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9

Thomas’ Calculus: Early Transcendentals, Fourteenth Edition in SI Units, provides a mod-
ern introduction to calculus that focuses on developing conceptual understanding of the 
underlying mathematical ideas. This text supports a calculus sequence typically taken by 
students in STEM fields over several semesters. Intuitive and precise explanations, thought-
fully chosen examples, superior figures, and time-tested exercise sets are the foundation of 
this text. We continue to improve this text in keeping with shifts in both the preparation and 
the goals of today’s students, and in the applications of calculus to a changing world.

Many of today’s students have been exposed to calculus in high school. For some, 
this translates into a successful experience with calculus in college. For others, however, 
the result is an overconfidence in their computational abilities coupled with underlying 
gaps in algebra and trigonometry mastery, as well as poor conceptual understanding. In 
this text, we seek to meet the needs of the increasingly varied population in the calculus 
sequence. We have taken care to provide enough review material (in the text and appen-
dices), detailed solutions, and a variety of examples and exercises, to support a complete 
understanding of calculus for students at varying levels. Within the text, we present the 
material in a way that supports the development of mathematical maturity, going beyond 
memorizing formulas and routine procedures, and we show students how to generalize key 
concepts once they are introduced. References are made throughout, tying new concepts 
to related ones that were studied earlier. After studying calculus from Thomas, students 
will have developed problem-solving and reasoning abilities that will serve them well in 
many important aspects of their lives. Mastering this beautiful and creative subject, with 
its many practical applications across so many fields, is its own reward. But the real gifts 
of studying calculus are acquiring the ability to think logically and precisely; understand-
ing what is defined, what is assumed, and what is deduced; and learning how to generalize 
conceptually. We intend this book to encourage and support those goals.

New to This Edition

We welcome to this edition a new coauthor, Christopher Heil from the Georgia Institute 
of Technology. He has been involved in teaching calculus, linear algebra, analysis, and 
abstract algebra at Georgia Tech since 1993. He is an experienced author and served as a 
consultant on the previous edition of this text. His research is in harmonic analysis, includ-
ing time-frequency analysis, wavelets, and operator theory.

This is a substantial revision. Every word, symbol, and figure was revisited to en-
sure clarity, consistency, and conciseness. Additionally, we made the following text-wide 
updates:

Preface
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10	 Preface

•	 Updated graphics to bring out clear visualization and mathematical correctness.

•	 Added examples (in response to user feedback) to overcome conceptual obstacles. See 
Example 3 in Section 16.1.

•	 Added new types of homework exercises throughout, including many with a geomet-
ric nature. The new exercises are not just more of the same, but rather give different 
perspectives on and approaches to each topic. We also analyzed aggregated student 
usage and performance data from MyLab Math for the previous edition of this text. The 
results of this analysis helped improve the quality and quantity of the exercises.

•	 Added short URLs to historical links that allow students to navigate directly to online 
information.

•	 Added new marginal notes throughout to guide the reader through the process of prob-
lem solution and to emphasize that each step in a mathematical argument is rigorously 
justified.

New to MyLab Math

Many improvements have been made to the overall functionality of MyLab Math since the 
previous edition. Beyond that, we have also increased and improved the content specific 
to this text.

•	 Instructors now have more exercises than ever to choose from in assigning homework. 

•	 The MyLab Math exercise-scoring engine has been updated to allow for more robust 
coverage of certain topics, including differential equations.

•	 A full suite of Interactive Figures have been added to support teaching and learning. 
The figures are designed to be used in lecture, as well as by students independently. 
The figures are editable using the freely available GeoGebra software. The figures were 
created by Marc Renault (Shippensburg University), Kevin Hopkins (Southwest Baptist 
University), Steve Phelps (University of Cincinnati), and Tim Brzezinski (Berlin High 
School, CT).

•	 Enhanced Sample Assignments include just-in-time prerequisite review, help keep 
skills fresh with distributed practice of key concepts (based on research by Jeff Hieb, 
Keith Lyle, and Pat Ralston of University of Louisville), and provide opportunities to 
work exercises without learning aids (to help students develop confidence in their abil-
ity to solve problems independently).

•	 Additional Conceptual Questions augment text exercises to focus on deeper, theoretical 
understanding of the key concepts in calculus. These questions were written by faculty 
at Cornell University under an NSF grant. They are also assignable through Learning 
Catalytics.

•	 Setup & Solve exercises now appear in many sections. These exercises require students 
to show how they set up a problem as well as the solution, better mirroring what is re-
quired of students on tests.

•	 New instructional videos by Greg Wisloski and Dan Radelet (both of Indiana Uni-
versity of PA) augment the already robust collection within the course. These vid-
eos support the overall approach of the text—specifically, they go beyond routine 
procedures to show students how to generalize and connect key concepts.
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	 Preface	 11

Content Enhancements

Chapter 1

•	 Clarified explanation of definition of exponential function 
in 1.4.

•	 Replaced sin- 1 notation for the inverse sine function with 
arcsin as default notation in 1.5, and similarly for other trig 
functions.

•	 Added new Exercises: 1.1: 59–62, 1.2: 21–22; 1.3: 64–65, 
1.5: 61–64, 79cd; PE: 29–32.

Chapter 2

•	 Added definition of average speed in 2.1.

•	 Updated definition of limits to allow for arbitrary domains. 
The definition of  limits is now consistent with the defini-
tion in multivariable domains later in the text and with more 
general mathematical usage.

•	 Reworded limit and continuity definitions to remove impli-
cation symbols and improve comprehension.

•	 Added new Example 7 in 2.4 to illustrate limits of ratios of 
trig functions.

•	 Rewrote 2.6 Example 11 to solve the equation by finding a 
zero, consistent with previous discussion.

•	 Added new Exercises: 2.1: 15–18; 2.2: 3h–k, 4f–I; 2.4: 19–20,  
45–46; 2.5: 69–74; 2.6: 31–32; PE: 57–58; AAE: 35–38.

Chapter 3

•	 Clarified relation of slope and rate of change.

•	 Added new Figure 3.9 using the square root function to il-
lustrate vertical tangent lines.

•	 Added figure of x  sin (1>x) in 3.2 to illustrate how oscilla-
tion can lead to non-existence of a derivative of a continu-
ous function.

•	 Revised product rule to make order of factors consistent 
throughout text, including later dot product and cross prod-
uct formulas.

•	 Added new Exercises: 3.2: 36, 43–44; 3.3: 65–66; 3.5: 43–44,  
61bc; 3.6: 79–80, 111–113; 3.7: 27–28; 3.8: 97–100;  
3.9: 43–46; 3.10: 47; AAE: 14–15, 26–27.

Chapter 4

•	 Added summary to 4.1.

•	 Added new Example 12 with new Figure 4.35 to give basic 
and advanced examples of concavity.

•	 Added new Exercises: 4.1: 53–56, 67–70; 4.3: 45–46,  
67–68; 4.4: 107–112; 4.6: 37–42; 4.7: 7–10; 4.8: 115–118; 
PE: 1–16, 101–102; AAE: 19–20, 38–39. Moved Exercises 
4.1: 53–68 to PE.

Chapter 5

•	 Improved discussion in 5.4 and added new Figure 5.18 to 
illustrate the Mean Value Theorem.

