system at rest? What would be 
the tension in the cord (negligible mass) in this case? (c) What 
ratio, mA>mB, would allow the masses to move at constant 
speed along their ramps in either direction?

 79. (a) What minimum force F is needed to lift a piano (mass M) 
using the pulley apparatus shown in Fig. 4 9 64? (b) Deter-
mine the tension in each section of rope: 
F T1 ,  F T2 , F T3 , and F T4 . Assume pulleys 
are massless and frictionless, and that 
ropes are massless.

 80. In the design of a supermarket, there are to be several ramps 
connecting different parts of the store. Customers will have 
to push grocery carts up the ramps and it is desirable that 
this not be too diffi cult. The engineer has done a survey and 
found that almost no one complains if the force required 
is no more than 23 N. Ignoring friction, at what maximum 
angle u should the ramps be built, assuming a full 25-kg cart?

 81. A jet aircraft is accelerating at 3.8 m>s2 as it climbs at an angle 
of 18° above the horizontal (Fig. 4 9 65). What is the total force 
that the cockpit seat exerts on the 75-kg pilot?

18°

FIGURE 4 – 65  Problem 81.

 82. A 6750-kg helicopter accelerates upward at 0.80 m>s2 while 
lifting a 1080-kg frame at a construction site, Fig. 4 9 66. 
(a) What is the lift force exerted by the air on the helicopter 
rotors? (b) What is the tension in the cable (ignore its mass) 
which connects the frame to the helicopter? (c) What force 
does the cable exert on the  helicopter?

 83. An elevator in a tall building is allowed to reach a maximum 
speed of 3.5 m>s going down. What must the tension be in 
the cable to stop this elevator over a distance of 2.6 m if 
the elevator has a mass of 1650 kg including  occupants?

M04_GIAN0279_05_GE_C04.indd   135 13/04/23   5:42 PM



136 CHAPTER 4 Dynamics: Newton’s Laws of Motion

FIGURE 4 – 68   
Problem 88.

29°

FIGURE 4 – 67  Problem 86.

FIGURE 4 – 69  Problem 90.

7.5 kg

1.5 kg

5F

FIGURE 4 – 70  Problem 91.

65 m

45 m

FIGURE 4 – 71  Problem 92.

F5

mA

mB

uA = 59°

uB = 32°

 84. A fisherman in a boat is using a “10-lb test” fishing line. 
This means that the line can exert a force of 45 N without 
breaking  (1 lb = 4.45 N).  (a) How heavy a fish can the 
fisherman land if he pulls the fish up vertically at constant 
speed? (b) If he accelerates the fish upward at 2.0 m>s2 , 
what maximum weight fish can he land? (c) Is it possible 
to land a 15-lb trout on 10-lb test line? Why or why not?

 85. A “doomsday” asteroid with a mass of 2.0 * 1010 kg is 
hurtling through space. Unless the asteroid’s speed is 
changed by about 0.20 cm>s, it will collide with Earth and 
cause tremendous damage. Researchers suggest that a small 
“space tug” sent to the asteroid’s surface could exert a gentle 
constant force of 2.5 N. For how long must this force act?

 86. Three mountain climbers who are roped together in a line 
are ascending an icefield inclined at 29° to the hori zontal  
(Fig. 4 9 67). The last climber slips, pulling the second climber 
off his feet. The first climber is able to hold them both. If 
each climber has a mass of 75 kg,  calculate the tension in 
each of the two sections of rope between the three climbers.  
Ignore friction between the ice and the fallen climbers.

 87. A bicyclist can coast down a 5.0° hill at a constant speed 
of 6.0 km>h. If the force of air resistance is proportional to 
the speed v so that  Fair = cv,  calculate (a) the value of the 
constant c, and (b) the average force that must be applied 
(by the rider) in order to descend the hill at 18.0 km>h. The 
mass of the cyclist plus bicycle is 72.0 kg.

