


Practice makes perfect: Guided 
practice helps students develop  
into expert problem solvers

The new 15th Edition of University Physics with Modern Physics, in SI units, 
draws on data insights from hundreds of faculty and thousands of student users to 
address one of the biggest challenges for students in introductory physics courses: 
seeing the connections between worked examples in their textbook and related 
homework or exam problems. This edition offers multiple resources to address 
students’ tendency to focus on the objects, situations, numbers, and questions posed 
in a problem, rather than recognizing the underlying principle or the problem’s 
type. Mastering™ Physics gives students instructional support and just-in-time 
remediation as they work through problems.



Guided practice features to help . . .

NEW! Key Example Variation Problems in 
the new Guided Practice section at the end of each 
chapter are based on selected worked examples. 
They build in difficulty by changing scenarios, 
swapping the knowns vs. unknowns, and adding 
complexity and/or steps of reasoning to provide 
the most helpful range of related problems that 
students must use the same basic approach to solve. 
Assignable in Mastering Physics, these “warm-up” 
exercises help students build problem-solving skills.

NEW! Worked 
Example 
Key Concept 
statements 
appear at the end 
of every example, 
providing a brief 
summary of the 
key idea used in 
the solution to 
consolidate what 
was most important 
and what can be 
broadly applied to 
other problems, 
helping students 
identify strategies 
that can be used in 
future problems.
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. . . develop problem-solving skills

Scaffolded 
Bridging 
Problems now 
follow the Key 
Example Variation 
Problems in the Guided 
Practice section and 
help students move 
from single-concept 
worked examples 
to multiconcept 
homework problems.

NEW! Bridging 
Problem Tutorials, 
now assignable in 
Mastering Physics, 
walk students through 
the problem-solving 
process and provide 
links to the eText and 
detailed Video Tutor 
Solutions. In the Study 
Area in Mastering, 
these Video Tutor 
Solutions, as well as 
ones for every Worked 
Example in the book, 
provide a virtual 
teaching assistant on a 
round-the-clock basis.
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Develop students’ conceptual 
understanding of physics . . .

Test Your Understanding 
questions at the end of most 
sections let students check their 
grasp of the material and use a 
multiple-choice or ranking-task 
format to probe for common 
misconceptions. The answers to 
these questions are now provided 
immediately after the question in 
order to encourage students to 
try them.

NEW! Direct Measurement Videos are short videos that 
show real situations of physical phenomena. Grids, rulers, and 
frame counters appear as overlays, helping students to make 
precise measurements of quantities such as position and time. 
Students then apply these quantities along with physics concepts 
to solve problems and answer questions about the motion of the 
objects in the video. These videos are assignable within Mastering.

P. 305



. . . even before they come to class

Conceptual 
Interactive Pre-
lecture Videos 
provide an introduction 
to key topics with 
embedded assessment 
to help students prepare 
before lecture and to 
help professors identify 
students’ misconceptions. 
These videos are assignable 
within Mastering.

NEW! Quantitative 
Pre-lecture Videos 
now complement 
the conceptual 
Interactive Pre-lecture 
Videos designed to 
expose students to 
concepts before class 
and help them learn 
how problems for a 
specific concept are 
worked. These videos 
are assignable within 
Mastering.



Reach every student . . .

NEW! University Physics with Modern Physics, in SI units is now 
available in Pearson eText. Pearson eText is a simple-to-use, personalized 
reading experience available within Mastering. It allows students to easily 
highlight, take notes, and review key vocabulary all in one place—even when 
offline. Seamlessly integrated videos engage students and give them access 
to the help they need when they need it. Pearson eText is available within 
Mastering when packaged with a new book or as an upgrade students can 
purchase online.



. . . with Mastering Physics

Dynamic Study 
Modules in Mastering 
Physics help students 
study effectively—and 
at their own pace—by 
keeping them motivated 
and engaged. The 
assignable modules rely 
on the latest research 
in cognitive science, 
using methods such as 
adaptivity, gamification, 
and intermittent rewards, 
to stimulate learning and 
improve retention.

The Physics Primer 
refreshes students’ math 
skills in the context of 
physics and prepares 
them for success in the 
course. These tutorials 
can be assigned before 
the course begins or 
throughout the course as 
just-in-time remediation. 
They utilize videos, hints, 
and feedback to ensure 
that students can practice 
and maintain their 
math skills, while tying 
together mathematical 
operations and physics 
analysis.



Instructor support you can rely on

University Physics with 
Modern Physics includes a full 
suite of instructor support materials 
in the Instructor Resources area in 
Mastering Physics. Resources include 
accessible PowerPoint lecture outlines; 
all annotated equations and problem-
solving strategies; all figures, photos, 
tables, and end-of-chapter elements 
from the text; simulations; plus a 
solutions manual and test bank.

Instructors also have access to Learning Catalytics. With Learning Catalytics, you’ll hear from every student when 
it matters most. You pose a variety of questions that help students recall ideas, apply concepts, and develop critical-
thinking skills. Your students respond using their own smartphones, tablets, or laptops. You can monitor responses 
with real-time analytics and find out what your students do—and don’t—understand. Then, you can adjust your 
teaching accordingly and even facilitate peer-to-peer learning, helping students stay motivated and engaged.
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IN MEMORIAM: HUGH YOUNG (1930–2013)

Hugh D. Young was Emeritus Professor of Physics at Carnegie Mellon University. He earned 
both his undergraduate and graduate degrees from that university. He earned his Ph.D. in fun-
damental particle theory under the direction of the late Richard Cutkosky. Dr. Young joined the 
faculty of Carnegie Mellon in 1956 and retired in 2004. He also had two visiting professorships 
at the University of California, Berkeley.

Dr. Young’s career was centered entirely on undergraduate education. He wrote several 
 undergraduate-level textbooks, and in 1973 he became a coauthor with Francis Sears and Mark 
Zemansky of their well-known introductory textbooks. In addition to his role on Sears and 
Zemansky’s University Physics, he was the author of Sears and Zemansky’s College Physics.

Dr. Young earned a bachelor’s degree in organ performance from Carnegie Mellon in 
1972 and spent several years as Associate Organist at St. Paul’s Cathedral in Pittsburgh. 
He often ventured into the wilderness to hike, climb, or go caving with students in Carn-
egie Mellon’s Explorers Club, which he founded as a graduate student and later advised. 
Dr. Young and his wife, Alice, hosted up to 50 students each year for Thanksgiving dinners 
in their home.

Always gracious, Dr. Young expressed his appreciation earnestly: “I want to extend my 
heartfelt thanks to my colleagues at Carnegie Mellon, especially Professors Robert Kraemer, 
Bruce Sherwood, Ruth Chabay, Helmut Vogel, and Brian Quinn, for many stimulating dis-
cussions about physics pedagogy and for their support and encouragement during the writing 
of several successive editions of this book. I am equally indebted to the many generations of 
Carnegie Mellon students who have helped me learn what good teaching and good writing are, 
by showing me what works and what doesn’t. It is always a joy and a privilege to express my 
gratitude to my wife, Alice, and our children, Gretchen and Rebecca, for their love, support, 
and emotional sustenance during the writing of several successive editions of this book. May 
all men and women be blessed with love such as theirs.” We at Pearson appreciated his profes-
sionalism, good nature, and collaboration. He will be missed.

A. Lewis Ford is Professor of Physics at Texas A&M University. He received a B.A. from Rice 
University in 1968 and a Ph.D. in chemical physics from the University of Texas at Austin in 
1972. After a one-year postdoc at Harvard University, he joined the Texas A&M physics fac-
ulty in 1973 and has been there ever since. Professor Ford has specialized in theoretical atomic 
physics—in particular, atomic collisions. At Texas A&M he has taught a variety of undergradu-
ate and graduate courses, but primarily introductory physics.
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TO THE STUDENT

HOW TO SUCCEED IN PHYSICS  
BY REALLY TRYING
Mark Hollabaugh, Normandale Community College, Emeritus

Physics encompasses the large and the small, the old and the new. From the atom to galaxies, 
from electrical circuitry to aerodynamics, physics is very much a part of the world around 
us. You probably are taking this introductory course in calculus-based physics because it is 
required for subsequent courses that you plan to take in preparation for a career in science or 
engineering. Your professor wants you to learn physics and to enjoy the experience. He or she 
is very interested in helping you learn this fascinating subject. That is part of the reason your 
professor chose this textbook for your course. That is also the reason Drs. Young and Freedman 
asked me to write this introductory section. We want you to succeed!

The purpose of this section of University Physics is to give you some ideas that will assist 
your learning. Specific suggestions on how to use the textbook will follow a brief discussion of 
general study habits and strategies.

PREPARATION FOR THIS COURSE
If you had high school physics, you will probably learn concepts faster than those who have not 
because you will be familiar with the language of physics. If English is a second language for 
you, keep a glossary of new terms that you encounter and make sure you understand how they 
are used in physics. Likewise, if you are further along in your mathematics courses, you will 
pick up the mathematical aspects of physics faster. Even if your mathematics is adequate, you 
may find a book such as Edward Adelson’s Get Ready for Physics to be a great help for sharp-
ening your math skills as well as your study skills.

LEARNING TO LEARN
Each of us has a different learning style and a preferred means of learning. Understanding your 
own learning style will help you to focus on aspects of physics that may give you difficulty and 
to use those components of your course that will help you overcome the difficulty. Obviously 
you will want to spend more time on those aspects that give you the most trouble. If you learn 
by hearing, lectures will be very important. If you learn by explaining, then working with other 
students will be useful to you. If solving problems is difficult for you, spend more time learning 
how to solve problems. Also, it is important to understand and develop good study habits. Per-
haps the most important thing you can do for yourself is set aside adequate, regularly scheduled 
study time in a distraction-free environment.

Answer the following questions for yourself:
• Am I able to use fundamental mathematical concepts from algebra, geometry, and trig-

onometry? (If not, plan a program of review with help from your professor.)
• In similar courses, what activity has given me the most trouble? (Spend more time on 

this.) What has been the easiest for me? (Do this first; it will build your confidence.)
• Do I understand the material better if I read the book before or after the lecture? (You 

may learn best by skimming the material, going to lecture, and then undertaking an in-
depth reading.)

• Do I spend adequate time studying physics? (A rule of thumb for a class like this is to de-
vote, on average, 2.5 hours out of class for each hour in class. For a course that meets 5 hours 
each week, that means you should spend about 10 to 15 hours per week studying physics.)

• Do I study physics every day? (Spread that 10 to 15 hours out over an entire week!) At 
what time of the day am I at my best for studying physics? (Pick a specific time of the 
day and stick to it.)

• Do I work in a quiet place where I can maintain my focus? (Distractions will break 
your routine and cause you to miss important points.)



WORKING WITH OTHERS
Scientists or engineers seldom work in isolation from one another but rather work coopera-
tively. You will learn more physics and have more fun doing it if you work with other students. 
Some professors may formalize the use of cooperative learning or facilitate the formation of 
study groups. You may wish to form your own informal study group with members of your 
class. Use e-mail to keep in touch with one another. Your study group is an excellent resource 
when you review for exams.

LECTURES AND TAKING NOTES
An important component of any college course is the lecture. In physics this is especially 
 important, because your professor will frequently do demonstrations of physical principles, 
run computer simulations, or show video clips. All of these are learning activities that will help 
you understand the basic principles of physics. Don’t miss lectures. If for some reason you do, 
ask a friend or member of your study group to provide you with notes and let you know what 
 happened.

Take your class notes in outline form, and fill in the details later. It can be very difficult to 
take word-for-word notes, so just write down key ideas. Your professor may use a diagram 
from the textbook. Leave a space in your notes and add the diagram later. After class, edit your 
notes, filling in any gaps or omissions and noting things that you need to study further. Make 
references to the textbook by page, equation number, or section number.

Ask questions in class, or see your professor during office hours. Remember that the only 
“dumb” question is the one that is not asked. Your college may have teaching assistants or peer 
tutors who are available to help you with any difficulties.

EXAMINATIONS
Taking an examination is stressful. But if you feel adequately prepared and are well rested, 
your stress will be lessened. Preparing for an exam is a continuous process; it begins the mo-
ment the previous exam is over. You should immediately go over the exam to understand any 
mistakes you made. If you worked a problem and made substantial errors, try this: Take a piece 
of paper and divide it down the middle with a line from top to bottom. In one column, write the 
proper solution to the problem. In the other column, write what you did and why, if you know, 
and why your solution was incorrect. If you are uncertain why you made your mistake or how 
to avoid making it again, talk with your professor. Physics constantly builds on fundamental 
ideas, and it is important to correct any misunderstandings immediately. Warning: Although 
cramming at the last minute may get you through the present exam, you will not adequately 
retain the concepts for use on the next exam.
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TO THE INSTRUCTOR

PREFACE
In the years since it was first published, University Physics has always embraced change, 
not just to include the latest developments in our understanding of the physical world, but 
also to address our understanding of how students learn physics and how they study.

In preparing for this new Fifteenth Edition, we listened to the thousands of students 
who have told us that they often struggle to see the connections between the worked ex-
amples in their textbook and problems on homework or exams. Every problem seems 
different because the objects, situations, numbers, and questions posed change with each 
problem. As a result, students experience frustration and a lack of confidence. By  contrast, 
expert problem-solvers categorize problems by type, based on the underlying principles.

Several of the revisions we have made therefore address this particular challenge by, 
for example, helping students see the big picture of what each worked example is trying 
to illustrate and allowing them to practice sets of related problems to help them identify 
repeating patterns and strategies. These new features are explained in more detail below.

NEW TO THIS EDITION
• Worked example KEYCONCEPT statements appear at the end of every  Example and 

Conceptual Example, providing a brief summary of the key idea used in the  solution to 
consolidate what was most important and what can be broadly applied to other prob-
lems, to help students identify strategies that can be used in future  problems.

• KEY EXAMPLE ARIATION PROBLEMS in the new Guided Practice section at the 
end of each chapter are based on selected worked examples. They build in difficulty 
by changing scenarios, swapping the knowns and unknowns, and adding complexity 
and>or steps of reasoning to provide the most helpful range of related problems that 
use the same basic approach to solve. These scaffolded problem sets help students see 
patterns and make connections between problems that can be solved using the same un-
derlying principles and strategies so that they are more able to tackle different problem 
types when exam time comes.

• Expanded Caution paragraphs focus on typical student misconceptions and problem 
areas. Over a dozen more have been added to this edition based on common errors 
made in MasteringTM Physics.

• Updated and expanded Application sidebars give students engaging and relevant 
real-world context.

• Based on data from Mastering Physics and feedback from instructors, changes to 
the homework problems include the following:
• Over 500 new problems, with scores of other problems revised to improve clarity.
• Expanded three-dot-difficulty and Challenge Problems significantly stretch 

students by requiring sophisticated reasoning that often involves multiple steps or 
concepts and>or mathematical skills. Challenge Problems are the most difficult 
problems in each chapter and often involve calculus, multiple steps that lead stu-
dents through a complex analysis, and>or the exploration of a topic or application 
not explicitly covered in the chapter.

• New estimation problems help students learn to analyze problem scenarios, assess 
data, and work with orders of magnitude. This problem type engages students to 
more thoroughly explore the situation by requiring them to not only estimate some 
of the data in the problem but also decide what data need to be estimated based on 
real-world experience, reasoning, assumptions, and>or modeling.

• Expanded cumulative problems promote more advanced problem-solving tech-
niques by requiring knowledge and skills covered in previous chapters to be inte-
grated with understanding and skills from the current chapter.

• Expanded alternative problem sets in Mastering Physics provide textbook- specific 
problems from previous editions to assign for additional student practice.

Extended Edition, Volume 1, Volume 2, 
and Volume 3:

With Mastering Physics:
• Extended Edition: Chapters 1–44

(ISBN 978-1-292-31475-4)

Without Mastering Physics:
• Extended Edition: Chapters 1–44

(ISBN 978-1-292-31473-0)
• Volume 1: Chapters 1–20

(ISBN 978-1-292-31733-5)
• Volume 2: Chapters 21–37

(ISBN 978-1-292-31735-9)
• Volume 3: Chapters 37–44

(ISBN 978-1-292-32526-2)

14
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KEY FEATURES OF UNIVERSITY PHYSICS WITH 
MODERN PHYSICS
• A QR code at the beginning of the new Guided Practice section in each chapter allows 

students to use a mobile phone to access the Study Area of Mastering Physics, where 
they can watch interactive videos of a physics professor giving a relevant physics dem-
onstration (Video Tutor Demonstrations) or showing a narrated and animated worked 
Example (Video Tutor Solutions).

• End-of-chapter Bridging Problems provide a transition between the single- 
concept Examples and the more challenging end-of-chapter problems. Each  Bridging 
Problem poses a difficult, multiconcept problem that typically incorporates physics 
from earlier chapters. The Solution Guide that follows each problem  provides ques-
tions and hints that help students approach and solve challenging problems with 
 confidence.

• Deep and extensive problem sets cover a wide range of difficulty (with blue dots to in-
dicate relative difficulty level) and exercise both physical understanding and problem-
solving expertise. Many problems are based on complex real-life situations.

• This textbook offers more Examples and Conceptual Examples than most other lead-
ing calculus-based textbooks, allowing students to explore problem-solving challenges 
that are not addressed in other textbooks.

• A research-based problem-solving approach (Identify, Set Up, Execute, Evaluate) 
is used in every Example as well as in the Problem-Solving Strategies, in the Bridging 
Problems, and throughout the Instructor’s Solutions Manual. This consistent approach 
teaches students to tackle problems thoughtfully rather than cutting straight to the math.

• Problem-Solving Strategies coach students in how to approach specific types of 
 problems.

• The figures use a simplified graphical style to focus on the physics of a situation, and 
they incorporate blue explanatory annotations. Both techniques have been demon-
strated to have a strong positive effect on learning.

• Many figures that illustrate Example solutions take the form of black-and-white pencil 
sketches, which directly represent what a student should draw in solving such  problems 
themselves.

• The popular Caution paragraphs focus on typical misconceptions and student 
 problem areas.

• End-of-section Test Your Understanding questions let students check their grasp of 
the material and use a multiple-choice or ranking-task format to probe for common 
misconceptions. Answers are now provided immediately after the question in order to 
encourage students to try them.

• Visual Summaries at the end of each chapter present the key ideas in words, equations, 
and thumbnail pictures, helping students review more effectively.

Mastering™ is the teaching and learning platform that empowers you to reach every 
 student. By combining trusted author content with digital tools developed to engage 
 students and emulate the office-hour experience, Mastering personalizes learning and 
 improves results for each student. 

Reach every student with Mastering

• Teach your course your way: Your course is unique. Whether you’d like to foster stu-
dent engagement during class or give students anytime, anywhere access, Mastering 
gives you the flexibility to easily create your course to fit your needs.
• With Learning Catalytics, you’ll hear from every student when it matters most. 

You pose a variety of questions that help students recall ideas, apply concepts, and 
develop critical-thinking skills. Your students respond using their own smartphones, 
tablets, or laptops. You can monitor responses with real-time analytics and find out 
what your students do—and don’t—understand. Then you can adjust your teach-
ing accordingly and even facilitate peer-to-peer learning, helping students stay 
 motivated and engaged.
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• Expanded alternative problem sets, with hundreds of  vetted problems from pre-
vious editions of the book, provide additional problem-solving practice and offer 
instructors more options when creating assignments.

• Empower each learner: Each student learns at a different pace. Personalized learning, 
including adaptive tools and wrong-answer feedback, pinpoints the precise areas where 
each student needs practice and gives all students the support they need—when and 
where they need it—to be successful.
• Interactive Pre-lecture Videos provide an introduction to key topics with embed-

ded assessment to help students prepare before lecture and to help professors iden-
tify student misconceptions.
• NEW! Quantitative Pre-lecture Videos now complement the conceptual Inter-

active Pre-lecture Videos designed to expose students to concepts before class 
and help them learn how problems for a specific concept are worked.

• NEW! Direct Measurement Videos are short videos that show real situations of physi-
cal phenomena. Grids, rulers, and frame counters appear as overlays, helping students to 
make precise measurements of quantities such as position and time.  Students then apply 
these quantities along with physics concepts to solve problems and answer questions 
about the motion of the objects in the video. The problems are assignable in Mastering 
Physics and can be used to replace or supplement  traditional word problems; they can 
also serve as open-ended questions to help develop problem-solving skills.

• NEW! Dynamic Study Modules help students study effectively—and at their own 
pace. How? By keeping them motivated and engaged. The assignable modules rely 
on the latest research in cognitive science, using methods—such as adaptivity, gami-
fication, and intermittent rewards—to stimulate learning and improve retention. 
Each module poses a series of questions about a course topic. These question sets 
adapt to each student’s performance and offer personalized, targeted feedback to 
help students master key concepts.

• NEW! The Physics Primer relies on videos, hints, and feedback to refresh  students’ 
math skills in the context of physics and prepares them for success in the course. 
These tutorials can be assigned before the course begins or throughout the course as 
just-in-time remediation. They ensure that students practice and  maintain their math 
skills, while tying together mathematical operations and  physics  analysis.

• Deliver trusted content: We partner with highly respected authors to develop  interactive 
content and course-specific resources that keep students on track and  engaged.
• Video Tutor Demonstrations and Video Tutor Solutions tie directly to relevant 

content in the textbook and can be accessed through Mastering Physics, via the eText, 
or from QR codes in the textbook.
• Video Tutor Solutions (VTSs) for most worked examples in the book walk stu-

dents through the problem-solving process, providing a virtual teaching assistant 
on a round-the-clock basis.

• Video Tutor Demonstrations (VTDs) feature “pause-and-predict” demonstra-
tions of key physics concepts and incorporate assessment to engage students in 
understanding key concepts. New VTDs build on the existing collection, adding 
new topics for a more robust set of demonstrations.

• NEW! Enhanced end-of-chapter questions provide expanded remediation built 
into each question when and where students need it. Remediation includes scaf-
folded support, links to hints, links to appropriate sections of the eText, links from 
the eText to Mastering Physics, Video Tutor Solutions, math remediation, and 
wrong-answer feedback for homework assignments.

• NEW! Key Example Variation Problems, assignable in Mastering Physics, build 
in difficulty by changing scenarios, swapping the knowns and unknowns, and add-
ing complexity and>or steps of reasoning to provide the most helpful range of  related 
problems that use the same basic approach to find their solutions.

• NEW! Bridging Problems are now assignable in Mastering Physics, thus pro-
viding students with additional practice in moving from single-concept worked 
 examples to multi-concept homework problems.
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• Improve student results: Usage statistics show that when you teach with Mastering, 
student performance improves. That’s why instructors have chosen Mastering for over 
15 years, touching the lives of more than 20 million students.

INSTRUCTIONAL PACKAGE
University Physics with Modern Physics, Fifteenth Edition, Global Edition in SI units provides 
an integrated teaching and learning package of support material for students and instructors.

NOTE: For convenience, instructor supplements can be downloaded from the Instructor 
Resources area of Mastering Physics.

Supplement Print Online

Instructor 
or Student 
Supplement Description

Mastering Physics with 
Pearson eText
(ISBN 978-1-292-31475-4)

✓ Instructor 
and Student 
Supplement

This product features all of 
the resources of Mastering 
Physics in addition to the 
Pearson eText.

Instructor’s Solutions 
Manual
(ISBN 978-1-292-31474-7)

✓ Instructor 
Supplement

This comprehensive  
solutions manual contains 
 complete  solutions to all 
end-of-chapter questions 
and problems.

Instructor’s Resource 
Materials

✓ Instructor 
Supplement

All art, photos, and tables 
from the book are avail-
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P hysics is one of the most fundamental of the sciences. Scientists of all  disciplines 
use the ideas of physics, including chemists who study the structure of molecules, 
paleontologists who try to reconstruct how  dinosaurs walked, and climatologists 

who study how human activities affect the atmosphere and oceans. Physics is also the 
foundation of all engineering and technology. No engineer could design a flat-screen TV, 
a prosthetic leg, or even a better mousetrap without first understanding the basic laws  
of physics.

The study of physics is also an adventure. You’ll find it challenging, sometimes frus-
trating, occasionally painful, and often richly rewarding. If you’ve ever wondered why the 
sky is blue, how radio waves can travel through empty space, or how a satellite stays in 
orbit, you can find the answers by using fundamental physics. You’ll come to see phys-
ics as a towering achievement of the human intellect in its quest to understand our world  
and ourselves.

In this opening chapter, we’ll go over some important preliminaries that we’ll need 
throughout our study. We’ll discuss the nature of physical theory and the use of ideal-
ized models to represent physical systems. We’ll introduce the systems of units used to 
describe physical quantities and discuss ways to describe the accuracy of a number. We’ll 
look at examples of problems for which we can’t (or don’t want to) find a precise answer, 
but for which rough estimates can be useful and interesting. Finally, we’ll study several 
aspects of vectors and vector algebra. We’ll need vectors throughout our study of physics 
to help us describe and analyze physical quantities, such as velocity and force, that have 
direction as well as magnitude.

1.1 THE NATURE OF PHYSICS
Physics is an experimental science. Physicists observe the phenomena of nature and try to 
find patterns that relate these phenomena. These patterns are called physical theories or, 
when they are very well established and widely used, physical laws or principles.

LEARNING OUTCOMES

In this chapter, you'll learn...
 1.1 What a physical theory is.
 1.2 The four steps you can use to solve any 

physics problem.
 1.3 Three fundamental quantities of physics 

and the units physicists use to measure 
them.

 1.4 How to work with units in your 
 calculations.

 1.5 How to keep track of significant figures 
in your calculations.

 1.6 How to make rough, order-of-magnitude 
estimates.

 1.7 The difference between scalars and 
 vectors, and how to add and subtract 
 vectors graphically.

 1.8 What the components of a vector are 
and how to use them in calculations.

 1.9 What unit vectors are and how to use 
them with components to describe 
vectors.

 1.10 Two ways to multiply vectors: the  scalar 
(dot) product and the vector (cross) 
 product.

? Tornadoes are spawned by severe 
 thunderstorms, so being able to predict 

the path of thunderstorms is essential.  
If a thunderstorm is moving at 15 km>h in  
a direction 37° north of east, how far north 
does the thunderstorm move in 2.0 h?  
(i) 30 km; (ii) 24 km; (iii) 18 km; (iv) 12 km; 
(v) 9 km.

 1  Units, Physical  
Quantities, and Vectors
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   CAUTION    The meaning of “theory” A theory is not just a random thought or an  unproven  
concept. Rather, a theory is an explanation of natural phenomena based on observation and ac-
cepted fundamental principles. An example is the well-established theory of biological evolution, 
which is the result of extensive research and observation by generations of biologists. ❙

To develop a physical theory, a physicist has to ask appropriate questions, design exper-
iments to try to answer the questions, and draw appropriate conclusions from the results. 
Figure 1.1 shows two important facilities used for physics experiments.

Legend has it that Galileo Galilei (1564–1642) dropped light and heavy objects from 
the top of the Leaning Tower of Pisa (Fig. 1.1a) to find out whether their rates of fall were 
different. From examining the results of his experiments (which were actually much more 
sophisticated than in the legend), he deduced the theory that the acceleration of a freely 
falling object is independent of its weight.

The development of physical theories such as Galileo’s often takes an indirect path, 
with blind alleys, wrong guesses, and the discarding of unsuccessful theories in favor of 
more promising ones. Physics is not simply a collection of facts and principles; it is also 
the process by which we arrive at general principles that describe how the physical uni-
verse behaves.

No theory is ever regarded as the ultimate truth. It’s always possible that new observa-
tions will require that a theory be revised or discarded. Note that we can disprove a theory 
by finding behavior that is inconsistent with it, but we can never prove that a theory is 
always correct.

Getting back to Galileo, suppose we drop a feather and a cannonball. They certainly 
do not fall at the same rate. This does not mean that Galileo was wrong; it means that his 
theory was incomplete. If we drop the feather and the cannonball in a vacuum to elimi-
nate the effects of the air, then they do fall at the same rate. Galileo’s theory has a range 
of validity: It applies only to objects for which the force exerted by the air (due to air 
resistance and buoyancy) is much less than the weight. Objects like feathers or parachutes 
are clearly outside this range.

1.2 SOLVING PHYSICS PROBLEMS
At some point in their studies, almost all physics students find themselves  thinking, “I 
understand the concepts, but I just can’t solve the problems.” But in physics, truly under-
standing a concept means being able to apply it to a variety of problems. Learning how to 
solve problems is absolutely essential; you don’t know physics unless you can do physics.

How do you learn to solve physics problems? In every chapter of this book you’ll find 
Problem-Solving Strategies that offer techniques for setting up and solving problems 
efficiently and accurately. Following each Problem-Solving Strategy are one or more 
worked Examples that show these techniques in action. (The Problem-Solving Strategies 
will also steer you away from some incorrect techniques that you may be tempted to use.) 
You’ll also find additional examples that aren’t associated with a particular Problem-
Solving Strategy. In addition, at the end of each chapter you’ll find a Bridging Problem 
that uses more than one of the key ideas from the chapter. Study these strategies and 
problems carefully, and work through each example for yourself on a piece of paper.

Different techniques are useful for solving different kinds of physics problems, which 
is why this book offers dozens of Problem-Solving Strategies. No matter what kind of 
problem you’re dealing with, however, there are certain key steps that you’ll always fol-
low. (These same steps are equally useful for problems in math, engineering, chemistry, 
and many other fields.) In this book we’ve organized these steps into four stages of solving 
a problem.

All of the Problem-Solving Strategies and Examples in this book will follow these four 
steps. (In some cases we’ll combine the first two or three steps.) We encourage you to follow 
these same steps when you solve problems yourself. You may find it useful to remember the 
acronym I SEE—short for Identify, Set up, Execute, and Evaluate.

(b) By doing experiments in apparent
weightlessness on board the International
Space Station, physicists have been able to
make sensitive measurements that would be
impossible in Earth’s surface gravity.

(a) According to legend, Galileo investigated
falling objects by dropping them from the
Leaning Tower of Pisa, Italy, ...

... and he studied pendulum motion
by observing the swinging chandelier
in the adjacent cathedral.

Figure 1.1 Two research laboratories.
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Idealized Models
In everyday conversation we use the word “model” to mean either a small-scale replica, 
such as a model railroad, or a person who displays articles of clothing (or the absence 
thereof). In physics a model is a simplified version of a physical system that would be too 
complicated to analyze in full detail.

For example, suppose we want to analyze the motion of a thrown baseball (Fig. 1.2a). 
How complicated is this problem? The ball is not a perfect sphere (it has raised seams), 
and it spins as it moves through the air. Air resistance and wind influence its motion, the 
ball’s weight varies a little as its altitude changes, and so on. If we try to include all these 
effects, the analysis gets hopelessly complicated. Instead, we invent a simplified version of 
the problem. We ignore the size, shape, and rotation of the ball by representing it as a point 
object, or particle. We ignore air resistance by making the ball move in a vacuum, and 
we make the weight constant. Now we have a problem that is simple enough to deal with  
(Fig. 1.2b). We’ll analyze this model in detail in Chapter 3.

We have to overlook quite a few minor effects to make an idealized model, but we must 
be careful not to neglect too much. If we ignore the effects of gravity completely, then our 
model predicts that when we throw the ball up, it will go in a straight line and disappear 
into space. A useful model simplifies a problem enough to make it manageable, yet keeps 
its essential features.

The validity of the predictions we make using a model is limited by the validity of 
the model. For example, Galileo’s prediction about falling objects (see Section 1.1) corre-
sponds to an idealized model that does not include the effects of air resistance. This model 
works fairly well for a dropped cannonball, but not so well for a feather.

Idealized models play a crucial role throughout this book. Watch for them in discus-
sions of physical theories and their applications to specific problems.

1.3 STANDARDS AND UNITS
As we learned in Section 1.1, physics is an experimental science. Experiments require 
measurements, and we generally use numbers to describe the results of measurements. 
Any number that is used to describe a physical phenomenon quantitatively is called 

IDENTIFY the relevant concepts:

• Use the physical conditions stated in the problem to help you 
 decide which physics concepts are relevant.

• Identify the target variables of the problem—that is, the 
 quantities whose values you’re trying to find, such as the speed at 
which a projectile hits the ground, the intensity of a sound made 
by a siren, or the size of an image made by a lens.

• Identify the known quantities, as stated or implied in the problem. 
This step is essential whether the problem asks for an algebraic 
expression or a numerical answer.

SET UP the problem:

• Given the concepts, known quantities, and target variables that 
you found in the IDENTIFY step, choose the equations that you’ll 
use to solve the problem and decide how you’ll use them. Study 
the worked examples in this book for tips on how to select the 
proper equations. If this seems challenging, don’t worry—you’ll 
get better with practice!

• Make sure that the variables you have identified correlate exactly 
with those in the equations.

• If appropriate, draw a sketch of the situation described in the 
problem. (Graph paper and a ruler will help you make clear, 
 useful sketches.)

EXECUTE the solution:

• Here’s where you’ll “do the math” with the equations that you 
selected in the SET UP step to solve for the target variables that 
you found in the IDENTIFY step. Study the worked examples to 
see what’s involved in this step.

EVALUATE your answer:

• Check your answer from the SOLVE step to see if it’s reasonable. 
(If you’re calculating how high a thrown baseball goes, an  answer 
of 1.0 mm is unreasonably small and an answer of 100 km is 
 unreasonably large.) If your answer includes an algebraic expres-
sion, confirm that it correctly represents what would happen if the 
variables in it had very large or very small values.

• For future reference, make note of any answer that represents a 
quantity of particular significance. Ask yourself how you might 
answer a more general or more difficult version of the problem 
you have just solved.

PROBLEM-SOLVING STRATEGY 1.1 Solving Physics Problems

Direction of
motion

Direction of
motion

Treat the baseball as a point object (particle).

No air resistance.

A baseball spins and has a complex shape.

Air resistance and
wind exert forces
on the ball.

Gravitational force on ball
depends on altitude.

Gravitational force
on ball is constant.

(a) A real baseball in flight

(b) An idealized model of the baseball

Figure 1.2 To simplify the analysis of  
(a) a baseball in flight, we use (b) an 
idealized model.
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a physical quantity. For example, two physical quantities that describe you are your 
weight and your height. Some physical quantities are so fundamental that we can define 
them only by describing how to measure them. Such a definition is called an operational 
definition. Two examples are measuring a distance by using a ruler and measuring a 
time interval by using a stopwatch. In other cases we define a physical quantity by de-
scribing how to calculate it from other quantities that we can measure. Thus we might 
define the average speed of a moving object as the distance traveled (measured with a 
ruler) divided by the time of travel (measured with a stopwatch).

When we measure a quantity, we always compare it with some reference standard. When 
we say that a basketball hoop is 3.05 meters above the ground, we mean that this distance is 
3.05 times as long as a meter stick, which we define to be 1 meter long. Such a standard de-
fines a unit of the quantity. The meter is a unit of distance, and the second is a unit of time. 
When we use a number to describe a physical quantity, we must always specify the unit that 
we are using; to describe a distance as simply “3.05” wouldn’t mean anything.

To make accurate, reliable measurements, we need units of measurement that do not 
change and that can be duplicated by observers in various locations. The system of units used 
by scientists and engineers around the world is commonly called “the metric system,” but 
since 1960 it has been known officially as the International System, or SI (the abbreviation 
for its French name, Système International). Appendix A gives a list of all SI units as well as 
definitions of the most fundamental units. The United States and a few other countries use the 
British System of Units. Appendix C gives a list of British units as well as their definitions.

Time
From 1889 until 1967, the unit of time was defined as a certain fraction of the mean solar 
day, the average time between successive arrivals of the sun at its highest point in the sky. 
The present standard, adopted in 1967, is much more precise. It is based on an atomic 
clock, which uses the energy difference between the two lowest energy states of the  
cesium atom (133Cs). When bombarded by microwaves of precisely the proper frequency, 
cesium atoms undergo a transition from one of these states to the other. One second  
(abbreviated s) is defined as the time required for 9,192,631,770 cycles of this microwave 
radiation (Fig. 1.3a).

Length
In 1960 an atomic standard for the meter was also established, using the wavelength of the 
orange-red light emitted by excited atoms of krypton 186Kr2. From this length standard, 
the speed of light in vacuum was measured to be 299,792,458 m>s. In November 1983, the 
length standard was changed again so that the speed of light in vacuum was defined to be 
precisely 299,792,458 m>s. Hence the new definition of the meter (abbreviated m) is the 
distance that light travels in vacuum in 1>299,792,458 second (Fig. 1.3b). This modern 
definition provides a much more precise standard of length than the one based on a wave-
length of light.

Mass
Until recently the unit of mass, the kilogram (abbreviated kg), was defined to be the 
mass of a metal cylinder kept at the International Bureau of Weights and Measures in 
France (Fig. 1.4). This was a very inconvenient standard to use. Since 2018 the value of 
the  kilogram has been based on a fundamental constant of nature called Planck’s constant 
(symbol h), whose defined value h = 6.62607015 * 10-34 kg # m2>s is related to those of 
the kilogram, meter, and second. Given the values of the meter and the second, the masses 
of objects can be experimentally determined in terms of h. (We’ll explain the meaning of 
h in Chapter 28.) The gram (which is not a fundamental unit) is 0.001 kilogram.

Light
source

Cesium-133
atom

Cesium-133
atom

Microwave radiation with a frequency of
exactly 9,192,631,770 cycles per second ...

... causes the outermost electron of a
cesium-133 atom to reverse its spin direction.

An atomic clock uses this phenomenon to tune
microwaves to this exact frequency. It then
counts 1 second for each 9,192,631,770 cycles.

Light travels exactly
299,792,458 m in 1 s.

(a) Measuring the second

(b) Measuring the meter

0:00 s 0:01 s

Outermost
electron

Figure 1.3 The measurements used to 
determine (a) the duration of a second 
and (b) the length of a meter. These 
measurements are useful for setting 
standards because they give the same 
results no matter where they are made.
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Other derived units can be formed from the fundamental units. For example, the units 
of speed are meters per second, or m>s; these are the units of length (m) divided by the 
units of time (s).

Unit Prefixes
Once we have defined the fundamental units, it is easy to introduce larger and smaller 
units for the same physical quantities. In the metric system these other units are related to 
the fundamental units (or, in the case of mass, to the gram) by multiples of 10 or 1

10. Thus 
one kilometer 11 km2 is 1000 meters, and one centimeter 11 cm2 is 1

100 meter. We usually 
express multiples of 10 or 1

10 in exponential notation: 1000 = 103, 1
1000 = 10-3, and so on. 

With this notation, 1 km = 103 m and 1 cm = 10-2 m.
The names of the additional units are derived by adding a prefix to the name of the 

fundamental unit. For example, the prefix “kilo-,” abbreviated k, always means a unit 
larger by a factor of 1000; thus

 1 kilometer = 1 km  = 103 meters = 103 m

 1 kilogram = 1 kg  = 103 grams  = 103 g

 1 kilowatt  = 1 kW = 103 watts  = 103 W

A table in Appendix A lists the standard SI units, with their meanings and abbreviations.
Table 1.1 gives some examples of the use of multiples of 10 and their prefixes with the 

units of length, mass, and time. Figure 1.5 (next page) shows how these prefixes are used 
to describe both large and small distances.

Figure 1.4 Until 2018 a metal cylinder 
was used to define the value of the 
kilogram. (The one shown here, a copy 
of the one in France, was maintained by 
the U. S. National Institute of Standards 
and Technology.) Today the kilogram is 
defined in terms of one of the fundamental 
constants of nature.

TABLE 1.1 Some Units of Length, Mass, and Time

Length Mass Time

1 nanometer  = 1 nm  = 10-9 m 
(a few times the size of the largest atom)

1 micrometer = 1 mm = 10-6 m 
(size of some bacteria and other cells)

1 millimeter  = 1 mm = 10-3 m 
(diameter of the point of a ballpoint pen)

1 centimeter  = 1 cm  = 10-2 m 
(diameter of your little finger)

1 kilometer  = 1 km  = 103 m 
(distance in a 10 minute walk)

1 microgram  = 1 mg  = 10-6 g = 10-9 kg 
(mass of a very small dust particle)

1 milligram  = 1 mg  = 10-3 g = 10-6 kg 
(mass of a grain of salt)

1 gram  = 1 g  = 10-3 kg 
(mass of a paper clip)

1 nanosecond  = 1 ns  = 10-9 s 
(time for light to travel 0.3 m)

1 microsecond = 1 ms  = 10-6 s 
(time for space station to move 8 mm)

1 millisecond  = 1 ms = 10-3 s 
(time for a plane flying at cruising speed  
to travel 25 cm)
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1.4 USING AND CONVERTING UNITS
We use equations to express relationships among physical quantities, represented  
by algebraic symbols. Each algebraic symbol always denotes both a number and a 
unit. For example, d might represent a distance of 10 m, t a time of 5 s, and v a speed  
of 2 m>s.

An equation must always be dimensionally consistent. You can’t add apples and au-
tomobiles; two terms may be added or equated only if they have the same units. For ex-
ample, if an object moving with constant speed v travels a distance d in a time t, these 
quantities are related by the equation

d = vt

If d is measured in meters, then the product vt must also be expressed in meters. Using the 
above numbers as an example, we may write

10 m = a2 
m
s
b (5 s)

Because the unit s in the denominator of m>s cancels, the product has units of meters, as 
it must. In calculations, units are treated just like algebraic symbols with respect to multi-
plication and division.

   CAUTION    Always use units in calcula tions Make it a habit to always write numbers with 
the correct units and carry the units through the calculation as in the example above. This pro-
vides a very useful check. If at some stage in a calculation you find that an equation or an 
expression has inconsistent units, you know you have made an error. In this book we’ll always 
carry units through all calculations, and we strongly urge you to follow this practice when you 
solve problems. ❙

(g) 10-14 m
Radius of an
atomic nucleus

(f) 10-10 m
Radius of an
atom

Note: (f) is a scanning tunneling
microscope image of atoms on a
crystal surface; (g) is an artist’s
impression.

(e) 10-5 m
Diameter of a
red blood cell

(d) 1 m
Human
dimensions

(c) 107 m
Diameter of
the earth

(b) 1011 m
Distance to
the sun

(a) 1026 m
Limit of the
observable
universe

Figure 1.5 Some typical lengths in the universe.
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IDENTIFY the relevant concepts: In most cases, it’s best to use the 
fundamental SI units (lengths in meters, masses in kilograms, and 
times in seconds) in every problem. If you need the answer to be in a 
different set of units (such as kilometers, grams, or hours), wait until 
the end of the problem to make the conversion.

SET UP the problem and EXECUTE the solution: Units are multi-
plied and divided just like ordinary algebraic symbols. This gives us 
an easy way to convert a quantity from one set of units to another: 
Express the same physical quantity in two different units and form 
an equality.

For example, when we say that 1 min = 60 s, we don’t mean 
that the number 1 is equal to the number 60; rather, we mean that 
1 min represents the same physical time interval as 60 s. For this 
reason, the ratio (1 min)>(60 s) equals 1, as does its reciprocal, 
(60 s)>(1 min). We may multiply a quantity by either of these  factors 

(which we call unit multipliers) without changing that quantity’s 
physical meaning. For example, to find the number of seconds in 
3 min, we write

3 min = (3 min)a 60 s
1 min

b = 180 s

EVALUATE your answer: If you do your unit conversions correctly, 
unwanted units will cancel, as in the example above. If, instead, you 
had multiplied 3 min by (1 min)>(60 s), your result would have been 
the nonsensical 1

20 min2>s. To be sure you convert units properly, in-
clude the units at all stages of the calculation.

Finally, check whether your answer is reasonable. For exam-
ple, the result 3 min = 180 s is reasonable because the second is a 
smaller unit than the minute, so there are more seconds than minutes 
in the same time interval.

PROBLEM-SOLVING STRATEGY 1.2 Unit Conversions

EXAMPLE 1.1 Converting speed units

The world land speed record of 1228.0 km>h was set on October 15, 
1997, by Andy Green in the jet-engine car Thrust SSC. Express this 
speed in meters per second.

IDENTIFY, SET UP, and EXECUTE We need to convert the units of a 
speed from km>h to m>s. We must therefore use unit multipliers that re-
late (i) kilometers to meters and (ii) hours to seconds. We have 1 km =  
1000 m, and 1 h = 3600 s. We set up the conversion as follows, which 
ensures that all the desired cancellations by division take place:

 1228.0 km>h = a1228.0 
km
h

b a1000 m
1 km

b a 1 h
3600 s

b

 = 341.1 m>s

EVALUATE This example shows a useful rule: A speed expressed in m>s 
is the value expressed in km>h divided by 3.6 (hence, between one third 
and one quarter of the value in km>h). A speed expressed in km>h is the 
value expressed in m>s times 3.6. For example 20 m>s = 72 km>h and 
90 km>h = 25 m>s.

KEYCONCEPT To convert units, multiply by an appropriate unit 
multiplier.

EXAMPLE 1.2 Converting volume units

One of the world’s largest cut diamonds is the First Star of Africa 
(mounted in the British Royal Sceptre and kept in the Tower of 
London). Its volume is 30.2 cubic centimeters. What is its volume in 
cubic millimeters? In cubic meters?

IDENTIFY, SET UP, and EXECUTE Here we are to convert the units of a 
volume from cubic centimeters 1cm32 to both cubic millimeters 1mm32 
and cubic meters 1m32. Since 1 cm = 10 mm we have

 30.2 cm3 = 130.2 cm32a10 mm
1 cm

b
3

 = 130.2211023 
cm3 mm3

cm3 = 30,200 mm3

Since 1 m = 100 cm, we also have

 30.2 cm3 = 130.2 cm32a 1 m
100 cm

b
3

 = 130.22a 1
100

b
3

 
cm3 m3

cm3 = 30.2 * 10-6 m3

 = 3.02 * 10-5 m3

EVALUATE Following the pattern of these conversions, can you show 
that 1 km3 = 109 m3 and that 1 mm3 = 10-18  m3?

KEYCONCEPT If the units of a quantity are a product of simpler 
units, such as m3 = m * m * m, use a product of unit multipliers to 
convert these units.
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1.5 UNCERTAINTY AND SIGNIFICANT FIGURES
Measurements always have uncertainties. If you measure the thickness of the cover of a 
hardbound version of this book using an ordinary ruler, your measurement is reliable to 
only the nearest millimeter, and your result will be 3 mm. It would be wrong to state this 
result as 3.00 mm; given the limitations of the measuring  device, you can’t tell whether 
the actual thickness is 3.00 mm, 2.85 mm, or 3.11 mm. But if you use a micrometer cali-
per, a device that measures distances reliably to the nearest 0.01 mm, the result will be 
2.91 mm. The distinction between the measurements with a ruler and with a caliper is in 
their uncertainty; the measurement with a caliper has a smaller uncertainty. The uncer-
tainty is also called the error because it indicates the maximum difference there is likely 
to be between the measured value and the true value. The uncertainty or error of a mea-
sured value depends on the measurement technique used.

We often indicate the accuracy of a measured value—that is, how close it is likely 
to be to the true value—by writing the number, the symbol { , and a second number 
indicating the uncertainty of the measurement. If the diameter of a steel rod is given as 
56.47 { 0.02 mm, this means that the true value is likely to be within the range from 
56.45 mm to 56.49 mm. In a commonly used shorthand notation, the number 1.64541212 
means 1.6454 { 0.0021. The numbers in parentheses show the uncertainty in the final 
digits of the main number.

We can also express accuracy in terms of the maximum likely fractional error or 
percent error (also called fractional uncertainty and percent uncertainty). A resistor la-
beled ;47 ohms { 10%< probably has a true resistance that differs from 47 ohms by no 
more than 10% of 47 ohms—that is, by about 5 ohms. The resistance is probably between 
42 and 52 ohms. For the diameter of the steel rod given above, the fractional error is 
10.02 mm2>156.47 mm2, or about 0.0004; the percent error is 10.000421100%2, or about 
0.04%. Even small percent errors can be very significant (Fig. 1.6).

In many cases the uncertainty of a number is not stated explicitly. Instead, the uncer-
tainty is indicated by the number of meaningful digits, or significant  figures, in the mea-
sured value. We gave the thickness of the cover of the book as 2.91 mm, which has three 
significant figures. By this we mean that the first two digits are known to be correct, while 
the third digit is uncertain. The last digit is in the  hundredths place, so the uncertainty is 
about 0.01 mm. Two values with the same number of significant figures may have different 
uncertainties; a distance given as 137 km also has three significant figures, but the uncer-
tainty is about 1 km. A distance given as 0.25 km has two significant figures (the zero to the 
left of the decimal point doesn’t count); if given as 0.250 km, it has three significant figures.

When you use numbers that have uncertainties to compute other numbers, the com-
puted numbers are also uncertain. When numbers are multiplied or divided, the result 
can have no more significant figures than the factor with the fewest significant figures 
has. For example, 3.1416 * 2.34 * 0.58 = 4.3. When we add and subtract numbers, it’s 
the location of the decimal point that matters, not the number of significant figures. For 
example, 123.62 + 8.9 = 132.5. Although 123.62 has an uncertainty of about 0.01, 8.9 
has an uncertainty of about 0.1. So their sum has an uncertainty of about 0.1 and should 
be written as 132.5, not 132.52. Table 1.2 summarizes these rules for significant figures.

To apply these ideas, suppose you want to verify the value of p, the ratio of the circum-
ference of a circle to its diameter. The true value of this ratio to ten digits is 3.141592654. 
To test this, you draw a large circle and measure its circumference and diameter to the 
nearest millimeter, obtaining the values 424 mm and 135 mm (Fig. 1.7). You enter these 
into your calculator and obtain the quotient 1424 mm2>1135 mm2 = 3.140740741. This 
may seem to disagree with the true value of p, but keep in mind that each of your mea-
surements has three significant figures, so your measured value of p can have only three 
significant figures. It should be stated simply as 3.14. Within the limit of three significant 
figures, your value does agree with the true value.

In the examples and problems in this book we usually give numerical values with three 
significant figures, so your answers should usually have no more than three significant fig-
ures. (Many numbers in the real world have even less accuracy. The speedometer in a car, 
for example, usually gives only two significant figures.) Even if you do the arithmetic with a 

Figure 1.6 This spectacular mishap was 
the  result of a very small percent error— 
traveling a few meters too far at the end 
of a journey of hundreds of thousands of 
meters.

TABLE 1.2 Using Significant Figures

Multiplication or division:
Result can have no more significant figures
than the factor with the fewest significant figures:

Addition or subtraction:
Number of significant figures is determined by
the term with the largest uncertainty (i.e., fewest
digits to the right of the decimal point):

0.745 *  2.2

1.32578 *  107 *  4.11 *  10 - 3 =  5.45 *  104

27.153 +  138.2 -  11.74 =  153.6

3.885
 =  0.42

The measured values have only three significant
figures, so their calculated  ratio (p) also has
only three significant figures.

424 mm

135 mm

Figure 1.7 Determining the value of p from 
the circumference and diameter of a circle.
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calculator that displays ten digits, a ten-digit answer would misrepresent the accuracy of the 
results. Always round your final answer to keep only the correct number of significant figures 
or, in doubtful cases, one more at most. In Example 1.1 it would have been wrong to state 
the answer as 341.01861 m>s. Note that when you reduce such an answer to the appropriate 
number of significant figures, you must round, not truncate. Your calculator will tell you that 
the ratio of 525 m to 311 m is 1.688102894; to three significant figures, this is 1.69, not 1.68.

Here’s a special note about calculations that involve multiple steps: As you work, it’s helpful 
to keep extra significant figures in your calculations. Once you have your final answer, round it 
to the correct number of significant figures. This will give you the most accurate results.

When we work with very large or very small numbers, we can show significant figures 
much more easily by using scientific notation, sometimes called powers-of-10 notation. 
The distance from the earth to the moon is about 384,000,000 m, but writing the number in 
this form doesn’t indicate the number of significant figures. Instead, we move the decimal 
point eight places to the left (corresponding to dividing by 108) and multiply by 108; that is,

384,000,000 m = 3.84 * 108 m

In this form, it is clear that we have three significant figures. The number 4.00 * 10-7 
also has three significant figures, even though two of them are zeros. Note that in scien-
tific notation the usual practice is to express the quantity as a number between 1 and 10 
multiplied by the appropriate power of 10.

When an integer or a fraction occurs in an algebraic equation, we treat that number 
as having no uncertainty at all. For example, in the equation vx

 2 = v0x
 2  + 2ax 1x - x02, 

which is Eq. (2.13) in Chapter 2, the coefficient 2 is exactly 2. We can consider this coeffi-
cient as having an infinite number of significant figures (2.000000 c). The same is true 
of the exponent 2 in vx

 2 and v0x
 2.

Finally, let’s note that precision is not the same as accuracy. A cheap digital watch that 
gives the time as 10:35:17 a.m. is very precise (the time is given to the second), but if the watch 
runs several minutes slow, then this value isn’t very accurate. On the other hand, a grandfather 
clock might be very accurate (that is, display the correct time), but if the clock has no second 
hand, it isn’t very precise. A high-quality measurement is both precise and accurate.

EXAMPLE 1.3 Significant figures in multiplication

The rest energy E of an object with rest mass m is given by Albert 
Einstein’s famous equation E = mc2, where c is the speed of light 
in vacuum. Find E for an electron for which (to three significant 
figures) m = 9.11 * 10-31 kg. The SI unit for E is the joule (J); 
1 J = 1 kg # m2>s2.

IDENTIFY and SET UP Our target variable is the energy E. We are given 
the value of the mass m; from Section 1.3 (or Appendix G) the speed of 
light is c = 2.99792458 * 108 m>s.

EXECUTE Substituting the values of m and c into Einstein’s equation, 
we find

 E = 19.11 * 10-31 kg212.99792458 * 108 m>s22
 = 19.11212.9979245822110-312110822 kg # m2>s2

 = 181.8765967821103-31+12*8242 kg # m2>s2

 = 8.187659678 * 10-14 kg # m2>s2

Since the value of m was given to only three significant figures, we 
must round this to

E = 8.19 * 10-14 kg # m2>s2 = 8.19 * 10-14 J

EVALUATE While the rest energy contained in an electron may seem 
ridiculously small, on the atomic scale it is tremendous. Compare our 
answer to 10-19 J, the energy gained or lost by a single atom during 
a typical chemical reaction. The rest energy of an electron is about 
1,000,000 times larger! (We’ll discuss the significance of rest energy in 
Chapter 37.)

KEYCONCEPT When you are multiplying (or dividing) quantities, 
the result can have no more significant figures than the quantity with the 
fewest significant figures.

TEST YOUR UNDERSTANDING OF SECTION 1.5 The density of a material is equal to its 
mass divided by its volume. What is the density 1in kg>m32 of a rock of mass 1.80 kg and volume 
6.0 * 10-4 m3? (i) 3 * 103 kg>m3; (ii) 3.0 *  103 kg >m3; (iii) 3.00 * 103 kg>m3;  
(iv) 3.000 * 103 kg>m3; (v) any of these—all of these answers are mathematically equivalent.

ANSWER

❙ (ii) Density=11.80 kg2>16.0*10-4 m32=3.0*103 kg>m3. When we multiply or divide, the 
number with the fewest significant figures controls the number of significant figures in the result.
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1.6 ESTIMATES AND ORDERS OF MAGNITUDE
We have stressed the importance of knowing the accuracy of numbers that represent phys-
ical quantities. But even a very crude estimate of a quantity often gives us useful informa-
tion. Sometimes we know how to calculate a certain quantity, but we have to guess at the 
data we need for the calculation. Or the calculation might be too complicated to carry out 
exactly, so we make rough approximations. In either case our result is also a guess, but 
such a guess can be useful even if it is uncertain by a factor of two, ten, or more. Such cal-
culations are called order-of-magnitude estimates. The great Italian-American nuclear 
physicist Enrico Fermi (1901–1954) called them “back-of-the-envelope calculations.”

Exercises 1.15 through 1.20 at the end of this chapter are of the estimating, or order-of-
magnitude, variety. Most require guesswork for the needed input data. Don’t try to look up 
a lot of data; make the best guesses you can. Even when they are off by a factor of ten, the 
results can be useful and interesting.

TEST YOUR UNDERSTANDING OF SECTION 1.6 Can you estimate the total number of teeth in the 
mouths of all the students on your campus? (Hint: How many teeth are in your mouth? Count them!)

ANSWER

APPLICATION Scalar 
Temperature, Vector Wind The 
comfort level on a wintry day depends 
on the temperature, a scalar quantity 
that can be positive or negative (say, 
+5°C or -20°C) but has no direction. 
It also depends on the wind velocity, a 
vector quantity with both magnitude and 
direction (for example, 15 km>h from 
the west).

1.7 VECTORS AND VECTOR ADDITION
Some physical quantities, such as time, temperature, mass, and density, can be described 
completely by a single number with a unit. But many other important quantities in physics 
have a direction associated with them and cannot be described by a single number. A simple 
example is the motion of an airplane: We must say not only how fast the plane is moving but 
also in what direction. The speed of the airplane combined with its direction of motion con-
stitute a quantity called velocity. Another example is force, which in physics means a push 
or pull exerted on an object. Giving a complete description of a force means describing both 
how hard the force pushes or pulls on the object and the direction of the push or pull.

When a physical quantity is described by a single number, we call it a  scalar quantity. 
In contrast, a vector quantity has both a magnitude (the “how much” or “how big” part) 
and a direction in space. Calculations that combine scalar quantities use the operations of 
ordinary arithmetic. For example, 6 kg + 3 kg = 9 kg, or 4 * 2 s = 8 s. However, com-
bining vectors requires a different set of operations.

To understand more about vectors and how they combine, we start with the simplest 
vector quantity, displacement. Displacement is a change in the position of an object. 

❙ The answer depends on how many students are enrolled at your campus.
EXAMPLE 1.4 An order-of-magnitude estimate

You are writing an adventure novel in which the hero escapes with a 
billion dollars’ worth of gold in his suitcase. Could anyone carry that 
much gold? Would it fit in a suitcase?

IDENTIFY, SET UP, and EXECUTE Gold sells for about $40 a gram 
(the price per gram has varied between $34 and $45 over the past five 
years or so), or about $1000 for 25 grams, that is about $1 million for  
25 kilograms. A billion (1 * 109) dollars’ worth of gold has a mass 103 
times greater, about 25,000 kilograms or 25 tonnes! No human could 
lift it, let alone carry it. (25 tonnes is about the same as the mass of five 
asian elephants or two double-decker buses.)

What would the density of gold need to be in order for this amount 
to fit in a suitcase? The same amount of water would have the volume of  
25 m3 or 25,000 liters (the density of water is 1 g>cm3 = 1000 kg>m3 and  
1 liter = 1 L = 10−3 m3). This is more than 100 times the capacity of even 
the largest suitcase (120 to 160 L). Therefore, for 25,000 kilograms of gold 
to fit in a suitcase, gold would need to be at least 100 times denser than 

water. In other words, a cube of gold of side 10 cm would have a mass 
larger than 100 kg, which is certainly not the case. Gold is much denser 
than water, but not that dense. (The density of gold is actually 19.3 g>cm3,  
which is roughly 20 times that of water; the densest naturally occurring 
element on earth is osmium which has the density of 22.6 g>cm3.)

EVALUATE Clearly your novel needs rewriting. Maybe your hero could 
be satisfied with 1 million dollars’ worth of gold? We have seen that the 
mass of gold in this case is about 25 kilograms, an amount which your 
hero should be able to carry and which would easily fit in a briefcase. 
If you want a more spectacular amount, try the calculation again with 
a suitcase full of five-carat (1-gram) diamonds, each worth $500,000. 
Would this work?

KEYCONCEPT To decide whether the numerical value of a quantity 
is reasonable, assess the quantity in terms of other quantities that you 
can estimate, even if only roughly. 
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Displacement is a vector quantity because we must state not only how far the object moves 
but also in what direction. Walking 3 km north from your front door doesn’t get you to the 
same place as walking 3 km southeast; these two displacements have the same magnitude 
but different directions.

We usually represent a vector quantity such as displacement by a single letter, such as 
A
S

 in Fig. 1.8a. In this book we always print vector symbols in boldface italic type with 
an arrow above them. We do this to remind you that vector quantities have different prop-
erties from scalar quantities; the arrow is a reminder that vectors have direction. When 
you handwrite a symbol for a vector, always write it with an arrow on top. If you don’t dis-
tinguish between scalar and vector quantities in your notation, you probably won’t make 
the distinction in your thinking either, and confusion will result.

We always draw a vector as a line with an arrowhead at its tip. The length of the line 
shows the vector’s magnitude, and the direction of the arrowhead shows the vector’s direc-
tion. Displacement is always a straight-line segment directed from the starting point to the 
ending point, even though the object’s actual path may be curved (Fig. 1.8b). Note that dis-
placement is not related directly to the total distance traveled. If the object were to continue 
past P2 and then return to P1 , the displacement for the entire trip would be zero (Fig. 1.8c).

If two vectors have the same direction, they are parallel. If they have the same mag-
nitude and the same direction, they are equal, no matter where they are  located in space. 
The vector A

S
′ from point P3 to point P4 in Fig. 1.9 has the same length and direction as 

the vector A
S

 from P1 to P2 . These two displacements are equal, even though they start at 
different points. We write this as A

S
′ ∙ A

S
 in Fig. 1.9; the boldface equals sign emphasizes 

that equality of two vector quantities is not the same relationship as equality of two scalar 
quantities. Two vector quantities are equal only when they have the same magnitude and 
the same direction.

Vector B
S

 in Fig. 1.9, however, is not equal to A
S

 because its direction is  opposite that 
of A

S
. We define the negative of a vector as a vector having the same magnitude as the 

original vector but the opposite direction. The negative of vector quantity A
S

 is denoted as 
∙A

S
, and we use a boldface minus sign to emphasize the vector nature of the quantities. 

If A
S

 is 87 m south, then ∙A
S

 is 87 m north. Thus we can write the relationship between  
A
S

 and B
S

 in Fig. 1.9 as A
S

∙ ∙ B
S

 or B
S

∙ ∙ A
S

. When two vectors A
S

 and B
S

 have opposite di-
rections, whether their magnitudes are the same or not, we say that they are antiparallel.

We usually represent the magnitude of a vector quantity by the same letter used for 
the vector, but in lightface italic type with no arrow on top. For example, if displacement 
vector A

S
 is 87 m south, then A = 87 m. An alternative notation is the vector symbol with 

vertical bars on both sides:

 1Magnitude of A
S2 = A = 0  AS 0  (1.1)

The magnitude of a vector quantity is a scalar quantity (a number) and is  always positive. 
Note that a vector can never be equal to a scalar because they are different kinds of quan-
tities. The expression ;A

S
= 6 m< is just as wrong as ;2 oranges = 3 apples<!

When we draw diagrams with vectors, it’s best to use a scale similar to those used for 
maps. For example, a displacement of 5 km might be represented in a diagram by a vector 
1 cm long, and a displacement of 10 km by a vector 2 cm long.

Vector Addition and Subtraction
Suppose a particle undergoes a displacement A

S
 followed by a second displacement B

S
. The 

final result is the same as if the particle had started at the same initial point and undergone 
a single displacement C

S
 (Fig. 1.10a, next page). We call displacement C

S
 the vector sum, 

or resultant, of displacements A
S

 and B
S

. We express this relationship symbolically as

 C
S

∙ A
S

∙ B
S

 (1.2)

The boldface plus sign emphasizes that adding two vector quantities requires a geo-
metrical process and is not the same operation as adding two scalar quantities such as 
2 + 3 = 5. In vector addition we usually place the tail of the second vector at the head, 
or tip, of the first vector (Fig. 1.10a).

Displacement B has
the same magnitude
as A but opposite
direction; B is the
negative of A.

P2 P4 P5

P1 P3 P6

A′ = A B = −AA

Displacements A and A′
are equal because they
have the same length
and direction.

S

S

S S

SS S

S

SS S

Figure 1.9 The meaning of vectors that 
have the same magnitude and the same or 
opposite direction.

A
S

S

Ending position: P2

Displacement A

Starting position: P1

P2

P1

P1

Path taken

Handwritten notation:

(a) We represent a displacement by an arrow that
points in the direction of displacement.

(b) A displacement is always a straight arrow
directed from the starting position to the ending
position. It does not depend on the path taken,
even if the path is curved.

(c) Total displacement for a round trip is 0,
regardless of the path taken or distance traveled.

Figure 1.8 Displacement as a vector 
quantity.
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If we make the displacements A
S

 and B
S

 in reverse order, with B
S

 first and A
S

 second, the 
result is the same (Fig. 1.10b). Thus

 C
S

∙ B
S

∙ A
S
 and A

S
∙ B

S
∙ B

S
∙ A

S
 (1.3)

This shows that the order of terms in a vector sum doesn’t matter. In other words, vector 
addition obeys the commutative law.

Figure 1.10c shows another way to represent the vector sum: If we draw vectors A
S

 
and B

S
 with their tails at the same point, vector C

S
 is the diagonal of a parallelogram con-

structed with A
S

 and B
S

 as two adjacent sides.

   CAUTION    Magnitudes in vector addition It’s a common error to conclude that if C
S

∙ A
S

∙ B
S
, 

then magnitude C equals magnitude A plus magnitude B. In general, this conclusion is wrong; for 
the vectors shown in Fig. 1.10, C 6 A + B. The magnitude of A

S
∙ B

S
 depends on the magnitudes 

of A
S

 and B
S

 and on the angle between A
S

 and B
S

. Only in the special case in which A
S

 and B
S

 are par-
allel is the magnitude of C

S
∙ A

S
∙ B

S
 equal to the sum of the magnitudes of A

S
 and B

S
 (Fig. 1.11a). 

When the vectors are antiparallel (Fig. 1.11b), the magnitude of C
S

 equals the difference of the mag-
nitudes of A

S
 and B

S
. Be careful to distinguish between scalar and vector quantities, and you’ll avoid 

making errors about the magnitude of a vector sum. ❙

Figure 1.12a shows three vectors A
S

, B
S

, and C
S

. To find the vector sum of all three, in 
Fig. 1.12b we first add A

S
 and B

S
 to give a vector sum D

S
; we then add  vectors C

S
 and D

S
 by 

the same process to obtain the vector sum R
S

:

R
S

∙ 1A
S

∙ B
S2 ∙ C

S
∙ D

S
∙ C

S

Alternatively, we can first add B
S

 and C
S

 to obtain vector E
S

 (Fig. 1.12c), and then add A
S

 and 
E
S

 to obtain R
S

:

R
S

∙ A
S

∙ 1B
S

∙ C
S  2 ∙ A

S
∙ E

S

We don’t even need to draw vectors D
S

 and E
S

; all we need to do is draw A
S

, B
S

, and C
S

 in suc-
cession, with the tail of each at the head of the one preceding it. The sum vector R

S
 extends 

from the tail of the first vector to the head of the last vector (Fig. 1.12d). The order makes 
no difference; Fig. 1.12e shows a different order, and you should try others. Vector addi-
tion obeys the associative law.

We can subtract vectors as well as add them. To see how, recall that vector ∙A
S

 has the 
same magnitude as A

S
 but the opposite direction. We define the difference A

S
∙ B

S
 of two 

vectors A
S

 and B
S

 to be the vector sum of A
S

 and ∙B
S

:

 A
S

∙ B
S

∙ A
S

∙ 1∙B
S2 (1.4)

Figure 1.13 shows an example of vector subtraction.

S

S

S

S

(a) We can add two vectors by placing them 
head to tail.

S
A

S
B

A

B

(c) We can also add two vectors by placing them
tail to tail and constructing a parallelogram.

A

B

S

S
C = B + A

S S

C = A + B
S S

S
C = A + B

S S

The vector sum C 
extends from the
tail of vector A ...

S

S
... to the head
of vector B.

S

(b) Adding them in reverse order gives the same
result: A + B = B + A. The order doesn’t
matter in vector addition.

S SS S

Figure 1.10 Three ways to add two vectors.

A
S

B
S

A
S

B
S

S
C = A + B

S S

S
C = A + B

SS

(a) Only when vectors A and B are parallel
does the magnitude of their vector sum C equal
the sum of their magnitudes: C =  A +  B.

S

S S

(b) When A and B are antiparallel, the
magnitude of their vector sum C equals the
difference of their magnitudes: C =  0A -  B 0.

S S

S

Figure 1.11 Adding vectors that are (a) 
parallel and (b) antiparallel.

E
S R

S
R
S

R
S

R
S

A
S

A
S

A
S

A
S

A
S

B
S

B
S

B
S

B
S

B
S

C
S

C
S

C
S

C
S

C
S

D
S

(a) To find the sum of
these three vectors ...

S S

S

S

SS

(c) ... or add B and C
to get E and then add
E to A to get R ...

S S

SS
(d) ... or add A, B, and
C to get R directly ...

S S

S

S

(e) ... or add A, B, and
C in any other order and
still get R.

(b) ... add A and B
to get D and then add
C to D to get the final
sum (resultant) R ...

S S

S

S

S

S

Figure 1.12 Several constructions for finding the vector sum A
S

∙ B
S

∙ C
S

.
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S
A + 1−B2
      = A − BA

S S
A
S

A
S

A
S

B
S

−B
S−B

S

B
S

... is equivalent to adding −B to A. 
SS

Subtracting B from A ...
SS

S
S S

With  A and  B head to head,
A − B is the vector from the
tail of A to the tail of B.

S

S

S

S

S

S

A + 1−B2 = A − B
S S SS

S

A − B+− = = =

With  A and −B head to tail,
A − B is the vector from the
tail of A to the head of −B.

S

S

S

S

SS

Figure 1.13 To construct the vector difference A
S

∙ B
S

, you can either place the tail of ∙B
S

 at the  
head of A

S
 or place the two vectors A

S
 and B

S
 head to head.

A
S

S

A
S

S
2A

- 3A

(a) Multiplying a vector by a positive scalar
changes the magnitude (length) of the vector
but not its direction.

(b) Multiplying a vector by a negative scalar
changes its magnitude and reverses its direction.

2A is twice as long as A.

- 3A is three times as long as A and points
in the opposite direction.

S S

SS

Figure 1.14 Multiplying a vector by a scalar.

EXAMPLE 1.5 Adding two vectors at right angles

A cross-country skier skis 1.00 km north and then 2.00 km east on a 
horizontal snowfield. How far and in what direction is she from the 
starting point?

IDENTIFY and SET UP The problem involves combining two displace-
ments at right angles to each other. This vector addition amounts to 
solving a right triangle, so we can use the Pythagorean theorem and 
trigonometry. The target variables are the skier’s straight-line distance 
and direction from her starting point. Figure 1.15 is a scale diagram of 
the two displacements and the resultant net displacement. We denote the 
direction from the starting point by the angle f (the Greek letter phi). 
The displacement appears to be a bit more than 2 km. Measuring the 
angle with a protractor indicates that f is about 63°.

EXECUTE The distance from the starting point to the ending point is 
equal to the length of the hypotenuse:211.00 km22 + 12.00 km22 = 2.24 km

A little trigonometry (from Appendix D) allows us to find angle f:

 tan f =
Opposite side

Adjacent side
=

2.00 km
1.00 km

= 2.00

 f = arctan 2.00 = 63.4°

We can describe the direction as 63.4° east of north or 
90° - 63.4° = 26.6° north of east.

EVALUATE Our answers (2.24 km and f = 63.4°) are close to our pre-
dictions. In Section 1.8 we’ll learn how to easily add two vectors not at 
right angles to each other.

KEYCONCEPT In every problem involving vector addition, draw the 
two vectors being added as well as the vector sum. The head-to-tail ar-
rangement shown in Figs. 1.10a and 1.10b is easiest. This will help you 
to visualize the vectors and understand the direction of the vector sum. 
Drawing the vectors is equally important for problems involving vector 
subtraction (see Fig. 1.13).

f

0 1 km 2 km

1.00 km

2.00 km

Resultant displacement

N

EW

S

Figure 1.15 The vector diagram, drawn to scale, for a ski trip.

A vector quantity such as a displacement can be multiplied by a scalar quantity (an 
ordinary number). The displacement 2A

S
 is a displacement (vector quantity) in the same 

direction as vector A
S

 but twice as long; this is the same as adding A
S

 to itself (Fig. 1.14a). 
In general, when we multiply a vector A

S
 by a scalar c, the result cA

S
 has magnitude 0 c 0A 

(the absolute value of c multiplied by the magnitude of vector A
S

). If c is positive, cA
S

 is in 
the same direction as A

S
; if c is negative, cA

S
 is in the direction opposite to A

S
. Thus 3A

S
 is 

parallel to A
S

, while -3A
S

 is antiparallel to A
S

 (Fig. 1.14b).
A scalar used to multiply a vector can also be a physical quantity. For example, 

you may be familiar with the relationship F
S

∙ maS; the net force F
S

 (a vector quantity) 
that acts on an object is equal to the product of the object’s mass m (a scalar quan-
tity) and its acceleration aS (a vector quantity). The direction of F

S
 is the same as that 

of aS because m is positive, and the magnitude of F
S

 is equal to the mass m multiplied 
by the magnitude of aS. The unit of force is the unit of mass multiplied by the unit  
of acceleration.
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TEST YOUR UNDERSTANDING OF SECTION 1.7 Two displacement vectors, S
S

 and T
S

, have 
magnitudes S = 3 m and T = 4 m. Which of the following could be the magnitude of the differ-
ence vector S

S
∙ T

S
? (There may be more than one correct answer.) (i) 9 m; (ii) 7 m; (iii) 5 m; (iv) 1 m;  

(v) 0 m; (vi) -1 m.

ANSWER

u

A
S

S

x

y

O
Ax =  Acosu

Ay =  Asinu

The components of A
are the projections
of the vector onto
the x- and y-axes.

In this case, both Ax and Ay are positive.

Figure 1.16 Representing a vector A
S

 in 
terms of its components Ax and Ay.

u

u

B
S

C
S

S

By is positive.

Bx is negative.

Both components of C are negative.

(a) y

x
Bx 1-2

By 1+2 

(b) y

x
Cx 1-2

Cy 1-2

Figure 1.17 The components of a vector 
may be positive or negative numbers.

❙ (ii), (iii), and (iv) Vector ∙T
S

 has the same magnitude as vector T
S

, so S
S

∙T
S

∙S
S

∙1∙T
S
2 is 

the sum of one vector of magnitude 3 m and one of magnitude 4 m. This sum has magnitude 7 m 
if S

S
 and ∙T

S
 are parallel and magnitude 1 m if S

S
 and ∙T

S
 are antiparallel. The magnitude of S

S
∙T

S
 

is 5 m if S
S

 and ∙T
S

 are perpendicular, when vectors S
S

, T
S

, and S
S

∙T
S

 form a 3–4–5 right triangle. 
Answer (i) is impossible because the magnitude of the sum of two vectors cannot be greater than 
the sum of the magnitudes; answer (v) is impossible because the sum of two vectors can be zero 
only if the two vectors are antiparallel and have the same magnitude; and answer (vi) is impossible 
because the magnitude of a vector cannot be negative.