•	 Added new Exercises: 5.2: 33–36; 5.4: 71–72; 5.6: 47–48; 
PE: 43–44, 75–76.

Chapter 6

•	 Clarified cylindrical shell method.

•	 Added introductory discussion of mass distribution along a 
line, with figure, in 6.6.

•	 Added new Exercises: 6.1: 15; 6.2: 49–50; 6.3: 13–14; 6.5: 
1–2; 6.6: 1–6, 21–22; PE: 17–18, 23–24, 37–38.

Chapter 7

•	 Clarified discussion of separable differential equations in 7.2.

•	 Added new Exercises: 7.1: 61–62, 73; PE: 41–42.

Chapter 8

•	 Updated 8.2 Integration by Parts discussion to emphasize 
u(x)v (x) dx form rather than u dv. Rewrote Examples 1–3  
accordingly.

•	 Removed discussion of tabular integration and associated 
exercises.

•	 Updated discussion in 8.5 on how to find constants in Partial 
Fraction method.

•	 Updated notation in 8.8 to align with standard usage in statistics.

•	 Added new Exercises: 8.1: 41–44; 8.2: 53–56, 72–73; 8.3: 
75–76; 8.4: 49–52; 8.5: 51–66, 73–74; 8.8: 35–38, 77–78; 
PE: 69–88.
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12	 Preface

Chapter 9

•	 Clarified the different meaning of a sequence and a series.

•	 Added new Figure 9.9 to illustrate sum of a series as area of 
a histogram.

•	 Added to 9.3 a discussion on the importance of bounding 
errors in approximations.

•	 Added new Figure 9.13 illustrating how to use integrals to 
bound remainder terms of partial sums.

•	 Rewrote Theorem 10 in 9.4 to bring out similarity to the in-
tegral comparison test.

•	 Added new Figure 9.16 to illustrate the differing behaviors 
of the harmonic and alternating harmonic series.

•	 Renamed the nth term test the “nth term test for divergence” 
to emphasize that it says nothing about convergence.

•	 Added new Figure 9.19 to illustrate polynomials converging 
to ln(1 + x), which illustrates convergence on the half-open 
interval (-1, 1].

•	 Used red dots and intervals to indicate intervals and points 
where divergence occurs and blue to indicate convergence 
throughout Chapter 9.

•	 Added new Figure 9.21 to show the six different possibili-
ties for an interval of convergence.

•	 Added new Exercises: 9.1: 27–30, 72–77; 9.2: 19–22, 73–
76, 105; 9.3: 11–12, 39–42; 9.4: 55–56; 9.5: 45–46, 65–66; 
9.6: 57–82; 9.7: 61–65; 9.8: 23–24, 39–40; 9.9: 11–12,  
37–38; PE: 41–44, 97–102.

Chapter 10

•	 Added new Example 1 and Figure 10.2 in 10.1 to give a 
straightforward first example of a parametrized curve.

•	 Updated area formulas for polar coordinates to include  
conditions for positive r and non-overlapping u.

•	 Added new Example 3 and Figure 10.37 in 10.4 to illustrate 
intersections of polar curves.

•	 Added new Exercises: 10.1: 19–28; 10.2: 49–50; 10.4: 21–24.

Chapter 11

•	 Added new Figure 11.13(b) to show the effect of scaling a 
vector.

•	 Added new Example 7 and Figure 11.26 in 11.3 to illustrate 
projection of a vector.

•	 Added discussion on general quadric surfaces in 11.6, 
with new Example 4 and new Figure 11.48 illustrating the 
description of an ellipsoid not centered at the origin via 
completing the square.

•	 Added new Exercises: 11.1: 31–34, 59–60, 73–76; 11.2: 
43–44; 11.3: 17–18; 11.4: 51–57; 11.5: 49–52.

Chapter 12

•	 Added sidebars on how to pronounce Greek letters such as 
kappa, tau, etc.

•	 Added new Exercises: 12.1: 1–4, 27–36; 12.2: 15–16, 
19–20; 12.4: 27–28; 12.6: 1–2.

Chapter 13

•	 Elaborated on discussion of open and closed regions in 13.1.

•	 Standardized notation for evaluating partial derivatives, gra-
dients, and directional derivatives at a point, throughout the 
chapter.

•	 Renamed “branch diagrams” as “dependency diagrams” 
which clarifies that they capture dependence of variables.

•	 Added new Exercises: 13.2: 51–54; 13.3: 51–54, 59–60, 
71–74, 103–104; 13.4: 20–30, 43–46, 57–58; 13.5: 41–44; 
13.6: 9–10, 61; 13.7: 61–62.

Chapter 14

•	 Added new Figure 14.21b to illustrate setting up limits of a 
double integral.

•	 Added new 14.5 Example 1, modified Examples 2 and 3, and 
added new Figures 14.31, 14.32, and 14.33 to give basic ex-
amples of setting up limits of integration for a triple integral.

•	 Added new material on joint probability distributions as an 
application of multivariable integration.

•	 Added new Examples 5, 6 and 7 to Section 14.6.

•	 Added new Exercises: 14.1: 15–16, 27–28; 14.6: 39–44; 
14.7: 1–22.

Chapter 15

•	 Added new Figure 15.4 to illustrate a line integral of a  
function.

•	 Added new Figure 15.17 to illustrate a gradient field.

•	 Added new Figure 15.19 to illustrate a line integral of a  
vector field.

•	 Clarified notation for line integrals in 15.2.

•	 Added discussion of the sign of potential energy in 15.3.

•	 Rewrote solution of Example 3 in 15.4 to clarify connection 
to Green’s Theorem.

•	 Updated discussion of surface orientation in 15.6 along with 
Figure 15.52.

•	 Added new Exercises: 15.2: 37–38, 41–46; 15.4: 1–6; 15.6: 
49–50; 15.7: 1–6; 15.8: 1–4.
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Chapter 16

•	 Added new Example 3 with Figure 16.3 to illustrate how to 
construct a slope field.

•	 Added new Exercises: 16.1: 11–14; PE: 17–22, 43–44.

Appendices:  Rewrote Appendix 8 on complex numbers. Shortened 
Appendix 2 to focus on issues arising in use of mathematical 
software and potential pitfalls.
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Continuing Features

Rigor  The level of rigor is consistent with that of earlier editions. We continue to distin-
guish between formal and informal discussions and to point out their differences. Starting 
with a more intuitive, less formal approach helps students understand a new or difficult 
concept so they can then appreciate its full mathematical precision and outcomes. We pay 
attention to defining ideas carefully and to proving theorems appropriate for calculus stu-
dents, while mentioning deeper or subtler issues they would study in a more advanced 
course. Our organization and distinctions between informal and formal discussions give 
the instructor a degree of flexibility in the amount and depth of coverage of the various 
topics. For example, while we do not prove the Intermediate Value Theorem or the Ex-
treme Value Theorem for continuous functions on a closed finite interval, we do state these 
theorems precisely, illustrate their meanings in numerous examples, and use them to prove 
other important results. Furthermore, for those instructors who desire greater depth of cov-
erage, in Appendix 7 we discuss the reliance of these theorems on the completeness of 
the real numbers.

Writing Exercises  Writing exercises placed throughout the text ask students to explore 
and explain a variety of calculus concepts and applications. In addition, the end of each 
chapter contains a list of questions for students to review and summarize what they have 
learned. Many of these exercises make good writing assignments.

