
This is a special edition of an established title widely used by colleges and
universities throughout the world. Pearson published this exclusive edition
for the benefit of students outside the United States and Canada. If you
purchased this book within the United States or Canada, you should be aware
that it has been imported without the approval of the Publisher or Author.

At a time when software products have become a part of almost every aspect of our daily
life — assisting with work, our commute, and staying fit, to give a few examples — the
need for courses on creating software increases by the day. Contrary to popular belief,
software engineering depends on factors above and beyond coding skills. Engineering
Software Products focuses on these activities, so important for producing dependable and
functional software.

Key Features

• Unique approach Written in an informal style, this book focuses on products and
not projects, unlike other texts on this subject. It covers topics such as personas
and scenarios, cloud computing, microservices, security, and DevOps, not present in
similar titles.

• Makes concepts relatable This book makes use of software systems that learners
are likely to use constantly or are already familiar with. This makes it easier for students
to understand software engineering techniques.

• Concise coverage Designed for a one-semester course, this book has concise
coverage of topics like software products, agile software engineering, scenarios and
user stories, software architecture, cloud-based software, security and privacy, and
code management.

• New appendix Written specifically for this Global Edition, this appendix explains
the differences between project-based and product-based software engineering.

Engineering Softw
are Products

An Introduction to M
odern Softw

are Engineering
Som

m
erville

G
LO

B
A

L
ED

IT
IO

N

Engineering Software Products
An Introduction to Modern

Software Engineering

Ian Sommerville

GLOBAL
EDITION

GLOBAL
EDITION G

L
O

B
A

L
ED

IT
IO

N

CVR_SOMM6349_01_GE_CVR.indd 1 17/10/20 2:46 PM

ENGINEERING SOFTWARE
PRODUCTS
An Introduction to Modern Software
Engineering

Global Edition

Ian Sommerville

Harlow, England • London • New York • Boston • San Francisco • Toronto • Sydney • Dubai • Singapore • Hong Kong
Tokyo • Seoul • Taipei • New Delhi • Cape Town • São Paulo • Mexico City • Madrid • Amsterdam • Munich • Paris • Milan

A01_SOME6349_01_GE_FM.indd 1 08/10/2020 21:27

Pearson Education Limited

KAO Two

KAO Park

Hockham Way

Harlow

CM17 9SR

United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsonglobaleditions.com

© Pearson Education Limited, 2021

The rights of Ian Sommerville to be identified as the author of this work have been asserted by him in accordance with the Copyright,

Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Engineering Software Products, 1st Edition, ISBN 978-0-13-521064-2
by Ian Sommerville, published by Pearson Education ©2020.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any

means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a

license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10

Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author

or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or

endorsement of this book by such owners. For information regarding permissions, request forms, and the appropriate contacts within

the Pearson Education Global Rights and Permissions department, please visit www.pearsoned.com/permissions.

This eBook is a standalone product and may or may not include all assets that were part of the print version. It also does not provide

access to other Pearson digital products like MyLab and Mastering. The publisher reserves the right to remove any material in this

eBook at any time.

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

ISBN 10: 1-292-37634-1

ISBN 13: 978-1-292-37634-9

eBook ISBN 13: 978-1-292-37635-6

http://www.pearsonglobaleditions.com
http://www.pearsoned.com/permissions/
http://www.pearsonglobaleditions.com
http://www.pearsoned.com/permissions.

Software products, such as stand-alone programs, web apps and services, and mobile
apps, have transformed our everyday life and work. There are tens of thousands of
software product companies, and hundreds of thousands of software engineers are
employed worldwide in software product development.

Contrary to what some people may think, engineering software products needs
more than coding skills. So, I’ve written this book to introduce some of the software
engineering activities that are important for the production of reliable and secure
software products.

Who is the book for?

The book has been designed for students taking a first course in software engineering.
People thinking about developing a product who don’t have much software engineer-
ing experience may also find it useful.

Why do we need a software engineering book that’s
focused on software products?

Most software engineering texts focus on project-based software engineering, where
a client develops a specification and the software is developed by another company.
However, the software engineering methods and techniques that have been developed
for large-scale projects are not suited to software product development.

PREFACE

A01_SOME6349_01_GE_FM.indd 3 08/10/2020 21:27

4 Preface

Students often find it difficult to relate to large, custom software systems. I think
that students find it easier to understand software engineering techniques when they
are relevant to the type of software that they constantly use. Also, many product engi-
neering techniques are more directly relevant to student projects than project-oriented
techniques.

Is this a new edition of your other software engineering
textbook?

No, this book takes a completely different approach and, apart from a couple of dia-
grams, does not reuse any material from Software Engineering, 10th edition.

What’s in the book?

Ten chapters cover software products, agile software engineering, features, scenarios
and user stories, software architecture, cloud-based software, microservices archi-
tecture, security and privacy, reliable programming, testing, and DevOps and code
management.

I’ve designed the book so that it’s suitable for a one-semester software engineering
course.

How is this book different from other introductory texts
on software engineering?

As I said, the focus is on products rather than projects. I cover techniques that most
other SE texts don’t cover, such as personas and scenarios, cloud computing, micro-
services, security, and DevOps. As product innovation doesn’t come from university
research, there are no citations or references to research and the book is written in an
informal style.

A01_SOME6349_01_GE_FM.indd 4 08/10/2020 21:27

Preface 5

What do I need to know to get value from the book?

I assume that you have programming experience with a modern object- oriented
 programming language such as Java or Python and that you are familiar with good
programming practice, such as the use of meaningful names. You should also under-
stand basic computing concepts, such as objects, classes, and databases. The program
examples in the book are written in Python, but they are understandable by anyone
with programming experience.

What extra material is available to help teachers
and instructors?

1. An instructor’s manual with solutions to exercises and quiz questions for all
chapters

2. Suggestions how you can use the book in a one-semester software engineering
course

3. Presentations for teaching (Keynote, PowerPoint, and PDF)

You can access this material along with additional material at: www.pearsonglobaleditions
.com

Where can I find out more?

I’ve written a couple of blog posts that are relevant to the book. These provide more
information about my thoughts on teaching software engineering and my motivation
for writing the book.