 88. Consider the system shown in Fig. 4 9 68 with  mA = 8.2 kg and   
mB = 11.5 kg.  The angles  uA = 59°  and  uB = 32°. (a) In the 
absence of friction, what force F5 would be required to pull the 
masses at a constant velocity up the fixed inclines? (b) The 
force F5 is now removed. What are the magnitude and direc-
tion of the acceleration of the two blocks? (c) In the absence 
of F5, what is the tension in the string?

 89. A car starts rolling down a 1-in-4 hill (1-in-4 means that 
for each 4 m traveled along the sloping road, the elevation 
change is 1 m). How fast is it going when it reaches the 
bottom after traveling 55 m? Ignore friction.

 90. An 18-kg child is riding in a child-restraint chair, securely 
fastened to the seat of a car (Fig. 4 9 69). Assume the car 
has speed 45 km>h when it hits a tree and is brought to 
rest in 0.20 s. Assuming constant deceleration during the 
collision, estimate the net horizontal force F that the 
straps of the restraint chair exert on the child to hold her 
in the chair.

 91. A 1.5-kg block rests on top of a 7.5-kg block (Fig. 4 9 70). 
The cord and pulley have negligible mass, and there is no 
significant friction anywhere. (a) What force F must be 
applied to the bottom block so the top block accelerates 
to the right at 2.2 m>s2? (b) What is the tension in the 
connecting cord?

 92. You are driving home in your 860-kg car at 15 m>s. At a 
point 45 m from the beginning of an intersection, you see 
a green traffic light change to yellow, which you expect will 
last 4.0 s, and the distance to the far side of the intersection 
is 65 m (Fig.  4 9 71). (a) If you choose to accelerate, your 
car’s engine will furnish a forward force of 1200 N. Will you 
make it completely through the intersection before the light 
turns red? (b) If you decide to panic stop, your brakes will 
provide a force of 2300 N. Will you stop before entering the 
intersection? Assume your car is 4 m long.
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(a)

(b)
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FIGURE 4 – 73  Problem 95. (a) Getting a car out 
of the mud, showing the forces on the boulder, on 
the car, and exerted by the person. (b) The free-
body diagram: forces on a small segment of rope.

FIGURE 4 – 72   
Problem 94.

 93. A person jumps from a height of 5.0 m into a swimming 
pool entering feet first with her hands at her sides. She 
maintains this position upon entering the water and experi-
ences a constant upward force equal to 350% of her weight 
due to the water itself. How far down does she go?

 94. Two rock climbers, Paul and Jeanne, use safety ropes of simi-
lar length. Jeanne’s rope is more elastic, called a dynamic 
rope by climbers. Paul has a static rope, not recommended 
for safety reasons. (a) Jeanne (Fig. 4 9 72) falls freely about 
2.0 m and then the rope stops her over a distance of 1.0 m. 
 Estimate how large a force (assume constant) she will 
feel from the rope. (Express the result in multiples of her 
weight.) (b) In a similar fall, Paul’s rope stretches by only 
30 cm. How many times his weight will the rope pull on 
him? Which climber is more likely to be hurt?

 95. (a) Finding her car stuck in the mud, a bright graduate of a 
good physics course ties a strong rope to the back bumper 
of the car, and the other end to a boulder, as shown in 
Fig. 4 9 73a. She pushes at the midpoint of the rope with 
her maximum effort, which she estimates to be a force 
FP L 300 N. The car just begins to budge with the rope at 
an angle u, which she estimates to be 5°. With what force is  
the rope pulling on the car? Neglect the mass of the rope.  
(b)  What is the “mechanical advantage” of this technique  
(see Example 4 9 14)? (c) At what angle u would this  technique  
become counterproductive? [Hint: Consider the forces on  
a small segment of rope where F5P acts, Fig. 4 9 73b.]

A N S W E R S  T O  E X E R C I S E S
A: No force is needed. The car accelerates out from under the 

cup, which tends to remain at rest as seen from the refer-
ence frame of the street. Think of Newton’s first law (see 
Example 4 9 1).