End-of-Chapter Reviews and Projects  In addition to problems appearing after each 
section, each chapter culminates with review questions, practice exercises covering the 
entire chapter, and a series of Additional and Advanced Exercises with more challenging 
or synthesizing problems. Most chapters also include descriptions of several Technology  
Application Projects that can be worked by individual students or groups of students over 
a longer period of time. These projects require the use of Mathematica or Maple, along 
with pre-made files that are available for download within MyLab Math.

Writing and Applications  This text continues to be easy to read, conversational, and 
mathematically rich. Each new topic is motivated by clear, easy-to-understand examples 
and is then reinforced by its application to real-world problems of immediate interest to 
students. A hallmark of this book has been the application of calculus to science and engi-
neering. These applied problems have been updated, improved, and extended continually 
over the last several editions.

Technology  In a course using the text, technology can be incorporated according to 
the taste of the instructor. Each section contains exercises requiring the use of technology; 
these are marked with a T if suitable for calculator or computer use, or they are labeled  
Computer Explorations if a computer algebra system (CAS, such as Maple or Math-
ematica) is required.

Additional Resources

MyLab Math® Online Course (access code required)

Built around Pearson’s best-selling content, MyLab Math is an online homework, tutorial, 
and assessment program designed to work with this text to engage students and improve 
results. MyLab Math can be successfully implemented in any classroom environment—
lab-based, hybrid, fully online, or traditional.
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Used by more than 37 million students worldwide, MyLab Math delivers consistent, 
measurable gains in student learning outcomes, retention, and subsequent course success. 
Visit www.mymathlab.com/results to learn more.

Motivation  Students are motivated to succeed when they’re engaged in the learning ex-
perience and understand the relevance and power of mathematics. MyLab Math’s online 
homework offers students immediate feedback and tutorial assistance that motivates them 
to do more, which means they retain more knowledge and improve their test scores.

•	 Exercises with immediate feedback—assignable exercises for this text regener-
ate algorithmically to give students unlimited opportunity for practice and mastery. 
MyLab Math provides helpful feedback when students enter incorrect answers and 
includes optional learning aids such as Help Me Solve This, View an Example, videos, 
and an eText.

•	 Setup and Solve Exercises ask students to first describe how they will set up and ap-
proach the problem. This reinforces students’ conceptual understanding of the process 
they are applying and promotes long-term retention of the skill. 
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•	 Additional Conceptual Questions focus on deeper, theoretical understanding of the 
key concepts in calculus. These questions were written by faculty at Cornell University 
under an NSF grant and are also assignable through Learning Catalytics.

Learning and Teaching Tools

•	 Interactive Figures bring calculus concepts to life, helping you understand key ideas 
by working with their visual representations. They illustrate key concepts and allow 
manipulation for use as teaching and learning tools. We also include videos that use the 
Interactive Figures to explain key concepts.

•	 Learning Catalytics™ is a student response tool that uses students’ smartphones, tab-
lets, or laptops to engage them in more interactive tasks and thinking during lecture. 
Learning Catalytics fosters student engagement and peer-to-peer learning with real-
time analytics. Learning Catalytics is available to all MyLab Math users.
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•	 Instructional videos—Hundreds of videos are available as learning aids within exer-
cises and for self-study. The tutorial videos cover key concepts from your text and are 
especially handy if you miss a lecture or just need another explanation. The Guide to 
Video-Based Assignments makes it easy to assign videos for homework by showing 
which MyLab Math exercises correspond to each video.

•	 The complete eText is available to students through their MyLab Math courses for the 
lifetime of the edition, giving students unlimited access to the eText within any course 
using that edition of the text.

•	 Enhanced Sample Assignments These assignments include just-in-time prerequisite 
review, help keep skills fresh with distributed practice of key concepts, and provide oppor-
tunities to work exercises without learning aids so students can check their understanding.

•	 PowerPoint Presentations that cover each section of the book are available for down-
load.

•	 Mathematica manual and projects, Maple manual and projects, TI Graphing Cal-
culator manual—These manuals cover Maple 17, Mathematica 8, and the TI-84 Plus 
and TI-89, respectively. Each provides detailed guidance for integrating the software 
package or graphing calculator throughout the course, including syntax and commands.

•	 Accessibility and achievement go hand in hand. MyLab Math is compatible with the 
JAWS screen reader, and it enables students to read and interact with multiple-choice 
and free-response problem types via keyboard controls and math notation input. MyLab 
Math also works with screen enlargers, including ZoomText, MAGic, and SuperNova. 
And, all MyLab Math videos have closed-captioning. More information is available at 
http://mymathlab.com/accessibility.

•	 A comprehensive gradebook with enhanced reporting functionality allows you to 
efficiently manage your course.

•	 The Reporting Dashboard offers insight as you view, analyze, and report learning 
outcomes. Student performance data is presented at the class, section, and program 
levels in an accessible, visual manner so you’ll have the information you need to 
keep your students on track.
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•	 Item Analysis tracks class-wide understanding of particular exercises so you can 
refine your class lectures or adjust the course/department syllabus. Just-in-time 
teaching has never been easier!

MyLab Math comes from an experienced partner with educational expertise and an eye 
on the future. Whether you are just getting started with MyLab Math, or have a question 
along the way, we’re here to help you learn about our technologies and how to incorporate 
them into your course. To learn more about how MyLab Math helps students succeed, visit 
www.mymathlab.com or contact your Pearson rep.

Instructor’s Solutions Manual (downloadable)
ISBN: 1-29-225314-2 | 978-1-29-225314-5

The Instructor’s Solutions Manual contains complete worked-out solutions to all the ex-
ercises in Thomas’ Calculus: Early Transcendentals. It can be downloaded from within 
MyLab Math or the Pearson Instructor Resource Center, www.pearsonglobaleditions.com.

Student’s Solutions Manual
ISBN: 1-292-25319-3 | 978-1-292-25319-0

The Student’s Solutions Manual contains worked-out solutions to all the odd-numbered 
exercises in Thomas’ Calculus: Early Transcendentals. These manuals can be downloaded 
from within MyLab Math.

Just-In-Time Algebra and Trigonometry for Early 
Transcendentals Calculus, Fourth Edition
ISBN 0-321-67103-1 | 978-0-321-67103-5

Sharp algebra and trigonometry skills are critical to mastering calculus, and Just-in-Time 
Algebra and Trigonometry for Early Transcendentals Calculus by Guntram Mueller and 
Ronald I. Brent is designed to bolster these skills while students study calculus. As stu-
dents make their way through calculus, this brief supplementary text is with them every 
step of the way, showing them the necessary algebra or trigonometry topics and pointing 
out potential problem spots. The easy-to-use table of contents has topics arranged in the 
order in which students will need them as they study calculus.

Companion Website

The companion Website, located at www.pearsonglobaleditions.com, includes opportuni-
ties for practice and review.
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OVERVIEW  Functions are fundamental to the study of calculus. In this chapter we review 
what functions are and how they are visualized as graphs, how they are combined and 
transformed, and ways they can be classified.

1.1	 Functions and Their Graphs

Functions are a tool for describing the real world in mathematical terms. A function can be 
represented by an equation, a graph, a numerical table, or a verbal description; we will use 
all four representations throughout this book. This section reviews these ideas.