“Out with the UML (and other stuff too): reimagining introductory

courses in software engineering”

https://iansommerville.com/systems-software-and-technology/what-

should-we-teach-in-software-engineering-courses/

“Engineering Software Products”

https://iansommerville.com/systems-software-and-technology

/engineering-software-products/

A01_SOME6349_01_GE_FM.indd 5 08/10/2020 21:27

http://www.pearsonglobaleditions.com
https://iansommerville.com/systems-software-and-technology/what-should-we-teach-in-software-engineering-courses/
https://iansommerville.com/systems-software-and-technology/what-should-we-teach-in-software-engineering-courses/
https://iansommerville.com/systems-software-and-technology/engineering-software-products/
http://www.pearsonglobaleditions.com
https://iansommerville.com/systems-software-and-technology/engineering-software-products/

Acknowledgments

I’d like to thank the reviewers who made helpful and supportive suggestions when
they reviewed the initial proposal for this book:

Paul Eggert—UCLA Los Angeles
Jeffrey Miller—University of Southern California
Harvey Siy—University of Nebraska Omaha
Edmund S. Yu—Syracuse University
Gregory Gay—University of South Carolina
Josh Delinger—Towson University
Rocky Slavin—University of Texas San Antonio
Bingyang Wei—Midwestern State University

Thanks also to Adam Barker from St. Andrews University for keeping me right on
containers and to Rose Kernan who managed the production of the book.

Thanks, as ever, to my family for their help and support while I was writing the
book. Particular thanks to my daughter Jane, who did a great job of reading and
commenting on the text. She was a brutal editor! Her suggested changes significantly
improved the quality of my prose.

Finally, special thanks to our newest family member, my beautiful grandson
 Cillian, who was born while I was writing this book. His bubbly personality and
constant smiles were a very welcome distraction from the sometimes tedious job of
book writing and editing.

Ian Sommerville

6 Preface

A01_SOME6349_01_GE_FM.indd 6 08/10/2020 21:27

CONTENTS

Chapter 1 Software Products 11

1.1 The product vision 17

1.2 Software product management 21

1.3 Product prototyping 26

Key Points 27

Recommended Reading 28

Presentations, Videos, and Links 28

Exercises 29

Chapter 2 Agile Software Engineering 30

2.1 Agile methods 30

2.2 Extreme Programming 34

2.3 Scrum 37

Key Points 57

Recommended Reading 58

Presentations, Videos, and Links 58

Exercises 59

A01_SOME6349_01_GE_FM.indd 7 08/10/2020 21:27

8 Contents

Chapter 3 Features, Scenarios, and Stories 60

3.1 Personas 64

3.2 Scenarios 69

3.3 User stories 76

3.4 Feature identification 80

Key Points 89

Recommended Reading 90

Presentations, Videos, and Links 90

Exercises 90

Chapter 4 Software Architecture 92

4.1 Why is architecture important? 94

4.2 Architectural design 98

4.3 System decomposition 102

4.4 Distribution architecture 113

4.5 Technology issues 119

Key Points 123

Recommended Reading 124

Presentations, Videos, and Links 124

Exercises 125

Chapter 5 Cloud-Based Software 126

5.1 Virtualization and containers 128

5.2 Everything as a service 134

5.3 Software as a service 137

5.4 Multi-tenant and multi-instance systems 142

5.5 Cloud software architecture 150

Key Points 157

Recommended Reading 158

A01_SOME6349_01_GE_FM.indd 8 08/10/2020 21:27

Contents 9

Presentations, Videos, and Links 159

Exercises 159

Chapter 6 Microservices Architecture 160

6.1 Microservices 164

6.2 Microservices architecture 167

6.3 RESTful services 183

6.4 Service deployment 189

Key Points 192

Recommended Reading 193

Presentations, Videos, and Links 194

Exercises 194

Chapter 7 Security and Privacy 195

7.1 Attacks and defenses 198

7.2 Authentication 205

7.3 Authorization 211

7.4 Encryption 213

7.5 Privacy 223

Key Points 227

Recommended Reading 228

Presentations, Videos, and Links 229

Exercises 229

Chapter 8 Reliable Programming 231

8.1 Fault avoidance 233

8.2 Input validation 252

8.3 Failure management 259

Key Points 266

A01_SOME6349_01_GE_FM.indd 9 08/10/2020 21:27

10 Contents

Recommended Reading 266

Presentations, Videos, and Links 267

Exercises 267

Chapter 9 Testing 269

9.1 Functional testing 272

9.2 Test automation 283

9.3 Test-driven development 291

9.4 Security testing 295

9.5 Code reviews 298

Key Points 302

Recommended Reading 302

Presentations, Videos, and Links 303

Exercises 303

Chapter 10 DevOps and Code Management 305

10.1 Code management 309

10.2 DevOps automation 320

10.3 DevOps measurement 331

Key Points 336

Recommended Reading 336

Presentations, Videos, and Links 337

Exercises 337

Appendix 1 339

Index 354

A01_SOME6349_01_GE_FM.indd 10 08/10/2020 21:27

Software Products

This book introduces software engineering techniques that are used to develop
software products. Software products are generic software systems sold to
governments, businesses, and consumers. They may be designed to support a
business function, such as accounting; they may be productivity tools, such as
note-taking systems; or they may be games or personal information systems.
Software products range in size from millions of lines of code in large-scale busi-
ness systems to a few hundred lines of code in a simple app for mobile phones.

We all use software products every day on our computers, tablets, and
phones. I am using a software product—the Ulysses editor—to write this
book. I’ll use another editing product—Microsoft Word—to format the final
version, and I’ll use Dropbox to exchange the files with the publisher. On my
phone, I use software products (apps) to read email, read and send tweets,
check the weather, and so on.

The engineering techniques that are used for product development have
evolved from the software engineering techniques developed in the 20th cen-
tury to support custom software development. When software engineering
emerged as a discipline in the 1970s, virtually all professional software was
“one-off,” custom software. Companies and governments wanted to automate
their businesses, and they specified what they wanted their software to do. An
in-house engineering team or an external software company then developed
the software.

Examples of custom software that were developed around that time include:

■■ the U.S. Federal Aviation Administration’s air traffic management system;

■■ accounting systems for all of the major banks;

1

M01_SOME6349_01_GE_C01.indd 11 30/09/2020 15:49

12 Chapter 1 ■ Software Products

■■ billing systems for utility companies such as electricity and gas suppliers;

■■ military command and control systems.

Software projects were set up to develop these one-off systems, with
the software system based on a set of software requirements. The contract
between the software customer and the software development company
included a requirements document, which was a specification of the software
that should be delivered. Customers defined their requirements and worked
with the development team to specify, in detail, the software’s functionality
and its critical attributes.

This project-based approach dominated the software industry for more than
25 years. The methods and techniques that evolved to support project-based
development came to define what was meant by “software engineering.” The
fundamental assumption was that successful software engineering required a
lot of preparatory work before starting to write programs. For example, it was
important to spend time getting the requirements “right” and to draw graphical
models of the software. These models were created during the software design
process and used to document the software.