1.8 COMPONENTS OF VECTORS
In Section 1.7 we added vectors by using a scale diagram and properties of right triangles. 
But calculations with right triangles work only when the two vectors are perpendicular. 
So we need a simple but general method for adding vectors. This is called the method of 
components.

To define what we mean by the components of a vector A
S

, we begin with a rectangular 
(Cartesian) coordinate system of axes (Fig. 1.16). If we think of A

S
 as a displacement vec-

tor, we can regard A
S

 as the sum of a displacement parallel to the x-axis and a displacement 
parallel to the y-axis. We use the numbers Ax and Ay to tell us how much displacement 
there is parallel to the x-axis and how much there is parallel to the y-axis, respectively. 
For example, if the +x-axis points east and the +y-axis points north, A

S
 in Fig. 1.16 could  

be the sum of a 2.00 m displacement to the east and a 1.00 m displacement to the north. 
Then Ax = +2.00 m and Ay = +1.00 m. We can use the same idea for any vectors, not 
just displacement vectors. The two numbers Ax and Ay are called the components of A

S
.

   CAUTION    Components are not vectors The components Ax and Ay of a vector A
S

 are numbers; 
they are not vectors themselves. This is why we print the symbols for components in lightface italic 
type with no arrow on top instead of in boldface italic with an arrow, which is reserved for vectors. ❙ 

We can calculate the components of vector A
S

 if we know its magnitude A and its 
direction. We’ll describe the direction of a vector by its angle relative to some refer-
ence direction. In Fig. 1.16 this reference direction is the positive x-axis, and the angle 
between vector A

S
 and the positive x-axis is u (the Greek letter theta). Imagine that vector 

A
S

 originally lies along the +x@axis and that you then rotate it to its true direction, as indi-
cated by the arrow in Fig. 1.16 on the arc for angle u. If this rotation is from the +x@axis 
toward the +y@axis, as is the case in Fig. 1.16, then u is positive; if the rotation is from the 
+x@axis toward the -y@axis, then u is negative. Thus the +y@axis is at an angle of 90°, the 
-x@axis at 180°, and the -y@axis at 270° (or -90°). If u is measured in this way, then from 
the definition of the trigonometric functions,

 
Ax

A
= cos u and 

Ay

A
 = sin u

 Ax = A cos u and Ay = A sin u

 1u measured from the +x@axis, rotating toward the +y@axis2

 (1.5)

In Fig. 1.16 Ax and Ay are positive. This is consistent with Eqs. (1.5); u is in the first 
quadrant (between 0° and 90°), and both the cosine and the sine of an angle in this quad-
rant are positive. But in Fig. 1.17a the component Bx is negative and the component By 
is positive. (If the +x-axis points east and the +y-axis points north, B

S
 could represent a 

displacement of 2.00 m west and 1.00 m north. Since west is in the –x-direction and north 
is in the +y-direction, Bx = -2.00 m is negative and By = +1.00 m is positive.) Again, 

?
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this is consistent with Eqs. (1.5); now u is in the second quadrant, so cos u is negative and 
sin u is positive. In Fig. 1.17b both Cx and Cy are negative (both cos u and sin u are negative 
in the third quadrant).

   CAUTION    Relating a vector’s magnitude and direction to its components Equations (1.5) are 
correct only when the angle u is measured from the positive x-axis. If the angle of the vector is 
given from a different reference direction or you use a different rotation direction, the relationships 
are different! Example 1.6 illustrates this point. ❙

EXAMPLE 1.6 Finding components

(a) What are the x- and y-components of vector D
S

 in Fig. 1.18a? The 
magnitude of the vector is D = 3.00 m, and angle a = 45°. (b) What 
are the x- and y-components of vector E

S
 in Fig. 1.18b? The magnitude 

of the vector is E = 4.50 m, and angle b = 37.0°.

IDENTIFY and SET UP We can use Eqs. (1.5) to find the components of 
these vectors, but we must be careful: Neither angle a nor b in Fig. 1.18 
is measured from the +x@axis toward the +y@axis. We estimate from the 
figure that the lengths of both components in part (a) are roughly 2 m, 
and that those in part (b) are 3 m and 4 m. The figure indicates the signs 
of the components.

EXECUTE (a) The angle a (the Greek letter alpha) between the positive 
x-axis and D

S
 is measured toward the negative y-axis. The angle we 

must use in Eqs. (1.5) is u = -a = -45°. We then find

Dx = D cos u = 13.00 m21cos1-45°22 = +2.1 m

Dy = D sin u = 13.00 m21sin1-45°22 = -2.1 m

Had we carelessly substituted +45° for u in Eqs. (1.5), our result for Dy 
would have had the wrong sign.

(b) The x- and y-axes in Fig. 1.18b are at right angles, so it doesn’t 
matter that they aren’t horizontal and vertical, respectively. But we 
can’t use the angle b (the Greek letter beta) in Eqs. (1.5), because 
b is measured from the +y-axis. Instead, we must use the angle 
u = 90.0° - b = 90.0° - 37.0° = 53.0°. Then we find

Ex = E cos 53.0° = 14.50 m21cos 53.0°2 = +2.71 m

Ey = E sin 53.0° = 14.50 m21sin 53.0°2 = +3.59 m

EVALUATE Our answers to both parts are close to our predictions. 
But why do the answers in part (a) correctly have only two significant 
figures?

KEYCONCEPT When you are finding the components of a vector, 
always use a diagram of the vector and the coordinate axes to guide 
your calculations.

Using Components to Do Vector Calculations
Using components makes it relatively easy to do various calculations involving  
vectors. Let’s look at three important examples: finding a vector’s magnitude and direc-
tion, multiplying a vector by a scalar, and calculating the vector sum of two or more 
vectors.

1. Finding a vector’s magnitude and direction from its components. We can de-
scribe a vector completely by giving either its magnitude and direction or its x- and 
y-components. Equations (1.5) show how to find the components if we know the 
magnitude and direction. We can also reverse the process: We can find the magni-
tude and direction if we know the components. By applying the Pythagorean theo-
rem to Fig. 1.16, we find that the magnitude of vector A

S
 is

 A = 2Ax
 2 + Ay

 2 (1.6)

(We always take the positive root.) Equation (1.6) is valid for any choice of x-axis 
and y-axis, as long as they are mutually perpendicular. The expression for the vector 
direction comes from the definition of the tangent of an angle. If u is measured from 

a 

b

D
S

E
S

(a) (b)

Dy 1-2

Dx 1+2

y

x

Ex 1+2
Ey 1+2

y
x

Angle a is
measured in the
wrong sense from
the +x-axis, so in
Eqs. (1.5) we
must use -a.

Angle b is measured from the
+y-axis, not from the +x-axis.

We must use u,
which is measured from
the +x-axis toward the
+y-axis, in Eqs. (1.5).

u

Figure 1.18 Calculating the x- and y-components of vectors.



44    CHAPTER 1 Units, Physical Quantities, and Vectors

the positive x-axis, and a positive angle is measured toward the positive y-axis (as in 
Fig. 1.16), then

 tan u =
Ay

Ax
  and  u = arctan 

Ay

Ax
 (1.7)

We’ll always use the notation arctan for the inverse tangent function (see Example 
1.5 in Section 1.7). The notation tan-1 is also commonly used, and your calculator 
may have an INV or 2ND button to be used with the TAN button.

   CAUTION    Finding the direction of a vector from its components There’s one complica-
tion in using Eqs. (1.7) to find u: Any two angles that differ by 180° have the same tangent. 
For example, in Fig. 1.19 the tangent of the angle u is tan u = Ay>Ax = +1. A calculator will 
tell you that u =  tan-11+12 = 45°. But the tangent of 180° + 45° = 225° is also equal to 
+1, so u could also be 225° (which is actually the case in Fig. 1.19). Always draw a sketch 
like Fig. 1.19 to  determine which of the two possibilities is  correct. ❙

2. Multiplying a vector by a scalar. If we multiply a vector A
S

 by a scalar c, each compo-
nent of the product D

S
∙ cA

S
 is the product of c and the corresponding component of A

S
:

 Dx = cAx ,  Dy = cAy (components of D
S

∙ cA
S

) (1.8)

For example, Eqs. (1.8) say that each component of the vector 2A
S

 is twice as great as 
the corresponding component of A

S
, so 2A

S
 is in the same direction as A

S
 but has twice 

the magnitude. Each component of the vector -3A
S

 is three times as great as the cor-
responding component of A

S
 but has the opposite sign, so -3A

S
 is in the opposite direc-

tion from A
S

 and has three times the magnitude. Hence Eqs. (1.8) are consistent with 
our discussion in Section 1.7 of multiplying a vector by a scalar (see Fig. 1.14).

3. Using components to calculate the vector sum (resultant) of two or more vectors. 
Figure 1.20 shows two vectors A

S
 and B

S
 and their vector sum R

S
, along with the x- and 

y-components of all three vectors. The x-component Rx of the vector sum is simply the 
sum 1Ax + Bx2 of the x-components of the vectors being added. The same is true for 
the y-components. In symbols,

Rx =  Ax +  Bx, Ry =  Ay +  By (1.9)

Each component of R = A + B ...
S SS

... is the sum of the corresponding components of A and B. 
SS

Figure 1.20 shows this result for the case in which the components Ax , Ay , Bx , and 
By are all positive. Draw additional diagrams to verify for yourself that Eqs. (1.9) are 
valid for any signs of the components of A

S
 and B

S
.

If we know the components of any two vectors A
S

 and B
S

, perhaps by using Eqs. 
(1.5), we can compute the components of the vector sum R

S
. Then if we need the 

magnitude and direction of R
S

, we can obtain them from Eqs. (1.6) and (1.7) with the 
A’s replaced by R’s.

We can use the same procedure to find the sum of any number of vectors. If R
S

 is 
the vector sum of A

S
, B

S
, C

S
, D

S
, E

S
, c, the components of R

S
 are

Rx = Ax + Bx + Cx + Dx + Ex + g
 Ry = Ay + By + Cy + Dy + Ey + g  (1.10)

We have talked about vectors that lie in the xy-plane only, but the compo-
nent method works just as well for vectors having any direction in space. We can 
 introduce a z-axis perpendicular to the xy-plane; then in general a vector A

S
 has com-

ponents Ax, Ay, and Az in the three coordinate directions. Its magnitude A is

 A = 2Ax
 2 + Ay

 2 + Az
 2 (1.11)

Again, we always take the positive root (Fig. 1.21). Also, Eqs. (1.10) for the vector 
sum R

S
 have a third component:

Rz = Az + Bz + Cz + Dz + Ez + g

A
S

Suppose that tanu =  

Two angles have tangents of  +1: 45° and 225°.
The diagram shows that u must be 225°.

 =  +1. What is u?

y

x

Ay =  - 2 m 

Ax

45°

225°

Ax =  - 2 m 

Ay

Figure 1.19 Drawing a sketch of a vector 
reveals the signs of its x- and y-components.

The components of R are the sums
of the components of A and B:

R is the vector sum
(resultant) of A and B.

A
S

B
S

R
S

S

S

S

S

S

S

O
x

y

By

BxAx

Rx

Ry

Ry =  Ay +  By Rx =  Ax +  Bx

Ay

Figure 1.20 Finding the vector sum 
 (resultant) of A

S
 and B

S
 using components.

In three dimensions, a vector has
x-, y-, and z-components.

Az

Ay

Ax

z

y

x

A
S

The magnitude of vector A

is A =  Ax
2 +  Ay

2 +  Az
2 .

S2

Figure 1.21 A vector in three dimensions.
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IDENTIFY the relevant concepts: Decide what the target variable is. It 
may be the magnitude of the vector sum, the direction, or both.

SET UP the problem: Sketch the vectors being added, along with suit-
able coordinate axes. Place the tail of the first vector at the origin of 
the  coordinates, place the tail of the second vector at the head of the 
first  vector, and so on. Draw the vector sum R

S
 from the tail of the first 

 vector (at the origin) to the head of the last vector. Use your sketch to 
estimate the magnitude and direction of R

S
. Select the equations you’ll 

need: Eqs. (1.5) to obtain the components of the vectors given, if neces-
sary, Eqs. (1.10) to obtain the components of the vector sum, Eq. (1.11) 
to obtain its magnitude, and Eqs. (1.7) to obtain its direction.

EXECUTE the solution as follows:

1. Find the x- and y-components of each individual vector and 
 record your results in a table, as in Example 1.7 below. If a vector 
is described by a magnitude A and an angle u, measured from the 
+x@axis toward the +y@axis, then its components are given by 
Eqs. (1.5):

Ax = A cos u  Ay = A sin u

If the angles of the vectors are given in some other way, perhaps 
using a different reference direction, convert them to  angles mea-
sured from the +x@axis as in Example 1.6.

2. Add the individual x-components algebraically (including signs) 
to find Rx, the x-component of the vector sum. Do the same for 
the y-components to find Ry. See Example 1.7.

3. Calculate the magnitude R and direction u of the vector sum by 
using Eqs. (1.6) and (1.7):

R = 2R 2
x + R 2

y   u = arctan 
Ry

Rx

EVALUATE your answer: Confirm that your results for the magnitude 
and direction of the vector sum agree with the estimates you made 
from your sketch. The value of u that you find with a calculator may 
be off by 180°; your drawing will indicate the correct value. (See 
Example 1.7 below for an illustration of this.)

PROBLEM-SOLVING STRATEGY 1.3 Vector Addition

WITH ARIATION PROBLEMS

Three players on a reality TV show are brought to the center of a 
large, flat field. Each is given a meter stick, a compass, a calculator, a 
shovel, and (in a different order for each contestant) the following three 
displacements:

A
S

: 72.4 m, 32.0° east of north

B
S

: 57.3 m, 36.0° south of west

C
S

: 17.8 m due south

The three displacements lead to the point in the field where the keys to 
a new Porsche are buried. Two players start measuring immediately, 
but the winner first calculates where to go. What does she calculate?

IDENTIFY and SET UP The goal is to find the sum (resultant) of the 
three displacements, so this is a problem in vector addition. See  
Fig. 1.22. We have chosen the +x@axis as east and the +y@axis as north. 
We estimate from the diagram that the vector sum R

S
 is about 10 m, 40° 

west of north (so u is about 90° plus 40°, or about 130°).

EXECUTE The angles of the vectors, measured from the +x@axis toward 
the +y@axis, are 190.0° - 32.0°2 = 58.0°, 1180.0° + 36.0°2 = 216.0°, 
and 270.0°, respectively. We may now use Eqs. (1.5) to find the compo-
nents of A

S
:

Ax = A cos uA = 172.4 m21cos 58.0°2 = 38.37 m

Ay = A sin uA = 172.4 m21sin 58.0°2 = 61.40 m

We’ve kept an extra significant figure in the components; we’ll round to 
the correct number of significant figures at the end of our calculation. 
The table at right shows the components of all the displacements, the 
addition of the components, and the other calculations from Eqs. (1.6) 
and (1.7).

Distance Angle x-component y-component

A = 72.4 m 58.0° 38.37 m 61.40 m

B = 57.3 m 216.0° -46.36 m -33.68 m

C = 17.8 m 270.0° 0.00 m -17.80 m

Rx = -7.99 m Ry = 9.92 m

 R = 21-7.99 m22 + 19.92 m22 = 12.7 m

 u = arctan 
9.92 m

-7.99 m
= -51°

u

A
S

B
S

C
S

R
S

57.3 m

y (north)

36.0°

x (east)
O

17.8 m
72.4 m

32.0°

Figure 1.22 Three successive displacements A
S

, B
S

, and C
S

 and the 
resultant (vector sum) displacement R

S
∙ A

S
∙ B

S
∙ C

S
.

EXAMPLE 1.7 Using components to add vectors

We’ve focused on adding displacement vectors, but the method is applicable to 
all vector quantities. When we study the concept of force in Chapter 4, we’ll find 
that forces are vectors that obey the same rules of vector addition.

Continued
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Comparing to angle u in Fig. 1.22 shows that the calculated angle is 
clearly off by 180°. The correct value is u = 180° + 1-51°2 = 129°,  
or 39° west of north.

EVALUATE Our calculated answers for R and u agree with our esti-
mates. Notice how drawing the diagram in Fig. 1.22 made it easy to 
avoid a 180° error in the direction of the vector sum.

KEYCONCEPT When you are adding vectors, the x-component of 
the vector sum is equal to the sum of the x-components of the vectors 
being added, and likewise for the y-component. Always use a diagram 
to help determine the direction of the vector sum.

TEST YOUR UNDERSTANDING OF SECTION 1.8 Two vectors A
S

 and B
S

 lie in the xy-plane. 
(a) Can A

S
 have the same magnitude as B

S
 but different components? (b) Can A

S
 have the same com-

ponents as B
S

 but a different magnitude?

ANSWER

❙ (a) yes, (b) no Vectors A
S

 and B
S

 can have the same magnitude but different components if they 
point in different directions. If they have the same components, however, they are the same vector 
1A

S
∙B

S
2 and so must have the same magnitude.

1.9 UNIT VECTORS
A unit vector is a vector that has a magnitude of 1, with no units. Its only purpose is to 
point—that is, to describe a direction in space. Unit vectors provide a convenient notation 
for many expressions involving components of vectors. We’ll always include a caret, or 
“hat” 1^2, in the symbol for a unit vector to distinguish it from ordinary vectors whose 
magnitude may or may not be equal to 1.

In an xy-coordinate system we can define a unit vector dn that points in the direction 
of the positive x-axis and a unit vector en that points in the direction of the positive y-axis 
(Fig. 1.23a). Then we can write a vector A

S
 in terms of its components as

 A
S

∙ Ax dn ∙ Ay en (1.12)

Equation (1.12) is a vector equation; each term, such as Ax dn, is a vector quantity (Fig. 1.23b).
Using unit vectors, we can express the vector sum R

S
 of two vectors A

S
 and B

S
 as follows:

 A
S

∙ Ax  dn ∙ Ay en
 B
S

∙ Bx  dn ∙ By  en
 R
S

∙ A
S

∙ B
S

 ∙ 1Ax dn ∙ Ay en2 ∙ 1Bx dn ∙ By en2
 ∙ 1Ax + Bx2 dn ∙ 1Ay + By2 en

  ∙ Rx dn ∙ Ry en  

(1.13)

Equation (1.13) restates the content of Eqs. (1.9) in the form of a single vector equation 
rather than two component equations.

If not all of the vectors lie in the xy-plane, then we need a third component. We in-
troduce a third unit vector kn that points in the direction of the positive z-axis (Fig. 1.24). 
Then Eqs. (1.12) and (1.13) become

Any vector can be expressed in terms
of its x-, y-, and z-components ...

... and unit vectors d, e, and k.n n
n

(1.14)
A = Ax d + Aye + Azk

B = Bx d + Bye + Bzk

n n
n

S

n n
n

S

 R
S

∙ 1Ax + Bx2 dn ∙ 1Ay + By2en ∙ 1Az + Bz2 kn

  ∙ Rx dn ∙ Ryen ∙ Rz kn  (1.15)

Unit vectors d and e point in the
directions of the positive x- and y-axes.
Each has a magnitude of 1.

We can express a vector A in
terms of its components as

A
S

S

dn

n

y

x
O

y

x
O

(b)

(a)

en

n

Ayen

en

dn Axdn

A = Axd + Ay e
S

nn

Figure 1.23 (a) The unit vectors dn and en. 
(b) Expressing a vector A

S
 in terms of its 

components.

dn

en

kn

y

x
z

O

Unit vectors d, e, and k point in the
directions of the positive x-, y-, and
z-axes. Each has a magnitude of 1.

n n
n

Figure 1.24 The unit vectors dn, en, 
and kn.
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EXAMPLE 1.8 Using unit vectors

Given the two displacements

D
S

∙ 16.00 dn ∙ 3.00 en ∙ 1.00kn2 m and

E
S

∙ 14.00 dn ∙ 5.00 en ∙ 8.00kn2  m

find the magnitude of the displacement 2D
S

∙ E
S

.

IDENTIFY and SET UP We are to multiply vector D
S

 by 2 (a scalar) and 
subtract vector E

S
 from the result, so as to obtain the vector F

S
∙ 2D

S
∙ E

S
.  

Equation (1.8) says that to multiply D
S

 by 2, we multiply each of its 
components by 2. We can use Eq. (1.15) to do the subtraction; recall 
from Section 1.7 that subtracting a vector is the same as adding the neg-
ative of that vector.

EXECUTE We have

 F
S

∙ 216.00dn ∙ 3.00 en ∙ 1.00kn2 m ∙ 14.00dn ∙ 5.00 en ∙ 8.00kn2 m

 ∙ 3112.00 - 4.002dn ∙ 16.00 + 5.002 en ∙ 1-2.00 - 8.002kn4  m

 ∙ 18.00dn ∙ 11.00 en ∙ 10.00kn2 m

From Eq. (1.11) the magnitude of F
S

 is

 F = 2F  2
x + F  2

y + F  2
z

 = 218.00 m22 + 111.00 m22 + 1-10.00 m22

 = 16.9 m

EVALUATE Our answer is of the same order of magnitude as the larger 
components that appear in the sum. We wouldn’t expect our answer to 
be much larger than this, but it could be much smaller.

KEYCONCEPT By using unit vectors, you can write a single equa-
tion for vector addition that incorporates the x-, y-, and z-components.

TEST YOUR UNDERSTANDING OF SECTION 1.9 Arrange the following vectors in order of 
their magnitude, with the vector of largest magnitude first. (i) A

S
∙ (3dn ∙ 5en ∙ 2kn) m;  

(ii) B
S

∙ 1-3dn ∙ 5en ∙ 2kn2 m; (iii) C
S

∙ 13dn ∙ 5en ∙ 2kn2 m; (iv) D
S

∙ 13dn ∙ 5en ∙ 2kn2 m.

ANSWER

❙ All have the same magnitude. Vectors A
S

, B
S

, C
S

, and D
S

 point in different directions but have the 
same magnitude:

 A=B=C=D=21{3 m22+1{5 m22+1{2 m22

 = 29 m2+25 m2+4 m2=238 m2=6.2 m
1.10 PRODUCTS OF VECTORS

We saw how vector addition develops naturally from the problem of combining displace-
ments. It will prove useful for calculations with many other vector quantities. We can also 
express many physical relationships by using products of vectors. Vectors are not ordinary 
numbers, so we can’t directly apply ordinary multiplication to vectors. We’ll define two 
different kinds of products of vectors. The first, called the scalar product, yields a result 
that is a scalar quantity. The second, the vector product, yields another vector.

Scalar Product
We denote the scalar product of two vectors A

S
 and B

S
 by A

S # B
S

. Because of this notation, 
the scalar product is also called the dot product. Although A

S
 and B

S
 are vectors, the quan-

tity A
S # B

S
 is a scalar.

To define the scalar product A
S # B

S
 we draw the two vectors A

S
 and B

S
 with their tails at the 

same point (Fig. 1.25a). The angle f (the Greek letter phi) between their directions ranges 
from 0° to 180°. Figure 1.25b shows the projection of  vector B

S
 onto the direction of A

S
; this 

projection is the component of B
S

 in the direction of A
S

 and is equal to B cos f. (We can take 
components along any direction that’s convenient, not just the x- and y-axes.) We define 
A
S # B

S
 to be the magnitude of A

S
 multiplied by the component of B

S
 in the direction of A

S
, or

Angle between A and B when placed tail to tail
S S

Scalar (dot) product
of vectors A and B

S S
Magnitudes of
A and B
S S

A ~ B =  AB cosf =  0 A 0 0 B  0 cosf (1.16)
S SS S

(Magnitude of A) *    Component of B
                                    in direction of A

(Magnitude of B) *    Component of A
                                    in direction of B

f

A
S

A
S

A
S

B
S

B
S

B
S

S

S

S S

S

S

Place the vectors tail to tail.

(a)

f

B cos f

f

A cos f

a b

a b

(b) A # B equals A(B cos f).
SS

(c) A # B also equals B(A cos f).
SS

Figure 1.25 Calculating the scalar product 
of two vectors, A

S # B
S

= AB cos f.
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Alternatively, we can define A
S # B

S
 to be the magnitude of B

S
 multiplied by the compo-

nent of A
S

 in the direction of B
S

, as in Fig. 1.25c. Hence A
S # B

S =  B1A cos f2 = AB cos f, 
which is the same as Eq. (1.16).

The scalar product is a scalar quantity, not a vector, and it may be positive, negative, 
or zero. When f is between 0° and 90°, cos f 7 0 and the scalar product is positive 
(Fig. 1.26a). When f is between 90° and 180° so cos f 6 0, the component of B

S
 in the 

direction of A
S

 is negative, and A
S # B

S
 is negative (Fig. 1.26b). Finally, when f = 90°, 

A
S # B

S
= 0 (Fig. 1.26c). The scalar product of two perpendicular vectors is always zero.

For any two vectors A
S

 and B
S

, AB cos f = BA cos f. This means that A
S # B

S
= B

S # A
S

. 
The scalar product obeys the commutative law of multiplication; the order of the two vec-
tors does not matter.

We’ll use the scalar product in Chapter 6 to describe work done by a force. In later 
chapters we’ll use the scalar product for a variety of purposes, from calculating electric 
potential to determining the effects that varying magnetic fields have on electric circuits.

Using Components to Calculate the Scalar Product
We can calculate the scalar product A

S # B
S

 directly if we know the x-, y-, and z-components 
of A

S
 and B

S
. To see how this is done, let’s first work out the scalar products of the unit 

vectors dn, en, and kn. All unit vectors have magnitude 1 and are perpendicular to each other. 
Using Eq. (1.16), we find

 dn # dn = en # en = kn # kn = 112112 cos 0° = 1

  dn # en = dn # kn = en # kn = 112112 cos 90° = 0 
(1.17)

Now we express A
S

 and B
S

 in terms of their components, expand the product, and use these 
products of unit vectors:

 A
S # B

S
= 1Ax dn ∙ Ay en ∙ Az kn2 # 1Bx dn ∙ By en ∙ Bz kn2

 = Ax dn # Bx dn + Ax dn # By en + Ax dn # Bz kn

 + Ay en # Bx dn + Ay en # By  en + Ay en # Bz kn

 + Az kn # Bx dn + Az kn # By en + Az kn # Bz kn

 = Ax Bx dn # dn + Ax By dn # en + Ax Bz  dn # kn

 + Ay Bx en # dn + Ay By en # en + Ay Bz en # kn

  + Az  Bx kn # dn + Az  By kn # en + Az  Bz kn # kn  

(1.18)

From Eqs. (1.17) you can see that six of these nine terms are zero. The three that sur-
vive give

Scalar (dot) product
of vectors A and B

S S Components of A
S

Components of B
S

A ~ B =  AxBx +  AyBy +  AzBz (1.19)
S S

Thus the scalar product of two vectors is the sum of the products of their respective 
components.

The scalar product gives a straightforward way to find the angle f between any two 
vectors A

S
 and B

S
 whose components are known. In this case we can use Eq. (1.19) to find 

the scalar product of A
S

 and B
S

. Example 1.10 shows how to do this.

A
S

B
S

A
S

B
S

A
S

B
S

S

If f =  90°, A # B =  0
because B has zero component
in the direction of A.

S S

S

If f is between 90° and 180°,
A # B is negative ...
S S

... because B cos f 7  0.

(a)

f

... because B cos f 6  0.

(b)

f

(c)

f =  90°

If f is between
0° and 90°, A # B
is positive ...

S S

Figure 1.26 The scalar product 
A
S # B

S
= AB cos f can be positive, 

negative, or zero, depending on the 
angle between A

S
 and B

S
.
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EXAMPLE 1.9 Calculating a scalar product

Find the scalar product A
S # B

S
 of the two vectors in Fig. 1.27. The mag-

nitudes of the vectors are A = 4.00 and B = 5.00.

IDENTIFY and SET UP We can calculate the scalar product in two 
ways: using the magnitudes of the vectors and the angle between them 
(Eq. 1.16) and using the components of the vectors (Eq. 1.19). We’ll do 
it both ways, and the results will check each other.

EXECUTE The angle between the two vectors A
S

 and B
S

 is 
f = 130.0° - 53.0° = 77.0°, so Eq. (1.16) gives us

A
S # B

S
= AB cos f = 14.00215.002 cos 77.0° = 4.50

To use Eq. (1.19), we must first find the components of the vectors. The 
angles of A

S
 and B

S
 are given with respect to the +x@axis and are measured 

in the sense from the +x@axis to the +y@axis, so we can use Eqs. (1.5):

Ax = 14.002 cos 53.0° = 2.407

Ay = 14.002 sin 53.0° = 3.195

Bx = 15.002 cos 130.0° = -3.214

By = 15.002 sin 130.0° = 3.830

As in Example 1.7, we keep an extra significant figure in the compo-
nents and round at the end. Equation (1.19) now gives us

 A
S # B

S
= AxBx + AyBy + AzBz

 = 12.40721-3.2142 + 13.195213.8302 + 102102 = 4.50

EVALUATE Both methods give the same result, as they should.

KEYCONCEPT The scalar product A
S # B

S
 is a scalar (a number) that 

equals the sum of the products of the x-components, y-components, and 
z-components of A

S
 and B

S
.

A
S

B
S

dn

en

130.0°

53.0°

y

x

f

Figure 1.27 Two vectors A
S

 and B
S

 in two dimensions.

WITH ARIATION PROBLEMS

EXAMPLE 1.10 Finding an angle with the scalar product

Find the angle between the vectors

A
S

∙ 2.00dn ∙ 3.00 en ∙ 1.00kn

and
B
S

∙ -4.00dn ∙ 2.00 en ∙ 1.00kn

IDENTIFY and SET UP We’re given the x-, y-, and z-components of two 
vectors. Our target variable is the angle f between them (Fig. 1.28). 
To find this, we’ll solve Eq. (1.16), A

S # B
S

= AB cos f, for f in terms 
of the scalar product A

S # B
S

 and the magnitudes A and B. We can use  
Eq. (1.19) to evaluate the scalar product, A

S # B
S

= AxBx + AyBy + AzBz, 
and we can use Eq. (1.6) to find A and B.

EXECUTE We solve Eq. (1.16) for cos f and use Eq. (1.19) to write A
S # B

S
:

cos f =
A
S # B

S

AB
=

AxBx + AyBy + AzBz

AB

We can use this formula to find the angle between any two vectors 
A
S

 and B
S

. Here we have Ax = 2.00, Ay = 3.00, and Az = 1.00, and 
Bx = -4.00, By = 2.00, and Bz = -1.00. Thus

 A
S # B

S
= AxBx + AyBy + AzBz

 = 12.0021-4.002 + 13.00212.002 + 11.0021-1.002
 = -3.00

 A = 2A 2
x + A 2

y + A 2
z = 212.0022 + 13.0022 + 11.0022

 = 214.00

 B = 2B 2
x + B 2

y + B 2
z = 21-4.0022 + 12.0022 + 1-1.0022

 = 221.00

S

A
S

S

B
S

dn

en

kn

A extends from origin
to near corner of red box.B extends from origin

to far corner of blue box.

x

z

y

Figure 1.28 Two vectors in three dimensions.

 cos f =
AxBx + AyBy + AzBz

AB
=

-3.00214.00 221.00
= -0.175

 f = 100°

EVALUATE As a check on this result, note that the scalar product A
S # B

S
 

is negative. This means that f is between 90° and 180° (see Fig. 1.26), 
which agrees with our answer.

KEYCONCEPT You can find the angle f between two vectors A
S

 and 
B
S

 whose components are known by first finding their scalar product, 
then using the equation A

S # B
S

= AB cos f.

WITH ARIATION PROBLEMS
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Vector Product
We denote the vector product of two vectors A

S
 and B

S
, also called the cross product, by 

A
S

: B
S

. As the name suggests, the vector product is itself a vector. We’ll use this product 
in Chapter 10 to describe torque and angular momentum; in Chapters 27 and 28 we’ll use 
it to describe magnetic fields and forces.

To define the vector product A
S

: B
S

, we again draw the two vectors A
S

 and B
S

 with 
their tails at the same point (Fig. 1.29a). The two vectors then lie in a plane. We define 
the vector product to be a vector quantity with a direction perpendicular to this plane 
(that is, perpendicular to both A

S
 and B

S
) and a magnitude equal to AB sin f. That is, if 

C
S

∙ A
S

: B
S

, then

Angle between A and B
when placed tail to tail

S S

Magnitude of vector (cross) product of vectors B and A
S S

(1.20)C =  AB sinf

Magnitudes of A and B
S S

We measure the angle f from A
S

 toward B
S

 and take it to be the smaller of the two pos-
sible angles, so f ranges from 0° to 180°. Then sin f Ú 0 and C in Eq. (1.20) is never 
negative, as must be the case for a vector magnitude. Note that when A

S
 and B

S
 are parallel 

or antiparallel, f = 0° or 180° and C = 0. That is, the vector product of two parallel or 
antiparallel vectors is always zero. In particular, the vector product of any vector with 
itself is zero.

   CAUTION    Vector product vs. scalar product Don’t confuse the expression AB sin f for the 
magnitude of the vector product A

S
: B

S
 with the similar expression AB cos f for the scalar prod-

uct A
S # B

S
. To see the difference between these two expressions, imagine that we vary the angle 

between A
S

 and B
S

 while keeping their magnitudes constant. When A
S

 and B
S

 are parallel, the mag-
nitude of the vector product will be zero and the scalar product will be maximum. When A

S
 and B

S
 

are perpendicular, the magnitude of the vector product will be maximum and the scalar product 
will be zero. ❙

There are always two directions perpendicular to a given plane, one on each side of the 
plane. We choose which of these is the direction of A

S : B
S

 as follows. Imagine rotating 
vector A

S
 about the perpendicular line until A

S
 is aligned with B

S
, choosing the smaller of 

the two possible angles between A
S

 and B
S

. Curl the fingers of your right hand around the 
perpendicular line so that your fingertips point in the direction of rotation; your thumb 
will then point in the direction of A

S
: B

S
. Figure 1.29a shows this right-hand rule and 

describes a second way to think about this rule.
Similarly, we determine the direction of B

S
: A

S
 by rotating B

S
 into A

S
 as in Fig. 1.29b. 

The result is a vector that is opposite to the vector A
S

: B
S

. The vector product is not com-
mutative but instead is anticommutative: For any two vectors A

S
 and B

S
,

 A
S

: B
S

∙ ∙B
S

: A
S

 (1.21)

Just as we did for the scalar product, we can give a geometrical interpretation of 
the magnitude of the vector product. In Fig. 1.30a, B sin f is the component of vector 
B
S

 that is perpendicular to the direction of vector A
S

. From Eq. (1.20) the magnitude of 
A
S

: B
S

 equals the magnitude of A
S

 multiplied by the component of B
S

 that is perpendicu-
lar to A

S
. Figure 1.30b shows that the magnitude of A

S
: B

S
 also equals the magnitude 

of B
S

 multiplied by the component of A
S

 that is perpendicular to B
S

. Note that Fig. 1.30 
shows the case in which f is between 0° and 90°; draw a similar diagram for f between 
90° and 180° to show that the same geometrical interpretation of the magnitude of  
A
S

: B
S

 applies.

Curl fingers toward B.

B :  A

A :  B

Thumb points in
direction of A :  B.

Point fingers of right hand
along A, with palm facing B.

Place A and B tail to tail.

SS

A
S

B
S

S S

B
S

(a) Using the right-hand rule to find the
direction of A :  B

S S

S

S

S

S

S

S S

f

1

2

3

4

Curl fingers toward A.

Thumb points in direction of B :  A.

Point fingers of right
hand along B, with
palm facing A.

Place B and A tail to
tail.

S

S

S

S

S

S S
1

2

3

4

B :  A has same magnitude as A :  B
but points in opposite direction.

S S S S
5

f

A
S

(b) Using the right-hand rule to find the 
direction of B :  A = −A :  B 
(vector product is anticommutative)

S SS S

Figure 1.29 The vector product of (a) 
A
S

: B
S

 and (b) B
S

: A
S

.

(Magnitude of A :  B) also equals B(A sinf).

(Magnitude of A) :    Component of B
                                   perpendicular to A

(Magnitude of A :  B) equals A(B sinf).

A
S

A
S

B
S

B
S

S

S S

S

S

S S

B sinf
f

(a)

(b)

A sinf

f

a b

(Magnitude of B) :   Component of A
                                       perpendicular to B

S

a bS
S

Figure 1.30 Calculating the magnitude 
AB sin f of the vector product of two 
vectors, A

S
: B

S
.
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Using Components to Calculate the Vector Product
If we know the components of A

S
 and B

S
, we can calculate the components of the vector 

product by using a procedure similar to that for the scalar product. First we work out the 
multiplication table for unit vectors dn, en, and kn, all three of which are perpendicular to 
each other (Fig. 1.31a). The vector product of any vector with itself is zero, so

dn :  dn ∙ en : en ∙ kn : kn ∙ 0

The boldface zero is a reminder that each product is a zero vector—that is, one with all 
components equal to zero and an undefined direction. Using Eqs. (1.20) and (1.21) and the 
right-hand rule, we find

 dn : en ∙ ∙ en :  dn ∙ kn

 en : kn ∙ ∙kn : en ∙  dn

  kn :  dn ∙ ∙  dn : kn ∙ en 

(1.22)

You can verify these equations by referring to Fig. 1.31a.
Next we express A

S
 and B

S
 in terms of their components and the corresponding unit vec-

tors, and we expand the expression for the vector product:

 A
S

: B
S

∙ 1Ax dn ∙ Ay en ∙ Az  kn2 : 1Bx dn ∙ By en ∙ Bz  kn2

 ∙ Ax dn : Bx dn ∙ Ax dn : By en ∙ Ax dn : Bz kn

 ∙ Ay en : Bx dn ∙ Ay en : By en ∙ Ay en : Bz  kn

  ∙ Az  kn : Bx dn ∙ Az  kn : By en ∙ Az  kn : Bz  kn  

(1.23)

We can also rewrite the individual terms in Eq. (1.23) as Ax dn : By en ∙  1Ax By2 dn : en, and 
so on. Evaluating these by using the multiplication table for the unit vectors in Eqs. (1.22) 
and then grouping the terms, we get

 A
S

: B
S

∙ 1Ay Bz - Az  By2 dn ∙ 1Az  Bx - Ax Bz2 en ∙ 1Ax By - Ay Bx2kn  (1.24)

If you compare Eq. (1.24) with Eq. (1.14), you’ll see that the components of  
C
S

∙ A
S

: B
S

 are

Ax, Ay, Az =  components of A
S

Bx, By, Bz =  components of B
S

Components of vector (cross) product A :  B
S S

Cx =  AyBz -  AzBy Cy =  AzBx -  AxBz Cz =  AxBy -  AyBx (1.25)

With the axis system of Fig. 1.31a, if we reverse the direction of the z-axis, we get the 
system shown in Fig. 1.31b. Then, as you may verify, the definition of the vector product 
gives dn : en ∙ ∙kn instead of dn : en ∙ kn. In fact, all vector products of unit vectors dn, en, 
and kn would have signs opposite to those in Eqs. (1.22). So there are two kinds of coor-
dinate systems, which differ in the signs of the vector products of unit vectors. An axis 
system in which dn : en ∙ kn, as in Fig. 1.31a, is called a right-handed system. The usual 
practice is to use only right-handed systems, and we’ll follow that practice throughout  
this book.

dn

dn

en

en

kn

kn

(b) A left-handed coordinate system;
we will not use these.

(a) A right-handed coordinate system

y

x
z

O

y

z

x

O

d :  e = k 

e :  k = d 
k :  d = e 

n
n

n

n
n

n

n
n

n

Figure 1.31 (a) We’ll always use a 
right-handed coordinate system, like 
this one. (b) We’ll never use a left-
handed coordinate system (in which 
dn : en ∙ ∙kn, and so on).
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TEST YOUR UNDERSTANDING OF SECTION 1.10 Vector A
S

 has magnitude 2 and vector B
S

 
has magnitude 3. The angle f between A

S
 and B

S
 is (i) 0°, (ii) 90°, or (iii) 180°. For each of the  

following situations, state what the value of f must be. (In each situation there may be more  
than one correct answer.) (a) A

S # B
S

= 0; (b) A
S

: B
S

∙ 0; (c) A
S # B

S
= 6; (d) A

S # B
S

= -6;  
(e) 1magnitude of A

S
: B

S2 = 6.

ANSWER

❙ (a) (ii) F∙90∙, (b) (i) F∙0∙ or (iii) F∙180∙, (c) (i) F∙0∙, (d) (iii) F∙180∙, (e) (ii) 
F∙90∙ (a) The scalar product is zero only if A

S
 and B

S
 are perpendicular. (b) The vector prod-

uct is zero only if A
S

 and B
S

 are parallel or antiparallel. (c) The scalar product is equal to the 
product of the magnitudes 1A

S
#B

S
=AB2 only if A

S
 and B

S
 are parallel. (d) The scalar product 

is equal to the negative of the product of the magnitudes 1A
S

#B
S

=-AB2 only if A
S

 and B
S

 are 
antiparallel. (e) The magnitude of the vector product is equal to the product of the magnitudes 
31magnitude of A

S
:B

S
2=AB4 only if A

S
 and B

S
 are perpendicular.

EXAMPLE 1.11 Calculating a vector product

Vector A
S

 has magnitude 6 units and is in the direction of the +x@axis. 
Vector B

S
 has magnitude 4 units and lies in the xy-plane, making an 

angle of 30° with the +x@axis (Fig. 1.32). Find the vector product 
C
S

∙ A
S

: B
S

.

IDENTIFY and SET UP We’ll find the vector product in two ways, which 
will provide a check of our calculations. First we’ll use Eq. (1.20) and 
the right-hand rule; then we’ll use Eqs. (1.25) to find the vector product 
by using components.

By the right-hand rule, the direction of A
S

: B
S

 is along the +z@axis (the 
direction of the unit vector kn), so C

S
∙ A

S
: B

S
∙ 12kn.

To use Eqs. (1.25), we first determine the components of A
S

 and B
S

.  
Note that A

S
 points along the x-axis, so its only nonzero component is 

Ax. For B
S

, Fig. 1.32 shows that f = 30° is measured from the +x-axis 
toward the +y-axis, so we can use Eqs. (1.5):

Ax = 6  Ay = 0 Az = 0

Bx = 4 cos 30° = 223  By = 4 sin 30° = 2  Bz = 0

Then Eqs. (1.25) yield

 Cx = 102102 - 102122 = 0

 Cy = 10212232 - 162102 = 0

 Cz = 162122 - 10212232 = 12

Thus again we have C
S

∙ 12kn.

EVALUATE Both methods give the same result. Depending on the situa-
tion, one or the other of the two approaches may be the more convenient 
one to use.

KEYCONCEPT The vector product A
S

: B
S

 of two vectors is a third 
vector that is perpendicular to both A

S
 and B

S
. You can find the vector 

product either from the magnitudes of the two vectors, the angle be-
tween them, and the right-hand rule, or from the components of the two 
vectors.

A
S

B
S

C
S

y

x

z

O f =  30°

Figure 1.32 Vectors A
S

 and B
S

 and their vector product C
S

∙ A
S

: B
S

. 
Vector B

S
 lies in the xy-plane.

EXECUTE From Eq. (1.20) the magnitude of the vector product is

AB sin f = 1621421sin 30°2 = 12



Significant figures: The accuracy of a measurement can 
be indicated by the number of significant figures or by 
a stated uncertainty. The significant figures in the result 
of a calculation are determined by the rules summarized 
in Table 1.2. When only crude estimates are available for 
input data, we can often make useful order-of-magnitude 
estimates. (See Examples 1.3 and 1.4.)

Significant figures in magenta

p =   =   =  3.14
C
2r

0.424 m
210.06750 m2

123.62 +  8.9 =  132.5

Scalars, vectors, and vector addition: Scalar quantities 
are numbers and combine according to the usual rules 
of arithmetic. Vector quantities have direction as well as 
magnitude and combine according to the rules of vector 
addition. The negative of a vector has the same magnitude 
but points in the opposite direction. (See Example 1.5.)

A
SA

S

B
S

B
S

A + B
S S

=+

Vector components and vector addition: Vectors can be 
added by using components of vectors. The x-component 
of R

S
∙ A

S
∙ B

S
 is the sum of the x-components of A

S
 and B

S
, 

and likewise for the y- and z-components. (See Examples 1.6 
and 1.7.)

 Rx =  Ax + Bx

 Ry =  Ay + By

  Rz =  Az + Bz 
(1.9)

A
S

B
S

R
S

O
x

y

By

BxAx

Rx

Ry

Ay

Unit vectors: Unit vectors describe directions in space. A 
unit vector has a magnitude of 1, with no units. The unit 
vectors dn, en, and kn, aligned with the x-, y-, and z-axes of a 
rectangular coordinate system, are especially useful. (See 
Example 1.8.)

 A
S

∙ Ax  dn ∙ Ay en ∙ Az kn (1.14)
Aye

Axdndn

n

en

y

x
O

A = Axd + Ayen

S
n

Scalar product: The scalar product C = A
S # B

S
 of two 

vectors A
S

 and B
S

 is a scalar quantity. It can be expressed 
in terms of the magnitudes of A

S
 and B

S
 and the angle f 

between the two vectors, or in terms of the components of 
A
S

 and B
S

. The scalar product is commutative; A
S # B

S
= B

S # A
S

. 
The scalar product of two perpendicular vectors is zero. 
(See Examples 1.9 and 1.10.)

 A
S # B

S
= AB cos f = 0  AS 0 0  BS 0  cos f (1.16)

 A
S # B

S
= Ax  Bx + Ay  By + Az Bz (1.19)

A
S

B
S

f

Scalar product A # B =  AB cosf
S S

Vector product: The vector product C
S

∙ A
S

: B
S

 of two 
vectors A

S
 and B

S
 is a third vector C

S
. The magnitude of 

A
S

: B
S

 depends on the magnitudes of A
S

 and B
S

 and the 
angle f between the two vectors. The direction of A

S
: B

S
 

is perpendicular to the plane of the two vectors being 
multiplied, as given by the right-hand rule. The components 
of C

S
∙ A

S
: B

S
 can be expressed in terms of the components 

of A
S

 and B
S

. The vector product is not commutative; 
A
S

: B
S

∙ ∙B
S

: A
S

. The vector product of two parallel or 
antiparallel vectors is zero. (See Example 1.11.)

 C = AB sin f (1.20)

 Cx =  Ay  Bz -  Az By

 Cy =  Az Bx -  Ax  Bz

  Cz =  Ax  By -  Ay  Bx 

(1.25)

A :  B is perpendicular
to the plane of A and B.A :  B

(Magnitude of A :  B) =  AB sinf

S S

A
S

B
S

S S

S S

f

S S
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SUMMARY
Physical quantities and units: Three fundamental physical quantities are mass, length, and time. The 
corresponding fundamental SI units are the kilogram, the meter, and the second. Derived units for other 
physical quantities are products or quotients of the basic units. Equations must be dimensionally consistent; 
two terms can be added only when they have the same units. (See Examples 1.1 and 1.2.)

CHAPTER 1
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An air-conditioning unit is fastened to a roof that slopes at an angle of 
35° above the horizontal (Fig. 1.33). Its weight is a force F

S
 on the air 

conditioner that is directed vertically downward. In order that the unit 
not crush the roof tiles, the component of the unit’s weight perpendicu-
lar to the roof cannot exceed 425 N. (One newton, or 1 N, is the SI unit 
of force.) (a) What is the maximum allowed weight of the unit? (b) If 
the fasteners fail, the unit slides 1.50 m along the roof before it comes 
to a halt against a ledge. How much work does the weight force do on 
the unit during its slide if the unit has the weight calculated in part (a)? 
The work done by a force F

S
 on an object that undergoes a displacement 

sS is W = F
S # sS.

SOLUTION GUIDE

IDENTIFY and SET UP

1. This problem involves vectors and components. What are the 
known quantities? Which aspect(s) of the weight vector (magnitude, 
direction, and>or particular components) represent the target vari-
able for part (a)? Which aspect(s) must you know to solve part (b)?

2. Make a sketch based on Fig. 1.33. Draw the x- and y-axes, 
choosing the positive direction for each. Your axes don’t have to 
be horizontal and vertical, but they do have to be mutually per-
pendicular. Figure 1.33 shows a convenient choice of axes: The 
x-axis is parallel to the slope of the roof.

3. Choose the equations you’ll use to determine the target variables.

EXECUTE

4. Use the relationship between the magnitude and direction of 
a vector and its components to solve for the target variable in 

part (a). Be careful: Is 35° the correct angle to use in the equa-
tion? (Hint: Check your sketch.)

5. Make sure your answer has the correct number of significant 
figures.

6. Use the definition of the scalar product to solve for the target 
variable in part (b). Again, use the correct number of significant 
figures.

EVALUATE

7. Did your answer to part (a) include a vector component whose 
absolute value is greater than the magnitude of the vector? Is 
that possible?

8. There are two ways to find the scalar product of two vectors, 
one of which you used to solve part (b). Check your answer by 
repeating the calculation, using the other way. Do you get the 
same answer?

BRIDGING PROBLEM Vectors on the Roof

F
S

1.50 m

x

y

35°

Figure 1.33 An air-conditioning unit on a slanted roof.

For assigned homework and other learning materials, go to Mastering Physics.

Chapter 1 Media Assets

GUIDED PRACTICE

KEY EXAMPLE ARIATION PROBLEMS

Be sure to review EXAMPLE 1.7 (Section 1.8) before attempting these 
problems.
VP1.7.1 Consider the three vectors A

S
, B

S
, and C

S
 in Example 1.7. 

If a fourth vector D
S

 is added to A
S

∙ B
S

∙ C
S

, the result is zero: 
A
S

∙ B
S

∙ C
S

∙ D
S

∙ 0. Find the magnitude and direction of D
S

. State 
the direction of D

S
 in terms of an angle measured counterclockwise from 

the positive x-axis, and state in which quadrant this angle lies.
VP1.7.2 Consider the three vectors A

S
, B

S
, and C

S
 in Example 1.7. 

Calculate the magnitude and direction of the vector S
S

∙ A
S

∙ B
S

∙ C
S

. 
State the direction of S

S
 in terms of an angle measured counterclockwise 

from the positive x-axis, and state in which quadrant this angle lies. (Hint: 
The components of ∙B

S
 are just the negatives of the components of B

S
.)

VP1.7.3 Consider the three vectors A
S

, B
S

, and C
S

 in Example 1.7.  
(a) Find the components of the vector T

S
∙ A

S
∙ B

S
∙ 2C

S
. (b) Find the 

magnitude and direction of T
S

. State the direction of T
S

 in terms of an 
angle measured counterclockwise from the positive x-axis, and state in 
which quadrant this angle lies.
VP1.7.4 A hiker undergoes the displacement A

S
  shown in Example 1.7. 

The hiker then undergoes a second displacement such that she ends up 
38.0 m from her starting point, in a direction from her starting point 
that is 37.0° west of north. Find the magnitude and direction of this 
second displacement. State the direction in terms of an angle measured 

counterclockwise from the positive x-axis, and state in which quadrant 
this angle lies.

Be sure to review EXAMPLES 1.9 and 1.10 (Section 1.10) before 
 attempting these problems.
VP1.10.1 Vector A

S
 has magnitude 5.00 and is at an angle of 36.9° 

south of east. Vector B
S

 has magnitude 6.40 and is at an angle of 20.0° 
west of north. (a) Choose the positive x-direction to the east and the 
positive y-direction to the north. Find the components of A

S
 and B

S
.  

(b) Calculate the scalar product A
S # B

S
.

VP1.10.2 Vector C
S

 has magnitude 6.50 and is at an angle of 55.0° mea-
sured counterclockwise from the +x-axis toward the +y-axis. Vector D

S
 

has components Dx = +4.80 and Dy = -8.40. (a) Calculate the scalar 
product C

S #  D
S

. (b) Find the angle f between the vectors C
S

 and D
S

.
VP1.10.3 Vector A

S
 has components Ax = -5.00, Ay = 3.00,  

and Az = 0. Vector B
S

 has components Bx = 2.50, By = 4.00, and 
Bz = -1.50. Find the angle between the two vectors.
VP1.10.4 If a force F

S
 acts on an object as that object moves through 

a displacement sS, the work done by that force equals the scalar prod-
uct of F

S
 and sS: W = F

S # sS. A certain object moves through displace-
ment sS = 14.00 m2dn + 15.00 m2en. As it moves it is acted on by force  
F
S

, which has x-component Fx = -12.0 N (1 N = 1 newton is the 
SI unit of force). The work done by this force is 26.0 N # m = 26.0 J  
(1 J = 1 joule = 1 newton@meter is the SI unit of work). (a) Find the y-
component of F

S
. (b) Find the angle between F

S
 and sS.
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DISCUSSION QUESTIONS
Q1.1 How many correct experiments do we need to disprove a theory? 
How many do we need to prove a theory? Explain.
Q1.2 Suppose you are asked to compute the tangent of 5.00 meters. Is 
this possible? Why or why not?
Q1.3 A rather ordinary middle-aged woman is in the hospital for a rou-
tine checkup. The nurse writes “140” on the patient’s medical chart but 
forgets to include the units. Which of these quantities could the 140 plau-
sibly represent: the patient’s mass in kilograms? her height in centimeters?
Q1.4 Several countries maintain accurate copies of the platinum-
irydium cylinder used as the international standard of kilogram up until 
May 2019. The first batch of these copies, made in 1889, has on average 
gained 25 mg per century, in spite of careful cleaning. Does this appar-
ent increase have any importance? Explain.
Q1.5 What physical phenomena (other than a pendulum or cesium 
clock) could you use to define a time standard?
Q1.6 Describe how you could measure the thickness of a sheet of paper 
with an ordinary ruler.
Q1.7 The quantity p = 3.14159 c is a number with no dimensions, 
since it is a ratio of two lengths. Describe two or three other geometrical 
or physical quantities that are dimensionless.
Q1.8 What are the units of volume? Suppose another student tells 
you that a cylinder of radius r and height h has volume given by pr3h. 
Explain why this cannot be right.
Q1.9 Three archers each fire four arrows at a target. Joe’s four arrows 
hit points that are spread around in a region that goes 10 cm above, 
10 cm below, 10 cm to the left, and 10 cm to the right of the center of 
the target. All four of Moe’s arrows hit within 1 cm of a point 20 cm 
from the center, and Flo’s four arrows hit within 1 cm of the center. The 
contest judge says that one of the archers is precise but not accurate, an-
other archer is accurate but not precise, and the third archer is both ac-
curate and precise. Which description applies to which archer? Explain.
Q1.10 Is the vector 1dn ∙ en ∙ kn2 a unit vector? Is the vector 
13.0dn ∙ 2.0en2 a unit vector? Justify your answers.
Q1.11 A circular racetrack has a radius of 500 m. What is the displacement 
of a bicyclist when she travels around the track from the north side to the 
south side? When she makes one complete circle around the track? Explain.
Q1.12 Can you find two vectors with different lengths that have a vec-
tor sum of zero? What length restrictions are required for three vectors 
to have a vector sum of zero? Explain.
Q1.13 The “direction of time” is said to proceed from past to future. 
Does this mean that time is a vector quantity? Explain.
Q1.14 Air traffic controllers give instructions called “vectors” to tell 
airline pilots in which direction they are to fly. If these are the only in-
structions given, is the name “vector” used correctly? Why or why not?
Q1.15 Can you find a vector quantity that has a magnitude of zero but 
components that are not zero? Explain. Can the magnitude of a vector 
be less than the magnitude of any of its components? Explain.
Q1.16 (a) Does it make sense to say that a vector is negative? Why? 
(b) Does it make sense to say that one vector is the negative of another? 
Why? Does your answer here contradict what you said in part (a)?
Q1.17 If C

S
∙ A

S
∙ B

S
, what must be true about the directions and mag-

nitudes of A
S

 and B
S

 if C = A + B? What must be true about the direc-
tions and magnitudes of A

S
 and B

S
 if C = 0?

Q1.18 If A
S

 and B
S

 are nonzero vectors, is it possible for both A
S
~ B

S
 and 

A
S

: B
S

 to be zero? Explain.

Q1.19 What does A
S
~ A

S
, the scalar product of a vector with itself, give? 

What about A
S

: A
S

, the vector product of a vector with itself?
Q1.20 Let A

S
 represent any nonzero vector. Why is A

S
 > A a unit vector, 

and what is its direction? If u is the angle that A
S

 makes with the +x-
axis, explain why 1A

S
 >A2 ~ dn is called the direction  cosine for that axis.

Q1.21 Figure 1.6 shows the result of an unacceptable error in the stop-
ping position of a train. If a train travels 890 km from Berlin to Paris 
and then overshoots the end of the track by 10.0 m, what is the percent 
error in the total distance covered? Is it correct to write the total distance 
covered by the train as 890,010 m? Explain.
Q1.22 Which of the following are legitimate mathematical  operations: 
(a) A

S
~ 1B

S
∙ C

S2; (b) 1A
S

∙ B
S2 : C

S
; (c) A

S
~ 1B

S
: C

S2; (d) A
S

: 1B
S

: C
S2; 

(e) A
S

: 1B
S
~  C

S2? In each case, give the reason for your answer.
Q1.23 Consider the vector products A

S
: 1B

S
: C

S2 and 1A
S

: B
S2 : C

S
. 

Give an example that illustrates the general rule that these two vector 
products do not have the same magnitude or direction. Can you choose 
vectors A

S
, B

S
, and C

S
 such that these two vector products are equal? If so, 

give an example.
Q1.24 Show that, no matter what A

S
 and B

S
 are, A

S
~ 1A

S
: B

S2 = 0. 
(Hint: Do not look for an elaborate mathematical proof. Consider the 
definition of the direction of the cross product.)
Q1.25 (a) If A

S
~ B

S
= 0, does it necessarily follow that A = 0 or 

B = 0? Explain. (b) If A
S

: B
S

∙ 0, does it necessarily follow that 
A = 0 or B = 0 ? Explain.
Q1.26 If A

S
∙ 0 for a vector in the xy-plane, does it follow that 

Ax = -Ay ? What can you say about Ax and Ay?

EXERCISES

Section 1.3 Standards and Units

Section 1.4 Using and Converting Units
1.1 • How many years older will you be 1.00 gigasecond from now? 
(Assume a 365-day year.)
1.2 •• You read in a brochure that Kensington Gardens, one of London’s 
eight Royal Parks, covers an area of 265 acres. An acre is a British unit 
widely used in land measurement in the UK (1 acre  =  43,560 ft2 and  
1 ft = 0.3048 m, see Appendix C). What is the area of Kensington Gardens 
in square meters? in square kilometers? in hectares (a hectare is a unit of 
area equal to 10,000 m2 used in land measurement)?
1.3 •• How many nanoseconds does it take light to travel 0.3 m in vacuum? 
1.4 •• The density of silver is 10.5 g>cm3. What is this value in kilo-
grams per cubic meter?
1.5 • In the ancient Roman Empire, large distances were measured 
in miliarum. A miliarum was subdivided into 8 stadia, 1 stadium into 
125 passus, 1 passus into 5 pes, 1 pes into 4 palmus, 1 palmus into 
4 digitus. Knowing that 1 pes = 0.296 m, find the number of (a) meters 
in 1.00 miliarum and (b) centimeters in 1.00 digitus.
1.6 • The speed limits in Ireland were changed from imperial (miles 
per hour, mi>h) to metric (kilometers per hour, km>h) on 20 January 
2005. Use 1 mi = 5280 ft and 1 ft = 30.48 cm to: (a) convert the for-
mer 30 mi>h speed limit for build-up areas to units of km>h and com-
pare this result with the new 50 km>h speed limit; (b) convert the new  
120 km>h speed limit for motorways to units of mi>h and compare this 
result with the old 70 mi>h speed limit.

PROBLEMS
•, ••, •••: Difficulty levels. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems requiring calculus.  
DATA: Problems involving real data, scientific evidence, experimental design, and>or statistical reasoning. BIO: Biosciences problems.
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1.7 • Fuel consumption of a car is the amount of fuel used per unit 
distance. It is customary to give fuel consumption in liters per 100 km 
(L>100 km). For example, the 2019 Austin Mini Cooper has a fuel con-
sumption of 5.5 L>100 km, that is, it uses 5.5 liters of petrol per every 
100 km driven. (a) If this car’s petrol tank holds 40 L, how many tanks 
of petrol will you use to drive 1200 km? (b) You read in an English car 
magazine that the classic 1964 Austin Mini Cooper has an average esti-
mated “mileage of 30.5 miles per gallon” (where 1 mile = 1.609 km is 
a British unit of distance and 1 gallon (UK) = 4.546 L is a British unit 
of capacity, see Appendix C). Find the fuel consumption of this car and 
compare it with the 2019 model.
1.8 • BIO  (a) The recommended daily allowance (RDA) of the trace 
metal magnesium is 410 mg>day for males. Express this quantity in 
mg>day. (b) For adults, the RDA of the amino acid  lysine is 12 mg per 
kg of body weight. How many grams per day should a 77-kg adult re-
ceive? (c) A typical multivitamin tablet can contain 2.0 mg of vitamin 
B2 (riboflavin), and the RDA is 0.0030 g>day. How many such tablets 
should a person take each day to get the proper amount of this vitamin, 
if he gets none from other sources? (d) The RDA for the trace element 
selenium is 0.000070 g>day. Express this dose in mg>day.
1.9 •• Neptunium. In the fall of 2002, scientists at Los Alamos 
National Laboratory determined that the critical mass of neptunium-237 
is about 60 kg. The critical mass of a fissionable material is the mini-
mum amount that must be brought together to start a nuclear chain reac-
tion. Neptunium-237 has a density of 19.5 g>cm3. What would be the 
radius of a sphere of this material that has a critical mass?
1.10 •• BIO Bacteria. Bacteria vary in size, but a diameter of 2.0 mm 
is not unusual. What are the volume (in cubic centimeters) and sur-
face area (in square millimeters) of a spherical bacterium of that size? 
(Consult Appendix D for relevant formulas.)

Section 1.5 Uncertainty and Significant Figures
1.11 • With a wooden ruler, you measure the length of a rectangular 
piece of sheet metal to be 12 mm. With micrometer calipers, you mea-
sure the width of the rectangle to be 5.98 mm. Use the correct number 
of significant figures: What are (a) the area of the rectangle; (b) the ratio 
of the rectangle’s width to its length; (c) the perimeter of the rectangle; 
(d) the difference between the length and the width; and (e) the ratio of 
the length to the width?
1.12 • The volume of a solid cylinder is given by V = pr2h, where r is 
the radius and h is the height. You measure the radius and height of a thin 
cylindrical wire and obtain the results r = 0.036 cm and h = 12.1 cm.  
What do your measurements give for the volume of the wire in mm3? 
Use the correct number of significant figures in your answer.
1.13 •• A useful and easy-to-remember approximate value for the 
number of seconds in a year is p * 107. Determine the percent error in 
this approximate value. (There are 365.24 days in one year.)
1.14 • Express each approximation of p to six significant  figures: (a) 22>7 
and (b) 355>113. (c) Are these approximations accurate to that precision?

Section 1.6 Estimates and Orders of Magnitude
1.15 • BIO Which of the values given below are plausible for an average 
adult male giraffe: (a) height of 2 m or 5 m? (b) mass of 1500 kg or 5000 
kg? (c) maximal speed of 15 m>s or 45 m>s?
1.16 • How many liters of petrol are used in Italy in one day? Assume 
that there are two cars for every three people, that each car is driven an 
average of 10,000 kilometers per year, and that the petrol consumption 
of an average car is 8 liters per 100 kilometers. Assume that the popula-
tion of Italy is approximately 60 million.
1.17 • In Wagner’s opera Das Rheingold, the goddess Freia is ran-
somed for a pile of gold just tall enough and wide enough to hide her 

from sight. Estimate the monetary value of this pile. The density of gold 
is 19.3 g>cm3, and take its value to be about $40 per gram.
1.18 • BIO Four astronauts are in a spherical space station. (a) If, as 
is typical, each of them breathes about 500 cm3 of air with each breath, 
approximately what volume of air (in cubic meters) do these astronauts 
breathe in a year? (b) What would the diameter (in meters) of the space 
station have to be to contain all this air?
1.19 • You are using water to dilute small amounts of chemicals in the 
laboratory, drop by drop. How many drops of water are in a 1.0 L bottle? 
(Hint: Start by estimating the diameter of a drop of water.)
1.20 • BIO How many times does a human heart beat during a person’s 
lifetime? How many liters of blood does it pump? (Estimate that the heart 
pumps 50 cm3 of blood with each beat and assume a 365-day year.)

Section 1.7 Vectors and Vector Addition
1.21 •• A postal employee drives a delivery truck along the route 
shown in Fig. E1.21. Determine the magnitude and direction of the 
resultant displacement by drawing a scale diagram. (See also Exercise 
1.28 for a different approach.)

1.22 •• For the vectors A
S

 and B
S

 
in Fig. E1.22, use a scale drawing 
to find the magnitude and direction 
of (a) the vector sum A

S
∙ B

S
 and (b) 

the vector difference A
S

∙ B
S

. Use 
your answers to find the magnitude 
and direction of (c) ∙A

S
∙ B

S
 and 

(d) B
S

∙ A
S

. (See also Exercise 1.29 
for a different approach.)
1.23 •• A spelunker is surveying 
a cave. She follows a passage 180 
m straight west, then 210 m in a di-
rection 45° east of south, and then 
280 m at 30° east of north. After a 
fourth displacement, she finds her-
self back where she started. Use a scale drawing to determine the mag-
nitude and direction of the fourth displacement. (See also Problem 1.57 
for a different approach.)

Section 1.8 Components of Vectors
1.24 •• Let u be the angle that the vector A

S
 makes with the +x- 

axis, measured counterclockwise from that axis. Find angle u for a  
vector that has these components: (a) Ax = 2.00 m, Ay = -1.00 m; 
(b) Ax = 2.00 m, Ay = 1.00 m; (c) Ax = -2.00 m, Ay = 1.00 m;  
(d) Ax = -2.00 m, Ay = -1.00 m.
1.25 • Compute the x- and y-components of the vectors A

S
, B

S
, C

S
, and 

D
S

 in Fig. E1.22.
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1.26 • Vector A
S

 is in the direction 40.0° clockwise from the -y@axis. 
The x-component of A

S
 is Ax = -20.0 m. (a) What is the y-component 

of A
S

? (b) What is the magnitude of A
S

?
1.27 • Vector A

S
 has y-component Ay = +13.0 m. A

S
 makes an angle 

of 32.0° counterclockwise from the +y-axis. (a) What is the x-compo-
nent of A

S
? (b) What is the magnitude of A

S
?

1.28 •• A postal employee drives a delivery truck over the route 
shown in Fig. E1.21. Use the method of components to determine the 
magnitude and direction of her resultant displacement. In a vector- 
addition diagram (roughly to scale), show that the resultant displace-
ment found from your diagram is in qualitative agreement with the 
result you  obtained by using the method of components.
1.29 • For the vectors A

S
 and B

S
 in Fig. E1.22, use the method of 

components to find the magnitude and direction of (a) the vector sum 
A
S

∙ B
S

; (b) the vector sum B
S

∙ A
S

; (c) the vector difference A
S

∙ B
S

;  
(d) the vector difference B

S
∙ A

S
.

1.30 • Find the magnitude and direction of the vector represented by 
the following pairs of components: (a) Ax = -8.60 cm, Ay = 5.20 cm; 
(b) Ax = -9.70 m, Ay = -2.45 m; (c) Ax =  7.75 km, Ay = -2.70 km.
1.31 •• A disoriented physics professor drives 3.25 km north, then 
2.20 km west, and then 1.50 km south. Find the magnitude and direc-
tion of the resultant displacement, using the method of components. In 
a vector-addition diagram (roughly to scale), show that the resultant dis-
placement found from your diagram is in qualitative agreement with the 
result you obtained by using the method of components.
1.32 •• Vector A

S
 has magnitude 8.00 m and is in the xy-plane at an 

angle of 127° counterclockwise from the +x–axis (37° past the +y-axis). 
What are the magnitude and direction of vector  B

S
 if the sum A

S
∙ B

S
 is 

in the -y-direction and has magnitude 12.0 m?
1.33 •• Vector A

S
 is 2.80 cm long and is 60.0° above the x-axis in the 

first quadrant. Vector B
S

 is 1.90 cm long and is 60.0° below the x-axis in 
the fourth quadrant (Fig. E1.33). Use components to find the mag nitude 
and direction of (a) A

S
∙ B

S
; (b) A

S
∙ B

S
; (c) B

S
∙ A

S
. In each case, sketch 

the vector addition or subtraction and show that your numerical answers 
are in qualitative agreement with your sketch.

Section 1.9 Unit Vectors
1.34 • In each case, find the x- and y-components of vector A

S
:  

(a) A
S

∙ 3.20dn ∙ 6.50en; (b) A
S

∙ 18.2en ∙ 7.91dn; (c) A
S

∙ -12.0dn ∙  
21.2en ; (d) A

S
∙ 5.0B

S
, where B

S
∙ 8dn ∙ 4en.

1.35 •• Write each vector in Fig. E1.22 in terms of the unit vectors 
dn and en.
1.36 •• Given two vectors A

S
∙ 4.00dn ∙ 7.00en and B

S
∙ 5.00dn ∙  

2.00en, (a) find the magnitude of each vector; (b) use unit vectors to write 
an expression for the vector difference A

S
∙ B

S
; and (c) find the magni-

tude and direction of the vector difference A
S

∙ B
S

. (d) In a vector diagram 
show A

S
, B

S
, and A

S
∙ B

S
, and show that your diagram agrees qualitatively 

with your answer to part (c).

1.37 •• (a) Write each vector 
in Fig. E1.37 in terms of the unit 
vectors dn and en. (b) Use unit vec-
tors to express vector C

S
, where 

C
S

∙ 3.00A
S

∙ 4.00B
S

. (c) Find the 
magnitude and direction of C

S
.

1.38 • You are given two vec-
tors A

S
∙ -3.00dn ∙ 6.00en and 

B
S

∙ 7.00dn ∙ 2.00en. Let coun-
terclockwise angles be positive. 
(a) What angle does A

S
 make with the 

+x@axis? (b) What angle does B
S

 make with the +x@axis? (c) Vector C
S

 
is the sum of A

S
 and B

S
, so C

S
∙ A

S
∙ B

S
. What angle does C

S
 make with 

the +x@axis?
1.39 • Given two vectors A

S
∙ -2.00dn ∙ 3.00en ∙ 4.00kn  and 

B
S

∙ 3.00dn ∙ 1.00en ∙ 3.00kn, (a) find the magnitude of each vector;  
(b) use unit vectors to write an expression for the vector difference 
A
S

∙ B
S

; and (c) find the magnitude of the vector difference A
S

∙ B
S

. Is 
this the same as the magnitude of B

S
∙ A

S
? Explain.

Section 1.10 Products of Vectors
1.40 •• (a) Find the scalar product of the vectors A

S
 and B

S
 given in 

Exercise 1.36. (b) Find the angle between these two vectors.
1.41 • For the vectors A

S
, B

S
, and C

S
 in Fig. E1.22, find the scalar prod-

ucts (a) A
S
~ B

S
; (b) B

S
~ C

S
; (c) A

S
~  C

S
.

1.42 •• Find the vector product A
S

: B
S

 (expressed in unit vectors) of 
the two vectors given in Exercise 1.36. What is the magnitude of the 
vector product?
1.43 •• Find the angle between each of these pairs of vectors:
(a) A

S
∙ -2.00dn ∙ 6.00en    and B

S
∙ 2.00dn ∙ 3.00en

(b) A
S

∙ 3.00dn ∙ 5.00en       and B
S

∙ 10.00dn ∙ 6.00en
(c) A

S
∙ -4.00dn ∙ 2.00en    and B

S
∙ 7.00dn ∙ 14.00en

1.44 • For the two vectors in Fig. E1.33, find the magnitude and di-
rection of (a) the vector product A

S
: B

S
; (b) the vector product B

S
: A

S
.

1.45 • For the two vectors A
S

 and D
S

 in Fig. E1.22, find the magnitude 
and direction of (a) the vector product A

S
: D

S
; (b) the vector product 

D
S

: A
S

.
1.46 • For the two vectors A

S
 and B

S
 in Fig. E1.37, find (a) the scalar 

product A
S
~ B

S
; (b) the magnitude and direction of the vector product 

A
S

: B
S

.
1.47 •• The vector product of vectors A

S
 and B

S
 has magnitude 16.0 m2 

and is in the +z-direction. If vector A
S

 has magnitude 8.0 m and is in the 
-x-direction, what are the magnitude and direction of vector B

S
 if it has 

no x-component?
1.48 • The angle between two vectors is u. (a) If u = 30.0o, which has 
the greater magnitude: the scalar product or the vector product of the 
two vectors? (b) For what value (or values) of u are the magnitudes of 
the scalar product and the vector product equal?

PROBLEMS
1.49 •• White Dwarfs and Neutron Stars. Recall that density is mass 
divided by volume, and consult Appendix D as needed. (a) Calculate the av-
erage density of the earth in g>cm3, assuming our planet is a perfect sphere. 
(b) In about 5 billion years, at the end of its lifetime, our sun will end up as 
a white dwarf that has about the same mass as it does now but is reduced 
to about 15,000 km in diameter. What will be its density at that stage?  
(c) A neutron star is the remnant of certain supernovae (explosions of giant 
stars). Typically, neutron stars are about 20 km in diameter and have about 
the same mass as our sun. What is a typical neutron star density in g>cm3?
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1.50 •• The Hydrogen Maser. A maser is a laser-type device that 
produces electromagnetic waves with frequencies in the microwave 
and  radio-wave bands of the electromagnetic spectrum. You can use the 
radio waves generated by a hydrogen maser as a standard of frequency. 
The frequency of these waves is 1,420,405,751.786 hertz. (A hertz is an-
other name for one cycle per second.) A clock controlled by a  hydrogen 
maser is off by only 1 s in 100,000 years. For the following questions, 
use only three significant figures. (The large number of significant fig-
ures given for the frequency simply illustrates the remarkable accuracy 
to which it has been measured.) (a) What is the time for one cycle of the 
radio wave? (b) How many cycles occur in 1 h? (c) How many cycles 
would have occurred during the age of the earth, which is estimated 
to be 4.6 * 109 years? (d) By how many seconds would a hydrogen 
maser clock be off after a time interval equal to the age of the earth?
1.51 •• An Earthlike Planet. In January 2006 astronomers reported 
the discovery of a planet, comparable in size to the earth, orbiting an-
other star and having a mass about 5.5 times the earth’s mass. It is be-
lieved to consist of a mixture of rock and ice, similar to Neptune. If this 
planet has the same density as Neptune 11.76 g>cm32, what is its ra-
dius expressed (a) in kilometers and (b) as a multiple of earth’s radius? 
Consult the back of the book for astronomical data.
1.52 ••• A rectangular piece of aluminum is 7.60 { 0.01 cm long 
and 1.50 { 0.01 cm wide. (a) Find the area of the rectangle and the 
uncertainty in the area. (b) Verify that the fractional uncertainty in the 
area is equal to the sum of the fractional uncertainties in the length and 
in the width. (This is a general result.)
1.53 • BIO Estimate the number of atoms in your body. (Hint: Based 
on what you know about biology and chemistry, what are the most 
common types of atom in your body? What is the mass of each type of 
atom? Appendix F gives the atomic masses of different elements, mea-
sured in atomic mass units; you can find the value of an atomic mass 
unit, or 1 u, in Appendix B.)
1.54 • BIO Biological tissues are typically made up of 98% water. Given 
that the density of water is 1.0 * 103 kg>m3, estimate the mass of (a) the 
heart of an adult human; (b) a cell with a diameter of 0.5 mm; (c) a honeybee.
1.55 •• Vector A

S
∙ 3.0dn ∙ 4.0kn . (a) Construct a unit vector that 

is parallel to A
S

. (b) Construct a unit vector that is antiparallel to A
S

.  
(c) Construct two unit vectors that are perpendicular to A

S
 and that have 

no y-component.
1.56 •• Three horizontal ropes pull on a large stone stuck in the 
ground, producing the vector forces A

S
, B

S
, and C

S
 shown in Fig. P1.56. 