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level. The inter-
est paid on a cash investment depends on the length of time the investment is held. The 
area of a circle depends on the radius of the circle. The distance an object travels depends 
on the elapsed time.

In each case, the value of one variable quantity, say y, depends on the value of another 
variable quantity, which we often call x. We say that “y is a function of x” and write this 
symbolically as

y = ƒ(x)  (“y equals ƒ of x”).

The symbol ƒ represents the function, the letter x is the independent variable represent-
ing the input value to ƒ, and y is the dependent variable or output value of ƒ at x.

Functions

1

DEFINITION  A function ƒ from a set D to a set Y is a rule that assigns a unique 
value ƒ(x) in Y  to each x in D.

The set D of all possible input values is called the domain of the function. The set of 
all output values of ƒ(x) as x varies throughout D is called the range of the function. The 
range might not include every element in the set Y. The domain and range of a function 
can be any sets of objects, but often in calculus they are sets of real numbers interpreted as 
points of a coordinate line. (In Chapters 12–15, we will encounter functions for which the 
elements of the sets are points in the plane, or in space.)

Often a function is given by a formula that describes how to calculate the output value 
from the input variable. For instance, the equation A = pr2 is a rule that calculates the 
area A of a circle from its radius r. When we define a function y = ƒ(x) with a formula 
and the domain is not stated explicitly or restricted by context, the domain is assumed to 
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22	 Chapter 1  Functions

be the largest set of real x-values for which the formula gives real y-values. This is called 
the natural domain of ƒ. If we want to restrict the domain in some way, we must say so. 
The domain of y = x2 is the entire set of real numbers. To restrict the domain of the func-
tion to, say, positive values of x, we would write “y = x2, x 7 0.”

Changing the domain to which we apply a formula usually changes the range as well. 
The range of y = x2 is [0, q). The range of y = x2, x Ú 2, is the set of all numbers 
obtained by squaring numbers greater than or equal to 2. In set notation (see Appendix 1), 
the range is 5x2 � x Ú 26  or 5y � y Ú 46  or 34, q).

When the range of a function is a set of real numbers, the function is said to be real-
valued. The domains and ranges of most real-valued functions we consider are intervals or 
combinations of intervals. Sometimes the range of a function is not easy to find.

A function ƒ is like a machine that produces an output value ƒ(x) in its range whenever 
we feed it an input value x from its domain (Figure 1.1). The function keys on a calculator 
give an example of a function as a machine. For instance, the 2x key on a calculator gives 
an output value (the square root) whenever you enter a nonnegative number x and press the 2x key.

A function can also be pictured as an arrow diagram (Figure 1.2). Each arrow associ-
ates to an element of the domain D a single element in the set Y. In Figure 1.2, the arrows 
indicate that ƒ(a) is associated with a, ƒ(x) is associated with x, and so on. Notice that a func-
tion can have the same output value for two different input elements in the domain (as occurs 
with ƒ(a) in Figure 1.2), but each input element x is assigned a single output value ƒ(x).

EXAMPLE  1    Verify the natural domains and associated ranges of some simple func-
tions. The domains in each case are the values of x for which the formula makes sense.

Function Domain (x) Range (y)

y = x2 (-q, q) 30, q)

y = 1>x (-q, 0) ∪ (0, q) (-q, 0) ∪ (0, q)

y = 2x 30, q) 30, q)

y = 24 - x (-q, 44 30, q)

y = 21 - x2 3-1, 14 30, 14

Solution  The formula y = x2 gives a real y-value for any real number x, so the domain 
is (-q, q). The range of y = x2 is 30, q) because the square of any real number is non-
negative and every nonnegative number y is the square of its own square root: y = 12y22 
for y Ú 0.

The formula y = 1>x gives a real y-value for every x except x = 0. For consistency 
in the rules of arithmetic, we cannot divide any number by zero. The range of y = 1>x, the 
set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since 
y = 1>(1>y). That is, for y ≠ 0 the number x = 1>y is the input that is assigned to the 
output value y.

The formula y = 2x gives a real y-value only if x Ú 0. The range of y = 2x is 
30, q) because every nonnegative number is some number’s square root (namely, it is the 
square root of its own square).

In y = 24 - x , the quantity 4 - x cannot be negative. That is, 4 - x Ú 0,  
or x … 4. The formula gives nonnegative real y-values for all x … 4. The range of 24 - x 
is 30, q), the set of all nonnegative numbers.

The formula y = 21 - x2 gives a real y-value for every x in the closed interval from 
-1 to 1. Outside this domain, 1 - x2 is negative and its square root is not a real number. 
The values of 1 - x2 vary from 0 to 1 on the given domain, and the square roots of these 
values do the same. The range of 21 - x2 is 30, 14 .�

Input
(domain)

Output
(range)

x f(x)f

FIGURE 1.1  A diagram showing a func-
tion as a kind of machine.

x

a f (a) f (x)

D = domain set Y = set containing
the range

FIGURE 1.2  A function from a set D  
to a set Y assigns a unique element of Y  
to each element in D.
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Graphs of Functions

If ƒ is a function with domain D, its graph consists of the points in the Cartesian plane 
whose coordinates are the input-output pairs for ƒ. In set notation, the graph is

5(x, ƒ(x)) �  x∊D6 .

The graph of the function ƒ(x) = x + 2 is the set of points with coordinates (x, y) for 
which y = x + 2. Its graph is the straight line sketched in Figure 1.3.

The graph of a function ƒ is a useful picture of its behavior. If (x, y) is a point on the 
graph, then y = ƒ(x) is the height of the graph above (or below) the point x. The height 
may be positive or negative, depending on the sign of ƒ(x) (Figure 1.4).

x

y

- 2 0

2

y  = x + 2

FIGURE 1.3  The graph of ƒ(x) = x + 2 
is the set of points (x, y) for which y has the 
value x + 2.

y

x
0 1 2

x

f (x)

(x, y)

f (1)

f (2)

FIGURE 1.4  If (x, y) lies on the graph 
of ƒ, then the value y = ƒ(x) is the height 
of the graph above the point x (or below x 
if ƒ(x) is negative).

  x y = x2

-2      4

-1      1

   0      0

   1      1

   32     
9
4

   2      4 EXAMPLE  2    Graph the function y = x2 over the interval 3-2, 24 .

Solution  Make a table of xy-pairs that satisfy the equation y = x2. Plot the points (x, y) 
whose coordinates appear in the table, and draw a smooth curve (labeled with its equation) 
through the plotted points (see Figure 1.5).�

How do we know that the graph of y = x2 doesn’t look like one of these curves?

0 1 2- 1- 2

1

2

3

4
(- 2, 4)

(- 1, 1) (1, 1)

(2, 4)

3
2

9
4

,

x

y

y = x2

a   b

FIGURE 1.5  Graph of the function  
in Example 2.

y = x2?

x

y

y = x2?

x

y

To find out, we could plot more points. But how would we then connect them? The basic 
question still remains: How do we know for sure what the graph looks like between the 
points we plot? Calculus answers this question, as we will see in Chapter 4. Meanwhile, 
we will have to settle for plotting points and connecting them as best we can.
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Representing a Function Numerically

We have seen how a function may be represented algebraically by a formula and visually 
by a graph (Example 2). Another way to represent a function is numerically, through a 
table of values. Numerical representations are often used by engineers and experimental 
scientists. From an appropriate table of values, a graph of the function can be obtained 
using the method illustrated in Example 2, possibly with the aid of a computer. The graph 
consisting of only the points in the table is called a scatterplot.