As more and more companies automated their business, however, it
became clear that most businesses didn’t really need custom software. They
could use generic software products that were designed for common busi-
ness problems. The software product industry developed to meet this need.
Project-based software engineering techniques were adapted to software
product development.

Project-based techniques are not suited to product development because of
fundamental differences between project-based and product-based software
engineering. These differences are illustrated in Figures 1.1 and 1.2.

Software projects involve an external client or customer who decides on
the functionality of the system and enters into a legal contract with the soft-
ware development company. The customer’s problem and current processes
are used as a basis for creating the software requirements, which specify
the software to be implemented. As the business changes, the supporting
software has to change. The company using the software decides on and
pays for the changes. Software often has a long lifetime, and the costs of
changing large systems after delivery usually exceed the initial software
development costs.

Software products are specified and developed in a different way. There is
no external customer who creates requirements that define what the software

M01_SOME6349_01_GE_C01.indd 12 30/09/2020 15:49

 Chapter 1 ■ Software Products 13

must do. The software developer decides on the features of the product, when
new releases are to be made available, the platforms on which the software
will be implemented, and so on. The needs of potential customers for the
software are obviously considered, but customers can’t insist that the software
includes particular features or attributes. The development company chooses
when changes will be made to the software and when they will be released
to users.

As development costs are spread over a much larger customer base,
product-based software is usually cheaper, for each customer, than custom
software. However, buyers of the software have to adapt their ways of work-
ing to the software, since it has not been developed with their specific needs
in mind. As the developer rather than the user is in control of changes, there

Figure 1.1 Project-based software engineering

Problem

Requirements Software

CUSTOMER

CUSTOMER and
DEVELOPER

DEVELOPER

implemented-by

helps-withgenerates

Figure 1.2 Product-based software engineering

Opportunity

Product
features Software

DEVELOPER

DEVELOPER DEVELOPER

implemented-by

realizesinspires

M01_SOME6349_01_GE_C01.indd 13 30/09/2020 15:49

14 Chapter 1 ■ Software Products

is a risk that the developer will stop supporting the software. Then the product
customers will need to find an alternative product.

The starting point for product development is an opportunity that a com-
pany has identified to create a viable commercial product. This may be an
original idea, such as Airbnb’s idea for sharing accommodations; an improve-
ment over existing systems, such as a cloud-based accounting system; or a
generalization of a system that was developed for a specific customer, such
as an asset management system.

Because the product developer is responsible for identifying the oppor-
tunity, they can decide on the features that will be included in the software
product. These features are designed to appeal to potential customers so that
there is a viable market for the software.

As well as the differences shown in Figures 1.1 and 1.2, there are two
other important differences between project-based and product-based soft-
ware engineering:

1. Product companies can decide when to change their product or take their
product off the market. If a product is not selling well, the company can
cut costs by stopping its development. Custom software developed in
a software project usually has a long lifetime and has to be supported
throughout that lifetime. The customer pays for the support and decides
when and if it should end.

2. For most products, getting the product to customers quickly is critical.
Excellent products often fail because an inferior product reaches the mar-
ket first and customers buy that product. In practice, buyers are reluctant
to change products after they have invested time and money in their initial
choice.

Bringing the product to the market quickly is important for all types of prod-
ucts, from small-scale mobile apps to enterprise products such as Microsoft
Word. This means that engineering techniques geared to rapid software devel-
opment (agile methods) are universally used for product development. I explain
agile methods and their role in product development in Chapter 2.

If you read about software products, you may come across two other terms:
“software product lines” and “platforms” (Table 1.1). Software product lines
are systems designed to be adaptable to meet the specific needs of customers
by changing parts of the source code. Platforms provide a set of features that
can be used to create new functionality. However, you always have to work
within the constraints defined by the platform suppliers.

M01_SOME6349_01_GE_C01.indd 14 30/09/2020 15:49

 Chapter 1 ■ Software Products 15

When software products were first developed, they were delivered on a
disk and installed by customers on their computers. The software ran on those
computers and user data were stored on them. There was no communication
between the users’ computers and the vendor’s computers. Now, customers
can download products from either an app store or the vendor’s website.

Some products are still based on a stand-alone execution model in which all
computation is carried out on the product owner’s computers. However, ubiq-
uitous high-speed networking means that alternative execution models are now
available. In these models, the product owner’s computers act as a client, with
some or all execution and data storage on the vendor’s servers (Figure 1.3).

There are two alternatives to stand-alone software products:

1. Hybrid products Some functionality is implemented on the user’s com-
puter and some on the product vendor’s servers that are accessed over
the Internet. Many phone apps are hybrid products with computationally
intensive processing offloaded to remote servers.

2. Service-based products Applications are accessed over the Internet from
a web browser or an app. There may be some local processing using

Technology Description

Software
product line

A set of software products that share a common core. Each member
of the product line includes customer-specific adaptations and
additions. Software product lines may be used to implement a
custom system for a customer with specific needs that can’t be met
by a generic product.

For example, a company providing communication software to the
emergency services may have a software product line where the
core product includes basic communication services such as receive
and log calls, initiate an emergency response, pass information to
vehicles, and so on. However, each customer may use different
radio equipment and their vehicles may be equipped in different
ways. The core product has to be adapted for each customer to work
with the equipment that they use.

Platform A software (or software+hardware) product that includes
functionality so that new applications can be built on it. An example
of a platform that you probably use is Facebook. It provides an
extensive set of product functionality but also provides support for
creating “Facebook apps.” These add new features that may be
used by a business or a Facebook interest group.

Table 1.1 Software product lines and platforms

M01_SOME6349_01_GE_C01.indd 15 30/09/2020 15:49

16 Chapter 1 ■ Software Products

Javascript, but most computation is carried out on remote servers. More
and more product companies are converting their products to services
because it simplifies product updating and makes new business mod-
els, such as pay-as-you-go, feasible. I cover service-oriented systems in
Chapters 5 and 6.

As I have said, the key characteristic of product development is that
there is no external customer who generates software requirements and
pays for the software. This is also true for some other types of software
development:

1. Student projects As part of a computing or engineering course, students
may be set assignments in which they work in groups to develop software.
The group is responsible for deciding on the features of the system and
how to work together to implement these features.

2. Research software Software is developed by a research team to support
their work. For example, climate research depends on large-scale climate
models that are designed by researchers and implemented in software. On
a smaller scale, an engineering group may build software to model the
characteristics of the material they are using.

3. Internal tool development A software development team may decide
that it needs some specific tools to support their work. They specify and
implement these tools as “internal” products.