B: (i) The same; (ii) the tennis ball; (iii) Newton’s third law for 
part (i), second law for part (ii).

C: (b).
D: (a).
E: (b).
F: 58.0 N.
G: (b).
H: Yes; no.
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CHAPTER-OPENING QUESTION—Guess now!
You revolve a ball around you in a horizontal circle 
at constant speed on a string, as shown here from 
above. Which path will the ball follow if you let go 
of the string when the ball is at point P?

P
(c)

(d)

(e)

(b)(a)

Using Newton’s Laws: Friction, 
Circular Motion, Drag Forces

Newton’s laws are fundamental in physics. 
These photos show two situations of using 
Newton’s laws which involve some new 
elements in addition to those discussed in the 
previous Chapter. The downhill skier 
illustrates friction on an incline; she is also 
retarded by air resistance, a velocity-
dependent force. 

The people on the rotating amusement  
park ride below illustrate the dynamics of 
circular motion. 

CONTENTS
5–1 Using Newton’s Laws  

with Friction

5–2 Uniform Circular  
Motion : Kinematics

5–3 Dynamics of Uniform  
Circular Motion

5–4 Highway Curves: Banked  
and Unbanked

5–5 Nonuniform Circular  
Motion

5–6 Velocity-Dependent Forces:  
Drag and Terminal Velocity

*

T his chapter continues our study of Newton’s laws and emphasizes their 
fundamental importance in physics. We will see how to apply Newton’s 
laws to understand important situations including friction, and in  

circular motion, as well as with drag forces which are velocity-dependent (an 
optional-advanced Section).

C

H
A P T E

R

5
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SECTION 5–1 Using Newton’s Laws with Friction 139

5–1  Using Newton’s Laws with Friction
Until now we have mostly ignored friction, but it must be taken into account in 
most practical situations. Friction exists between two solid surfaces because even the 
smoothest looking surface is quite rough on a microscopic scale, Fig. 5 9 1. When we 
try to slide an object across a surface, these microscopic bumps impede the motion. 
Exactly what is happening at the microscopic level is not fully understood. One 
possibility is that the atoms on a bump of one surface may come so close to the 
atoms of the other surface that the atoms form a sort of “bond” or brief tiny weld 
between the two surfaces. Sliding an object across a surface is often jerky, perhaps 
due to the making and breaking of these bonds. 

Even when a round object rolls across a surface, there is still some friction, 
called rolling friction, although it is generally much less than when an object 
slides across a surface. 

We focus our attention now on sliding friction, which is usually called 
kinetic friction (kinetic is from the Greek for “moving”). When an object slides 
along a rough surface, the force of kinetic friction acts opposite to the direction 
of the object’s velocity. The magnitude of the force of kinetic friction depends 
on the nature of the two sliding surfaces. For given surfaces, experiments show 
that the friction force is approximately proportional to the normal force between 
the two surfaces, which is the force that either object exerts on the other and is 
perpendicular to their common surface of contact (see Fig. 5 9 2). The force of 
friction in many cases depends very little on the total surface area of contact; 
that is, the friction force on a book is roughly the same whether it is being 
slid across a table on its wide face or on its spine, assuming the surfaces have 
similar smoothness. We consider a simple model of friction in which we make 
this assumption that the friction force is independent of area. Then we write the 
proportionality between the magnitudes of the friction force F fr and the normal 
force F N as an equation by inserting a constant of proportionality, mk :

F fr = mk F N . [kinetic friction]

This relation is not a fundamental law. It is an experimental relation between 
the magnitude of the friction force Ffr , which acts parallel to the two surfaces, and 
the magnitude of the normal force FN, which acts perpendicular to the surfaces. It 
is not a vector equation since the two forces have different directions, perpendic-
ular to one another. The term mk is called the coeffi cient of kinetic friction, and its 
value depends on the roughness of the two surfaces. Measured values for a variety 
of surfaces are given in Table 5 9 1. These are only approximate, however, since m 
depends on whether the surfaces are wet or dry, on how much they have been 
sanded or rubbed, if any burrs remain, and other such factors. But mk (which has 
no units) is roughly independent of the sliding speed, as well as the area in contact.

v5

FIGURE 5 – 1  An object moving to 
the right on a table or fl oor. The 
two surfaces in contact are rough, at 
least on a microscopic scale. 