EXAMPLE  3    Musical notes are pressure waves in the air. The data associated with 
Figure 1.6 give recorded pressure displacement versus time in seconds of a musical note 
produced by a tuning fork. The table provides a representation of the pressure function (in 
micropascals) over time. If we first make a scatterplot and then connect the data points 
(t, p) from the table, we obtain the graph shown in the figure.

Time Pressure Time Pressure

0.00091 -0.080 0.00362 0.217

0.00108 0.200 0.00379 0.480

0.00125 0.480 0.00398 0.681

0.00144 0.693 0.00416 0.810

0.00162 0.816 0.00435 0.827

0.00180 0.844 0.00453 0.749

0.00198 0.771 0.00471 0.581

0.00216 0.603 0.00489 0.346

0.00234 0.368 0.00507 0.077

0.00253 0.099 0.00525 -0.164

0.00271 -0.141 0.00543 -0.320

0.00289 -0.309 0.00562 -0.354

0.00307 -0.348 0.00579 -0.248

0.00325 -0.248 0.00598 -0.035

0.00344 -0.041
�

The Vertical Line Test for a Function

Not every curve in the coordinate plane can be the graph of a function. A function ƒ can 
have only one value ƒ(x) for each x in its domain, so no vertical line can intersect the 
graph of a function more than once. If a is in the domain of the function ƒ, then the vertical 
line x = a will intersect the graph of ƒ at the single point (a, ƒ(a)).

A circle cannot be the graph of a function, since some vertical lines intersect the circle 
twice. The circle graphed in Figure 1.7a, however, contains the graphs of two functions of 
x, namely the upper semicircle defined by the function ƒ(x) = 21 - x2 and the lower 
semicircle defined by the function g (x) = - 21 - x2 (Figures 1.7b and 1.7c).

Piecewise-Defined Functions

Sometimes a function is described in pieces by using different formulas on different parts 
of its domain. One example is the absolute value function

	 0 x 0 = e x,
-x,

     
x Ú 0
x 6 0

	

−0.4
−0.2

0.2
0.4
0.6
0.8
1.0

−0.6

t (s)

p (pressure mPa)

0.001 0.002 0.004 0.0060.003 0.005

Data

FIGURE 1.6  A smooth curve through the plotted points 
gives a graph of the pressure function represented by the  
accompanying tabled data (Example 3).

First formula

Second formula
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whose graph is given in Figure 1.8. The right-hand side of the equation means that the 
function equals x if x Ú 0, and equals -x if x 6 0. Piecewise-defined functions often 
arise when real-world data are modeled. Here are some other examples.

EXAMPLE  4    The function

ƒ(x) = c -x, x 6 0
  x2, 0 … x … 1
  1, x 7 1

- 1 10
x

y

(a) x2 + y2 = 1

- 1 10
x

y

- 1 1

0
x

y

(b) y = "1 - x2 (c) y = - "1 - x2

FIGURE 1.7  (a) The circle is not the graph of a function; it fails the vertical line test. (b) The up-
per semicircle is the graph of the function ƒ(x) = 21 - x2. (c) The lower semicircle is the graph 
of the function g (x) = - 21 - x2.

x

y = 0 x 0

y = x
y = - x

y

- 3 - 2 - 1 0 1 2 3

1

2

3

FIGURE 1.8  The absolute value  
function has domain (-q, q) and  
range 30, q).

First formula

Second formula

Third formula

is defined on the entire real line but has values given by different formulas, depending on 
the position of x. The values of ƒ are given by y = -x when x 6 0, y = x2 when 
0 … x … 1, and y = 1 when x 7 1. The function, however, is just one function whose 
domain is the entire set of real numbers (Figure 1.9).�

EXAMPLE  5    The function whose value at any number x is the greatest integer less 
than or equal to x is called the greatest integer function or the integer floor function. It 
is denoted :x; . Figure 1.10 shows the graph. Observe that

	
:2.4; = 2, :1.9; = 1, :0; = 0, :-1.2; = -2,
:2; = 2, :0.2; = 0, :-0.3; = -1, :-2; = -2.

	

EXAMPLE  6    The function whose value at any number x is the smallest integer 
greater than or equal to x is called the least integer function or the integer ceiling func-
tion. It is denoted <x= . Figure 1.11 shows the graph. For positive values of x, this function 
might represent, for example, the cost of parking x hours in a parking lot that charges $1 
for each hour or part of an hour.�

Increasing and Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the 
function is increasing. If the graph descends or falls as you move from left to right, the 
function is decreasing.

- 2 - 1 0 1 2

1

2

x

y

y = - x

y = x2

y = 1

y = f (x)

FIGURE 1.9  To graph the function 
y = ƒ(x) shown here, we apply different 
formulas to different parts of its domain 
(Example 4).

1

- 2

2

3

- 2 - 1 1 2 3

y = x

y = :x;

x

y

FIGURE 1.10  The graph of the greatest 
integer function y = :x;  lies on or below 
the line y = x, so it provides an integer 
floor for x (Example 5).

DEFINITIONS  Let ƒ be a function defined on an interval I and let x1 and x2 be 
two distinct points in I.

1.	 If ƒ(x2) 7 ƒ(x1) whenever x1 6 x2, then ƒ is said to be increasing on I.

2.	 If ƒ(x2) 6 ƒ(x1) whenever x1 6 x2, then ƒ is said to be decreasing on I.
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It is important to realize that the definitions of increasing and decreasing functions 
must be satisfied for every pair of points x1 and x2 in I with x1 6 x2. Because we use the 
inequality 6 to compare the function values, instead of … , it is sometimes said that ƒ is 
strictly increasing or decreasing on I. The interval I may be finite (also called bounded) or 
infinite (unbounded).

EXAMPLE  7    The function graphed in Figure 1.9 is decreasing on (-q, 0) and 
increasing on (0, 1). The function is neither increasing nor decreasing on the interval 
(1, q) because the function is constant on that interval, and hence the strict inequalities in 
the definition of increasing or decreasing are not satisfied on (1, q).�

Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have special symmetry properties.

x

y

1- 1- 2 2 3

- 2

- 1

1

2

3
y = x

y = <x=

FIGURE 1.11  The graph of the least 
integer function y = <x=  lies on or above 
the line y = x, so it provides an integer 
ceiling for x (Example 6).

DEFINITIONS  A function y = ƒ(x) is an

even function of x if ƒ(-x) = ƒ(x),
odd function of x if ƒ(-x) = -ƒ(x),

for every x in the function’s domain.

The names even and odd come from powers of x. If y is an even power of x, as in 
y = x2 or y = x4, it is an even function of x because (-x)2 = x2 and (-x)4 = x4. If y is an 
odd power of x, as in y = x or y = x3, it is an odd function of x because (-x)1 = -x and 
(-x)3 = -x3.