Find the magnitude and direction of a fourth force on the stone that will 
make the vector sum of the four forces zero.
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1.58 ••• Emergency Landing. A plane leaves the airport in Galisteo 
and flies 145 km at 68.0° east of north; then it changes direction to fly  
250 km at 48.0° south of east, after which it makes an immediate emer-
gency landing in a pasture. When the airport sends out a rescue crew, in 
which direction and how far should this crew fly to go directly to this plane?
1.59 •• A charged object with electric charge q produces an electric 
field. The SI unit for electric field is N>C, where N is the SI unit for 
force and C is the SI unit for charge. If at point P there are electric fields 
from two or more charged objects, then the resultant field is the vector 
sum of the fields from each object. At point P the electric field E

S

1 from 
charge q1 is 450 N>C in the +y-direction, and the electric field E

S

2 from 
charge q2 is 600 N>C in the direction 36.9o from the -y-axis toward 
the -x-axis. What are the magnitude and direction of the resultant field 
E
S

∙ E
S

1 ∙ E
S

2 at point P due to these two charges?
1.60 •• A sailor in a small sailboat encounters shifting winds. She 
sails 2.00 km east, next 3.50 km southeast, and then an additional dis-
tance in an unknown direction. Her final position is 5.80 km directly 
east of the starting point (Fig. P1.60). Find the magnitude and direction 
of the third leg of the journey. Draw the vector-addition diagram and 
show that it is in qualitative agreement with your numerical solution.

1.61 ••• BIO Dislocated Shoulder. A patient with a dislocated  shoulder 
is put into a traction apparatus as shown in Fig. P1.61. The pulls A

S
 and B

S
 

have equal magnitudes and must combine to produce an outward traction 
force of 5.52 N on the patient’s arm. How large should these pulls be?

1.62 ••• On a training flight in 
Switzerland, a student pilot flies from 
Bern to Zurich, next to Lugano, and 
then to Sion (Fig. P1.62). The direc-
tions are shown relative to north: 0° 
is north, 90° is east, 180° is south, and 
270° is west. Use the method of com-
ponents to find (a) the distance she has 
to fly from Sion to get back to Bern, 
and (b) the direction (relative to north) 
she must fly to get there. Illustrate 
your solutions with a vector diagram.

1.57 ••• As noted in Exercise 1.23, a spelunker is surveying a cave. 
She follows a passage 177 m straight west, then 215 m in a direction 
45° east of south, and then 271 m at 30° east of north. After a fourth 
displacement, she finds herself back where she started. Use the method 
of components to determine the magnitude and direction of the fourth 
displacement. Draw the vector-addition diagram and show that it is in 
qualitative agreement with your numerical solution.



1.63 •• You leave the airport in Wagga Wagga and fly 23.0 km in a 
direction 34.0o south of east. You then fly 46.0 km due north. How far 
and in what direction must you then fly to reach a private landing strip 
that is 32.0 km due west of the Wagga Wagga airport?
1.64 ••• Getting Back. An explorer in Antarctica leaves his shelter 
during a whiteout. He takes 43 steps northeast, next 80 steps at 60° 
north of west, and then 52 steps due south. Assume all of his steps are 
equal in length. (a) Sketch, roughly to scale, the three vectors and their 
resultant. (b) Save the explorer from becoming hopelessly lost by giving 
him the displacement, calculated by using the method of components, 
that will return him to his shelter.
1.65 •• As a test of orienteering skills, your physics class holds a con-
test in a large, open field. Each contestant is told to travel 20.8 m due 
north from the starting point, then 38.0 m due east, and finally 18.0 m 
in the direction 33.0° west of south. After the specified displacements, 
a contestant will find a silver coin hidden under a rock. The winner is 
the person who takes the shortest time to reach the location of the silver 
coin. Remembering what you learned in class, you run on a straight line 
from the starting point to the hidden coin. How far and in what direction 
do you run?
1.66 • You are standing on a street corner with your friend. You then 
travel 14.0 m due west across the street and into your apartment build-
ing. You travel in the lift 22.0 m upward to your floor, walk 12.0  m 
north to the door of your apartment, and then walk 6.0 m due east to 
your balcony that overlooks the street. Your friend is standing where 
you left her. Now how far are you from your friend?
1.67 •• You are lost at night in a large, open field. Your GPS tells you 
that you are 122.0 m from your car, in a direction 58.0° east of south. 
You walk 72.0 m due west along a ditch. How much farther, and in what 
direction, must you walk to reach your car?
1.68 ••• You live in a town where the streets are straight but are in a 
variety of directions. On Saturday you go from your apartment to the 
grocery store by driving 0.60 km due north and then 1.40 km in the 
direction 60.0o west of north. On Sunday you again travel from your 
apartment to the same store but this time by driving 0.80 km in the 
 direction 50.0o north of west and then in a straight line to the store.  
(a) How far is the store from your apartment? (b) On which day do you 
travel the greater distance, and how much farther do you travel? Or, do 
you travel the same distance on each route to the store?
1.69 •• While following a treasure map, you start at an old oak tree. 
You first walk 825 m directly south, then turn and walk 1.25 km at 30.0° 
west of north, and finally walk 1.00 km at 32.0° north of east, where 
you find the treasure: a biography of Isaac Newton! (a) To return to the 
old oak tree, in what direction should you head and how far will you 
walk? Use components to solve this problem. (b) To see whether your 
calculation in part (a) is reasonable, compare it with a graphical solution 
drawn roughly to scale.
1.70 •• A fence post is 59.0 m from where you are standing, in a di-
rection 38.0° north of east. A second fence post is due south from you. 
How far are you from the second post if the distance between the two 
posts is 70.0 m?
1.71 •• A dog in an open field runs 12.0 m east and then 28.0 m in a 
direction 50.0° west of north. In what direction and how far must the 
dog then run to end up 10.0 m south of her original starting point?
1.72 ••• Ricardo and Jane are standing under a tree in the middle of 
a pasture. An argument ensues, and they walk away in different direc-
tions. Ricardo walks 30.0 m in a direction 60.0° west of north. Jane 
walks 15.0 m in a direction 30.0° south of west. They then stop and turn 
to face each other. (a) What is the distance between them? (b) In what 
direction should Ricardo walk to go directly toward Jane?

1.73 ••• You are camping with Joe and Karl. Since all three of you like 
your privacy, you don’t pitch your tents close together. Joe’s tent is 21.0 m 
from yours, in the direction 23.0° south of east. Karl’s tent is 32.0 m from 
yours, in the direction 37.0° north of east. What is the distance between 
Karl’s tent and Joe’s tent?
1.74 •• Bond Angle in Methane. In the methane molecule, CH4, 
each hydrogen atom is at a corner of a regular tetrahedron with 
the carbon atom at the center. In coordinates for which one of the 
C ¬ H bonds is in the direction of dn ∙ en ∙ kn, an adjacent C ¬ H 
bond is in the dn ∙ en ∙ kn  direction. Calculate the angle between these  
two bonds.
1.75 •• The work W done by a constant force F

S
 on an object that un-

dergoes displacement sS from point 1 to point 2 is W = F
S # s

S
. For F in 

newtons (N) and s in meters (m), W is in joules (J). If, during a displace-
ment of the object, F

S
 has constant direction 60.0o above the -x-axis 

and constant magnitude 5.00 N and if the displacement is 0.800 m in the 
+x-direction, what is the work done by the force F

S
?

1.76 •• Magnetic fields are produced by moving charges and exert 
forces on moving charges. When a particle with charge q is moving 
with velocity vS in a magnetic field B

S
, the force F

S
 that the field exerts 

on the particle is given by F
S

∙ qvS : B
S

. The SI units are as follows: For 
charge it is the coulomb (C), for magnetic field it is tesla (T), for force 
it is newton (N), and for velocity it is m>s. If q = -8.00 * 10-6 C, vS 
is 3.00 * 104 m>s in the +x-direction, and B

S
 is 5.00 T in the -y-direc-

tion, what are the magnitude and direction of the force that the magnetic 
field exerts on the charged particle?
1.77 •• Vectors A

S
 and B

S
 have scalar product -7.00, and their vector 

product has magnitude +9.00. What is the angle between these two vectors?
1.78 •• Torque is a vector quantity that specifies the effectiveness of 
a force in causing the rotation of an object. The torque that a force F

S
 

exerts on a rigid object depends on the point where the force acts and on 
the location of the axis of rotation. If rS is the length vector from the axis 
to the point of application of the force, then the torque is r

S

: F
S

. If F
S

 is 
22.0 N in the -y-direction and if rS is in the xy-plane at an angle of 36° 
from the +y-axis toward the -x-axis and has magnitude 4.0 m, what are 
the magnitude and direction of the torque exerted by F

S
?

1.79 •• Vector A
S

∙ adn ∙ bkn and vector B
S

∙ ∙cen ∙ dkn. (a) In 
terms of the positive scalar quantities a, b, c, and d, what are A

S # B
S

 and 
A
S

: B
S

? (b) If c = 0, what is the magnitude of A
S # B

S
 and what are the 

magnitude and direction of A
S

: B
S

? Does your result for the direction 
for A

S
: B

S
 agree with the result you get if you sketch A

S
 and B

S
 in the 

xz-plane and apply the right-hand rule? The scalar product can be de-
scribed as the magnitude of B

S
 times the component of A

S
 that is parallel 

to B
S

. Does this agree with your result? The magnitude of the vector 
product can be described as the magnitude of B

S
 times the component 

of A
S

 that is perpendicular to B
S

. Does this agree with your result?
1.80 •• Vectors A

S
 and B

S
 are in the xy-plane. Vector A

S
 is in the +x- 

direction, and the direction of vector B
S

 is at an angle u from the +x-axis 
measured toward the +y-axis. (a) If u is in the range 0° … u … 180°,  
for what two values of u does the scalar product A

S # B
S

 have its maxi-
mum magnitude? For each of these values of u, what is the magnitude 
of the vector product A

S
: B

S
? (b) If u is in the range 0° … u … 180°,  

for what value of u does the vector product A
S

: B
S

 have its maximum 
value? For this value of u, what is the magnitude of the scalar product 
A
S # B

S
? (c) What is the angle u in the range 0° … u … 180° for which 

A
S # B

S
 is twice ∙ A

S
: B

S
∙?

1.81 •• Vector A
S

 has magnitude 12.0 m, and vector B
S

 has magnitude 
12.0 m. The scalar product A

S
~ B

S
 is 76.0 m2. What is the magnitude of 

the vector product between these two vectors?
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1.82 •• Vector A
S

 has magnitude 5.00 m and lies in the xy-plane in a 
direction 53.0o from the +x-axis axis measured toward the +y-axis. 
Vector B

S
 has magnitude 8.00 m and a direction you can adjust. (a) You 

want the vector product A
S

: B
S

 to have a positive z-component of the 
largest possible magnitude. What direction should you select for vec-
tor B

S
? (b) What is the direction of B

S
 for which A

S
: B

S
 has the most 

negative z-component? (c) What are the two directions of B
S

 for which 
A
S

: B
S

 is zero?
1.83 •• The scalar product of vectors A

S
 and B

S
 is +59.0 m2. Vector A

S
 

has magnitude 9.00 m and direction 28.0° west of south. If vector B
S

 has 
direction 39.0° south of east, what is the magnitude of B

S
?

1.84 ••• Obtain a unit vector perpendicular to the two vectors given 
in Exercise 1.39.
1.85 •• You are given vectors A

S
∙ 5.0dn ∙ 6.5en and B

S
∙ 3.5dn ∙ 7.0en. 

A third vector, C
S

, lies in the xy-plane. Vector C
S

 is perpendicular to vec-
tor A

S
, and the scalar product of C

S
 with B

S
 is 15.0. From this information, 

find the components of vector C
S

.
1.86 •• Two vectors A

S
 and B

S
 have magnitudes A = 3.00 and 

B = 3.00. Their vector product is A
S

: B
S

∙ -5.00kn ∙ 2.00dn. What is 
the angle between A

S
 and B

S
?

1.87 ••• DATA You are a team leader at a pharmaceutical company. 
Several technicians are preparing samples, and you want to compare the 
densities of the samples (density = mass>volume) by using the mass 
and volume values they have reported. Unfortunately, you did not spec-
ify what units to use. The technicians used a variety of units in reporting 
their values, as shown in the following table.

Sample ID Mass Volume

A 8.00 g 1.67 * 10-6 m3

B 6.00 mg 9.38 * 106 mm3

C 8.00 mg 2.50 * 10-3 cm3

D 9.00 * 10-4 kg 2.81 * 103 mm3

E 9.00 * 104 ng 1.59 * 10-2 mm3

F 6.00 * 10-2 mg 1.25 * 10-4 cm3

List the sample IDs in order of increasing density of the sample.

1.88 ••• DATA You are a mechanical engineer working for a manu-
facturing company. Two forces, F

S

1 and F
S

2, act on a component part of 
a piece of equipment. Your boss asked you to find the magnitude of the 
larger of these two forces. You can vary the angle between F

S

1 and F
S

2 
from 0o to 90o while the magnitude of each force stays constant. And, 
you can measure the magnitude of the resultant force they produce 
(their vector sum), but you cannot directly measure the magnitude of 
each separate force. You measure the magnitude of the resultant force 
for four angles u between the directions of the two forces as follows:

U Resultant force (N)

0.0° 8.00

45.0° 7.43

60.0° 7.00

90.0° 5.83

(a) What is the magnitude of the larger of the two forces? (b) When the 
equipment is used on the production line, the angle between the two 
forces is 30.0°. What is the magnitude of the resultant force in this case?

1.89 ••• DATA Navigating in the Solar System. The Mars Polar 
Lander spacecraft was launched on January 3, 1999. On December 3, 
1999, the day Mars Polar Lander impacted the Martian surface at high 
velocity and probably disintegrated, the positions of the earth and Mars 
were given by these coordinates:

  x y z

Earth 0.3182 AU 0.9329 AU -0.0000 AU

Mars 1.3087 AU -0.4423 AU -0.0414 AU

With these coordinates, the sun is at the origin and the earth’s orbit is 
in the xy-plane. The earth passes through the +x-axis once a year on 
the autumnal equinox, the first day of autumn in the northern hemi-
sphere (on or about September 22). One AU, or astronomical unit, is 
equal to 1.496 * 108 km, the average distance from the earth to the  
sun. (a) Draw the positions of the sun, the earth, and Mars on December 3,  
1999. (b) Find these distances in AU on December 3, 1999: from (i) the 
sun to the earth; (ii) the sun to Mars; (iii) the earth to Mars. (c) As seen 
from the earth, what was the angle between the direction to the sun and 
the direction to Mars on December 3, 1999? (d) Explain whether Mars 
was visible from your current location at midnight on December 3,  
1999. (When it is midnight, the sun is on the opposite side of the earth 
from you.)

CHALLENGE PROBLEMS
1.90 ••• Drone Delivery. You are testing parcel delivery by drone for 
a project. Your team uses vector displacements to record the route of 
the drone, with the origin taken to be the position of the control cen-
tre. During one test, the drone starts its flight at +10 dn - 50en, where 
the units are meters, dn is to the east, and en is to the north. Subsequent 
displacements of the drone are +90 dn , +110en, -60 dn + 40en, and  
+120 dn + 180en. If the final destination of the drone is -70en, how far and 
in which direction must the drone fly? (You are well advised to diagram 
the situation before solving this numerically.)
1.91 ••• Navigating in the Big Dipper. All of the stars of the Big 
Dipper (part of the constellation Ursa Major) may appear to be the 
same distance from the earth, but in fact they are very far from each 
other. Figure P1.91 shows the distances from the earth to each of 
these stars. The distances are given in light-years (ly), the distance 
that light travels in one year. One light-year equals 9.461 * 1015 m. 
(a) Alkaid and Merak are 25.6° apart in the earth’s sky. In a diagram, 
show the relative positions of Alkaid, Merak, and our sun. Find the 
distance in light-years from Alkaid to Merak. (b) To an inhabitant of 
a planet orbiting Merak, how many degrees apart in the sky would 
Alkaid and our sun be?

Mizar
73 ly

Megrez
81 ly

Dubhe
105 ly

Merak
77 ly

Phad
80 ly

Alioth
64 ly

Alkaid
138 ly

Figure P1.91



MCAT-STYLE PASSAGE PROBLEMS
BIO Calculating Lung Volume in Humans. In humans, oxygen and 
carbon dioxide are exchanged in the blood within many small sacs 
called alveoli in the lungs. Alveoli provide a large surface area for gas 
exchange. Recent careful measurements show that the total number of 
alveoli in a typical pair of lungs is about 480 * 106 and that the average 
volume of a single alveolus is 4.2 * 106 mm3. (The volume of a sphere 
is V = 4

3 pr3, and the area of a sphere is A = 4pr2.)
1.92 What is total volume of the gas-exchanging region of the lungs? 
(a) 2000 mm3; (b) 2 m3; (c) 2.0 L; (d) 120 L.
1.93 If we assume that alveoli are spherical, what is the diameter of a 
typical alveolus? (a) 0.20 mm; (b) 2 mm; (c) 20 mm; (d) 200 mm.
1.94 Individuals vary considerably in total lung volume. Figure P1.94 
shows the results of measuring the total lung volume and average al-
veolar volume of six individuals. From these data, what can you infer 
about the relationship among alveolar size, total lung volume, and num-
ber of alveoli per individual? As the total volume of the lungs increases,  

(a) the number and volume of individual alveoli increase; (b) the num-
ber of alveoli increases and the volume of individual alveoli decreases; 
(c) the volume of the individual alveoli remains constant and the num-
ber of alveoli increases; (d) both the number of alveoli and the volume 
of individual alveoli remain constant.
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Figure P1.94

ANSWERS

Chapter Opening Question ?
(iii) Take the +x@axis to point east and the +y@axis to point north. 
Then we need to find the y-component of the velocity vector, which 
has magnitude v = 15 km>h and is at an angle u = 37° measured 
from the +x@axis toward the +y@axis. From Eqs. (1.5) we have 
vy = v sin u = 115 km>h2 sin 37° = 9.0 km>h. So the thunderstorm 
moves 9.0 km north in 1 h and 18 km north in 2 h.

Key Example ARIATION Problems
VP1.7.1 D =  12.7 m, u = -51° = 309° (fourth quadrant)
VP1.7.2 S =  115 m, u =  42° (first quadrant)
VP1.7.3 (a) Tx = -7.99 m, Ty = -7.88 m (b) T = 11.2 m, u = 225° 
(third quadrant)

VP1.7.4 68.7 m, u =  207° (third quadrant)
VP1.10.1 (a) Ax =  4.00, Ay = -3.00, Bx = -2.19, By =  6.01  
(b) A

S # B
S

= -26.8
VP1.10.2 (a) C

S # D
S

= -26.8 (b) f =  115°
VP1.10.3 f =  91°
VP1.10.4 (a) 14.8 N (b) 77.7°

Bridging Problem
(a) 5.2 * 102 N
(b) 4.5 * 102 N # m

 Answers    61
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2 Motion Along a Straight Line
LEARNING OUTCOMES

In this chapter, you’ll learn...
 2.1 How the ideas of displacement and aver-

age velocity help us describe straight-
line motion.

 2.2 The meaning of instantaneous veloc-
ity; the difference between velocity and 
speed.

 2.3 How to use average acceleration and 
instantaneous acceleration to describe 
changes in velocity.

 2.4 How to use equations and graphs to 
solve problems that involve straight-line 
motion with constant acceleration.

 2.5 How to solve problems in which an ob-
ject is falling freely under the influence of 
gravity alone.

 2.6 How to analyze straight-line motion when 
the acceleration is not constant.

You’ll need to review...
 1.7 The displacement vector.
 1.8 Components of a vector.

What distance must an airliner travel down a runway before it reaches takeoff 
speed? When you throw a ball straight up in the air, how high does it go? When 
a glass slips from your hand, how much time do you have to catch it before it 

hits the floor? These are the kinds of questions you’ll learn to answer in this chapter. 
Mechanics is the study of the relationships among force, matter, and motion. In this chap-
ter and the next we’ll study kinematics, the part of mechanics that enables us to describe 
motion. Later we’ll study dynamics, which helps us understand why objects move in dif-
ferent ways.

In this chapter we’ll concentrate on the simplest kind of motion: an object moving 
along a straight line. To describe this motion, we introduce the physical quantities velocity 
and acceleration. In physics these quantities have definitions that are more precise and 
slightly different from the ones used in everyday language. Both velocity and accelera-
tion are vectors: As you learned in Chapter 1, this means that they have both magnitude 
and direction. Our concern in this chapter is with motion along a straight line only, so we 
won’t need the full mathematics of vectors just yet. But using vectors will be essential in 
Chapter 3 when we consider motion in two or three dimensions.

We’ll develop simple equations to describe straight-line motion in the important spe-
cial case when acceleration is constant. An example is the motion of a freely falling ob-
ject. We’ll also consider situations in which acceleration varies during the motion; in this 
case, it’s necessary to use integration to describe the motion. (If you haven’t studied inte-
gration yet, Section 2.6 is optional.)

2.1 DISPLACEMENT, TIME, AND AVERAGE VELOCITY
Suppose a drag racer drives her dragster along a straight track (Fig. 2.1). To study the 
dragster’s motion, we need a coordinate system. We choose the x-axis to lie along the 
dragster’s straight-line path, with the origin O at the starting line. We also choose a point 
on the dragster, such as its front end, and represent the entire dragster by that point. Hence 
we treat the dragster as a particle.

A useful way to describe the motion of this particle is in terms of the change in its 
coordinate x over a time interval. Suppose that 1.0 s after the start the front of the drag-
ster is at point P1, 19 m from the origin, and 4.0 s after the start it is at point P2, 277 m 

? A typical runner gains speed gradually 
during the course of a sprinting foot 

race and then slows down after crossing the 
finish line. In which part of the motion is it 
accurate to say that the runner is 
accelerating? (i) During the race; (ii) after 
the runner crosses the finish line; (iii) both 
(i) and (ii); (iv) neither (i) nor (ii); (v) 
answer depends on how rapidly the runner 
gains speed during the race.



 2.1 Displacement, Time, and Average Velocity    63

Position at t2 =  4.0 sPosition at t1 =  1.0 s

P1 P2

O

Displacement from t1 to t2 

x1 =  19 m
∆x =  1x2 -  x12 =  258 m

x2 =  277 m
xx-axis

FINISHSTART

When the dragster moves in the +x-direction, the displacement
∆x is positive and so is the average x-velocity:

x-coordinate of
dragster at 1.0 s

x is positive to the right of the
origin (O), negative to the left
of it.

x-coordinate of
dragster at 4.0 s

∆x
∆t

258 m
3.0 s

 =  86 m>s =  vav-x =  

Figure 2.1 Positions of a dragster at two times during its run.

from the origin. The displacement of the particle is a vector that points from P1 to P2 (see 
Section 1.7). Figure 2.1 shows that this vector points along the x-axis. The x-component (see 
Section 1.8) of the displacement is the change in the value of x, (277 m - 19 m) = 258 m, 
that took place during the time interval of (4.0 s - 1.0 s) = 3.0 s. We define the drag-
ster’s average velocity during this time interval as a vector whose x-component is the 
change in x divided by the time interval: (258 m)>(3.0 s) = 86 m>s.

In general, the average velocity depends on the particular time interval chosen. For a 
3.0 s time interval before the start of the race, the dragster is at rest at the starting line and 
has zero displacement, so its average velocity for this time interval is zero.

Let’s generalize the concept of average velocity. At time t1 the dragster is at point 
P1, with coordinate x1, and at time t2 it is at point P2, with coordinate x2. The displace-
ment of the dragster during the time interval from t1 to t2 is the vector from P1 to P2. The  
x- component of the displacement, denoted ∆x, is the change in the coordinate x:

 ∆x = x2 - x1 (2.1)

The dragster moves along the x-axis only, so the y- and z-components of the displacement 
are equal to zero.

The x-component of average velocity, or the average x-velocity, is the x-component of 
displacement, ∆x, divided by the time interval ∆t during which the displacement occurs. 
We use the symbol vav@x for average x-velocity (the subscript “av” signifies average value, 
and the subscript x indicates that this is the x-component):

(2.2)

x-component of the particle’s displacement

Final x-coordinate
minus initial
x-coordinate

Average x-velocity of a
particle in straight-line
motion during time
interval from t1 to t2

vav-x =   =  
∆t

∆x

t2 -  t1

x2 -  x1

Time interval Final time minus initial time

As an example, for the dragster in Fig. 2.1, x1 = 19 m, x2 = 277 m, t1 = 1.0 s, and 
t2 = 4.0 s. So Eq. (2.2) gives

vav@x =
277 m - 19 m
4.0 s - 1.0 s

=
258 m
3.0 s

= 86 m>s
The average x-velocity of the dragster is positive. This means that during the time interval, 
the coordinate x increased and the dragster moved in the positive x-direction (to the right 
in Fig. 2.1).

If a particle moves in the negative x-direction during a time interval, its average velocity for 
that time interval is negative. For example, suppose an official’s truck moves to the left along 
the track (Fig. 2.2, next page). The truck is at x1 = 277 m at t1 = 16.0 s and is at x2 = 19 m at  
t2 = 25.0 s. Then ∆x = 119 m - 277 m2 -258 m and ∆t = (25.0 s - 16.0 s) = 9.0 s. 
The x-component of average velocity is vav@x = ∆x>∆t = (-258 m)>(9.0 s) = -29 m>s. 
Table 2.1 lists some simple rules for deciding whether the x-velocity is positive or negative.

   CAUTION    The meaning of ∆x Note 
that ∆x is not the product of ∆ and x; it is 
a single symbol that means “the change in 
quantity x.” We use the Greek capital letter 
∆ (delta) to represent a change in a quan-
tity, equal to the final value of the quantity 
minus the initial value—never the reverse. 
Likewise, the time interval from t1 to t2 
is ∆t, the change in t: ∆t = t2 - t1 (final 
time minus initial time). ❙

If x-coordinate is: . . .  x-velocity is:

Positive & increasing 
(getting more positive)

Positive: Particle  
is moving in  
+x-direction

Positive & decreasing 
(getting less positive)

Negative: Particle  
is moving in  
-x-direction

Negative & increasing 
(getting less negative)

Positive: Particle  
is moving in  
+x-direction

Negative & decreasing 
(getting more negative)

Negative: Particle  
is moving in  
-x-direction

TABLE 2.1 Rules for the Sign of 
x-Velocity

Note: These rules apply to both the average  
x-velocity vav@x and the instantaneous x-velocity 
vx (to be discussed in Section 2.2).
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   CAUTION    The sign of average x-velocity In our example positive vav@x means motion to the right, 
as in Fig. 2.1, and negative vav@x means motion to the left, as in Fig. 2.2. But that’s only because 
we chose the +x-direction to be to the right. Had we chosen the +x-direction to be to the left, the 
average x-velocity vav@x would have been negative for the dragster moving to the right and positive 
for the truck moving to the left. In many problems the direction of the coordinate axis is yours to 
choose. Once you’ve made your choice, you must take it into account when interpreting the signs of 
vav@x and other quantities that describe motion! ❙

With straight-line motion we sometimes call ∆x simply the displacement and vav@x 
simply the average velocity. But remember that these are the x-components of vector 
quantities that, in this special case, have only x-components. In Chapter 3, displacement, 
velocity, and acceleration vectors will have two or three nonzero components.

Figure 2.3 is a graph of the dragster’s position as a function of time—that is, an 
x-t graph. The curve in the figure does not represent the dragster’s path; as Fig. 2.1 
shows, the path is a straight line. Rather, the graph represents how the dragster’s position 
changes with time. The points p1 and p2 on the graph correspond to the points P1 and P2 
along the dragster’s path. Line p1 p2 is the hypotenuse of a right triangle with vertical side 
∆x = x2 - x1 and horizontal side ∆t = t2 - t1 . The average x-velocity vav@x = ∆x >∆t 
of the dragster equals the slope of the line p1 p2 —that is, the ratio of the triangle’s verti-
cal side ∆x to its horizontal side ∆t. (The slope has units of meters divided by seconds, 
or m>s, the correct units for average x-velocity.)

The average x-velocity depends on only the total displacement ∆x = x2 - x1 that occurs 
during the time interval ∆t = t2 - t1 , not on what happens during the time interval. At 
time t1 a motorcycle might have raced past the dragster at point P1 in Fig. 2.1, then slowed 
down to pass through point P2 at the same time t2 as the dragster. Both vehicles have the 
same displacement during the same time interval and so have the same average x-velocity.

If distance is given in meters and time in seconds, average velocity is measured in 
meters per second, or m>s (Table 2.2). Other common units of velocity are kilome-
ters per hour (km>h), miles per hour (1 mi>h = 1.609 km>h), and knots (1 knot =  
1 nautical mile>h = 1.852 km>h).

Position at t1 =  16.0 sPosition at t2 =  25.0 s

O

Displacement from t1 to t2

x2 =  19 m
∆x =  1x2 -  x12 =  - 258 m

x1 =  277 m
x

FINISHSTART

When the truck moves in the - x-direction, ∆x is
negative and so is the average x-velocity:

This position is now x1. This position is now x2.

P2 P1

∆x
∆t

 =  - 29 m>s =  vav-x =  - 258 m
9.0 s

Figure 2.2 Positions of an official’s truck 
at two times during its motion. The points 
P1 and P2 now indicate the positions of 
the truck, not the dragster, and so are the 
reverse of Fig. 2.1.

Slope =  rise over run =  

For a displacement along the x-axis, an object’s average x-velocity
vav-x equals the slope of a line connecting the corresponding points
on a graph of position (x)
versus time (t).
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Figure 2.3 A graph of the position of a 
dragster as a function of time.

TABLE 2.2 Typical Velocity Magnitudes

A snail’s pace 10-3 m>s
A brisk walk 2 m>s
Fastest human 11 m>s
Motorway speed 30 m>s
Fastest car 341 m>s
Random motion of air 
 molecules 500 m>s
Fastest airplane 1000 m>s
Orbiting communications 
 satellite 3000 m>s
Average speed of an electron  
 in a hydrogen atom 2 * 106 m>s
Light traveling in vacuum 3 * 108 m>s
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TEST YOUR UNDERSTANDING OF SECTION 2.1 Five cars, A, B, C, D, and E, each take 
a trip that lasts one hour. The positive x-direction is to the east. (i) A travels 50 km due east. (ii) 
B travels 50 km due west. (iii) C travels 60 km due east, then turns around and travels 10 km due 
west. (iv) D travels 70 km due east. (v) E travels 20 km due west, then turns around and travels 20 
km due east. (a) Rank the five trips in order of average x-velocity from most positive to most nega-
tive. (b) Which trips, if any, have the same average x-velocity? (c) For which trip, if any, is the aver-
age x-velocity equal to zero?

ANSWERS

Figure 2.4 The winner of a 50 m 
swimming race is the swimmer whose 
average velocity has the greatest 
magnitude—that is, the swimmer who 
traverses a displacement ∆x of 50 m in the 
shortest elapsed time ∆t.

❙ (a): (iv), (i) and (iii) (tie), (v), (ii); (b): (i) and (iii); (c): (v) In (a) the average x-velocity 
is vav@x=∆x>∆t. For all five trips, ∆t = 1 h. For the individual trips, (i) ∆x=+50 km, 
vav@x=+50 km>h. (ii) ∆x=-50 km, vav@x=-50 km>h; (iii) ∆x=60 km-10 km = +50 km, 
vav@x=+50 km>h; (iv) ∆x=+70 km, vav@x=+70 km>h; (v) ∆x=-20 km+20 km=0, 
vav@x=0. In (b) both have vav@x = +50 km>h.

2.2 INSTANTANEOUS VELOCITY
Sometimes average velocity is all you need to know about a particle’s motion. For ex-
ample, a race along a straight line is really a competition to see whose average veloc-
ity, vav@x 

, has the greatest magnitude. The prize goes to the competitor who can travel 
the displacement ∆x from the start to the finish line in the shortest time interval, ∆t 
(Fig. 2.4).

But the average velocity of a particle during a time interval can’t tell us how fast, or in 
what direction, the particle was moving at any given time during the interval. For that we 
need to know the instantaneous velocity, or the velocity at a specific instant of time or 
specific point along the path.

   CAUTION    How long is an instant? You might use the phrase “It lasted just an instant” to refer to 
something that spanned a very short time interval. But in physics an instant has no duration at all; it 
refers to a single value of time. ❙

To find the instantaneous velocity of the dragster in Fig. 2.1 at point P1 , we move point 
P2 closer and closer to point P1 and compute the average velocity vav@x = ∆x>∆t over the 
ever-shorter displacement and time interval. Both ∆x and ∆t become very small, but their 
ratio does not necessarily become small. In the language of calculus, the limit of ∆x>∆t as 
∆t approaches zero is called the derivative of x with respect to t and is written dx>dt. We 
use the symbol vx , with no “av” subscript, for the instantaneous velocity along the x-axis, 
or the instantaneous x-velocity:

(2.3)

... equals the limit of the particle’s average
x-velocity as the time interval approaches zero ...

... and equals the instantaneous rate of
change of the particle’s x-coordinate.

The instantaneous
x-velocity of a particle in
straight-line motion ...

vx =   =  
∆t

∆x

dt

dx
lim

∆t S 0

The time interval ∆t is always positive, so vx has the same algebraic sign as ∆x. A 
positive value of vx means that x is increasing and the motion is in the positive x-direction; 
a negative value of vx means that x is decreasing and the motion is in the negative x-
direction. An object can have positive x and negative vx , or the reverse; x tells us where the 
object is, while vx tells us how it’s moving (Fig. 2.5). The rules that we presented in Table 
2.1 (Section 2.1) for the sign of average x-velocity vav@x also apply to the sign of instanta-
neous x-velocity vx .

Instantaneous velocity, like average velocity, is a vector; Eq. (2.3) defines its  
x-component. In straight-line motion, all other components of instantaneous velocity are 
zero. In this case we often call vx simply the instantaneous velocity. (In Chapter 3 we’ll 
deal with the general case in which the instantaneous velocity can have nonzero x-, y-, and 
z-components.) When we use the term “velocity,” we’ll always mean instantaneous rather 
than average velocity.

A bicyclist moving to the left ...

... has a negative x-velocity vx if we choose
the positive x-direction to the right ...

... but has a positive x-velocity vx if we
choose the positive x-direction to the left.

x
O

x
O

Figure 2.5 In any problem involving 
straight-line motion, the choice of which 
direction is positive and which is negative 
is entirely up to you.
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“Velocity” and “speed” are used interchangeably in everyday language, but they have 
distinct definitions in physics. We use the term speed to denote distance traveled divided 
by time, on either an average or an instantaneous basis. Instantaneous speed, for which 
we use the symbol v with no subscripts, measures how fast a particle is moving; instanta-
neous velocity measures how fast and in what direction it’s moving. Instantaneous speed 
is the magnitude of instantaneous velocity and so can never be negative. For example, a 
 particle with instantaneous velocity vx = 25 m>s and a second particle with vx = -25 m>s 
are moving in opposite directions at the same instantaneous speed 25 m>s.

   CAUTION    Average speed and average velocity Average speed is not the magnitude of  average 
velocity. When César Cielo set a world record in 2009 by swimming 100.0 m in 46.91 s, his  average 
speed was (100.0 m)>(46.91 s) = 2.132 m>s. But because he swam two lengths in a 50 m pool, 
he started and ended at the same point and so had zero total displacement and zero average  velocity! 
Both average speed and instantaneous speed are scalars, not vectors, because these quantities con-
tain no information about direction. ❙

(a) The situation

(b) Our sketch

(c) Decisions       Point axis in
direction cheetah runs,
so that all values will
be positive.

1       Place origin
at vehicle.
2       Mark initial

positions of cheetah
and antelope.

3       Mark positions
for cheetah at 1 s
and 2 s.

4       Add the known
and unknown
quantities.

5

Figure 2.6 A cheetah attacking 
an antelope from ambush. The 
animals are not drawn to the same 
scale as the axis.

EXAMPLE 2.1 Average and instantaneous velocities

A cheetah is crouched 20 m to the east of a vehicle (Fig. 2.6a). At 
time t = 0 the cheetah begins to run due east toward an antelope that 
is 50 m to the east of the vehicle. During the first 2.0 s of the chase, 
the cheetah’s x-coordinate varies with time according to the equation 
x = 20 m + (5.0 m>s2)t2. (a) Find the cheetah’s displacement be-
tween t1 = 1.0 s and t2 = 2.0 s. (b) Find its average velocity during 
that interval. (c) Find its instantaneous velocity at t1 = 1.0 s by taking 
∆t = 0.1 s, then 0.01 s, then 0.001 s. (d) Derive an expression for the 
cheetah’s instantaneous velocity as a function of time, and use it to find 
vx at t = 1.0 s and t = 2.0 s.

IDENTIFY and SET UP Figure 2.6b shows our sketch of the cheetah’s 
motion. We use Eq. (2.1) for displacement, Eq. (2.2) for average veloc-
ity, and Eq. (2.3) for instantaneous velocity.

EXECUTE (a) At t1 = 1.0 s and t2 = 2.0 s the cheetah’s positions 
x1 and x2 are

 x1 = 20 m + 15.0 m>s2211.0 s22 = 25 m

 x2 = 20 m + 15.0 m>s2212.0 s22 = 40 m

The displacement during this 1.0 s interval is

∆x = x2 - x1 = 40 m - 25 m = 15 m

(b) The average x-velocity during this interval is

 vav@x =
x2 - x1

t2 - t1
=

40 m - 25 m
2.0 s - 1.0 s

=
15 m
1.0 s

= 15 m>s

(c) With ∆t = 0.1 s the time interval is from t1 = 1.0 s to a new 
t2 = 1.1 s. At t2 the position is

x2 = 20 m + 15.0 m>s2211.1 s22 = 26.05 m

The average x-velocity during this 0.1 s interval is

vav@x =
26.05 m - 25 m

1.1 s - 1.0 s
= 10.5 m>s

Following this pattern, you can calculate the average x-velocities for 
0.01 s and 0.001 s intervals: The results are 10.05 m>s and 10.005 m>s. 
As ∆t gets smaller, the average x-velocity gets closer to 10.0 m>s, so we 
conclude that the instantaneous x-velocity at t = 1.0 s is 10.0 m>s. (We 
suspended the rules for significant-figure counting in these  calculations.)

(d) From Eq. (2.3) the instantaneous x-velocity is vx = dx>dt. The 
derivative of a constant is zero and the derivative of t2 is 2t, so

 vx =
dx
dt

=
d
dt

 320 m + 15.0 m>s22t24

 = 0 + 15.0 m>s2212t2 = 110 m>s22t
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At t = 1.0 s, this yields vx = 10 m>s, as we found in part (c); at 
t = 2.0 s, vx = 20 m>s.

EVALUATE Our results show that the cheetah picked up speed from 
t = 0 (when it was at rest) to t = 1.0 s 1vx = 10 m>s2 to t = 2.0 s 
1vx = 20 m>s2. This makes sense; the cheetah covered only 5 m during 
the interval t = 0 to t = 1.0 s, but it covered 15 m during the interval 
t = 1.0 s to t = 2.0 s.

KEYCONCEPT To calculate the average velocity of an object in 
straight-line motion, first find its displacement (final coordinate minus 
initial coordinate) during a time interval. Then divide by the time inter-
val. To calculate the object’s instantaneous velocity (its average veloc-
ity over an infinitesimally short time interval), take the derivative of its 
position with respect to time.

Finding Velocity on an x-t Graph
We can also find the x-velocity of a particle from the graph of its position as a function 
of time. Suppose we want to find the x-velocity of the dragster in Fig. 2.1 at point P1 . As 
point P2 in Fig. 2.1 approaches point P1 , point p2 in the x-t graphs of Figs. 2.7a and 2.7b 
 approaches point p1 and the average x-velocity is calculated over shorter time intervals ∆t. 
In the limit that ∆t S 0, shown in Fig. 2.7c, the slope of the line p1 p2 equals the slope of the 
line tangent to the curve at point p1 . Thus, on a graph of position as a function of time for 
straight-line motion, the instantaneous x-velocity at any point is equal to the slope of the 
tangent to the curve at that point.

If the tangent to the x-t curve slopes upward to the right, as in Fig. 2.7c, then its slope is 
positive, the x-velocity is positive, and the motion is in the positive x-direction. If the tan-
gent slopes downward to the right, the slopes of the x-t graph and the x-velocity are negative, 
and the motion is in the negative x-direction. When the tangent is horizontal, the slope and 
the x-velocity are zero. Figure 2.8 illustrates these three possibilities.

As the average x-velocity vav-x is calculated
over shorter and shorter time intervals ...

... its value vav-x =  ∆x>∆t approaches the
instantaneous x-velocity.

The instantaneous x-velocity vx at any
given point equals the slope of the tangent
to the x-t curve at that point.

 =  40 m>s
vx =  160 m

4.0 s

∆t =  1.0 s
∆x =  55 m

vav-x =  55 m>s
      

  Slope of tangent =  

instantaneous x-velocity

p1 4.0 s
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Figure 2.7 Using an x-t graph to go from (a), (b) average x-velocity to (c) instantaneous x-velocity vx. In (c) we find the slope of the tangent to the 
x-t curve by dividing any vertical interval (with distance units) along the tangent by the corresponding horizontal interval (with time units).

The particle is at x 6  0 and moving
in +x-direction.

From tA to tB it speeds up, ...

... and from tB to tC it slows down,
then halts momentarily at tC.

From tC to tD it speeds up in
-x-direction, ...

... and from tD to tE it slows down
in -x-direction.

• On an x-t graph, the slope of the tangent at any point equals the particle’s velocity at that point.
• The steeper the slope (positive or negative), the greater the particle’s speed in the positive or negative x-direction.

Slope positive:
vx 7  0

Slope zero: vx =  0

Slope negative:
vx 6  0

(a) x-t graph (b) Particle’s motion
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Figure 2.8 (a) The x-t graph of the motion of a particular particle. (b) A motion diagram showing the position and velocity of the particle at each 
of the times labeled on the x-t graph.
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Figure 2.9 An x-t graph for a particle.

❙ (a) P, Q, and S (tie), R The x-velocity is (b) positive when the slope of the x-t graph is positive 
(P), (c) negative when the slope is negative (R), and (d) zero when the slope is zero (Q and S). 
 (e) R, P, Q, and S (tie) The speed is greatest when the slope of the x-t graph is steepest (either 
positive or negative) and zero when the slope is zero.

TEST YOUR UNDERSTANDING OF SECTION 2.2 Figure 2.9 is an x-t graph of the motion 
of a particle. (a) Rank the values of the particle’s x-velocity vx at points P, Q, R, and S from most 
positive to most negative. (b) At which points is vx positive? (c) At which points is vx negative? (d) 
At which points is vx zero? (e) Rank the values of the particle’s speed at points P, Q, R, and S from 
fastest to slowest.

ANSWER

Figure 2.8 depicts the motion of a particle in two ways: as (a) an x-t graph and (b) a 
motion diagram that shows the particle’s position at various instants (like frames from a 
video of the particle’s motion) as well as arrows to represent the particle’s velocity at each 
instant. We’ll use both x-t graphs and motion diagrams in this chapter to represent motion. 
You’ll find it helpful to draw both an x-t graph and a motion diagram when you solve any 
problem involving motion.

2.3 AVERAGE AND INSTANTANEOUS ACCELERATION
Just as velocity describes the rate of change of position with time, acceleration 
 describes the rate of change of velocity with time. Like velocity, acceleration is a 
vector quantity. When the motion is along a straight line, its only nonzero component is 
along that line. In everyday language, acceleration refers only to speeding up; in physics, 
acceleration refers to any kind of velocity change, so we say an object accelerates if it is 
either speeding up or slowing down.

Average Acceleration
Let’s consider again a particle moving along the x-axis. Suppose that at time t1 the particle 
is at point P1 and has x-component of (instantaneous) velocity v1x , and at a later time t2 it 
is at point P2 and has x-component of velocity v2x . So the x-component of velocity changes 
by an amount ∆vx = v2x - v1x during the time interval ∆t = t2 - t1 . As the particle 
moves from P1 to P2 , its average acceleration is a vector quantity whose x-component 
aav@x (called the average x-acceleration) equals ∆vx , the change in the x-component of 
velocity, divided by the time interval ∆t:

(2.4)

Change in x-component of the particle’s velocity

Final x-velocity
minus initial
x-velocity

Time interval Final time minus initial time

Average x-acceleration of
a particle in straight-line
motion during time
interval from t1 to t2

aav-x =   =  
∆t

∆vx

t2 -  t1

v2x -  v1x

For straight-line motion along the x-axis we’ll often call aav@x simply the average ac-
celeration. (We’ll encounter the other components of the average acceleration vector in 
Chapter 3.)

If we express velocity in meters per second and time in seconds, then average accelera-
tion is in meters per second per second. This is usually written as m>s2 and is read “meters 
per second squared.”

   CAUTION    Don’t confuse velocity and acceleration Velocity describes how an object’s posi-
tion changes with time; it tells us how fast and in what direction the object moves. Acceleration 
describes how the velocity changes with time; it tells us how the speed and direction of motion 
change. Another difference is that you can feel acceleration but you can’t feel velocity. If you’re a 
passenger in a car that accelerates forward and gains speed, you feel pushed backward in your seat; 
if it accelerates backward and loses speed, you feel pushed forward. If the velocity is constant and 
there’s no acceleration, you feel neither sensation. (We’ll explain these sensations in Chapter 4.) ❙

?
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The slope of the line connecting each
pair of points on the vx-t graph ...

... equals the average x-acceleration
between those points.

(a)
(b)

(c)
(d)

Figure 2.10 Our graphs of x-velocity versus time (top) and 
average x-acceleration versus time (bottom) for the astronaut.

EXAMPLE 2.2 Average acceleration

An astronaut has left an orbiting spacecraft to test a new personal ma-
neuvering unit. As she moves along a straight line, her partner on the 
spacecraft measures her velocity every 2.0 s, starting at time t = 1.0 s:

t vx t vx

1.0 s 0.8 m>s 9.0 s -0.4 m>s
3.0 s 1.2 m>s 11.0 s -1.0 m>s
5.0 s 1.6 m>s 13.0 s -1.6 m>s
7.0 s 1.2 m>s 15.0 s -0.8 m>s

Find the average x-acceleration, and state whether the speed of the as-
tronaut increases or decreases over each of these 2.0 s time intervals: 
(a) t1 = 1.0 s to t2 = 3.0 s; (b) t1 = 5.0 s to t2 = 7.0 s; (c) t1 = 9.0 s to 
t2 = 11.0 s; (d) t1 = 13.0 s to t2 = 15.0 s .

IDENTIFY and SET UP We’ll use Eq. (2.4) to determine the average ac-
celeration aav@x from the change in velocity over each time interval. To 
find the changes in speed, we’ll use the idea that speed v is the magni-
tude of the instantaneous velocity vx .

The upper part of Fig. 2.10 is our graph of the x-velocity as a func-
tion of time. On this vx@t graph, the slope of the line connecting the 
endpoints of each interval is the average x-acceleration aav@x = ∆vx >∆t 
for that interval. The four slopes (and thus the signs of the average ac-
celerations) are, from left to right, positive, negative, negative, and pos-
itive. The third and fourth slopes (and thus the average accelerations 
themselves) have greater magnitude than the first and second.

EXECUTE Using Eq. (2.4), we find: 
(a) aav@x = 11.2 m>s - 0.8 m>s2>13.0 s - 1.0 s2 = 0.2 m>s2. The 

speed (magnitude of instantaneous x-velocity) increases from 0.8 m>s 
to 1.2 m>s.

(b) aav@x = 11.2 m>s - 1.6 m>s2>17.0 s - 5.0 s2 = -0.2 m>s2. The 
speed decreases from 1.6 m>s to 1.2 m>s.

(c) aav@x = 3-1.0 m>s - 1-0.4 m>s24>111.0 s - 9.0 s2 = -0.3 m>s2.  
The speed increases from 0.4 m>s to 1.0 m>s.

(d) aav@x = 3-0.8 m>s - 1-1.6 m>s24>115.0 s - 13.0 s2 = 0.4 m>s2. 
The speed decreases from 1.6 m>s to 0.8 m>s.

In the lower part of Fig. 2.10, we graph the values of aav@x.

EVALUATE The signs and relative magnitudes of the average accelera-
tions agree with our qualitative predictions.

Notice that when the average x-acceleration has the same alge-
braic sign as the initial velocity, as in intervals (a) and (c), the astronaut 
goes faster. When aav@x has the opposite algebraic sign from the  initial 
 velocity, as in intervals (b) and (d), she slows down. Thus positive  
x-acceleration means speeding up if the x-velocity is positive [interval 
(a)] but slowing down if the x-velocity is negative [interval (d)]. Similarly, 
negative x-acceleration means speeding up if the x-velocity is negative 
[interval (c)] but slowing down if the x-velocity is positive [interval (b)].

KEYCONCEPT To calculate the average acceleration of an object 
in straight-line motion, first find the change in its velocity (final veloc-
ity minus initial velocity) during a time interval. Then divide by the time 
interval.

Instantaneous Acceleration
We can now define instantaneous acceleration by following the same procedure that 
we used to define instantaneous velocity. Suppose a race car driver is driving along a 
straightaway as shown in Fig. 2.11. To define the instantaneous acceleration at point P1 , 
we take point P2 in Fig. 2.11 to be closer and closer to P1 so that the average acceleration is 
computed over shorter and shorter time intervals. Thus

(2.5)

... equals the limit of the particle’s average
x-acceleration as the time interval approaches zero ...

... and equals the instantaneous rate
of change of the particle’s x-velocity.

The instantaneous
x-acceleration of a particle
in straight-line motion ... ∆tS0

ax =  lim  =  
∆t

∆vx

dt

dvx

Speed v2
x-velocity v2x

Speed v1
x-velocity v1x

P2P1O
x

Figure 2.11 A Grand Prix car at two points on the straightaway.
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In Eq. (2.5) ax is the x-component of the acceleration vector, which we call the 
 instantaneous x-acceleration; in straight-line motion, all other components of this vector 
are zero. From now on, when we use the term “acceleration,” we’ll always mean instanta-
neous acceleration, not average acceleration.

EXAMPLE 2.3 Average and instantaneous accelerations

Suppose the x-velocity vx of the car in Fig. 2.11 at any time t is given by 
the equation

vx = 60 m>s + 10.50 m>s32t2

(a) Find the change in x-velocity of the car in the time interval t1 = 1.0 s 
to t2 = 3.0 s. (b) Find the average x-acceleration in this time interval. 
(c) Find the instantaneous x-acceleration at time t1 = 1.0 s by taking 
∆t to be first 0.1 s, then 0.01 s, then 0.001 s. (d) Derive an expression 
for the instantaneous x-acceleration as a function of time, and use it to 
find ax at t = 1.0 s and t = 3.0 s.

IDENTIFY and SET UP This example is analogous to Example 2.1 in 
Section 2.2. In that example we found the average x-velocity from the 
change in position over shorter and shorter time intervals, and we ob-
tained an expression for the instantaneous x-velocity by differentiating 
the position as a function of time. In this example we have an exact 
parallel. Using Eq. (2.4), we’ll find the average x-acceleration from 
the change in x-velocity over a time interval. Likewise, using Eq. (2.5), 
we’ll obtain an expression for the instantaneous x-acceleration by dif-
ferentiating the x-velocity as a function of time.

EXECUTE (a) Before we can apply Eq. (2.4), we must find the x- 
velocity at each time from the given equation. At t1 = 1.0 s and 
t2 = 3.0 s, the velocities are

 v1x = 60 m>s + 10.50 m>s3211.0 s22 = 60.5 m>s
 v2x = 60 m>s + 10.50 m>s3213.0 s22 = 64.5 m>s

The change in x-velocity ∆vx between t1 = 1.0 s and t2 = 3.0 s is

∆vx = v2x - v1x = 64.5 m>s - 60.5 m>s = 4.0 m>s
(b) The average x-acceleration during this time interval of duration 

t2 - t1 = 2.0  s is

aav@x =
v2x - v1x

t2 - t1
=

4.0 m>s
2.0 s

= 2.0 m>s2

During this time interval the x-velocity and average x-acceleration have 
the same algebraic sign (in this case, positive), and the car speeds up.

(c) When ∆t = 0.1 s, we have t2 = 1.1 s. Proceeding as before, 
we find

 v2x = 60 m>s + 10.50 m>s3211.1 s22 = 60.605 m>s
 ∆vx = 0.105 m>s

 aav@x =
∆vx

∆t
=

0.105 m>s
0.1 s

= 1.05 m>s2

You should follow this pattern to calculate aav@x for ∆t = 0.01 s 
and ∆t = 0.001 s; the results are aav@x = 1.005 m>s2 and aav@x =  
1.0005 m>s2, respectively. As ∆t gets smaller, the average x-acceleration 
gets closer to 1.0 m>s2, so the instantaneous x-acceleration at t = 1.0 s 
is 1.0 m>s2.

(d) By Eq. (2.5) the instantaneous x-acceleration is ax = dvx>dt. 
The derivative of a constant is zero and the derivative of t2 is 2t, so

ax =
dvx

dt
=

d
dt

 360 m>s + 10.50 m>s32t2 = 10.50 m>s3212t2 = 11.0 m>s32t

When t = 1.0 s,

ax = 11.0 m>s3211.0 s2 = 1.0 m>s2

When t = 3.0 s,

ax = 11.0 m>s3213.0 s2 = 3.0 m>s2

EVALUATE Neither of the values we found in part (d) is equal to the 
average x-acceleration found in part (b). That’s because the car’s instan-
taneous x-acceleration varies with time. The rate of change of accelera-
tion with time is sometimes called the “jerk.”

KEYCONCEPT To calculate an object’s instantaneous acceleration 
(its average acceleration over an infinitesimally short time interval), 
take the derivative of its velocity with respect to time.

Finding Acceleration on a vx-t Graph or an x-t Graph
In Section 2.2 we interpreted average and instantaneous x-velocity in terms of the slope 
of a graph of position versus time. In the same way, we can interpret average and instan-
taneous x-acceleration by using a graph of instantaneous velocity vx versus time t—that 
is, a vx@t graph (Fig. 2.12). Points p1 and p2 on the graph correspond to points P1 and P2 
in Fig. 2.11. The average x-acceleration aav@x = ∆vx >∆t during this interval is the slope of 
the line p1 p2 .

As point P2 in Fig. 2.11 approaches point P1 , point p2 in the vx@t graph of Fig. 2.12 ap-
proaches point p1 , and the slope of the line p1 p2 approaches the slope of the line tangent 
to the curve at point p1 . Thus, on a graph of x-velocity as a function of time, the instanta-
neous x-acceleration at any point is equal to the slope of the tangent to the curve at that 
point. Tangents drawn at different points along the curve in Fig. 2.12 have different slopes, 
so the instantaneous x-acceleration varies with time.
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   CAUTION    Signs of x-acceleration and x-velocity The algebraic sign of the x-acceleration does 
not tell you whether an object is speeding up or slowing down. You must compare the signs of the 
x-velocity and the x-acceleration. As we saw in Example 2.2, when vx and ax have the same sign, the 
object is speeding up. When vx and ax have opposite signs, the object is slowing down. Table 2.3 
summarizes these rules, and Fig. 2.13 illustrates some of them. ❙

The term “deceleration” is sometimes used for a decrease in speed. Because it may 
mean positive or negative ax , depending on the sign of vx , we avoid this term.

We can also learn about the acceleration of an object from a graph of its position versus 
time. Because ax = dvx >dt and vx = dx>dt, we can write

 ax =
dvx

dt
=

d
dt

 a dx
dt

b =
d2x

dt2  (2.6)

That is, ax is the second derivative of x with respect to t. The second derivative of any 
function is directly related to the concavity or curvature of the graph of that function 
(Fig. 2.14, next page). At a point where the x-t graph is concave up (curved upward), such 
as point A or E in Fig. 2.14a, the x-acceleration is positive and vx is increasing. At a point 
where the x-t graph is concave down (curved downward), such as point C in Fig. 2.14a, 
the x- acceleration is negative and vx is decreasing. At a point where the x-t graph has no 
curvature, such as the inflection points B and D in Fig. 2.14a, the x-acceleration is zero 
and the velocity is not changing.

Examining the curvature of an x-t graph is an easy way to identify the sign of accel-
eration. This technique is less helpful for determining numerical values of acceleration 
because the curvature of a graph is hard to measure accurately.

vx

v2x

v1x

t2t1
t

O

p1

p2

∆t =  t2 -  t1

∆vx =  v2x -  v1x

Slope of tangent to vx-t curve at a given point
=  instantaneous x-acceleration at that point.

For a displacement along the x-axis, an object’s average x-acceleration
equals the slope of a line connecting the corresponding points on a
graph of x-velocity (vx) versus time (t).
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Figure 2.12 A vx@t graph of the motion in 
Fig. 2.11.

Slope zero: ax =  0

• On a vx-t graph, the slope of the tangent at any point equals the particle’s acceleration at that point.
• The steeper the slope (positive or negative), the greater the particle’s acceleration in the positive or negative x-direction.

Particle is moving in -x-direction (vx 6  0), and
slowing down (vx and ax have opposite signs).

Particle is moving in -x-direction (vx 6  0), and
speeding up (vx and ax have the same sign).

Particle is moving in +x-direction (vx 7  0); its
speed is instantaneously not changing (ax =  0).

Particle is instantaneously at rest (vx =  0),
and about to move in +x-direction (ax 7  0).

Particle is instantaneously at rest (vx =  0),
and about to move in -x-direction (ax 6  0).

Slope positive:
ax 7  0

Slope negative:
ax 6  0

(a) vx-t graph (b) Particle’s motion
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Figure 2.13 (a) The vx@t graph of the motion of a different particle from that shown in Fig. 2.8. (b) A motion diagram showing 
the position, velocity, and acceleration of the particle at each of the times labeled on the vx@t graph.

If x-velocity is: ...  x-acceleration is:

Positive & increasing 
(getting more positive)

Positive: Particle  
is moving in  
+x-direction & 
speeding up

Positive & decreasing 
(getting less positive)

Negative: Particle  
is moving in  
+x-direction & 
slowing down

Negative & increasing 
(getting less negative)

Positive: Particle  
is moving in  
-x-direction & 
slowing down

Negative & decreasing 
(getting more negative)

Negative: Particle  
is moving in  
-x-direction &  
speeding up

TABLE 2.3 Rules for the Sign of 
x -Acceleration

Note: These rules apply to both the average  
x-acceleration aav@x and the instantaneous  
x-acceleration ax.
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TABLE 2.4 What x @t Graphs and vx @t Graphs Tell You

On an x@ t graph On a vx@ t graph

The value of the graph at a given 
time tells you . . . 

The coordinate x at that time The velocity vx at that time

The slope of the graph at a given 
time tells you . . . 

The velocity vx at that time The acceleration ax at that time

The concavity or curvature of the 
graph at a given time tells you . . . 

The acceleration ax at that time If the acceleration ax is changing 
at that time

Particle is at x 6  0, moving in +x-direction
(vx 7  0) and speeding up (vx and ax have the
same sign).

Particle is at x 7  0, moving in -x-direction 
(vx 6  0) and slowing down (vx and ax have 
opposite signs).

Particle is at x 7  0, instantaneously at rest 
(vx =  0) and about to move in -x-direction
(ax 6  0).

Particle is at x =  0, moving in +x-direction
(vx 7  0); speed is instantaneously not 
changing (ax =  0).

Particle is at x 7  0, moving in -x-direction 
(vx 6  0); speed is instantaneously not 
changing (ax =  0).

Slope positive: vx 7  0
Curvature upward: ax 7  0

Slope positive: vx 7  0
Curvature zero: ax =  0

Slope negative: vx 6  0
Curvature zero: ax =  0

Slope negative:
vx 6  0
Curvature upward:
ax 7  0

Slope zero: vx =  0
Curvature downward: ax 6  0

0

A

B

C

D

E
t

x

(a) x-t graph
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(b) Particle’s motion
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• On an x-t graph, the curvature at any point tells you the particle’s acceleration at that point.
• The greater the curvature (positive or negative), the greater the particle’s acceleration in the positive or negative x-direction.

Figure 2.14 (a) The same x-t graph as shown in Fig. 2.8a. (b) A motion diagram showing the position, velocity, and acceleration of 
the particle at each of the times labeled on the x-t graph.

If a particle moves in a
straight line with constant
x-acceleration ax ...

... the x-velocity changes
by equal amounts in equal
time intervals.

However, the position changes by different
amounts in equal time intervals because the
velocity is changing.

t =  2∆t
0

t =  3∆t
0

0
t =  ∆t

t =  4∆t
0

v
t =  0

0

a

v

v

v

v
a

a

a

a

x

x

x

x

x

Figure 2.15 A motion diagram for a 
particle moving in a straight line in the 
positive x-direction with constant positive 
x-acceleration ax .

TEST YOUR UNDERSTANDING OF SECTION 2.3 Look again at the x-t graph in Fig. 2.9 at 
the end of Section 2.2. (a) At which of the points P, Q, R, and S is the x-acceleration ax positive?  
(b) At which points is the x-acceleration negative? (c) At which points does the x-acceleration appear 
to be zero? (d) At each point state whether the velocity is increasing, decreasing, or not changing.

ANSWER

❙ (a) S, where the x-t graph is curved upward (concave up). (b) Q, where the x-t graph is curved 
downward (concave down). (c) P and R, where the x-t graph is not curved either up or down. 
(d) At P, ax=0 (velocity is not changing); at Q, ax60 (velocity is decreasing, i.e., changing 
from positive to zero to negative); at R, ax=0 (velocity is not changing); and at S, ax70 
(velocity is increasing, i.e., changing from negative to zero to positive).

2.4 MOTION WITH CONSTANT ACCELERATION
The simplest kind of accelerated motion is straight-line motion with constant acceleration. 
In this case the velocity changes at the same rate throughout the motion. As an example, 
a falling object has a constant acceleration if the effects of the air are not important. The 
same is true for an object sliding on an incline or along a rough horizontal surface, or for 
an airplane being catapulted from the deck of an aircraft carrier.

Figure 2.15 is a motion diagram showing the position, velocity, and acceleration of a 
particle moving with constant acceleration. Figures 2.16 and 2.17 depict this same mo-
tion in the form of graphs. Since the x-acceleration is constant, the ax@t graph (graph of 
x-acceleration versus time) in Fig. 2.16 is a horizontal line. The graph of x-velocity versus 
time, or vx@t graph, has a constant slope because the acceleration is constant, so this graph 
is a straight line (Fig. 2.17).

Table 2.4 summarizes what you can learn from the x-t graph and vx-t graph of the 
straight-line motion of a particle.
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When the x-acceleration ax is constant, the average x-acceleration aav@x for any time 
interval is the same as ax . This makes it easy to derive equations for the position x and 
the x-velocity vx as functions of time. To find an equation for vx , we first replace aav@x in 
Eq. (2.4) by ax :

 ax =
v2x - v1x

t2 - t1
 (2.7)

Now we let t1 = 0 and let t2 be any later time t. We use the symbol v0x for the initial  
x-velocity at time t = 0; the x-velocity at the later time t is vx . Then Eq. (2.7) becomes

ax =
vx - v0x

t - 0
  or

vx =  v0x +  axt (2.8)

x-velocity at time t of
a particle with
constant x-acceleration

Constant x-acceleration of the particle

x-velocity of the particle at time 0

Time

In Eq. (2.8) the term ax t is the product of the constant rate of change of x-velocity, ax , 
and the time interval t. Therefore it equals the total change in x-velocity from t = 0 to 
time t. The x-velocity vx at any time t then equals the initial x-velocity v0x (at t = 0) plus 
the change in x-velocity ax t (Fig. 2.17).

Equation (2.8) also says that the change in x-velocity vx - v0x of the particle between 
t = 0 and any later time t equals the area under the ax@t graph between those two times. 
You can verify this from Fig. 2.16: Under this graph is a rectangle of vertical side ax, 
horizontal side t, and area axt. From Eq. (2.8) the area axt is indeed equal to the change in 
velocity vx - v0x . In Section 2.6 we’ll show that even if the x-acceleration is not constant, 
the change in x-velocity during a time interval is still equal to the area under the ax@t 
curve, although then Eq. (2.8) does not apply.

Next we’ll derive an equation for the position x as a function of time when the x-
acceleration is constant. To do this, we use two different expressions for the average 
x-velocity vav@x during the interval from t = 0 to any later time t. The first expression 
comes from the definition of vav@x , Eq. (2.2), which is true whether or not the accelera-
tion is constant. The position at time t = 0, called the initial position, is x0 . The posi-
tion at time t is simply x. Thus for the time interval ∆t = t - 0 the displacement is 
∆x = x - x0 , and Eq. (2.2) gives

 vav@x =
x - x0

t
 (2.9)

To find a second expression for vav@x, note that the x-velocity changes at a constant 
rate if the x-acceleration is constant. In this case the average x-velocity for the time 
interval from 0 to t is simply the average of the x-velocities at the beginning and end of 
the interval:

 vav@x = 1
2 (v0x + vx) (constant x@acceleration only) (2.10)

[Equation (2.10) is not true if the x-acceleration varies during the time interval.] We also 
know that with constant x-acceleration, the x-velocity vx at any time t is given by Eq. (2.8). 
Substituting that expression for vx into Eq. (2.10), we find

vav@x = 1
2 1v0x + v0x + axt2 

= v0x + 1
2 axt       

(constant x-acceleration only) (2.11)

Finally, we set Eqs. (2.9) and (2.11) equal to each other and simplify:

v0x + 1
2 ax t =

x - x0

t
  or

Constant x-acceleration: ax-t graph
is a horizontal line (slope =  0).

Area under ax-t graph =  vx -  v0x
=  change in x-velocity from time 0 to time t.

O

ax

ax

t
t

Figure 2.16 An acceleration-time 1ax@t2 
graph of straight-line motion with constant 
positive x-acceleration ax .

Constant
x-acceleration:
vx-t graph is a
straight line.

During time
interval t, the
x-velocity changes
by vx -  v0x =  axt.

Slope =  x-acceleration

Total area under vx-t graph =  x -  x0
=  change in x-coordinate from time 0 to time t.

vx

vx

v0x

O
t

t

vx

ax 
t

v0x

Figure 2.17 A velocity-time 1vx@t2 graph 
of straight-line motion with constant 
positive x-acceleration ax . The initial  
x-velocity v0x is also positive in this case.
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During time interval t,
the x-velocity changes
by vx -  v0x =  axt.

Constant x-acceleration:
x-t graph is a parabola.

(a) A race car moves in the x-direction
with constant acceleration.

(b) The x-t graph

v0x

vx =  v0x +  axt

x

xx

x0x0

O

x

O
t

t

Slope =  vx

Slope =  v0x

Figure 2.18 (a) Straight-line motion with 
constant acceleration. (b) A position-time 
1x@t2 graph for this motion (the same 
motion as is shown in Figs. 2.15, 2.16, 
and 2.17). For this motion the initial 
position x0 , the initial velocity v0x , and the 
acceleration ax are all positive.

BIO APPLICATION Testing Humans 
at High Accelerations In experiments 
carried out by the U.S. Air Force in the 
1940s and 1950s, humans riding a rocket 
sled could withstand accelerations as great 
as 440 m>s2. The first three photos in this 
sequence show Air Force physician John 
Stapp speeding up from rest to 188 m>s 
(678 km>h) in just 5 s. Photos 4–6 show 
the even greater magnitude of acceleration 
as the rocket sled braked to a halt.

(2.12)
Position at time t of a
particle with constant
x-acceleration

Constant x-acceleration of the particle

Position of the particle at time 0

x-velocity of the particle at time 0

Time

x =  x0 +  v0xt +   axt21
2

Equation (2.12) tells us that the particle’s position at time t is the sum of three terms: 
its initial position at t = 0, x0, plus the displacement v0x t it would have if its x-velocity 
remained equal to its initial value, plus an additional displacement 1

2 ax t2 caused by the 
change in x-velocity.

A graph of Eq. (2.12)—that is, an x-t graph for motion with constant x-acceleration 
(Fig. 2.18a)—is always a parabola. Figure 2.18b shows such a graph. The curve inter-
cepts the vertical axis (x-axis) at x0 , the position at t = 0. The slope of the tangent at 
t = 0 equals v0x , the initial x-velocity, and the slope of the tangent at any time t equals 
the x-velocity vx at that time. The slope and x-velocity are continuously increasing, so the 
x- acceleration ax is positive and the graph in Fig. 2.18b is concave up (it curves upward). If 
ax is negative, the x-t graph is a parabola that is concave down (has a downward curvature).

If there is zero x-acceleration, the x-t graph is a straight line; if there is a constant  
x- acceleration, the additional 1

2 ax t2 term in Eq. (2.12) for x as a function of t curves the 
graph into a parabola (Fig. 2.19a). Similarly, if there is zero x-acceleration, the vx@t 
graph is a horizontal line (the x-velocity is constant). Adding a constant x-acceleration in 
Eq. (2.8) gives a slope to the graph (Fig. 2.19b).

Here’s another way to derive Eq. (2.12). Just as the change in x-velocity of the particle 
equals the area under the ax@t graph, the displacement (change in position) equals the area 
under the vx@t graph. So the displacement x - x0 of the particle between t = 0 and any 
later time t equals the area under the vx@t graph between those times. In Fig. 2.17 we di-
vide the area under the graph into a dark-colored rectangle (vertical side v0x, horizontal 
side t, and area v0xt) and a light-colored right triangle (vertical side axt, horizontal side t, 
and area 121axt21t2 = 1

2axt
22. The total area under the vx@t graph is x - x0 = v0x t + 1

2 ax t2,  
in accord with Eq. (2.12).

It’s often useful to have a relationship for position, x-velocity, and (constant)  
x- acceleration that does not involve time. To obtain this, we first solve Eq. (2.8) for t and 
then substitute the resulting expression into Eq. (2.12):

 t =
vx - v0x

ax

 x = x0 + v0x avx - v0x

ax
b + 1

2 ax avx - v0x

ax
b

2

We transfer the term x0 to the left side, multiply through by 2ax, and simplify:

2ax 1x - x02 = 2v0x vx - 2v0x
 2 + vx

 2 - 2v0x vx + v0x
 2



 2.4 Motion with Constant Acceleration    75

Graph for constant x-acceleration:
x =  x0 +  v0xt +   axt2

Graph for zero
x-acceleration:
x =  x0 +  v0xt 

The effect of
x-acceleration:
 axt2

Graph for zero x-acceleration:
vx =  v0x

Graph for constant x-acceleration:
vx =  v0x +  axt

The added velocity
due to x-acceleration:
axt

(a) An x-t graph for a particle moving with
positive constant x-acceleration

(b) The vx-t graph for the same particle

x

x0

O
t

O
t

v0x

vx1
2

1
2

Figure 2.19 (a) How a constant  
x-acceleration affects a particle’s  
(a) x-t graph and (b) vx@t graph.

Finally,

vx
2 =  v0x

2 +  2ax1x -  x02 (2.13)

x-velocity at time t of
a particle with
constant x-acceleration

x-velocity of the particle at time 0

Constant x-acceleration
of the particle

Position of the
particle at time t

Position of the
particle at time 0

We can get one more useful relationship by equating the two expressions for vav@x , 
Eqs. (2.9) and (2.10), and multiplying through by t:

(2.14)

Position at time t of
a particle with
constant x-acceleration

Position of the particle at time 0

x-velocity of the particle at time 0 x-velocity of the particle at time t

Time

1v0x +  vx2tx -  x0 =  12

Note that Eq. (2.14) does not contain the x-acceleration ax . This equation can be handy 
when ax is constant but its value is unknown.

Equations (2.8), (2.12), (2.13), and (2.14) are the equations of motion with constant 
acceleration (Table 2.5). By using these equations, we can solve any problem involving 
straight-line motion of a particle with constant acceleration.

For the particular case of motion with constant x-acceleration depicted in Fig. 2.15 
and graphed in Figs. 2.16, 2.17, and 2.18, the values of x0 , v0x , and ax are all positive. We 
recommend that you redraw these figures for cases in which one, two, or all three of these 
quantities are negative.

IDENTIFY the relevant concepts: In most straight-line motion 
problems, you can use the constant-acceleration Equations (2.8), 
(2.12), (2.13), and (2.14). If you encounter a situation in which the 
acceleration isn’t constant, you’ll need a different approach (see 
Section 2.6).

SET UP the problem using the following steps:

1. Read the problem carefully. Make a motion diagram showing the 
location of the particle at the times of interest. Decide where to 
place the origin of coordinates and which axis direction is posi-
tive. It’s often helpful to place the particle at the origin at time 
t = 0; then x0 = 0. Your choice of the positive axis direction au-
tomatically determines the positive directions for x-velocity and 
x-acceleration. If x is positive to the right of the origin, then vx 
and ax are also positive toward the right.

2. Identify the physical quantities (times, positions, velocities, and 
accelerations) that appear in Eqs. (2.8), (2.12), (2.13), and (2.14) 
and assign them appropriate symbols: t, x, x0, vx, v0x, and ax, or 
symbols related to those. Translate the prose into physics: “When 
does the particle arrive at its highest point” means “What is the 
value of t when x has its maximum value?” In Example 2.4, 
“Where is he when his speed is 25 m>s?” means “What is the 
value of x when vx = 25 m>s?” Be alert for implicit information. 
For example, “A car sits at a stop light” usually means v0x = 0.