FIGURE 5 – 2  When an object is 
pulled along a surface by an 
applied force (F5A), the force of 
friction F5fr opposes the motion. 
The magnitude of F5fr is proportional 
to the magnitude of the normal 
force (FN). 

Ffr5

FA
5

FN
5

mg5

TABLE 5 – 1 Coeffi cients of Friction†

Surfaces
Coeffi cient of

Kinetic Friction, Mk

Coeffi cient of 
Static Friction, Ms

Wood on wood 0.2 0.4
Ice on ice 0.03 f    0.1
Metal on metal (lubricated) 0.07 0.1
Steel on steel (unlubricated) 0.6 0.7
Rubber on dry concrete 0.8 0.8
Rubber on wet concrete 0.5 0.7
Rubber on other solid surfaces 1 1 9 4
Tefl on® on Tefl on in air 0.04 0.04
Tefl on on steel in air 0.04 0.04
Lubricated ball bearings 60.01 60.01
Synovial joints (in human limbs) 60.01 60.01
†Values are approximate and intended only as a guide.
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What we have been discussing up to now is kinetic friction, when one object 
slides over another. There is also static friction, which refers to a force parallel to 
the two surfaces that can arise even when they are not moving. Suppose an object 
such as a desk is resting on a horizontal fl oor. If no horizontal force is exerted 
on the desk, there also is no friction force. But now suppose you try to push the 
desk, and it doesn’t move. You are exerting a horizontal force, but the desk isn’t 
moving, so there must be another force on the desk, in the opposite direction, 
keeping it from moving (the net force is zero on an object at rest). This is the force 
of static friction exerted by the fl oor on the desk. If you push with a greater force 
without moving the desk, the force of static friction in the opposite direction also 
has increased. If you push hard enough, the desk will eventually start to move, and 
kinetic friction takes over. At this point, you have exceeded the maximum force 
of static friction, which is given by  (F fr)max = ms F N ,  where ms is the coeffi cient 
of static friction (Table 5 9 1). Because the force of static friction can vary from 
zero to this maximum value, we write

F
 fr  …   ms F N . [static friction]

You may have noticed that it is often easier to keep a heavy object sliding 
than it is to start it sliding in the fi rst place. This is consistent with ms generally 
being greater than mk (see Table 5 9 1).

It seems that this simple relation for friction,  F
 fr … m F N ,  was fi rst established 

by the great “Renaissance man” Leonardo da Vinci (1452 9 1519).

EXAMPLE 5 − 1 Friction: static and kinetic. A 10.0-kg box rests on a hori-
zontal fl oor. The coeffi cient of static friction is  ms = 0.40  and the coeffi cient 
of kinetic friction is  mk = 0.30.  Determine the force of friction, F

 fr , acting on 
the box if a horizontal external applied force FA is exerted on it of magnitude: 
(a) 0, (b) 10 N, (c) 20 N, (d) 38 N, and (e) 40 N.

APPROACH We don’t know, right off, if we are dealing with static friction or 
kinetic friction, nor if the box remains at rest or accelerates. We need to draw a 
free-body diagram, and then determine in each case whether or not the box will 
move: the box starts moving if FA is greater than the maximum static friction force. 
The forces on the box are shown in Fig. 5 9 2: gravity mg5 ; the normal force exerted 
upward by the fl oor F5N ;  the horizontal applied force F5A ;  and the friction force F5fr .

SOLUTION The free-body diagram of the box is shown in Fig. 5 9 2. In the vertical 
direction there is no motion, so Newton’s second law in the vertical direction 
gives  πFy = may = 0, which tells us  F N - mg = 0.  Hence the normal force is

F N = mg =  (10.0 kg) (9.80 m>s2) = 98.0 N.