The graph of an even function is symmetric about the y-axis. Since ƒ(-x) = ƒ(x), a 
point (x, y) lies on the graph if and only if the point (-x, y) lies on the graph (Figure 1.12a). 
A reflection across the y-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since ƒ(-x) = -ƒ(x), 
a point (x, y) lies on the graph if and only if the point (-x, -y) lies on the graph (Figure 1.12b). 
Equivalently, a graph is symmetric about the origin if a rotation of 180° about the origin 
leaves the graph unchanged. Notice that the definitions imply that both x and -x must be 
in the domain of ƒ.

EXAMPLE  8    Here are several functions illustrating the definitions.

ƒ(x) = x2	� Even function: (-x)2 = x2 for all x; symmetry about y-axis. So 
ƒ(-3) = 9 = ƒ(3). Changing the sign of x does not change the 
value of an even function.

ƒ(x) = x2 + 1	� Even function: (-x)2 + 1 = x2 + 1 for all x; symmetry about 
y-axis (Figure 1.13a).

ƒ(x) = x	� Odd function: (-x) = -x for all x; symmetry about the origin. So 
ƒ(-3) = -3 while ƒ(3) = 3. Changing the sign of x changes the 
sign of an odd function.

ƒ(x) = x + 1	� Not odd: ƒ(-x) = -x + 1, but -ƒ(x) = -x - 1. The two are not 
equal.

	 Not even: (-x) + 1 ≠ x + 1 for all x ≠ 0 (Figure 1.13b).�

(a)

(b)

0
x

y

y = x2

(x, y)(- x, y)

0
x

y

y = x3

(x, y)

(- x, - y)

FIGURE 1.12  (a) The graph of y = x2 
(an even function) is symmetric about the 
y-axis. (b) The graph of y = x3 (an odd 
function) is symmetric about the origin.
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Common Functions

A variety of important types of functions are frequently encountered in calculus.

Linear Functions  A function of the form ƒ(x) = mx + b, where m and b are fixed con-
stants, is called a linear function. Figure 1.14a shows an array of lines ƒ(x) = mx. Each 
of these has b = 0, so these lines pass through the origin. The function ƒ(x) = x where 
m = 1 and b = 0 is called the identity function. Constant functions result when the 
slope is m = 0 (Figure 1.14b). 

(a) (b)

x

y

0

1

y = x2 + 1

y = x2

x

y

0- 1

1

y = x + 1

y = x

FIGURE 1.13  (a) When we add the constant term 1 to the function 
y = x2, the resulting function y = x2 + 1 is still even and its graph is 
still symmetric about the y-axis. (b) When we add the constant term 1 to 
the function y = x, the resulting function y = x + 1 is no longer odd, 
since the symmetry about the origin is lost. The function y = x + 1 is 
also not even (Example 8).

0 x

y
m = - 3 m = 2

m = 1m = - 1

y = - 3x

y = - x

y = 2x

y = x

y = x1
2

m = 1
2

(a)            

x

y

0 1 2

1

2 y = 3
2

(b)

FIGURE 1.14  (a) Lines through the origin with slope m. (b) A constant func-
tion with slope m = 0.

If the variable y is proportional to the reciprocal 1>x, then sometimes it is said that y is 
inversely proportional to x (because 1>x is the multiplicative inverse of x).

Power Functions  A function ƒ(x) = xa, where a is a constant, is called a power function. 
There are several important cases to consider.

DEFINITION  Two variables y and x are proportional (to one another) if one 
is always a constant multiple of the other—that is, if y = kx for some nonzero 
constant k.
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28	 Chapter 1  Functions

(a)	 ƒ(x) = x a with a = n,  a positive integer.

The graphs of ƒ(x) = xn, for n = 1, 2, 3, 4, 5, are displayed in Figure 1.15. These func-
tions are defined for all real values of x. Notice that as the power n gets larger, the curves 
tend to flatten toward the x-axis on the interval (-1, 1) and to rise more steeply for 
0 x 0 7 1. Each curve passes through the point (1, 1) and through the origin. The graphs of 
functions with even powers are symmetric about the y-axis; those with odd powers are 
symmetric about the origin. The even-powered functions are decreasing on the interval 
(-q, 04  and increasing on 30, q); the odd-powered functions are increasing over the 
entire real line (-q, q).

- 1 0 1

- 1

1

x

y y = x2

- 1 10

- 1

1

x

y y = x

- 1 10

- 1

1

x

y y = x3

- 1 0 1

- 1

1

x

y y = x4

- 1 0 1

- 1

1

x

y y = x5

FIGURE 1.15  Graphs of ƒ(x) = xn, n = 1, 2, 3, 4, 5, defined for -q 6 x 6 q.

(b)	 ƒ(x) = x a with a = -1  or  a = -2.

The graphs of the functions ƒ(x) = x-1 = 1>x and g(x) = x-2 = 1>x2 are shown in Fig-
ure 1.16. Both functions are defined for all x ≠ 0 (you can never divide by zero). The 
graph of y = 1>x is the hyperbola xy = 1, which approaches the coordinate axes far from 
the origin. The graph of y = 1>x2 also approaches the coordinate axes. The graph of the 
function ƒ is symmetric about the origin; ƒ is decreasing on the intervals (-q, 0) and 
(0, q). The graph of the function g is symmetric about the y-axis; g is increasing on 
(-q, 0) and decreasing on (0, q).

x

y

x

y

0

1

1

0

1

1

y = 1
x y = 1

x2

Domain: x Z 0
Range:   y Z 0

Domain: x Z 0
Range:   y 7 0

(a) (b)

FIGURE 1.16  Graphs of the power functions ƒ(x) = xa. (a) a = -1,  
(b) a = -2.

(c)	 a = 1
2,  13 ,  32 ,  and 23.

The functions ƒ(x) = x1>2 = 2x and g(x) = x1>3 = 23 x are the square root and cube 
root functions, respectively. The domain of the square root function is 30, q), but the 
cube root function is defined for all real x. Their graphs are displayed in Figure 1.17, along 
with the graphs of y = x3>2 and y = x2>3. (Recall that x3>2 = (x1>2)3 and x2>3 = (x1>3)2.)

Polynomials  A function p is a polynomial if

p(x) = an xn + an - 1xn - 1 + g+  a1 x + a0

where n is a nonnegative integer and the numbers a0, a1, a2, c, an are real constants 
(called the coefficients of the polynomial). All polynomials have domain (-q, q). If the 
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leading coefficient an ≠ 0, then n is called the degree of the polynomial. Linear functions 
with m ≠ 0 are polynomials of degree 1. Polynomials of degree 2, usually written as 
p(x) = ax2 + bx + c, are called quadratic functions. Likewise, cubic functions are 
polynomials p(x) = ax3 + bx2 + cx + d  of degree 3. Figure 1.18 shows the graphs of 
three polynomials. Techniques to graph polynomials are studied in Chapter 4.

y

x
0

1

1

y = x3>2

Domain:
Range:

0 … x 6 q
0 … y 6 q

y

x

Domain:
Range:

- q 6 x 6 q
0 … y 6 q 

0

1

1

y = x2>3

x

y

0 1

1

Domain:
Range:

0 … x 6 q 
0 … y 6 q

y =  !x

x

y

Domain:
Range:

- q 6 x 6 q
- q 6 y 6 q

1

1

0

3
y =  !x

FIGURE 1.17  Graphs of the power functions ƒ(x) = xa for a = 1
2

,  
1
3

,  
3
2

,  and 
2
3

.

x

y

0

y =  -      -  2x + x3

3
x2

2
1
3

(a)

y

x
- 1 1 2

2

- 2
- 4
- 6
- 8

- 10

- 12

y =  8x4 - 14x3 - 9x2 + 11x - 1

(b)

- 1 0 1 2

- 16

16

x

y
y =  (x - 2)4(x + 1)3(x - 1)

(c)

- 2- 4 2 4

- 4

- 2

2

4

FIGURE 1.18  Graphs of three polynomial functions.