3. List the quantities such as x, x0, vx, v0x, ax, and t. Some of them 
will be known and some will be unknown. Write down the val-
ues of the known quantities, and decide which of the unknowns 
are the target variables. Make note of the absence of any of the 
quantities that appear in the four constant-acceleration equations.

Continued

PROBLEM-SOLVING STRATEGY 2.1 Motion with Constant Acceleration

TABLE 2.5 Equations of Motion with 
Constant Acceleration

Equation
Includes  

Quantities

vx = v0x + ax  t (2.8) t vx ax

x = x0 + v0x  t + 1
2 ax  t2 (2.12) t x ax

vx
 2 = v0x

 2  + 2ax  1x - x02 (2.13) x vx ax

x - x0 = 1
2 1v0x + vx2t (2.14) t x vx
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EXAMPLE 2.5 Two objects with different accelerations

A motorist traveling at a constant 15 m>s (54 km>h) passes a school 
crossing where the speed limit is 10 m>s (36 km>h). Just as the motorist 
passes the school-crossing sign, a police officer on a motorcycle stopped 
there starts in pursuit with constant acceleration 3.0 m>s2 (Fig. 2.21a). 
(a) How much time elapses before the officer passes the motorist? At 
that time, (b) what is the officer’s speed and (c) how far has each vehicle 
traveled?

IDENTIFY and SET UP Both the officer and the motorist move with 
constant acceleration (equal to zero for the motorist), so we can use the 
constant-acceleration formulas. We take the origin at the sign, so x0 = 0 

for both, and we take the positive direction to the right. Let xP and xM 
represent the positions of the police officer and the motorist at any time. 
Their initial velocities are vP0x = 0 and vM0x = 15 m>s, and their ac-
celerations are aPx = 3.0 m>s2 and aMx = 0. Our target variable in part 
(a) is the time when the officer and motorist are at the same position x; 
Table 2.5 tells us that Eq. (2.12) is useful for this part. In part (b) we’ll 
use Eq. (2.8) to find the officer’s speed v (the magnitude of her velocity) 
at the time found in part (a). In part (c) we’ll use Eq. (2.12) again to find 
the position of either vehicle at this same time.

WITH  ARIATION PROBLEMS

4. Use Table 2.5 to identify the applicable equations. (These are 
often the equations that don’t include any of the absent quantities 
that you identified in step 3.) Usually you’ll find a single equa-
tion that contains only one of the target variables. Sometimes 
you must find two equations, each containing the same two 
unknowns.

5. Sketch graphs corresponding to the applicable equations. The 
vx@t graph of Eq. (2.8) is a straight line with slope ax. The x@t 
graph of Eq. (2.12) is a parabola that’s concave up if ax is posi-
tive and concave down if ax is negative.

6. On the basis of your experience with such problems, and taking 
account of what your sketched graphs tell you, make any qualita-
tive and quantitative predictions you can about the solution.

EXECUTE the solution: If a single equation applies, solve it for the tar-
get variable, using symbols only; then substitute the known values and 
calculate the value of the target variable. If you have two equations 
in two unknowns, solve them simultaneously for the target variables.

EVALUATE your answer: Take a hard look at your results to see 
whether they make sense. Are they within the general range of values 
that you expected?

EXAMPLE 2.4 Constant-acceleration calculations

A motorcyclist heading east through a small town accelerates at a 
constant 4.0 m>s2 after he leaves the city limits (Fig. 2.20). At time 
t = 0 he is 5.0 m east of the city-limits signpost while he moves east at 
15 m>s. (a) Find his position and velocity at t = 2.0 s. (b) Where is he 
when his speed is 25 m>s?

IDENTIFY and SET UP The x-acceleration is constant, so we can use 
the constant-acceleration equations. We take the signpost as the origin 
of coordinates 1x = 02 and choose the positive x-axis to point east (see 
Fig. 2.20, which is also a motion diagram). The known variables are the 
initial position and velocity, x0 = 5.0 m and v0x = 15 m>s, and the ac-
celeration, ax = 4.0 m>s2. The unknown target variables in part (a) are 
the values of the position x and the x-velocity vx at t = 2.0 s; the target 
variable in part (b) is the value of x when vx = 25 m>s.

Eq. (2.12) and the x-velocity vx at this time by using Eq. (2.8):

 x = x0 + v0x t + 1
2 ax t2

 = 5.0 m + 115 m>s212.0 s2 + 1
2  14.0 m>s2212.0 s22 = 43 m

 vx = v0x + ax t

 = 15 m>s + 14.0 m>s2212.0 s2 = 23 m>s
(b) We want to find the value of x when vx = 25 m>s, but we don’t 

know the time when the motorcycle has this velocity. Table 2.5 tells us 
that we should use Eq. (2.13), which involves x, vx, and ax but does not 
involve t:

v 2
x = v 2

0x + 2ax1x - x02
Solving for x and substituting the known values, we find

 x = x0 +
v 2

x - v 2
0x

2ax

 = 5.0 m +
125 m>s22 - 115 m>s22

214.0 m>s22 = 55 m

EVALUATE You can check the result in part (b) by first using Eq. (2.8), 
vx = v0x + axt, to find the time at which vx = 25 m>s, which turns 
out to be t = 25 s. You can then use Eq. (2.12), x = x0+v0xt + 1

2 axt
2,  

to solve for x. You should find x = 55 m, the same answer as above. 
That’s the long way to solve the problem, though. The method we used 
in part (b) is much more efficient.

KEYCONCEPT By using one or more of the four equations in 
Table 2.5, you can solve any problem involving straight-line motion with 
constant acceleration.

x (east)
x =  ?
t =  2.0 s

O

v0x =  15 m>s vx =  ?

ax =  4.0 m>s2

x0 =  5.0 m
  t =  0

OSAGE

Figure 2.20 A motorcyclist traveling with constant acceleration.

EXECUTE (a) Since we know the values of x0, v0x, and ax,  Table 2.5  
tells us that we can find the position x at t = 2.0 s by using
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Figure 2.21b shows an x@t graph for both vehicles. The straight line 
represents the motorist’s motion, xM = xM0 + vM0x t = vM0x t. The 
graph for the officer’s motion is the right half of a parabola with up-
ward curvature:

xP = xP0 + vP0x t + 1
2 aPx  t2 = 1

2 aPx  t2

A good sketch shows that the officer and motorist are at the same po-
sition 1xP = xM2 at about t = 10 s, at which time both have traveled 
about 150 m from the sign.

EXECUTE (a) To find the value of the time t at which the motorist and 
police officer are at the same position, we set xP = xM by equating the 
expressions above and solving that equation for t:

vM0x t = 1
2 aPx  t2

t = 0  or  t =
2vM0x

aPx
=

2 115 m>s2
3.0 m>s2 = 10 s

Both vehicles have the same x-coordinate at two times, as Fig. 2.21b in-
dicates. At t = 0 the motorist passes the officer; at t = 10 s the officer 
passes the motorist.

(b) We want the magnitude of the officer’s x-velocity vPx at the time 
t found in part (a). Substituting the values of vP0x and aPx into Eq. (2.8) 
along with t = 10 s from part (a), we find

vPx = vP0x + aPx  t = 0 + 13.0 m>s22110 s2 = 30 m>s
The officer’s speed is the absolute value of this, which is also 30 m>s.

(c) In 10 s the motorist travels a distance

xM = vM0x t = 115 m>s2110 s2 = 150 m

and the officer travels

xP = 1
2 aPx t2 = 1

213.0 m>s22110 s22 = 150 m

This verifies that they have gone equal distances after 10 s.

EVALUATE Our results in parts (a) and (c) agree with our estimates 
from our sketch. Note that when the officer passes the motorist, they 
do not have the same velocity: The motorist is moving at 15 m>s and 
the officer is moving at 30 m>s. You can also see this from Fig. 2.21b. 
Where the two x@t curves cross, their slopes (equal to the values of vx for 
the two vehicles) are different.

Is it just coincidence that when the two vehicles are at the same 
position, the officer is going twice the speed of the motorist? Equation 
(2.14), x - x0 = 1

2 1v0x + vx2t, gives the answer. The motorist has con-
stant velocity, so vM0x = vMx 

, and the motorist’s displacement x - x0 
in time t is vM0x t. Because vP0x = 0, in the same time t the officer’s 
displacement is 1

2 vPx  t. The two vehicles have the same displacement 
in the same amount of time, so vM0xt = 1

2 vPxt and vPx = 2vM0x—that 
is, the officer has exactly twice the motorist’s velocity. This is true no 
matter what the value of the officer’s acceleration.

KEYCONCEPT In straight-line motion, one object meets or passes 
another at the time when the two objects have the same coordinate x 
(and so their x-t graphs cross). The objects can have different velocities 
at that time.

Police officer: initially at rest,
constant x-acceleration

The police officer and motorist
meet at the time t where their
x-t graphs cross.

Motorist: constant x-velocity

xPO

aPx =  3.0 m>s2 vM0x =  15 m>s
CROSSING

xM

40

80

120

160

x (m)

x
O 1210862

t (s)

Motorist

Officer

4

(a)

(b)

SCHOOL

Figure 2.21 (a) Motion with constant acceleration overtaking motion with constant velocity.  
(b) A graph of x versus t for each vehicle.

TEST YOUR UNDERSTANDING OF SECTION 2.4 Four possible vx@t graphs are shown for the 
two vehicles in Example 2.5. Which graph is correct?

(a) (b) (c) (d)

vx

O 10

t (s)

Motorist

Officer

vx

O 10

t (s)

Motorist

Officer

vx

O 10

t (s)

Motorist

Officer

vx

O 10

t (s)

Motorist

Officer

ANSWER ❙ (b) The officer’s x-acceleration is constant, so her vx@t graph is a straight line. The motorcycle is 
moving faster than the car when the two vehicles meet at t=10 s.
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2.5 FREELY FALLING OBJECTS
The most familiar example of motion with (nearly) constant acceleration is an object fall-
ing under the influence of the earth’s gravitational attraction. Such motion has held the 
attention of philosophers and scientists since ancient times. In the fourth century b.c., 
Aristotle thought (erroneously) that heavy objects fall faster than light objects, in pro-
portion to their weight. Nineteen centuries later, Galileo (see Section 1.1) argued that an 
object should fall with a downward acceleration that is constant and independent of its 
weight.

Experiment shows that if the effects of the air can be ignored, Galileo is right; all ob-
jects at a particular location fall with the same downward acceleration, regardless of their 
size or weight. If in addition the distance of the fall is small compared with the radius 
of the earth, and if we ignore small effects due to the earth’s rotation, the acceleration is 
constant. The idealized motion that results under all of these assumptions is called free 
fall, although it includes rising as well as falling motion. (In Chapter 3 we’ll extend the 
discussion of free fall to include the motion of projectiles, which move both vertically and 
horizontally.)

Figure 2.22 is a photograph of a falling ball made with a stroboscopic light source that 
produces a series of short, intense flashes at equal time intervals. As each flash occurs, 
an image of the ball at that instant is recorded on the photograph. The increasing spacing 
between successive images in Fig. 2.22 indicates that the ball is accelerating downward. 
Careful measurement shows that the velocity change is the same in each time interval, so 
the acceleration of the freely falling ball is constant.

The constant acceleration of a freely falling object is called the acceleration due to 
gravity, and we denote its magnitude with the letter g. We’ll frequently use the approxi-
mate value of g at or near the earth’s surface:

g = 9.80 m>s2 (approximate value near the  
earth’s surface)

The exact value varies with location, so we’ll often give the value of g at the earth’s sur-
face to only two significant figures as 9.8 m>s2. On the moon’s surface, the acceleration 
due to gravity is caused by the attractive force of the moon rather than the earth, and 
g = 1.6 m>s2. Near the surface of the sun, g = 270 m>s2.

   CAUTION    g is always a positive number Because g is the magnitude of a vector quantity, it is 
 always a positive number. If you take the positive y-direction to be upward, as we do in most situa-
tions involving free fall, the y-component of the acceleration is negative and equal to -g. Be careful 
with the sign of g, or you’ll have trouble with free-fall problems. ❙

In the following examples we use the constant-acceleration equations developed in 
Section 2.4. Review Problem-Solving Strategy 2.1 in that section before you study the 
next examples.

Motion

• The average velocity in each time interval is
proportional to the distance between images.
• This distance continuously increases, so the
ball’s velocity is continuously changing; the
ball is accelerating downward.

The ball is
released
here and
falls freely.

The images
of the ball
are recorded
at equal time
intervals.

Figure 2.22 Multiflash photo of a freely 
falling ball.

   CAUTION    Don’t confuse speed, veloc-
ity, and acceleration in free fall Speed 
can never be negative; velocity can be 
positive or negative, depending on the di-
rection of motion. In free fall, speed and 
velocity change continuously but accelera-
tion (the rate of change of velocity) is con-
stant and downward. ❙

EXAMPLE 2.6 A freely falling coin

A one-euro coin is dropped from the Leaning Tower of Pisa and falls 
freely from rest. What are its position and velocity after 1.0 s, 2.0 s, and 
3.0 s? Ignore air resistance.

IDENTIFY and SET UP “Falls freely” means “falls with constant accel-
eration due to gravity,” so we can use the constant-acceleration equa-
tions. The right side of Fig. 2.23 shows our motion diagram for the 
coin. The motion is vertical, so we use a vertical coordinate axis and 
call the coordinate y instead of x. We take the origin at the starting 
point and the upward direction as positive. Both the initial coordinate 
y0 and initial y-velocity v0y are zero. The y-acceleration is downward 
(in the negative y-direction), so ay = -g = -9.8 m>s2. (Remember 

that g is a positive quantity.) Our target variables are the values of 
y and vy at the three given times. To find these, we use Eqs. (2.12) 
and (2.8) with x replaced by y. Our choice of the upward direction as 
positive means that all positions and velocities we calculate will be 
negative.

EXECUTE At a time t after the coin is dropped, its position and  
y-velocity are

 y = y0 + v0y t + 1
2 ay t2 = 0 + 0 + 1

2 1-g2t2 = 1-4.9 m>s22t2

 vy = v0y + ay t = 0 + 1-g2t = 1-9.8 m>s22t
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When t = 1.0 s, y = 1-4.9 m>s2211.0 s22 = -4.9 m and vy =
1-9.8 m>s2211.0 s2 = -9.8 m>s; after 1.0 s, the coin is 4.9 m below 
the origin (y is negative) and has a downward velocity (vy is negative) 
with magnitude 9.8 m>s.

We can find the positions and y-velocities at 2.0 s and 3.0 s in the 
same way. The results are y = -20 m and vy = -20 m>s at t = 2.0 s, 
and y = -44 m and vy = -29 m>s at t = 3.0 s .

EVALUATE All our answers are negative, as we expected. If we had 
chosen the positive y-axis to point downward, the acceleration would 
have been ay = +g and all our answers would have been positive.

KEYCONCEPT By using one or more of the four equations in 
Table  2.5 with x replaced by y, the positive y-direction chosen to be 
upward, and acceleration ay = -g, you can solve any free-fall problem.

Figure 2.23 A coin freely falling from rest.

EXAMPLE 2.7 Up-and-down motion in free fall

You throw a ball vertically upward from the roof of a tall building. 
The ball leaves your hand at a point even with the roof railing with 
an upward speed of 15.0 m>s; the ball is then in free fall. (We ignore 
air resistance.) On its way back down, it just misses the railing. Find 
(a) the ball’s position and velocity 1.00 s and 4.00 s after leaving your 
hand; (b) the ball’s velocity when it is 5.00 m above the railing; (c) the 
maximum height reached; (d) the ball’s acceleration when it is at its 
maximum height.

IDENTIFY and SET UP The words “in free fall” mean that the accelera-
tion is due to gravity, which is constant. Our target variables are posi-
tion [in parts (a) and (c)], velocity [in parts (a) and (b)], and acceleration 
[in part (d)]. We take the origin at the point where the ball leaves your 
hand, and take the positive direction to be upward (Fig. 2.24). The ini-
tial position y0 is zero, the initial y-velocity v0y is +15.0 m>s, and the y-
acceleration is ay = -g = -9.80 m>s2. In part (a), as in Example 2.6, 
we’ll use Eqs. (2.12) and (2.8) to find the position and velocity as func-
tions of time. In part (b) we must find the velocity at a given position 
(no time is given), so we’ll use Eq. (2.13).

Figure 2.25 (next page) shows the y@t and vy@t graphs for the ball. 
The y@t graph is a concave-down parabola that rises and then falls, and 
the vy@t graph is a downward-sloping straight line. Note that the ball’s 
velocity is zero when it is at its highest point.

EXECUTE (a) The position and y-velocity at time t are given by 
Eqs. (2.12) and (2.8) with x’s replaced by y’s:

 y = y0 + v0y t + 1
2 ay t2 = y0 + v0y t + 1

2 1-g2t2

 = 102 + 115.0 m>s2t + 1
2 1-9.80 m>s22t2

 vy = v0y + ay t = v0y + 1-g2t

 = 15.0 m>s + 1-9.80 m>s22t

When t = 1.00 s, these equations give y = +10.1 m and vy =  
+5.2 m>s. That is, the ball is 10.1 m above the origin (y is positive) and 

moving upward (vy is positive) with a speed of 5.2 m>s. This is less than 
the initial speed because the ball slows as it ascends. When t = 4.00 s, 
those equations give y = -18.4 m and vy = -24.2 m>s. The ball has 
passed its highest point and is 18.4 m below the origin (y is negative). It 
is moving downward (vy is negative) with a speed of 24.2 m>s.

WITH  ARIATION PROBLEMS

The ball actually moves straight up and
then straight down; we show 
a U-shaped path for clarity.

t =  0, v0y =  15.0 m>s

t =  1.00 s, vy =  ?
y =  ?
y =  ?

y =  ?

y =  5.00 m

y =  0

y

t =  4.00 s
vy =  ?

vy =  ?
t =  ?

t =  ?
vy =  0

ay =  -g

t =  ?, vy =  ?

=  -9.80 m>s2

Figure 2.24 Position and velocity of a ball thrown vertically 
upward.

Continued
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(b) The y-velocity at any position y is given by Eq. (2.13) with x’s 
replaced by y’s:

 v 2
y = v 2

0y + 2ay 1y - y02 = v 2
0y + 21-g21y - 02

 = 115.0 m>s22 + 21-9.80 m>s22y

When the ball is 5.00 m above the origin we have y = +5.00 m, so

 v 2
y = 115.0 m>s22 + 21-9.80 m>s2215.00 m2 = 127 m2>s2

 vy = {11.3 m>s

We get two values of vy because the ball passes through the point 
y = +5.00 m twice, once on the way up (so vy is positive) and once on 
the way down (so vy is negative) (see Fig. 2.24). Note that the speed of 
the ball is 11.3 m>s each time it passes through this point.

(c) At the instant at which the ball reaches its maximum height y1, 
its y-velocity is momentarily zero: vy = 0. We use Eq. (2.13) to find y1. 
With vy = 0, y0 = 0, and ay = -g , we get

 0 = v 2
0y + 2 1-g21y1 - 02

 y1 =
v 2

0y

2g
=

115.0 m>s22

219.80 m>s22 = +11.5 m

(d)    CAUTION    A free-fall misconception It’s a common miscon-
ception that at the highest point of free-fall motion, where the veloc-
ity is zero, the acceleration is also zero. If this were so, once the ball 
reached the highest point it would hang there suspended in midair! 
Remember that acceleration is the rate of change of velocity, and the 
ball’s velocity is continuously changing. At every point, including the 
highest point, and at any velocity, including zero, the acceleration in 
free fall is always ay = -g = -9.80 m>s2. ❙

EVALUATE A useful way to check any free-fall problem is to draw the 
y-t and vy@t graphs, as we did in Fig. 2.25. Note that these are graphs 
of Eqs. (2.12) and (2.8), respectively. Given the initial position, initial 
velocity, and acceleration, you can easily create these graphs by using a 
graphing calculator app or an online math program.

KEYCONCEPT If a freely falling object passes a given point at two 
different times, once moving upward and once moving downward, its 
speed will be the same at both times.

Before t =  1.53 s
the y-velocity is
positive.

Before t =  1.53 s the
ball moves upward.

After t =  1.53 s
the ball moves
downward.

(a) y-t graph (curvature is
downward because ay =  -g 
is negative)

5

10

15

-20

-15

-10

-5

-25

0

(b) vy-t graph (straight line with
negative slope because ay =  -g 
is constant and negative)

431
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t (s)
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0
After t =  1.53 s
the y-velocity is
negative.

Figure 2.25 (a) Position and (b) velocity as functions of time for a 
ball thrown upward with an initial speed of 15.0 m>s.

EXAMPLE 2.8 Two solutions or one?

At what time after being released has the ball in Example 2.7 fallen 
5.00 m below the roof railing?

IDENTIFY and SET UP We treat this as in Example 2.7, so y0, v0y, and 
ay = -g have the same values as there. Now, however, the target vari-
able is the time at which the ball is at y = -5.00 m. The best equation 
to use is Eq. (2.12) with ay replaced by -g, which gives the position y 
as a function of time t:

 y = y0 + v0y t + 1
2 1-g2t2

This is a quadratic equation for t, which we want to solve for the value 
of t when y = -5.00 m.

EXECUTE We rearrange the equation so that it has the standard form of 
a quadratic equation for an unknown x, Ax2 + Bx + C = 0 :

11
2 g2 t2 + 1-v0y2t + 1y - y02 = At2 + Bt + C = 0

By comparison, we identify A = 1
2 g, B = -v0y, and C = y - y0. The 

quadratic formula (see Appendix D) tells us that this equation has two 
solutions:

 t =
-B { 2B2 - 4AC

2A

 =
-1-v0y2 { 21-v0y22 - 4 11

2 g21y - y02
211

2 g2

 =
v0y { 2v 2

0y - 2g 1y - y02
g

Substituting the values y0 = 0, v0y = +15.0 m>s, g = 9.80 m>s2, and 
y = -5.00 m, we find

t =
115.0 m>s2 { 2115.0 m>s22 - 219.80 m> s221-5.00 m - 02

9.80 m>s2

You can confirm that the numerical answers are t = +3.36 s  and 
t = -0.30 s. The answer t = -0.30 s doesn’t make physical sense, 
since it refers to a time before the ball left your hand at t = 0. So the 
correct answer is t = +3.36 s.

EVALUATE Why did we get a second, fictitious solution? The explana-
tion is that constant-acceleration equations like Eq. (2.12) are based on 
the assumption that the acceleration is constant for all values of time, 
whether positive, negative, or zero. Hence the solution t = -0.30 s 
refers to an imaginary moment when a freely falling ball was 5.00 m 
below the roof railing and rising to meet your hand. Since the ball didn’t 
leave your hand and go into free fall until t = 0, this result is pure 
fiction.

Repeat these calculations to find the times when the ball is 5.00 m  
above the origin 1y = +5.00 m2. The two answers are t = +0.38 s 
and t = +2.68 s. Both are positive values of t, and both refer to the real 
motion of the ball after leaving your hand. At the earlier time the ball 
passes through y = +5.00 m moving upward; at the later time it passes 
through this point moving downward. [Compare this with part (b) of 
Example 2.7, and again refer to Fig. 2.25a.]

You should also solve for the times when y = +15.0 m. In this case, 
both solutions involve the square root of a negative number, so there 
are no real solutions. Again Fig. 2.25a shows why; we found in part 

WITH  ARIATION PROBLEMS



 2.6 Velocity and Position by Integration    81

(c)  of Example 2.7 that the ball’s maximum height is y = +11.5 m, 
so it never reaches y = +15.0 m. While a quadratic equation such as 
Eq. (2.12) always has two solutions, in some situations one or both of 
the solutions aren’t physically reasonable.

In this example we encountered a quadratic equation for the case 
of free fall. But Eq. (2.12) is a quadratic equation that applies to all 
cases of straight-line motion with constant acceleration, so you’ll 

need to  exercise the same care in solving many problems of this 
kind.

KEYCONCEPT When the acceleration of an object is constant, its 
position as a function of time is given by a quadratic equation. Inspect 
the solutions to this equation to determine what they tell you about the 
problem you’re solving.

TEST YOUR UNDERSTANDING OF SECTION 2.5 If you toss a ball upward with a certain 
initial speed, it falls freely and reaches a maximum height h a time t after it leaves your hand. (a) If 
you throw the ball upward with double the initial speed, what new maximum height does the ball 
reach? (i) h12 ; (ii) 2h; (iii) 4h; (iv) 8h; (v) 16h. (b) If you throw the ball upward with double the 
initial speed, how long does it take to reach its new maximum height? (i) t>2; (ii) t>12 ; (iii) t;  
(iv) t12 ; (v) 2t.

ANSWER

❙ (a) (iii) Use Eq. (2.13) with x replaced by y and ay=-g; vy
 2=v0y

 2 -2g1y-y02. The starting 
height is y0=0 and the y-velocity at the maximum height y=h is vy=0, so 0 = v0y

 2 -2gh 
and h=v0y

 2 >2g. If the initial y-velocity is increased by a factor of 2, the maximum height 
increases by a factor of 22=4 and the ball goes to height 4h. (b) (v) Use Eq. (2.8) with x re-
placed by y and ay=-g; vy=v0y-gt. The y-velocity at the maximum height is vy=0, so 
0=v0y-gt and t=v0y>g. If the initial y-velocity is increased by a factor of 2, the time to reach 
the maximum height increases by a factor of 2 and becomes 2t.

2.6 VELOCITY AND POSITION BY INTEGRATION
This section is intended for students who have already learned a little integral calculus. In 
Section 2.4 we analyzed the special case of straight-line motion with constant accelera-
tion. When ax is not constant, as is frequently the case, the equations that we derived in 
that section are no longer valid (Fig. 2.26). But even when ax varies with time, we can still 
use the relationship vx = dx>dt to find the x-velocity vx as a function of time if the position 
x is a known function of time. And we can still use ax = dvx >dt to find the x-acceleration 
ax as a function of time if the x-velocity vx is a known function of time.

In many situations, however, position and velocity are not known functions of time, 
while acceleration is (Fig. 2.27). How can we find the position and velocity in straight-
line motion from the acceleration function ax 1t2?

Figure 2.26 When you push a car’s accelerator pedal 
to the floorboard, the resulting acceleration is not 
constant: The greater the car’s speed, the more slowly it 
gains additional speed. A typical car takes twice as long 
to accelerate from 50 km>h to 100 km>h as it does to 
accelerate from 0 to 50 km>h.

Figure 2.27 The inertial navigation system (INS) on 
board a long-range airliner keeps track of the airliner’s 
acceleration. Given the airliner’s initial position and 
velocity before takeoff, the INS uses the acceleration data 
to calculate the airliner’s position and velocity throughout 
the flight.
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Figure 2.28 is a graph of x-acceleration versus time for a particle whose acceleration 
is not constant. We can divide the time interval between times t1 and t2 into many smaller 
subintervals, calling a typical one ∆t. Let the average x-acceleration during ∆t be aav@x . 
From Eq. (2.4) the change in x-velocity ∆vx during ∆t is

∆vx = aav@x ∆t

Graphically, ∆vx equals the area of the shaded strip with height aav@x and width ∆t—that 
is, the area under the curve between the left and right sides of ∆t. The total change in x-
velocity from t1 to t2 is the sum of the x-velocity changes ∆vx in the small subintervals. So 
the total x-velocity change is represented graphically by the total area under the ax@t curve 
between the vertical lines t1 and t2 . (In Section 2.4 we showed this for the special case in 
which ax is constant.)

In the limit that all the ∆t>s become very small and they become very large in number, 
the value of aav@x for the interval from any time t to t + ∆t approaches the instantaneous 
x-acceleration ax at time t. In this limit, the area under the ax@t curve is the integral of ax 
(which is in general a function of t) from t1 to t2 . If v1x is the x-velocity of the particle at 
time t1 and v2x is the velocity at time t2 , then

 v2x - v1x = L
v2x

v1x

dvx = L
t2

t1

ax dt (2.15)

The change in the x-velocity vx is the time integral of the x-acceleration ax .
We can carry out exactly the same procedure with the curve of x-velocity versus time. 

If x1 is a particle’s position at time t1 and x2 is its position at time t2 , from Eq. (2.2) the 
displacement ∆x during a small time interval ∆t is equal to vav@x ∆t, where vav@x is the 
average x-velocity during ∆t. The total displacement x2 - x1 during the interval t2 - t1 is 
given by

 x2 - x1 = L
x2

x1

dx = L
t2

t1

vx dt (2.16)

The change in position x—that is, the displacement—is the time integral of x-velocity vx.  
Graphically, the displacement between times t1 and t2 is the area under the vx@t curve 
between those two times. [This is the same result that we obtained in Section 2.4 for the 
special case in which vx is given by Eq. (2.8).]

If t1 = 0 and t2 is any later time t, and if x0 and v0x are the position and velocity, respec-
tively, at time t = 0, then we can rewrite Eqs. (2.15) and (2.16) as

(2.17)

x-velocity of the particle at time 0x-velocity of a
particle at time t

Integral of the x-acceleration of the particle from time 0 to time t

vx =  v0x +  L
t

0
ax dt

(2.18)

Position of the particle at time 0Position of a
particle at time t

Integral of the x-velocity of the particle from time 0 to time t

x =  x0 +  vx dtL
t

0

If we know the x-acceleration ax as a function of time and we know the initial velocity 
v0x , we can use Eq. (2.17) to find the x-velocity vx at any time; that is, we can find vx as a 
function of time. Once we know this function, and given the initial position x0 , we can use 
Eq. (2.18) to find the position x at any time.

Total area under the x-t graph from t1 to t2
=  Net change in x-velocity from t1 to t2

Area of this strip =  ∆vx
=  Change in x-velocity
during time interval ∆t

O

aav-x

ax

t1 t2
t

∆t

Figure 2.28 An ax@t graph for a particle 
whose x-acceleration is not constant.
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TEST YOUR UNDERSTANDING OF SECTION 2.6 If the x-acceleration ax of an object 
 moving in straight-line motion is increasing with time, will the vx@t graph be (i) a straight line, 
(ii) concave up (i.e., with an upward curvature), or (iii) concave down (i.e., with a downward 
curvature)?

ANSWER ❙ (ii) The acceleration ax is equal to the slope of the vx@t graph. If ax is increasing, the slope of the 
vx@t graph is also increasing and the graph is concave up.

25

x-t graph curves
downward after
t =  20 s.

x-t graph curves
upward before
t =  20 s.

x-velocity
increases before
t =  20 s.

x-velocity
decreases after
t =  20 s.

x-acceleration is
positive before t =  20 s.

x-acceleration is
negative after t =  20 s.
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Figure 2.29 The position, velocity, and acceleration of the car in Example 2.9 as functions of time.  
Can you show that if this motion continues, the car will stop at t = 44.5 s?

EXAMPLE 2.9 Motion with changing acceleration

Sally is driving along a straight road. At t = 0, when she is moving at 
10 m>s in the positive x-direction, she passes a signpost at x = 50 m. 
Her x-acceleration as a function of time is

ax = 2.0 m>s2 - 10.10 m>s32t

(a) Find her x-velocity vx and position x as functions of time. (b) When is 
her x-velocity greatest? (c) What is that maximum x-velocity? (d) Where 
is the car when it reaches that maximum x-velocity?

IDENTIFY and SET UP The x-acceleration is a function of time, so we 
cannot use the constant-acceleration formulas of Section 2.4. Instead, we 
use Eq. (2.17) to obtain an expression for vx as a function of time, and 
then use that result in Eq. (2.18) to find an expression for x as a function 
of t. We’ll then be able to answer a variety of questions about the motion.

EXECUTE (a) At t = 0, Sally’s position is x0 = 50 m and her x-velocity 
is v0x = 10 m>s. To use Eq. (2.17), we note that the integral of tn (ex-
cept for n = -1) is 1 tn dt = 1

n + 1 tn+1. Hence

 vx = 10 m>s + L
t

0
32.0 m>s2 - 10.10 m>s32t4  dt

 = 10 m>s + 12.0 m>s22t - 1
2 10.10 m>s32t2

Now we use Eq. (2.18) to find x as a function of t:

 x = 50 m + L
t

0
310 m>s + 12.0 m>s22t - 1

2 10.10 m>s32t24  dt

 = 50 m + 110 m>s2t + 1
2 12.0 m>s22t2 - 1

6 10.10 m>s32t3

Figure 2.29 shows graphs of ax, vx, and x as functions of time as given by 
the previous equations. Note that for any time t, the slope of the vx@t graph 
equals the value of ax and the slope of the x-t graph equals the value of vx.

(b) The maximum value of vx occurs when the x-velocity stops in-
creasing and begins to decrease. At that instant, dvx >dt = ax = 0. So 
we set the expression for ax equal to zero and solve for t:

 0 = 2.0 m>s2 - 10.10 m>s32t

 t =
2.0 m>s2

0.10 m>s3 = 20 s

(c) We find the maximum x-velocity by substituting t = 20 s, the 
time from part (b) when velocity is maximum, into the equation for vx 
from part (a):

 vmax@x = 10 m>s + 12.0 m>s22120 s2 - 1
2 10.10 m>s32120 s22

 = 30 m>s
(d) To find the car’s position at the time that we found in part (b), 

we substitute t = 20 s into the expression for x from part (a):

 x = 50 m + 110 m>s2120 s2 + 1
2 12.0 m>s22120 s22-  16 10.10 m>s32120 s23

 = 517 m

EVALUATE Figure 2.29 helps us interpret our results. The left-hand 
graph shows that ax is positive between t = 0 and t = 20 s and nega-
tive after that. It is zero at t = 20 s, the time at which vx is maximum 
(the high point in the middle graph). The car speeds up until t = 20 s 
(because vx and ax have the same sign) and slows down after t = 20 s 
(because vx and ax have opposite signs).

Since vx is maximum at t = 20 s, the x-t graph (the right-hand graph 
in Fig. 2.29) has its maximum positive slope at this time. Note that the 
x-t graph is concave up (curved upward) from t = 0 to t = 20 s, when 
ax is positive. The graph is concave down (curved downward) after 
t = 20 s, when ax is negative.

KEYCONCEPT If the acceleration in straight-line motion is not con-
stant but is a known function of time, you can find the velocity and posi-
tion as functions of time by integration.
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SUMMARYCHAPTER 2

Straight-line motion, average and instantaneous x-velocity: When 
a particle moves along a straight line, we describe its position with 
respect to an origin O by means of a coordinate such as x. The 
particle’s average x-velocity vav@x during a time interval ∆t = t2 - t1 
is equal to its displacement ∆x = x2 - x1 divided by ∆t. The 
instantaneous x-velocity vx at any time t is equal to the average 
x-velocity over the time interval from t to t + ∆t in the limit that 
∆t goes to zero. Equivalently, vx is the derivative of the position 
function with respect to time. (See Example 2.1.)

 vav@x =
∆x
∆t

=
x2 - x1

t2 - t1
 (2.2)

 vx = lim
∆t S 0
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dx
dt
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Average and instantaneous x-acceleration: The average x-
acceleration aav@x during a time interval ∆t is equal to the change 
in velocity ∆vx = v2x - v1x during that time interval divided 
by ∆t. The instantaneous x-acceleration ax is the limit of aav@x 
as ∆t goes to zero, or the derivative of vx with respect to t. (See 
Examples 2.2 and 2.3.)

 aav@x =
∆vx

∆t
=

v2x - v1x

t2 - t1
 (2.4)
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Straight-line motion with constant acceleration: When the x-
acceleration is constant, four equations relate the position x and 
the x-velocity vx at any time t to the initial position x0 , the initial x-
velocity v0x (both measured at time t = 0), and the x-acceleration 
ax . (See Examples 2.4 and 2.5.)

Constant x-acceleration only:

 vx = v0x + ax  t (2.8)

 x = x0 + v0x  t + 1
2 ax  t2 (2.12)

 vx
 2 = v0x

2 + 2ax  1x - x02 (2.13)

 x - x0 = 1
2 1v0x + vx2t (2.14) 0
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Freely falling objects: Free fall (vertical motion without air 
resistance, so only gravity affects the motion) is a case of motion 
with constant acceleration. The magnitude of the acceleration due 
to gravity is a positive quantity, g. The acceleration of an object in 
free fall is always downward. (See Examples 2.6–2.8.)

ay =  -g
=  -9.80 m>s2

Straight-line motion with varying acceleration: When the 
acceleration is not constant but is a known function of time, 
we can find the velocity and position as functions of time by 
integrating the acceleration function. (See Example 2.9.)

 vx = v0x + L
t

0
ax dt (2.17)

 x = x0 + L
t

0
vx dt (2.18)

O

aav-x

ax

t1 t2
t

∆t



The superhero Green Lantern steps from the top of a tall building. He 
falls freely from rest to the ground, falling half the total distance to the 
ground during the last 1.00 s of his fall (Fig. 2.30). What is the height h 
of the building?

SOLUTION GUIDE

IDENTIFY and SET UP

1. You’re told that Green Lantern falls freely from rest. What does 
this imply about his acceleration? About his initial velocity?

2. Choose the direction of the positive y-axis. It’s easiest to make 
the same choice we used for freely falling objects in Section 2.5.

3. You can divide Green Lantern’s fall into two parts: from the 
top of the building to the halfway point and from the halfway 
point to the ground. You know that the second part of the fall 
lasts 1.00 s. Decide what you would need to know about Green 
Lantern’s motion at the halfway point in order to solve for the 
target variable h. Then choose two equations, one for the first 
part of the fall and one for the second part, that you’ll use 

BRIDGING PROBLEM The Fall of a Superhero

GUIDED PRACTICE

KEY EXAMPLE  ARIATION PROBLEMS

Be sure to review EXAMPLE 2.5 (Section 2.4) before attempting these 
problems.
VP2.5.1 A sports car starts from rest at an intersection and acceler-
ates toward the east on a straight road at 8.0 m>s2. Just as the sports 
car starts to move, a bus traveling east at a constant 18 m>s on the same 
straight road passes the sports car. When the sports car catches up with 
and passes the bus, (a) how much time has elapsed and (b) how far has 
the sports car traveled?
VP2.5.2 A car is traveling on a straight road at a constant 30.0 m>s, which 
is faster than the speed limit. Just as the car passes a police motorcycle 
that is stopped at the side of the road, the motorcycle accelerates forward 
in pursuit. The motorcycle passes the car 12.5 s after starting from rest. 
(a) What is the acceleration of the motorcycle (assumed to be constant)? 
(b) How far does the motorcycle travel before it passes the car?
VP2.5.3 A police car is traveling north on a straight road at a constant 
20.0 m>s. An SUV traveling north at 30.0 m>s passes the police car. The 
driver of the SUV suspects he may be exceeding the speed limit, so 
just as he passes the police car he lets the SUV slow down at a constant 
1.80 m>s2. (a) How much time elapses from when the SUV passes the 
police car to when the police car passes the SUV? (b) What distance 
does the SUV travel during this time? (c) What is the speed of the SUV 
when the police car passes it?
VP2.5.4 At t = 0 a truck starts from rest at x = 0 and speeds up in the 
positive x-direction on a straight road with acceleration aT. At the same 
time, t = 0, a car is at x = 0 and traveling in the positive x-direction with 
speed vC. The car has a constant negative x-acceleration: acar@x = -aC,  
where aC is a positive quantity. (a) At what time does the truck pass the 
car? (b) At what x-coordinate does the truck pass the car?

Be sure to review EXAMPLE 2.7 (Section 2.5) before attempting these 
problems.
VP2.7.1 You throw a ball straight up from the edge of a cliff. It leaves 
your hand moving at 12.0 m>s. Air resistance can be neglected. Take 
the positive y-direction to be upward, and choose y = 0 to be the point 
where the ball leaves your hand. Find the ball’s position and velocity 
(a) 0.300 s after it leaves your hand and (b) 2.60 s after it leaves your 
hand. At each time state whether the ball is above or below your hand 
and whether it is moving upward or downward.
VP2.7.2 You throw a stone straight down from the top of a tall tower. 
It leaves your hand moving at 8.00 m>s. Air resistance can be neglected. 
Take the positive y-direction to be upward, and choose y = 0 to be the 

point where the stone leaves your hand. (a) Find the stone’s position and 
velocity 1.50 s after it leaves your hand. (b) Find the stone’s velocity 
when it is 8.00 m below your hand.
VP2.7.3 You throw a football straight up. Air resistance can be 
 neglected. (a) When the football is 4.00 m above where it left your 
hand, it is moving upward at 0.500 m>s. What was the speed of the foot-
ball when it left your hand? (b) How much time elapses from when the 
football leaves your hand until it is 4.00 m above your hand?
VP2.7.4 You throw a tennis ball straight up. Air resistance can be ne-
glected. (a) The maximum height above your hand that the ball reaches 
is H. At what speed does the ball leave your hand? (b) What is the speed 
of the ball when it is a height H>2 above your hand? Express your an-
swer as a fraction of the speed at which it left your hand. (c) At what 
height above your hand is the speed of the ball half as great as when it 
left your hand? Express your answer in terms of H.

Be sure to review EXAMPLE 2.8 (Section 2.5) before attempting these 
problems.
VP2.8.1 You throw a rock straight up from the edge of a cliff. It leaves 
your hand at time t = 0 moving at 12.0 m>s. Air resistance can be ne-
glected. (a) Find both times at which the rock is 4.00 m above where it 
left your hand. (b) Find the time when the rock is 4.00 m below where 
it left your hand.
VP2.8.2 You throw a basketball straight down from the roof of a build-
ing. The basketball leaves your hand at time t = 0 moving at 9.00 m>s.  
Air resistance can be neglected. Find the time when the ball is 5.00 m 
below where it left your hand.
VP2.8.3 You throw an apple straight up. The apple leaves your hand at 
time t = 0 moving at 5.50 m>s. Air resistance can be neglected. (a) How 
many times (two, one, or none) does the apple pass through a point 1.30 m  
above your hand? If the apple does pass through this point, at what times 
t does it do so, and is the apple moving upward or downward at each of 
these times? (b) How many times (two, one, or none) does the apple pass 
through a point 1.80 m above your hand? If the apple does pass through 
this point, at what times t does it do so, and is the apple moving upward 
or downward at each of these times?
VP2.8.4 You throw an orange straight up. The orange leaves your hand 
at time t = 0 moving at speed v0. Air resistance can be neglected. (a) At 
what time(s) is the orange at a height v 2

0 >2g above the point where it left 
your hand? At these time(s) is the orange moving upward, downward, 
or neither? (b) At what time(s) is the orange at a height 3v 2

0 >8g above 
the point where it left your hand? At these time(s) is the orange moving 
upward, downward, or neither?

For assigned homework and other learning materials, go to Mastering Physics.

Chapter 2 Media Assets
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DISCUSSION QUESTIONS
Q2.1 Does the speedometer of a car measure speed or velocity? 
Explain.
Q2.2 The black dots at the top of Fig. Q2.2 represent a series of high-
speed photographs of an insect flying in a straight line from left to right 
(in the positive x-direction). Which of the graphs in Fig. Q2.2 most 
plausibly depicts this insect’s motion?

PROBLEMS
•, ••, •••: Difficulty levels. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems requiring calculus.  
DATA: Problems involving real data, scientific evidence, experimental design, and>or statistical reasoning. BIO: Biosciences problems.

together to find an expression for h. (There are several pairs of 
equations that you could choose.)

EXECUTE

4. Use your two equations to solve for the height h. Heights are al-
ways positive numbers, so your answer should be positive.

EVALUATE

5. To check your answer for h, use one of the free-fall equations to 
find how long it takes Green Lantern to fall (i) from the top of 
the building to half the height and (ii) from the top of the build-
ing to the ground. If your answer for h is correct, time (ii) should 
be 1.00 s greater than time (i). If it isn’t, go back and look for 
errors in how you found h.

Falls last h>2
in 1.00 s

h =  ?

Figure 2.30 Green Lantern in free fall.
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Figure Q2.2

speeding.” The judge ruled against the driver because, in the judge’s 
words, “If two cars were side by side, both of you were speeding.” If 
you were a lawyer representing the accused driver, how would you 
argue this case?
Q2.9 Can you have zero displacement and nonzero average velocity? 
Zero displacement and nonzero velocity? Illustrate your answers on an 
x-t graph.
Q2.10 Can you have zero acceleration and nonzero velocity? Use a vx@t 
graph to explain.
Q2.11 Can you have zero velocity and nonzero average acceleration? 
Zero velocity and nonzero acceleration? Use a vx@t graph to explain, and 
give an example of such motion.
Q2.12 An automobile is traveling west. Can it have a velocity toward 
the west and at the same time have an acceleration toward the east? 
Under what circumstances?
Q2.13 The official’s truck in Fig. 2.2 is at x1 = 277 m at t1 = 16.0 s 
and is at x2 = 19 m at t2 = 25.0 s. (a) Sketch two different possible x-t 
graphs for the motion of the truck. (b) Does the average velocity vav@x 
during the time interval from t1 to t2 have the same value for both of 
your graphs? Why or why not?
Q2.14 Under constant acceleration the average velocity of a particle is 
half the sum of its initial and final velocities. Is this still true if the ac-
celeration is not constant? Explain.
Q2.15 You throw a tennis ball straight up in the air so that it rises to a 
maximum height much greater than your height. Is the magnitude of the 
ball’s acceleration greater while it is being thrown or after it leaves your 
hand? Explain.
Q2.16 Prove these statements: (a) As long as you can ignore the effects of 
the air, if you throw anything vertically upward, it will have the same speed 
when it returns to the release point as when it was released. (b) The time of 
flight will be twice the time it takes to get to its highest point.
Q2.17 A dripping water faucet steadily releases drops 1.0 s apart. As 
these drops fall, does the distance between them increase, decrease, or 
remain the same? Prove your answer.
Q2.18 If you know the initial position and initial velocity of a vehicle 
and have a record of the acceleration at each instant, can you compute 
the vehicle’s position after a certain time? If so, explain how this might 
be done.

Q2.3 Can an object with constant acceleration reverse its direction of 
travel? Can it reverse its direction twice? In both cases, explain your 
reasoning.
Q2.4 Under what conditions is average velocity equal to instantaneous 
velocity?
Q2.5 Is it possible for an object to be (a) slowing down while its accel-
eration is increasing in magnitude; (b) speeding up while its accelera-
tion is decreasing? In both cases, explain your reasoning.
Q2.6 Under what conditions does the magnitude of the average veloc-
ity equal the average speed?
Q2.7 When a Porsche 911 GT3 is at Nino’s Pizza, a BMW Z4 is at the 
junction of Princess Street and Portland Street. Later, when the Porsche 
reaches the junction of Princess and Portland, the BMW reaches Nino’s 
Pizza. How are the cars’ average velocities between these two times related?
Q2.8 A driver in Nairobi was sent to traffic court for speeding. The 
evidence against the driver was that a policewoman observed the driv-
er’s car alongside a second car at a certain moment, and the police-
woman had already clocked the second car going faster than the speed 
limit. The driver argued, “The second car was passing me. I was not 



2.9 •• A ball moves in a straight 
line (the x-axis). The graph in 
Fig. E2.9 shows this ball’s velocity 
as a function of time. (a) What are 
the ball’s average speed and aver-
age velocity during the first 3.0 s? 
(b) Suppose that the ball moved in 
such a way that the graph segment 
after 2.0 s was -3.0 m>s instead of 
+3.0 m>s. Find the ball’s average 
speed and average velocity in this 
case.
2.10 •• A physics professor leaves her house and walks along the 
pavement toward campus. After 5 min it starts to rain, and she  returns 
home. Her distance from her house as a function of time is shown  
in Fig. E2.10. At which of the labeled points is her velocity (a) zero? 
(b) constant and positive? (c) constant and negative? (d) increasing in 
magnitude? (e) decreasing in magnitude?

2.11 •• A test car travels in a 
straight line along the x-axis. The 
graph in Fig. E2.11 shows the car’s 
position x as a function of time. 
Find its instantaneous velocity at 
points A through G.

Section 2.3 Average and Instantaneous Acceleration
2.12 • Figure E2.12 shows the velocity of a solar-powered car as a 
function of time. The driver accelerates from a stop sign, cruises for 
20 s at a constant speed of 60 km > h, and then brakes to come to a stop 
40 s after leaving the stop sign. (a) Compute the average accelera-
tion during these time intervals: (i) t = 0 to t = 10 s; (ii) t = 30 s to 
t = 40 s; (iii) t = 10 s to t = 30 s; (iv) t = 0 to t = 40 s. (b) What is 
the instantaneous acceleration at t = 20 s and at t = 35 s ?

Q2.19 From the top of a tall building, you throw one ball straight up 
with speed v0 and one ball straight down with speed v0. (a) Which ball 
has the greater speed when it reaches the ground? (b) Which ball gets 
to the ground first? (c) Which ball has a greater displacement when it 
reaches the ground? (d) Which ball has traveled the greater distance 
when it hits the ground?
Q2.20 You run due east at a constant speed of 3.00 m>s for a distance of 
120.0 m and then continue running east at a constant speed of 5.00 m>s  
for another 120.0 m. For the total 240.0 m run, is your average velocity 
4.00 m>s, greater than 4.00 m>s, or less than 4.00 m>s? Explain.
Q2.21 An object is thrown straight up into the air and feels no air re-
sistance. How can the object have an acceleration when it has stopped 
moving at its highest point?
Q2.22 When you drop an object from a certain height, it takes time T to 
reach the ground with no air resistance. If you dropped it from three times 
that height, how long (in terms of T) would it take to reach the ground?

EXERCISES

Section 2.1 Displacement, Time, and Average Velocity
2.1 • A car travels in the +x-direction on a straight and level road. 
For the first 4.00 s of its motion, the average velocity of the car is 
vav@x = 6.25 m>s. How far does the car travel in 4.00 s?
2.2 •• In an experiment, a shearwater (a seabird) was taken from its 
nest, flown 5150 km away, and released. The bird found its way back to 
its nest 13.5 days after release. If we place the origin at the nest and 
extend the +x@axis to the release point, what was the bird’s average ve-
locity in m>s (a) for the return flight and (b) for the whole episode, from 
leaving the nest to returning?
2.3 •• Trip Home. You normally drive from Glasgow to Edinburgh 
via M8 motorway at an average speed of 72 km>h, and the trip takes 1 h 
and 2 min. At peak times, however, heavy traffic slows you down and 
you drive the same distance at an average speed of only 49 km>h. How 
much longer does the trip take?
2.4 •• From Pillar to Post. Starting from a pillar, you run 200 m east 
(the +x@direction) at an average speed of 5.0 m>s and then run 280 m 
west at an average speed of 4.0 m>s to a post. Calculate (a) your average 
speed from pillar to post and (b) your average velocity from pillar to post.
2.5 • Starting from the front door of a farmhouse, you walk 60.0 m 
due east to a windmill, turn around, and then slowly walk 40.0 m west 
to a bench, where you sit and watch the sunrise. It takes you 28.0 s 
to walk from the house to the windmill and then 36.0 s to walk from 
the windmill to the bench. For the entire trip from the front door to the 
bench, what are your (a) average velocity and (b) average speed?
2.6 •• A Honda Civic travels in a straight line along a road. The 
car’s distance x from a stop sign is given as a function of time 
t by the equation x1t2 = at2 - bt3, where a = 1.50 m>s2 and 
b = 0.0500 m>s3. Calculate the average velocity of the car for 
each time interval: (a) t = 0 to t = 2.00 s; (b) t = 0 to t = 4.00 s;  
(c) t = 2.00 s to t = 4.00 s.

SECTION 2.2 Instantaneous Velocity
2.7 • CALC A car is stopped at a traffic light. It then travels 
along a straight road such that its distance from the light is given 
by x1t2 = bt2 - ct3, where b = 2.40 m>s2 and c = 0.120 m>s3.  
(a) Calculate the average velocity of the car for the time interval t = 0 
to t = 10.0 s. (b) Calculate the instantaneous velocity of the car at 
t = 0, t = 5.0 s, and t = 10.0 s. (c) How long after starting from rest 
is the car again at rest?
2.8 • CALC A bird is flying due east. Its distance from a tall building is 
given by x1t2 = 28.0 m + 112.4 m>s2t - 10.0450 m>s32t3. What is the 
instantaneous velocity of the bird when t = 8.00 s?
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distance would you travel from when you first apply the brakes until the 
car stops?
2.23 •• BIO Automobile Airbags. The human body can survive an 
acceleration trauma incident (sudden stop) if the magnitude of the ac-
celeration is less than 250 m>s2. If you are in an automobile accident 
with an initial speed of 105 km>h and are stopped by an airbag that in-
flates from the dashboard, over what minimum distance must the airbag 
stop you for you to survive the crash?
2.24 • Entering the Freeway.  A car sits on an entrance ramp to a 
freeway, waiting for a break in the traffic. Then the driver accelerates 
with constant acceleration along the ramp and onto the freeway. The car 
starts from rest, moves in a straight line, and has a speed of 20 m>s when 
it reaches the end of the 120-m-long ramp. (a) What is the  acceleration 
of the car? (b) How much time does it take the car to travel the length of 
the ramp? (c) The traffic on the freeway is moving at a constant speed 
of 20 m>s. What distance does the traffic travel while the car is moving 
the length of the ramp?
2.25 • BIO Airbag Injuries. During an auto accident, the vehicle’s 
airbags deploy and slow down the passengers more gently than if they 
had hit the windshield or steering wheel. According to safety standards, 
airbags produce a maximum acceleration of 60g that lasts for only 
36 ms (or less). How far (in meters) does a person travel in coming to a 
complete stop in 36 ms at a constant acceleration of 60g?
2.26 •• A cat walks in a straight line, which we shall call the x-axis, 
with the positive direction to the right. As an observant physicist, you 
make measurements of this cat’s motion and construct a graph of the 
feline’s velocity as a function of time (Fig. E2.26). (a) Find the cat’s 
velocity at t = 4.0 s and at t = 7.0 s. (b) What is the cat’s acceleration 
at t = 3.0 s? At t = 6.0 s ? At t = 7.0 s ? (c) What distance does the cat 
move during the first 4.5 s? From t = 0 to t = 7.0 s ? (d) Assuming that 
the cat started at the origin, sketch clear graphs of the cat’s acceleration 
and position as functions of time.

2.13 • CALC A turtle crawls along a straight line, which we’ll 
call the x-axis with the positive direction to the right. The equation 
for the turtle’s position as a function of time is x 1t2 =  50.0 cm +
12.00 cm>s2t - 10.0625 cm>s22t2. (a) Find the turtle’s initial velocity, 
initial position, and initial acceleration. (b) At what time t is the velocity 
of the turtle zero? (c) How long after starting does it take the turtle to 
return to its starting point? (d) At what times t is the turtle a distance of 
10.0 cm from its starting point? What is the velocity (magnitude and di-
rection) of the turtle at each of those times? (e) Sketch graphs of x ver-
sus t, vx versus t, and ax versus t, for the time interval t = 0 to t = 40 s.
2.14 •• CALC A race car starts from rest and travels east along  
a straight and level track. For the first 5.0 s of the car’s motion, the east-
ward component of the car’s velocity is given by vx1t2 = 10.860 m>s32t2. 
What is the acceleration of the car when vx = 12.0 m>s?
2.15 • CALC A car’s velocity as a function of time is given by 
vx1t2 = a + bt2, where a = 3.00 m>s and b = 0.100 m>s3. 
(a)  Calculate the average acceleration for the time interval t = 0 to 
t = 5.00 s. (b) Calculate the instantaneous acceleration for t = 0 and 
t = 5.00 s. (c) Draw vx@t and ax@t graphs for the car’s motion between 
t = 0 and t = 5.00 s.
2.16 • An astronaut has left the International Space Station to test a 
new space scooter. Her partner measures the following velocity changes, 
each taking place in a 10 s interval. What are the magnitude, the alge-
braic sign, and the direction of the average acceleration in each interval? 
Assume that the positive direction is to the right. (a) At the beginning of 
the interval, the astronaut is moving toward the right along the x-axis at 
15.0 m>s, and at the end of the interval she is moving toward the right at 
5.0 m>s. (b) At the beginning she is moving toward the left at 5.0 m>s,  
and at the end she is moving toward the left at 15.0 m>s. (c) At the be-
ginning she is moving toward the right at 15.0 m>s, and at the end she is 
moving toward the left at 15.0 m>s.
2.17 •• CALC The position of the front bumper of a test car under 
microprocessor control is given by x 1t2 = 2.17 m + 14.80 m>s22t2 -
10.100 m>s62t6. (a) Find its position and acceleration at the instants 
when the car has zero velocity. (b) Draw x-t, vx@t, and ax@t graphs for the 
motion of the bumper between t = 0 and t = 2.00 s.

Section 2.4 Motion with Constant Acceleration
2.18 • Estimate the distance that your car travels on the entrance ramp 
to a freeway as it accelerates from 50 km>h to the freeway speed of  
110 km>h. During this motion what is the average acceleration of the car?
2.19 •• An antelope moving with constant acceleration covers the 
 distance between two points 70.0 m apart in 6.00 s. Its speed as it passes 
the second point is 15.0 m>s. What are (a) its speed at the first point and 
(b) its acceleration?
2.20 •• A Tennis Serve.  In the fastest measured tennis serve, 
the ball left the racquet at 73.14 m>s. A served tennis ball is typically 
in contact with the racquet for 30.0 ms and starts from rest. Assume 
constant acceleration. (a) What was the ball’s acceleration during this 
serve? (b) How far did the ball travel during the serve?
2.21 • A Fast Pitch. The fastest measured pitched baseball left the 
pitcher’s hand at a speed of 45.0 m>s. If the pitcher was in contact with 
the ball over a distance of 1.50 m and produced constant acceleration, 
(a) what acceleration did he give the ball, and (b) how much time did it 
take him to pitch it?
2.22 • You are traveling on a motorway at the posted speed limit of 
110 km>h when you see that the traffic in front of you has stopped 
due to an accident up ahead. You step on your brakes to slow down as 
quickly as possible. (a) Estimate how many seconds it takes you to slow 
down to 50 km>h. What is the magnitude of the average acceleration 
of the car while it is slowing down? With this same average accelera-
tion, (b) how much longer would it take you to stop, and (c) what total 
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2.27 • BIO Are We Martians? It has been suggested, and not face-
tiously, that life might have originated on Mars and been carried to the 
earth when a meteor hit Mars and blasted pieces of rock (perhaps con-
taining primitive life) free of the Martian surface. Astronomers know 
that many Martian rocks have come to the earth this way. (For instance, 
search the Internet for “ALH 84001.”) One objection to this idea is that 
microbes would have had to undergo an enormous lethal  acceleration 
during the impact. Let us investigate how large such an acceleration 
might be. To escape Mars, rock fragments would have to reach its es-
cape velocity of 5.0 km>s, and that would most likely happen over a 
distance of about 4.0 m during the meteor impact. (a) What would be 
the acceleration (in m>s2 and g’s) of such a rock fragment, if the ac-
celeration is constant? (b) How long would this acceleration last? (c) In 
tests, scientists have found that over 40% of Bacillus subtilis bacteria 
survived after an acceleration of 450,000g. In light of your answer to 
part (a), can we rule out the hypothesis that life might have been blasted 
from Mars to the earth?



acceleration in m>s2 that the ball has while it is being thrown, as it moves 
from rest to the point where it leaves your hand.
2.37 •• A rock is thrown straight up with an initial speed of 24.0 m>s.  
Neglect air resistance. (a) At t = 1.0 s, what are the directions of the 
velocity and acceleration of the rock? Is the speed of the rock increasing 
or decreasing? (b) At t = 3.0 s, what are the directions of the veloc-
ity and acceleration of the rock? Is the speed of the rock increasing or 
decreasing?
2.38 •• A brick is dropped (zero initial speed) from the roof of a 
building. The brick strikes the ground in 1.90 s. You may ignore air 
resistance, so the brick is in free fall. (a) How tall, in meters, is the 
building? (b) What is the magnitude of the brick’s velocity just before it 
reaches the ground? (c) Sketch ay@t, vy@t, and y-t graphs for the motion 
of the brick.
2.39 •• A Simple Reaction-Time Test. A meter stick is held verti-
cally above your hand, with the lower end between your thumb and first 
finger. When you see the meter stick released, you grab it with those 
two fingers. You can calculate your reaction time from the distance 
the meter stick falls, read directly from the point where your fingers 
grabbed it. (a) Derive a relationship for your reaction time in terms of 
this measured distance, d. (b) If the measured distance is 17.6 cm, what 
is your reaction time?
2.40 •• Touchdown on the Moon. 
A lunar lander is making its descent to 
Moon Base I (Fig. E2.40). The lander 
descends slowly under the retro-thrust 
of its descent engine. The engine is cut 
off when the lander is 5.0 m above the 
surface and has a downward speed of 
0.8 m>s.With the engine off, the lander 
is in free fall. What is the speed of the 
lander just before it touches the sur-
face? The acceleration due to gravity 
on the moon is 1.6 m>s2.
2.41 •• Launch Failure. A 7500 kg  
rocket blasts off vertically from 
the launch pad with a constant upward acceleration of 2.25 m>s2 
and feels no appreciable air resistance. When it has reached a 
height of 525 m, its engines suddenly fail; the only force act-
ing on it is now gravity. (a) What is the maximum height this 
rocket will reach above the launch pad? (b) How much time will 
elapse after engine failure before the rocket comes crashing down 
to the launch pad, and how fast will it be moving just  before 
it crashes? (c) Sketch ay@t, vy@t, and y-t graphs of the rocket’s   
motion from the instant of blast-off to the instant just before it strikes 
the launch pad.
2.42 •• A hot-air balloonist, rising 
vertically with a constant velocity of 
magnitude 5.00 m>s, releases a sandbag 
at an instant when the balloon is 40.0 m  
above the ground (Fig. E2.42). After 
the sandbag is released, it is in free fall.  
(a) Compute the position and veloc-
ity of the sandbag at 0.250 s and 
1.00 s after its release. (b) How many 
 seconds after its release does the 
bag strike the ground? (c) With what 
 magnitude of velocity does it strike 
the ground? (d) What is the greatest 
height above the ground that the sand-
bag reaches? (e) Sketch ay@t, vy@t, and 
y-t graphs for the motion.

2.28 • Two cars, A and B, move 
along the x-axis. Figure E2.28 is a 
graph of the positions of A and B ver-
sus time. (a) In motion diagrams (like 
Figs. 2.13b and 2.14b), show the posi-
tion, velocity, and acceleration of each 
of the two cars at t = 0, t = 1 s, and 
t = 3 s. (b) At what time(s), if any, 
do A and B have the same position?  
(c) Graph velocity versus time for 
both A and B. (d) At what time(s), if 
any, do A and B have the same velocity? 
(e) At what time(s), if any, does car A 
pass car B? (f) At what time(s), if any, 
does car B pass car A?
2.29 •• The graph in Fig. E2.29 
shows the velocity of a motorcycle 
police officer plotted as a function 
of time. (a) Find the instantaneous 
acceleration at t = 3 s, t = 7 s, and 
t = 11 s. (b) How far does the offi-
cer go in the first 5 s? The first 9 s? 
The first 13 s?
2.30 •• A small block has con-
stant acceleration as it slides down 
a frictionless incline. The block is 
released from rest at the top of the 
incline, and its speed after it has 
traveled 6.80 m to the bottom of the incline is 3.80 m>s. What is the 
speed of the block when it is 3.40 m from the top of the incline?
2.31 •• (a) If a flea can jump straight up to a height of 0.440 m, 
what is its initial speed as it leaves the ground? (b) How long is it in 
the air?
2.32 •• A small rock is thrown vertically upward with a speed of 
22.0 m>s from the edge of the roof of a 30.0-m-tall building. The rock 
doesn’t hit the building on its way back down and lands on the street 
below. Ignore air resistance. (a) What is the speed of the rock just before 
it hits the street? (b) How much time elapses from when the rock is 
thrown until it hits the street?

SECTION 2.5 Freely Falling Objects
2.33 • A juggler throws a bowling pin straight up with an initial speed 
of 8.20 m>s. How much time elapses until the bowling pin returns to the 
juggler’s hand?
2.34 •• You throw a glob of putty straight up toward the ceiling, 
which is 3.60 m above the point where the putty leaves your hand. The 
initial speed of the putty as it leaves your hand is 9.50 m>s. (a) What is 
the speed of the putty just before it strikes the ceiling? (b) How much 
time from when it leaves your hand does it take the putty to reach the 
ceiling?
2.35 •• A tennis ball on Mars, where the acceleration due to grav-
ity is 0.379g and air resistance is negligible, is hit directly upward 
and returns to the same level 8.5 s later. (a) How high above its origi-
nal point did the ball go? (b) How fast was it moving just after it 
was hit? (c) Sketch graphs of the ball’s vertical position, vertical 
velocity, and vertical acceleration as functions of time while it’s in 
the Martian air.
2.36 •• Estimate the maximum height that you can throw a tennis ball 
straight up. (a) For this height, how long after the ball leaves your hand 
does it return to your hand? (b) Estimate the distance that the ball moves 
while you are throwing it—that is, the distance from where the ball is 
when you start your throw until it leaves your hand. Calculate the average 
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2.0 s of the race, that he starts from rest, and that he runs in a straight 
line. (a) How far has the sprinter run when he reaches his maximum 
speed? (b) What is the magnitude of his average velocity for a race of 
these lengths: (i) 50.0 m; (ii) 100.0 m; (iii) 200.0 m?
2.54 • CALC A lunar lander is descending toward the moon’s surface. 
Until the lander reaches the surface, its height above the surface of the 
moon is given by y1t2 = b - ct + dt2, where b = 800 m is the initial 
height of the lander above the surface, c = 60.0 m>s, and d = 1.05 m>s2.  
(a) What is the initial velocity of the lander, at t = 0? (b) What is the 
velocity of the lander just before it reaches the lunar surface?
2.55 ••• Earthquake Analysis. Earthquakes produce several types 
of shock waves. The most well known are the P-waves (P for primary or 
pressure) and the S-waves (S for secondary or shear). In the earth’s crust, 
P-waves travel at about 6.5 km>s and S-waves move at about 3.5 km>s. 
The time delay between the arrival of these two waves at a seismic record-
ing station tells geologists how far away an earthquake occurred. If the time 
delay is 33 s, how far from the seismic station did the earthquake occur?
2.56 •• You throw a small rock straight up with initial speed V0 from 
the edge of the roof of a building that is a distance H above the ground. 
The rock travels upward to a maximum height in time Tmax, misses the 
edge of the roof on its way down, and reaches the ground in time Ttotal 
after it was thrown. Neglect air resistance. If the total time the rock is in 
the air is three times the time it takes it to reach its maximum height, so 
Ttotal = 3Tmax, then in terms of H what must be the value of V0?
2.57 ••• A rocket carrying a satellite is accelerating straight up from the 
earth’s surface. At 1.15 s after liftoff, the rocket clears the top of its launch 
platform, 63 m above the ground. After an additional 4.75 s, it is 1.00 km 
above the ground. Calculate the magnitude of the average velocity of the 
rocket for (a) the 4.75 s part of its flight and (b) the first 5.90 s of its flight.
2.58 •• A block moving on a horizontal surface is at x = 0 when 
t = 0 and is sliding east with a speed of 12.0 m>s. Because of a net force 
acting on the block, it has a constant acceleration with direction west 
and magnitude 2.00 m>s2. The block travels east, slows down, reverses 
 direction, and then travels west with increasing speed. (a) At what value 
of t is the block again at x = 0? (b) What is the maximum distance 
east of x = 0 that the rock reaches, and how long does it take the 
rock to reach this point?
2.59 •• A block is sliding with constant acceleration down an incline. 
The block starts from rest at t = 0 and has speed 3.00 m>s after it has 
traveled a distance 8.00 m from its starting point. (a) What is the speed of 
the block when it is a distance of 16.0 m from its t = 0 starting point? (b) 
How long does it take the block to slide 16.0 m from its starting point?
2.60 ••• An underground train starts from rest at a station and accel-
erates at a rate of 1.60 m>s2 for 14.0 s. It runs at constant speed for 70.0 
s and slows down at a rate of 3.50 m>s2 until it stops at the next station. 
Find the total distance covered.
2.61 • A gazelle is running in a straight line (the x-axis). The graph in 
Fig. P2.61 shows this animal’s velocity as a function of time. During 
the first 12.0 s, find (a) the total distance moved and (b) the displace-
ment of the gazelle. (c) Sketch an ax@t graph showing this gazelle’s 
 acceleration as a function of time for the first 12.0 s.

2.43 • You throw a rock straight up and find that it returns to your 
hand 3.60 s after it left your hand. Neglect air resistance. What was the 
maximum height above your hand that the rock reached?
2.44 • An egg is thrown nearly vertically upward from a point near 
the cornice of a tall building. The egg just misses the cornice on the way 
down and passes a point 30.0 m below its starting point 5.00 s after it 
leaves the thrower’s hand. Ignore air resistance. (a) What is the initial 
speed of the egg? (b) How high does it rise above its starting point?  
(c) What is the magnitude of its velocity at the highest point? (d) What 
are the magnitude and direction of its acceleration at the highest point? 
(e) Sketch ay@t, vy@t, and y-t graphs for the motion of the egg.
2.45 •• A 15 kg rock is dropped from rest on the earth and reaches the 
ground in 1.75 s. When it is dropped from the same height on Saturn’s 
satellite Enceladus, the rock reaches the ground in 18.6 s. What is the 
acceleration due to gravity on Enceladus?
2.46 • A large boulder is ejected vertically upward from a volcano with 
an initial speed of 40.0 m>s. Ignore air resistance. (a) At what time after 
being ejected is the boulder moving at 20.0 m>s upward? (b) At what 
time is it moving at 20.0 m>s downward? (c) When is the displacement 
of the boulder from its initial position zero? (d) When is the velocity of the 
boulder zero? (e) What are the magnitude and direction of the accelera-
tion while the boulder is (i) moving upward? (ii) Moving downward? (iii) 
At the highest point? (f) Sketch ay@t, vy@t, and y-t graphs for the motion.
2.47 •• You throw a small rock straight up from the edge of a bridge that 
crosses a river. The rock passes you on its way down, 6.00 s after it was 
thrown. What is the speed of the rock just before it reaches the water 28.0 m 
below the point where the rock left your hand? Ignore air resistance.

Section 2.6 Velocity and Position by Integration
2.48 •• Consider the motion described by the vx-t graph of Fig. E2.26. 
(a) Calculate the area under the graph between t = 0 and t = 6.0 s. 
(b) For the time interval t = 0 to t = 6.0 s, what is the magnitude of the 
average velocity of the cat? (c) Use constant-acceleration equations to 
calculate the distance the cat travels in this time interval. How does your 
result compare to the area you calculated in part (a)?
2.49 • CALC A rocket starts from rest and moves upward from the 
surface of the earth. For the first 10.0 s of its motion, the vertical ac-
celeration of the rocket is given by ay = 12.80 m>s32t, where the  
+y-direction is upward. (a) What is the height of the rocket above the 
surface of the earth at t = 10.0 s? (b) What is the speed of the rocket 
when it is 325 m above the surface of the earth?
2.50 •• CALC A small object moves along the x-axis with accelera-
tion ax1t2 = -10.0320 m>s32115.0 s - t2. At t = 0 the object is at 
x = -14.0 m and has velocity v0x = 8.00 m>s. What is the x- coordinate 
of the object when t = 10.0 s?
2.51 •• CALC The acceleration of a motorcycle is given by 
ax1t2 = At - Bt2, where A = 1.50 m>s3 and B = 0.120 m>s4. The 
motor cycle is at rest at the origin at time t = 0. (a) Find its position and ve-
locity as functions of time. (b) Calculate the maximum velocity it attains.
2.52 •• CALC The acceleration of a bus is given by ax1t2 = at,  
where a = 1.2 m>s3. (a) If the bus’s velocity at time t = 1.0 s 
is 5.0 m>s, what is its velocity at time t = 2.0 s ? (b) If the bus’s 
position at time t = 1.0 s is 6.0 m, what is its position at time 
t = 2.0 s ? (c) Sketch ay@t, vy@t, and x-t graphs for the motion.