(a) Because  FA = 0  in this fi rst case, the box doesn’t move, and  F
 fr = 0.

(b) The force of static friction will oppose any applied force up to a maximum of

ms F N =  (0.40) (98.0 N) = 39 N.

When the applied force is  FA = 10 N,  the box will not move. Newton’s second 
law gives  πFx =  FA - F

 fr =  0,   so   F
 fr =  10 N.

(c) An applied force of 20 N is also not suffi cient to move the box. Thus  
Ffr = 20 N  to balance the applied force.
(d) The applied force of 38 N is still not quite large enough to move the box. So 
the friction force has now increased to 38 N to keep the box at rest.
(e) A force of 40 N will start the box moving since it exceeds the maximum 
force of static friction,  ms F N =  (0.40) (98 N) = 39 N.  Instead of static friction, 
we now have kinetic friction, and its magnitude is

F
 fr = mk F N =  (0.30) (98.0 N) = 29 N.

There is now a net (horizontal) force on the box of magnitude
F = 40 N - 29 N = 11 N,  so the box will accelerate at a rate

ax =
πF
m

=
11 N

10.0 kg
= 1.1 m>s2

as long as the applied force is 40 N. 

NOTE Figure 5 9 3 shows a graph that summarizes this Example.

FIGURE 5 – 3  Example 5 9 1. 
Magnitude of the force of friction as 
a function of the external force 
applied to an object initially at rest. 
As the applied force is increased in 
magnitude, the force of static 
friction increases in proportion until 
the applied force equals ms FN. 
If the applied force increases 
further, the object will begin to 
move, and the friction force drops to 
a roughly constant value 
characteristic of kinetic friction. 

Ffr = msFN
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FIGURE 5 – 2  Repeated for 
Example 5-1.
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Friction can be a hindrance. It slows down moving objects and causes heating 
and binding of moving parts in machinery. Friction can be reduced by using lubricants 
such as oil. More effective in reducing friction between two surfaces is to maintain 
a layer of air or other gas between them. Devices using this concept, which is not 
practical for most situations, include air tracks and air tables in which the layer of air 
is maintained by forcing air through many tiny holes. Another technique to maintain 
the air layer is to suspend objects in air using magnetic fi elds (“magnetic levitation”).

On the other hand, friction can be helpful. Our ability to walk (see Fig. 4 9 11) depends 
on friction between the soles of our shoes (or feet) and the ground. Walking involves 
static friction, not kinetic friction. The movement of a car, and also its stability, depend 
on friction. When friction is low,  such as on ice,  safe walking or driving becomes diffi cult.

EXERCISE A If  ms = 0.40  and  mg = 20 N,  what minimum force F will keep the box 
from falling: (a) 100 N; (b) 80 N; (c) 50 N; (d) 20 N; (e) 8 N?

EXERCISE B If mk FN were greater than FPx , what would you conclude?

EXAMPLE 5 − 3 Pulling against friction. A 10.0-kg box is being pulled along 
a  horizontal  surface by a force F

 P of 40.0 N applied at a 30.0° angle above hori-
zontal. This is like Example 4 9 11 except now there is friction, and we assume a 
coeffi cient of kinetic friction of 0.30. Calculate the acceleration.

APPROACH The free-body diagram is shown in Fig. 5 9 5. It is much like that 
in Fig. 4 9 21, but with one more force, that of friction.

SOLUTION The calculation for the vertical (y) direction is just the 
same as in Example 4 9 11,  mg =  (10.0 kg) (9.80 m>s2) = 98.0 N  and F Py =   

 (40.0 N) (sin 30.0° ) = 20.0 N.  With y positive upward and  ay = 0,  we have

 F N - mg + F Py = may

 F N - 98.0 N + 20.0 N = 0,

so the normal force is  FN = 78.0 N.  Now we apply Newton’s second law for 
the horizontal (x) direction (positive to the right), and include the friction force:

F Px - F
 fr = max .