Figure 1.3 Software execution models

User’s computer

Vendor’s servers

Product updates

User interface
Product functionality

User data

User’s computer

Additional functionality
User data backups
Product updates

User interface
Partial functionality

User data

User’s computer

Product functionality
User data

User interface
(browser or app)

Stand-alone execution Hybrid execution Software as a service

Vendor’s servers Vendor’s servers

M01_SOME6349_01_GE_C01.indd 16 30/09/2020 15:49

 1.1 ■ The product vision 17

You can use the product development techniques that I explain here for
any type of software development that is not driven by external customer
requirements.

There is a common view that software product engineering is simply
advanced programming and that traditional software engineering is irrelevant.
All you need to know is how to use a programming language plus the frame-
works and libraries for that language. This is a misconception and I have writ-
ten this book to explain the activities, apart from programming, that I believe
are essential for developing high-quality software products.

If your product is to be a success, you need to think about issues other
than programming. You must try to understand what your customers need
and how potential users can work with your software. You need to design
the overall structure of your software (software architecture) and know about
technologies such as cloud computing and security engineering. You need to
use professional techniques for verifying and testing your software and code
management systems to keep track of a changing codebase.

You also need to think about the business case for your product. You must sell
your product to survive. Creating a business case may involve market research,
an analysis of competitors, and an understanding of the ways that target custom-
ers live and work. This book is about engineering, however, not business, so I
don’t cover business and commercial issues here.

1.1 The product vision

Your starting point for product development should be an informal “product
vision.” A product vision is a simple and succinct statement that defines the
essence of the product that is being developed. It explains how the product
differs from other competing products. This product vision is used as a basis
for developing a more detailed description of the features and attributes of
the product. As new features are proposed, you should check them against the
vision to make sure they contribute to it.

The product vision should answer three fundamental questions:

1. What is the product that you propose to develop? What makes this product
 different from competing products?

2. Who are the target users and customers for the product?

3. Why should customers buy this product?

M01_SOME6349_01_GE_C01.indd 17 30/09/2020 15:49

18 Chapter 1 ■ Software Products

The need for the first question is obvious—before you start, you need to
know what you are aiming for. The other questions concern the commercial via-
bility of the product. Most products are intended for use by customers outside
of the development team. You need to understand their background to create a
viable product that these customers will find attractive and be willing to buy.

If you search the web for “product vision,” you will find several variants
of these questions and templates for expressing the product vision. Any of
these templates can be used. The template that I like comes from the book
Crossing the Chasm by Geoffrey Moore.1 Moore suggests using a structured
approach to writing the product vision based on keywords:

■■ FOR (target customer)

■■ WHO (statement of the need or opportunity)

■■ The (PRODUCT NAME) is a (product category)

■■ THAT (key benefit, compelling reason to buy)

■■ UNLIKE (primary competitive alternative)

■■ OUR PRODUCT (statement of primary differentiation)

On his blog Joel on Software, Joel Spolsky gives an example of a product
described using this vision template:2

FOR a mid-sized company’s marketing and sales departments WHO
need basic CRM functionality, THE CRM-Innovator is a Web-based
service THAT provides sales tracking, lead generation, and sales repre-
sentative support features that improve customer relationships at criti-
cal touch points. UNLIKE other services or package software products,
OUR product provides very capable services at a moderate cost.

You can see how this vision answers the key questions that I identified above:

1. What A web-based service that provides sales tracking, lead generation,
and sales representative support features. The information can be used to
improve relationships with customers.

1Geoffrey Moore, Crossing the Chasm: Marketing and selling technology products to main-
stream customers (Capstone Trade Press, 1998).
2J. Spolsky, Product Vision, 2002; http://www.joelonsoftware.com/articles/JimHighsmithon-
ProductVisi.html

M01_SOME6349_01_GE_C01.indd 18 30/09/2020 15:49

http://www.joelonsoftware.com/articles/JimHighsmithon-ProductVisi.html
http://www.joelonsoftware.com/articles/JimHighsmithon-ProductVisi.html

 1.1 ■ The product vision 19

2. Who The product is aimed at medium-sized companies that need standard
customer relationship management software.

3. Why The most important product distinction is that it provides capa-
ble services at a moderate cost. It will be cheaper than alternative
products.

A great deal of mythology surrounds software product visions. For suc-
cessful consumer software products, the media like to present visions as if
they emerge from a “Eureka moment” when the company founders have an
“awesome idea” that changes the world. This view oversimplifies the effort
and experimentation that are involved in refining a product idea. Product
visions for successful products usually emerge after a lot of work and discus-
sion. An initial idea is refined in stages as more information is collected and
the development team discusses the practicalities of product implementa-
tion. Several different sources of information contribute to the product vision
(Table 1.2).

Information source Explanation

Domain experience The product developers may work in a particular area (say,
marketing and sales) and understand the software support
that they need. They may be frustrated by the deficiencies in
the software they use and see opportunities for an improved
system.

Product experience Users of existing software (such as word processing software)
may see simpler and better ways of providing comparable
functionality and propose a new system that implements this.
New products can take advantage of recent technological
developments such as speech interfaces.

Customer experience The software developers may have extensive discussions
with prospective customers of the product to understand
the problems that they face; constraints, such as
interoperability, that limit their flexibility to buy new
software; and critical attributes of the software that they
need.

Prototyping and
“playing around”

Developers may have an idea for software but need to
develop a better understanding of that idea and what might
be involved in developing it into a product. They may develop
a prototype system as an experiment and “play around”
with ideas and variations using that prototype system as a
platform.

Table 1.2 Information sources for developing a product vision

M01_SOME6349_01_GE_C01.indd 19 30/09/2020 15:49

20 Chapter 1 ■ Software Products

1.1.1 A vision example

As students, readers of this book may have used Virtual Learning Environ-
ments (VLEs), such as Blackboard and Moodle. Teachers use these VLEs to
distribute class materials and assignments. Students can download the materi-
als and upload completed assignments. Although the name suggests that VLEs
are focused on learning, they are really geared to supporting learning admin-
istration rather than learning itself. They provide some features for students,
but they are not open learning environments that can be tailored and adapted
to a particular teacher’s needs.

A few years ago, I worked on the development of a digital environ-
ment for learning support. This product was not just another VLE but was
intended to provide flexible support for the process of learning. Our team
looked at existing VLEs and talked to teachers and students who used them.
We visited different types of school from kindergartens to colleges to exam-
ine how they used learning environments and how teachers were experi-
menting with software outside of these environments. We had extensive
discussions with teachers about what they would like to be able to do with
a digital learning environment. We finally arrived at the vision statement
shown in Table 1.3.