PROBLEMS
2.53 • BIO A typical male sprinter can maintain his maximum accel-
eration for 2.0 s, and his maximum speed is 10 m> s. After he reaches 
this maximum speed, his acceleration becomes zero, and then he runs at 
constant speed. Assume that his acceleration is constant during the first t (s)
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2.63 ••• A ball starts from rest and rolls down a hill with uniform ac-
celeration, traveling 200 m during the second 5.0 s of its motion. How 
far did it roll during the first 5.0 s of motion?
2.64 •• A rock moving in the +x-direction with speed 16.0 m>s has a 
net force applied to it at time t = 0, and this produces a constant accel-
eration in the -x-direction that has magnitude 4.00 m>s2. For what three 
times t after the force is applied is the rock a distance of 24.0 m from its 
 position at t = 0? For each of these three values of t, what is the velocity 
(magnitude and direction) of the rock?
2.65 • A car and a truck start from rest at the same instant, with the 
car initially at some distance behind the truck. The truck has a constant 
acceleration of 2.10 m>s2, and the car has an acceleration of 3.40 m>s2. 
The car overtakes the truck after the truck has moved 60.0 m. (a) How 
much time does it take the car to overtake the truck? (b) How far was 
the car behind the truck initially? (c) What is the speed of each when 
they are abreast? (d) On a single graph, sketch the position of each vehi-
cle as a function of time. Take x = 0 at the initial location of the truck.
2.66 •• You are standing at rest at a bus stop. A bus moving at a con-
stant speed of 5.00 m>s passes you. When the rear of the bus is 12.0 m 
past you, you realize that it is your bus, so you start to run toward it with 
a constant acceleration of 0.960 m>s2. How far would you have to run 
before you catch up with the rear of the bus, and how fast must you be 
running then? Would an average college student be physically able to 
accomplish this?
2.67 •• A sprinter runs a 100 m dash in 12.0 s. She starts from rest 
with a constant acceleration ax for 3.0 s and then runs with constant 
speed for the remainder of the race. What is the value of ax?
2.68 •• CALC An object’s velocity is measured to be vx1t2 =  a - bt2,  
where a = 4.00 m>s and b = 2.00 m>s3. At t = 0 the object is at x = 0. 
(a) Calculate the object’s position and acceleration as functions of time. 
(b) What is the object’s maximum positive displacement from the origin?
2.69 •• CALC An object is moving along the x-axis. At t = 0 it is at 
x = 0. Its x-component of velocity vx as a function of time is given by 
vx(t) = at - bt3, where a = 8.0 m>s2 and b = 4.0 m>s4. (a) At what 

nonzero time t is the object again at x = 0? (b) At the time calculated in 
part (a), what are the velocity and acceleration of the object (magnitude 
and direction)?
2.70 • Egg Drop. You are on the 
roof of the physics building, 46.0 m 
above the ground (Fig. P2.70). Your 
physics professor, who is 1.80 m tall, 
is walking alongside the building at 
a constant speed of 1.20 m>s. If you 
wish to drop an egg on your profes-
sor’s head, where should the profes-
sor be when you release the egg? 
Assume that the egg is in free fall.
2.71 ••• CALC The acceleration 
of a particle is given by ax1t2 =  
-2.00 m>s2 + 13.00 m>s32t. (a) 
Find the initial velocity v0x such that 
the particle will have the same x-
coordinate at t = 4.00 s as it had at 
t = 0. (b) What will be the velocity at t = 4.00 s ?
2.72 •• A small rock is thrown straight up with initial speed v0 from 
the edge of the roof of a building with height H. The rock travels up-
ward and then downward to the ground at the base of the building. Let 
+y be upward, and neglect air resistance. (a) For the rock’s motion from 
the roof to the ground, what is the vertical component vav@y of its aver-
age velocity? Is this quantity positive or negative? Explain. (b) What 
does your expression for vav@y give in the limit that H is zero? Explain. 
(c) Show that your result in part (a) agrees with Eq. (2.10).
2.73 •• A watermelon is dropped from the edge of the roof of a build-
ing and falls to the ground. You are standing on the pavement and see 
the watermelon falling when it is 30.0 m above the ground. Then 1.50 s  
after you first spot it, the watermelon lands at your feet. What is the 
height of the building? Neglect air resistance.
2.74 ••• A flowerpot falls off a windowsill and passes the window 
of the story below. Ignore air resistance. It takes the pot 0.380 s to pass 
from the top to the bottom of this window, which is 1.90 m high. How 
far is the top of the window below the windowsill from which the flow-
erpot fell?
2.75 ••• Look Out Below. Kemal heaves a 7.26 kg shot straight 
up, giving it a constant upward acceleration from rest of 35.0 m>s2 for 
64.0 cm. He releases it 2.20 m above the ground. Ignore air resistance. 
(a) What is the speed of the shot when Kemal releases it? (b) How high 
above the ground does it go? (c) How much time does he have to get out 
of its way before it returns to the height of the top of his head, 1.83 m 
above the ground?
2.76 ••• A Multistage Rocket. In the first stage of a two-stage 
rocket, the rocket is fired from the launch pad starting from rest but 
with a constant acceleration of 3.50 m>s2 upward. At 25.0 s after launch, 
the second stage fires for 10.0 s, which boosts the rocket’s velocity to 
132.5 m>s upward at 35.0 s after launch. This firing uses up all of the 
fuel, however, so after the second stage has finished firing, the only 
force acting on the rocket is gravity. Ignore air resistance. (a) Find the 
maximum height that the stage-two rocket reaches above the launch 
pad. (b) How much time after the end of the stage-two firing will it take 
for the rocket to fall back to the launch pad? (c) How fast will the stage-
two rocket be moving just as it reaches the launch pad?
2.77 •• Two stones are thrown vertically upward from the ground, one 
with three times the initial speed of the other. (a) If the faster stone takes 
10 s to return to the ground, how long will it take the slower stone to re-
turn? (b) If the slower stone reaches a maximum height of H, how high 
(in terms of H) will the faster stone go? Assume free fall.
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2.62 •• Collision. The engineer of a passenger train traveling at 
25.0 m>s sights a freight train whose caboose is 200 m ahead on the 
same track (Fig. P2.62). The freight train is traveling at 15.0 m>s in the 
same direction as the passenger train. The engineer of the passenger 
train immediately applies the brakes, causing a constant acceleration 
of 0.100 m>s2 in a direction opposite to the train’s velocity, while the 
freight train continues with constant speed. Take x = 0 at the location 
of the front of the passenger train when the engineer applies the brakes. 
(a) Will the cows nearby witness a collision? (b) If so, where will it take 
place? (c) On a single graph, sketch the positions of the front of the pas-
senger train and the back of the freight train.
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2.85 •• DATA In a physics lab experiment, you release a small steel 
ball at various heights above the ground and measure the ball’s speed 
just before it strikes the ground. You plot your data on a graph that has 
the release height (in meters) on the vertical axis and the square of the 
final speed (in m2>s2) on the horizontal axis. In this graph your data 
points lie close to a straight line. (a) Using g = 9.80 m>s2 and ignoring 
the effect of air resistance, what is the numerical value of the slope of 
this straight line? (Include the correct units.) The presence of air resis-
tance reduces the magnitude of the downward acceleration, and the ef-
fect of air resistance increases as the speed of the object increases. You 
repeat the experiment, but this time with a tennis ball as the object being 
dropped. Air resistance now has a noticeable effect on the data. (b) Is 
the final speed for a given release height higher than, lower than, or the 
same as when you ignored air resistance? (c) Is the graph of the release 
height versus the square of the final speed still a straight line? Sketch 
the qualitative shape of the graph when air resistance is present.
2.86 ••• DATA A model car starts from rest and travels in a straight 
line. A smartphone mounted on the car has an app that transmits the 
magnitude of the car’s acceleration (measured by an accelerometer) 
every second. The results are given in the table:

Time 1s 2 Acceleration 1m,s2 2
0 5.95

1.00 5.52

2.00 5.08

3.00 4.55

4.00 3.96

5.00 3.40

Each measured value has some experimental error. (a) Plot acceleration 
versus time and find the equation for the straight line that gives the best 
fit to the data. (b) Use the equation for a1t2 that you found in part (a) 
to calculate v1t2, the speed of the car as a function of time. Sketch the 
graph of v versus t. Is this graph a straight line? (c) Use your result from 
part (b) to calculate the speed of the car at t = 5.00 s. (d) Calculate the 
distance the car travels between t = 0 and t = 5.00 s.

CHALLENGE PROBLEMS
2.87 ••• In the vertical jump, an athlete starts from a crouch and 
jumps upward as high as possible. Even the best athletes spend little 
more than 1.00 s in the air (their “hang time”). Treat the athlete as a 
particle and let ymax be his maximum height above the floor. To explain 
why he seems to hang in the air, calculate the ratio of the time he is 
above ymax>2 to the time it takes him to go from the floor to that height. 
Ignore air resistance.

2.78 ••• During your summer internship for an aerospace company, you 
are asked to design a small research rocket. The rocket is to be launched 
from rest from the earth’s surface and is to reach a maximum height of 
960 m above the earth’s surface. The rocket’s engines give the rocket an 
upward acceleration of 16.0 m>s2 during the time T that they fire. After the 
engines shut off, the rocket is in free fall. Ignore air resistance. What must 
be the value of T in order for the rocket to reach the required altitude?
2.79 ••• A helicopter carrying Dr. Evil takes off with a constant up-
ward acceleration of 5.0 m>s2. Secret agent Austin Powers jumps on 
just as the helicopter lifts off the ground. After the two men struggle 
for 10.0 s, Powers shuts off the engine and steps out of the helicop-
ter. Assume that the helicopter is in free fall after its engine is shut off, 
and ignore the effects of air resistance. (a) What is the maximum height 
above ground reached by the helicopter? (b) Powers deploys a jet pack 
strapped on his back 7.0 s after leaving the helicopter, and then he has 
a constant downward acceleration with magnitude 2.0 m>s2. How far is 
Powers above the ground when the helicopter crashes into the ground?
2.80 •• Cliff Height. You are climbing in the Altai when you sud-
denly find yourself at the edge of a fog-shrouded cliff. To find the height 
of this cliff, you drop a rock from the top; 8.00 s later you hear the sound 
of the rock hitting the ground at the foot of the cliff. (a) If you ignore 
air resistance, how high is the cliff if the speed of sound is 330 m>s ? 
(b) Suppose you had ignored the time it takes the sound to reach you. In 
that case, would you have overestimated or underestimated the height of 
the cliff? Explain.
2.81 •• CALC An object is moving along the x-axis. At t = 0 it has 
velocity v0x = 20.0 m>s. Starting at time t = 0 it has acceleration 
ax = -Ct, where C has units of m>s3. (a) What is the value of C if the 
object stops in 8.00 s after t = 0? (b) For the value of C calculated in 
part (a), how far does the object travel during the 8.00 s?
2.82 •• A ball is thrown straight up from the ground with speed v0. 
At the same instant, a second ball is dropped from rest from a height H, 
directly above the point where the first ball was thrown upward. There 
is no air resistance. (a) Find the time at which the two balls collide. 
(b) Find the value of H in terms of v0 and g such that at the instant when 
the balls collide, the first ball is at the highest point of its motion.
2.83 • CALC Cars A and B travel in a straight line. The dis-
tance of A from the starting point is given as a function of time by 
xA1t2 = at + bt2, with a = 2.60 m>s and b = 1.20 m>s2. The distance 
of B from the starting point is xB1t2 = gt2 - dt3, with g = 2.80 m>s2 
and d = 0.20 m>s3. (a) Which car is ahead just after the two cars leave 
the starting point? (b) At what time(s) are the cars at the same point? 
(c) At what time(s) is the distance from A to B neither increasing nor 
decreasing? (d) At what time(s) do A and B have the same acceleration?
2.84 •• DATA In your physics lab you release a small glider from 
rest at various points on a long, frictionless air track that is inclined 
at an angle u above the horizontal. With an electronic photocell, you 
measure the time t it takes the glider to slide a distance x from the re-
lease point to the bottom of the track. Your measurements are given in  
Fig. P2.84, which shows a second-order polynomial (quadratic) fit to 
the plotted data. You are asked to find the glider’s acceleration, which 
is assumed to be constant. There is some error in each measurement, 
so instead of using a single set of x and t values, you can be more ac-
curate if you use graphical methods and obtain your measured value of 
the acceleration from the graph. (a) How can you re-graph the data so 
that the data points fall close to a straight line? (Hint: You might want to 
plot x or t, or both, raised to some power.) (b) Construct the graph you 
described in part (a) and find the equation for the straight line that is the 
best fit to the data points. (c) Use the straight-line fit from part (b)  to 
calculate the acceleration of the glider. (d) The glider is released at a 
distance x = 1.35 m from the bottom of the track. Use the acceleration 
value you obtained in part (c) to calculate the speed of the glider when it 
reaches the bottom of the track.
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2.88 ••• Catching the Bus.  A student is running at her top speed 
of 5.0 m>s to catch a bus, which is stopped at the bus stop. When the 
student is still 40.0 m from the bus, it starts to pull away, moving with 
a constant acceleration of 0.170 m>s2. (a) For how much time and what 
distance does the student have to run at 5.0 m>s before she overtakes 
the bus? (b) When she reaches the bus, how fast is the bus traveling? (c) 
Sketch an x-t graph for both the student and the bus. Take x = 0 at the 
initial position of the student. (d) The equations you used in part (a) to 
find the time have a second solution, corresponding to a later time for 
which the student and bus are again at the same place if they continue 
their specified motions. Explain the significance of this second solution. 
How fast is the bus traveling at this point? (e) If the student’s top speed 
is 3.5 m>s, will she catch the bus? (f) What is the minimum speed the 
student must have to just catch up with the bus? For what time and what 
distance does she have to run in that case?
2.89 ••• A ball is thrown straight up from the edge of the roof of a 
building. A second ball is dropped from the roof 1.00 s later. Ignore 
air resistance. (a) If the height of the building is 20.0 m, what must the 
initial speed of the first ball be if both are to hit the ground at the same 
time? On the same graph, sketch the positions of both balls as a func-
tion of time, measured from when the first ball is thrown. Consider the 
same situation, but now let the initial speed v0 of the first ball be given 
and treat the height h of the building as an unknown. (b) What must 
the height of the building be for both balls to reach the ground at the 
same time if (i) v0 is 6.0 m>s and (ii) v0 is 9.5 m>s ? (c) If v0 is greater 
than some value vmax, no value of h exists that allows both balls to hit 
the ground at the same time. Solve for vmax. The value vmax has a simple 
physical interpretation. What is it? (d) If v0 is less than some value vmin,  
no value of h exists that allows both balls to hit the ground at the same 
time. Solve for vmin. The value vmin also has a simple physical interpreta-
tion. What is it?

ANSWERS

Chapter Opening Question ?
(iii) Acceleration refers to any change in velocity, including both speed-
ing up and slowing down.

Key Example ARIATION Problems
VP2.5.1 (a) 4.5 s (b) 81 m
VP2.5.2 (a) 4.80 m>s2 (b) 375 m
VP2.5.3 (a) 11.1 s (b) 222 m (c) 10.0 m>s
VP2.5.4 (a) t = 2vC>1aT + aC2 (b) x = 2aTvC

2>1aT + aC22

VP2.7.1 (a) y = 3.16 m, vy = 9.06 m>s, above your hand and moving 
upward (b) y = -1.92 m, vy = -13.5 m>s, below your hand and mov-
ing downward
VP2.7.2 (a) y = -23.0 m, vy = -22.7 m>s (b) vy = -14.9 m>s

VP2.7.3 (a) 8.87 m>s (b) 0.854 s

VP2.7.4 (a) 22gH (b) 2gH = 1>22 = 0.707 times the speed at 
which it left your hand (c) 3H>4
VP2.8.1 (a) 0.398 s and 2.05 s (b) 2.75 s
VP2.8.2 0.447 s
VP2.8.3 (a) two; t =  0.338 s (moving upward) and t =  0.784 s (mov-
ing downward) (b) none
VP2.8.4 (a) t = v0>g (neither upward nor downward) (b) t = v0>2g 
(upward), t = 3v0>2g (downward)

Bridging Problem
h = 57.1 m

MCAT-STYLE PASSAGE PROBLEMS
BIO Blood Flow in the Heart. The human circulatory system is 
closed—that is, the blood pumped out of the left ventricle of the heart 
into the arteries is constrained to a series of continuous, branching ves-
sels as it passes through the capillaries and then into the veins as it re-
turns to the heart. The blood in each of the heart’s four chambers comes 
briefly to rest before it is ejected by contraction of the heart muscle.
2.90 If the contraction of the left ventricle lasts 250 ms and the speed of blood 
flow in the aorta (the large artery leaving the heart) is 0.80 m>s at the end of the 
contraction, what is the average acceleration of a red blood cell as it leaves the 
heart? (a) 310 m>s2; (b) 31 m>s2; (c) 3.2 m>s2; (d) 0.32 m>s2.
2.91 If the aorta (diameter da) branches into two equal-sized arteries 
with a combined area equal to that of the aorta, what is the diameter of 
one of the branches? (a) 1da; (b) da>12; (c) 2da; (d) da>2.
2.92 The velocity of blood in the aorta can be measured directly with ul-
trasound techniques. A typical graph of blood velocity versus time dur-
ing a single heartbeat is shown in Fig. P2.92. Which statement is the best 
interpretation of this graph? (a) The blood flow changes direction at about 
0.25 s; (b) the speed of the blood flow begins to decrease at about 0.10 s; 
(c) the acceleration of the blood is greatest in magnitude at about 0.25 s; 
(d) the acceleration of the blood is greatest in magnitude at about 0.10 s.
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3  Motion in Two or Three 
Dimensions

LEARNING OUTCOMES

In this chapter, you’ll learn... 
 3.1 How to use vectors to represent the posi-

tion and velocity of a particle in two or 
three dimensions.

 3.2 How to find the vector acceleration of a 
particle, why a particle can have an ac-
celeration even if its speed is constant, 
and how to interpret the components of 
acceleration parallel and perpendicular 
to a particle’s path.

 3.3 How to solve problems that involve the 
curved path followed by a projectile.

 3.4 How to analyze motion in a circular 
path, with either constant speed or 
varying speed.

 3.5 How to relate the velocities of a moving 
object as seen from two different frames 
of reference.

You’ll need to review...
 2.1 Average x-velocity.
 2.2 Instantaneous x-velocity.
 2.3 Average and instantaneous 

x-acceleration.
 2.4 Straight-line motion with constant 

acceleration.
 2.5 The motion of freely falling objects.

? If a cyclist is going around a curve at 
constant speed, is he accelerating? If 

so, what is the direction of his acceleration?  
(i) No; (ii) yes, in the direction of his motion;  
(iii) yes, toward the inside of the curve;  
(iv) yes, toward the outside of the curve;  
(v) yes, but in some other direction.

What determines where a batted baseball lands? How do you describe the mo-
tion of a roller coaster car along a curved track or the flight of a circling hawk? 
Which hits the ground first: a cricket ball that you simply drop or one that you 

throw horizontally?
We can’t answer these kinds of questions by using the techniques of Chapter 2, in 

which particles moved only along a straight line. Instead, we need to extend our descrip-
tions of motion to two- and three-dimensional situations. We’ll still use the vector quanti-
ties displacement, velocity, and acceleration, but now these quantities will no longer lie 
along a single line. We’ll find that several important kinds of motion take place in two 
dimensions only—that is, in a plane.

We also need to consider how the motion of a particle is described by different observ-
ers who are moving relative to each other. The concept of relative velocity will play an 
important role later in the book when we explore electromagnetic phenomena and when 
we introduce Einstein’s special theory of relativity.

This chapter merges the vector mathematics of Chapter 1 with the kinematic language 
of Chapter 2. As before, we’re concerned with describing motion, not with analyzing its 
causes. But the language you learn here will be an essential tool in later chapters when we 
study the relationship between force and motion.

3.1 POSITION AND VELOCITY VECTORS
Let’s see how to describe a particle’s motion in space. If the particle is at a point P at a 
certain instant, the position vector rS of the particle at this instant is a vector that goes 
from the origin of the coordinate system to point P (Fig. 3.1). The Cartesian coordinates 
x, y, and z of point P are the x-, y-, and z-components of vector rS. Using the unit vectors we 
introduced in Section 1.9, we can write

Unit vectors in x-, y-, and z-directions

Coordinates of
particle’s position

S
n n

nr = xd + ye + zk (3.1)

Position vector of a
particle at a given instant



 3.1 Position and Velocity Vectors    95

During a time interval ∆t the particle moves from P1, where its position vector is rS1, to 
P2, where its position vector is rS2. The change in position (the displacement) during this in-
terval is ∆rS ∙ rS2 ∙ rS1 ∙ 1x2 - x12 dn ∙ 1y2 - y12en ∙1z2 - z12kn. We define the average 
velocity vSav during this interval in the same way we did in Chapter 2 for straight-line mo-
tion, as the displacement divided by the time interval (Fig. 3.2):

Change in the particle’s position vector

Final time minus initial timeTime interval

Final position
minus initial
position

(3.2)
Average velocity vector
of a particle during time
interval from t1 to t2

S
Svav =   = 

∆t

∆r
t2 -  t1

r2 − r1
S S

Dividing a vector by a scalar is a special case of multiplying a vector by a scalar, described 
in Section 1.7; the average velocity vSav is equal to the displacement vector ∆rS multiplied 
by 1>∆t. Note that the x-component of Eq. (3.2) is vav@x = 1x2 - x12>1t2 - t12 = ∆x>∆t. 
This is just Eq. (2.2), the expression for average x-velocity that we found in Section 2.1 for 
one-dimensional motion.

We now define instantaneous velocity just as we did in Chapter 2: It equals the instan-
taneous rate of change of position with time. The key difference is that both position rS and 
instantaneous velocity vS are now vectors:

... equals the limit of its average velocity
vector as the time interval approaches zero ...

... and equals the instantaneous rate
of change of its position vector.

(3.3)
The instantaneous velocity
vector of a particle ...

S

 = Sv =  
∆t

∆r S

dt

dr
lim

∆t S 0

At any instant, the magnitude of vS is the speed v of the particle at that instant, and the 
direction of vS is the direction in which the particle is moving at that instant.

As ∆t S 0, points P1 and P2 in Fig. 3.2 move closer and closer together. In this limit, 
the vector ∆rS becomes tangent to the path. The direction of ∆rS in this limit is also the di-
rection of vS. So at every point along the path, the instantaneous velocity vector is tangent 
to the path at that point (Fig. 3.3).

It’s often easiest to calculate the instantaneous velocity vector by using components. 
During any displacement ∆rS, the changes ∆x, ∆y, and ∆z in the three coordinates of 
the particle are the components of ∆rS. It follows that the components vx , vy , and vz of the 
instantaneous velocity vS ∙ vx dn ∙ vyen ∙ vz kn are simply the time derivatives of the coordi-
nates x, y, and z:

(3.4)

... equals the instantaneous rate of change of its corresponding coordinate.

Each component of a particle’s instantaneous velocity vector ...

vx =  
dt

dx
vy =  

dt

dy
vz =  

dt

dz

The x-component of vS is vx = dx>dt, which is the same as Eq. (2.3) for straight-line mo-
tion (see Section 2.2). Hence Eq. (3.4) is a direct extension of instantaneous velocity to 
motion in three dimensions.

We can also get Eq. (3.4) by taking the derivative of Eq. (3.1). The unit vectors dn, en, and 
kn don’t depend on time, so their derivatives are zero and we find

 vS ∙
drS

dt
∙

dx
dt

 dn ∙
dy

dt
 en ∙

dz
dt

 kn (3.5)

This shows again that the components of vS are dx>dt, dy>dt, and dz>dt.
The magnitude of the instantaneous velocity vector vS—that is, the speed—is given in 

terms of the components vx , vy , and vz by the Pythagorean relationship:

 0 vS 0 = v = 2vx
 2 + vy

 2 + vz
 2 (3.6)

rS

n

n

kn

Position P of a particle
at a given time has
coordinates x, y, z.

z

y

x
x

z
P

O

y

z xd

ye

Position vector of point P
has components x, y, z:
r = x d + ye + zk.n n

n
S

Figure 3.1 The position vector rS from 
origin O to point P has components x, y, 
and z.

S

S

S

S

S

S

=

Position at time t1

Position at time t2

z

y

x

O

Particle’s path

P1

P2

r2 ∆ r Displacement
vector ∆r points
from P1 to P2.

vav
∆r
∆ t

r1

Figure 3.2 The average velocity vSav 
between points P1 and P2 has the same 
direction as the displacement ∆rS.
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Particle’s path
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P2

v2

The instantaneous
velocity vector v is
tangent to the path
at each point. v1

Figure 3.3 The vectors vS1 and vS2 are the 
instantaneous velocities at the points P1 
and P2 shown in Fig. 3.2.
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Figure 3.4 shows the situation when the particle moves in the xy-plane. In this case,  
z and vz are zero. Then the speed (the magnitude of vS) is

v = 2vx
 2 + vy

 2

and the direction of the instantaneous velocity vS is given by angle a (the Greek letter 
alpha) in the figure. We see that

 tan a =
vy

vx
 (3.7)

(We use a for the direction of the instantaneous velocity vector to avoid confusion with 
the direction u of the position vector of the particle.)

From now on, when we use the word “velocity,” we’ll always mean the instantaneous 
velocity vector vS (rather than the average velocity vector). Usually, we won’t even bother 
to call vS a vector; it’s up to you to remember that velocity is a vector quantity with both 
magnitude and direction.

vx and vy are the x- and y-
components of v.

The instantaneous velocity vector v
is always tangent to the path.

a 

vS

S

S
O

Particle’s path in
the xy-plane

vy

vx

y

x

Figure 3.4 The two velocity components 
for motion in the xy-plane.

EXAMPLE 3.1 Calculating average and instantaneous velocity

A robotic vehicle, or rover, is exploring the surface of Mars. The sta-
tionary Mars lander is the origin of coordinates, and the surrounding 
Martian surface lies in the xy-plane. The rover, which we represent as a 
point, has x- and y-coordinates that vary with time:

 x = 2.0 m - 10.25 m > s22t2

 y = 11.0 m > s2t + 10.025 m > s32t3

(a) Find the rover’s coordinates and distance from the lander at 
t = 2.0 s. (b) Find the rover’s displacement and average velocity vec-
tors for the interval t = 0.0 s to t = 2.0 s. (c) Find a general expression 
for the rover’s instantaneous velocity vector vS. Express vS at t = 2.0 s in 
component form and in terms of magnitude and direction.

IDENTIFY and SET UP This problem involves motion in two dimen-
sions, so we must use the vector equations obtained in this section. 
Figure 3.5 shows the rover’s path (dashed line). We’ll use Eq. (3.1) for 
position rS, the expression ∆rS ∙ rS2 ∙ rS1 for displacement, Eq. (3.2) for 
average velocity, and Eqs. (3.5), (3.6), and (3.7) for instantaneous ve-
locity and its magnitude and direction.

EXECUTE (a) At t = 2.0 s the rover’s coordinates are

 x = 2.0 m - 10.25 m > s2212.0 s22 = 1.0 m

 y = 11.0 m > s212.0 s2 + 10.025 m > s3212.0 s23 = 2.2 m

The rover’s distance from the origin at this time is

r = 2x2 + y2 = 2(1.0 m)2 + 12.2 m22 = 2.4 m

(b) To find the displacement and average velocity over the given 
time interval, we first express the position vector rS as a function of time 
t. From Eq. (3.1) this is

 rS ∙ xdn ∙ yen
 ∙ 32.0 m - 10.25 m > s22t24 dn ∙ 311.0 m>s2t + 10.025 m>s32t34  en

At t = 0.0 s the position vector rS0 is

rS0 ∙ 12.0 m2dn ∙ 10.0 m2en

From part (a), the position vector rS2 at t = 2.0 s is

rS2 ∙ 11.0 m2dn ∙ 12.2 m2en

The displacement from t = 0.0 s to t = 2.0 s is therefore

 ∆rS ∙ rS2 ∙ rS0 ∙ 11.0 m2dn ∙ 12.2 m2en ∙ 12.0 m2 dn
 ∙ 1-1.0 m2dn ∙ 12.2 m2en

During this interval the rover moves 1.0 m in the negative x-direction 
and 2.2 m in the positive y-direction. From Eq. (3.2), the average veloc-
ity over this interval is the displacement divided by the elapsed time:

 vSav ∙
∆rS

∆t
∙

1-1.0 m2dn ∙ 12.2 m2en
2.0 s - 0.0 s

 ∙ 1-0.50 m > s2dn ∙ 11.1 m > s2en
The components of this average velocity are vav@x = -0.50 m >s and 
vav@y = 1.1 m > s.

(c) From Eq. (3.4) the components of instantaneous velocity are the 
time derivatives of the coordinates:

 vx =
dx
dt

= 1-0.25 m > s2212t2

 vy =
dy

dt
= 1.0 m > s + 10.025 m > s3213t22

S

y (m)

x (m)
O
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Rover’s path
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a =  128°
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S
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Figure 3.5 At t = 0.0 s the rover has position vector rS0 and instan-
taneous velocity vector vS0 . Likewise, rS1 and vS1 are the vectors at 
t = 1.0 s; rS2 and vS2 are the vectors at t = 2.0 s.
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Hence the instantaneous velocity vector is

 vS ∙ vx dn ∙ vy en
 ∙ 1-0.50 m > s22tdn ∙ 31.0 m>s + 10.075 m > s32t24  en

At t = 2.0 s the velocity vector vS2 has components

 v2x = 1-0.50 m > s2212.0 s2 = -1.0 m > s

 v2y = 1 .0 m > s + 10.075 m > s3212.0 s22 = 1.3 m > s

The magnitude of the instantaneous velocity (that is, the speed) at 
t = 2.0 s is

 v2 = 2v 2
2x + v 2

2y  = 21-1.0 m> s22 + 11.3 m > s22 = 1.6 m > s

Figure 3.5 shows the direction of velocity vector vS2, which is at an 
angle a between 90° and 180° with respect to the positive x-axis. From 
Eq. (3.7) we have

arctan 
vy

vx
= arctan 

1.3 m > s

-1.0 m > s
= -52°

This is off by 180°; the correct value is a = 180° - 52° = 128°, or 38° 
west of north.

EVALUATE Compare the components of average velocity from part 
(b) for the interval from t = 0.0 s to t = 2.0 s 1vav@x = -0.50 m > s, 
vav@y = 1.1 m > s2 with the components of instantaneous velocity at 
t = 2.0 s from part (c) 1v2x = -1.0 m > s, v2y =  1.3 m > s2. Just as in one 
dimension, the average velocity vector vSav over an interval is in general 
not equal to the instantaneous velocity vS at the end of the interval (see 
Example 2.1).

Figure 3.5 shows the position vectors rS and instantaneous velocity 
vectors vS at t = 0.0 s, 1.0 s, and 2.0 s. (Calculate these quantities for 
t = 0.0 s and t = 1.0 s.) Notice that vS is tangent to the path at every 
point. The magnitude of vS increases as the rover moves, which means 
that its speed is increasing.

KEYCONCEPT To calculate the average velocity vector of an object, 
first find its displacement vector during a time interval. Then divide by 
the time interval. To calculate the object’s instantaneous velocity vector 
(its average velocity vector over an infinitesimally short time interval), 
take the derivative of its position vector with respect to time.

TEST YOUR UNDERSTANDING OF SECTION 3.1 In which of these situations would the 
average velocity vector vSav over an interval be equal to the instantaneous velocity vS at the end of the 
interval? (i) An object moving along a curved path at constant speed; (ii) an object moving along a 
curved path and speeding up; (iii) an object moving along a straight line at constant speed; (iv) an 
object moving along a straight line and speeding up.

ANSWER

❙ (iii) If the instantaneous velocity v
S

 is constant over an interval, its value at any point (including 
the end of the interval) is the same as the average velocity v

S
av over the interval. In (i) and (ii) the 

direction of v
S

 at the end of the interval is tangent to the path at that point, while the direction of 
v
S

av points from the beginning of the path to its end (in the direction of the net displacement). In 
(iv) both v

S
 and v

S
av are directed along the straight line, but v

S
 has a greater magnitude because the 

speed has been increasing.

3.2 THE ACCELERATION VECTOR
Now let’s consider the acceleration of a particle moving in space. Just as for motion in a 
straight line, acceleration describes how the velocity of the particle changes. But since we 
now treat velocity as a vector, acceleration will describe changes in the velocity magni-
tude (that is, the speed) and changes in the direction of velocity (that is, the direction in 
which the particle is moving).

In Fig. 3.6a, a car (treated as a particle) is moving along a curved road. Vectors vS1 
and vS2 represent the car’s instantaneous velocities at time t1, when the car is at point 

S
S

                This car accelerates by slowing
            while rounding a curve. (Its
      instantaneous velocity changes in
   both magnitude and direction.)

(a)

P2

P1

v2

v1

v2

(b)

P2

P1

v1

v1

v2

P2

P1

v1

∆v

v2

(c)

The average acceleration has the same direction
as the change in velocity, ∆v.

aav     ∆v
∆t

S

S

S

S

S

S

S

S

S

S

S

To find the car’s average acceleration between
P1 and P2, we first find the change in velocity
∆v by subtracting v1 from v2. (Notice that
v1 + ∆v = v2.)

S S

S S S

S

=

∆v = v2 − v1
S S

Figure 3.6 (a) A car moving along a curved road from P1 to P2 . (b) How to obtain the change in velocity ∆vS ∙ vS2 ∙ vS1  
by vector subtraction. (c) The vector aSav ∙ ∆vS>∆t represents the average acceleration between P1 and P2 .
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To find the instantaneous
acceleration
a at P1 ...

v2

S P2

P1

P1

P1

P2

∆tS0

∆v

∆v

∆t

∆v
∆t

Acceleration points to
concave side of path.

Only if the trajectory is
a straight line ...

... is the acceleration
tangent to the trajectory.

v1

v1

v1

v2

(a) Acceleration: curved trajectory

(b) Acceleration: straight-line trajectory

S

S

S

S

S

S
S

S

a = limS

a = limS

... we take the limit of aav
as P2 approaches P1 ...

S

... meaning that ∆v and ∆t
approach 0.  

S

∆tS0

Figure 3.7 (a) Instantaneous acceleration 
aS at point P1 in Fig. 3.6. (b) Instantaneous 
acceleration for motion along a straight line.

P1, and at time t2, when the car is at point P2 . During the time interval from t1 to t2, the 
vector change in velocity is vS2 ∙ vS1 ∙ ∆vS, so vS2 ∙ vS1 ∙ ∆vS (Fig. 3.6b). The average 
acceleration aSav of the car during this time interval is the velocity change divided by 
the time interval t2 - t1 = ∆t:

Change in the particle’s velocity

Final time minus initial timeTime interval

Final velocity
minus initial
velocity

Average acceleration
vector of a particle
during time interval
from t1 to t2

S
S

aav =   = 
∆t

∆v
t2 -  t1

v2 − v1
S S

(3.8)

Average acceleration is a vector quantity in the same direction as ∆vS (Fig. 3.6c). The x-
component of Eq. (3.8) is aav@x = 1v2x - v1x2>1t2 - t12 = ∆vx>∆t, which is just Eq. (2.4) 
for average acceleration in straight-line motion.

As in Chapter 2, we define the instantaneous acceleration aS (a vector quantity) at 
point P1 as the limit of the average acceleration vector when point P2 approaches point P1, 
so both ∆vS and ∆t approach zero (Fig. 3.7):

... equals the limit of its average acceleration
vector as the time interval approaches zero ...

... and equals the instantaneous rate
of change of its velocity vector.

(3.9)
The instantaneous
acceleration vector
of a particle ...

S
S S

 = a =  
∆t

∆v
dt

dv
lim

∆t S 0

The velocity vector vS is always tangent to the particle’s path, but the instantaneous ac-
celeration vector aS does not have to be tangent to the path. If the path is curved, aS points 
toward the concave side of the path—that is, toward the inside of any turn that the particle 
is making (Fig. 3.7a). The acceleration is tangent to the path only if the particle moves in a 
straight line (Fig. 3.7b).

   CAUTION    Any particle following a curved path is accelerating When a particle is moving 
in a curved path, it always has nonzero acceleration, even when it moves with constant speed. 
This conclusion is contrary to the everyday use of the word “acceleration” to mean that speed 
is increasing. The more precise definition given in Eq. (3.9) shows that there is a nonzero ac-
celeration whenever the velocity vector changes in any way, whether there is a change of speed, 
direction, or both. ❙

To convince yourself that a particle is accelerating as it moves on a curved path 
with constant speed, think of your sensations when you ride in a car. When the car 
accelerates, you tend to move inside the car in a direction opposite to the car’s accelera-
tion. (In Chapter 4 we’ll learn why this is so.) Thus you tend to slide toward the back of 
the car when it accelerates forward (speeds up) and toward the front of the car when it 
accelerates backward (slows down). If the car makes a turn on a level road, you tend to 
slide toward the outside of the turn; hence the car is accelerating toward the inside of 
the turn.

We’ll usually be interested in instantaneous acceleration, not average acceleration. 
From now on, we’ll use the term “acceleration” to mean the instantaneous acceleration 
vector aS.

Each component of the acceleration vector aS ∙ ax dn ∙ ayen ∙ az kn is the derivative of 
the corresponding component of velocity:

... equals the instantaneous rate of change of its corresponding velocity component.

Each component of a particle’s instantaneous acceleration vector ...

ax =  
dt

dvx ay =  
dt

dvy
az =  

dt

dvz
(3.10)

?
BIO APPLICATION Horses on a 
Curved Path By leaning to the side and 
hitting the ground with their hooves at an 
angle, these horses give themselves the 
sideways acceleration necessary to make a 
sharp change in direction.
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In terms of unit vectors,

 aS ∙
dvS

dt
∙

dvx

dt
 dn ∙

dvy

dt
 en ∙

dvz

dt
 kn (3.11)

The x-component of Eqs. (3.10) and (3.11), ax = dvx>dt, is just Eq. (2.5) for instantaneous 
acceleration in one dimension. Figure 3.8 shows an example of an acceleration vector that 
has both x- and y-components.

Since each component of velocity is the derivative of the corresponding coordinate, we 
can express the components ax, ay, and az of the acceleration vector aS as

 ax =
d2x

dt2  ay =
d2y

dt2  az =
d2z

dt2  (3.12)

aS

ax

ay

Figure 3.8 When the fingers release 
the arrow, its acceleration vector has a 
 horizontal component 1ax2 and a vertical 
component 1ay2.

EXAMPLE 3.2 Calculating average and instantaneous acceleration

Let’s return to the motions of the Mars rover in Example 3.1. (a) Find 
the components of the average acceleration for the interval t = 0.0 s to 
t = 2.0 s. (b) Find the instantaneous acceleration at t = 2.0 s.

IDENTIFY and SET UP In Example 3.1 we found the components of the 
rover’s instantaneous velocity at any time t:

 vx =
dx
dt

= 1-0.25 m>s2212t2 = 1-0.50 m>s22t

 vy =
dy

dt
= 1.0 m>s + 10.025 m>s3213t22 =  1.0 m>s + 10.075 m>s32t2

We’ll use the vector relationships among velocity, average acceleration, 
and instantaneous acceleration. In part (a) we determine the values of 
vx and vy at the beginning and end of the interval and then use Eq. (3.8) 
to calculate the components of the average acceleration. In part (b) we 
obtain expressions for the instantaneous acceleration components at 
any time t by taking the time derivatives of the velocity components as 
in Eqs. (3.10).

EXECUTE (a) In Example 3.1 we found that at t = 0.0 s the velocity 
components are

vx = 0.0 m>s  vy = 1.0 m>s
and that at t = 2.0 s the components are

vx = -1.0 m>s  vy = 1.3 m>s
Thus the components of average acceleration in the interval t = 0.0 s 
to t = 2.0 s are

 aav@x =
∆vx

∆t
=

-1.0 m>s - 0.0 m>s
2.0 s - 0.0 s

= -0.50 m>s2

 aav@y =
∆vy

∆t
=

1.3 m>s - 1.0 m>s
2.0 s - 0.0 s

= 0.15 m>s2

(b) Using Eqs. (3.10), we find

ax =
dvx

dt
= -0.50 m>s2  ay =

dvy

dt
= 10.075 m>s3212t2

Hence the instantaneous acceleration vector aS at time t is

aS ∙ ax dn ∙ ay en ∙ 1-0.50 m>s22dn ∙ 10.15 m>s32ten

At t = 2.0 s the components of acceleration and the acceleration 
 vector are

 ax = -0.50 m>s2  ay = 10.15 m>s3212.0 s2 = 0.30 m>s2

 aS ∙ 1-0.50 m>s22dn ∙ 10.30 m>s22en

The magnitude of acceleration at this time is

 a = 2a 2
x + a 2

y  = 21-0.50 m>s222 + 10.30 m>s222 = 0.58 m>s2

A sketch of this vector (Fig. 3.9) shows that the direction angle b of 
aS with respect to the positive x-axis is between 90° and 180°. From 
Eq. (3.7) we have

arctan 
ay

ax
= arctan 

0.30 m>s2

-0.50 m>s2 = -31°

Hence b = 180° + 1-31°2 = 149°.

EVALUATE Figure 3.9 shows the rover’s path and the velocity and ac-
celeration vectors at t = 0.0 s, 1.0 s, and 2.0 s. (Use the results of part 
(b) to calculate the instantaneous acceleration at t = 0.0 s and t = 1.0 s 
for yourself.) Note that vS and aS are not in the same direction at any of 
these times. The velocity vector vS is tangent to the path at each point 
(as is always the case), and the acceleration vector aS points toward the 
concave side of the path.

KEYCONCEPT To calculate the average acceleration vector of an 
object, first find the change in its velocity vector (final velocity minus 
initial velocity) during a time interval. Then divide by the time interval. 
To calculate the object’s instantaneous acceleration vector (its average 
velocity vector over an infinitesimally short time interval), take the de-
rivative of its velocity vector with respect to time.

S

S

S

S

S

S
a =  128°

b =  149°y (m)

x (m)
O

0.5

1.0

1.5

2.0

0.5 1.0 1.5

Rover’s path

t =  0.0 s

2.0

2.5

t =  1.0 s

t =  2.0 s

v2

v0

v1

a2

a1

a0

Figure 3.9 The path of the robotic rover, showing the velocity and 
acceleration at t = 0.0 s 1vS0 and aS02, t = 1.0 s 1vS1 and aS12, and 
t = 2.0 s 1vS2 and aS22.
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Parallel and Perpendicular Components of Acceleration
Equations (3.10) tell us about the components of a particle’s instantaneous accelera-
tion vector aS along the x-, y-, and z-axes. Another useful way to think about aS is 
in terms of one component parallel to the particle’s path and to its velocity vS, and 
one  component perpendicular to the path and to vS (Fig. 3.10). That’s because the 
parallel component aŒ tells us about changes in the particle’s speed, while the perpen-
dicular component a# tells us about changes in the particle’s direction of motion. To 
see why the parallel and perpendicular components of aS have these properties, let’s 
consider two special cases.

In Fig. 3.11a the acceleration vector is in the same direction as the velocity vS1, so 
aS has only a parallel component aŒ (that is, a# = 0). The velocity change ∆vS during a 
small time interval ∆t is in the same direction as aS and hence in the same direction as vS1 . 
The velocity vS2 at the end of ∆t is in the same direction as vS1 but has greater magnitude. 
Hence during the time interval ∆t the particle in Fig. 3.11a moved in a straight line with 
increasing speed (compare Fig. 3.7b).

In Fig. 3.11b the acceleration is perpendicular to the velocity, so aS has only a perpen-
dicular component a# (that is, aŒ = 0). In a small time interval ∆t, the velocity change 
∆vS is very nearly perpendicular to vS1, and so vS1 and vS2 have different directions. As the 
time interval ∆t approaches zero, the angle f in the figure also approaches zero, ∆vS be-
comes perpendicular to both vS1 and vS2, and vS1 and vS2 have the same magnitude. In other 
words, the speed of the particle stays the same, but the direction of motion changes and 
the path of the particle curves.

In the most general case, the acceleration aS has both components parallel and perpen-
dicular to the velocity vS, as in Fig. 3.10. Then the particle’s speed will change (described 
by the parallel component aŒ) and its direction of motion will change (described by the 
perpendicular component a#).

Figure 3.12 shows a particle moving along a curved path for three situations: constant 
speed, increasing speed, and decreasing speed. If the speed is constant, aS is perpendicular, 
or normal, to the path and to vS and points toward the concave side of the path (Fig. 3.12a). 
If the speed is increasing, there is still a perpendicular component of aS, but there is also a 
parallel component with the same direction as vS (Fig. 3.12b). Then aS points ahead of the 
normal to the path. (This was the case in Example 3.2.) If the speed is decreasing, the par-
allel component has the direction opposite to vS, and aS points behind the normal to the path 
(Fig. 3.12c; compare Fig. 3.7a). We’ll use these ideas again in Section 3.4 when we study 
the special case of motion in a circle.

Component of a
perpendicular to the path

Component of
a parallel to
the path

aS

S

S

P

a#

aŒ

Particle’s path

Normal to
path at P

Tangent to path at P

vS

Figure 3.10 The acceleration can be re-
solved into a component aŒ parallel to the 
path (that is, along the tangent to the path) 
and a component a# perpendicular to the 
path (that is, along the normal to the path).

aS

S

S

S S Sv2 = v1 + ∆v

v1

Changes only magnitude 
of velocity: speed changes;
direction doesn’t.

(a) Acceleration parallel to velocity

∆v

Figure 3.11 The effect of acceleration 
directed (a) parallel to and (b) 
perpendicular to a particle’s velocity.

f

aS

S
S

S S Sv2 = v1 + ∆v

v1
∆vChanges only direction of

velocity: particle follows
curved path at constant
speed.

(b) Acceleration perpendicular to velocity

aS

aS

aS

vSvSvS

... acceleration points
ahead of the normal.

(b) When speed is increasing along a curved
path ...

P

Normal at P

... acceleration points
behind the normal.

(c) When speed is decreasing along a curved
path ...

P

Normal at P

... acceleration is
normal to the path.

(a) When speed is constant along a curved
path ...

P

Normal at P

Figure 3.12 Velocity and acceleration vectors for a particle moving through a point P on a curved path with (a) constant speed,  
(b) increasing speed, and (c) decreasing speed.
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CONCEPTUAL EXAMPLE 3.4 Acceleration of a skier

A skier moves along a ski-jump ramp (Fig. 3.14a). The ramp is straight 
from point A to point C and curved from point C onward. The skier 
speeds up as she moves downhill from point A to point E, where her 
speed is maximum. She slows down after passing point E. Draw the 
direction of the acceleration vector at each of the points B, D, E, and F.

SOLUTION Figure 3.14b shows our solution. At point B the skier is mov-
ing in a straight line with increasing speed, so her acceleration points 
downhill, in the same direction as her velocity. At points D, E, and F the 
skier is moving along a curved path, so her acceleration has a component 
perpendicular to the path (toward the concave side of the path) at each of 
these points. At point D there is also an acceleration component in the 
direction of her motion because she is speeding up. So the acceleration 
vector points ahead of the normal to her path at point D. At point E, the 
skier’s speed is instantaneously not changing; her speed is maximum at 
this point, so its derivative is zero. There is therefore no parallel compo-
nent of aS, and the acceleration is perpendicular to her motion. At point 
F there is an acceleration component opposite to the direction of her 
motion because she’s slowing down. The acceleration vector therefore 
points behind the normal to her path.

In the next section we’ll consider the skier’s acceleration after she 
flies off the ramp.

KEYCONCEPT If a moving object is turning (changing direction), 
its acceleration vector points ahead of the normal to its path if it is 
speeding up, behind the normal if it is slowing down, and along the 
normal if its speed is instantaneously not changing.

A

Direction
of motion

B

C

D
E

F

(a)

(b)

Figure 3.14 (a) The skier’s path. (b) Our solution.

EXAMPLE 3.3 Calculating parallel and perpendicular components of acceleration

For the rover of Examples 3.1 and 3.2, find the parallel and perpendicu-
lar components of the acceleration at t = 2.0 s.

IDENTIFY and SET UP We want to find the components of the accelera-
tion vector aS that are parallel and perpendicular to velocity vector vS. We 
found the directions of vS and aS in Examples 3.1 and 3.2, respectively; 
Fig. 3.9 shows the results. From these directions we can find the angle 
between the two vectors and the components of aS with respect to the 
direction of vS.

EXECUTE From Example 3.2, at t = 2.0 s the particle has an accelera-
tion of magnitude 0.58 m>s2 at an angle of 149° with respect to the posi-
tive x-axis. In Example 3.1 we found that at this time the velocity vector 
is at an angle of 128° with respect to the positive x-axis. The angle be-
tween aS and vS is therefore 149° - 128° = 21° (Fig. 3.13). Hence the 
components of acceleration parallel and perpendicular to vS are

 aŒ = a cos 21° = 10.58 m>s22cos 21° = 0.54 m>s2

 a# = a sin 21° = 10.58 m>s22sin 21° = 0.21 m>s2

EVALUATE The parallel component aŒ is positive (in the same direction 
as vS), which means that the speed is increasing at this instant. The value 
aŒ = +0.54 m>s2 tells us that the speed is increasing at this instant at 
a rate of 0.54 m>s per second. The perpendicular component a# is not 

zero, which means that at this instant the rover is turning—that is, it is 
changing direction and following a curved path.

KEYCONCEPT If an object’s speed is changing, there is a compo-
nent of its acceleration vector parallel to its velocity vector. If an ob-
ject’s direction of motion is changing—that is, it is turning—there is a 
component of its acceleration vector perpendicular to its velocity vector 
and toward the inside of the turn.

aS

vS

Parallel component of acceleration

Perpendicular
component of acceleration

Position of rover at t =  2.0 s

Path of rover

21° aŒ

a#

Figure 3.13 The parallel and perpendicular components of 
the acceleration of the rover at t = 2.0 s.
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TEST YOUR UNDERSTANDING OF SECTION 3.2 A sled travels over the crest of a snow-
covered hill. The sled slows down as it climbs up one side of the hill and gains speed as it descends 
on the other side. Which of the vectors (1 through 9) in the figure correctly shows the direction of 
the sled’s acceleration at the crest? (Choice 9 is that the acceleration is zero.)

ANSWER

• At any time the two balls have different
 x-coordinates and x-velocities but the same
 y-coordinate, y-velocity, and y-acceleration.
• The horizontal motion of the yellow ball has
 no effect on its vertical motion.

The images
of the balls
are recorded
at equal
time intervals.

y

x

Figure 3.16 The red ball is dropped from 
rest, and the yellow ball is simultaneously 
projected horizontally.

or 9: acceleration =  0

Sled’s path
1 5

2 4

8 6

3

7

❙ Vector 7 At the high point of the sled’s path, the speed is minimum. At that point the speed is 
neither increasing nor decreasing, and the parallel component of the acceleration (that is, the hori-
zontal component) is zero. The acceleration has only a perpendicular component toward the inside 
of the sled’s curved path. In other words, the acceleration is downward.

3.3 PROJECTILE MOTION
A projectile is any object that is given an initial velocity and then follows a path 
 determined entirely by the effects of gravitational acceleration and air resistance. A batted 
baseball, a thrown basketball, and a bullet shot from a rifle are all projectiles. The path 
followed by a projectile is called its trajectory.

To analyze the motion of a projectile, we’ll use an idealized model. We’ll represent 
the projectile as a particle with an acceleration (due to gravity) that is constant in both 
magnitude and direction. We’ll ignore the effects of air resistance and the curvature and 
rotation of the earth. This model has limitations, however: We have to consider the earth’s 
curvature when we study the flight of long-range missiles, and air resistance is of crucial 
importance to a sky diver. Nevertheless, we can learn a lot from analysis of this simple 
model. For the remainder of this chapter the phrase “projectile motion” will imply that 
we’re ignoring air resistance. In Chapter 5 we’ll see what happens when air resistance 
cannot be ignored.

Projectile motion is always confined to a vertical plane determined by the direction 
of the initial velocity (Fig. 3.15). This is because the acceleration due to gravity is purely 
vertical; gravity can’t accelerate the projectile sideways. Thus projectile motion is two-
dimensional. We’ll call the plane of motion the xy-coordinate plane, with the x-axis hori-
zontal and the y-axis vertically upward.

The key to analyzing projectile motion is that we can treat the x- and y-coordinates 
separately. Figure 3.16 illustrates this for two projectiles: a red ball dropped from rest 
and a yellow ball projected horizontally from the same height. The figure shows that the 
horizontal motion of the yellow projectile has no effect on its vertical motion. For both 
projectiles, the x-component of acceleration is zero and the y-component is constant and 
equal to -g. (By definition, g is always positive; with our choice of coordinate directions, 
ay is negative.) So we can analyze projectile motion as a combination of horizontal mo-
tion with constant velocity and vertical motion with constant acceleration.

We can then express all the vector relationships for the projectile’s position, velocity, 
and acceleration by separate equations for the horizontal and vertical components. The 
components of aS are

 ax = 0  ay = -g (projectile motion, no air resistance) (3.13)

Since both the x-acceleration and y-acceleration are constant, we can use Eqs. (2.8), (2.12), 
(2.13), and (2.14) directly. Suppose that at time t = 0 our particle is at the point 1x0, y02 
and its initial velocity at this time has components v0x and v0y . The components of ac-
celeration are ax = 0, ay = -g. Considering the x-motion first, we substitute 0 for ax in 
Eqs. (2.8) and (2.12). We find

 vx = v0x (3.14)

 x = x0 + v0x t (3.15)

For the y-motion we substitute y for x, vy for vx, v0y for v0x, and ay = -g for ax :

  vy = v0y - gt (3.16)

  y = y0 + v0y t - 1
2 gt2 (3.17)

v0
aS

• A projectile moves in a vertical plane that
  contains the initial velocity vector v0.
• Its trajectory depends only on v0 and
  on the downward acceleration due to gravity.

S

S

S Trajectory

ax =  0, ay =  -g

y

O
x

Figure 3.15 The trajectory of an idealized 
projectile.
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It’s usually simplest to take the initial position 1at t = 02 as the origin; then x0 = y0 = 0. 
This might be the position of a ball at the instant it leaves the hand of  the person who 
throws it or the position of a bullet at the instant it leaves the gun barrel.

Figure 3.17 shows the trajectory of a projectile that starts at (or passes through) 
the origin at time t = 0, along with its position, velocity, and velocity components at 
equal time intervals. The x-velocity vx is constant; the y-velocity vy changes by equal 
amounts in equal times, just as if the projectile were launched vertically with the same 
initial y-velocity.

We can also represent the initial velocity vS0 by its magnitude v0 (the initial speed) and 
its angle a0 with the positive x-axis (Fig. 3.18). In terms of these quantities, the compo-
nents v0x and v0y of the initial velocity are

 v0x = v0 cos a0  v0y = v0 sin a0 (3.18)

If we substitute Eqs. (3.18) into Eqs. (3.14) through (3.17) and set x0 = y0 = 0, we 
get the following equations. They describe the position and velocity of the projectile in 
Fig. 3.17 at any time t:

Coordinates at time t of
a projectile (positive
y-direction is upward,
and x =  y =  0 at t =  0)

Speed
at t =  0

Direction
at t =  0 Time

Time

Acceleration
due to gravity:
Note g 7  0.

Velocity components at 
time t of a projectile
(positive y-direction 
is upward)

x =  1v0 cos a02t

vx =  v0 cos a0

vy =  v0 sin a0 -  gt

(3.19)

(3.20)

(3.21)

(3.22)

y =  1v0 sin a02t -  1
2 gt2

Speed
at t =  0

Direction
at t =  0

a0

At the top of the trajectory, the projectile has zero vertical
velocity (vy =  0), but its vertical acceleration is still -g.

Vertically, the projectile is in constant-
acceleration motion in response to the earth’s
gravitational pull. Thus its vertical velocity
changes by equal amounts during equal
time intervals.

Horizontally, the projectile is in constant-velocity motion: Its horizontal acceleration
is zero, so it moves equal x-distances in equal time intervals.

y

O
x

Sv1

Sv0

Sv2

Sv3

v2xv1xv0x

v0x

v3x

v1x

ay =  -g

v1y v1y

v3yv3y

v3x

v0y v0y

a

a

Figure 3.17 If air resistance is negligible, the trajectory of a projectile is a combination of horizontal  
motion with constant velocity and vertical motion with constant acceleration.

S

y

O
x

v0

y

x

Sv0

v0y =  v0 sin a0

v0x =  v0 cos a0

a0

Figure 3.18 The initial velocity compo-
nents v0x and v0y of a projectile (such as a 
kicked football) are related to the initial 
speed v0 and initial angle a0 .
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We can get a lot of information from Eqs. (3.19) through (3.22). For example, the 
 distance r from the origin to the projectile at any time t is

 r = 2x2 + y2 (3.23)

The projectile’s speed (the magnitude of its velocity) at any time is

 v = 2vx
 2 + vy

 2 (3.24)

The direction of the velocity, in terms of the angle a it makes with the positive x-direction 
(see Fig. 3.17), is

 tan a =
vy

vx
 (3.25)

The velocity vector vS is tangent to the trajectory at each point.
We can derive an equation for the trajectory’s shape in terms of x and y by eliminating 

t. From Eqs. (3.19) and (3.20), we find t = x>1v0 cos a02 and

 y = 1tan a02x -
g

2v0
 2 cos2 a0

 x2 (3.26)

Don’t worry about the details of this equation; the important point is its general form. 
Since v0, tan a0, cos a0, and g are constants, Eq. (3.26) has the form

y = bx - cx2

where b and c are constants. This is the equation of a parabola. In our simple model of 
projectile motion, the trajectory is always a parabola (Fig. 3.19).

When air resistance isn’t negligible and has to be included, calculating the trajec-
tory becomes a lot more complicated; the effects of air resistance depend on velocity, 
so the acceleration is no longer constant. Figure 3.20 shows a computer simulation 
of the trajectory of a baseball both without air resistance and with air resistance pro-
portional to the square of the baseball’s speed. We see that air resistance has a very 
large effect; the projectile does not travel as far or as high, and the trajectory is no 
longer a parabola.

Successive images of the ball are
separated by equal time intervals.

Successive peaks decrease
in height because the ball

loses energy with
each bounce.

Figure 3.19 The nearly parabolic 
 trajectories of a bouncing ball.
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Baseball’s initial velocity:
v0 =  50 m>s, a0 =  53.1°
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Figure 3.20 Air resistance has a large 
cumulative effect on the motion of a 
baseball. In this simulation we allow the 
baseball to fall below the height from 
which it was thrown (for example, the 
baseball could have been thrown from 
a cliff).

(a) (b)

F

G
H

I

Figure 3.21 (a) The skier’s path during the jump. (b) Our solution.

CONCEPTUAL EXAMPLE 3.5 Acceleration of a skier, continued

Let’s consider again the skier in Conceptual Example 3.4. What is her 
acceleration at each of the points G, H, and I in Fig. 3.21a after she 
flies off the ramp? Neglect air resistance.

SOLUTION Figure 3.21b shows our answer. The skier’s  acceleration 
changed from point to point while she was on the ramp. But as soon as 
she leaves the ramp, she becomes a projectile. So at points G, H, and I, 

and indeed at all points after she leaves the ramp, the skier’s acceleration 
points vertically downward and has magnitude g.

KEYCONCEPT No matter how complicated the acceleration of a 
particle before it becomes a projectile, its acceleration as a projectile is 
given by ax = 0, ay = -g.
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NOTE: The strategies we used in Sections 2.4 and 2.5 for straight-
line, constant-acceleration problems are also useful here.

IDENTIFY the relevant concepts: The key concept is that throughout 
projectile motion, the acceleration is downward and has a constant 
magnitude g. Projectile-motion equations don’t apply to throwing a 
ball, because during the throw the ball is acted on by both the throw-
er’s hand and gravity. These equations apply only after the ball leaves 
the thrower’s hand.

SET UP the problem using the following steps:

1. Define your coordinate system and make a sketch showing your 
axes. It’s almost always best to make the x-axis horizontal and 
the y-axis vertical, and to choose the origin to be where the object 
first becomes a projectile (for example, where a ball leaves the 
thrower’s hand). Then the components of acceleration are ax = 0 
and ay = -g, as in Eq. (3.13); the initial position is x0 = y0 = 0; 
and you can use Eqs. (3.19) through (3.22). (If you choose a dif-
ferent origin or axes, you’ll have to modify these equations.)

2. List the unknown and known quantities, and decide which un-
knowns are your target variables. For example, you might be given 
the initial velocity (either the components or the magnitude and di-
rection) and asked to find the coordinates and  velocity components 

at some later time. Make sure that you have as many equations 
as there are target variables to be found. In addition to Eqs. (3.19) 
through (3.22), Eqs. (3.23) through (3.26) may be useful.

3. State the problem in words and then translate those words into 
symbols. For example, when does the particle arrive at a certain 
point? (That is, at what value of t?) Where is the particle when 
its velocity has a certain value? (That is, what are the values of x 
and y when vx or vy has the specified value?) Since vy = 0 at the 
highest point in a trajectory, the question “When does the projec-
tile reach its highest point?” translates into “What is the value of 
t when vy = 0?” Similarly, “When does the projectile return to 
its initial elevation?” translates into “What is the value of t when 
y = y 0?”

EXECUTE the solution: Find the target variables using the equations you 
chose. Resist the temptation to break the trajectory into segments and 
analyze each segment separately. You don’t have to start all over when 
the projectile reaches its highest point! It’s almost always easier to use 
the same axes and time scale throughout the problem. If you need nu-
merical values, use g = 9.80 m>s2. Remember that g is positive!

EVALUATE your answer: Do your results make sense? Do the numer-
ical values seem reasonable?

PROBLEM-SOLVING STRATEGY 3.1 Projectile Motion

At this point, the bike and
rider become a projectile.

Figure 3.22 Our sketch for this problem.

EXAMPLE 3.6 An object projected horizontally

A motorcycle stunt rider rides off the edge of a cliff. Just at the edge his 
velocity is horizontal, with magnitude 9.0 m>s. Find the motorcycle’s 
position, distance from the edge of the cliff, and velocity 0.50 s after it 
leaves the edge of the cliff. Ignore air resistance.

IDENTIFY and SET UP Figure 3.22 shows our sketch of the trajectory of 
motorcycle and rider. He is in projectile motion as soon as he leaves the 
edge of the cliff, which we take to be the origin (so x0 = y0 = 0). His ini-
tial velocity vS0 at the edge of the cliff is horizontal (that is, a0 = 0), so its 
components are v0x = v0 cos a0 = 9.0 m>s and v0y = v0 sin a0 = 0. To 
find the motorcycle’s position at t = 0.50 s, we use Eqs. (3.19) and (3.20); 
we then find the distance from the origin using Eq. (3.23). Finally, we use 
Eqs. (3.21) and (3.22) to find the velocity components at t = 0.50 s.

EXECUTE From Eqs. (3.19) and (3.20), the motorcycle’s x- and  
y- coordinates at t = 0.50 s are

 x = v0x t = 19.0 m>s210.50 s2 = 4.5 m

 y = -  12 gt2 = -  12 19.80 m>s2210.50 s22 = -1.2 m

The negative value of y shows that the motorcycle is below its starting point.
From Eq. (3.23), the motorcycle’s distance from the origin at 

t = 0.50 s is

r = 2x2 + y2 = 214.5 m22 + 1-1.2 m22 = 4.7 m

From Eqs. (3.21) and (3.22), the velocity components at t = 0.50 s are

 vx = v0x = 9.0 m>s
 vy = -gt = 1-9.80 m>s2210.50 s2 = -4.9 m>s

The motorcycle has the same horizontal velocity vx as when it left the 
cliff at t = 0, but in addition there is a downward (negative) vertical 
velocity vy . The velocity vector at t = 0.50 s is

vS ∙ vx dn ∙ vyen ∙ 19.0 m>s2dn ∙ 1-4.9 m>s2en

From Eqs. (3.24) and (3.25), at t = 0.50 s the velocity has magni-
tude v and angle a given by

 v = 2v 2
x + v 2

y = 219.0 m>s22 + 1-4.9 m>s22 = 10.2 m>s

 a = arctan  
vy

vx
= arctan a -4.9 m>s

9.0 m >s b = -29°

The motorcycle is moving at 10.2 m>s in a direction 29° below the 
horizontal.

EVALUATE Just as in Fig. 3.17, the motorcycle’s horizontal motion is 
unchanged by gravity; the motorcycle continues to move horizontally 
at 9.0 m>s, covering 4.5 m in 0.50 s. The motorcycle initially has zero 
vertical velocity, so it falls vertically just like an object released from 
rest and descends a distance 12 gt2 = 1.2 m in 0.50 s.

KEYCONCEPT The motion of a projectile is a combination of mo-
tion with constant velocity in the horizontal x-direction and motion with 
constant downward acceleration in the vertical y-direction.

WITH  ARIATION PROBLEMS
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Figure 3.23 Our sketch for this problem.

EXAMPLE 3.7 Height and range of a projectile I: A batted baseball

A batter hits a baseball so that it leaves the bat at speed v0 = 37.0 m>s 
at an angle a0 = 53.1°. (a) Find the position of the ball and its  velocity 
(magnitude and direction) at t = 2.00 s. (b) Find the time when the 
ball reaches the highest point of its flight, and its height h at this time. 
(c) Find the horizontal range R—that is, the horizontal distance from 
the starting point to where the ball hits the ground—and the ball’s 
 velocity just before it hits.

IDENTIFY and SET UP As Fig. 3.20 shows, air resistance strongly af-
fects the motion of a baseball. For simplicity, however, we’ll ignore air 
resistance here and use the projectile-motion equations to describe the 
motion. The ball leaves the bat at t = 0 a meter or so above ground level, 
but we’ll ignore this distance and assume that it starts at ground level 
1y0 = 02. Figure 3.23 shows our sketch of the ball’s trajectory. We’ll 
use the same coordinate system as in Figs. 3.17 and 3.18, so we can use 
Eqs. (3.19) through (3.22). Our target variables are (a) the position and 
velocity of the ball 2.00 s after it leaves the bat, (b) the time t when the 
ball is at its maximum height (that is, when vy = 0) and the y-coordinate 
at this time, and (c) the x-coordinate when the ball returns to ground 
level 1y = 02 and the ball’s vertical component of velocity then.

EXECUTE (a) We want to find x, y, vx , and vy at t = 2.00 s. The initial 
velocity of the ball has components

 v0x = v0 cos a0 = 137.0 m>s2cos 53.1° = 22.2 m>s
 v0y = v0 sin a0 = 137.0 m>s2sin 53.1° = 29.6 m>s

From Eqs. (3.19) through (3.22),

 x = v0x t = 122.2 m>s212.00 s2 = 44.4 m

 y = v0y t - 1
2 gt2

 = 129.6 m>s212.00 s2 - 1
2 19.80 m>s2212.00 s22 = 39.6 m

 vx = v0x = 22.2 m>s
 vy = v0y - gt = 29.6 m>s - 19.80 m>s2212.00 s2 = 10.0 m>s

The y-component of velocity is positive at t = 2.00 s, so the ball is still 
moving upward (Fig. 3.23). From Eqs. (3.24) and (3.25), the magnitude 
and direction of the velocity are

 v = 2v 2
x + v 2

y = 2122.2 m>s22 + 110.0 m>s22 = 24.4 m>s

 a = arctan a10.0 m>s
22.2 m>s b = arctan 0.450 = 24.2°

The ball is moving at 24.4 m/s in a direction 24.2° above the horizontal.

(b) At the highest point, the vertical velocity vy is zero. Call the time 
when this happens t1; then

 vy = v0y - gt1 = 0

 t1 =
v0y

g
=

29.6 m>s
9.80 m>s2 = 3.02 s

The height h at the highest point is the value of y at time t1:

 h = v0y t1 - 1
2 gt1

 2

 = 129.6 m>s213.02 s2 - 1
2 19.80 m>s2213.02 s22 = 44.7 m

(c) We’ll find the horizontal range in two steps. First, we find the 
time t2 when y = 0 (the ball is at ground level):

y = 0 = v0y t2 - 1
2 gt2

 2 = t21v0y - 1
2 gt22

This is a quadratic equation for t2. It has two roots:

t2 = 0  and  t2 =
2v0y

g
=

2129.6 m>s2
9.80 m>s2 = 6.04 s

The ball is at y = 0 at both times. The ball leaves the ground at t2 = 0, 
and it hits the ground at t2 = 2v0y 

>g = 6.04 s.
The horizontal range R is the value of x when the ball returns to the 

ground at t2 = 6.04 s:

R = v0x t2 = 122.2 m>s216.04 s2 = 134 m

The vertical component of velocity when the ball hits the ground is

 vy = v0y - gt2 = 29.6 m>s - 19.80 m>s2216.04 s2 = -29.6 m>s
That is, vy has the same magnitude as the initial vertical velocity 
v0y but the opposite direction (down). Since vx is constant, the angle 
a = -53.1° (below the horizontal) at this point is the negative of the 
initial angle a0 = 53.1°.

EVALUATE As a check on our results, we can also find the maximum 
height in part (b) by applying the constant-acceleration formula Eq. (2.13) 
to the y-motion:

vy
 2 = v0y

 2  + 2ay 1y - y02 = v0y
 2  - 2g1y - y02

At the highest point, vy = 0 and y = h. Solve this equation for h; you 
should get the answer that we obtained in part (b). (Do you?)

Note that the time to hit the ground, t2 = 6.04 s , is exactly twice 
the time to reach the highest point, t1 = 3.02 s. Hence the time of 
descent equals the time of ascent. This is always true if the starting 
point and end point are at the same elevation and if air resistance 
can be ignored.

Note also that h = 44.7 m in part (b) is comparable to the 61.0 m 
height above second base of the roof at Marlins Park in Miami, and the 
horizontal range R = 134 m in part (c) is greater than the 99.7 m dis-
tance from home plate to the right-field fence at Safeco Field in Seattle. 
In reality, due to air resistance (which we have ignored) a batted ball 
with the initial speed and angle we’ve used here won’t go as high or as 
far as we’ve calculated (see Fig. 3.20).

KEYCONCEPT You can solve most projectile problems by using the 
equations for x, y, vx, and vy as functions of time. The highest point of a 
projectile’s motion occurs at the time its vertical component of velocity 
is zero.

WITH  ARIATION PROBLEMS
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EXAMPLE 3.9 Different initial and final heights

You throw a ball from your window 8.0 m above the ground. When 
the ball leaves your hand, it is moving at 10.0 m>s at an angle of 20.0° 
below the horizontal. How far horizontally from your window will the 
ball hit the ground? Ignore air resistance.

IDENTIFY and SET UP As in Examples 3.7 and 3.8, we want to find the 
horizontal coordinate of a projectile when it is at a given y-value. The 
difference here is that this value of y is not the same as the initial value. 
We again choose the x-axis to be horizontal and the y-axis to be upward, 
and place the origin of coordinates at the point where the ball leaves 
your hand (Fig. 3.25). We have v0 = 10.0 m>s and a0 = -20.0° (the 
angle is negative because the initial velocity is below the horizontal). 
Our target variable is the value of x when the ball reaches the ground at 
y = -8.0 m. We’ll use Eq. (3.20) to find the time t when this happens 
and then use Eq. (3.19) to find the value of x at this time.

WITH  ARIATION PROBLEMS

Figure 3.25 Our sketch for this problem.

Continued

EXAMPLE 3.8 Height and range of a projectile II: Maximum height, maximum range

Find the maximum height h and horizontal range R (see Fig. 3.23) of a 
projectile launched with speed v0 at an initial angle a0 between 0 and 
90°. For a given v0, what value of a0 gives maximum height? What 
value gives maximum horizontal range?

IDENTIFY and SET UP This is almost the same as parts (b) and (c) of 
Example 3.7, except that now we want general expressions for h and R. We 
also want the values of a0 that give the maximum values of h and R. In part 
(b) of Example 3.7 we found that the projectile reaches the high point of 
its trajectory (so that vy = 0) at time t1 = v0y 

>g, and in part (c) we found 
that the projectile returns to its starting height (so that y = y0) at time 
t2 = 2v0y 

>g = 2t1. We’ll use Eq. (3.20) to find the y-coordinate h at t1 and 
Eq. (3.19) to find the x-coordinate R at time t2. We’ll express our answers in 
terms of the launch speed v0 and launch angle a0 by using Eqs. (3.18).

EXECUTE From Eqs. (3.18), v0x = v0 cos a0 and v0y = v0 sin a0. Hence 
we can write the time t1 when vy = 0 as

t1 =
v0y

g
=

v0 sin a0

g

Equation (3.20) gives the height y = h at this time:

h = 1v0 sin a02a
v0 sin a0

g
b - 1

2 gav0 sin a0

g
b

2

=
v0

 2 sin2 a0

2g

For a given launch speed v0, the maximum value of h occurs for 
sin a0 = 1 and a0 = 90°—that is, when the projectile is launched 
straight up. (If it is launched horizontally, as in Example 3.6, a0 = 0 
and the maximum height is zero!)

The time t2 when the projectile hits the ground is

t2 =
2v0y

g
=

2v0 sin a0

g

The horizontal range R is the value of x at this time. From Eq. (3.19), this is

R = 1v0 cos a02t2 = 1v0 cos a02 
2v0 sin a0

g
=

v0
 2 sin 2a0

g

(We used the trigonometric identity 2 sin a0 cos a0 = sin 2a0, found in 
Appendix D.) The maximum value of sin 2a0 is 1; this occurs when 

2a0 = 90°, or a0 = 45°. This angle gives the maximum range for a 
given initial speed if air resistance can be ignored.

EVALUATE Figure 3.24 is based on a composite photograph of three 
trajectories of a ball projected from a small spring gun at angles of 30°, 
45°, and 60°. The initial speed v0 is approximately the same in all three 
cases. The horizontal range is greatest for the 45° angle. The ranges are 
nearly the same for the 30° and 60° angles: Can you prove that for a 
given value of v0 the range is the same for both an initial angle a0 and 
an initial angle 90° - a0 ? (This is not the case in Fig. 3.24 due to air 
resistance.)

   CAUTION    Height and range of a projectile We don’t recommend 
memorizing the above expressions for h and R. They are applicable 
only in the special circumstances we’ve described. In particular, you 
can use the expression for the range R only when launch and landing 
heights are equal. There are many end-of-chapter problems to which 
these equations do not apply. ❙

KEYCONCEPT When you solve physics problems in general, and 
projectile problems in particular, it’s best to use symbols rather than 
numbers as far into the solution as possible. This allows you to better 
explore and understand your result.

WITH  ARIATION PROBLEMS

Launch
angle:
a0 =  30°
a0 =  45°
a0 =  60°

A 45° launch angle gives the greatest range;
other angles fall shorter.

Figure 3.24 A launch angle of 45° gives the maximum horizontal 
range. The range is shorter with launch angles of 30° and 60°.
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EXAMPLE 3.10 The zookeeper and the monkey

A monkey escapes from the zoo and climbs a tree. After failing to entice 
the monkey down, the zookeeper fires a tranquilizer dart directly at the 
monkey (Fig. 3.26). The monkey lets go at the instant the dart leaves 
the gun. Show that the dart will always hit the monkey, provided that the 
dart reaches the monkey before he hits the ground and runs away.

IDENTIFY and SET UP We have two objects in projectile motion: the 
dart and the monkey. They have different initial positions and initial 
velocities, but they go into projectile motion at the same time t = 0. 
We’ll first use Eq. (3.19) to find an expression for the time t when the 
x-coordinates xmonkey and xdart are equal. Then we’ll use that expression 
in Eq. (3.20) to see whether ymonkey and ydart are also equal at this time; 
if they are, the dart hits the monkey. We make the usual choice for the 
x- and y-directions, and place the origin of coordinates at the muzzle of 
the tranquilizer gun (Fig. 3.26).

EXECUTE The monkey drops straight down, so xmonkey = d at all times. 
From Eq. (3.19), xdart = 1v0 cos a02t. We solve for the time t when these 
x-coordinates are equal:

d = 1v0 cos a02t  so  t =
d

v0 cos a0

We must now show that ymonkey = ydart at this time. The monkey is in 
one-dimensional free fall; its position at any time is given by Eq. (2.12), 
with appropriate symbol changes. Figure 3.26 shows that the monkey’s 
initial height above the dart-gun’s muzzle is ymonkey@0 = d  tan a0, so

ymonkey = d tan a0 - 1
2 gt2

From Eq. (3.20),

ydart = 1v0 sin a02t - 1
2 gt2

d tan a0

y

xO

v0

a0

d

Trajectory of dart
with gravity

Trajectory of dart
without gravity

Monkey’s
fall

Dart’s
fall

Dart’s
fall

Dart’s fall

Without gravity
• The monkey remains in its initial position.
• The dart travels straight to the monkey.
• Therefore, the dart hits the monkey.

Dashed arrows show how far the dart and monkey have fallen at
specific times relative to where they would be without gravity.
At any time, they have fallen by the same amount.

With gravity
• The monkey falls straight down.
• At any time t, the dart has fallen by the same amount
  as the monkey relative to where either would be in the
  absence of gravity:  ∆ydart =  ∆ymonkey =  -  gt2.
• Therefore, the dart always hits the monkey.

1
2

Figure 3.26 The tranquilizer dart hits the falling monkey.