The friction force is kinetic as long as  Ffr = mk F N  is less than  F Px =  

 

  
 (40.0 N) cos 30.0° = 34.6 N,  which it is:

F
 fr = mk F N =  (0.30) (78.0 N) = 23.4 N.

Hence the box does accelerate:

ax =
F Px - Ffr

m
=

34.6 N - 23.4 N
10.0 kg

= 1.1 m>s2.

In the absence of friction, as we saw in Example 4 9 11, the acceleration would 
be much greater than this.

NOTE Our fi nal answer has only two signifi cant fi gures because our least 
 signifi cant input value  (mk = 0.30)  has two.

FIGURE 5 – 5  Example 5 9 3. 

30.0°

FP
5

mg5

Ffr5

FN
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CONCEPTUAL EXAMPLE 5 − 2 A box against a wall. You can hold a box 
against a rough wall (Fig. 5 9 4) and prevent it from slipping down by pressing 
hard horizontally. How does the application of a horizontal force keep an object 
from moving vertically?

RESPONSE This won’t work well if the wall is slippery. You need friction. Even 
then, if you don’t press hard enough, the box will slip. The horizontal force you 
apply produces a normal force on the box exerted by the wall (net force hori-
zontally is zero since box doesn’t move horizontally.) The force of gravity mg, 
acting  downward on the box, can now be balanced by an upward static friction 
force whose maximum magnitude is proportional to the normal force. The harder 
you push, the greater FN is and the greater Ffr can be. If you don’t press hard 
enough, then mg 7 ms FN and the box begins to slide down.

mg5

F5

Ffr5

FN
5

FIGURE 5 – 4  Example 5 9 2. 
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EXAMPLE 5 − 5 Two boxes and a pulley. In Fig. 5 9 7a, two boxes are connected 
by a cord running over a pulley. The coefficient of kinetic friction between box A 
and the table is 0.20. We ignore the mass of the cord and pulley and any friction in 
the pulley, which means we can assume that a force applied to one end of the cord 
will have the same magnitude at the other end. We wish to find the acceleration 
of the system, a, which will have the same magnitude for both boxes assuming the 
cord doesn’t stretch. As box B moves down, box A moves to the right.

APPROACH The free-body diagrams for each box are shown in Figs. 5 9 7b  
and c. The forces on box A are the pulling force of the cord F T , gravity mA g,  
the normal force exerted by the table F N , and a  friction force exerted by the 
table Ffr . The forces on box B are gravity mB g, and the cord pulling up, F T .

SOLUTION Box A does not move vertically, so Newton’s second law tells us 
the normal force just balances the weight,

F N = mA g =  (5.0 kg) (9.8 m>s2) = 49 N.

In the horizontal direction, there are two forces on box A (Fig. 5 9 7b): FT, the 
tension in the cord (whose value we don’t know), and the force of friction

F
 fr = mk F N =  (0.20) (49 N) = 9.8 N.

The horizontal acceleration of box A is what we wish to find; we use Newton’s 
second law in the x direction,  πFAx = mA ax ,  which becomes (taking the posi-
tive direction to the right and setting  aAx = a):

πFA x = F T - F
 fr = mA a. [box A]

Next consider box B. The force of gravity  mB g =  (2.0 kg) (9.8 m>s2) = 19.6 N  
pulls  downward; and the cord pulls upward with a force F T . So we can write 
Newton’s second law for box B (taking the downward direction as positive):

πF By = mB g - F T = m B a. [box B]

[Notice that if a ≠ 0, then FT is not equal to mB g.]
We have two unknowns,  a and F T , and we also have two equations. We solve 

the box A equation for F T :
F T = F

 fr + mA a,
and substitute this into the box B equation:

m B g - F
 fr - mA a = m B a.