In education, the teachers and students who use learning environments are
not responsible for buying software. The purchaser is a school, university,
or training center. The purchasing officer needs to know the benefits to the
organization. Therefore, we added the final paragraph to the vision statement
in Table 1.3 to make clear that there are benefits to organizations as well as
individual learners.

FOR teachers and educators WHO need a way to help students use web-based learning
resources and applications, THE iLearn system is an open learning environment THAT
allows the set of resources used by classes and students to be easily configured for these
students and classes by teachers themselves.
UNLIKE Virtual Learning Environments, such as Moodle, the focus of iLearn is the learning
process rather than the administration and management of materials, assessments,
and coursework. OUR product enables teachers to create subject and age-specific
environments for their students using any web-based resources, such as videos,
simulations, and written materials that are appropriate.

Schools and universities are the target customers for the iLearn system as it will
significantly improve the learning experience of students at relatively low cost. It will
collect and process learner analytics that will reduce the costs of progress tracking and
reporting.

Table 1.3 A vision statement for the iLearn system

M01_SOME6349_01_GE_C01.indd 20 30/09/2020 15:49

 1.2 ■ Software product management 21

1.2 Software product management

Software product management is a business activity focusing on the soft-
ware products that are developed and sold by the business. Product manag-
ers (PMs) take overall responsibility for the product and are involved in
planning, development, and marketing. They are the interface between the
software development team, the broader organization, and the product’s
customers. PMs should be full members of the development team so that
they can communicate business and customer requirements to the software
developers.

Software product managers are involved at all stages of a product’s life—
from initial conception through vision development and implementation to
marketing. Finally, they make decisions on when the product should be with-
drawn from the market. Mid-size and large software companies may have
dedicated PMs; in smaller software companies, the PM role is likely to be
shared with other technical or business roles.

The job of the PM is to look outward to the customers and potential cus-
tomers of the product rather than to focus on the software that is being devel-
oped. It is all too easy for a development team to get caught up in the details
of “cool features” of the software, which most customers probably don’t care
about. For a product to be successful, the PM has to ensure that the develop-
ment team implements features that deliver real value to customers, not just
features that are technically interesting.

In a blog post, Martin Eriksson3 explains that product managers have to be
 concerned with business, technology, and user experience issues. Figure 1.4,
which I based on Martin’s diagram, illustrates these multiple concerns.

Product managers have to be generalists, with both technical and commu-
nication skills. Business, technology, and customer issues are interdependent
and PMs have to consider all of them:

1. Business needs PMs have to ensure that the software being developed
meets the business goals and objectives of both the software product com-
pany and its customers. They must communicate the concerns and needs
of the customers and the development team to the managers of the product
business. They work with senior managers and with marketing staff to
plan a release schedule for the product.

3Based on M. Erikkson, What, exactly, is a Product Manager, 2011; http://www.mindtheprod-
uct.com/2011/10/what-exactly-is-a-product-manager/

M01_SOME6349_01_GE_C01.indd 21 30/09/2020 15:49

http://www.mindtheprod-uct.com/2011/10/what-exactly-is-a-product-manager/
http://www.mindtheprod-uct.com/2011/10/what-exactly-is-a-product-manager/

22 Chapter 1 ■ Software Products

2. Technology constraints PMs must make developers aware of technology
issues that are important to customers. These may affect the schedule,
cost, and functionality of the product that is being developed.

3. Customer experience PMs should be in regular communication with cus-
tomers to understand what they are looking for in a product, the types of
user and their backgrounds, and the ways in which the product may be
used. Their experience of customer capabilities is a critical input to the
design of the product’s user interface. PMs may also involve customers
in alpha and beta product testing.

Because of the engineering focus of this book, I do not go into detail about
the business role of product managers or their role in areas such as market
research and financial planning. Rather, I concentrate on their interactions
with the development team. PMs may interact with the development team in
seven key areas (Figure 1.5).

1.2.1 Product vision management

Some writers say that the product manager should be responsible for devel-
oping the product vision. Large companies may adopt this approach, but it is
often impractical in small software companies. In startups, the source of the
product vision is often an original idea by the company founders. This vision
is often developed long before anyone thinks about appointing a PM.

Obviously, it makes sense for PMs to take the lead in developing the prod-
uct vision. They should be able to bring market and customer information to

Figure 1.4 Product management concerns

Business

Technology Customer
experience

Product
manager

M01_SOME6349_01_GE_C01.indd 22 30/09/2020 15:49

 1.2 ■ Software product management 23

the process. However, I think all team members should be involved in vision
development so that everyone can support what is finally agreed. When the
team “owns” the vision, everyone is more likely to work coherently to realize
that vision.

A key role of PMs is to manage the product vision. During the develop-
ment process, changes are inevitably proposed by people from both inside
and outside of the development team. PMs have to assess and evaluate these
changes against the product vision. They must check that the changes don’t
contradict the ideas embodied in the product vision. PMs also have to ensure
that there is no “vision drift,” in which the vision is gradually extended to
become broader and less focused.

1.2.2 Product roadmap development

A product roadmap is a plan for the development, release, and marketing
of the software product. It sets out important product goals and milestones,
such as the completion of critical features, the completion of the first version
for user testing, and so on. It includes dates when these milestones should
be reached and success criteria that help assess whether project goals have
been attained. The roadmap should include a release schedule showing when

Figure 1.5 Technical interactions of product managers

Product
manager

Acceptance
testing

Customer
testing

Product vision
management

Product
backlog

management

Product
roadmap

development

User story
and scenario
development

User interface
design

M01_SOME6349_01_GE_C01.indd 23 30/09/2020 15:49

24 Chapter 1 ■ Software Products

different releases of the software will be available and the key features that
will be included in each release.

The development of the product roadmap should be led by the product
manager but must also involve the development team as well as company
managers and marketing staff. Depending on the type of product, important
deadlines may have to be met if the product is to be successful. For example,
many large companies must make decisions on procurement toward the end
of their financial year. If you want to sell a new product to such companies,
you have to make it available before then.

1.2.3 User story and scenario development

User stories and scenarios are widely used to refine a product vision to iden-
tify features of the product. They are natural language descriptions of things
that users might want to do with a product. Using them, the team can decide
what features need to be included and how these features should work. I cover
user stories and scenarios in Chapter 3.

The product manager’s job is to understand the product’s customers and
potential customers. PMs should therefore lead the development of user sce-
narios and stories, which should be based on knowledge of the area and of
the customer’s business. PMs should also take scenarios and stories suggested
by other team members back to customers to check that they reflect what the
target users of the product might actually do.