EXECUTE To determine t, we rewrite Eq. (3.20) in the standard form for 
a quadratic equation for t:

1
2 gt2 - 1v0 sin a02t + y = 0

The roots of this equation are

 t =
v0 sin a0 { 31-v0 sin a022 - 411

2 g2y

211
2 g2

 =
v0 sin a0 { 2v 2

0  sin2 a0 - 2gy

g

 =
J110.0 m>s2 sin1-20.0°2

{ 2110.0 m>s22 sin2 1-20.0°2 - 219.80 m>s221-8.0 m2R
9.80 m>s2

 = -1.7 s  or  0.98 s

We discard the negative root, since it refers to a time before the ball 
left your hand. The positive root tells us that the ball reaches the 
ground at t = 0.98 s. From Eq. (3.19), the ball’s x-coordinate at that 
time is

x = 1v0 cos a02t = 110.0 m>s23cos1-20°2410.98 s2 = 9.2 m

The ball hits the ground a horizontal distance of 9.2 m from your 
window.

EVALUATE The root t = -1.7 s is an example of a “fictional” solution to 
a quadratic equation. We discussed these in Example 2.8 in Section 2.5; 
review that discussion.

KEYCONCEPT A projectile’s vertical coordinate y as a function of 
time is given by a quadratic equation, which in general has more than 
one solution. Take care to select the solution that’s appropriate for the 
problem you’re solving.
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TEST YOUR UNDERSTANDING OF SECTION 3.3 In Example 3.10, suppose the tranquilizer 
dart has a relatively low muzzle velocity so that the dart reaches a maximum height at a point P be-
fore striking the monkey, as shown in the figure. When the dart is at point P, will the monkey be (i) 
at point A (higher than P), (ii) at point B (at the same height as P), or (iii) at point C (lower than P)? 
Ignore air resistance.

ANSWER P B
C

A

❙ (i) If there were no gravity 1g=02, the monkey would not fall and the dart would follow a 
straight-line path (shown as a dashed line). The effect of gravity is to make both the monkey and the 
dart fall the same distance 

1
2 gt2 below their g=0 positions. Point A is the same distance below the 

monkey’s initial position as point P is below the dashed straight line, so point A is where we would 
find the monkey at the time in question.

3.4 MOTION IN A CIRCLE
When a particle moves along a curved path, the direction of its velocity changes. As we 
saw in Section 3.2, this means that the particle must have a component of acceleration 
perpendicular to the path, even if its speed is constant (see Fig. 3.11b). In this section we’ll 
calculate the acceleration for the important special case of motion in a circle.

Uniform Circular Motion
When a particle moves in a circle with constant speed, the motion is called uniform 
 circular motion. A car rounding a curve with constant radius at constant speed, a satellite 
moving in a circular orbit, and an ice skater skating in a circle with constant speed are all 
examples of uniform circular motion (Fig. 3.27a; compare Fig. 3.12a). There is no compo-
nent of acceleration parallel (tangent) to the path; otherwise, the speed would change. The 
acceleration vector is perpendicular (normal) to the path and hence directed inward (never 
outward!) toward the center of the circular path. This causes the direction of the velocity 
to change without changing the speed.

aS

vS

aS

vS

aS

vS

(b) Car speeding up along a circular path (c) Car slowing down along a circular path(a) Uniform circular motion: Constant speed
along a circular path

To center of circle

Component of acceleration perpendicular to
velocity: Changes car’s direction

Component of acceleration parallel to velocity:
Changes car’s speed

Acceleration is exactly
perpendicular to velocity;
no parallel component

Component of acceleration parallel
to velocity: Changes car’s speed

Component of acceleration
perpendicular to velocity:
Changes car’s direction

Figure 3.27 A car moving along a circular path. If the car is in uniform circular motion as in (a), the speed  
is constant and the acceleration is directed toward the center of the circular path (compare Fig. 3.12).

Comparing these two equations, we see that we’ll have ymonkey = ydart 
(and a hit) if d tan a0 = 1v0 sin a02t when the two x-coordinates are 
equal. To show that this happens, we replace t with d>1v0 cos a02, the 
time when xmonkey = xdart. Sure enough,

1v0 sin a02t = 1v0 sin a02 
d

v0 cos a0
= d tan a0

EVALUATE We’ve proved that the y-coordinates of the dart and 
the monkey are equal at the same time that their x-coordinates are 
equal; a dart aimed at the monkey always hits it, no matter what v0 

is (provided the monkey doesn’t hit the ground first). This result is 
independent of the value of g, the acceleration due to gravity. With no 
gravity 1g = 02, the monkey would remain motionless, and the dart 
would travel in a straight line to hit him. With gravity, both fall the 
same distance 1

2gt2 below their t = 0 positions, and the dart still hits 
the monkey (Fig. 3.26).

KEYCONCEPT It can be useful to think of a projectile as following 
a straight-line path that’s pulled downward by gravity a distance 12gt2 in 
a time t.



110    CHAPTER 3 Motion in Two or Three Dimensions

We can find a simple expression for the magnitude of the acceleration in uniform circu-
lar motion. We begin with Fig. 3.28a, which shows a particle moving with constant speed 
in a circular path of radius R with center at O. The particle moves a distance ∆s from P1 to 
P2 in a time interval ∆t. Figure 3.28b shows the vector change in velocity ∆vS during this 
interval.

The angles labeled ∆f in Figs. 3.28a and 3.28b are the same because vS1 is perpen-
dicular to the line OP1 and vS2 is perpendicular to the line OP2 . Hence the triangles in 
Figs. 3.28a and 3.28b are similar. The ratios of corresponding sides of similar triangles 
are equal, so

0 ∆vS 0
v1

=
∆s
R
  or  0 ∆vS 0 =

v1

R
 ∆s

The magnitude aav of the average acceleration during ∆t is therefore

aav =
0 ∆vS 0
∆t

=
v1

R
 
∆s
∆t

The magnitude a of the instantaneous acceleration aS at point P1 is the limit of this expres-
sion as we take point P2 closer and closer to point P1:

a = lim
∆t S 0

 
v1

R
 
∆s
∆t

=
v1

R
 lim
∆t S 0

 
∆s
∆t

If the time interval ∆t is short, ∆s is the distance the particle moves along its curved path. 
So the limit of ∆s>∆t is the speed v1 at point P1 . Also, P1 can be any point on the path, so 
we can drop the subscript and let v represent the speed at any point. Then

(3.27)
Speed of object

Radius of object’s
circular path

Magnitude of acceleration
of an object in
uniform circular motion R

v2

arad =  

The subscript “rad” is a reminder that the direction of the instantaneous acceleration 
at each point is always along a radius of the circle (toward the center of the circle; 
see Figs. 3.27a and 3.28c). So in uniform circular motion, the magnitude arad of the 
instantaneous acceleration is equal to the square of the speed v divided by the ra-
dius R of the circle. Its direction is perpendicular to vS and inward along the radius 
(Fig. 3.29a). Because the acceleration in uniform circular motion is along the radius, we 
often call it radial acceleration.

Because the acceleration in uniform circular motion is always directed toward the cen-
ter of the circle, it is sometimes called centripetal acceleration. The word “centripetal” is 
derived from two Greek words meaning “seeking the center.”

vS

These two triangles
are similar.

The instantaneous acceleration
   in uniform circular motion
        always points toward the
            center of the circle.

R

P2

P1

R

O

(a) A particle moves a distance ∆s at
constant speed along a circular path.

∆f

∆s

O

(b) The corresponding change in velocity ∆v. The
average acceleration is in the same direction as ∆v.  

∆f

(c) The instantaneous acceleration

R

O

Sarad

v1
S

v2
S

S

S

v1
S

∆vS

v2
S

Figure 3.28 Finding the velocity change 
∆vS, average acceleration aSav, and instanta-
neous acceleration aSrad for a particle moving 
in a circle with constant speed.
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S
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S
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S

vS
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vS

vS

vS

vS

Acceleration has
constant magni-
tude but varying
direction.

Acceleration is
constant in magnitude

and direction.

Velocity and acceleration are perpendicular
only at the peak of the trajectory.

(a) Uniform circular motion (b) Projectile motion

Velocity and
acceleration
are always
perpendicular.

Figure 3.29 Acceleration and velocity (a) for a particle in uniform circular motion and 
(b) for a projectile with no air resistance.

Jupiter

Callisto

Europa

Europa’s shadow

Callisto’s shadow Io

APPLICATION The Moons of Jupiter 
Each of the three moons of Jupiter shown 
in this image from the Hubble Space 
Telescope—Io, Europa, and Callisto—moves 
around Jupiter in a nearly circular orbit at a 
nearly constant speed. The larger the radius 
R of a moon’s orbit, the slower the speed v 
at which the moon moves and the smaller its 
centripetal acceleration arad = v2>R.
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   CAUTION    Uniform circular motion vs. projectile motion Notice the differences between accel-
eration in uniform circular motion (Fig. 3.29a) and acceleration in projectile motion (Fig. 3.29b). It’s 
true that in both kinds of motion the magnitude of acceleration is the same at all times. However, in 
uniform circular motion the direction of aS changes continuously—it always points toward the cen-
ter of the circle and is always perpendicular to the velocity vS. In projectile motion, the direction of 
aS remains the same at all times and is perpendicular to vS only at the highest point of the trajectory. ❙

We can also express the magnitude of the acceleration in uniform circular motion in 
terms of the period T of the motion, the time for one revolution (one complete trip around 
the circle). In a time T the particle travels a distance equal to the circumference 2pR of the 
circle, so its speed is

 v =
2pR

T
 (3.28)

When we substitute this into Eq. (3.27), we obtain the alternative expression

(3.29)
Period of motion

Radius of object’s circular pathMagnitude of acceleration
of an object in
uniform circular motion

arad =  
T2

4p2R

EXAMPLE 3.12 Centripetal acceleration on a fairground ride

Passengers on a fairground ride move at constant speed in a horizontal 
circle of radius 5.0 m, making a complete circle in 4.0 s. What is their 
acceleration?

IDENTIFY and SET UP The speed is constant, so this is uniform circular 
motion. We are given the radius R = 5.0 m and the period T = 4.0 s, 
so we can use Eq. (3.29) to calculate the acceleration directly, or we can 
calculate the speed v by using Eq. (3.28) and then find the acceleration 
by using Eq. (3.27).

EXECUTE From Eq. (3.29),

arad =
4p215.0 m2
14.0 s22 = 12 m>s2 = 1.3g

EVALUATE We can check this answer by using the second, roundabout 
approach. From Eq. (3.28), the speed is

v =
2pR

T
=

2p15.0 m2
4.0 s

= 7.9 m>s

The centripetal acceleration is then

arad =
v2

R
=

17.9 m>s22

5.0 m
= 12 m>s2

As in Fig. 3.29a, the direction of aS is always toward the center of the 
circle. The magnitude of aS is relatively mild as fairground rides go; 
some roller coasters subject their passengers to accelerations as great 
as 4g. To produce this acceleration with a fairground ride of radius 
5.0 m would require a shorter period T and hence a faster speed v than 
in this example.

KEYCONCEPT For uniform circular motion with a given ra-
dius,  decreasing the period increases the speed and the centripetal 
acceleration.

WITH  ARIATION PROBLEMS

An Aston Martin V12 Vantage sports car has a “lateral acceleration” of 
0.97g = 10.97219.8 m>s22 = 9.5 m>s2. This is the maximum centrip-
etal acceleration the car can sustain without skidding out of a curved 
path. If the car is traveling at a constant 40 m>s (144 km>h) on level 
ground, what is the radius R of the tightest unbanked curve it can 
negotiate?

IDENTIFY, SET UP, and EXECUTE The car is in uniform circular motion 
because it’s moving at a constant speed along a curve that is a segment of 
a circle. Hence we can use Eq. (3.27) to solve for the target variable R in 
terms of the given centripetal acceleration arad and speed v:

R =
v2

arad
=

140 m>s22

9.5 m>s2 = 170 m

This is the minimum turning radius because arad is the maximum cen-
tripetal acceleration.

EVALUATE The minimum turning radius R is proportional to the square 
of the speed, so even a small reduction in speed can make R substan-
tially smaller. For example, reducing v by 20% (from 40 m>s to 32 m>s) 
would decrease R by 36% (from 170 m to 109 m).

Another way to make the minimum turning radius smaller is to 
bank the curve. We’ll investigate this option in Chapter 5.

KEYCONCEPT For uniform circular motion at a given speed, de-
creasing the radius increases the centripetal acceleration.

EXAMPLE 3.11 Centripetal acceleration on a curved road WITH  ARIATION PROBLEMS
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Nonuniform Circular Motion
We have assumed throughout this section that the particle’s speed is constant as it goes 
around the circle. If the speed varies, we call the motion nonuniform circular motion. 
In nonuniform circular motion, Eq. (3.27) still gives the radial component of acceleration 
arad = v2>R, which is always perpendicular to the instantaneous velocity and directed to-
ward the center of the circle. But since the speed v has different values at different points 
in the motion, the value of arad is not constant. The radial (centripetal) acceleration is 
greatest at the point in the circle where the speed is greatest.

In nonuniform circular motion there is also a component of acceleration that is parallel 
to the instantaneous velocity (see Figs. 3.27b and 3.27c). This is the component aŒ that we 
discussed in Section 3.2; here we call this component atan to emphasize that it is tangent to 
the circle. This component, called the tangential acceleration atan, is equal to the rate of 
change of speed. Thus

 arad =
v2

R
  and  atan =

d 0 vS 0
dt
 (nonuniform circular motion) (3.30)

The tangential component is in the same direction as the velocity if the particle is speed-
ing up, and in the opposite direction if the particle is slowing down (Fig. 3.30). If the 
particle’s speed is constant, atan = 0.

   CAUTION    Uniform vs. nonuniform circular motion The two quantities

d 0 vS 0
dt
  and  ` dv

S

dt
`

are not the same. The first, equal to the tangential acceleration, is the rate of change of speed; 
it is zero whenever a particle moves with constant speed, even when its direction of motion 
changes (such as in uniform circular motion). The second is the magnitude of the vector accel-
eration; it is zero only when the particle’s acceleration vector is zero—that is, when the particle 
moves in a straight line with constant speed. In uniform circular motion 0 dvS>dt 0 = arad = v2>r; 
in nonuniform circular motion there is also a tangential component of acceleration, so 

0 dvS>dt 0 = 2arad
  2   + atan  

 2 . ❙

TEST YOUR UNDERSTANDING OF SECTION 3.4 Suppose that the particle in Fig. 3.30 
experiences four times the acceleration at the bottom of the loop as it does at the top of the 
loop. Compared to its speed at the top of the loop, is its speed at the bottom of the loop (i) 12 
times as great; (ii) 2 times as great; (iii) 2 12 times as great; (iv) 4 times as great; or (v) 16 
times as great?

ANSWER

APPLICATION Watch Out: Tight 
Curves Ahead! These roller coaster cars 
are in nonuniform circular motion: They slow 
down and speed up as they move around 
a vertical loop. The large accelerations 
involved in traveling at high speed around 
a tight loop mean extra stress on the pas-
sengers’ circulatory systems, which is why 
people with cardiac conditions are cau-
tioned against going on such rides.

❙ (ii) At both the top and bottom of the loop, the acceleration is purely radial and is given by Eq. 
(3.27). Radius R is the same at both points, so the difference in acceleration is due purely to differ-
ences in speed. Since arad is proportional to the square of v, the speed must be twice as great at the 
bottom of the loop as at the top.

3.5 RELATIVE VELOCITY
If you stand next to a one-way highway, all the cars appear to be moving forward. But if 
you’re driving in the fast lane on that highway, slower cars appear to be moving backward. 
In general, when two observers measure the velocity of the same object, they get different 
results if one observer is moving relative to the other. The velocity seen by a particular ob-
server is called the velocity relative to that observer, or simply relative velocity. In many 
situations relative velocity is extremely important (Fig. 3.31).

We’ll first consider relative velocity along a straight line and then generalize to relative 
velocity in a plane.

S0 a 0 =  aradaS
vS

arad
atan

Speed slowest, arad minimum, atan zero

Speed fastest, arad maximum, atan zero

S
Slowing down;
atan opposite to vS

Speeding up; atan in
same direction as v

Figure 3.30 A particle moving in a  
vertical loop with a varying speed, like  
a roller coaster car.
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Relative Velocity in One Dimension
A passenger walks with a velocity of +1.0 m>s along the aisle of a train that is moving 
with a velocity of +3.0 m>s (Fig. 3.32a). What is the passenger’s velocity? It’s a simple 
enough question, but it has no single answer. As seen by a second passenger sitting in the 
train, she is moving at +1.0 m>s. A person on a bicycle standing beside the train sees the 
walking passenger moving at +1.0 m>s +  3.0 m>s = +4.0 m>s. An observer in another 
train going in the opposite direction would give still another answer. We have to specify 
which observer we mean, and we speak of the velocity relative to a particular observer. 
The walking passenger’s velocity relative to the train is +1.0 m>s, her velocity relative to 
the cyclist is +4.0 m>s, and so on. Each observer, equipped in principle with a meter stick 
and a stopwatch, forms what we call a frame of reference. Thus a frame of reference is a 
coordinate system plus a time scale.

Let’s use the symbol A for the cyclist’s frame of reference (at rest with respect 
to the ground) and the symbol B for the frame of reference of the moving train. In 
straight-line motion the position of a point P relative to frame A is given by xP>A (the 
position of P with respect to A), and the position of P relative to frame B is given by 
xP>B (Fig. 3.32b). The position of the origin of B with respect to the origin of A is xB>A. 
Figure 3.32b shows that

 xP>A = xP>B + xB>A (3.31)

In words, the coordinate of P relative to A equals the coordinate of P relative to B plus the 
coordinate of B relative to A.

The x-velocity of P relative to frame A, denoted by vP>A@x, is the derivative of xP>A with 
respect to time. We can find the other velocities in the same way. So the time derivative of 
Eq. (3.31) gives us a relationship among the various velocities:

dxP>A
dt

=
dxP>B

dt
+

dxB>A
dt
  or

vP>A-x =  vP>B-x +  vB>A-x (3.32)

x-velocity of
B relative to A

x-velocity of
P relative to B

x-velocity of
P relative to A

Relative velocity
along a line:

Getting back to the passenger on the train in Fig. 3.32a, we see that A is the cyclist’s 
frame of reference, B is the frame of reference of the train, and point P represents the pas-
senger. Using the above notation, we have

vP>B@x = +1.0 m>s  vB>A@x = +3.0 m>s

From Eq. (3.32) the passenger’s velocity vP>A@x relative to the cyclist is

vP>A@x = +1.0 m>s + 3.0 m>s = +4.0 m>s

as we already knew.
In this example, both velocities are toward the right, and we have taken this as the positive  

x-direction. If the passenger walks toward the left relative to the train, then vP>B@x = -1.0 m>s, 
and her x-velocity relative to the cyclist is vP>A@x = -1.0 m>s + 3.0 m>s = +2.0 m>s. 
The sum in Eq. (3.32) is always an algebraic sum, and any or all of the x-velocities may be 
negative.

When the passenger looks out the window, the stationary cyclist on the ground appears 
to her to be moving backward; we call the cyclist’s velocity relative to her vA>P@x . This is 
just the negative of the passenger’s velocity relative to the cyclist, vP>A@x . In general, if A 
and B are any two points or frames of reference,

 vA>B@x = -vB>A@x (3.33)

Figure 3.31 Airshow pilots face a 
complicated problem involving relative 
velocities. They must keep track of their 
motion relative to the air (to maintain 
enough airflow over the wings to sustain 
lift), relative to each other (to keep a tight 
formation without colliding), and relative 
to their audience (to remain in sight of the 
spectators).

Cyclist's 
frame

Train’s 
frame

Velocity of train
relative to cyclist

Position of passenger
in both frames

(a)

A (cyclist)

P (passenger) B (train)

yA yB

P

OBOA

xB ,
xA

xP>A
xP>BxB>A

vB>A

(b)

Figure 3.32 (a) A passenger walking in 
a train. (b) The position of the passenger 
relative to the cyclist’s frame of reference 
and the train’s frame of reference.
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IDENTIFY the relevant concepts: Whenever you see the phrase “ve-
locity relative to” or “velocity with respect to,” it’s likely that the con-
cepts of relative velocity will be helpful.

SET UP the problem: Sketch and label each frame of reference in 
the problem. Each moving object has its own frame of reference; in 
addition, you’ll almost always have to include the frame of reference 
of the earth’s surface. (Statements such as “The car is traveling north  
at 90 km>h” implicitly refer to the car’s velocity relative to the surface 
of the earth.) Use the labels to help identify the target variable. For 
example, if you want to find the x-velocity of a car 1C2 with respect 
to a bus 1B2, your target variable is vC >B@x 

.

EXECUTE the solution: Solve for the target variable using Eq. (3.32). 
(If the velocities aren’t along the same direction, you’ll need to use 
the vector form of this equation, derived later in this section.) It’s 

important to note the order of the double subscripts in Eq. (3.32): 
vB>A@x means “x-velocity of B relative to A.” These subscripts obey 
a kind of algebra. If we regard each one as a fraction, then the frac-
tion on the left side is the product of the fractions on the right side: 
P>A = 1P>B21B>A2. You can apply this rule to any number of frames 
of reference. For example, if there are three frames of reference A, B, 
and C, Eq. (3.32) becomes

vP>A@x = vP>C@x + vC>B@x + vB>A@x

EVALUATE your answer: Be on the lookout for stray minus signs in 
your answer. If the target variable is the x-velocity of a car relative to 
a bus 1vC>B@x2, make sure that you haven’t accidentally calculated the 
x-velocity of the bus relative to the car 1vB>C@x2. If you’ve made this 
mistake, you can recover by using Eq. (3.33).

PROBLEM-SOLVING STRATEGY 3.2 Relative Velocity

You drive north on a straight two-lane road at a constant 88 km>h. A 
truck in the other lane approaches you at a constant 104 km>h (Fig. 3.33). 
Find (a) the truck’s velocity relative to you and (b) your velocity relative 
to the truck. (c) How do the relative velocities change after you and the 
truck pass each other? Treat this as a one-dimensional problem.

IDENTIFY and SET UP In this problem about relative velocities along 
a line, there are three reference frames: you (Y), the truck (T), and the 
earth’s surface (E). Let the positive x-direction be north (Fig. 3.33). Then 
your x-velocity relative to the earth is vY>E@x = +88 km>h. The truck is 
initially approaching you, so it is moving south and its x-velocity with 
respect to the earth is vT>E@x = -104 km>h. The target variables in parts 
(a) and (b) are vT>Y@x and vY>T@x , respectively. We’ll use Eq. (3.32) to find 
the first target variable and Eq. (3.33) to find the second.

EXECUTE (a) To find vT>Y@x , we write Eq. (3.32) for the known vT>E@x 
and rearrange:

 vT>E@x = vT>Y@x + vY>E@x
 vT>Y@x = vT>E@x - vY>E@x = -104 km>h - 88 km>h = -192 km>h

The truck is moving at 192 km>h in the negative x-direction (south) 
relative to you.

(b) From Eq. (3.33),

vY>T@x = -vT>Y@x = -1-192 km>h2 = +192 km>h
You are moving at 192 km>h in the positive x-direction (north) relative 
to the truck.

(c) The relative velocities do not change after you and the truck 
pass each other. The relative positions of the objects don’t matter. After 

it passes you, the truck is still moving at 192 km>h toward the south 
relative to you, even though it is now moving away from you instead 
of toward you.

EVALUATE To check your answer in part (b), use Eq. (3.32) directly 
in the form vY>T@x = vY>E@x + vE>T@x . (The x-velocity of the earth with 
respect to the truck is the opposite of the x-velocity of the truck with 
respect to the earth: vE>T@x = -vT>E@x .) Do you get the same result?

KEYCONCEPT To solve problems involving relative velocity along 
a line, use Eq. (3.32) and pay careful attention to the subscripts for the 
frames of reference in the problem.

WITH  ARIATION PROBLEMSEXAMPLE 3.13 Relative velocity on a straight road

N

EW

S

x

Earth (E)

Truck (T)

You (Y)
vT>E

vY>E
S

S

Figure 3.33 Reference frames for you and the truck.

Relative Velocity in Two or Three Dimensions
Let’s extend the concept of relative velocity to include motion in a plane or in space. 
Suppose that the passenger in Fig. 3.32a is walking not down the aisle of the railroad car 
but from one side of the car to the other, with a speed of 1.0 m>s (Fig. 3.34a). We can 
again describe the passenger’s position P in two frames of reference: A for the stationary 
ground observer and B for the moving train. But instead of coordinates x, we use position 
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vectors rS because the problem is now two-dimensional. Then, as Fig. 3.34b shows,

 rSP>A ∙ rSP>B ∙ rSB>A (3.34)

Just as we did before, we take the time derivative of this equation to get a relationship 
among the various velocities; the velocity of P relative to A is vSP>A ∙  drSP>A>dt and so on 
for the other velocities. We get

(3.35)

Velocity of
B relative to A

Velocity of
P relative to B

Velocity of
P relative to A

Relative velocity
in space:

vP>A = vP>B + vB>A
S SS

Equation (3.35) is known as the Galilean velocity transformation. It relates the veloc-
ity of an object P with respect to frame A and its velocity with respect to frame B (vSP>A 
and vSP>B, respectively) to the velocity of frame B with respect to frame A 1vSB>A2. If all 
three of these velocities lie along the same line, then Eq. (3.35) reduces to Eq. (3.32) for 
the components of the velocities along that line.

If the train is moving at vB>A = 3.0 m>s relative to the ground and the passenger is 
moving at vP>B = 1.0 m>s relative to the train, then the passenger’s velocity vector vSP>A 
relative to the ground is as shown in Fig. 3.34c. The Pythagorean theorem then gives us

vP>A = 213.0 m>s22 + 11.0 m>s22 = 210 m2>s2 = 3.2 m>s

Figure 3.34c also shows that the direction of the passenger’s velocity vector relative to 
the ground makes an angle f with the train’s velocity vector vSB>A, where

tan f =
vP>B
vB>A

=
1.0 m>s
3.0 m>s  and  f = 18°

As in the case of motion along a straight line, we have the general rule that if A and B 
are any two points or frames of reference,

 vSA>B ∙ ∙vSB>A (3.36)

The velocity of the passenger relative to the train is the negative of the velocity of the train 
relative to the passenger, and so on.

In the early 20th century Albert Einstein showed that Eq. (3.35) has to be modified 
when speeds approach the speed of light, denoted by c. It turns out that if the passenger 
in Fig. 3.32a could walk down the aisle at 0.30c and the train could move at 0.90c, then 
her speed relative to the ground would be not 1.20c but 0.94c; nothing can travel faster 
than light! We’ll return to Einstein and his special theory of relativity in Chapter 37.

f =  18°

v
P>A  =

 3.2 m>s

vP>B =  1.0 m>s

v
B>A  =

 3.0 m>s

(c) Relative velocities
(seen from above)

S

(b)

yA

zA

xAOA

yB

zB

xBOB

P

SvB>A

SrP>BrP>A

SrB>A

Velocity of train
relative to cyclist

Position of passenger
in both frames

Train’s
frame

Cyclist’s
frame

(a)

1.0 m>s

B (train)

A (cyclist)

P (passenger)

3.0 m>s

Figure 3.34 (a) A passenger walking across a railroad car. (b) Position of the passenger relative to the  
cyclist’s frame and the train’s frame. (c) Vector diagram for the velocity of the passenger relative to  
the ground (the cyclist’s frame), vSP>A .

APPLICATION Relative Velocities 
near the Speed of Light This image 
shows a spray of subatomic particles 
produced by the head-on collision of 
two protons moving in opposite direc-
tions. Relative to the laboratory, before 
the collision each proton is moving only 
11 m>s slower than the speed of light, 
c = 3.00 * 108 m>s. According to the 
Galilean velocity transformation, the ve-
locity of one proton relative to the other 
should be approximately c + c = 2c. But 
Einstein’s special theory of relativity shows 
that the relative velocity of the two protons 
must be slower than the speed of light: In 
fact it is equal to c minus 0.19 millimeter 
per second.

Collision occurs here.
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WITH  ARIATION PROBLEMS

An airplane’s compass indicates that it is headed due north, and its air-
speed indicator shows that it is moving through the air at 240 km>h. If 
there is a 100 km>h wind from west to east, what is the velocity of the 
airplane relative to the earth?

IDENTIFY and SET UP This problem involves velocities in two dimen-
sions (northward and eastward), so it is a relative-velocity problem 
using vectors. We are given the magnitude and direction of the velocity 
of the plane (P) relative to the air (A). We are also given the magnitude 
and direction of the wind velocity, which is the velocity of the air A 
with respect to the earth (E):

 vSP>A = 240 km>h  due north

 vSA>E = 100 km>h  due east

We’ll use Eq. (3.35) to find our target variables: the magnitude and di-
rection of velocity vSP>E of the plane relative to the earth.

EXECUTE From Eq. (3.35) we have

vSP>E ∙ vSP>A ∙ vSA>E

Figure 3.35 shows that the three relative velocities constitute a right-
triangle vector addition; the unknowns are the speed vP>E and the angle 
a. We find

 vP>E = 21240 km>h22 + 1100 km>h22 = 260 km>h

 a = arctan a100 km>h
240 km>h b = 23° E of N

EVALUATE You can check the results by taking measurements on the 
scale drawing in Fig. 3.35. The crosswind increases the speed of the 
airplane relative to the earth, but pushes the airplane off course.

KEYCONCEPT To solve problems involving relative velocity in a 
plane or in space, use Eq. (3.35). Pay careful attention to the subscripts 
for the frames of reference in the problem.

EXAMPLE 3.14 Flying in a crosswind

N

EW

S

a

SvP>E
SvP>A =

240 km>h,
north

SvA>E =  100 km>h,
east

Figure 3.35 The plane is pointed north, but the wind blows east, 
 giving the resultant velocity vSP>E relative to the earth.

WITH  ARIATION PROBLEMS

With wind and airspeed as in Example 3.14, in what direction should 
the pilot head to travel due north? What will be her velocity relative to 
the earth?

IDENTIFY and SET UP Like Example 3.14, this is a relative-velocity 
problem with vectors. Figure 3.36 is a scale drawing of the situation. 
Again the vectors add in accordance with Eq. (3.35) and form a right 
triangle:

vSP>E ∙ vSP>A ∙ vSA>E

As Fig. 3.36 shows, the pilot points the nose of the airplane at an angle 
b into the wind to compensate for the crosswind. This angle, which 
tells us the direction of the vector vSP>A (the velocity of the airplane rel-
ative to the air), is one of our target variables. The other target variable 
is the speed of the airplane over the ground, which is the magnitude of 
the vector vSP>E (the velocity of the airplane relative to the earth). The 
known and unknown quantities are

 vSP>E ∙ magnitude unknown due north

 vSP>A ∙ 240 km>h direction unknown

 vSA>E ∙ 100 km>h due east

We’ll solve for the target variables by using Fig. 3.36 and trigonometry.

EXAMPLE 3.15 Correcting for a crosswind

N

EW

S

SvA>E =  100 km>h,
east

SvP>A =
240 km>h,
at angle b

SvP>E,
north

b

Figure 3.36 The pilot must point the plane in the direction of the 
 vector vSP>A to travel due north relative to the earth.
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TEST YOUR UNDERSTANDING OF SECTION 3.5 Suppose the nose of an airplane is pointed 
due east and the airplane has an airspeed of 150 km>h. Due to the wind, the airplane is moving due 
north relative to the ground and its speed relative to the ground is 150 km>h. What is the velocity 
of the air relative to the earth? (i) 150 km>h from east to west; (ii) 150 km>h from south to north; 
(iii) 150 km>h from southeast to northwest; (iv) 212 km>h from east to west; (v) 212 km>h from 
south to north; (vi) 212 km>h from southeast to northwest; (vii) there is no possible wind velocity 
that could cause this.

ANSWER

3.14. In Example 3.14 the magnitude and direction referred to the same 
 vector 1vSP>E2; here they refer to different vectors 1vSP>E and vSP>A2.

While we expect a headwind to reduce an airplane’s speed relative 
to the ground, this example shows that a crosswind does, too. That’s an 
unfortunate fact of aeronautical life.

KEYCONCEPT The vector equation for relative velocity in a plane, 
Eq. (3.35), allows you to solve for two unknowns, such as an unknown 
vector magnitude and an unknown direction.

❙ (vi) The effect of the wind is to cancel the airplane’s eastward motion and give it a northward 
motion. So the velocity of the air relative to the ground (the wind velocity) must have one 
150 km>h component to the west and one 150 km>h component to the north. The combination 

of these is a vector of magnitude 21150 km>h22+1150 km>h22=212 km>h that points to the 
northwest.

EXECUTE From Fig. 3.36 the speed vP>E and the angle b are

 vP>E = 21240 km>h22 - 1100 km>h22 = 218 km>h

 b = arcsina100 km>h
240 km>h b = 25°

The pilot should point the airplane 25° west of north, and her ground 
speed is then 218 km>h.

EVALUATE There were two target variables—the magnitude of a vec-
tor and the direction of a vector—in both this example and Example 



Position, velocity, and acceleration vectors: The position vec-
tor rS of a point P in space is the vector from the origin to P. Its 
components are the coordinates x, y, and z.

The average velocity vector vSav during the time interval ∆t is 
the displacement ∆rS (the change in position vector rS) divided by 
∆t. The instantaneous velocity vector vS is the time derivative of 
rS, and its components are the time derivatives  of x, y, and z. The 
instantaneous speed is the magnitude of vS. The velocity vS of a 
particle is always tangent to the  particle’s path. (See Example 
3.1.)

The average acceleration vector aSav during the time interval 
∆t equals ∆vS (the change in velocity vector vS) divided by ∆t. 
The instantaneous  acceleration vector aS is the time derivative of 
vS, and its components are the time derivatives of vx, vy, and vz . 
(See Example 3.2.)

The component of acceleration parallel to the direction of the 
instantaneous velocity affects the speed, while the component of aS 
perpendicular to vS affects the direction of motion. (See Examples 
3.3 and 3.4.)

rS ∙ x dn ∙ y en ∙ z kn (3.1)

vSav ∙
rS2 ∙ rS1

t2 - t1
∙

∆rS

∆t
 (3.2)

vS ∙ lim
∆t S 0

 
∆rS

∆t
∙

drS

dt
 (3.3)

vx =
dx
dt
 vy =

dy

dt
 vz =

dz
dt

 (3.4)

aSav ∙
vS2 ∙ vS1

t2 - t1
∙

∆vS

∆t
 (3.8)

aS ∙ lim
∆t S 0

 
∆vS

∆t
∙

dvS

dt
 (3.9)

ax =
dvx

dt

ay =
dvy

dt

az =
dvz

dt
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∆y

y1

x1 x2

y2

y

O
x

y

O
x

∆t

∆rS

∆rS

r1
S

r2
S

Svav = 

aav = S

∆t

S∆v∆vSv1
S

v1
S

Projectile motion: In projectile motion with no air resistance, 
ax = 0 and ay = -g. The coordinates and velocity components 
are simple functions of time, and the shape of the path is always 
a parabola. We usually choose the origin to be at the initial posi-
tion of the projectile. (See Examples 3.5 –3.10.)

x = 1v0 cos a02t (3.19)

y = 1v0 sin a02t - 1
2 gt2 (3.20)

vx = v0 cos a0 (3.21)

vy = v0 sin a0 - gt (3.22)

vS

vS vS

vS

y

O
x

vx

vx

ay =  -g
vy

vy

vx
vy

Uniform and nonuniform circular motion: When a particle moves 
in a circular path of radius R with constant speed v (uniform 
circular motion), its acceleration aS is directed toward the center 
of the circle and perpendicular to vS. The magnitude arad of this 
radial acceleration can be expressed in terms of v and R or in 
terms of R and the period T (the time for one revolution), where 
v = 2pR>T. (See Examples 3.11 and 3.12.)

If the speed is not constant in circular motion (nonuniform 
circular motion), there is still a radial component of aS given by 
Eq. (3.27) or (3.29), but there is also a component of aS parallel 
(tangential) to the path. This tangential component is equal to 
the rate of change of speed, dv>dt.

arad =
v2

R
 (3.27)

arad =
4p2R

T2
 (3.29)

arad
S

vSarad
S

vS

arad
S

vS

arad
S

vS
arad
S

vS

arad
S vS

Relative velocity: When an object P moves relative to an object 
(or reference frame) B, and B moves  relative to an object (or refer-
ence frame) A, we denote the velocity of P relative to B by vSP>B,  
the velocity of P relative to A by vSP>A, and the velocity of B rela-
tive to A by vSB>A . If these velocities are all along the same line, 
their components along that line are related by Eq. (3.32). More 
generally, these velocities are related by Eq. (3.35). (See Examples 
3.13 –3.15.)

vP>A@x = vP>B@x + vB>A@x
(relative velocity along a line)

 (3.32)

vSP>A ∙ vSP>B ∙ vSB>A
(relative velocity in space)

 (3.35)

A (ground
observer)

B (moving air)

P (plane)

vP>A = vP>B + vB>A
S S S

vB>A
S

vP>B
S

vP>A
S

SUMMARYCHAPTER 3 
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You fire a ball with an initial speed v0 at an angle f above the surface of an 
incline, which is itself inclined at an angle u above the horizontal (Fig. 3.37). 
(a) Find the distance, measured along the incline, from the launch point to 
the point when the ball strikes the incline. (b) What angle f gives the maxi-
mum range, measured along the incline? Ignore air resistance.

SOLUTION GUIDE

IDENTIFY and SET UP

1. Since there’s no air resistance, this is a problem in projectile 
motion. The goal is to find the point where the ball’s parabolic 
 trajectory intersects the incline.

BRIDGING PROBLEM Launching Up an Incline

v0

f

u

Figure 3.37 Launching a ball from an inclined ramp.

GUIDED PRACTICE

KEY EXAMPLE ARIATION PROBLEMS

Be sure to review EXAMPLES 3.6, 3.7, 3.8, and 3.9 (Section 3.3) before 
attempting these problems. In all problems, ignore air resistance.
VP3.9.1 You launch a projectile from level ground at a speed of 
25.0 m>s and an angle of 36.9° above the horizontal. (a) How long after 
it is launched does the projectile reach its maximum height above the 
ground, and what is that maximum height? (b) How long after the pro-
jectile is launched does it return to ground level, and how far from its 
launch point does it land?
VP3.9.2 You throw a baseball at an angle of 30.0° above the horizon-
tal. It reaches the highest point of its trajectory 1.05 s later. (a) At what 
speed does the baseball leave your hand? (b) What is the maximum 
height above the launch point that the baseball reaches?
VP3.9.3 You toss a walnut at a speed of 15.0 m>s at an angle of 50.0° 
above the horizontal. The launch point is on the roof of a building that 
is 20.0 m above the ground. (a) How long after it is launched does the 
walnut reach the ground? (b) How far does the walnut travel horizontally 
from launch point to landing point? (c) What are the horizontal and verti-
cal components of the walnut’s velocity just before it reaches the ground?
VP3.9.4 You use a slingshot to launch a potato horizontally from the 
edge of a cliff with speed v0. The acceleration due to gravity is g. Take 
the origin at the launch point. (a) How long after you launch the potato 
has it moved as far horizontally from the launch point as it has moved 
vertically? What are the coordinates of the potato at this time? (b) How 
long after you launch the potato is it moving in a direction exactly 45° 
below the horizontal? What are the coordinates of the potato at this time?

Be sure to review EXAMPLES 3.11 and 3.12 (Section 3.4) before 
 attempting these problems.
VP3.12.1 A cyclist going around a circular track at 10.0 m>s has a 
 centripetal acceleration of 5.00 m>s2. What is the radius of the curve?
VP3.12.2 A race car is moving at 40.0 m>s around a circular racetrack 
of radius 265 m. Calculate (a) the period of the motion and (b) the car’s 
centripetal acceleration.
VP3.12.3 The wheel of a stationary exercise bicycle at your gym makes 
one rotation in 0.670 s. Consider two points on this wheel: Point P is 
10.0 cm from the rotation axis, and point Q is 20.0 cm from the rota-
tion axis. Find (a) the speed of each point on the spinning wheel and (b) 
the centripetal acceleration of each point. (c) For points on this spinning 
wheel, as the distance from the axis increases, does the speed increase or 
decrease? Does the centripetal acceleration increase or decrease?

VP3.12.4 The planets Venus, Earth, and Mars all move in approximately 
circular orbits around the sun. Use the data in the table to find (a) the 
speed of each planet in its orbit and (b) the centripetal acceleration of each 
planet. (c) As the size of a planet’s orbit increases, does the speed increase 
or decrease? Does the centripetal acceleration increase or decrease?

Planet Orbital radius (m) Orbital period (days)

Venus 1.08 * 1011 225

Earth 1.50 * 1011 365

Mars 2.28 * 1011 687

VP3.12.5 Object A is moving at speed v in a circle of radius R. Object 
B is moving at speed 2v in a circle of radius R>2. (a) What is the ratio 
of the period of object A to the period of object B? (b) What is the ratio 
of the centripetal acceleration of object A to the centripetal acceleration 
of object B?

Be sure to review EXAMPLES 3.13, 3.14, and 3.15 (Section 3.5) 
 before attempting these problems.
VP3.15.1 A police car in a high-speed chase is traveling north on a 
two-lane highway at 35.0 m>s. In the southbound lane of the same high-
way, an SUV is moving at 18.0 m>s. Take the positive x-direction to be 
toward the north. Find the x-velocity of (a) the police car relative to the 
SUV and (b) the SUV relative to the police car.
VP3.15.2 Race cars A and B are driving on the same circular race-
track at the same speed of 45.0 m>s. At a given instant car A is on the 
north side of the track moving eastward and car B is on the south side 
of the track moving westward. Find the velocity vector (magnitude and 
 direction) of (a) car A relative to car B and (b) car B relative to car A.  
(c) Does the relative velocity have a component along the line con-
necting the two cars? Are the two cars approaching each other, moving 
away from each other, or neither?
VP3.15.3 Two vehicles approach an intersection: a truck moving east-
bound at 16.0 m>s and an SUV moving southbound at 20.0 m>s. Find 
the velocity vector (magnitude and direction) of (a) the truck relative to 
the SUV and (b) the SUV relative to the truck.
VP3.15.4 A jet is flying due north relative to the ground. The speed of 
the jet relative to the ground is 155 m>s. The wind at the jet’s altitude is 
40.0 m>s toward the northeast (45.0° north of east). Find the speed of the 
jet relative to the air (its airspeed) and the direction in which the pilot of the 
jet must point the plane so that it travels due north relative to the ground.

For assigned homework and other learning materials, go to Mastering Physics.

Chapter 3 Media Assets

Continued
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DISCUSSION QUESTIONS
Q3.1 A simple pendulum (a mass swinging at the end of a string) 
swings back and forth in a circular arc. What is the direction of the ac-
celeration of the mass when it is at the ends of the swing? At the mid-
point? In each case, explain how you obtained your answer.
Q3.2 Redraw Fig. 3.11a if aS is antiparallel to vS1. Does the particle 
move in a straight line? What happens to its speed?
Q3.3 A projectile moves in a parabolic path without air resistance. Is 
there any point at which aS is parallel to vS? Perpendicular to vS? Explain.
Q3.4 A book slides off a horizontal tabletop. As it leaves the table’s 
edge, the book has a horizontal velocity of magnitude v0. The book 
strikes the floor in time t. If the initial velocity of the book is doubled to 
2v0, what happens to (a) the time the book is in the air, (b) the horizontal 
distance the book travels while it is in the air, and (c) the speed of the 
book just before it reaches the floor? In particular, does each of these 
quantities stay the same, double, or change in another way? Explain.
Q3.5 At the instant that you fire a bullet horizontally from a rifle, you 
drop a bullet from the height of the gun barrel. If there is no air resis-
tance, which bullet hits the level ground first? Explain.
Q3.6 A package falls out of an airplane that is flying in a straight line 
at a constant altitude and speed. If you ignore air resistance, what would 
be the path of the package as observed by the pilot? As observed by a 
person on the ground?
Q3.7 Sketch the six graphs of the x- and y-components of  position, 
velocity, and acceleration versus time for projectile motion with 
x0 = y0 = 0 and 0 6 a0 6 90°.
Q3.8 If a jumping frog can give itself the same initial speed regardless 
of the direction in which it jumps (forward or straight up), how is the 
maximum vertical height to which it can jump related to its maximum 
horizontal range Rmax = v 2

0>g?
Q3.9 A projectile is fired upward at an angle u above the horizontal 
with an initial speed v0. At its maximum height, what are its velocity 
vector, its speed, and its acceleration vector?
Q3.10 In uniform circular motion, what are the average velocity and 
average acceleration for one revolution? Explain.
Q3.11 In uniform circular motion, how does the acceleration change 
when the speed is increased by a factor of 3? When the radius is de-
creased by a factor of 2?

PROBLEMS
•, ••, •••: Difficulty levels. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems requiring calculus.  
DATA: Problems involving real data, scientific evidence, experimental design, and/or statistical reasoning. BIO: Biosciences problems.

Q3.12 In uniform circular motion, the acceleration is perpendicu-
lar to the velocity at every instant. Is this true when the motion is not 
 uniform—that is, when the speed is not constant?
Q3.13 Raindrops hitting the side windows of a car in motion often 
leave diagonal streaks even if there is no wind. Why? Is the explanation 
the same or different for diagonal streaks on the windshield?
Q3.14 In a rainstorm with a strong wind, what determines the best po-
sition in which to hold an umbrella?
Q3.15 You are on the west bank of a river that is flowing north with 
a speed of 1.2 m>s. Your swimming speed relative to the water is 
1.5 m>s, and the river is 60 m wide. What is your path relative to the 
earth that allows you to cross the river in the shortest time? Explain 
your reasoning.
Q3.16 A stone is thrown into the air at an angle above the horizontal 
and feels negligible air resistance. Which graph in Fig. Q3.16 best de-
picts the stone’s speed v as a function of time t while it is in the air?

EXERCISES

Section 3.1 Position and Velocity Vectors
3.1 • A squirrel has x- and y-coordinates 11.5 m, 2.9 m2 at time t1 = 0 
and coordinates 15.9 m, -0.6 m2 at time t2 = 3.0 s. For this time inter-
val, find (a) the components of the average velocity, and (b) the magni-
tude and direction of the average velocity.
3.2 • A rhinoceros is at the origin of coordinates at time t1 = 0. For 
the time interval from t1 = 0 to t2 = 12.5 s, the rhino’s average ve-
locity has x-component -4.0 m>s and y-component 4.3 m>s. At time 
t2 = 12.5 s, (a) what are the x- and y-coordinates of the rhino? (b) How 
far is the rhino from the origin?

(a)

t

v

(b)

t

v

(c)

t

v

(e)

t

v

(d)

t

v

Figure Q3.16

2. Choose the x- and y-axes and the position of the origin. When 
in doubt, use the suggestions given in Problem-Solving Strategy 
3.1 in Section 3.3.

3. In the projectile equations in Section 3.3, the launch angle a0 
is measured from the horizontal. What is this angle in terms of 
u and f? What are the initial x- and y-components of the ball’s 
initial velocity?

4. You’ll need to write an equation that relates x and y for points 
along the incline. What is this equation? (This takes just geom-
etry and trigonometry, not physics.)

EXECUTE

5. Write the equations for the x-coordinate and y-coordinate of the 
ball as functions of time t.

6. When the ball hits the incline, x and y are related by the equa-
tion that you found in step 4. Based on this, at what time t does 
the ball hit the incline?

7. Based on your answer from step 6, at what coordinates x and y 
does the ball land on the incline? How far is this point from the 
launch point?

8. What value of f gives the maximum distance from the 
launch point to the landing point? (Use your knowledge of 
calculus.)

EVALUATE

9. Check your answers for the case u = 0, which corresponds to 
the incline being horizontal rather than tilted. (You already 
know the answers for this case. Do you know why?)
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3.11 • Crickets Chirpy and Milada jump from the top of a vertical cliff. 
Chirpy drops downward and reaches the ground in 3.10 s, while Milada 
jumps horizontally with an initial speed of 94.0 cm>s. How far from the 
base of the cliff will Milada hit the ground? Ignore air resistance.
3.12 • You throw a basketball with an initial upward velocity com-
ponent of 8.0 m>s and a horizontal velocity component of 12.0 m>s. 
Ignore air resistance. (a) How much time is required for the basketball 
to reach the highest point of the trajectory? (b) How high is this point? 
(c) How much time (after it is thrown) is required for the basketball to 
return to its original level? How does this compare with the time cal-
culated in part (a)? (d) How far has the basketball traveled horizontally 
during this time? (e) Draw x-t, y-t, vx@t, and vy@t graphs for the motion.
3.13 •• Leaping the River I.  During a storm, a car traveling on 
a level horizontal road comes upon a bridge that has washed out. The 
driver must get to the other side, so he decides to try leaping the river with 
his car. The side of the road the car is on is 21.5 m above the river, while 
the opposite side is only 2.0 m above the river. The river itself is a raging 
torrent 57.0 m wide. (a) How fast should the car be traveling at the time 
it leaves the road in order just to clear the river and land safely on the 
opposite side? (b) What is the speed of the car just before it lands on the 
other side?
3.14 • BIO The Champion Jumper of the Insect World. The frog-
hopper, Philaenus spumarius, holds the world record for insect jumps. 
When leaping at an angle of 58.0° above the horizontal, some of the 
tiny critters have reached a maximum height of 58.7 cm above the 
level ground. (See Nature, Vol. 424, July 31, 2003, p. 509.) Neglect air 
 resistance in answering the following. (a) What was the takeoff speed 
for such a leap? (b) What horizontal distance did the froghopper cover  
for this world-record leap?
3.15 •• Inside a starship at rest on the earth, a ball rolls off the top 
of a horizontal table and lands a distance D from the foot of the table. 
This starship now lands on the unexplored Planet X. The commander, 
Captain Curious, rolls the same ball off the same table with the same 
initial speed as on earth and finds that it lands a distance 2.72D from the 
foot of the table. What is the acceleration due to gravity on Planet X?
3.16 • On level ground a shell is fired with an initial velocity of 
71.0 m>s at 55.9° above the horizontal and feels no appreciable air re-
sistance. (a) Find the horizontal and vertical components of the shell’s 
initial velocity. (b) How long does it take the shell to reach its highest 
point? (c) Find its maximum height above the ground. (d) How far from 
its firing point does the shell land? (e) At its highest point, find the hori-
zontal and vertical components of its acceleration and velocity.
3.17 • A major leaguer hits a baseball so that it leaves the bat 
at a speed of 33.0 m>s and at an angle of 38.5° above the hori-
zontal. Ignore air resistance. (a) At what two times is the base-
ball at a height of 10.7 m above the point at which it left the bat?  
(b) Calculate the horizontal and vertical components of the baseball’s ve-
locity at each of the two times calculated in part (a). (c) What are the 
magnitude and direction of the baseball’s velocity when it returns to the 
level at which it left the bat?

3.3 •• CALC A web page designer creates an animation in which  
a dot on a computer screen has position 

rS ∙ 34.4 cm +  12.8 cm>s22t24 dn ∙ 15.5 cm>s2t en.

(a) Find the magnitude and direction of the dot’s average velocity be-
tween t = 0 and t = 2.0 s. (b) Find the magnitude and  direction 
of the instantaneous velocity at t = 0, t = 1.0 s, and t = 2.0 s.  
(c) Sketch the dot’s trajectory from t = 0 to t = 2.0 s, and show the 
velocities calculated in part (b).
3.4 • CALC The position of a squirrel running in a park is given by 
rS ∙ 310.280 m>s2t + 10.0360 m>s22t24 dn ∙ 10.0190 m>s32t3en. (a) What  
are vx1t2 and vy1t2, the x- and y-components of the velocity of the squir-
rel, as functions of time? (b) At t = 5.74 s, how far is the squirrel from 
its initial position? (c) At t = 5.74 s, what are the magnitude and direc-
tion of the squirrel’s velocity?

Section 3.2 The Acceleration Vector
3.5 • A jet plane is flying at a constant altitude. At time t1 = 0, it has 
components of velocity vx = 88 m>s, vy = 115 m>s. At time t2 = 30.0 s,  
the components are vx = -175 m>s,  vy = 35 m>s. (a) Sketch the veloc-
ity vectors at t1 and t2. How do these two vectors differ? For this time 
interval calculate (b) the components of the average acceleration, and 
(c) the magnitude and direction of the average acceleration.
3.6 •• A dog running in an open field has components of velocity 
vx = 3.2 m>s and vy = -1.8 m>s at t1 = 11.1 s. For the time interval 
from t1 = 11.1 s to t2 = 24.9 s, the average acceleration of the dog has 
magnitude 0.54 m>s2 and direction 33.5° measured from the +x@axis to-
ward the +y@axis. At t2 = 24.9 s, (a) what are the x- and y-components 
of the dog’s velocity? (b) What are the magnitude and direction of the 
dog’s velocity? (c) Sketch the velocity vectors at t1 and t2. How do these 
two vectors differ?
3.7 •• CALC The coordinates of a bird flying in the xy-plane are 
given by x1t2 = at and y1t2 = 3.0 m - bt2, where a = 2.4 m>s 
and b = 1.2 m>s2. (a) Sketch the path of the bird between t = 0 and 
t = 2.0 s. (b) Calculate the velocity and acceleration vectors of the bird 
as functions of time. (c) Calculate the magnitude and direction of the 
bird’s velocity and acceleration at t = 2.0 s. (d) Sketch the velocity and 
acceleration vectors at t = 2.0 s. At this instant, is the bird’s speed in-
creasing, decreasing, or not changing? Is the bird turning? If so, in what 
direction?
3.8 • CALC A remote-controlled car is moving in a vacant  parking 
lot. The velocity of the car as a function of time is given by vS ∙
35.00 m>s - 10.0180 m>s32t24 dn ∙ 32.00 m>s + 10.550 m>s22t4 en. (a) 
What are ax1t2 and ay1t2, the x- and y-components of the car’s velocity 
as functions of time? (b) What are the magnitude and direction of the 
car’s velocity at t = 6.87 s? (c) What are the magnitude and direction 
of the car’s acceleration at t = 6.87 s?

SECTION 3.3 Projectile Motion
3.9 • A physics book slides off a horizontal tabletop with a speed 
of 1.40 m>s. It strikes the floor in 0.320 s. Ignore air resistance. Find  
(a) the height of the tabletop above the floor; (b) the horizontal distance 
from the edge of the table to the point where the book strikes the floor; 
(c) the horizontal and vertical components of the book’s velocity, and 
the magnitude and direction of its velocity, just before the book reaches 
the floor. (d) Draw x-t, y-t, vx@t, and vy@t graphs for the motion.
3.10 •• A daring 510 N swimmer dives off a cliff with a running hori-
zontal leap, as shown in Fig. E3.10. What must her minimum speed be 
just as she leaves the top of the cliff so that she will miss the ledge at 
the bottom, which is 1.75 m wide and 9.00 m below the top of the cliff?

v0

Ledge

1.75 m
9.00 m

Figure E3.10
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3.18 • A shot putter releases the shot some distance above the level 
ground with a velocity of 12.0 m>s, 51.0° above the horizontal. The 
shot hits the ground 2.08 s later. Ignore air resistance. (a) What are 
the components of the shot’s acceleration while in flight? (b) What 
are the components of the shot’s velocity at the beginning and at the 
end of its trajectory? (c) How far did she throw the shot horizon-
tally? (d) Why does the expression for R in Example 3.8 not give 
the correct answer for part (c)? (e) How high was the shot above the 
ground when she released it? (f) Draw x-t, y-t, vx@t, and vy@t graphs 
for the motion.
3.19 •• Win the Prize. At a funfair stall, you can win a plush giraffe  
toy if you toss a coin into a small dish. The dish is on a shelf above the 
point where the coin leaves your hand and is a horizontal distance of 2.1 
m from this point (Fig. E3.19). If you toss the coin with a velocity of 
6.4 m>s at an angle of 60° above the horizontal, the coin will land in the 
dish. Ignore air resistance. (a) What is the height of the shelf above the 
point where the coin leaves your hand? (b) What is the vertical compo-
nent of the velocity of the coin just before it lands in the dish?

3.20 • Firefighters use a high-pressure hose to shoot a stream of water 
at a burning building. The water has a speed of 25.0 m>s as it leaves 
the end of the hose and then exhibits projectile motion. The firefighters 
adjust the angle of elevation a of the hose until the water takes 3.00 s 
to reach a building 45.0 m away. Ignore air resistance; assume that the 
end of the hose is at ground level. (a) Find a. (b) Find the speed and ac-
celeration of the water at the highest point in its trajectory. (c) How high 
above the ground does the water strike the building, and how fast is it 
moving just before it hits the building?
3.21 •• A man stands on the roof of a 15.0-m-tall building and throws 
a rock with a speed of 30.0 m>s at an angle of 33.0° above the horizon-
tal. Ignore air resistance. Calculate (a) the maximum height above the 
roof that the rock reaches; (b) the speed of the rock just before it strikes 
the ground; and (c) the horizontal range from the base of the building to 
the point where the rock strikes the ground. (d) Draw x-t, y-t, vx@t, and 
vy@t graphs for the motion.
3.22 •• At t = 0 a rock is projected from ground level with a speed 
of  15.0 m>s and at an angle of 53.0° above the horizontal. Neglect air 
resistance. At what two times t is the rock 5.00 m above the ground? At 
each of these two times, what are the horizontal and vertical compo-
nents of the velocity of the rock? Let v0x and v0y be in the positive x- and 
y-directions, respectively.
3.23 • Estimate the maximum horizontal distance that you can throw 
a basketball. (a) Based on your estimate, what is the speed of the bas-
ketball as it leaves your hand? (b) If you could throw the basketball 

straight up at the same speed as in part (a), how high would it go? (c) 
The value of g on Mars is 3.7 m>s2. What horizontal distance can you 
throw a basketball on Mars if you throw it with the same initial speed 
as in part (a)?

Section 3.4 Motion in a Circle
3.24 • Merry-go-rounds are a common ride in park playgrounds. The 
ride is a horizontal disk that rotates about a vertical axis at their center. 
A typical size is a diameter of 3.6 m. A rider sits at the outer edge of the 
disk and holds onto a metal bar while someone pushes on the ride to 
make it rotate. Estimate a typical time for one rotation. (a) For your esti-
mated time, what is the speed of the rider, in m/s? (b) What is the rider’s 
radial acceleration, in m>s2? (c) What is the rider’s radial acceleration if 
the time for one rotation is halved?
3.25 • The earth has a radius of 6380 km and turns around once on its 
axis in 24 h. (a) What is the radial acceleration of an object at the earth’s 
equator? Give your answer in m>s2 and as a fraction of g. (b) If arad at 
the equator is greater than g, objects will fly off the earth’s surface and 
into space. (We’ll see the reason for this in Chapter 5.) What would the 
period of the earth’s rotation have to be for this to occur?
3.26 •• BIO Dizziness.  Our balance is maintained, at least in part, 
by the endolymph fluid in the inner ear. Spinning displaces this fluid, 
causing dizziness. Suppose that a skater is spinning very fast at 2.8 revo-
lutions per second about a vertical axis through the center of his head. 
Take the inner ear to be approximately 7.0 cm from the axis of spin. (The 
distance varies from person to person.) What is the radial acceleration 
(in m>s2 and in g’s) of the endolymph fluid?
3.27 • A small ball is attached to the lower end of a 0.800-m-long 
string, and the other end of the string is tied to a horizontal rod. The 
string makes a constant angle of 37.0° with the vertical as the ball moves 
at a constant speed in a horizontal circle. If it takes the ball 0.600 s to 
complete one revolution, what is the magnitude of the radial accelera-
tion of the ball?
3.28 •• A model of a helicopter rotor has four blades, each 3.00 m long 
from the central shaft to the blade tip. The model is rotated in a wind 
tunnel at 470 rev>min. (a) What is the linear speed of the blade tip, in 
m>s? (b) What is the radial acceleration of the blade tip expressed as a 
multiple of g?
3.29 • BIO Pilot Blackout in a Power Dive. A jet plane comes in for 
a downward dive as shown in Fig. E3.29. The bottom part of the path is 
a quarter circle with a radius of curvature of 280 m. According to medi-
cal tests, pilots will lose consciousness when they pull out of a dive at 
an upward acceleration greater than 5.5g. At what minimum speed (in 
m>s and in km>h) will the pilot black out during this dive?
3.30 • An object moves in a horizontal circle at constant speed 
v (in  units of m>s). It takes the object T seconds to complete one 
revolution. Derive an expression that gives the radial acceleration of 
the ball in terms of v and T, but not r. (a) If the speed doubles, by 
what factor must the period T change if arad is to remain unchanged?  
(b)  If the radius doubles, by what factor must the period change to 
keep arad the same?

Figure E3.29

v =  6.4 m>s

60°

2.1 m

?

Figure E3.19
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3.31 • A Ferris wheel with radius 
14.0 m is turning about a horizontal axis 
through its center (Fig. E3.31). The linear 
speed of a passenger on the rim is con-
stant and equal to 7.13 m>s. What are the 
magnitude and direction of the passen-
ger’s acceleration as she passes through 
(a) the lowest point in her circular motion 
and (b) the highest point in her circular 
motion? (c) How much time does it take 
the Ferris wheel to make one revolution?
3.32 • A roller coaster car moves in a 
vertical circle of radius R. At the top of 
the circle the car has speed v1, and at the bottom of the circle it has speed 
v2, where v2 7 v1. (a) When the car is at the top of its circular path, what 
is the direction of its radial acceleration, arad, top? (b) When the car is at the 
bottom of its circular path, what is the direction of its radial acceleration, 
arad, bottom? (c) In terms of v1 and v2, what is the ratio arad, bottom>arad, top?
3.33 •• BIO Hypergravity. TsF-18 at the Yuri Gagarin Cosmonaut 
Training Centre, Star City, Russia, is the world’s largest centrifuge. It is 
used to test the effects of very large accelerations (“hypergravity”) on test 
pilots, cosmonauts, and astronauts. In this device, an arm 18.00 m long ro-
tates about one end in a horizontal plane, and an astronaut is strapped in a 
seat at the other end, with their back parallel to the floor, is aligned along 
the centrifuge’s arm. The device can reach up to 30g, but a typical accel-
eration to which humans are subjected in it is between 4g and 9g. (a) How 
fast must the astronaut’s head be moving to experience a 9g acceleration 
(suppose that it is at the outermost end of the centrifuge’s arm)? (b) What is 
the difference between the acceleration of their head and feet (suppose that 
the horizontal distance between the top of the head and the feet is 1.40 m; 
remember that the astronaut is seated during the process!)? (c) How fast in 
rpm 1rev>min2 is the arm turning to produce a 9g acceleration?
3.34 • The radius of the earth’s orbit around the sun (assumed to be 
circular) is 1.50 * 108 km, and the earth travels around this orbit in  
365 days. (a) What is the magnitude of the orbital velocity of the earth, in 
m>s? (b) What is the magnitude of the radial acceleration of the earth toward 
the sun, in m>s2

 ? (c) Repeat parts (a) and (b) for the motion of the planet 
Mercury (orbit radius = 5.79 * 107 km, orbital period = 88.0 days).

Section 3.5 Relative Velocity
3.35 • A travelator in an airport terminal moves at 1.4 m>s and is 32.0 
m long. If a woman steps on at one end and walks at 1.7 m>s relative to 
the travelator how much time does it take her to reach the opposite end 
if she walks (a) in the same direction the travelator is moving? (b) In the 
opposite direction?
3.36 • A flat wagon is traveling to the right at a speed of 13.0 m>s rel-
ative to an observer standing on the ground. Someone is riding a motor 
scooter on the flat wagon (Fig. E3.36). What is the velocity (magnitude 
and direction) of the scooter relative to the wagon if the scooter’s veloc-
ity relative to the observer on the ground is (a) 18.0 m>s to the right? (b) 
3.0 m>s to the left? (c) zero?
3.37 •• A canoe has a velocity of 0.41 m>s southeast relative to the earth. 
The canoe is on a river that is flowing 0.60 m>s east relative to the earth. 
Find the velocity (magnitude and direction) of the canoe relative to the river.

3.38 • Two piers, A and B, are located on a river; B is 1500 m down-
stream from A (Fig. E3.38). Two friends must make round trips from 
pier A to pier B and return. One rows a boat at a constant speed of 
4.00 km>h relative to the water; the other walks on the shore at a con-
stant speed of 4.00 km>h. The velocity of the river is 2.80 km>h in the 
direction from A to B. How much time does it take each person to make 
the round trip?

14.0 m

Figure E3.31

1500 m

vcurrent

BA

Figure E3.38

3.39 •• BIO Bird Migration.  Canada geese migrate essentially 
along a north–south direction for well over a thousand kilometers in 
some cases, traveling at speeds up to about 100 km>h. If one goose is 
flying at 100 km>h relative to the air but a 50 km>h wind is blowing 
from west to east, (a) at what angle relative to the north–south direc-
tion should this bird head to travel directly southward relative to the 
ground? (b) How long will it take the goose to cover a ground distance 
of 550 km from north to south? (Note: Even on cloudy nights, many 
birds can navigate by using the earth’s magnetic field to fix the north–
south direction.)
3.40 •• The nose of an ultralight plane is pointed due south, and 
its airspeed indicator shows 35 m>s. The plane is in a 10 m>s wind 
blowing toward the southwest relative to the earth. (a) In a vector- 
addition diagram, show the relationship of vSP>E (the velocity of the 
plane  relative to the earth) to the two given vectors. (b) Let x be east 
and y be north, and find the components of vSP>E. (c) Find the magni-
tude and direction of vSP>E.
3.41 • Crossing the River I.  A river flows due south with a speed 
of 2.0 m>s. You steer a motorboat across the river; your velocity rela-
tive to the water is 4.2 m>s due east. The river is 500 m wide. (a) What 
is your velocity (magnitude and direction) relative to the earth? (b) 
How much time is required to cross the river? (c) How far south of 
your starting point will you reach the opposite bank?
3.42 • Crossing the River II. (a) In which direction should the mo-
torboat in Exercise 3.41 head to reach a point on the opposite bank di-
rectly east from your starting point? (The boat’s speed relative to the 
water remains 4.2 m>s.) (b) What is the velocity of the boat relative to 
the earth? (c) How much time is required to cross the river?
3.43 •• An airplane pilot wishes to fly due west. A wind of 80.0 km>h 
is blowing toward the south. (a) If the airspeed of the plane (its speed 
in still air) is 320.0 km>h, in which direction should the pilot head? (b) 
What is the speed of the plane over the ground? Draw a vector diagram.

PROBLEMS
3.44 ••  CP CALC  A dog in an open field is at rest under a tree at time t = 0 
and then runs with acceleration aS1t2 ∙ 10.400 m>s22dn ∙ 10.180 m>s32ten.  
How far is the dog from the tree 8.00 s after it starts to run?
3.45 •• CALC If rS ∙ bt2 dn ∙ ct3en, where b and c are positive con-
stants, when does the velocity vector make an angle of 45.0° with the 
x- and y-axes?

v =  13.0 m>s
Figure E3.36
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3.46 ••• CALC A faulty model rocket moves in the xy-plane (the 
positive y-direction is vertically upward). The rocket’s acceleration has 
components ax1t2 = at2 and ay1t2 = b - gt, where a = 2.50 m>s4, 
b = 9.00 m>s2, and g = 1.40 m>s3. At t = 0 the rocket is at the 
origin and has velocity vS0 ∙ v0x dn ∙ v0yen with v0x = 1.00 m>s and 
v0y = 7.00 m>s. (a) Calculate the velocity and position vectors as func-
tions of time. (b) What is the maximum height reached by the rocket? 
(c) What is the horizontal displacement of the rocket when it returns 
to y = 0?
3.47 ••• CP A test rocket starting from rest at point A is launched by 
accelerating it along a 200.0-m incline at 1.48 m>s2 (Fig. P3.47). The 
incline rises at 35.0° above the horizontal, and at the instant the rocket 
leaves it, the engines turn off and the rocket is subject to gravity only 
(ignore air resistance). Find (a) the maximum height above the ground 
that the rocket reaches, and (b) the rocket’s greatest horizontal range 
beyond point A.

3.54 ••• An important piece of landing equipment must be thrown to 
a ship, which is moving at 45.0 cm>s, before the ship can dock. This 
equipment is thrown at 15.0 m>s at 60.0° above the horizontal from the 
top of a tower at the edge of the water, 8.75 m above the ship’s deck 
(Fig. P3.54). For this equipment to land at the front of the ship, at what 
distance D from the dock should the ship be when the equipment is 
thrown? Ignore air resistance.
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Figure P3.54

1.06 m

6.74 cm

Not to
scale

50.0°

Figure P3.57

Water

6D

v0 =  ?

45°

D

2D

Figure P3.58

35.0°

A

200.0 m

Figure P3.47

3.48 •• CALC The position of a dragonfly that is fly-
ing par allel to the ground is given as a function of time by rS ∙  
32.90 m + 10.0900 m>s22t24 dn ∙ 10.0150 m>s32t3en. (a) At what value 
of t does the velocity vector of the dragonfly make an angle of 32.0o 
clockwise from the +x-axis? (b) At the time calculated in part (a), what 
are the magnitude and direction of the dragonfly’s acceleration vector?
3.49 •• In fighting forest fires, airplanes work in support of ground 
crews by dropping water on the fires. For practice, a pilot drops a canister 
of red dye, hoping to hit a target on the ground below. If the plane is flying 
in a horizontal path 90.0 m above the ground and has a speed of 62.0 m>s  
at what horizontal distance from the target should the pilot release the can-
ister? Ignore air resistance.
3.50 •• CALC A bird flies in the xy-plane with a velocity vector 
given by vS ∙ 1a - bt22dn ∙ gt en, with a = 2.4 m>s, b =  1.6 m>s3, and 
g = 4.0 m>s2. The positive y-direction is vertically upward. At t = 0 
the bird is at the origin. (a) Calculate the position and acceleration 
 vectors of the bird as functions of time. (b) What is the bird’s altitude 
(y- coordinate) as it flies over x = 0 for the first time after t = 0?
3.51 ••• A movie stuntwoman drops from a helicopter that is 30.0 m 
above the ground and moving with a constant velocity whose components 
are 10.0 m>s upward and 15.0 m>s horizontal and toward the south. Ignore 
air resistance. (a) Where on the ground (relative to the position of the heli-
copter when she drops) should the stuntwoman have placed foam mats to 
break her fall? (b) Draw x-t, y-t, vx@t, and vy@t graphs of her motion.
3.52 •• A cannon, located 60.0 m from the base of a vertical 25.0-m-
tall cliff, shoots a 15 kg shell at 43.0° above the horizontal toward the 
cliff. (a) What must the minimum muzzle velocity be for the shell to 
clear the top of the cliff? (b) The ground at the top of the cliff is level, 
with a constant elevation of 25.0 m above the cannon. Under the condi-
tions of part (a), how far does the shell land past the edge of the cliff?
3.53 • CP CALC A toy rocket is launched with an initial veloc-
ity of 15.0 m>s in the horizontal direction from the roof of a 39.0-m-
tall building. The rocket’s engine produces a horizontal acceleration of 
11.60 m>s32t, in the same direction as the initial velocity, but in the verti-
cal direction the acceleration is g, downward. Ignore air resistance. What 
horizontal distance does the rocket travel before reaching the ground?

3.55 •• A cricket ball thrown at an angle of 60.0° above the horizontal 
strikes a building 18.0 m away at a point 8.00 m above the point from which 
it is thrown. Ignore air resistance. (a) Find the magnitude of the ball’s initial 
velocity (the velocity with which the ball is thrown). (b) Find the magnitude 
and direction of the velocity of the ball just before it strikes the building.
3.56 •• An Errand of Mercy.  An airplane is dropping bales of hay 
to cattle stranded in a blizzard on the Great Plains. The pilot releases 
the bales at 180 m above the level ground when the plane is flying at 
80 m>s in a direction 60° above the horizontal. How far in front of the 
cattle should the pilot release the hay so that the bales land at the point 
where the cattle are stranded?
3.57 •• A grasshopper leaps into the air from the edge of a vertical 
cliff, as shown in Fig. P3.57. Find (a) the initial speed of the grasshop-
per and (b) the height of the cliff.

3.58 ••• A water hose is used to fill a large cylindrical storage tank of 
diameter D and height 2D. The hose shoots the water at 45° above the hori-
zontal from the same level as the base of the tank and is a distance 6D away 
(Fig. P3.58). For what range of launch speeds 1v02 will the water enter the 
tank? Ignore air resistance, and express your answer in terms of D and g.
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3.59 •• An object is projected with initial speed v0 from the edge of 
the roof of a building that has height H. The initial velocity of the object 
makes an angle a0 with the horizontal. Neglect air resistance. (a) If a0 
is 90°, so that the object is thrown straight up (but misses the roof on the 
way down), what is the speed v of the object just before it strikes the 
ground? (b) If a0 = -90°, so that the object is thrown straight down, 
what is its speed just before it strikes the ground? (c) Derive an expres-
sion for the speed v of the object just before it strikes the ground for 
general a0. (d) The final speed v equals v1 when a0 equals a1. If a0 is 
increased, does v increase, decrease, or stay the same?
3.60 •• Kicking an Extra Point. In Canadian football, after a touch-
down the team has the opportunity to earn one more point by kicking the 
ball over the bar between the goal posts. Football regulations are stated in 
British units (see Appendix C): the bar is 10 feet (3.05 m) above the ground, 
and the ball is kicked from ground level, 32 yards (29.26 m) horizontally 
from the bar (Fig. P3.60). (a) There is a minimum angle above the ground 
such that if the ball is launched below this angle, it can never clear the 
bar, no matter how fast it is kicked. What is this angle? (b) If the ball is  
kicked at 45.0° above the horizontal, what must its initial speed be if it  
is just to clear the bar? Express your answer in m>s and in km>h.

3.63 •• Leaping the River II. A physics professor did daredevil 
stunts in his spare time. His last stunt was an attempt to jump across 
a river on a motorcycle (Fig. P3.63). The takeoff ramp was inclined at 
53.0°, the river was 40.0 m wide, and the far bank was 15.0 m lower 
than the top of the ramp. The river itself was 100 m below the ramp. 
Ignore air resistance. (a) What should his speed have been at the top of 
the ramp to have just made it to the edge of the far bank? (b) If his speed 
was only half the value found in part (a), where did he land?
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3.61 ••• Look Out! A snowball rolls off a barn roof that slopes down-
ward at an angle of 40° (Fig. P3.61). The edge of the roof is 14.0 m  
above the ground, and the snowball has a speed of 7.00 m>s as it rolls 
off the roof. Ignore air resistance. (a) How far from the edge of the barn 
does the snowball strike the ground if it doesn’t strike anything else 
while falling? (b) Draw x-t, y-t, vx@t, and vy@t graphs for the motion in 
part (a). (c) A man 1.9 m tall is standing 4.0 m from the edge of the 
barn. Will the snowball hit him?