Rational Functions  A rational function is a quotient or ratio ƒ(x) = p(x)>q(x), where 
p and q are polynomials. The domain of a rational function is the set of all real x for which 
q(x) ≠ 0. The graphs of several rational functions are shown in Figure 1.19.

(a) (b) (c)

2 4- 4 - 2

- 2

2

4

- 4

x

y

y = 2x2 - 3
7x +  4

0
- 2

- 4

- 6

- 8

2- 2- 4 4 6

2

4

6

8

x

y

y = 11x +  2
2x3 -  1

- 5 0

1

2

- 1
5 10

- 2

x

y

Line y = 5
3

y = 5x2 +  8x -  3
3x2 +  2

NOT TO SCALE

FIGURE 1.19  Graphs of three rational functions. The straight red lines approached by the graphs are called 
asymptotes and are not part of the graphs. We discuss asymptotes in Section 2.5.
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30	 Chapter 1  Functions

Algebraic Functions  Any function constructed from polynomials using algebraic oper-
ations (addition, subtraction, multiplication, division, and taking roots) lies within the 
class of algebraic functions. All rational functions are algebraic, but also included are 
more complicated functions (such as those satisfying an equation like y3 - 9xy + x3 = 0, 
studied in Section 3.7). Figure 1.20 displays the graphs of three algebraic functions.

(a)

4-1

-3

-2

-1

1

2

3

4

x

y y = x1>3(x - 4)

(b)

0

y

x

y = (x2 - 1)2>33
4

(c)

11-1 0

-1

1

x

y

5
7

y = x(1 - x)2>5

FIGURE 1.20  Graphs of three algebraic functions.

Trigonometric Functions  The six basic trigonometric functions are reviewed in 
Section 1.3. The graphs of the sine and cosine functions are shown in Figure 1.21.

Exponential Functions  A function of the form ƒ(x) = ax, where a 7 0 and a ≠ 1, is 
called an exponential function (with base a). All exponential functions have domain 
(-q, q) and range (0, q), so an exponential function never assumes the value 0. We dis-
cuss exponential functions in Section 1.4. The graphs of some exponential functions are 
shown in Figure 1.22.

y

x

1

- 1
p 2p

3p

(a)  f (x) = sin x

0

y

x

1

- 1
p

2

3
2 2

(b)  f (x) = cos x

0

p

2
- p

- p

5p

FIGURE 1.21  Graphs of the sine and cosine functions.

(a) (b)

y = 2-x

y = 3-x

y = 10-x

- 0.5- 1 0 0.5 1

2

4

6

8

10

12

y

x
y = 2x

y = 3x

y = 10x

- 0.5- 1 0 0.5 1

2

4

6

8

10

12

y

x

FIGURE 1.22  Graphs of exponential functions.
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Logarithmic Functions  These are the functions ƒ(x) = loga x, where the base a ≠ 1 
is a positive constant. They are the inverse functions of the exponential functions, and 
we discuss these functions in Section 1.5. Figure 1.23 shows the graphs of four logarith-
mic functions with various bases. In each case the domain is (0, q) and the range is 
(-q, q).

1

- 1

1

0
x

y

y = log3x

y = log10 x

y = log2 x

y = log5x

FIGURE 1.23  Graphs of four loga-
rithmic functions.

- 1 10

1

x

y

FIGURE 1.24  Graph of a catenary or 
hanging cable. (The Latin word catena 
means “chain.”)

Transcendental Functions  These are functions that are not algebraic. They include the 
trigonometric, inverse trigonometric, exponential, and logarithmic functions, and many 
other functions as well. The catenary is one example of a transcendental function. Its graph 
has the shape of a cable, like a telephone line or electric cable, strung from one support to 
another and hanging freely under its own weight (Figure 1.24). The function defining the 
graph is discussed in Section 7.3.

Functions
In Exercises 1–6, find the domain and range of each function.

	 1.	 ƒ(x) = 1 + x2	 2.	 ƒ(x) = 1 - 2x

	 3.	 F(x) = 25x + 10	 4.	 g(x) = 2x2 - 3x

	 5.	 ƒ(t) = 4
3 - t

	 6.	 G(t) = 2
t2 - 16

In Exercises 7 and 8, which of the graphs are graphs of functions of x, 
and which are not? Give reasons for your answers.

	 7.	 a. 

x

y

0

		  b. 

x

y

0

	 8.	 a. 

x

y

0

		  b. 

x

y

0

Finding Formulas for Functions

	 9.	 Express the area and perimeter of an equilateral triangle as a 
function of the triangle’s side length x.

	10.	 Express the side length of a square as a function of the length d of 
the square’s diagonal. Then express the area as a function of the 
diagonal length.

	11.	 Express the edge length of a cube as a function of the cube’s 
diagonal length d. Then express the surface area and volume of 
the cube as a function of the diagonal length.

Exercises  1.1
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	31.	 a. 

x

y

3

1
(- 1, 1) (1, 1)

	b. 

x

y

1

2

(- 2, - 1) (3, - 1)(1, - 1)

	32.	 a. 

x

y

0

1

TT
2

(T, 1)

	 b. 

t

y

0

A

T

- A

T
2

3T
2

2T

The Greatest and Least Integer Functions

	33.	 For what values of x is

a.	 :x; = 0?	 b.	 <x= = 0?

	34.	 What real numbers x satisfy the equation :x; = <x=?

	35.	 Does <-x= = -:x;  for all real x? Give reasons for your answer.

	36.	 Graph the function

ƒ(x) = e :x;, x Ú 0
<x= , x 6 0.

	 	 Why is ƒ(x) called the integer part of x?

Increasing and Decreasing Functions
Graph the functions in Exercises 37–46. What symmetries, if any, do 
the graphs have? Specify the intervals over which the function is 
increasing and the intervals where it is decreasing.

	37.	 y = -x3	 38.	 y = -  
1
x2

	39.	 y = -  
1
x 	 40.	 y = 1

0 x 0
	41.	 y = 3 0 x 0 	 42.	 y = 2-x

	43.	 y = x3>8	 44.	 y = -42x

	45.	 y = -x3>2	 46.	 y = (-x)2>3

Even and Odd Functions
In Exercises 47–58, say whether the function is even, odd, or neither. 
Give reasons for your answer.

	47.	 ƒ(x) = 3	 48.	 ƒ(x) = x-5

	49.	 ƒ(x) = x2 + 1	 50.	 ƒ(x) = x2 + x

	51.	 g(x) = x3 + x	 52.	 g(x) = x4 + 3x2 - 1

	53.	 g(x) = 1
x2 - 1

	 54.	 g(x) = x
x2 - 1

	55.	 h(t) = 1
t - 1

	 56.	 h(t) = � t3 �

	57.	 h(t) = 2t + 1	 58.	 h(t) = 2 � t � + 1

	59.	 sin 2x	 60.	 sin x2

	61.	 cos 3x	 62.	 1 + cos x

	12.	 A point P in the first quadrant lies on the graph of the function 
ƒ(x) = 2x. Express the coordinates of P as functions of the 
slope of the line joining P to the origin.