Now we solve for a and put in numerical values:

a =
mB g - Ffr

mA + mB
=

19.6 N - 9.8 N
5.0 kg + 2.0 kg

= 1.4 m>s2,

which is the acceleration of box A to the right, and of box B down.
If we wish, we can calculate FT using the third equation up from here:

FT = Ffr + mA a = 9.8 N +  (5.0 kg) (1.4 m>s2) = 17 N.

NOTE Box B is not in free fall. It does not fall at  a = g  because an additional 
force, FT, is acting upward on it.

FIGURE 5 – 7  Example 5 9 5. 
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CONCEPTUAL EXAMPLE 5 − 4 To push or to pull a sled? Your little sister 
wants a ride on her sled. If you are on flat snow, will you exert less force if you  
push her or pull her? See Figs. 5 9 6a and b. Assume the same angle u in each case.

RESPONSE Let us draw free-body diagrams for the sled 9 sister combination, 
as shown in Figs. 5 9 6c and d. They show, for the two cases: the force exerted by 
you, F5 (an unknown); by the snow, F5N and F5fr ; and gravity mg5. (a) If you push 
her, and u 7 0, there is a vertically downward component to your force. Hence 
the upward normal force exerted by the ground (Fig. 5 9 6c) will be larger than 
mg (where m is the mass of sister plus sled). (b) If you pull her, your force has 
a vertically upward component, so the normal force F N will be less than mg, 
Fig. 5 9 6d. Because the friction force is proportional to the normal force, F

 fr will 
be less if you pull her. So you can exert less force if you pull her.

(a)

(b)

(c) (d)

F5

NF5

F5

Ffr5 Ffr5
FN
5 F5

F5

mg5mg5

u

u

FIGURE 5 – 6  Example 5 9 4. 
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SECTION 5–1 Using Newton’s Laws with Friction 143

EXAMPLE 5 − 6 The skier. The skier in Fig.  5 9 8a descends a 30° slope. If 
the coefficient of kinetic friction is 0.10, what is her acceleration when she is in 
contact with the snow?

APPROACH We choose the x axis along the slope, positive downslope in the 
direction of the skier’s motion. The y axis is perpendicular to the surface. The 
forces acting on the skier (Fig. 5 9 8b) are gravity,  F5G = mg5,  which points vertically 
downward (not perpendicular to the slope), and the two forces exerted on her skis 
by the snow : the normal force perpendicular to the snowy slope (not vertical), 
and the friction force parallel to the surface. These three forces are shown acting 
at one point in Fig. 5 9 8b, which is our free-body diagram for the skier.

SOLUTION We have to resolve only one vector into components, the weight F5G,  
and its components are shown as dashed lines in Fig. 5 9 8c. To be general, we 
use u rather than 30° for now. We use the definitions of sine (“side opposite”) 
and cosine (“side adjacent”) to obtain the components:

 FGx = mg sin u,
 FGy = -mg cos u

where FGy is in the negative y direction. To calculate the skier’s acceleration 
down the hill, ax , we apply Newton’s second law to the x direction:

 πFx = max
 mg sin u - mk FN = max

where the two forces are the x component of the gravity force (+x direction) and 
the friction force (-x direction). We want to find the value of ax , but we don’t yet 
know FN in the last equation. Let’s see if we can get FN from the y component of 
Newton’s second law:

 πFy = may
 FN - mg cos u = may = 0

where we set  ay = 0  because there is no motion in the y direction (perpendicular 
to the slope) when the skier is in contact with the slope. Thus we can solve for FN :

FN = mg cos u

and we can substitute this into our equation above for max :

mg sin u - mk  (mg cos u) = max .

There is an m in each term which can be canceled out. Thus (setting  u = 30°  
and  mk = 0.10):

 ax = g sin 30° - mk g cos 30°
 = 0.50g - (0.10) (0.866)g = 0.41g.

The skier’s acceleration is 0.41 times the acceleration of gravity, which in 
numbers† is  a =  (0.41) (9.8 m>s2) = 4.0 m>s2.