1.2.4 Product backlog management

In product development, it is important for the process to be driven by a
“product backlog.” A product backlog is a to-do list that sets out what has to
be done to complete the product development. The backlog is added to and
refined incrementally during the development process. I explain how product
backlogs are used in the Scrum method in Chapter 2.

The product manager plays a critical role as the authority on the product
backlog items that should take priority for development. PMs also help to
refine broad backlog items, such as “implement auto-save,” in more detail at
each project iteration. If suggestions for change are made, it is up to the PM to
decide whether or not the product backlog should be rearranged to prioritize
the suggested changes.

M01_SOME6349_01_GE_C01.indd 24 30/09/2020 15:49

 1.2 ■ Software product management 25

1.2.5 Acceptance testing

Acceptance testing is the process of verifying that a software release meets
the goals set out in the product roadmap and that the product is efficient and
reliable. Product managers should be involved in developing tests of the
product features that reflect how customers use the product. They may work
through usage scenarios to check that the product is ready to be released to
customers.

Acceptance tests are refined as the product is developed, and products must
pass these tests before being released to customers.

1.2.6 Customer testing

Customer testing involves taking a release of a product to existing and
potential customers and getting feedback from them on the product’s fea-
tures, its usability, and the fit of the product to their business. Product
managers are involved in selecting customers that might be interested in
taking part in the customer testing process and working with them during
that process. They have to ensure that the customer can use the product
and that the customer testing process collects useful information for the
development team.

1.2.7 User interface design

The user interface (UI) of a product is critical in the commercial acceptance
of a software product. Technically excellent products are unlikely to be com-
mercially successful if users find them difficult to use or if their UI is incom-
patible with other software that they use. UI design is challenging for small
development teams because most users are less technically skilled than soft-
ware developers. It is often difficult for developers to envision the problems
that users may have with a software product.

Product managers should understand user limitations and act as surrogate
users in their interactions with the development team. They should evaluate
UI features as they are developed to check that these features are not unneces-
sarily complex or force users to work in an unnatural way. PMs may arrange
for potential users to try out the software, comment on its UI, and assist with
designing error messages and a help system.

M01_SOME6349_01_GE_C01.indd 25 30/09/2020 15:49

26 Chapter 1 ■ Software Products

1.3 Product prototyping

Product prototyping is the process of developing an early version of a product
to test your ideas and to convince yourself and company funders that your
product has real market potential. You use a product prototype to check that
what you want to do is feasible and to demonstrate your software to poten-
tial customers and funders. Prototypes may also help you understand how to
organize and structure the final version of your product.

You may be able to write an inspiring product vision, but your potential
users can only really relate to your product when they see a working version
of your software. They can point out what they like and don’t like about it
and make suggestions for new features. Venture capitalists, whom you may
approach for funding, usually insist on seeing a product prototype before they
commit to supporting a startup company. The prototype plays a critical role in
convincing investors that your product has commercial potential.

A prototype may also help identify fundamental software components or
services and test technology. You may find that the technology you planned
to use is inadequate and that you have to revise your ideas on how to imple-
ment the software. For example, you may discover that the design you chose
for the prototype cannot handle the expected load on the system, so you have
to redesign the overall product architecture.

Building a prototype should be the first thing you do when developing
a software product. Your goal should be to have a working version of your
software that can be used to demonstrate its key features. A short develop-
ment cycle is critical; you should aim to have a demonstrable system up and
running in four to six weeks. Of course, you have to cut corners to do this, so
you may choose to ignore issues such as reliability and performance and work
with a rudimentary user interface.

Sometimes prototyping is a two-stage process:

1. Feasibility demonstration You create an executable system that dem-
onstrates the new ideas in your product. The goals at this stage are to
see whether your ideas actually work and to show funders and com-
pany management that your product features are better than those of
competitors.

2. Customer demonstration You take an existing prototype created to demon-
strate feasibility and extend it with your ideas for specific customer features
and how these can be realized. Before you develop a customer prototype,

M01_SOME6349_01_GE_C01.indd 26 30/09/2020 15:49

you need to do some user studies and have a clear idea of your potential
users and scenarios of use. I explain how to develop user personas and
usage scenarios in Chapter 3.

You should always use technology that you know and understand to develop
a prototype so that you don’t have to spend time learning a new language or
framework. You don’t need to design a robust software architecture. You may
leave out security features and checking code to ensure software reliability.
However, I recommend that, for prototypes, you should always use automated
testing and code management. These are covered in Chapters 9 and 10.

If you are developing software without an external customer, such as soft-
ware for a research group, it may be that a prototype system is all you need.
You can develop and refine the prototype as your understanding of the prob-
lem develops. However, as soon as you have external users of your software,
you should always think of your prototype as a “throw-away” system. The
inevitable compromises and shortcuts you make to speed up development
result in prototypes that become increasingly difficult to change and evolve
to include new features. Adding security and reliability may be practically
impossible.

K E Y P O I N T S

■■ Software products are software systems that include general functionality that is likely to be
useful to a wide range of customers.

■■ In product-based software engineering, the same company is responsible for deciding
on both the features that should be part of the product and the implementation of these
features.

■■ Software products may be delivered as stand-alone products running on the customer’s
computers, hybrid products, or service-based products. In hybrid products, some features
are implemented locally and others are accessed from the Internet. All features are remotely
accessed in service-based products.

■■ A product vision succinctly describes what is to be developed, who are the target customers
for the product, and why customers should buy the product you are developing.

■■ Domain experience, product experience, customer experience, and an experimental software
prototype may all contribute to the development of the product vision.

 Key points 27

M01_SOME6349_01_GE_C01.indd 27 30/09/2020 15:49

28 Chapter 1 ■ Software Products

R E C O M M E N D E D R E A D I N G

“What is Product Line Engineering?” This article and the two linked articles provide an overview
of software product line engineering and highlight the differences between product line
engineering and software product development. (Biglever Software, 2013)

http://www.productlineengineering.com/overview/what-is-ple.html

“Building Software Products vs Platforms” This blog post briefly explains the differences between
a software product and a software platform. (B. Algave, 2016)

https://blog.frogslayer.com/building-software-products-vs-platforms/

“Product Vision” This is an old article but an excellent summary of what is meant by a product
vision and why it is important. (J. Spolsky, 2002)

http://www.joelonsoftware.com/articles/JimHighsmithonProductVisi.html

Agile Product Management with Scrum I generally avoid recommending books on product
management as they are too detailed for most readers of this book. However, this book is worth
looking at because of its focus on software and its integration with the Scrum agile method
that I cover in Chapter 2. It’s a short book that includes a succinct introduction to product
management and discusses the creation of a product vision. (R. Pichler, 2010, Addison-Wesley)

The author’s blog also has articles on product management.

http://www.romanpichler.com/blog/romans-product-management-framework/

“What, Exactly, is a Product Manager?” This excellent blog post explains why it’s important that
product managers work at the intersection of business, technology, and users. (M. Eriksson, 2011)

http://www.mindtheproduct.com/2011/10/what-exactly-is-a-product-manager/

■■ Key responsibilities of product managers are to own the product vision, develop a product
roadmap, create user stories and scenarios, manage the product backlog, conduct customer
and acceptance testing, and design the user interface.