3.62 • A 2.7 kg ball is thrown upward with an initial speed of 
20.0 m>s from the edge of a 45.0-m-high cliff. At the instant the ball is 
thrown, a woman starts running away from the base of the cliff with a 
constant speed of 6.00 m>s. The woman runs in a straight line on level 
ground. Ignore air resistance on the ball. (a) At what angle above the 
horizontal should the ball be thrown so that the runner will catch it just 
before it hits the ground, and how far does she run before she catches 
the ball? (b) Carefully sketch the ball’s trajectory as viewed by (i) a 
person at rest on the ground and (ii) the runner.

3.64 •• Tossing Your Lunch.  Henrietta is jogging along the pave-
ment at 3.0 m>s on the way to her physics class. Bruce realizes that she 
forgot her bag of bagels, so he runs to the window, which is 43.8 m 
above the street level and directly above the pavement, to throw the bag 
to her. He throws it horizontally 9.00 s after she has passed below the 
window, and she catches it on the run. Ignore air resistance. (a) With 
what initial speed must Bruce throw the bagels so that Henrietta can 
catch the bag just before it hits the ground? (b) Where is Henrietta when 
she catches the bagels?
3.65 • A 76.0 kg rock is rolling horizontally at the top of a vertical 
cliff that is 20 m above the surface of a lake (Fig. P3.65). The top of the 
vertical face of a dam is located 100 m from the foot of the cliff, with 
the top of the dam level with the surface of the water in the lake. A level 
plain is 25 m below the top of the dam. (a) What must be the minimum 
speed of the rock just as it leaves the cliff so that it will reach the plain 
without striking the dam? (b) How far from the foot of the dam does the 
rock hit the plain?

3.66 •• A firefighting crew uses a water cannon that shoots water at 
25.0 m>s at a fixed angle of 53.0° above the horizontal. The firefighters 
want to direct the water at a blaze that is 10.0 m above ground level. 
How far from the building should they position their cannon? There 
are two possibilities; can you get them both? (Hint: Start with a sketch 
showing the trajectory of the water.)
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3.67 •• On a level football pitch a football is projected from ground 
level. It has speed 8.0 m>s when it is at its maximum height. It travels 
a horizontal distance of 50.0 m. Neglect air resistance. How long is the 
ball in the air?
3.68 ••• You are standing on a loading dock at the top of a flat ramp 
that is at a constant angle a0 below the horizontal. You slide a small box 
horizontally off the loading dock with speed v0 in a direction so that it 
lands on the ramp. How far vertically downward does the box travel 
before it strikes the ramp?
3.69 ••• In the middle of the night you are standing a horizontal dis-
tance of 14.0 m from the high fence that surrounds the estate of your 
rich uncle. The top of the fence is 5.00 m above the ground. You have 
taped an important message to a rock that you want to throw over the 
fence. The ground is level, and the width of the fence is small enough 
to be ignored. You throw the rock from a height of 1.60 m above the 
ground and at an angle of 56.0° above the horizontal. (a) What mini-
mum initial speed must the rock have as it leaves your hand to clear the 
top of the fence? (b) For the initial velocity calculated in part (a), what 
horizontal distance beyond the fence will the rock land on the ground?
3.70 ••• A small object is projected from level ground with an initial 
velocity of magnitude 16.0 m>s and directed at an angle of 60.0° above 
the horizontal. (a) What is the horizontal displacement of the object 
when it is at its maximum height? How does your result compare to the 
horizontal range R of the object? (b) What is the vertical displacement 
of the object when its horizontal displacement is 80.0% of its horizontal 
range R? How does your result compare to the maximum height hmax 
reached by the object? (c) For when the object has horizontal displace-
ment x - x0 = aR, where a is a positive constant, derive an expression 
(in terms of a) for (y - y0)>hmax. Your result should not depend on the 
initial velocity or the angle of projection. Show that your expression 
gives the correct result when a = 0.80, as is the case in part (b). Also 
show that your expression gives the correct result for a = 0, a = 0.50,  
and a = 1.0.
3.71 •• An airplane pilot sets a compass course due west and main-
tains an airspeed of 214 km>h. After flying for 0.470 h, she finds herself 
over a town 123 km west and 12 km south of her starting point. (a) Find 
the wind velocity (magnitude and direction). (b) If the wind velocity is 
40 km>h due south, in what direction should the pilot set her course to 
travel due west? Use the same airspeed of 214 km>h.
3.72 •• Raindrops. When a train’s velocity is 12.0 m>s eastward, 
raindrops that are falling vertically with respect to the earth make 
traces that are inclined 30.0° to the vertical on the windows of the train. 
(a) What is the horizontal component of a drop’s velocity with respect 
to the earth? With respect to the train? (b) What is the magnitude of 
the velocity of the raindrop with respect to the earth? With respect to 
the train?
3.73 ••• In a World Cup football match, Juan is running due north 
toward the goal with a speed of 7.30 m>s relative to the ground. A team-
mate passes the ball to him. The ball has a speed of 13.3 m>s and is 
moving in a direction 30.6° east of north, relative to the ground. What 
are the magnitude and direction of the ball’s velocity relative to Juan?
3.74 •• A shortstop is running due east as he throws a baseball to the 
catcher, who is standing at home plate. The velocity of the baseball rela-
tive to the shortstop is 6.00 m>s in the direction due south, and the speed 
of the baseball relative to the catcher is 9.00 m>s. What is the speed of 
the shortstop relative to the ground when he throws the ball?
3.75 •• Two football players, Mia and Alice, are running as Alice 
passes the ball to Mia. Mia is running due north with a speed of 
6.30 m>s. The velocity of the ball relative to Mia is 6.80 m>s in a direc-
tion 30.0° east of south. What are the magnitude and direction of the 
velocity of the ball relative to the ground?

3.76 •• DATA A spring-gun projects a small rock from the ground with 
speed v0 at an angle u0 above the ground. You have been asked to deter-
mine v0. From the way the spring-gun is constructed, you know that to 
a good approximation v0 is independent of the launch angle. You go to a 
level, open field, select a launch angle, and measure the horizontal distance 
the rock travels. You use g = 9.80 m>s2 and ignore the small height of the 
end of the spring-gun’s barrel above the ground. Since your measurement 
includes some uncertainty in values measured for the launch angle and for 
the horizontal range, you repeat the measurement for several launch angles 
and obtain the results given in Fig. 3.76. You ignore air resistance because 
there is no wind and the rock is small and heavy. (a) Select a way to rep-
resent the data well as a straight line. (b) Use the slope of the best straight-
line fit to your data from part (a) to calculate v0. (c) When the launch angle 
is 36.9°, what maximum height above the ground does the rock reach?

6.00

8.00

10.00

12.00

15.0 35.0 55.0 75.0

Distance (m)

Launch
angle (°)

Figure P3.76

Launch 
height h

Horizontal 
range R

2.00 m 10.4 m

6.00 m 17.1 m

9.00 m 21.3 m

12.00 m 25.8 m

3.77 •• DATA You have constructed a hair-
spray-powered potato gun and want to find the 
muzzle speed v0 of the potatoes, the speed they 
have as they leave the end of the gun barrel. 
You use the same amount of hair spray each 
time you fire the gun, and you have confirmed 
by repeated firings at the same height that the 
muzzle speed is approximately the same for 
each firing. You climb on a microwave relay tower (with permission, of 
course) to launch the potatoes horizontally from different heights above 
the ground. Your friend measures the height of the gun barrel above the 
ground and the range R of each potato. You obtain the data in the table.

Each of the values of h and R has some measurement error: The muz-
zle speed is not precisely the same each time, and the barrel isn’t precisely 
horizontal. So you use all of the measurements to get the best estimate of 
v0. No wind is blowing, so you decide to ignore air resistance. You use 
g = 9.80 m>s2 in your analysis. (a) Select a way to represent the data 
well as a straight line. (b) Use the slope of the best-fit line from part (a) to 
calculate the average value of v0. (c) What would be the horizontal range 
of a potato that is fired from ground level at an angle of 30.0° above the 
horizontal? Use the value of v0 that you calculated in part (b).
3.78 ••• DATA You are a member of a geological team in Central 
Africa. Your team comes upon a wide river that is flowing east. You 
must determine the width of the river and the current speed (the speed 
of the water relative to the earth). You have a small boat with an out-
board motor. By measuring the time it takes to cross a pond where the 
water isn’t flowing, you have calibrated the throttle settings to the speed 
of the boat in still water. You set the throttle so that the speed of the boat 
relative to the river is a constant 6.00 m>s. Traveling due north across 
the river, you reach the opposite bank in 20.1 s. For the return trip, you 
change the throttle setting so that the speed of the boat relative to the 
water is 9.00 m>s. You travel due south from one bank to the other and 
cross the river in 11.2 s. (a) How wide is the river, and what is the cur-
rent speed? (b) With the throttle set so that the speed of the boat relative 
to the water is 6.00 m>s, what is the shortest time in which you could 
cross the river, and where on the far bank would you land?



CHALLENGE PROBLEMS
3.79 ••• CALC A projectile thrown from a point P moves in such a way  
that its distance from P is always increasing. Find the maximum angle 
above the horizontal with which the projectile could have been thrown. 
Ignore air resistance.
3.80 ••• Two students are canoeing on a river. While heading upstream, 
they accidentally drop an empty bottle overboard. They then continue 
paddling for 60 minutes, reaching a point 2.0 km farther upstream. At 
this point they realize that the bottle is missing and, driven by ecological 
awareness, they turn around and head downstream. They catch up with and 
retrieve the bottle (which has been moving along with the current) 5.0 km  
downstream from the turnaround point. (a) Assuming a constant paddling 
effort throughout, how fast is the river flowing? (b) What would the canoe 
speed in a still lake be for the same paddling effort?
3.81 ••• CP A rocket designed to place small payloads into orbit is car-
ried to an altitude of 12.0 km above sea level by a converted airliner. When 
the airliner is flying in a straight line at a constant speed of 850 km>h, the 
rocket is dropped. After the drop, the airliner maintains the same altitude 
and speed and continues to fly in a straight line. The rocket falls for a brief 
time, after which its rocket motor turns on. Once that motor is on, the com-
bined effects of thrust and gravity give the rocket a constant acceleration 
of magnitude 3.00g directed at an angle of 30.0° above the horizontal. For 
safety, the rocket should be at least 1.00 km in front of the airliner when 
it climbs through the airliner’s altitude. Your job is to determine the mini-
mum time that the rocket must fall before its engine starts. Ignore air resis-
tance. Your answer should include (i) a diagram showing the flight paths 
of both the rocket and the airliner, labeled at several points with vectors for 
their velocities and accelerations; (ii) an x-t graph showing the motions of 
both the rocket and the airliner; and (iii) a y-t graph showing the motions 
of both the rocket and the airliner. In the diagram and the graphs, indicate 
when the rocket is dropped, when the rocket motor turns on, and when the 
rocket climbs through the altitude of the airliner.

MCAT-STYLE PASSAGE PROBLEMS
BIO Ballistic Seed Dispersal. Some plants disperse their seeds when 
the fruit splits and contracts, propelling the seeds through the air. The 
trajectory of these seeds can be determined with a high-speed camera. 
In an experiment on one type of plant, seeds are projected at 20 cm 
above ground level with initial speeds between 2.3 m>s and 4.6 m>s. 
The launch angle is measured from the horizontal, with +90° corre-
sponding to an initial velocity straight up and -90° straight down.
3.82 The experiment is designed so that the seeds move no more 
than 0.20 mm between photographic frames. What minimum frame 
rate for the high-speed camera is needed to achieve this? (a) 250 
frames>s; (b) 2500 frames>s; (c) 25,000 frames>s; (d) 250,000 
frames>s.
3.83 About how long does it take a seed launched at 90° at the high-
est possible initial speed to reach its maximum height? Ignore air resis-
tance. (a) 0.23 s; (b) 0.47 s; (c) 1.0 s; (d) 2.3 s.
3.84 If a seed is launched at an angle of 0° with the maximum ini-
tial speed, how far from the plant will it land? Ignore air resistance, 
and assume that the ground is f lat. (a) 20 cm; (b) 93 cm; (c) 2.2 m; 
(d) 4.6 m.
3.85 A large number of seeds are observed, and their initial launch 
angles are recorded. The range of projection angles is found to be 
-51° to 75°, with a mean of 31°. Approximately 65% of the seeds are 
launched between 6° and 56°. (See W. J. Garrison et al., “Ballistic 
seed projection in two herbaceous species,” Amer. J. Bot., Sept. 2000, 
87:9, 1257–64.) Which of these hypotheses is best supported by the 
data? Seeds are preferentially launched (a) at angles that maximize 
the height they travel above the plant; (b) at angles below the hori-
zontal in order to drive the seeds into the ground with more force; 
(c) at angles that maximize the horizontal distance the seeds travel 
from the plant; (d) at angles that minimize the time the seeds spend 
exposed to the air.

ANSWERS

Chapter Opening Question 
(iii) A cyclist going around a curve at constant speed has an accelera-
tion directed toward the inside of the curve (see Section 3.2, especially 
Fig. 3.12a).

Key Example ARIATION Problems
VP3.9.1 (a) 1.53 s, 11.5 m (b) 3.06 s, 61.2 m
VP3.9.2 (a) 20.6 m>s (b) 5.40 m
VP3.9.3 (a) 3.51 s (b) 33.8 m (c) vx = 9.64 m>s, vy = -22.9 m>s
VP3.9.4 (a) t = 2v0>g, x = 2v 2

0 >g, y = -2v 2
0 >g (b) t = v0>g, 

x = v 2
0 >g, y = -v 2

0 >2g
VP3.12.1 20.0 m
VP3.12.2 (a) 41.6 s (b) 6.04 m>s2

VP3.12.3 (a) P: 0.938 m>s, Q: 1.88 m>s (b) P: 8.79 m>s2, Q: 17.6 m>s2 
(c) increase, increase

?
VP3.12.4 (a) Venus: 3.49 * 104 m>s, Earth: 2.99 * 104 m>s, Mars: 
2.41 * 104 m>s (b) Venus: 1.13 * 10-2 m>s2, Earth: 5.95 * 10-3 m>s2,  
Mars: 2.55 * 10-3 m>s2 (c) decrease, decrease
VP3.12.5 (a) TA>TB = 4 (b) arad, A>arad, B = 1>8
VP3.15.1 (a) +53.0 m>s (b) -53.0 m>s
VP3.15.2 (a) 90.0 m>s eastward (b) 90.0 m>s westward (c) neither
VP3.15.3 (a) 25.6 m>s, 51.3° north of east (b) 25.6 m>s, 51.3° south 
of west
VP3.15.4 130 m>s, 12.6° west of north

Bridging Problem

(a) R =
2v 2

0

g
 
cos1u + f2sin f

cos2 u
   (b) f = 45° -

u

2
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LEARNING OUTCOMES

In this chapter, you’ll learn...
 4.1 What the concept of force means in 

physics, why forces are vectors, and 
the significance of the net force on an 
object.

 4.2 What happens when the net external 
force on an object is zero, and the sig-
nificance of inertial frames of reference.

 4.3 How the acceleration of an object is de-
termined by the net external force on the 
object and the object’s mass.

 4.4 The difference between the mass of an 
object and its weight.

 4.5 How the forces that two objects exert on 
each other are related.

 4.6 How to use a free-body diagram to help 
analyze the forces on an object.

You’ll need to review...
 1.7 Vectors and vector addition.
 1.8 Vector components.
 2.4 Straight-line motion with constant 

acceleration.
 2.5 The motion of freely falling objects.
 3.2 Acceleration as a vector.
 3.4 Uniform circular motion.
 3.5 Relative velocity.

We’ve seen in the last two chapters how to use kinematics to describe motion in 
one, two, or three dimensions. But what causes objects to move the way that they 
do? For example, why does a dropped feather fall more slowly than a dropped 

bowling ball? Why do you feel pushed backward in a car that accelerates forward? The 
answers to such questions take us into the subject of dynamics, the relationship of motion 
to the forces that cause it.

The principles of dynamics were clearly stated for the first time by Sir Isaac Newton 
(1642–1727); today we call them Newton’s laws of motion. Newton did not derive the 
laws of motion, but rather deduced them from a multitude of experiments performed by 
other scientists, especially Galileo Galilei (who died the year Newton was born). Newton’s 
laws are the foundation of classical mechanics (also called Newtonian mechanics); using 
them, we can understand most familiar kinds of motion. Newton’s laws need modification 
only for situations involving extremely high speeds (near the speed of light) or very small 
sizes (such as within the atom).

Newton’s laws are very simple to state, yet many students find these laws difficult to 
grasp and to work with. The reason is that before studying physics, you’ve spent years 
walking, throwing balls, pushing boxes, and doing dozens of things that involve motion. 
Along the way, you’ve developed a set of “common sense” ideas about motion and its 
causes. But many of these “common sense” ideas don’t stand up to logical analysis. A big 
part of the job of this chapter—and of the rest of our study of physics—is helping you rec-
ognize how “common sense” ideas can sometimes lead you astray, and how to adjust your 
understanding of the physical world to make it consistent with what experiments tell us.

4.1 FORCE AND INTERACTIONS
A force is a push or a pull. More precisely, a force is an interaction between two objects 
or between an object and its environment (Fig. 4.1). That’s why we always refer to the 
force that one object exerts on a second object. When you push on a car that is stuck in 
the snow, you exert a force on the car; a steel cable exerts a force on the beam it is hoist-
ing at a construction site; and so on. As Fig. 4.1 shows, force is a vector quantity; you can 
push or pull an object in different directions.

4 Newton’s Laws of Motion

?Under what circumstances does the 
 barbell push on the weightlifter just as 

hard as she pushes on the barbell? (i) When 
she holds the barbell stationary; (ii) when she 
raises the barbell; (iii) when she lowers the 
barbell; (iv) two of (i), (ii), and (iii); (v) all of 
(i), (ii), and (iii); (vi) none of these.
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When a force involves direct contact between two objects, such as a push or pull that 
you exert on an object with your hand, we call it a contact force. Figures 4.2a, 4.2b, 
and 4.2c show three common types of contact forces. The normal force (Fig. 4.2a) is 
exerted on an object by any surface with which it is in contact. The adjective “normal” 
means that the force always acts perpendicular to the surface of contact, no matter what 
the angle of that surface. By contrast, the friction force (Fig. 4.2b) exerted on an object 
by a surface acts parallel to the surface, in the direction that opposes sliding. The pull-
ing force exerted by a stretched rope or cord on an object to which it’s attached is called 
a tension force (Fig. 4.2c). When you tug on your dog’s leash, the force that pulls on her 
collar is a tension force.

In addition to contact forces, there are long-range forces that act even when the objects 
are separated by empty space. The force between two magnets is an example of a long-
range force, as is the force of gravity (Fig. 4.2d); the earth pulls a dropped object toward it 
even though there is no direct contact between the object and the earth. The gravitational 
force that the earth exerts on your body is called your weight.

To describe a force vector F
S

, we need to describe the direction in which it acts as 
well as its magnitude, the quantity that describes “how much” or “how hard” the force 
pushes or pulls. The SI unit of the magnitude of force is the newton, abbreviated N. (We’ll 
give a precise definition of the newton in Section 4.3.) Table 4.1 lists some typical force 
magnitudes.

A common instrument for measuring force magnitudes is the spring balance. It con-
sists of a coil spring enclosed in a case with a pointer attached to one end. When forces 
are applied to the ends of the spring, it stretches by an amount that depends on the force. 
We can make a scale for the pointer by using a number of identical objects with weights of 
exactly 1 N each. When one, two, or more of these are suspended simultaneously from the 
balance, the total force stretching the spring is 1 N, 2 N, and so on, and we can label the 
corresponding positions of the pointer 1 N, 2 N, and so on. Then we can use this instru-
ment to measure the magnitude of an unknown force. We can also make a similar instru-
ment that measures pushes instead of pulls.

Figure 4.3 (next page) shows a spring balance being used to measure a pull or push that 
we apply to a box. In each case we draw a vector to represent the applied force. The length 
of the vector shows the magnitude; the longer the vector, the greater the force magnitude.

Superposition of Forces
When you hold a ball in your hand to throw it, at least two forces act on it: the push of 
your hand and the  downward pull of gravity. Experiment shows that when two forces F

S

1 
and F

S

2 act at the same time at the same point on an object (Fig. 4.4, next page), the effect 
on the object’s motion is the same as if a single force R

S
 were acting equal to the vector 

sum, or resultant, of the original forces: R
S

= F
S

1 + F
S

2. More generally, any number of 

Figure 4.1 Some properties of forces.

F
S

S
F (force)

• A force is a push or a pull.
• A force is an interaction between two objects
  or between an object and its environment.
• A force is a vector quantity, with magnitude
  and direction.

Push

Pull

Figure 4.2 Four common types of forces.

T
S

S
(c) Tension force T: A pulling force exerted on
an object by a rope, cord, etc.

nS

nS

nS

S(a) Normal force n: When an object rests or
pushes on a surface, the surface exerts a push on
it that is directed perpendicular to the surface.

f
S

S
(b) Friction force f: In addition to the normal
force, a surface may exert a friction force on an
object, directed parallel to the surface.

wS

S(d) Weight w: The pull of gravity on an object
is a long-range force (a force that acts over
a distance).TABLE 4.1 Typical Force Magnitudes

Sun’s gravitational force on the earth 3.5 * 1022 N

Weight of a large blue whale 1.9 * 106 N

Maximum pulling force of a locomotive 8.9 * 105 N

Average weight of a sumo wrestler 1.45 * 103 N

Weight of a medium apple 1 N

Weight of the smallest insect eggs 2 * 10-6 N

Electric attraction between the proton and the electron in a hydrogen atom 8.2 * 10-8 N

Weight of a very small bacterium 1 * 10-18 N

Weight of a hydrogen atom 1.6 * 10-26 N

Weight of an electron 8.9 * 10-30 N

Gravitational attraction between the proton and the electron in a hydrogen atom 3.6 * 10-47 N
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forces applied at a point on an object have the same effect as a single force equal to the 
vector sum of the forces. This important principle is called superposition of forces.

Since forces are vector quantities and add like vectors, we can use all of the rules of vector 
mathematics that we learned in Chapter 1 to solve problems that involve vectors. This would 
be a good time to review the rules for vector addition presented in Sections 1.7 and 1.8.

We learned in Section 1.8 that it’s easiest to add vectors by using components. That’s 
why we often describe a force F

S
 in terms of its x- and y-components Fx and Fy. Note that 

the x- and y-coordinate axes do not have to be horizontal and vertical, respectively. As an 
example, Fig. 4.5 shows a crate being pulled up a ramp by a force F

S
. In this situation it’s 

most convenient to choose one axis to be parallel to the ramp and the other to be perpen-
dicular to the ramp. For the case shown in Fig. 4.5, both Fx and Fy are positive; in other 
situations, depending on your choice of axes and the orientation of the force F

S
, either Fx or 

Fy may be negative or zero.

   CAUTION    Using a wiggly line in force diagrams In Fig. 4.5 we draw a wiggly line through the 
force vector F

S
 to show that we have replaced it by its x- and y-components. Otherwise, the diagram 

would include the same force twice. We’ll draw such a wiggly line in any force diagram where a 
force is replaced by its components. We encourage you to do the same in your own diagrams! ❙

We’ll often need to find the vector sum (resultant) of all forces acting on an object. We 
call this the net force acting on the object. We’ll use the Greek letter g  (capital sigma, 
equivalent to the Roman S) as a shorthand notation for a sum. If the forces are labeled F

S

1, 
F
S

2, F
S

3, and so on, we can write

(4.1)

... is the vector sum, or resultant, of all individual forces acting on that object.

The net force 
acting on an object ...

R = gF = F1 + F2 + F3 + c
S S S S S

We read gF
S

 as “the vector sum of the forces” or “the net force.” The x-component of 
the net force is the sum of the x-components of the individual forces, and likewise for the 
y-component (Fig. 4.6):

 Rx = gFx  Ry = gFy (4.2)

Each component may be positive or negative, so be careful with signs when you evaluate 
these sums.

Once we have Rx and Ry we can find the magnitude and direction of the net force  
R
S

= gF
S

 acting on the object. The magnitude is

R = 2Rx
 2 + Ry

 2

and the angle u between R
S

 and the +x@axis can be found from the relationship  
tan u = Ry>Rx . The components Rx and Ry may be positive, negative, or zero, and the angle u 
may be in any of the four quadrants.

Figure 4.3 Using a vector arrow to denote the force that we exert when (a) pulling a block with a 
string or (b) pushing a block with a stick.

(a) A 10 N pull directed 30° above
the horizontal

10 N
10 N30°

45°

(b) A 10 N push directed 45° below
the horizontal

Figure 4.4 Superposition of forces.

O

F2
S

F1
S

R
S

Two forces F1 and F2 acting on an object at
point O have the same effect as a single force
R equal to their vector sum.

S S

S

Figure 4.5 Fx and Fy are the components 
of F

S
 parallel and perpendicular to the 

sloping surface of the inclined plane.

We cross out a
vector when we
replace it by its
components.

The x- and y-axes can have any orientation, 
just so they’re mutually perpendicular.

uFy
Fx

O

F
S

y x

Figure 4.6 Finding the components of  
the vector sum (resultant) R

S
 of two forces 

F
S

1 and F
S

2.

The same is true for
the x-components.

O
x

y

F2y

F2xF1x

Rx

Ry

F1y

F2
S

F1
S

The y-component of R
equals the sum of the y-
components of F1 and F2.

S S

S

R = ΣF
SS
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In three-dimensional problems, forces may also have z-components; then we add the 
equation Rz = gFz to Eqs. (4.2). The magnitude of the net force is then

R = 2Rx
 2 + Ry

 2 + Rz
 2

4.2 NEWTON’S FIRST LAW
How do the forces acting on an object affect that object’s motion? Let’s first note that it’s 
impossible for an object to affect its own motion by exerting a force on itself. If that were 
possible, you could lift yourself to the ceiling by pulling up on your belt! The forces that 
affect an object’s motion are external forces, those forces exerted on the object by other 

❙ (a) negative, (b) negative. The gravitational force on the crate points straight downward. In Fig. 4.5 
the x-axis points up and to the right, and the y-axis points up and to the left. With this choice of axes, 
the gravitational force has both an x-component and a y-component, and both are negative.

TEST YOUR UNDERSTANDING OF SECTION 4.1 Figure 4.5 shows a force F
S

 acting on a 
crate. (a) With the x- and y-axes shown in the figure, is the x-component of the gravitational force 
that the earth exerts on the crate (the crate’s weight) positive, negative, or zero? (b) What about the 
y-component?

ANSWER

Figure 4.7 (a) Three forces acting on a belt. (b) The net force  
R
S

= gF
S

 and its components.

(a) y

x

(b)

F3x

F3y

53°

y

x
Rx

Ry

u =  141°

F2
S

F1
S

F3
S

x- and y-components
of F3

S

F1 has zero
y-component.

S

F2 has zero
x-component.

S

Net force
R = ΣF

SS

EXAMPLE 4.1 Superposition of forces: Finding the net force

Three professional wrestlers are fighting over a champion’s belt. 
Figure 4.7a shows the horizontal force each wrestler applies to the 
belt, as viewed from above. The forces have magnitudes F1 = 50 N, 
F2 = 120 N, and F3 = 250 N. Find the x- and y-components of the net 
force on the belt, and find its magnitude and direction.

IDENTIFY and SET UP This is a problem in vector addition in which 
the vectors happen to represent forces. To find the x- and y-components 
of the net force R

S
, we’ll use the component method of vector addition 

expressed by Eqs. (4.2). Once we know the components of R
S

, we can 
find its magnitude and direction.

EXECUTE Figure 4.7a shows that force F
S

1 (magnitude 50 N) points in 
the positive x-direction. Hence it has a positive x-component and zero 
y-component:

F1x = 50 N  F1y = 0 N

Force F
S

2 points in the negative y-direction and so has zero x- component 
and a negative y-component:

F2x = 0 N   F2y = -  120 N

Force F
S

3 doesn’t point along either the x-direction or the y-direction: 
Figure 4.7a shows that its x-component is negative and its y-component 

is positive. The angle between F
S

3 and the negative x-axis is 53°, so the 
absolute value of its x-component is equal to the magnitude of F

S

3 times 
the cosine of 53°. The absolute value of the y-component is therefore 
the magnitude of F

S

3 times the sine of 53°. Keeping track of the signs, 
we find the components of F

S

3 are

F3x = - (250 N) cos 53° = -150 N   F3y = (250 N) sin 53° = 200 N

From Eqs. (4.2) the components of the net force R
S

= gF
S

 are

 Rx = F1x + F2x + F3x = 50 N + 0 N + 1-150 N2 = -100 N

 Ry = F1y + F2y + F3y = 0 N + 1-120 N2 + 200 N = 80 N

The net force has a negative x-component and a positive y-component, 
as Fig. 4.7b shows.

The magnitude of R
S

 is

R = 2R 2
x + R 2

y = 21-100 N22 + 180 N22 = 128 N

To find the angle between the net force and the +x-axis, we use 
Eq. (1.7):

u = arctan 
Ry

Rx
= arctan a 80 N

-100 N
b = arctan 1-0.802

The arctangent of -0.80 is -39°, but Fig. 4.7b shows that the net force 
lies in the second quadrant. Hence the correct solution is u = -39° +
180° = 141°.

EVALUATE The net force is not zero. Wrestler 3 exerts the greatest force 
on the belt, F3 = 250 N, and will walk away with it when the struggle 
ends.

You should check the direction of R
S

 by adding the vectors F
S

1, F
S

2, 
and F

S

3 graphically. Does your drawing show that R
S

 =  F
S

1 + F
S

2 + F
S

3 
points in the second quadrant as we found?

KEYCONCEPT The net force is the vector sum of all of the individ-
ual forces that act on the object. It can be specified by its components or 
by its magnitude and direction.

WITH ARIATION PROBLEMS
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objects in its environment. So the question we must answer is this: How do the external 
forces that act on an object affect its motion?

To begin to answer this question, let’s first consider what happens when the net exter-
nal force on an object is zero. You would almost certainly agree that if an object is at rest, 
and if no net external force acts on it (that is, no net push or pull from other objects), that 
object will remain at rest. But what if there is zero net external force acting on an object 
in motion?

To see what happens in this case, suppose you slide a hockey puck along a horizontal 
tabletop, applying a horizontal force to it with your hand (Fig. 4.8a). After you stop push-
ing, the puck does not continue to move indefinitely; it slows down and stops. To keep it 
moving, you have to keep pushing (that is, applying a force). You might come to the “com-
mon sense” conclusion that objects in motion naturally come to rest and that a force is 
required to sustain motion.

But now imagine pushing the puck across a smooth surface of ice (Fig. 4.8b). After you 
quit pushing, the puck will slide a lot farther before it stops. Put it on an air-hockey table, 
where it floats on a thin cushion of air, and it moves still farther (Fig. 4.8c). In each case, 
what slows the puck down is friction, an interaction between the lower surface of the puck 
and the surface on which it slides. Each surface exerts a friction force on the puck that 
resists the puck’s motion; the difference in the three cases is the magnitude of the fric-
tion force. The ice exerts less friction than the tabletop, so the puck travels farther. The 
gas molecules of the air-hockey table exert the least friction of all. If we could eliminate 
friction completely, the puck would never slow down, and we would need no force at all to 
keep the puck moving once it had been started. Thus the “common sense” idea that a force 
is required to sustain motion is incorrect.

Experiments like the ones we’ve just described show that when no net external force 
acts on an object, the object either remains at rest or moves with constant velocity in a 
straight line. Once an object has been set in motion, no net external force is needed to 
keep it moving. We call this observation Newton’s first law of motion:

NEWTON’S FIRST LAW OF MOTION An object acted on by no net external force 
has a constant velocity (which may be zero) and zero acceleration.

The tendency of an object to keep moving once it is set in motion is called inertia. You 
use inertia when you try to get ketchup out of a bottle by shaking it. First you start the 
bottle (and the ketchup inside) moving forward; when you jerk the bottle back, the ketchup 
tends to keep moving forward and, you hope, ends up on your burger. Inertia is also the 
tendency of an object at rest to remain at rest. You may have seen a tablecloth yanked out 
from under a table setting without breaking anything. The force on the table setting isn’t 
great enough to make it move appreciably during the short time it takes to pull the table-
cloth away.

It’s important to note that the net external force is what matters in Newton’s first law. 
For example, a physics book at rest on a horizontal tabletop has two forces acting on it: an 
upward supporting force, or normal force, exerted by the tabletop (see Fig. 4.2a) and the 
downward force of the earth’s gravity (see Fig. 4.2d). The upward push of the surface is 
just as great as the downward pull of gravity, so the net external force acting on the book 
(that is, the vector sum of the two forces) is zero. In agreement with Newton’s first law, if 
the book is at rest on the tabletop, it remains at rest. The same principle applies to a hockey 
puck sliding on a horizontal, frictionless surface: The vector sum of the upward push of the 
surface and the downward pull of gravity is zero. Once the puck is in motion, it continues 
to move with constant velocity because the net external force acting on it is zero.

Here’s another example. Suppose a hockey puck rests on a horizontal surface with neg-
ligible friction, such as an air-hockey table or a slab of wet ice. If the puck is initially at rest 
and a single horizontal force F

S

1 acts on it (Fig. 4.9a), the puck starts to move. If the puck 
is in motion to begin with, the force changes its speed, its direction, or both, depending on 
the  direction of the force. In this case the net external force is equal to F

S

1, which is not zero. 
(There are also two vertical forces: the earth’s gravitational attraction and the upward normal 
force exerted by the surface. But as we mentioned earlier, these two forces cancel.)

Figure 4.8 The slicker the surface, the 
farther a puck slides after being given an 
initial velocity. On an air-hockey table (c) 
the friction force is practically zero, so 
the puck continues with almost constant 
velocity.
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(a) Table: puck stops short.

(b) Ice: puck slides farther.

(c) Air-hockey table: puck slides even farther.
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Now suppose we apply a second force, F
S

2 (Fig. 4.9b), equal in magnitude to F
S

1 but op-
posite in direction. The two forces are negatives of each other, F

S

2 = −F
S

1, and their vector 
sum is zero:

gF
S

= F
S

1 + F
S

2 = F
S

1 + 1 −F
S

1 2 = 0

Again, we find that if the object is at rest at the start, it remains at rest; if it is initially 
moving, it continues to move in the same direction with constant speed. These results 
show that in Newton’s first law, zero net external force is equivalent to no external force 
at all. This is just the principle of superposition of forces that we saw in Section 4.1.

When an object is either at rest or moving with constant velocity (in a straight line with 
constant speed), we say that the object is in equilibrium. For an object to be in equilib-
rium, it must be acted on by no forces, or by several forces such that their vector sum—
that is, the net external force—is zero:

(4.3)
... must be zero if the object
is in equilibrium.

Newton’s first law:
Net external force on an object ...

SgF = 0

We’re assuming that the object can be represented adequately as a point particle. When 
the object has finite size, we also have to consider where on the object the forces are ap-
plied. We’ll return to this point in Chapter 11.

aS

(a) A puck on a frictionless surface 
accelerates when acted on by a
single horizontal force.

(b) This puck is acted on by two
horizontal forces whose vector sum
is zero. The puck behaves as though
no external forces act on it.

S
F1

S
F1

S
F2

ΣF = 0
a = 0

S

S

Figure 4.9 (a) A hockey puck accelerates 
in the direction of a net applied force F

S

1 . 
(b) When the net external force is zero, 
the acceleration is zero, and the puck is in 
equilibrium.

APPLICATION Sledding with 
Newton’s First Law The downward force 
of gravity acting on the child and sled 
is balanced by an upward normal force 
exerted by the ground. The adult’s foot 
exerts a forward force that balances the 
backward force of friction on the sled. 
Hence there is no net external force on 
the child and sled, and they slide with a 
constant velocity.

In the classic 1950 science-fiction film Rocketship X-M, a spaceship is 
moving in the vacuum of outer space, far from any star or planet, when 
its engine dies. As a result, the spaceship slows down and stops. What 
does Newton’s first law say about this scene?

SOLUTION No external forces act on the spaceship after the engine 
dies, so according to Newton’s first law it will not stop but will continue 

to move in a straight line with constant speed. Some science-fiction 
movies are based on accurate science; this is not one of them.

KEYCONCEPT  If the net external force on an object is zero, the 
object either remains at rest or keeps moving at a constant velocity.

CONCEPTUAL EXAMPLE 4.2 Using Newton’s first law I

You are driving a Porsche 918 Spyder on a straight testing track at a 
constant speed of 250 km>h. You pass a 1971 Volkswagen Beetle doing 
a constant 75 km>h. On which car is the net external force greater?

SOLUTION The key word in this question is “net.” Both cars are in 
equilibrium because their velocities are constant; Newton’s first law 
therefore says that the net external force on each car is zero.

This seems to contradict the “common sense” idea that the faster car 
must have a greater force pushing it. Thanks to your Porsche’s high-
power engine, it’s true that the track exerts a greater forward force on 

your Porsche than it does on the Volkswagen. But a backward force also 
acts on each car due to road friction and air resistance. When the car 
is traveling with constant velocity, the vector sum of the forward and 
backward forces is zero. There is a greater backward force on the fast-
moving Porsche than on the slow-moving Volkswagen, which is why the 
Porsche’s engine must be more powerful than that of the Volkswagen.

KEYCONCEPT If an object either remains at rest or keeps moving at 
a constant velocity, the net external force on the object is zero.

CONCEPTUAL EXAMPLE 4.3 Using Newton’s first law II
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Inertial Frames of Reference
In discussing relative velocity in Section 3.5, we introduced the concept of frame of refer-
ence. This concept is central to Newton’s laws of motion. Suppose you are in a bus that 
is traveling on a straight road and speeding up. If you could stand in the aisle on roller 
skates, you would start moving backward relative to the bus as the bus gains speed. If 
instead the bus was slowing to a stop, you would start moving forward down the aisle. 
In either case, it looks as though Newton’s first law is not obeyed; there is no net external 
force acting on you, yet your velocity changes. What’s wrong?

The point is that the bus is accelerating with respect to the earth and is not a suitable 
frame of reference for Newton’s first law. This law is valid in some frames of reference 
and not valid in others. A frame of reference in which Newton’s first law is valid is called 
an inertial frame of reference. The earth is at least approximately an inertial frame of 
reference, but the bus is not. (The earth is not a completely inertial frame, owing to the ac-
celeration associated with its rotation and its motion around the sun. These effects are quite 
small, however; see Exercises 3.25 and 3.34.) Because Newton’s first law is used to define 
what we mean by an inertial frame of reference, it is sometimes called the law of inertia.

Figure 4.10 helps us understand what you experience when riding in a vehicle that’s 
accelerating. In Fig. 4.10a, a vehicle is initially at rest and then begins to accelerate to the 
right. A passenger standing on roller skates (which nearly eliminate the effects of friction) 
has virtually no net external force acting on her, so she tends to remain at rest relative to 
the inertial frame of the earth. As the vehicle accelerates around her, she moves backward 
relative to the vehicle. In the same way, a passenger in a vehicle that is slowing down tends 
to continue moving with constant velocity relative to the earth, and so moves forward rela-
tive to the vehicle (Fig. 4.10b). A vehicle is also accelerating if it moves at a constant speed 
but is turning (Fig. 4.10c). In this case a passenger tends to continue moving relative to the 
earth at constant speed in a straight line; relative to the vehicle, the passenger moves to the 
side of the vehicle on the outside of the turn.

In each case shown in Fig. 4.10, an observer in the vehicle’s frame of reference might 
be tempted to conclude that there is a net external force acting on the passenger, since the 
passenger’s velocity relative to the vehicle changes in each case. This conclusion is simply 
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vS

vS

vS

vS

vS

vS

Sv = 0

You tend to continue moving in a
straight line as the vehicle turns.

You tend to continue moving
with constant velocity as the
vehicle slows down around you.

You tend to remain at rest as the
vehicle accelerates around you.
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Figure 4.10 Riding in an accelerating vehicle.
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wrong; the net external force on the passenger is indeed zero. The vehicle observer’s mis-
take is in trying to apply Newton’s first law in the vehicle’s frame of reference, which is 
not an inertial frame and in which Newton’s first law isn’t valid (Fig. 4.11). In this book 
we’ll use only inertial frames of reference.

We’ve mentioned only one (approximately) inertial frame of reference: the earth’s sur-
face. But there are many inertial frames. If we have an inertial frame of reference A, in 
which Newton’s first law is obeyed, then any second frame of reference B will also be 
inertial if it moves relative to A with constant velocity vSB>A  . We can prove this by using the 
relative-velocity relationship Eq. (3.35) from Section 3.5:

vSP>A = vSP>B + vSB>A
Suppose that P is an object that moves with constant velocity vSP>A with respect to an 
inertial frame A. By Newton’s first law the net external force on this object is zero. The 
velocity of P relative to another frame B has a different value, vSP>B =vSP>A − vSB>A  . But if 
the relative velocity vSB>A of the two frames is constant, then vSP>B is constant as well. Thus 
B is also an inertial frame; the velocity of P in this frame is constant, and the net external 
force on P is zero, so Newton’s first law is obeyed in B. Observers in frames A and B will 
disagree about the velocity of P, but they will agree that P has a constant velocity (zero 
acceleration) and has zero net external force acting on it.

There is no single inertial frame of reference that is preferred over all others for formu-
lating Newton’s laws. If one frame is inertial, then every other frame moving relative to it 
with constant velocity is also inertial. Viewed in this light, the state of rest and the state of 
motion with constant velocity are not very different; both occur when the vector sum of 
forces acting on the object is zero.

TEST YOUR UNDERSTANDING OF SECTION 4.2 In which of the following situations is 
there zero net external force on the object? (i) An airplane flying due north at a steady 120 m>s and 
at a constant altitude; (ii) a car driving straight up a hill with a 3° slope at a constant 90 km>h; (iii) 
a hawk circling at a constant 20 km>h at a constant height of 15 m above an open field; (iv) a box 
with slick, frictionless surfaces in the back of a truck as the truck accelerates forward on a level 
road at 5 m>s2.

ANSWER

Figure 4.11 From the frame of reference 
of the car, it seems as though a force is 
pushing the crash test dummies forward as 
the car comes to a sudden stop. But there 
is really no such force: As the car stops, 
the dummies keep moving forward as a 
consequence of Newton’s first law.

❙ (i), (ii), and (iv) In (i), (ii), and (iv) the object is not accelerating, so the net external force on the 
object is zero. [In (iv), if the truck starts from rest, the box remains stationary as seen in the inertial 
 reference frame of the ground as the truck accelerates forward, like the person on skates in Fig. 4.10a.] 
In (iii), the hawk is moving in a circle; hence it is accelerating and is not in equilibrium.

4.3 NEWTON’S SECOND LAW
Newton’s first law tells us that when an object is acted on by zero net external force, the 
object moves with constant velocity and zero acceleration. In Fig. 4.12a (next page), a 
hockey puck is sliding to the right on wet ice. There is negligible friction, so there are no 
horizontal forces acting on the puck; the downward force of gravity and the upward nor-
mal force exerted by the ice surface sum to zero. So the net external force gF

S
 acting on 

the puck is zero, the puck has zero acceleration, and its velocity is constant.
But what happens when the net external force is not zero? In Fig. 4.12b we apply a con-

stant horizontal force to a sliding puck in the same direction that the puck is moving. Then gF
S

 is constant and in the same horizontal direction as vS. We find that during the time the 
force is acting, the velocity of the puck changes at a constant rate; that is, the puck moves 
with constant acceleration. The speed of the puck increases, so the acceleration aS is in the 
same direction as vS and gF

S
.

In Fig. 4.12c we reverse the direction of the force on the puck so that gF
S

 acts opposite to 
vS. In this case as well, the puck has an acceleration; the puck moves more and more slowly to 
the right. The acceleration aS in this case is to the left, in the same direction as gF

S
. As in the 

previous case, experiment shows that the acceleration is constant if gF
S

 is constant.
We conclude that a net external force acting on an object causes the object to accelerate 

in the same direction as the net external force. If the magnitude of the net external force is 
constant, as in Fig. 4.12b and Fig. 4.12c, then so is the magnitude of the acceleration.



136    CHAPTER 4 Newton’s Laws of Motion

These conclusions about net external force and acceleration also apply to an object 
moving along a curved path. For example, Fig. 4.13 shows a hockey puck moving in a 
horizontal circle on an ice surface of negligible friction. A rope is attached to the puck and 
to a stick in the ice, and this rope exerts an inward tension force of constant magnitude on 
the puck. The net external force and acceleration are both constant in magnitude and di-
rected toward the center of the circle. The speed of the puck is constant, so this is uniform 
circular motion (see Section 3.4).

Figure 4.14a shows another experiment involving acceleration and net external force. 
We apply a constant horizontal force to a puck on a frictionless horizontal surface, using 
the spring balance described in Section 4.1 with the spring stretched a constant amount. 
As in Figs. 4.12b and Figs. 4.12c, this horizontal force equals the net external force on the 
puck. If we change the magnitude of the net external force, the acceleration changes in 
the same proportion. Doubling the net external force doubles the acceleration (Fig. 4.14b), 
halving the net external force halves the acceleration (Fig. 4.14c), and so on. Many such 
experiments show that for any given object, the magnitude of the acceleration is directly 
proportional to the magnitude of the net external force acting on the object.

Mass and Force
Our results mean that for a given object, the ratio of the magnitude 0 gF

S 0  of the net exter-
nal force to the magnitude a = 0 aS 0  of the acceleration is constant, regardless of the mag-
nitude of the net external force. We call this ratio the inertial mass, or simply the mass, of 
the object and denote it by m. That is,

 m =
0 gF

S 0
a

  or  0 gF
S 0 = ma   or   a =

0 gF
S 0

m
 (4.4)

Mass is a quantitative measure of inertia, which we discussed in Section 4.2. The last of 
the equations in Eqs. (4.4) says that the greater an object’s mass, the more the object “re-
sists” being accelerated. When you hold a piece of fruit in your hand at the supermarket 
and move it slightly up and down to estimate its heft, you’re applying a force and seeing 
how much the fruit accelerates up and down in response. If a force causes a large accelera-
tion, the fruit has a small mass; if the same force causes only a small acceleration, the fruit 
has a large mass. In the same way, if you hit a table-tennis ball and then a basketball with 
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Figure 4.12 Using a hockey puck on 
a frictionless surface to explore the 
relationship between the net external 
force gF

S
 on an object and the resulting 

acceleration aS of the object.

Figure 4.13 A top view of a hockey 
puck in uniform circular motion on a 
frictionless horizontal surface.
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the same force, the basketball has much smaller acceleration because it has much greater 
mass.

The SI unit of mass is the kilogram. We mentioned in Section 1.3 that the kilo-
gram is officially defined in terms of the definitions of the second and the meter, as 
well as the value of a fundamental quantity called Planck’s constant. We can use this 
definition:

  One newton is the amount of net external force that gives an acceleration of 
1 meter per second squared to an object with a mass of 1 kilogram.

This definition allows us to calibrate the spring balances and other instruments used to 
measure forces. Because of the way we have defined the newton, it is related to the units 
of mass, length, and time. For Eqs. (4.4) to be dimensionally consistent, it must be true that

1 newton = 11 kilogram211 meter per second squared2
or

1 N = 1 kg # m>s2

We’ll use this relationship many times in the next few chapters, so keep it in mind.
Here’s an application of Eqs. (4.4). Suppose we apply a constant net external force gF

S
 

to an object of known mass m1 and we find an acceleration of magnitude a1 (Fig. 4.15a). 
We then apply the same force to another object of unknown mass m2 , and we find an ac-
celeration of magnitude a2 (Fig. 4.15b). Then, according to Eqs. (4.4),

  m1 a1 = m2  a2

  
m2

m1
=

a1

a2
   (same net external force) (4.5)

For the same net external force, the ratio of the masses of two objects is the inverse of the 
ratio of their accelerations. In principle we could use Eq. (4.5) to measure an unknown 
mass m2 , but it is usually easier to determine mass indirectly by measuring the object’s 
weight. We’ll return to this point in Section 4.4.

When two objects with masses m1 and m2 are fastened together, we find that the mass 
of the composite object is always m1 + m2 (Fig. 4.15c). This additive property of mass may 
seem obvious, but it has to be verified experimentally. Ultimately, the mass of an object is 
related to the number of protons, electrons, and neutrons it contains. This wouldn’t be a good 
way to define mass because there is no practical way to count these particles. But the con-
cept of mass is the most fundamental way to characterize the quantity of matter in an object.

Stating Newton’s Second Law
Experiment shows that the net external force on an object is what causes that object to ac-
celerate. If a combination of forces F

S

1 , F
S

2 , F
S

3 , and so on is applied to an object, the object 
will have the same acceleration vector aS as when only a single force is applied, if that 
single force is equal to the vector sum F

S

1 + F
S

2 + F
S

3 + P. In other words, the principle 
of superposition of forces (see Fig. 4.4) also holds true when the net external force is not 
zero and the object is accelerating.

Equations (4.4) relate the magnitude of the net external force on an object to the mag-
nitude of the acceleration that it produces. We have also seen that the direction of the net 
external force is the same as the direction of the acceleration, whether the object’s path 
is straight or curved. Finally, we’ve seen that the forces that affect an object’s motion are 
external forces, those exerted on the object by other objects in its environment. Newton 
wrapped up all these results into a single concise statement that we now call Newton’s 
second law of motion:

NEWTON’S SECOND LAW OF MOTION If a net external force acts on an object, 
the object accelerates. The direction of acceleration is the same as the direction of 
the net external force. The mass of the object times the acceleration vector of the 
object equals the net external force vector.

Figure 4.15 For a given net external  
force gF

S
 acting an object, the 

acceleration is inversely proportional  
to the mass of the object. Masses  
add like ordinary scalars.
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to a second object and noting the acceleration
allow us to measure the mass.
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In symbols,

(4.6)
... the object accelerates in
the same direction as the
net external force.Mass of object

Newton’s second law: 
If there is a net external
force on an object ...

SSgF = ma

An alternative statement is that the acceleration of an object is equal to the net external 
force acting on the object divided by the object’s mass:

aS =
gF

S

m
Newton’s second law is a fundamental law of nature, the basic relationship between 

force and motion. Most of the remainder of this chapter and all of the next are devoted to 
learning how to apply this principle in various situations.

Equation (4.6) has many practical applications (Fig. 4.16). You’ve actually been using 
it all your life to measure your body’s acceleration. In your inner ear, microscopic hair 
cells are attached to a gelatinous substance that holds tiny crystals of calcium carbonate 
called otoliths. When your body accelerates, the hair cells pull the otoliths along with the 
rest of your body and sense the magnitude and direction of the force that they exert. By 
Newton’s second law, the acceleration of the otoliths—and hence that of your body as a 
whole—is proportional to this force and has the same direction. In this way, you can sense 
the magnitude and direction of your acceleration even with your eyes closed!

Using Newton’s Second Law
At least four aspects of Newton’s second law deserve special attention. First, Eq. (4.6) is a 
vector equation. Usually we’ll use it in component form, with a separate equation for each 
component of force and the corresponding component of acceleration:

(4.7)

... equals the object’s mass times the corresponding acceleration component.

Newton’s second law: Each component of the net external force on an object ...

gFx =  max gFy =  may gFz =  maz

This set of component equations is equivalent to the single vector Eq. (4.6).
Second, the statement of Newton’s second law refers to external forces. As an ex-

ample, how a kicked football moves isn’t affected by the internal forces that hold the 
pieces of the ball together. That’s why only external forces are included in the sum gF

S
 in  

Eqs. (4.6) and (4.7).
Third, Eqs. (4.6) and (4.7) are valid only when the mass m is constant. It’s easy to think 

of systems whose masses change, such as a leaking tank truck or a moving railroad car 
being loaded with coal. Such systems are better handled by using the concept of momen-
tum; we’ll get to that in Chapter 8.

Finally, Newton’s second law is valid in inertial frames of reference only, just like 
the first law. It’s not valid in the reference frame of any of the accelerating vehicles in 
Fig. 4.10; relative to any of these frames, the passenger accelerates even though the net 
external force on the passenger is zero. We’ll usually treat the earth as an adequate ap-
proximation to an inertial frame, although because of its rotation and orbital motion it is 
not precisely inertial.

   CAUTION    maS is not a force Even though the vector maS is equal to the vector sum gF
S

 of all the 
forces acting on the object, the vector maS is not a force. Acceleration is the result of the net external 
force; it is not a force itself. It’s “common sense” to think that a “force of acceleration” pushes you 
back into your seat when your car accelerates forward from rest. But there is no such force; instead, 
your inertia causes you to tend to stay at rest relative to the earth, and the car accelerates around 
you (see Fig. 4.10a). The “common sense” confusion arises from trying to apply Newton’s second 
law where it isn’t valid—in the noninertial reference frame of an accelerating car. We’ll always 
examine motion relative to inertial frames of reference only, and we strongly recommend that you 
do the same in solving problems. ❙

Lightweight
object (small m)

Powerful engine (large F)

Figure 4.16 The design of high-
performance motorcycles depends 
fundamentally on Newton’s second law. 
To maximize the forward acceleration, the 
designer makes the motorcycle as light as 
possible (that is, minimizes the mass) and 
uses the most powerful engine possible 
(thus maximizing the forward force).
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In learning how to use Newton’s second law, we’ll begin in this chapter with examples 
of straight-line motion. Then in Chapter 5 we’ll consider more general kinds of motion 
and develop more detailed problem-solving strategies.

EXAMPLE 4.4 Newton’s second law I: Determining acceleration from force

A worker applies a constant horizontal force with magnitude 20 N to a 
box with mass 40 kg resting on a level, freshly waxed floor with negli-
gible friction. What is the acceleration of the box?

IDENTIFY and SET UP This problem involves force and acceleration, 
so we’ll use Newton’s second law. That means we’ll have to find the net 
external force acting on the box and set it equal to the mass of the box 
multiplied by its acceleration. In this example, the acceleration is our 
target variable.

In any problem involving forces, to find the net external force we must 
first identify all of the individual external forces that act on the object 
in question. (Remember that the net external force is the vector sum of 
these individual forces.) To identify these forces, we’ll use the idea that 
two broad categories of forces act on an object like the box in Fig. 4.17: 
the weight of the object wS—that is, the downward gravitational force ex-
erted by the earth—and contact forces, which are forces exerted by other 
objects that the object in question is touching. Two objects are touching 
the box—the worker’s hands and the floor—and both exert contact forces 
on the box. The worker’s hands exert a horizontal force F

S
 of magnitude 

20 N. The floor exerts an upward supporting force; as in Section 4.1, we 
call this a normal force nS because it acts perpendicular to the surface of 
contact. (Remember that “normal” is a synonym for “perpendicular.” It 
does not mean the opposite of “abnormal”!) If friction were present, the 
floor would also exert a friction force on the box; we’ll ignore this here, 
since we’re told that friction is negligible. Figure 4.17 shows these three 
external forces that act on the box.

Just as we did for the forces in Example 4.1 (Section 4.1), we’ll find the 
vector sum of these external forces using components. That’s why the sec-
ond step in any problem involving forces is choosing a coordinate system 
for finding vector components. It’s usually convenient to take one axis either 
along or opposite the direction of the object’s acceleration, which in this case 
is horizontal. Hence we take the +x-axis to be in the direction of the applied 
horizontal force (which is the direction in which the box accelerates) and the 
+y-axis to be upward. In most force problems that you’ll encounter (includ-
ing this one), the force vectors all lie in a plane, so the z-axis isn’t used.

The box doesn’t move vertically, so the y-acceleration is zero: 
ay = 0. Our target variable is the x-acceleration, ax 

. We’ll find it by 
using Newton’s second law in component form, Eqs. (4.7).

EXECUTE The force F
S

 exerted by the worker has a positive x- component 
and zero y-component (so Fx = F = 20 N, Fy = 0); the normal force 
nS has zero x-component and an upward, positive y-component (so 
nx = 0, ny = n); and the weight wS  has zero x-component and a down-
ward, negative y-component (so wx = 0, wy = - w). From Newton’s 
second law, Eqs. (4.7),

gFx = F + 0 + 0 = F = 20 N = max

gFy = 0 + n - w = may = 0

From the first equation, the x-component of acceleration is

ax =
gFx

m
=

20 N
40 kg

=
20 kg # m>s2

40 kg
= 0.50 m>s2

EVALUATE The net external force is constant, so the acceleration in the 
+x-direction is also constant. If we know the initial position and veloc-
ity of the box, we can find its position and velocity at any later time 
from the constant-acceleration equations of Chapter 2.

To determine ax, we didn’t need the y-component of Newton’s sec-
ond law from Eqs. (4.7), gFy = may . Can you use this equation to 
show that the magnitude n of the normal force in this situation is equal 
to the weight of the box?

KEYCONCEPT In problems involving forces and acceleration, first 
identify all of the external forces acting on an object, then choose a co-
ordinate system. Find the vector sum of the external forces, and then set 
it equal to the mass of the object times the acceleration.

WITH ARIATION PROBLEMS

Figure 4.17 Our sketch for this problem. 

The vertical components of the external forces
on the box sum to zero, and the box has no
vertical acceleration.

The horizontal components of 
the external forces on the box 
do not add to zero, so the box 
has a horizontal acceleration.

EXAMPLE 4.5 Newton’s second law II: Determining force from acceleration

A waitress shoves a ketchup bottle with mass 0.45 kg to her right along 
a smooth, level lunch counter. The bottle leaves her hand moving at 
2.0 m>s, then slows down as it slides because of a constant horizontal 
friction force exerted on it by the countertop. It slides for 1.0 m before 
coming to rest. What are the magnitude and direction of the friction 
force acting on the bottle?

IDENTIFY and SET UP This problem involves forces and acceleration 
(the slowing of the ketchup bottle), so we’ll use Newton’s second law 
to solve it. As in Example 4.4, we identify the external forces acting 
on the bottle and choose a coordinate system (Fig. 4.18). And as in 

WITH  ARIATION PROBLEMS

Figure 4.18 Our sketch for this problem.

We draw one diagram showing the forces on the bottle
and another one showing the bottle’s motion.
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Example 4.4, we have a downward gravitational force wS  and an up-
ward normal force nS exerted by the countertop. The countertop also 
exerts a friction force f

S
; this slows the bottle down, so its direction 

must be opposite the direction of the bottle’s velocity (see Fig. 4.12c). 
We choose the +x-axis to be in the direction that the bottle slides, and 
take the origin to be where the bottle leaves the waitress’s hand.

Our target variable is the magnitude f of the friction force. We’ll 
find it by using the x-component of Newton’s second law from Eqs. 
(4.7). We aren’t told the x-component of the bottle’s acceleration, ax , 
but we know that it’s constant because the friction force that causes the 
acceleration is constant. Hence we can use a constant-acceleration for-
mula from Section 2.4 to calculate ax . We know the bottle’s initial and 
final x-coordinates 1x0 = 0 and x = 1.0 m2 and its initial and final  
x-velocity 1v0x = 2.0 m>s and vx = 02, so the easiest equation to use is 
Eq. (2.13), v 2

x = v 2
0x + 2ax1x - x02.

EXECUTE We solve Eq. (2.13) for ax:

ax =
v 2

x - v 2
0x

21x - x02 =
10 m>s22 - 12.0 m>s22

211.0 m - 0 m2 = -2.0 m>s2

The negative sign means that the bottle’s acceleration is toward the left 
in Fig. 4.18, opposite to its velocity; this makes sense because the bottle 
is slowing down. As in Example 4.4, neither the normal force nor the 
weight has an x-component. That means the net external force in the  
x-direction is just the x-component - f  of the friction force:

  gFx = - f = max = 10.45 kg21-2.0 m>s22
  = -0.90 kg # m>s2 = -0.90 N

The negative sign shows that the net external force on the bottle is to-
ward the left. The magnitude of the friction force is f = 0.90 N.

EVALUATE As a check on the result, try repeating the calculation with 
the +x-axis to the left in Fig. 4.18. You’ll find that gFx is equal to 
+ f = +0.90 N (because the friction force is now in the +x-direction), 
and again you’ll find f = 0.90 N. The answers for the magnitudes of 
forces don’t depend on the choice of coordinate axes!

We didn’t write the y-component of Newton’s second law in 
this example. You should do this and show that it’s the same as in 
Example 4.4, so again the normal force and the weight have the same 
magnitude.

   CAUTION    Normal force and weight don’t always have the same 
magnitude Be careful that you never assume automatically that the 
normal force nS and the weight wS  have the same magnitude! Although 
that is the case in this example and the preceding one, we’ll see many 
examples in Chapter 5 and later where the magnitude of the normal 
force is not equal to the weight. ❙

KEYCONCEPT In problems involving forces in which you’re 
given velocity, time, and>or displacement data, you’ll need to use the 
equations for motion with constant acceleration as well as Newton’s 
second law.

TEST YOUR UNDERSTANDING OF SECTION 4.3 Rank the following situations in order of 
the magnitude of the object’s acceleration, from lowest to highest. Are there any cases that have the 
same magnitude of acceleration? (i) A 2.0 kg object acted on by a 2.0 N net force; (ii) a 2.0 kg object 
acted on by an 8.0 N net force; (iii) an 8.0 kg object acted on by a 2.0 N net force; (iv) an 8.0 kg  
object acted on by a 8.0 N net force.

ANSWER

❙ (iii), (i) and (iv) (tie), (ii) The acceleration is equal to the net force divided by the mass. Hence 
the magnitude of the acceleration in each situation is
 (i) a=12.0 N2>12.0 kg2=1.0 m>s2; (ii) a=18.0 N2>12.0 N2=4.0 m>s2;
 (iii) a=12.0 N2>18.0 kg2=0.25 m>s2; (iv) a=18.0 N2>18.0 kg2=1.0 m>s2.

4.4 MASS AND WEIGHT
The weight of an object is the gravitational force that the earth exerts on the object. (If 
you are on another planet, your weight is the gravitational force that planet exerts on you.) 
Unfortunately, the terms “mass” and “weight” are often misused and interchanged in ev-
eryday conversation. It’s absolutely essential for you to understand clearly the distinctions 
between these two physical quantities.

Mass characterizes the inertial properties of an object. Mass is what keeps the table 
setting on the table when you yank the tablecloth out from under it. The greater the mass, 
the greater the force needed to cause a given acceleration; this is reflected in Newton’s 
second law, gF

S
= m aS.

Weight, on the other hand, is a force exerted on an object by the pull of the earth. Mass and 
weight are related: Objects that have large mass also have large weight. A large stone is hard 
to throw because of its large mass, and hard to lift off the ground because of its large weight.
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Figure 4.19 Relating the mass and weight 
of an object.

T
S

Falling object,
mass m

Hanging object,
mass m

Weight
w = mgSS

Weight
w = mgSS ΣF = 0

S

a = 0S

ΣF = wS
S

a = gS S

• The relationship of mass to weight: w = mg.
• This relationship is the same whether an
 object is falling or stationary.

SS

To understand the relationship between mass and weight, note that a freely falling ob-
ject has an acceleration of magnitude g (see Section 2.5). Newton’s second law tells us that 
a force must act to produce this acceleration. If a 1 kg object falls with an acceleration of 
9.8 m>s2, the required force has magnitude

F = ma = 11 kg219.8 m>s22 = 9.8 kg # m>s2 = 9.8 N

The force that makes the object accelerate downward is its weight. Any object near the 
surface of the earth that has a mass of 1 kg must have a weight of 9.8 N to give it the ac-
celeration we observe when it is in free fall. More generally,

(4.8)
Mass of object

Magnitude of acceleration
due to gravity

Magnitude of
weight of an object w =  mg

Hence the magnitude w of an object’s weight is directly proportional to its mass m. 
The weight of an object is a force, a vector quantity, and we can write Eq. (4.8) as a vector 
equation (Fig. 4.19):

 wS = mgS (4.9)

Remember that g is the magnitude of gS, the acceleration due to gravity, so g is always a 
positive number, by definition. Thus w, given by Eq. (4.8), is the magnitude of the weight 
and is also always positive.

   CAUTION    An object’s weight acts at all times When keeping track of the external forces on 
an object, remember that the weight is present all the time, whether the object is in free fall or 
not. If we suspend an object from a rope, it is in equilibrium and its acceleration is zero. But its 
weight, given by Eq. (4.9), is still pulling down on it (Fig. 4.19). In this case the rope pulls up on 
the object, applying an upward force. The vector sum of the external forces is zero, but the weight 
still acts. ❙

In Example 2.6 of Section 2.5, a one-euro coin was dropped from rest 
from the Leaning Tower of Pisa. If the coin falls freely, so that the ef-
fects of the air are negligible, how does the net external force on the 
coin vary as it falls?

SOLUTION In free fall, the acceleration aS of the coin is constant and 
equal to gS. Hence by Newton’s second law the net external force gF

S
= maS is also constant and equal to mgS, which is the coin’s weight 

wS  (Fig. 4.20). The coin’s velocity changes as it falls, but the net external 
force acting on it is constant.

The net external force on a freely falling coin is constant even if you 
initially toss it upward. The force that your hand exerts on the coin to 
toss it is a contact force, and it disappears the instant the coin leaves your 
hand. From then on, the only force acting on the coin is its weight wS .

KEYCONCEPT The gravitational force on an object (its weight) 
does not depend on how the object is moving.

CONCEPTUAL EXAMPLE 4.6 Net external force and acceleration in free fall

Figure 4.20 The acceleration of a freely falling object is constant, and 
so is the net external force acting on the object.

ΣF = wS
S

a = gS S

Variation of g with Location
We’ll use g = 9.80 m>s2 for problems set on the earth (or, if the other data in the problem 
are given to only two significant figures, g = 9.8 m>s2). In fact, the value of g varies 
somewhat from point to point on the earth’s surface—from about 9.78 to 9.82 m>s2—  
because the earth is not perfectly spherical and because of effects due to its rotation.  
At a point where g = 9.80 m>s2, the weight of a standard kilogram is w = 9.80 N. 
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At a different point, where g = 9.78 m>s2, the weight is w = 9.78 N but the mass is 
still 1 kg. The weight of an object varies from one location to another; the mass 
does not.

If we take a standard kilogram to the surface of the moon, where the value of g is 
1.62 m>s2, its weight is 1.62 N but its mass is still 1 kg (Fig. 4.21). An 80.0 kg astronaut 
has a weight on earth of 180.0 kg219.80 m>s22 = 784 N, but on the moon the astronaut’s 
weight would be only 180.0 kg211.62 m>s22 = 130 N. In Chapter 13 we’ll see how to cal-
culate the value of g at the surface of the moon or on other worlds.

Measuring Mass and Weight
In Section 4.3 we described a way to compare masses by comparing their accelerations 
when they are subjected to the same net external force. Usually, however, the easiest 
way to measure the mass of an object is to measure its weight, often by comparing 
with a standard. Equation (4.8) says that two objects that have the same weight at a 
particular location also have the same mass. We can compare weights very precisely; 
the familiar equal-arm balance (Fig. 4.22) can determine with great precision (up to 
1 part in 106) when the weights of two objects are equal and hence when their masses 
are equal.

The concept of mass plays two rather different roles in mechanics. The weight of an 
object (the gravitational force acting on it) is proportional to its mass as stated in the 
equation w = mg; we call the property related to gravitational interactions gravitational 
mass. On the other hand, we call the inertial property that appears in Newton’s second law 
(Σ

u

F = mau ) the inertial mass. If these two quantities were different, the acceleration due 
to gravity might well be different for different objects. However, extraordinarily precise 
experiments have established that in fact the two are the same to a precision of better than 
one part in 1012.

   CAUTION    Don’t confuse mass and weight The SI units for mass and weight are often misused 
in everyday life. For example, it’s incorrect to say “This box weighs 6 kg.” What this really means 
is that the mass of the box, probably determined indirectly by weighing, is 6 kg. Avoid this sloppy 
usage in your own work! In SI units, weight (a force) is measured in newtons, while mass is mea-
sured in kilograms. ❙

Figure 4.21 The weight of a 1 kilogram 
mass (a) on earth and (b) on the moon.
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Figure 4.22 An equal-arm balance 
determines the mass of an object (such 
as an apple) by comparing its weight to a 
known weight.
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EXAMPLE 4.7 Mass and weight

A 2.45 * 104 N truck traveling in the +x-direction makes an emer-
gency stop; the x-component of the net external force acting on it is 
-1.83 * 104 N. What is its acceleration?

IDENTIFY and SET UP Our target variable is the x-component of the truck’s 
acceleration, ax . We use the x-component portion of Newton’s second law, 
Eqs. (4.7), to relate force and acceleration. To do this, we need to know the 
truck’s mass. The newton is a unit for force, however, so 2.49 * 104 N is 
the truck’s weight, not its mass. Hence we’ll first use Eq. (4.8) to deter-
mine the truck’s mass from its weight. The truck has a positive x-velocity 
and is slowing down, so its x-acceleration will be negative.

EXECUTE The mass of the truck is

 m =
w
g

=
2.45 * 104 N

9.80 m>s2 =
2.45 * 104 kg # m>s2

9.80 m>s2 = 2540 kg

Then gFx = max gives

 ax =  
gFx

m
 =  

-1.83 * 104 N
2540 kg

 =  
-1.83 * 104 kg # m>s2

2540 kg
 =  -7.20 m>s2

EVALUATE The negative sign means that the acceleration vector points 
in the negative x-direction, as we expected. The magnitude of this ac-
celeration is pretty high; passengers in this truck will experience a lot of 
rearward force from their seat belts.

KEYCONCEPT In problems involving Newton’s second law, make 
sure that for m you use the mass of the object, not its weight.
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TEST YOUR UNDERSTANDING OF SECTION 4.4 Suppose an astronaut landed on a planet 
where g = 19.6 m>s2. Compared to earth, would it be easier, harder, or just as easy for her to walk 
around? Would it be easier, harder, or just as easy for her to catch a ball that is moving horizontally 
at 12 m>s? (Assume that the astronaut’s spacesuit is a lightweight model that doesn’t impede her 
movements in any way.)

ANSWER

❙ It would take twice the effort for the astronaut to walk around because her weight on the planet 
would be twice as much as on the earth. But it would be just as easy to catch a ball moving hori-
zontally. The ball’s mass is the same as on earth, so the horizontal force the astronaut would have 
to exert to bring it to a stop (i.e., to give it the same acceleration) would also be the same as on 
earth.

4.5 NEWTON’S THIRD LAW
A force acting on an object is always the result of its interaction with another object, so 
forces always come in pairs. You can’t pull on a doorknob without the doorknob pulling 
back on you. When you kick a football, your foot exerts a forward force on the ball, but 
you also feel the force the ball exerts back on your foot.

In each of these cases, the force that you exert on the other object is in the opposite di-
rection to the force that object exerts on you. Experiments show that whenever two objects 
interact, the two forces that they exert on each other are always equal in magnitude and 
opposite in direction. This fact is called Newton’s third law of motion:

NEWTON’S THIRD LAW OF MOTION If object A exerts a force on object B (an 
“action”), then object B exerts a force on object A (a “reaction”). These two forces 
have the same magnitude but are opposite in direction. These two forces act on 
different objects.

For example, in Fig. 4.23 F
S

A on B is the force applied by object A (first subscript)  
on object B (second subscript), and F

S

B on A is the force applied by object B (first  
subscript) on object A (second subscript). In equation form,

(4.10)

... the two forces have
the same magnitude but
opposite directions.

Note:  The two forces act on different objects.

FA on B = −FB on A
S S

Newton’s third law:
When two objects
A and B exert forces
on each other ...

It doesn’t matter whether one object is inanimate (like the football in Fig. 4.23) and 
the other is not (like the kicker’s foot): They necessarily exert forces on each other that 
obey Eq. (4.10).

In the statement of Newton’s third law, “action” and “reaction” are the two oppo-
site forces (in Fig. 4.23, F

S

A on B and F
S

B on A); we sometimes refer to them as an action– 
reaction pair. This is not meant to imply any cause-and-effect relationship; we can 
consider either force as the “action” and the other as the “reaction.” We often say simply 
that the forces are “equal and opposite,” meaning that they have equal magnitudes and 
opposite directions.

   CAUTION    The two forces in an action–reaction pair act on different objects We stress that 
the two forces described in Newton’s third law act on different objects. This is important when 
you solve problems involving Newton’s first or second law, which involve the forces that act on 
an  object. For instance, the net external force on the football in Fig. 4.23 is the vector sum of the 
weight of the ball and the force F

S

A on B exerted by kicker A on the ball B. You wouldn’t include the 
force F

S

B on A because this force acts on the kicker A, not on the ball. ❙

?

Figure 4.23 Newton’s third law of 
motion.

S
FA on B

If object A exerts force FA on B on object B
(for example, a foot kicks a ball) ...

S

S
FB on A

A

B

... then object B necessarily
exerts force FB on A on object A
(ball kicks back on foot).

S

The two forces have the same magnitude
but opposite directions: FA on B = −FB on A.

S S
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In Fig. 4.23 the action and reaction forces are contact forces that are present only when 
the two objects are touching. But Newton’s third law also applies to long-range forces that 
do not require physical contact, such as the force of gravitational attraction. A table-tennis 
ball exerts an upward gravitational force on the earth that’s equal in magnitude to the 
downward gravitational force the earth exerts on the ball. When you drop the ball, both 
the ball and the earth accelerate toward each other. The net force on each object has the 
same magnitude, but the earth’s acceleration is microscopically small because its mass is 
so great. Nevertheless, it does move!

   CAUTION    Contact forces need contact If your fingers push on an object, the force you exert acts 
only when your fingers and the object are in contact. Once contact is broken, the force is no longer 
present even if the object is still moving. ❙

APPLICATION Blame Newton’s 
Laws This car stopped because of New-
ton’s second and third laws. During the 
impact, the car exerted a force on the 
tree; in accordance with the third law, 
the tree exerted an equally strong force 
back on the car. In accordance with the 
second law, the force of the tree on the 
car gave the car an acceleration that 
changed its velocity to zero.

An apple sits at rest on a table, in equilibrium. What forces act on the 
apple? What is the reaction force to each of the forces acting on the 
apple? What are the action–reaction pairs?

SOLUTION Figure 4.24a shows the forces acting on the apple. 
F
S

earth on apple is the weight of the apple—that is, the downward gravita-
tional force exerted by the earth on the apple. Similarly, F

S

table on apple is the 
upward normal force exerted by the table on the apple.

Figure 4.24b shows one of the action–reaction pairs involving the 
apple. As the earth pulls down on the apple, with force F

S

earth on apple, the 
apple exerts an equally strong upward pull on the earth F

S

apple on earth. By 
Newton’s third law (Eq. 4.10) we have

F
S

apple on earth = −F
S

earth on apple

Figure 4.24c shows the other action–reaction pair involving the apple. 
The table pushes up on the apple with force F

S

table on apple 

; the corre-
sponding reaction is the downward force F

S

apple on table exerted by the 
apple on the table. For this action–reaction pair we have

F
S

apple on table = −F
S

table on apple

The two forces acting on the apple in Fig. 4.24a, F
S

table on apple and 
F
S

earth on apple 

, are not an action–reaction pair, despite being equal in 
magnitude and opposite in direction. They do not represent the mu-
tual interaction of two objects; they are two different forces acting 
on the same object. Figure 4.24d shows another way to see this. 
If we suddenly yank the table out from under the apple, the forces 
F
S

apple on table and F
S

table on apple suddenly become zero, but F
S

apple on earth 
and F

S

earth on apple are unchanged (the gravitational interaction is still 
present). Because F

S

table on apple is now zero, it can’t be the negative 
of the nonzero F

S

earth on apple, and these two forces can’t be an action– 
reaction pair. The two forces in an action–reaction pair never act on 
the same object.