NOTE The mass canceled out, so we have the useful conclusion that the  acceleration 
doesn’t depend on the mass. That such a cancellation sometimes occurs, and thus 
may give a useful conclusion as well as saving calculation, is a big advantage of 
working with the algebraic equations and putting in the numbers only at the end.

NOTE The friction force on high-speed alpine skiers is very small : it seems the 
heat produced under the skis by friction melts the snow so the skis float on tiny 
balls of water. Fast skiers are slowed more by air resistance, which they can reduce 
by going into a tuck to reduce their surface area. When going airborne (as over the 
top of a hill) they are slowed more (can’t hold that tuck, especially when landing) 
than when in contact with the snow.

P H Y S I C S  A P P L I E D
Skiing

P R O B L E M  S O LV I N G
It is often helpful to put in numbers  
only at the end

P H Y S I C S  A P P L I E D
Skiers are faster on snow than  
when airborne

In Chapter 4 we examined motion on ramps and inclines, and saw that it 
is usually an advantage to choose the x axis along the plane, in the direction of 
acceleration. There we ignored friction, but now we take it into account.

†We used values rounded off to 2 significant figures to obtain  a = 4.0 m>s2.  If we kept all the extra 
digits in our calculator, we would find  a = 0.4134 g L 4.1 m>s2.  This difference is within the expected 
precision (number of significant figures, Section 1 9 3).
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FIGURE 5 – 8  Example 5 9 6. A  
skier descending a slope;  F5G = mg5   
is the force of gravity (weight) on  
the skier. 
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144 CHAPTER 5 Using Newton’s Laws: Friction, Circular Motion, Drag Forces

EXAMPLE 5 − 7 A ramp, a pulley, and two boxes. A box of mass  mA = 10.0 kg   
rests on a surface inclined at  u = 37°  to the horizontal. It is connected by a 
lightweight cord, which passes over a massless and frictionless pulley, to a second 
box of mass mB, which hangs freely as shown in Fig. 5 9 9a. (a) If the coefficient 
of static friction is  ms = 0.40,  determine what range of values for mass mB will 
keep the system at rest. (b) If the coefficient of kinetic friction is  mk = 0.30,  and  
mB = 10.0 kg,  determine the acceleration of the system.

APPROACH Figure 5 9 9b shows two free-body diagrams for box mA because 
the force of  friction can be either up or down the slope, depending on which 
direction the box slides: (i) if  mB = 0  or is sufficiently small, mA would tend to  
slide down the incline, so F5fr would be directed up the incline; (ii) if mB is large 
enough, mA will tend to be pulled up the plane, so F5fr would point down the 
plane. The tension force exerted by the cord is labeled F5T. 

SOLUTION (a) For both cases (i) and (ii), Newton’s second law for the y direc-
tion (perpendicular to the plane) is the same:

F N - mA g cos u = mA ay = 0

since there is no y motion. So

F N = mA g cos u.

Now for the x motion. We consider case (i) first for which  πF = ma  gives

mA g sin u - F T - F
 fr = mA ax .

We want no acceleration,  ax = 0,  and we solve for F T since F T is related to mB 
(whose value we are seeking) by  F T = mB g  (see Fig. 5 9 9c). Thus

mA g sin u - F fr = F
 T = mB g.

We solve this for mB and set F fr at its maximum value  ms F N = ms mA g cos u  to 
find the minimum value that mB can have to prevent motion  (ax = 0):

 mB = mA sin u - ms mA cos u

 =  (10.0 kg) (sin 37° - 0.40 cos 37°) = 2.8 kg.

Thus if mB 6 2.8 kg, then box A will slide down the incline. 

In problems involving a slope or “inclined plane,” avoid making errors in 
the directions of the normal force and gravity. The normal force is not vertical: 
it is perpendicular to the slope or plane. And gravity is not perpen dicular to the 
slope—gravity acts vertically downward toward the center of the Earth.

C A U T I O N
Directions of gravity and  

the normal force

FIGURE 5 – 9  Example 5 9 7. Note choice of x and y axes. 
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