■■ Product managers work at the interface between the business, the software development
team, and the product customers. They facilitate communication among these groups.

■■ You should always develop a product prototype to refine your own ideas and to demonstrate
the planned product features to potential customers.

P R E S E N T A T I O N S , V I D E O S , A N D L I N K S

https://iansommerville.com/engineering-software-products/software-products

M01_SOME6349_01_GE_C01.indd 28 30/09/2020 15:49

http://www.productlineengineering.com/overview/what-is-ple.html
https://blog.frogslayer.com/building-software-products-vs-platforms/
http://www.joelonsoftware.com/articles/JimHighsmithonProductVisi.html
http://www.romanpichler.com/blog/romans-product-management-framework/
http://www.mindtheproduct.com/2011/10/what-exactly-is-a-product-manager/
https://iansommerville.com/engineering-software-products/software-products

 Exercises 29

E X E R C I S E S

 1.1. Briefly describe the fundamental differences between project-based and product-based
software engineering.

 1.2. What are three important differences between software products and software product
lines.

 1.3. Based on the example project vision for the iLearn system, identify the WHAT, WHO, and
WHY for that software product.

 1.4. Why do software product managers have to be generalists, with a range of skills, rather
than simply technical specialists?

 1.5. You are a software product manager for a company developing educational software
products based on scientific simulations. Explain why it is important to develop a product
roadmap so that final product releases are available in the first three months of the year.

 1.6. Why should you implement a prototype before you start developing a new
software product?

M01_SOME6349_01_GE_C01.indd 29 30/09/2020 15:49

Agile Software Engineering

Bringing a software product to the market quickly is critically important. This is
true for all types of products—from simple mobile apps to large-scale enterprise
products. If a product is released later than planned, a competitor may have
already captured the market or you may have missed a market window, such as
the beginning of the holiday season. Once users have committed to a product,
they are usually reluctant to change, even to a technically superior product.

Agile software engineering focuses on delivering functionality quickly,
responding to changing product specifications, and minimizing development
overheads. An “overhead” is any activity that doesn’t contribute directly to
rapid product delivery. Rapid development and delivery and the flexibility to
make changes quickly are fundamental requirements for product development.

A large number of “agile methods” have been developed. Each has its
adherents, who are often evangelical about the method’s benefits. In practice,
companies and individual development teams pick and choose agile tech-
niques that work for them and that are most appropriate for their size and the
type of product they are developing. There is no best agile method or tech-
nique. It depends on who is using the technique, the development team, and
the type of product being developed.

2.1 Agile methods

In the 1980s and early 1990s, there was a widespread view that the best way to
create good software was to use controlled and rigorous software development
processes. The processes included detailed project planning, requirements

2

M02_SOME6349_01_GE_C02.indd 30 27/09/2020 14:00

 2.1 ■ Agile methods 31

specification and analysis, the use of analysis and design methods supported
by software tools, and formal quality assurance. This view came from the soft-
ware engineering community that was responsible for developing large, long-
lived software systems such as aerospace and government systems. These
were “one-off” systems, based on the customer requirements.

This approach is sometimes called plan-driven development. It evolved to
support software engineering where large teams developed complex, long-
lifetime systems. Teams were often geographically dispersed and worked on
the software for long periods of time. An example of this type of software is
a control system for a modern aircraft. Developing an avionic system might
take five to ten years from initial specification to on-board deployment.

Plan-driven development involves significant overhead in planning,
designing, and documenting the system. This overhead is justifiable for criti-
cal systems where the work of several development teams must be coordi-
nated and different people may maintain and update the software during its
lifetime. Detailed documents describing the software requirements and design
are important when informal team communications are impossible.

If plan-driven development is used for small and medium-sized software
products, however, the overhead involved is so large that it dominates the
software development process. Too much time is spent writing documents
that may never be read rather than writing code. The system is specified
in detail before implementation begins. Specification errors, omissions, and
misunderstandings are often discovered only after a significant chunk of the
system has been implemented.

To fix these problems, developers have to redo work that they thought was
complete. As a consequence, it is practically impossible to deliver software
quickly and to respond rapidly to requests for changes to the delivered software.

Dissatisfaction with plan-driven software development led to the creation of
agile methods in the 1990s. These methods allowed the development team to
focus on the software itself, rather than on its design and documentation. Agile
methods deliver working software quickly to customers, who can then propose
new or different requirements for inclusion in later versions of the system. They
reduce process bureaucracy by avoiding work that has dubious long-term value
and eliminating documentation that will probably never be used.

The philosophy behind agile methods is reflected in the agile manifesto1
that was agreed on by the leading developers of these methods. Table 2.1
shows the key message in the agile manifesto.

1Retrieved from http://agilemanifesto.org/. Used with permission.

M02_SOME6349_01_GE_C02.indd 31 27/09/2020 14:00

http://agilemanifesto.org/

32 Chapter 2 ■ Agile Software Engineering

All agile methods are based on incremental development and delivery.
The best way to understand incremental development is to think of a software
product as a set of features. Each feature does something for the software user.
There might be a feature that allows data to be entered, a feature to search
the entered data, and a feature to format and display the data. Each software
increment should implement a small number of product features.

With incremental development, you delay decisions until you really need
to make them. You start by prioritizing the features so that the most impor-
tant features are implemented first. You don’t worry about the details of
all the features—you define only the details of the feature that you plan to
include in an increment. That feature is then implemented and delivered.
Users or surrogate users can try it out and provide feedback to the develop-
ment team. You then go on to define and implement the next feature of the
system.

I show this process in Figure 2.1, and I describe incremental development
activities in Table 2.2.

We are uncovering better ways of developing software by doing it and helping others to
do it. Through this work, we have come to value:

- individuals and interactions over processes and tools;
- working software over comprehensive documentation;
- customer collaboration over contract negotiation;
- responding to change over following a plan.

While there is value on the items on the right, we value the items on the left more.