KEYCONCEPT The two forces in an action–reaction pair always act 
on two different objects.

After your sports car breaks down, you start to push it to the nearest 
repair shop. While the car is starting to move, how does the force you 
exert on the car compare to the force the car exerts on you? How do these 
forces compare when you are pushing the car along at a constant speed?

SOLUTION Newton’s third law says that in both cases, the force you 
exert on the car is equal in magnitude and opposite in direction to the 
force the car exerts on you. It’s true that you have to push harder to get 
the car going than to keep it going. But no matter how hard you push 
on the car, the car pushes just as hard back on you. Newton’s third law 
gives the same result whether the two objects are at rest, moving with 
constant velocity, or accelerating.

You may wonder how the car “knows” to push back on you with the 
same magnitude of force that you exert on it. It may help to visualize  
the forces you and the car exert on each other as interactions between the  
atoms at the surface of your hand and the atoms at the surface of the car. 
These interactions are analogous to miniature springs between adjacent 
atoms, and a compressed spring exerts equally strong forces on both of 
its ends.

KEYCONCEPT No matter how two interacting objects are moving, 
the forces that they exert on each other always have the same magnitude 
and point in opposite directions.

CONCEPTUAL EXAMPLE 4.8 Which force is greater?

CONCEPTUAL EXAMPLE 4.9 Newton’s third law I: Objects at rest
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Figure 4.24 Identifying action–reaction pairs.

S

Table
removed

S
Ftable on apple

S
Fapple on earth

S
Ftable on apple

S
Fearth on apple

S
Fearth on apple

S
Fapple on table

Fearth on apple

S
Fapple on earth

An action–reaction pair is a mutual
interaction between two objects. The
two forces act on two different objects.

When we remove the table, Ftable on apple
becomes zero but Fearth on apple is unchanged.
Hence these forces (which act on the same object)
cannot be an action–reaction pair.

The two forces on the apple cannot
be an action–reaction pair because
they act on the same object.

(a) The forces acting on the apple (b) The action–reaction pair for
the interaction between the
apple and the earth

(c) The action–reaction pair for
the interaction between the apple
and the table

(d) We eliminate the force of
the table on the apple.

Fapple on table = −Ftable on apple

Ftable on apple = 0
S

S S

S

S

Fapple on earth = −Fearth on apple
S S

Figure 4.25 Identifying the interaction forces when a mason pulls on a rope attached to a block.

These forces cannot be
an action–reaction pair
because they act on the
same object (the rope).

These forces are equal only if
the rope is in equilibrium (or
can be treated as massless).

(a) The block, the rope, and the mason (c) Not an action–reaction pair

S
FB on R

S
FM on R

(d) Not necessarily equal

S
FM on R

S
FR on B

(b) The action–reaction pairs

FM on RFR on M
SS

FR on B
S

FB on R
S

Block (B)

Rope (R)

Mason (M)

A stonemason drags a marble block across a floor by pulling on a rope 
attached to the block (Fig. 4.25a). The block is not necessarily in equi-
librium. What are the forces that correspond to the interactions be-
tween the block, rope, and mason? What are the action–reaction pairs?

SOLUTION We’ll use the subscripts B for the block, R for the rope, and 
M for the mason. In Fig. 4.25b F

S

M on R is the force exerted by the mason 
on the rope, and the corresponding reaction is the force F

S

R on M exerted 
by the rope on the mason. Similarly, F

S

R on B is the force exerted by the 
rope on the block, and the corresponding reaction is the force F

S

B on R 
exerted by the block on the rope. The forces in each action–reaction pair 
are equal and opposite:

F
S

R on M = −F
S

M on R  and  F
S

B on R = −F
S

R on B

CONCEPTUAL EXAMPLE 4.10 Newton’s third law II: Objects in motion

Forces F
S

M on R and F
S

B on R (Fig. 4.25c) are not an action–reaction 
pair because both of these forces act on the same object (the rope); an 
action and its reaction must always act on different objects. Furthermore, 
the forces F

S

M on R and F
S

B on R are not necessarily equal in magnitude. 
Applying Newton’s second law to the rope, we get

gF
S

= F
S

M on R + F
S

B on R = mR  aSR

If the block and rope are accelerating (speeding up or slowing down), 
the rope is not in equilibrium, and F

S

M on R must have a different mag-
nitude than F

S

B on R. By contrast, the action–reaction forces F
S

M on R 
and F

S

R on M are always equal in magnitude, as are F
S

R on B and F
S

B on R. 
Newton’s third law holds whether or not the objects are accelerating.

In the special case in which the rope is in equilibrium, the forces 
F
S

M on R and F
S

B on R are equal in magnitude and opposite in direction. 
But this is an example of Newton’s first law, not his third; these are 
two forces on the same object, not forces of two objects on each other. 
Another way to look at this is that in equilibrium, aSR = 0 in the previ-
ous equation. Then F

S

B on R = −F
S

M on R because of Newton’s first law.
Another special case is if the rope is accelerating but has negligibly small 

mass compared to that of the block or the mason. In this case, mR = 0 in 
the previous equation, so again F

S

B on R = −F
S

M on R. Since Newton’s third 
law says that F

S

B on R always equals −F
S

R on B (they are an action–reaction 
pair), in this “massless-rope” case F

S

R on B also equals F
S

M on R.

For both the “massless-rope” case and a rope in equilibrium, the 
rope exerts the same force on the block as the mason exerts on the 
rope (Fig. 4.25d). Hence we can think of the rope as “transmitting” 
to the block the force the mason exerts on the rope. But remember 
that this is true only when the rope has negligibly small mass or is in 
equilibrium.

KEYCONCEPT In problems that involve more than one object, 
use Newton’s third law to relate the forces that the objects exert on  
each other.
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An object that has pulling forces applied at its ends, such as the rope in Fig. 4.25, 
is said to be in tension. The tension at any point along the rope is the magnitude of 
the force acting at that point (see Fig. 4.2c). In Fig. 4.25b the tension at the right end 
of the rope is the magnitude of F

S

M on R (or of F
S

R on M), and the tension at the left end is 
the magnitude of F

S

B on R (or of F
S

R on B). If the rope is in equilibrium and if no forces act 
except at its ends, the net external force on the rope is zero and the tension is the same 
at both ends and throughout the rope. Thus, if the magnitudes of F

S

B on R and F
S

M on R are 
50 N each, the tension in the rope is 50 N (not 100 N). The same is true if we can re-
gard the rope as “massless” (that is, if its mass is small compared to that of the objects 
to which it’s attached).

We emphasize once again that the two forces in an action–reaction pair never act on the 
same object. Remembering this fact can help you avoid confusion about action– reaction 
pairs and Newton’s third law.

We saw in Conceptual Example 4.10 that the stonemason pulls as 
hard on the rope–block combination as that combination pulls back on 
him. Why, then, does the block move while the stonemason remains 
stationary?

SOLUTION To resolve this seeming paradox, keep in mind the differ-
ence between Newton’s second and third laws. The only forces involved 
in Newton’s second law are those that act on a given object. The vec-
tor sum of these forces determines the object’s acceleration, if any. By 
contrast, Newton’s third law relates the forces that two different objects 
exert on each other. The third law alone tells you nothing about the mo-
tion of either object.

If the rope–block combination is initially at rest, it begins to slide 
if the stonemason exerts a force on the rope F

S

M on R that is greater in 
magnitude than the friction force that the floor exerts on the block (Fig. 
4.26). Then there is a net external force to the right on the rope–block 
combination, and it accelerates to the right. By contrast, the stonema-
son doesn’t move because the net external force acting on him is zero. 
His shoes have nonskid soles that don’t slip on the floor, so the friction 
force that the floor exerts on him is strong enough to balance the pull of 
the rope on him, F

S

R on M. (Both the block and the stonemason also expe-
rience a downward force of gravity and an upward normal force exerted 
by the floor. These forces balance each other, and so don’t affect the 
motion of the block or the mason.)

Once the block is moving, the stonemason doesn’t need to pull as 
hard; he must exert only enough force to balance the friction force on 
the block. Then the net external force on the moving block is zero, and 
by Newton’s first law the block continues to move toward the mason at 
a constant velocity.

CONCEPTUAL EXAMPLE 4.11 A Newton’s third law paradox?

So the block accelerates but the stonemason doesn’t because differ-
ent amounts of friction act on them. If the floor were freshly waxed, 
so that there was little friction between the floor and the stonemason’s 
shoes, pulling on the rope might start the block sliding to the right and 
start him sliding to the left.

Here’s the moral: When analyzing the motion of an object, remem-
ber that only the forces acting on an object determine its motion. From 
this perspective, Newton’s third law is merely a tool that can help you 
determine what those forces are.

KEYCONCEPT  The motion of an object depends on the forces that 
are exerted on it, not the forces that it exerts on other objects.

Figure 4.26 The horizontal forces acting on the block–rope 
combination (left) and the mason (right). (The vertical forces are not 
shown.)

S
FM on R

S
FR on M

Block +  rope Mason

Friction force
of floor on
mason

Friction force
of floor on
block

S
The mason remains at rest if
FR on M is balanced by the
friction force on the mason.

S
The block begins sliding if
FM on R overcomes the
friction force on the block.

These forces are an action–reaction
pair. They have the same magnitude
but act on different objects.

❙ By Newton’s third law, the two forces have equal magnitude. Because the car has much 
greater mass than the mosquito, it undergoes only a tiny, imperceptible acceleration in  
response to the force of the impact. By contrast, the mosquito, with its minuscule  
mass, undergoes a catastrophically large acceleration.

TEST YOUR UNDERSTANDING OF SECTION 4.5 You are driving a car on a country road 
when a mosquito splatters on the windshield. Which has the greater magnitude: the force that the 
car exerted on the mosquito or the force that the mosquito exerted on the car? Or are the magni-
tudes the same? If they are different, how can you reconcile this fact with Newton’s third law? If 
they are equal, why is the mosquito splattered while the car is undamaged?

ANSWER
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4.6 FREE-BODY DIAGRAMS
Newton’s three laws of motion contain all the basic principles we need to solve a wide variety 
of problems in mechanics. These laws are very simple in form, but the process of applying 
them to specific situations can pose real challenges. In this brief section we’ll point out three 
key ideas and techniques to use in any problems involving Newton’s laws. You’ll learn others 
in Chapter 5, which also extends the use of Newton’s laws to cover more complex situations.

1. Newton’s first and second laws apply to a specific object. Whenever you use 
Newton’s first law, gF

S
= 0, for an equilibrium situation or Newton’s second law, gF

S
= maS, for a nonequilibrium situation, you must decide at the beginning to 

which object you are referring. This decision may sound trivial, but it isn’t.

2. Only forces acting on the object matter. The sum gF
S

 includes all the forces that act 
on the object in question. Hence, once you’ve chosen the object to analyze, you have 
to identify all the forces acting on it. Don’t confuse the forces acting on a object with 
the forces exerted by that object on some other object. For example, to analyze a per-
son walking, you would include in gF

S
 the force that the ground exerts on the person 

as he walks, but not the force that the person exerts on the ground (Fig. 4.27). These 
forces form an action–reaction pair and are related by Newton’s third law, but only 
the member of the pair that acts on the object you’re working with goes into gF

S
.

3. Free-body diagrams are essential to help identify the relevant forces. A free-body 
 diagram shows the chosen object by itself, “free” of its surroundings, with vectors 
drawn to show the magnitudes and directions of all the forces that act on the  object. 
(Here “body” is another word for “object.”) We’ve shown free-body diagrams in 
Figs. 4.17, 4.18, 4.19, and 4.24a. Be careful to include all the forces acting on the  object, 
but be equally careful not to include any forces that the object exerts on any other  object. 
In particular, the two forces in an action–reaction pair must never appear in the same 
free-body diagram because they never act on the same object. Furthermore, never 
 include forces that a object exerts on itself, since these can’t affect the object’s motion.

When a problem involves more than one object, you have to take the problem apart and 
draw a separate free-body diagram for each object. For example, Fig. 4.25c shows a sepa-
rate free-body diagram for the rope in the case in which the rope is considered massless 
(so that no gravitational force acts on it). Figure 4.26 also shows diagrams for the block 
and the mason, but these are not complete free-body diagrams because they don’t show all 
the forces acting on each object. (We left out the vertical forces—the weight force exerted 
by the earth and the upward normal force exerted by the floor.)

In Fig. 4.28 (next page) we present three real-life situations and the corresponding 
complete free-body diagrams. Note that in each situation a person exerts a force on some-
thing in his or her surroundings, but the force that shows up in the person’s free-body 
diagram is the surroundings pushing back on the person.

   CAUTION    Forces in free-body diagrams For a free-body diagram to be complete, you must be 
able to answer this question for each force: What other object is applying this force? If you can’t 
answer that question, you may be dealing with a nonexistent force. Avoid nonexistent forces such as 
“the force of acceleration” or “the maS force,” discussed in Section 4.3. ❙

Figure 4.27 The simple act of walking 
depends crucially on Newton’s third 
law. To start moving forward, you push 
backward on the ground with your foot. 
As a reaction, the ground pushes forward 
on your foot (and hence on your body 
as a whole) with a force of the same 
magnitude. This external force provided 
by the ground is what accelerates your 
body forward.

❙ (iv)  The buoyancy force is an upward force that the water exerts on the swimmer. By Newton’s 
third law, the other half of the action–reaction pair is a downward force that the swimmer exerts  
on the water and has the same magnitude as the buoyancy force. It’s true that the weight of the  
swimmer is also downward and has the same magnitude as the buoyancy force; however, the 
weight acts on the same object (the swimmer) as the buoyancy force, and so these forces aren’t an 
action–reaction pair.

TEST YOUR UNDERSTANDING OF SECTION 4.6 The buoyancy force shown in Fig. 4.28c is one 
half of an action–reaction pair. What force is the other half of this pair? (i) The weight of the swim-
mer; (ii) the forward thrust force; (iii) the backward drag force; (iv) the downward force that the swim-
mer exerts on the water; (v) the backward force that the swimmer exerts on the water by kicking.

ANSWER
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Figure 4.28 Examples of free-body diagrams. Each free-body diagram shows all of the external forces that act  
on the object in question.

wS

Fy
S

Fx
S

Fblock on runner
S

The force of the starting block
on the runner has a vertical
component that counteracts her
weight and a large horizontal
component that accelerates her.

(a)

nS

wS

wS
This player is a
freely falling object.

(b)

To jump up, this
player is pushing
down against the
floor, increasing
the upward reaction
force n of the floor
on him.

S

wS

Fthrust
S

Fdrag
S

Fbuoyancy
S

Kicking causes the water to
exert a forward reaction force,
or thrust, on the swimmer.

Thrust is countered by drag
forces exerted by the water
on the moving swimmer.

The water exerts a buoyancy force that
counters the swimmer’s weight.

(c)

SUMMARY
Force as a vector: Force is a quantitative measure of the 
 interaction between two objects. It is a vector quantity. 
When several external forces act on an object, the effect  
on its motion is the same as if a single force, equal to the 
vector sum (resultant) of the forces, acts on the object.  
(See Example 4.1.)

 R
S

= gF
S

= F
S

1 + F
S

2 + F
S

3 + P (4.1)

F1
S

F2
S

S S S
R = ΣF = F1 + F2
S

The net external force on an object and Newton’s first law: 
Newton’s first law states that when the vector sum of all 
external forces acting on a object (the net external force) is 
zero, the object is in equilibrium and has zero acceleration. 
If the object is initially at rest, it remains at rest; if it is ini-
tially in motion, it continues to move with constant velocity. 
This law is valid in inertial frames of reference only. (See 
Examples 4.2 and 4.3.)

 gF
S

= 0 (4.3)

F1
S

Sv = constant

F2 = −F1
S S

ΣF = 0
S

CHAPTER 4
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GUIDED PRACTICE

KEY EXAMPLE ARIATION PROBLEMS
Be sure to review EXAMPLE 4.1 (Section 4.1) before attempting these 
problems.
VP4.1.1 Three professional wrestlers are fighting over a champion’s 
belt, and each exerts a force on the belt. Wrestler 1 exerts a force 
F1 = 40.0 N in the +x-direction, wrestler 2 exerts a force F2 = 80.0 N 
in the -y-direction, and wrestler 3 exerts a force F3 = 60.0 N at an 
angle of 36.9° counterclockwise from the +x-direction. Find the x- 
and y-components of the net external force on the belt, and find the 
force’s magnitude and direction.
VP4.1.2 Three forces act on a statue. Force F

u

1 (magnitude 45.0 N) points 
in the +x-direction, force F

u

2 (magnitude 105 N) points in the +y- direction, 
and force F

u

3 (magnitude 235 N) is at an angle of 36.9° from the -x- direction 
and 53.1° from the +y-direction. Find the x- and y- components of the net 
external force on the statue, and find the force’s magnitude and direction.
VP4.1.3 An eagle descends steeply onto its prey. Its weight (the 
gravitational force on the eagle), of magnitude 60.0 N, points down-
ward in the -y-direction. The lift force exerted on the eagle’s wings 
by the air, also of magnitude 60.0 N, is at an angle of 20.0° from 

the vertical (the +y-direction) and 70.0° from the +x-direction. The 
drag force (air resistance) exerted on the eagle by the air has mag-
nitude 15.0 N and is at an angle of 20.0° from the -x-direction and 
70.0° from the +y-direction. Find the x- and y-components of the 
net external force on the eagle, and find the force’s magnitude and 
direction.
VP4.1.4 A box containing pizza sits on a table. Ernesto, who sits 
due east of the pizza box, pulls the box toward him with a force of 
35.0 N. Kamala, who sits due north of the pizza box, pulls the box 
toward her with a 50.0 N force. Tsuroku also sits at the table and 
pulls the box toward her so that the net external force on the box 
is 24.0 N in a direction 30.0° south of west. Take the +x-direction 
to be due east and the +y- direction to be due north. Find the x- and 
y-components of the force that Tsuroku exerts, and find the force’s 
magnitude and direction.

Be sure to review EXAMPLE 4.4 (Section 4.3) before attempting these 
problems.
VP4.4.1 A box of books with mass 55 kg rests on the level floor of the 
campus bookstore. The floor is freshly waxed and has negligible friction. 

Chapter 4 Media Assets

For assigned homework and other learning materials, go to Mastering Physics.

Mass, acceleration, and Newton’s second law: The inertial 
properties of an object are characterized by its mass. Newton’s 
second law states that the acceleration of an object under the 
action of a given set of external forces is directly proportional 
to the vector sum of the forces (the net force) and inversely 
proportional to the mass of the object. Like Newton’s first 
law, this law is valid in inertial frames of reference only. In SI 
units, the unit of force is the newton (N), equal to 1 kg # m>s2. 
(See Examples 4.4 and 4.5.)

 gF
S

= maS (4.6)

 gFx = max

 gFy = may (4.7)

 gFz = maz

Mass m

S
F1

S
F2

S
ΣF

a = ΣF>mS S

Weight: The weight wS  of an object is the gravitational force 
exerted on it by the earth. Weight is a vector quantity. The 
magnitude of the weight of an object at any specific location 
is equal to the product of its mass m and the magnitude of 
the acceleration due to gravity g at that location. The weight 
of an object depends on its location; its mass does not. (See 
Examples 4.6 and 4.7.)

 w = mg (4.8)

Sg

Mass m

w = mgSS

Newton’s third law and action–reaction pairs: Newton’s 
third law states that when two objects interact, they exert 
forces on each other that are equal in magnitude and 
 opposite in direction. These forces are called action and 
 reaction forces. Each of these two forces acts on only  
one of the two objects; they never act on the same object. 
(See Examples 4.8–4.11.)

 F
S

A on B = −F
S

B on A (4.10)

A

B

FB on A
S

FA on B
S
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friction she comes to a halt in 2.25 m. What is the magnitude of the con-
stant friction force that acts on her as she slides?
VP4.5.2 An airliner of mass 1.70 * 105 kg lands at a speed of 75.0 m>s.  
As it travels along the runway, the combined effects of air resistance, 
friction from the tires, and reverse thrust from the engines produce 
a constant force of 2.90 * 105 N opposite to the airliner’s motion. 
What distance along the runway does the airliner travel before 
 coming to a halt?
VP4.5.3 A truck of mass 2.40 * 103 kg is moving at 25.0 m>s. When 
the driver applies the brakes, the truck comes a stop after traveling 48.0 m.  
(a) How much time is required for the truck to stop? (b) What is the 
magnitude of the truck’s constant acceleration as it slows down?  
(c) What is the magnitude of the constant braking force that acts on the 
truck as it slows down?
VP4.5.4 A car of mass 1.15 * 103 kg is stalled on a horizontal road. 
You and your friends give the car a constant, forward, horizontal 
push. There is friction between the car and the road. (a) Name the 
four external forces that act on the car as you and your friends push it 
and what exerts each force. (You can regard the combined push from 
you and your friends as a single force.) (b) The combined force that 
you and your friends exert has magnitude 8.00 * 102 N, and starting 
from rest the car reaches a speed of 1.40 m>s after you have pushed 
it 5.00 m. Find the magnitude of the constant friction force that acts 
on the car.

A bookstore worker applies a constant horizontal force with magnitude 
25 N to the box. What is the magnitude of the acceleration of the box?
VP4.4.2 A block of cheese of mass 2.0 kg sits on a freshly waxed, 
essentially frictionless table. You apply a constant horizontal force of 
0.50 N to the cheese. (a) Name the three external forces that act on the 
cheese and what exerts each force. (b) What is the magnitude of the 
 acceleration of the cheese?
VP4.4.3 In a game of ice hockey, you use a hockey stick to hit a puck of 
mass 0.16 kg that slides on essentially frictionless ice. During the hit you 
exert a constant horizontal force on the puck that gives it an  acceleration of 
75 m>s2 for a fraction of a second. (a) During the hit, what is the magnitude 
of the horizontal force that you exert on the puck? (b) How does the magni-
tude of the normal force due to the ice compare to the weight of the puck?
VP4.4.4 A plate of cafeteria food is on a horizontal table. You push it 
away from you with a constant horizontal force of 14.0 N. The plate has a 
mass of 0.800 kg, and during the push it has an acceleration of 12.0 m>s2  
in the direction you are pushing it. (a) What is the magnitude of the net exter-
nal force on the plate during the push? (b) What are the magnitude and direc-
tion of the friction force that the table exerts on the plate during the push?

Be sure to review EXAMPLE 4.5 (Section 4.3) before attempting these 
problems.
VP4.5.1 On a winter day a child of mass 20.0 kg slides on a horizontal 
footpath covered in ice. Initially she is moving at 3.00 m>s, but due to 

A student suspends a chain consisting of three links, each of mass 
m = 0.250 kg, from a light rope. The rope is attached to the top link 
of the chain, which does not swing. She pulls upward on the rope, 
so that the rope applies an upward force of 9.00 N to the chain. (a) 
Draw a free-body diagram for the entire chain, considered as an ob-
ject, and one for each of the three links. (b) Use the diagrams of 
part (a) and Newton’s laws to find (i) the acceleration of the chain, 
(ii) the force exerted by the top link on the middle link, and (iii) the 
force exerted by the middle link on the bottom link. Treat the rope 
as massless.

SOLUTION GUIDE

IDENTIFY and SET UP

1. There are four objects of interest in this problem: the chain 
as a whole and the three individual links. For each of these 
four objects, make a list of the external forces that act 
on it. Besides the force of gravity, your list should include 
only forces exerted by other objects that touch the object in 
question.

2. Some of the forces in your lists form action–reaction pairs 
(one pair is the force of the top link on the middle link and 
the force of the middle link on the top link). Identify all such 
pairs.

3. Use your lists to help you draw a free-body diagram for each of 
the four objects. Choose the coordinate axes.

4. Use your lists to decide how many unknowns there are in this 
problem. Which of these are target variables?

EXECUTE

5. Write a Newton’s second law equation for each of the four ob-
jects, and write a Newton’s third law equation for each action–
reaction pair. You should have at least as many equations as 
there are unknowns (see step 4). Do you?

6. Solve the equations for the target variables.

EVALUATE

7. You can check your results by substituting them back into the 
equations from step 5. This is especially important to do if 
you ended up with more equations in step 5 than you used in 
step 6.

8. Rank the force of the rope on the chain, the force of the top link 
on the middle link, and the force of the middle link on the bot-
tom link in order from smallest to largest magnitude. Does this 
ranking make sense? Explain.

9. Repeat the problem for the case in which the upward force that 
the rope exerts on the chain is only 7.35 N. Is the ranking in 
step 8 the same? Does this make sense?

BRIDGING PROBLEM Links in a Chain
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DISCUSSION QUESTIONS
Q4.1 Can an object be in equilibrium when only one force acts on it? 
Explain.
Q4.2 A ball thrown straight up has zero velocity at its highest point. Is 
the ball in equilibrium at this point? Why or why not?
Q4.3 A helium balloon hovers in midair, neither ascending nor de-
scending. Is it in equilibrium? What forces act on it?
Q4.4 When you fly in an airplane at night in smooth air, you have no 
sensation of motion, even though the plane may be moving at 800 km>h.   
Why?
Q4.5 If the two ends of a rope in equilibrium are pulled with forces of 
equal magnitude and opposite directions, why isn’t the total tension in 
the rope zero?
Q4.6 You tie a brick to the end of a rope and whirl the brick around you 
in a horizontal circle. Describe the path of the brick after you suddenly 
let go of the rope.
Q4.7 When a car stops suddenly, the passengers tend to move forward 
relative to their seats. Why? When a car makes a sharp turn, the passen-
gers tend to slide to one side of the car. Why?
Q4.8 Some people say that the “force of inertia” (or “force of momen-
tum”) throws the passengers forward when a car brakes sharply. What is 
wrong with this explanation?
Q4.9 A passenger in a moving bus with no windows notices that a ball 
that has been at rest in the aisle suddenly starts to move toward the rear 
of the bus. Think of two possible explanations, and devise a way to de-
cide which is correct.
Q4.10 Suppose you chose the fundamental physical quantities to be 
force, length, and time instead of mass, length, and time. What would 
be the units of mass in terms of those fundamental quantities?
Q4.11 Why is the earth only approximately an inertial reference frame?
Q4.12 Does Newton’s second law hold true for an observer in a van as 
it speeds up, slows down, or rounds a corner? Explain.
Q4.13 Some students refer to the quantity maS as “the force of accelera-
tion.” Is it correct to refer to this quantity as a force? If so, what exerts 
this force? If not, what is a better description of this quantity?
Q4.14 The acceleration of a falling object is measured in a lift that is trav-
eling upward at a constant speed of 9.8 m>s. What value is obtained?
Q4.15 You can play catch with a softball in a bus moving with con-
stant speed on a straight road, just as though the bus were at rest. Is this 
still possible when the bus is making a turn at constant speed on a level 
road? Why or why not?
Q4.16 Students sometimes say that the force of gravity on an object is 
9.8 m>s2. What is wrong with this view?
Q4.17 Why can it hurt your foot more to kick a big rock than a small 
pebble? Must the big rock hurt more? Explain.
Q4.18 “It’s not the fall that hurts you; it’s the sudden stop at the bot-
tom.” Translate this saying into the language of Newton’s laws of 
motion.
Q4.19 A person can dive into water from a height of 10 m without 
injury, but a person who jumps off the roof of a 10-m-tall building and 
lands on a concrete street is likely to be seriously injured. Why is there 
a difference?
Q4.20 Why are cars designed to crumple in front and back for safety? 
Why not for side collisions and rollovers?
Q4.21 When a string barely strong enough lifts a heavy weight, it can 
lift the weight by a steady pull; but if you jerk the string, it will break. 
Explain in terms of Newton’s laws of motion.

Q4.22 A large crate is suspended from the end of a vertical rope. Is the 
tension in the rope greater when the crate is at rest or when it is moving 
upward at constant speed? If the crate is traveling upward, is the tension 
in the rope greater when the crate is speeding up or when it is slowing 
down? In each case, explain in terms of Newton’s laws of motion.
Q4.23 Which feels a greater pull due to the earth’s gravity: a 10 kg 
stone or a 20 kg stone? If you drop the two stones, why doesn’t the 20 kg  
stone fall with twice the acceleration of the 10 kg stone? Explain.
Q4.24 A horse is hitched to a wagon. Since the wagon pulls back on 
the horse just as hard as the horse pulls on the wagon, why doesn’t the 
wagon remain in equilibrium, no matter how hard the horse pulls?
Q4.25 True or false? You exert a push P on an object and it pushes 
back on you with a force F. If the object is moving at constant velocity, 
then F is equal to P, but if the object is being accelerated, then P must 
be greater than F.
Q4.26 A large truck and a small compact car have a head-on collision. 
During the collision, the truck exerts a force F

S

T on C on the car, and the 
car exerts a force F

S

C on T on the truck. Which force has the larger magni-
tude, or are they the same? Does your answer depend on how fast each 
vehicle was moving before the collision? Why or why not?
Q4.27 When a car comes to a stop on a level road, what force causes it 
to slow down? When the car increases its speed on the same road, what 
force causes it to speed up? Explain.
Q4.28 A small compact car is pushing a large van that has broken 
down, and they travel along the road with equal velocities and accel-
erations. While the car is speeding up, is the force it exerts on the van 
larger than, smaller than, or the same magnitude as the force the van 
exerts on it? Which vehicle has the larger net force on it, or are the net 
forces the same? Explain.
Q4.29 Consider a tug-of-war between two people who pull in opposite 
directions on the ends of a rope. By Newton’s third law, the force that 
A exerts on B is just as great as the force that B exerts on A. So what 
determines who wins? (Hint: Draw a free-body diagram showing all the 
forces that act on each person.)
Q4.30 Boxes A and B are in contact 
on a horizontal, frictionless surface. 
You push on box A with a horizon-
tal 100 N force (Fig. Q4.31). Box A 
weighs 150 N, and box B weighs 50 
N. Is the force that box A exerts on 
box B equal to 100 N, greater than 100 N, or less than 100 N? Explain.
Q4.31 A manual for student pilots contains this passage: “When an 
airplane flies at a steady altitude, neither climbing nor descending, 
the upward lift force from the wings equals the plane’s weight. When  
the plane is climbing at a steady rate, the upward lift is greater than the 
weight; when the plane is descending at a steady rate, the upward lift is 
less than the weight.” Are these statements correct? Explain.
Q4.32 If your hands are wet and no towel is handy, you can remove 
some of the excess water by shaking them. Why does this work?
Q4.33 If you squat down (such as when you examine the books on a bot-
tom shelf) and then suddenly get up, you may temporarily feel light-headed. 
What do Newton’s laws of motion have to say about why this happens?
Q4.34 When a car is hit from behind, the occupants may experience 
whiplash. Use Newton’s laws of motion to explain what causes this result.
Q4.35 In a head-on auto collision, passengers who are not wearing seat 
belts may be thrown through the windshield. Use Newton’s laws of mo-
tion to explain why this happens.

PROBLEMS
•, ••, •••: Difficulty levels. CP: Cumulative problems incorporating material from earlier chapters. CALC: Problems requiring calculus.  
DATA: Problems involving real data, scientific evidence, experimental design, and>or statistical reasoning. BIO: Biosciences problems.

Figure Q4.31
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Q4.36 In a head-on collision between a compact 1000 kg car and a 
large 2500 kg car, which one experiences the greater force? Explain. 
Which one experiences the greater acceleration? Explain why. Why are 
passengers in the small car more likely to be injured than those in the 
large car, even when the two car bodies are equally strong?
Q4.37 Suppose you are in a rocket with no windows, traveling in deep 
space far from other objects. Without looking outside the rocket or mak-
ing any contact with the outside world, explain how you could deter-
mine whether the rocket is (a) moving forward at a constant 80% of the 
speed of light and (b) accelerating in the forward direction.

EXERCISES

Section 4.1 Force and Interactions
4.1 •• Two dogs pull horizontally on ropes attached to a post; the 
angle between the ropes is 51.0°. If Rover exerts a force of 288 N and 
Fido exerts a force of 324 N, find the magnitude of the resultant force 
and the angle it makes with Rover’s rope.
4.2 • To extricate an SUV stuck in the mud, workmen use three 
horizontal ropes, producing the force vectors shown in Fig. E4.2. (a) 
Find the x- and y-components of each of the three pulls. (b) Use the 
components to find the magnitude and direction of the resultant of 
the three pulls.

Figure E4.3

75.0°

4.3 • BIO Jaw Injury. Due to a jaw 
injury, a patient must wear a strap (Fig. 
E4.3) that produces a net upward force 
of 5.00 N on his chin. The tension is the 
same throughout the strap. To what ten-
sion must the strap be adjusted to provide 
the necessary upward force?
4.4 • A man is dragging a trunk up the 
loading ramp of a mover’s truck. The 
ramp has a slope angle of 20.0°, and  
the man pulls upward with a force F

S
 

whose direction makes an angle of 30.0° 
with the ramp (Fig. E4.4). (a) How large a force F

S
 is necessary for the 

component Fx parallel to the ramp to be 90.0 N? (b) How large will the 
component Fy perpendicular to the ramp be then?

53°

31°

32° 985 N

788 N

411 N

y

x

Figure E4.2

F
S

30.0°

20.0°

4.5 • Forces F
S

1 and F
S

2 act at a point. The magnitude of F
S

1 is  
8.00 N, and its direction is 64.0° above the x-axis in the second quad-
rant. The magnitude of F

S

2 is 5.40 N, and its direction is 53.9° below the 
x-axis in the third quadrant. (a) What are the x- and y-components of 
the  resultant force? (b) What is the magnitude of the resultant force?

Section 4.3 Newton’s Second Law
4.6 • An electron 1mass = 9.11 * 10-31 kg2 leaves one end of a 
TV picture tube with zero initial speed and travels in a straight line to 
the accelerating grid, which is 1.80 cm away. It reaches the grid with a 
speed of 3.00 * 106 m>s. If the accelerating force is constant, compute 
(a) the acceleration; (b) the time to reach the grid; and (c) the net force, 
in newtons. Ignore the gravitational force on the electron.
4.7 •• A 68.5 kg skater moving initially at 2.40 m>s on rough hori-
zontal ice comes to rest uniformly in 3.52 s due to friction from the ice. 
What force does friction exert on the skater?
4.8 •• You walk into a lift, step onto a scale, and push the “up” button. 
You recall that your normal weight is 655 N. Draw a free-body diagram. 
(a) When the lift has an upward acceleration of magnitude 2.46 m>s2, 
what does the scale read? (b) If you hold a 3.65-kg package by a light 
vertical string, what will be the tension in this string when the lift ac-
celerates as in part (a)?
4.9 • A box rests on a frozen pond, which serves as a friction-
less horizontal surface. If a fisherman applies a horizontal force  
with magnitude 50.0 N to the box and produces an acceleration of mag-
nitude 3.60 m>s2, what is the mass of the box?
4.10 •• A dockworker applies a constant horizontal force of 80.0 N to 
a block of ice on a smooth horizontal floor. The frictional force is negli-
gible. The block starts from rest and moves 11.0 m in 5.00 s. (a) What is 
the mass of the block of ice? (b) If the worker stops pushing at the end 
of 5.00 s, how far does the block move in the next 5.00 s?
4.11 • A hockey puck with mass 0.160 kg is at rest at the origin 
1x = 02 on the horizontal, frictionless surface of the rink. At time t = 0 
a player applies a force of 0.250 N to the puck, parallel to the x-axis; she 
continues to apply this force until t = 2.00 s. (a) What are the position 
and speed of the puck at t = 2.00 s? (b) If the same force is again applied 
at t = 5.00 s, what are the position and speed of the puck at t = 7.00 s?
4.12 • A crate with mass 32.0 kg initially at rest on a warehouse floor 
is acted on by a net horizontal force of 140 N. (a) What acceleration is 
produced? (b) How far does the crate travel in 13.0 s? (c) What is its 
speed at the end of 13.0 s?
4.13 • A 4.50 kg experimental 
cart undergoes an acceleration in 
a straight line (the x-axis). The 
graph in Fig. E4.13 shows  this 
acceleration as a function of 
time. (a) Find the maximum net 
force on this cart. When does this 
maximum force occur? (b) During 
what times is the net force on the 
cart a constant? (c) When is the 
net force equal to zero?
4.14 • A 3.89-kg cat moves in 
a straight line (the x-axis). Figure 
E4.14 shows a graph of the 
 x-component of this cat’s  velocity 
as a function of time. (a) Find 
the maximum net force on this 
cat. When does this force occur?  
(b) When is the net force on the cat 
equal to zero? (c) What is the net 
force at time 8.5 s?

Figure E4.13
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Section 4.6 Free-Body Diagrams
4.26 ••  You pull horizontally 
on block B in Fig. E4.26, caus-
ing both blocks to move together 
as a unit. For this moving system, 
make a carefully labeled free-
body diagram of block A if (a) the 
table is frictionless and (b) there is 
friction between block B and the table and the pull is equal in magni-
tude to the friction force on block B due to the table.
4.27 •• Crates A and B sit at rest side by side on a frictionless hori-
zontal surface. They have masses mA and mB, respectively. When a hori-
zontal force F

S
 is applied to crate A, the two crates move off to the right. 

(a) Draw clearly labeled free-body diagrams for crate A and for crate 
B. Indicate which pairs of forces, if any, are third-law action–reaction 
pairs. (b) If the magnitude of F

S
 is less than the total weight of the two 

crates, will it cause the crates to move? Explain.
4.28 •• CP A .22 caliber rifle bullet traveling at 350 m>s strikes a 
large tree and penetrates it to a depth of 0.130 m. The mass of the bul-
let is 1.80 g. Assume a constant retarding force. (a) How much time is 
required for the bullet to stop? (b) What force, in newtons, does the tree 
exert on the bullet?
4.29 • A ball is hanging from a long string that is tied to the ceiling 
of a train car traveling eastward on horizontal tracks. An observer in-
side the train car sees the ball hang motionless. Draw a clearly labeled 
free-body diagram for the ball if (a) the train has a uniform velocity and  
(b) the train is speeding up uniformly. Is the net force on the ball zero in 
either case? Explain.
4.30 •• A chair of mass 13.5 kg is sitting on the horizontal floor; the 
floor is not frictionless. You push on the chair with a force F = 35.0 N 
that is directed at an angle of 38.0° below the horizontal, and the chair 
slides along the floor. (a) Draw a clearly labeled free-body diagram for 
the chair. (b) Use your diagram and Newton’s laws to calculate the nor-
mal force that the floor exerts on the chair.

PROBLEMS
4.31 •• CP Estimate the average force that a major-league pitcher 
exerts on the baseball when he throws a fastball. In your solution, list 
the quantities for which you estimate values and any assumptions you 
make. Do a web search to help determine the values you use in making 
your estimates.
4.32 ••  CP You have just landed on Planet X. You release a 100 g ball 
from rest from a height of 13.5 m and measure that it takes 2.10 s to 
reach the ground. Ignore any force on the ball from the atmosphere of the 
planet. How much does the 100 g ball weigh on the surface of Planet X?
4.33 ••  CP A 4.40 kg bucket of water is accelerated upward by a cord 
of negligible mass whose breaking strength is 74.0 N. If the bucket starts 
from rest, what is the minimum time required to raise the bucket a verti-
cal distance of 14.0 m without breaking the cord?
4.34 •• Block A rests on top of block B as shown in Fig. E4.26. The 
table is frictionless but there is friction (a horizontal force) between 
blocks A and B. Block B has mass 6.00 kg and block A has mass 2.00 kg.  
If the horizontal pull applied to block B equals 12.0 N, then block B has 
an acceleration of 1.80 m>s2. What is the acceleration of block A?
4.35 •• Two adults and a child want to push a wheeled cart in the di-
rection marked x in Fig. P4.35 (next page). The two adults push with 
horizontal forces F

S

1 and F
S

2 as shown. (a) Find the magnitude and direc-
tion of the smallest force that the child should exert. Ignore the effects 
of friction. (b) If the child exerts the minimum force found in part (a), 
the cart accelerates at 2.0 m>s2 in the +x-direction. What is the weight 
of the cart?

4.15 • A small 5.00 kg rocket burns fuel that exerts a time- 
varying upward force on the rocket (assume constant mass) as 
the rocket moves upward from the launch pad. This force obeys 
the equation F = A + Bt2. Measurements show that at t = 0,  the 
force is 130.0 N, and at the end of the first 2.00 s, it is 152.0 N. 
(a) Find the constants A and B, including their SI units. (b) Find the net 
force on this rocket and its acceleration (i) the instant after the fuel ig-
nites and (ii) 3.50 s after the fuel ignites. (c) Suppose that you were 
using this rocket in outer space, far from all gravity. What would its ac-
celeration be 3.50 s after fuel ignition?

Section 4.4 Mass and Weight
4.16 • An astronaut’s pack weighs 17.4 N when she is on the earth 
but only 3.95 N when she is at the surface of a moon. (a) What is the 
 acceleration due to gravity on this moon? (b) What is the mass of the 
pack on this moon?
4.17 • Superman throws a 1650 N boulder at an adversary. What hori-
zontal force must Superman apply to the boulder to give it a horizontal 
acceleration of 13.6 m>s2?
4.18 • BIO (a) An ordinary flea has a mass of 215 mg. How many 
newtons does it weigh? (b) The mass of a typical froghopper is 12.3 
mg. How many newtons does it weigh? (c) A house cat typically 
weighs 43 N. What is its mass in kilograms?
4.19 • At the surface of Jupiter’s moon Io, the acceleration due to grav-
ity is g = 1.81 m>s2. A watermelon weighs 48.0 N at the  surface of the 
earth. (a) What is the watermelon’s mass on the earth’s surface? (b) What 
would be its mass and weight on the surface of Io?

Section 4.5 Newton’s Third Law
4.20 • Estimate the mass in kilograms and the weight of a typical 
sumo wrestler. How do your estimates for the wrestler compare to your 
estimates of the average mass and weight of the students in your physics 
class? Do a web search if necessary to help make the estimates. In your 
solution list what values you assume for the quantities you use in mak-
ing your estimates.
4.21 • BIO World-class sprinters can accelerate out of the starting 
blocks with an acceleration that is nearly horizontal and has magnitude 
15 m>s2. How much horizontal force must a 45 kg sprinter exert on the 
starting blocks to produce this acceleration? Which body exerts the 
force that propels the sprinter: the blocks or the sprinter herself?
4.22 • A small car of mass 500 kg is pushing a large truck of mass  
920 kg due east on a level road. The car exerts a horizontal force of 
1490 N on the truck. What is the magnitude of the force that the truck 
exerts on the car?
4.23 •• Boxes A and B are in 
contact on a horizontal, frictionless 
surface (Fig. E4.23). Box A has 
mass 25.0 kg and box B has mass 
8.0 kg. A horizontal force of 100 N  
is exerted on box A. What is the 
magnitude of the force that box A 
exerts on box B?
4.24 •• The upward normal force exerted by the floor is 620 N on a 
lift passenger who weighs 650 N. What are the reaction forces to these 
two forces? Is the passenger accelerating? If so, what are the magnitude 
and direction of the acceleration?
4.25 •• A student of mass 45 kg jumps off a high diving board. What 
is the acceleration of the earth toward her as she accelerates toward the 
earth with an acceleration of 9.8 m>s2? Use 6.0 * 1024 kg for the mass 
of the earth, and assume that the net force on the earth is the force of 
gravity she exerts on it.

Figure E4.23
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4.42 • A loaded lift with very worn cables has a total mass of 2100 kg, 
and the cables can withstand a maximum tension of 29,000 N. (a) Draw 
the free-body force diagram for the lift. In terms of the forces on your 
diagram, what is the net force on the lift? Apply Newton’s second law 
to the lift and find the maximum upward acceleration for the lift if the 
cables are not to break. (b) What would be the answer to part (a) if the 
lift were on the moon, where g = 1.62 m>s2?
4.43 •• CP A batter swings at a baseball (mass 0.145 kg) that is mov-
ing horizontally toward him at a speed of 40.0 m>s. He hits the ball in 
such a way that it moves away from him horizontally at 50.0 m>s just 
after it leaves the bat. If the bat and ball are in contact for 8.00 ms, what 
is the average force that the bat applies to the ball?
4.44 •• CP CALC An object with mass m is moving along the x-axis 
according to the equation x(t) = at2 - 2bt, where a and b are positive 
constants. What is the magnitude of the net force on the object at time 
t = 0?
4.45 •• CP Boxes A and B are connected to each end 
of a light vertical rope (Fig. P4.45). A constant upward 
force F = 80.0 N is applied to box A. Starting from 
rest, box B descends 12.0 m in 4.00 s. The tension in 
the rope connecting the two boxes is 36.0 N. What are 
the masses of (a) box B, (b) box A?
4.46 •• The two blocks in Fig. P4.46 are connected 
by a heavy uniform rope with a mass of 4.00 kg. An up-
ward force of 200 N is applied as shown. (a) Draw three 
free-body diagrams: one for the 6.00 kg block, one for 
the 4.00 kg rope, and another one for the 5.00 kg block. For each force, 
indicate what object exerts that force. (b) What is the acceleration of the 
system? (c) What is the tension at the top of the heavy rope? (d) What is 
the tension at the midpoint of the rope?

4.36 ••• CP An advertisement claims that a particular automobile 
can “stop on a dime.” What net force would be necessary to stop a 840-
kg automobile traveling initially at 37.0 km>h in a distance equal to the 
diameter of a dime, 1.8 cm?
4.37 • Two crates, one with mass 4.00 kg and the other with mass  
6.00 kg, sit on the frictionless surface of a frozen pond, connected by a light 
rope (Fig. P4.37). A woman wearing golf shoes (for traction) pulls horizon-
tally on the 6.00 kg crate with a force F that gives the crate an acceleration 
of 2.90 m>s2. (a) What is the acceleration of the 4.00 kg crate? (b) Draw a 
free-body diagram for the 4.00 kg crate. Use that diagram and Newton’s 
second law to find the tension T in the rope that connects the two crates. 
(c) Draw a free-body diagram for the 6.00 kg crate. What is the direction 
of the net force on the 6.00 kg crate? Which is larger in magnitude, T or F? 
(d) Use part (c) and Newton’s second law to calculate the magnitude of F.

FIGURE P4.37
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4.38 •• CP Two blocks connected by a light horizontal rope sit at rest 
on a horizontal, frictionless surface. Block A has mass 15.0 kg, and 
block B has mass m. A constant horizontal force F = 60.0 N is applied 
to block A (Fig. P4.38). In the first 5.00 s after the force is applied, 
block A moves 18.0 m to the right. (a) While the blocks are moving, 
what is the tension T in the rope that connects the two blocks? (b) What 
is the mass of block B?

Figure P4.38

B
A

F

4.39 • CALC To study damage to aircraft that collide with large 
birds, you design a test gun that will accelerate chicken-sized ob-
jects so that their displacement along the gun barrel is given by 
x = 19.0 * 103 m>s22t2 - 18.0 * 104 m>s32t3. The object leaves 
the end of the barrel at t = 0.025 s. (a) How long must the gun barrel 
be? (b) What will be the speed of the objects as they leave the end of 
the barrel? (c) What net force must be exerted on a 1.50 kg object at  
(i) t = 0 and (ii) t = 0.025 s?
4.40 •• CP On a test flight a rocket with mass 400 kg blasts off from 
the surface of the earth. The rocket engines apply a constant upward 
force F until the rocket reaches a height of 100 m and then they shut 
off. If the rocket is to reach a maximum height of 400 m above the sur-
face of the earth, what value of F is required? Assume the change in the 
rocket’s mass is negligible.
4.41 •• CP After an annual checkup, you leave your physician’s of-
fice, where you weighed 683 N. You then get into a lift that, conve-
niently, has a scale. Find the magnitude and direction of the lift’s 
acceleration if the scale reads (a) 725 N and (b) 595 N.
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Figure P4.35
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4.47 ••• CP A small rocket with mass 20.0 kg is moving in free fall 
toward the earth. Air resistance can be neglected. When the rocket is 
80.0 m above the surface of the earth, it is moving downward with a 
speed of 30.0 m>s. At that instant the rocket engines start to fire and pro-
duce a constant upward force F on the rocket. Assume the change in the 
rocket’s mass is negligible. What is the value of F if the rocket’s speed 
becomes zero just as it reaches the surface of the earth, for a soft land-
ing? (Hint: The net force on the rocket is the combination of the upward 
force F from the engines and the downward weight of the rocket.)
4.48 •• CP Extraterrestrial Physics. You have landed on an un-
known planet, Newtonia, and want to know what objects weigh there. 
When you push a certain tool, starting from rest, on a frictionless hori-
zontal surface with a 12.0 N force, the tool moves 16.0 m in the first 
2.00 s. You next observe that if you release this tool from rest at 10.0 m 
above the ground, it takes 2.58 s to reach the ground. What does the tool 
weigh on Newtonia, and what does it weigh on earth?
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(a) Plot F versus the acceleration a of the block. (b) Use your graph to 
determine the mass m of the block and the acceleration of gravity g at 
the surface of the planet. Note that even on that planet, measured values 
contain some experimental error.
4.54 •• DATA An 8.00 kg box sits on a level floor. You give the box 
a sharp push and find that it travels 8.22 m in 2.8 s before coming to 
rest again. (a) You measure that with a different push the box traveled 
4.20 m in 2.0 s. Do you think the box has a constant acceleration as it 
slows down? Explain your reasoning. (b) You add books to the box to 
increase its mass. Repeating the experiment, you give the box a push 
and measure how long it takes the box to come to rest and how far the 
box travels. The results, including the initial experiment with no added 
mass, are given in the table:

Added Mass (kg) Distance (m) Time (s)

0  8.22 2.8

3.00 10.75 3.2

7.00  9.45 3.0

12.0  7.10 2.6

In each case, did your push give the box the same initial speed? What is 
the ratio between the greatest initial speed and the smallest initial speed 
for these four cases? (c) Is the average horizontal force f exerted on the 
box by the floor the same in each case? Graph the magnitude of force f 
versus the total mass m of the box plus its contents, and use your graph 
to determine an equation for f as a function of m.

CHALLENGE PROBLEMS
4.55 ••• CP CALC A block of mass 2.00 kg is initially at rest at x = 0 
on a slippery horizontal surface for which there is no friction. Starting 
at time t = 0, a horizontal force Fx(t) = b - at is applied to the block, 
where a = 6.00 N>s anwd b = 4.00 N. (a) What is the largest positive 
value of x reached by the block? How long does it take the block to 
reach this point, starting from t = 0, and what is the magnitude of the 
force when the block is at this value of x? (b) How long from t = 0 does 
it take the block to return to x = 0, and what is its speed at this point?
4.56 ••• CALC An object of mass m is at rest in equilibrium at the 
origin. At t = 0 a new force F

S1t2 is applied that has components

Fx1t2 = k1 + k2y  Fy1t2 = k3t

where k1, k2, and k3 are constants. Calculate the position rS1t2 and veloc-
ity vS1t2 vectors as functions of time.

MCAT-STYLE PASSAGE PROBLEMS
BIO Forces on a Dancer’s Body. Dancers experience large forces as-
sociated with the jumps they make. For example, when a dancer lands 
after a vertical jump, the force exerted on the head by the neck must 
exceed the head’s weight by enough to cause the head to slow down and 
come to rest. The head is about 9.4% of a typical person’s mass. Video 
analysis of a 65 kg dancer landing after a vertical jump shows that her 
head decelerates from 4.0 m>s to rest in a time of 0.20 s.
4.57 What is the magnitude of the average force that her neck exerts 
on her head during the landing? (a) 0 N; (b) 60 N; (c) 120 N; (d) 180 N.
4.58 Compared with the force her neck exerts on her head  during 
the landing, the force her head exerts on her neck is (a) the same;  
(b) greater; (c) smaller; (d) greater during the first half of the landing 
and smaller during the second half of the landing.

4.49 •• CP CALC A mysterious rocket-propelled object of mass  
49.5 kg is initially at rest in the middle of the horizontal, frictionless 
surface of an ice-covered lake. Then a force directed east and with mag-
nitude F(t) = (15.5 N>s)t is applied. How far does the object travel in 
the first 4.25 s after the force is applied?
4.50 •• CP Starting at time t = 0, net force F1 is applied to an object 
that is initially at rest. (a) If the force remains constant with magnitude 
F1 while the object moves a distance d, the final speed of the object is v1.  
What is the final speed v2 (in terms of v1) if the net force is F2 = 2F1 
and the object moves the same distance d while the force is being ap-
plied? (b) If the force F1 remains constant while it is applied for a time 
T, the final speed of the object is v1. What is the final speed v2 (in terms 
of v1) if the applied force is F2 = 2F1 and is constant while it is applied 
for the same time T? In a later chapter we’ll call force times distance 
work and force times time impulse and associate work and impulse with 
the change in speed.)
4.51 •• DATA The table* gives automobile performance data for a few 
types of cars:

Make and Model (Year) Mass (kg)
Time (s) to go from 
0 to 100 km>h

Alpha Romeo 4C (2013)  895 4.5

Honda Civic 2.0i (2011) 1320 6.6

Ferrari F430 (2004) 1435 4.0

Ford Focus RS500 (2010) 1468 5.6

Volvo S60 (2013) 1650 7.4

*Source: www.autosnout.com

(a) During an acceleration of 0 to 100 km>h, which car has the larg-
est average net force acting on it? The smallest? (b) During this ac-
celeration, for which car would the average net force on a 72.0 kg 
passenger be the largest? The smallest? (c) When the Ferrari F430 ac-
celerates from 0 to 200 km>h in 12.2 s, what is the average net force 
acting on it? How does this net force compare with the average net 
force during the acceleration from 0 to 100 km>h? Explain why these 
average net forces might differ. (d) Discuss why a car has a top speed. 
What is the net force on the Ferrari F430 when it is traveling at its top 
speed, 315.4 km>h?
4.52 ••• CALC The position of a training helicopter (weight 
2.75 * 105 N) in a test is given by rn = 10.020 m>s32t3 dn +  
12.2 m>s2  ten − 10.060 m>s22t2kn. Find the net force on the helicopter at 
t = 5.0 s.
4.53 •• DATA You are a Starfleet captain going boldly where no one 
has gone before. You land on a distant planet and visit an engineering 
testing lab. In one experiment a short, light rope is attached to the top of 
a block and a constant upward force F is applied to the free end of the 
rope. The block has mass m and is initially at rest. As F is varied, the 
time for the block to move upward 8.00 m is measured. The values that 
you collected are given in the table:

F (N) Time (s)

250 3.3

300 2.2

350 1.7

400 1.5

450 1.3

500 1.2

www.autosnout.com
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Figure P4.604.59 While the dancer is in the air and holding a fixed pose, what is the 
magnitude of the force her neck exerts on her head? (a) 0 N; (b) 60 N; 
(c) 120 N; (d) 180 N.
4.60 The forces on a dancer can be measured directly when a dancer 
performs a jump on a force plate that measures the force between her 
feet and the ground. A graph of force versus time throughout a vertical 
jump performed on a force plate is shown in Fig. P4.60. What is hap-
pening at 0.4 s? The dancer is (a) bending her legs so that her body is 
accelerating downward; (b) pushing her body up with her legs and is al-
most ready to leave the ground; (c) in the air and at the top of her jump; 
(d) landing and her feet have just touched the ground.

ANSWERS

Chapter Opening Question ?
(v) Newton’s third law tells us that the barbell pushes on the weight-
lifter just as hard as the weightlifter pushes on the barbell in all 
 circumstances, no matter how the barbell is moving. However, the 
magnitude of the force that the weightlifter exerts is different in dif-
ferent circumstances. This force magnitude is equal to the weight of 
the barbell when the barbell is stationary, moving upward at a con-
stant speed, or moving downward at a constant speed; it is greater 
than the weight of the barbell when the barbell accelerates up-
ward; and it is less than the weight of the barbell when the barbell 
accelerates downward. But in each case the push of the barbell on 
the weightlifter has exactly the same magnitude as the push of the 
weightlifter on the barbell.

Key Example ARIATION Problems
VP4.1.1 gFx = 88.0 N, gFy = -44.0 N, F = 98.4 N, angle = 26.6° 
clockwise from the +x-direction
VP4.1.2 g  Fx = -143 N, gFy = 246 N, F = 285 N, angle = 120° 
counterclockwise from the +x-direction

VP4.1.3 gFx = 6.4 N, gFy = 1.5 N, F = 6.6 N, angle = 13° counter-
clockwise from the +x-direction
VP4.1.4 FTsuroku,  x = -55.8 N, FTsuroku,  y = -62.0 N, magnitude 
FTsuroku = 83.4 N, angle = 48.0° south of west
VP4.4.1 0.45 m>s2

VP4.4.2 (a) normal force, exerted by the floor; weight or gravitational 
force, exerted by the earth; horizontal force, exerted by your hand  
(b) 0.25 m>s2

VP4.4.3 (a) 12 N (b) equal
VP4.4.4 (a) 9.60 N (b) 4.4 N, in the direction opposite to your push
VP4.5.1 40.0 N
VP4.5.2 1.65 * 103 m
VP4.5.3 (a) 3.84 s (b) 6.51 m>s2 (c) 1.56 * 104 N
VP4.5.4 (a) gravity (the earth), normal force (the road), friction (the 
road), push (you and your friends) (b) 575 N

Bridging Problem
(a) See the Video Tutor Solution in Mastering Physics.
(b) (i) 2.20 m>s2; (ii) 6.00 N; (iii) 3.00 N
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We saw in Chapter 4 that Newton’s three laws of motion, the foundation of classi-
cal mechanics, can be stated very simply. But applying these laws to situations 
such as an iceboat skating across a frozen lake, a toboggan sliding down a hill, or 

an airplane making a steep turn requires analytical skills and problem-solving technique. 
In this chapter we’ll help you extend the problem-solving skills you began to develop in 
Chapter 4.

We’ll begin with equilibrium problems, in which we analyze the forces that act on an 
object that is at rest or moving with constant velocity. We’ll then consider objects that are 
not in equilibrium. For these we’ll have to take account of the relationship between forces 
and acceleration. We’ll learn how to describe and analyze the contact force that acts on an 
object when it rests on or slides over a surface. We’ll also analyze the forces that act on an 
object that moves in a circle with constant speed. We close the chapter with a brief look at 
the fundamental nature of force and the classes of forces found in our physical universe.

5.1 USING NEWTON’S FIRST LAW:  
PARTICLES IN EQUILIBRIUM
We learned in Chapter 4 that an object is in equilibrium when it is at rest or moving with 
constant velocity in an inertial frame of reference. A hanging lamp, a kitchen table, an 
airplane flying straight and level at a constant speed—all are examples of objects in equi-
librium. In this section we consider only the equilibrium of an object that can be modeled 
as a particle. (In Chapter 11 we’ll see how to analyze an object in equilibrium that can’t 
be represented adequately as a particle, such as a bridge that’s supported at various points 
along its span.) The essential physical principle is Newton’s first law:

Sum of x-components of force
on object must be zero.

Sum of y-components of force
on object must be zero.

(5.1)

... must be zero for an
object in equilibrium.

Newton’s first law:
Net force on an object ...

SgF = 0

gFx =  0 gFy =  0

5 Applying Newton’s Laws

?Each of the seeds being blown off the 
head of a dandelion (genus Taraxacum) 

has a feathery structure called a pappus. 
The pappus acts like a parachute and en-
ables the seed to be borne by the wind and 
drift gently to the ground. If a seed with its 
pappus descends straight down at a steady 
speed, which force acting on the seed has 
a greater magnitude? (i) The force of 
 gravity; (ii) the upward force exerted by 
the air; (iii) both forces have the same 
 magnitude; (iv) it depends on the speed 
at which the seed descends.

LEARNING OUTCOMES

In this chapter, you’ll learn...
 5.1 How to use Newton’s first law to solve 

problems involving the forces that act on 
an object in equilibrium.

 5.2 How to use Newton’s second law to 
solve problems involving the forces that 
act on an accelerating object.

 5.3 The nature of the different types of 
friction forces—static friction,  kinetic 
friction, rolling friction, and fluid 
 resistance—and how to solve problems 
that involve these forces.

 5.4 How to solve problems involving the 
forces that act on an object moving 
along a circular path.

 5.5 The key properties of the four funda-
mental forces of nature.

You’ll need to review...
 1.8 Determining the components of a vector 

from its magnitude and direction.
 2.4 Straight-line motion with constant 

acceleration.
 3.3 Projectile motion.
 3.4 Uniform and nonuniform circular motion.
 4.1 Superposition of forces.
 4.2 Newton’s first law.
 4.3 Newton’s second law.
 4.4 Mass and weight.
 4.5 Newton’s third law.
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This section is about using Newton’s first law to solve problems dealing with objects 
in equilibrium. Some of these problems may seem complicated, but remember that all 
problems involving particles in equilibrium are done in the same way. Problem-Solving 
Strategy 5.1 details the steps you need to follow for any and all such problems. Study this 
strategy carefully, look at how it’s applied in the worked-out examples, and try to apply it 
when you solve assigned problems.

Action–
reaction
pair

(a) The situation (b) Free-body
diagram for gymnast

(c) Free-body
diagram for rope

Figure 5.1 Our sketches for this problem.

IDENTIFY the relevant concepts: You must use Newton’s first law, 
Eqs. (5.1), for any problem that involves forces acting on an object in 
equilibrium—that is, either at rest or moving with constant velocity. 
A car is in equilibrium when it’s parked, but also when it’s traveling 
down a straight road at a steady speed.

If the problem involves more than one object and the objects 
 interact with each other, you’ll also need to use Newton’s third law. 
This law allows you to relate the force that one object exerts on a 
 second object to the force that the second object exerts on the first one.

Identify the target variable(s). Common target variables in 
 equilibrium problems include the magnitude and direction (angle) of 
one of the forces, or the components of a force.

SET UP the problem by using the following steps:

1. Draw a very simple sketch of the physical situation, showing 
 dimensions and angles. You don’t have to be an artist!

2. Draw a free-body diagram for each object that is in equilibrium. 
For now, we consider the object as a particle, so you can represent 
it as a large dot. In your free-body diagram, do not include the 
other objects that interact with it, such as a surface it may be rest-
ing on or a rope pulling on it.

3. Ask yourself what is interacting with the object by contact or in 
any other way. On your free-body diagram, draw a force vec-
tor for each interaction. Label each force with a symbol for the 
magnitude of the force. If you know the angle at which a force 
is directed, draw the angle accurately and label it. Include the 
 object’s weight, unless the object has negligible mass. If the 
mass is given, use w = mg to find the weight. A surface in con-
tact with the object exerts a normal force perpendicular to the 
surface and possibly a friction force parallel to the surface. A 
rope or chain exerts a pull (never a push) in a direction along its 
length.

4. Do not show in the free-body diagram any forces exerted by the 
object on any other object. The sums in Eqs. (5.1) include only 
forces that act on the object. For each force on the object, ask your-
self “What other object causes that force?” If you can’t  answer that 
question, you may be imagining a force that isn’t there.

5. Choose a set of coordinate axes and include them in your free-
body diagram. (If there is more than one object in the problem, 
choose axes for each object separately.) Label the positive  direction 
for each axis. If an object rests or slides on a plane surface, for 
 simplicity choose axes that are parallel and perpendicular to this 
surface, even when the plane is tilted.

EXECUTE the solution as follows:

1. Find the components of each force along each of the object’s co-
ordinate axes. Draw a wiggly line through each force vector that 
has been replaced by its components, so you don’t count it twice. 
The magnitude of a force is always positive, but its components 
may be positive or negative.

2. Set the sum of all x-components of force equal to zero. In a sepa-
rate equation, set the sum of all y-components equal to zero. 
(Never add x- and y-components in a single equation.)

3. If there are two or more objects, repeat all of the above steps for 
each object. If the objects interact with each other, use Newton’s 
third law to relate the forces they exert on each other.

4. Make sure that you have as many independent equations as the num-
ber of unknown quantities. Then solve these equations to  obtain the 
target variables.

EVALUATE your answer: Look at your results and ask whether they 
make sense. When the result is a symbolic expression or formula, 
check to see that your formula works for any special cases (particular 
values or extreme cases for the various quantities) for which you can 
guess what the results ought to be.

PROBLEM-SOLVING STRATEGY 5.1 Newton’s First Law: Equilibrium of a Particle

EXAMPLE 5.1 One-dimensional equilibrium: Tension in a massless rope

A gymnast with mass mG = 50.0 kg suspends herself from the lower 
end of a hanging rope of negligible mass. The upper end of the rope is 
attached to the gymnasium ceiling. (a) What is the gymnast’s weight? 
(b) What force (magnitude and direction) does the rope exert on her? 
(c) What is the tension at the top of the rope?

IDENTIFY and SET UP The gymnast and the rope are in equilibrium, 
so we can apply Newton’s first law to both objects. We’ll use Newton’s 
third law to relate the forces that they exert on each other. The target 
variables are the gymnast’s weight, wG; the force that the bottom of 
the rope exerts on the gymnast 1call it TR on G2; and the force that the 
ceiling exerts on the top of the rope 1call it TC on R2. Figure 5.1 shows 
our sketch of the situation and free-body diagrams for the gymnast 
and for the rope. We take the positive y-axis to be upward in each 
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diagram. Each force acts in the vertical direction and so has only a 
y-component.

The forces TR on G (the upward force of the rope on the gymnast, 
Fig. 5.1b) and TG on R (the downward force of the gymnast on the rope, 
Fig. 5.1c) form an action–reaction pair. By Newton’s third law, they 
must have the same magnitude.

Note that Fig. 5.1c includes only the forces that act on the rope. In 
particular, it doesn’t include the force that the rope exerts on the ceil-
ing (compare the discussion of the apple in Conceptual Example 4.9 in 
Section 4.5).

EXECUTE (a) The magnitude of the gymnast’s weight is the product of 
her mass and the acceleration due to gravity, g:

wG = mG g = 150.0 kg219.80 m>s22 = 490 N

(b) The gravitational force on the gymnast (her weight) points in the neg-
ative y-direction, so its y-component is -wG. The upward force of the rope 
on the gymnast has unknown magnitude TR on G and positive y- component 
+TR on G. We find this by using Newton’s first law from Eqs. (5.1):

 Gymnast:  gFy = TR on G + 1-wG2 = 0  so

 TR on G = wG = 490 N

The rope pulls up on the gymnast with a force TR on G of magnitude 490 N.  
(By Newton’s third law, the gymnast pulls down on the rope with a 
force of the same magnitude, TG on R = 490 N.)

(c) We have assumed that the rope is weightless, so the only forces 
on it are those exerted by the ceiling (upward force of unknown mag-
nitude TC on R) and by the gymnast (downward force of magnitude 
TG on R = 490 N). From Newton’s first law, the net vertical force on the 
rope in equilibrium must be zero:

 Rope:  gFy = TC on R + 1-TG on R2 = 0  so

 TC on R = TG on R = 490 N

EVALUATE The tension at any point in the rope is the magnitude of the 
force that acts at that point. For this weightless rope, the tension TG on R 
at the lower end has the same value as the tension TC on R at the upper 
end. For such an ideal weightless rope, the tension has the same value 
at any point along the rope’s length. (See the discussion in Conceptual 
Example 4.10 in Section 4.5.)

KEYCONCEPT The sum of all the external forces on an object in 
equilibrium is zero. The tension has the same value at either end of a 
rope or string of negligible mass.

EXAMPLE 5.2 One-dimensional equilibrium: Tension in a rope with mass

Find the tension at each end of the rope in Example 5.1 if the weight of 
the rope is 120 N.

IDENTIFY and SET UP As in Example 5.1, the target variables are the 
magnitudes TG on R and TC on R of the forces that act at the bottom and 
top of the rope, respectively. Once again, we’ll apply Newton’s first law 
to the gymnast and to the rope, and use Newton’s third law to relate the 
forces that the gymnast and rope exert on each other. Again we draw 
separate free-body diagrams for the gymnast (Fig. 5.2a) and the rope 
(Fig. 5.2b). There is now a third force acting on the rope, however: the 
weight of the rope, of magnitude wR = 120 N.

EXECUTE The gymnast’s free-body diagram is the same as in Example 5.1, 
so her equilibrium condition is also the same. From Newton’s third law, 
TR on G = TG on R, and we again have

 Gymnast:  gFy = TR on G + 1-wG2 = 0  so

 TR on G = TG on R = wG = 490 N

The equilibrium condition gFy = 0 for the rope is now

Rope:  gFy = TC on R + 1-TG on R2 + 1-wR2 = 0

Note that the y-component of TC on R is positive because it points in the 
+y@direction, but the y-components of both TG on R and wR are negative. 
We solve for TC on R and substitute the values TG on R = TR on G = 490 N 
and wR = 120 N:

TC on R = TG on R + wR = 490 N + 120 N = 610 N

EVALUATE When we include the weight of the rope, the tension is 
different at the rope’s two ends: 610 N at the top and 490 N at the 
bottom. The force TC on R = 610 N exerted by the ceiling has to hold 
up both the 490 N weight of the gymnast and the 120 N weight of 
the rope.

To see this more clearly, we draw a free-body diagram for a composite 
object consisting of the gymnast and rope together (Fig. 5.2c). Only two 
external forces act on this composite object: the force TC on R exerted by 
the ceiling and the total weight wG + wR = 490 N + 120 N = 610 N. 
(The forces TG on R and TR on G are internal to the composite object. 
Newton’s first law applies only to external forces, so these internal forces 
play no role.) Hence Newton’s first law applied to this composite object is

Composite object:  gFy = TC on R + 3-1wG + wR24 = 0

and so TC on R = wG + wR = 610 N.
Treating the gymnast and rope as a composite object is simpler, but 

we can’t find the tension TG on R at the bottom of the rope by this method.

KEYCONCEPT If there’s more than one object in a problem that in-
volves Newton’s laws, the safest approach is to treat each object separately.

Action–
reaction
pair

(a) Free-body
diagram for gymnast

(b) Free-body
diagram for rope

(c) Free-body diagram
for gymnast and rope
as a composite object

Figure 5.2 Our sketches for this problem, including the weight of 
the rope.
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(a) Engine, chains, and ring

T1

T3
T2

O

60°

(b) Free-body
diagram for engine

(c) Free-body
diagram for ring O

Figure 5.3 Our sketches for this problem. Note that with our choice of axes, all but one of the forces lie along either the x-axis or the y-axis.

EXAMPLE 5.3 Two-dimensional equilibrium

In Fig. 5.3a, a car engine with weight w hangs from a chain that is 
linked at ring O to two other chains, one fastened to the ceiling and the 
other to the wall. Find expressions for the tension in each of the three 
chains in terms of w. The weights of the ring and chains are negligible 
compared with the weight of the engine.

IDENTIFY and SET UP The target variables are the tension magnitudes 
T1, T2, and T3 in the three chains (Fig. 5.3a). All the objects are in equi-
librium, so we’ll use Newton’s first law. We need three independent 
equations, one for each target variable. However, applying Newton’s 
first law in component form to just one object gives only two equations 
[the x- and y-equations in Eqs. (5.1)]. So we’ll have to consider more 
than one object in equilibrium. We’ll look at the engine (which is acted 
on by T1) and the ring (which is attached to all three chains and so is 
acted on by all three tensions).

Figures 5.3b and 5.3c show our free-body diagrams and choice of 
coordinate axes. Two forces act on the engine: its weight w and the 
upward force T1 exerted by the vertical chain. Three forces act on the 
ring: the tensions from the vertical chain 1T12, the horizontal chain 
1T22, and the slanted chain 1T32. Because the vertical chain has neg-
ligible weight, it exerts forces of the same magnitude T1 at both of its 
ends (see Example 5.1). (If the weight of this chain were not negligible, 
these two forces would have different magnitudes; see Example 5.2.) 
The weight of the ring is also negligible, so it isn’t included in Fig. 5.3c.

EXECUTE The forces acting on the engine are along the y-axis only, so 
Newton’s first law [Eqs. (5.1)] says

Engine:  gFy = T1 + 1-w2 = 0  and  T1 = w

The horizontal and slanted chains don’t exert forces on the engine 
itself because they are not attached to it. These forces do appear when 

we apply Newton’s first law to the ring, however. In the free-body dia-
gram for the ring (Fig. 5.3c), remember that T1, T2, and T3 are the mag-
nitudes of the forces. We resolve the force with magnitude T3 into its 
x- and y-components. Applying Newton’s first law in component form 
to the ring gives us the two equations

 Ring :  gFx = T3 cos 60° + 1-T22 = 0

 Ring :  gFy = T3 sin 60° + 1-T12 = 0

Because T1 = w (from the engine equation), we can rewrite the second 
ring equation as

T3 =
T1

sin 60°
=

w
sin 60°

= 1.2w

We can now use this result in the first ring equation:

T2 = T3 cos 60° = w 
cos 60°
sin 60°

= 0.58w

EVALUATE The chain attached to the ceiling exerts a force on the ring 
with a vertical component equal to T1, which in turn is equal to w. But 
this force also has a horizontal component, so its magnitude T3 is some-
what greater than w. This chain is under the greatest tension and is the 
one most susceptible to breaking.

To get enough equations to solve this problem, we had to consider 
not only the forces on the engine but also the forces acting on a second 
object (the ring connecting the chains). Situations like this are fairly 
common in equilibrium problems, so keep this technique in mind.

KEYCONCEPT In two-dimensional problems that involve forces, 
always write two force equations for each object: one for the x- 
components of the forces and one for the y-components of the forces.

EXAMPLE 5.4 An inclined plane

A car of weight w rests on a slanted ramp attached to a trailer 
(Fig. 5.4a). Only a cable running from the trailer to the car prevents the 
car from rolling off the ramp. (The car’s brakes are off and its trans-
mission is in neutral.) Find the tension in the cable and the force that 
the ramp exerts on the car’s tires.

IDENTIFY The car is in equilibrium, so we use Newton’s first law. The 
ramp exerts a separate force on each of the car’s tires, but for simplicity 
we lump these forces into a single force. For a further simplification, 

we’ll neglect any friction force the ramp exerts on the tires (see 
Fig. 4.2b). Hence the ramp exerts only a force on the car that is per-
pendicular to the ramp. As in Section 4.1, we call this force the normal 
force (see Fig. 4.2a). The two target variables are the magnitude T of the 
tension in the cable and the magnitude n of the normal force.

SET UP Figure 5.4 shows the three forces acting on the car: its weight 
(magnitude w), the tension in the cable (magnitude T), and the normal 
force (magnitude n). Note that the angle a between the ramp and the 