Table 2.1 The agile manifesto

Figure 2.1 Incremental development

Product feature list

If all features are
complete, deliver
system release

Choose features to
be included in

increment

Refine feature
descriptions

Deliver system
increment

Integrate
feature into

system

Implement and
test feature

M02_SOME6349_01_GE_C02.indd 32 27/09/2020 14:00

 2.1 ■ Agile methods 33

Of course, reality doesn’t always match this simple model of feature
development. Sometimes an increment has to be devoted to developing an
infrastructure service, such as a database service, that is used by several
features; sometimes you need to plan the user interface so that you get a
consistent interface across features; and sometimes an increment has to
sort out problems, such as performance issues, that were discovered during
system testing.

All agile methods share a set of principles based on the agile manifesto,
so they have much in common. I summarize these agile principles in
Table 2.3.

Almost all software products are now developed with an agile approach.
Agile methods work for product engineering because software products are
usually stand-alone systems rather than systems composed of independent
subsystems. They are developed by co-located teams who can communicate
informally. The product manager can easily interact with the development
team. Consequently, there is no need for formal documents, meetings, and
cross-team communication.

Activity Description

Choose features to be included in an
increment

Using the list of features in the planned
product, select those features that can be
implemented in the next product increment.

Refine feature descriptions Add detail to the feature descriptions so
that the team members have a common
understanding of each feature and there is
sufficient detail to begin implementation.

Implement and test Implement the feature and develop automated
tests for that feature that show that its
behavior is consistent with its description.
I explain automated testing in Chapter 9.

Integrate feature and test Integrate the developed feature with the
existing system and test it to check that it
works in conjunction with other features.

Deliver system increment Deliver the system increment to the customer
or product manager for checking and
comments. If enough features have been
implemented, release a version of the system
for customer use.

Table 2.2 Incremental development activities

M02_SOME6349_01_GE_C02.indd 33 27/09/2020 14:00

34 Chapter 2 ■ Agile Software Engineering

Principle Description

Involve the customer Involve customers closely with the software
development team. Their role is to provide and
prioritize new system requirements and to evaluate
each increment of the system.

Embrace change Expect the features of the product and the details
of these features to change as the development
team and the product manager learn more about
the product. Adapt the software to cope with
changes as they are made.

Develop and deliver
incrementally

Always develop software products in increments.
Test and evaluate each increment as it is developed
and feed back required changes to the development
team.

Maintain simplicity Focus on simplicity in both the software being
developed and the development process. Wherever
possible, do what you can to eliminate complexity
from the system.

Focus on people, not the
development process

Trust the development team and do not expect
everyone to always do things in the same way.
Team members should be left to develop their
own ways of working without being limited by
prescriptive software processes.

Table 2.3 Agile development principles

2.2 Extreme Programming

The ideas underlying agile methods were developed by a number of different
people in the 1990s. However, the most influential work that has changed the
culture of software development was the development of Extreme Program-
ming (XP). The name was coined by Kent Beck in 1998 because the approach
pushed recognized good practice, such as iterative development, to “extreme”
levels. For example, regular integration, in which the work of all programmers
in a team is integrated and tested, is good software engineering practice. XP
advocates that changed software should be integrated several times per day,
as soon as the changes have been tested.

XP focused on new development techniques that were geared to rapid,
incremental software development, change, and delivery. Figure 2.2 shows
10 fundamental practices, proposed by the developers of Extreme Program-
ming, that characterize XP.

M02_SOME6349_01_GE_C02.indd 34 27/09/2020 14:00

 2.2 ■ Extreme Programming 35

The developers of XP claim that it is a holistic approach. All of these prac-
tices are essential. In reality, however, development teams pick and choose
the techniques that they find useful given their organizational culture and the
type of software they are writing. Table 2.4 describes XP practices that have
become part of mainstream software engineering, particularly for software
product development. The other XP practices shown in Figure 2.2 have been
less widely adopted but are used in some companies.

I cover these widely-used XP practices, in later chapters of the book. Incre-
mental planning and user stories are covered in Chapter 3, refactoring in
Chapter 8, test-driven development in Chapter 9, and continuous integration
and small releases in Chapter 10.

You may be surprised that “Simple design” is not on the list of popular XP
practices. The developers of XP suggested that the “YAGNI” (You Ain’t Gonna
Need It) principle should apply when designing software. You should include
only functionality that is requested, and you should not add extra code to cope
with situations anticipated by the developers. This sounds like a great idea.

Unfortunately, it ignores the fact that customers rarely understand system-wide
issues such as security and reliability. You need to design and implement software
to take these issues into account. This usually means including code to cope with
situations that customers are unlikely to foresee and describe in user stories.

Figure 2.2 Extreme Programming practices

Test-first
development

Refactoring

Pair
programming

Simple
design

On-site
customer

Sustainable
pace

Continuous
integration

Small
releases

Incremental
planning

Collective
ownership

Extreme
Programming

M02_SOME6349_01_GE_C02.indd 35 27/09/2020 14:00

36 Chapter 2 ■ Agile Software Engineering

Practices such as having an on-site customer and collective ownership of code
are good ideas. An on-site customer works with the team, proposes stories and
tests, and learns about the product. However, the reality is that customers and
surrogate customers such as product managers have many other things to do. It
is difficult for them to find the time to be fully embedded in a development team.

Collective ownership discourages the individual ownership of code, but it has
proved to be impractical in many companies. Specialists are needed for some
types of code. Some people may work part-time on a project and so cannot par-
ticipate in its “ownership.” Some team members may be psychologically unsuited
to this way of working and have no wish to “own” someone else’s code.

Practice Description

Incremental planning/ user
stories

There is no “grand plan” for the system. Instead,
what needs to be implemented (the requirements)
in each increment are established in discussions
with a customer representative. The requirements
are written as user stories. The stories to be
included in a release are determined by the time
available and their relative priority.

Small releases The minimal useful set of functionality that
provides business value is developed first.
Releases of the system are frequent and
incrementally add functionality to the previous
release.

Test-driven development Instead of writing code and then tests for that
code, developers write the tests first. This helps
clarify what the code should actually do and that
there is always a “tested” version of the code
available. An automated unit test framework is
used to run the tests after every change. New
code should not “break” code that has already
been implemented.

Continuous integration As soon as the work on a task is complete, it
is integrated into the whole system and a new
version of the system is created. All unit tests
from all developers are run automatically and
must be successful before the new version of the
system is accepted.

Refactoring Refactoring means improving the structure,
readability, efficiency, and security of a program.
All developers are expected to refactor the code as
soon as potential code improvements are found.
This keeps the code simple and maintainable.

Table 2.4 Widely adopted XP practices

M02_SOME6349_01_GE_C02.indd 36 27/09/2020 14:00