	13.	 Consider the point (x, y) lying on the graph of the line 
2x + 4y = 5. Let L be the distance from the point (x, y) to the 
origin (0, 0). Write L as a function of x.

	14.	 Consider the point (x, y) lying on the graph of y = 2x - 3. Let 
L be the distance between the points (x, y) and (4, 0). Write L as a 
function of y.

Functions and Graphs
Find the natural domain and graph the functions in Exercises 15–20.

	15.	  ƒ(x) = 5 - 2x	 16.	  ƒ(x) = 1 - 2x - x2

	17.	  g(x) = 3 0 x 0 	 18.	  g(x) = 2-x

	19.	  F(t) = t> 0 t 0 	 20.	  G(t) = 1> 0 t 0
	21.	 Find the domain of y = x + 3

4 - 2x2 - 9
 .

	22.	 Find the range of y = 2 + 29 + x2.

	23.	 Graph the following equations and explain why they are not 
graphs of functions of x.

a.	 0 y 0 = x	 b.	 y2 = x2

	24.	 Graph the following equations and explain why they are not 
graphs of functions of x.

a.	 0 x 0 + 0 y 0 = 1	 b.	 0 x + y 0 = 1

Piecewise-Defined Functions
Graph the functions in Exercises 25–28.

	25.	 ƒ(x) = e x, 0 … x … 1
2 - x, 1 6 x … 2

	26.	  g(x) = e1 - x, 0 … x … 1
2 - x, 1 6 x … 2

	27.	 F(x) = e4 - x2, x … 1
x2 + 2x, x 7 1

	28.	 G(x) = e1>x, x 6 0
x, 0 … x

Find a formula for each function graphed in Exercises 29–32.

	29.	 a. 

x

y

0

1

2

(1, 1)

	 b. 

t

y

0

2

41 2 3

	30.	 a. 

x

y

52

2
(2, 1)

	 b. 

- 1
x

y

3

21

2

1

- 2
- 3

- 1
(2, - 1)
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	70.	 a.  y = 5x        b.  y = 5x        c.  y = x5

x

y

f

h

g

0

	71.	 a.	� Graph the functions ƒ(x) = x>2 and g(x) = 1 + (4>x) 
together to identify the values of x for which

x
2

7 1 + 4
x .

b.	 Confirm your findings in part (a) algebraically.

	72.	 a.	� Graph the functions ƒ(x) = 3>(x - 1) and g(x) = 2>(x + 1) 
together to identify the values of x for which

3
x - 1

6 2
x + 1

.

b.	 Confirm your findings in part (a) algebraically.

	73.	 For a curve to be symmetric about the x-axis, the point (x, y) must 
lie on the curve if and only if the point (x, -y) lies on the curve. 
Explain why a curve that is symmetric about the x-axis is not the 
graph of a function, unless the function is y = 0.

	74.	 Three hundred books sell for $40 each, resulting in a revenue of 
(300)($40) = $12,000. For each $5 increase in the price, 25 
fewer books are sold. Write the revenue R as a function of the 
number x of $5 increases.

	75.	 A pen in the shape of an isosceles right triangle with legs of 
length x m and hypotenuse of length h m is to be built. If fencing 
costs $5/m for the legs and $10/m for the hypotenuse, write the 
total cost C of construction as a function of h.

	76.	 Industrial costs  A power plant sits next to a river where the 
river is 250 m wide. To lay a new cable from the plant to a loca-
tion in the city 2 km downstream on the opposite side costs $180 
per meter across the river and $100 per meter along the land.

x QP

Power plant

City

250 m

2 km

NOT TO SCALE

a.	 Suppose that the cable goes from the plant to a point Q on the 
opposite side that is x m from the point P directly opposite  
the plant. Write a function C(x) that gives the cost of laying 
the cable in terms of the distance x.

b.	 Generate a table of values to determine if the least expensive 
location for point Q is less than 300 m or greater than 300 m 
from point P.

T

T

Theory and Examples

	63.	 The variable s is proportional to t, and s = 25 when t = 75. 
Determine t when s = 60.

	64.	 Kinetic energy  The kinetic energy K of a mass is proportional 
to the square of its velocity y. If K = 12,960 joules when 
y = 18 m>s, what is K when y = 10 m>s?

	65.	 The variables r and s are inversely proportional, and r = 6 when 
s = 4. Determine s when r = 10.

	66.	 Boyle’s Law  Boyle’s Law says that the volume V of a gas at 
constant temperature increases whenever the pressure P decreases, 
so that V and P are inversely proportional. If P = 14.7 N>cm2 
when V = 1000 cm3, then what is V when P = 23.4 N>cm2?

	67.	 A box with an open top is to be constructed from a rectangular 
piece of cardboard with dimensions 14 cm. by 22 cm. by cutting 
out equal squares of side x at each corner and then folding up  
the sides as in the figure. Express the volume V of the box as a 
function of x.

x

x

x

x

x

x

x

x

22

14

	68.	 The accompanying figure shows a rectangle inscribed in an isos-
celes right triangle whose hypotenuse is 2 units long.

a.	 Express the y-coordinate of P in terms of x. (You might start 
by writing an equation for the line AB.)

b.	 Express the area of the rectangle in terms of x.

x

y

- 1 0 1x
A

B

P(x, ?)

In Exercises 69 and 70, match each equation with its graph. Do not 
use a graphing device, and give reasons for your answer.

	69.	 a.	 y = x4        b.  y = x7        c.  y = x10

x

y

f

g

h

0
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34	 Chapter 1  Functions

1.2	 Combining Functions; Shifting and Scaling Graphs

In this section we look at the main ways functions are combined or transformed to form 
new functions.

Sums, Differences, Products, and Quotients

Like numbers, functions can be added, subtracted, multiplied, and divided (except where 
the denominator is zero) to produce new functions. If ƒ and g are functions, then for every 
x that belongs to the domains of both ƒ and g (that is, for x∊D(ƒ) ¨ D(g)), we define 
functions ƒ + g, ƒ - g, and ƒg by the formulas

 (ƒ + g)(x) = ƒ(x) + g(x)

 (ƒ - g)(x) = ƒ(x) - g(x)

 (ƒg)(x) = ƒ(x)g(x).

Notice that the +  sign on the left-hand side of the first equation represents the operation of 
addition of functions, whereas the +  on the right-hand side of the equation means addition 
of the real numbers ƒ(x) and g(x).

At any point of D(ƒ) ¨ D(g) at which g(x) ≠ 0, we can also define the function ƒ>g 
by the formula

aƒ
gb (x) =

ƒ(x)
g(x)  (where g(x) ≠ 0).

Functions can also be multiplied by constants: If c is a real number, then the function 
cƒ is defined for all x in the domain of ƒ by

(cƒ)(x) = cƒ(x).

EXAMPLE  1    The functions defined by the formulas

ƒ(x) = 2x  and  g(x) = 21 - x

have domains D(ƒ) = 30, q) and D(g) = (-q, 14 . The points common to these 
domains are the points in

30, q) ¨ (-q, 14 = 30, 14 .

The following table summarizes the formulas and domains for the various algebraic com-
binations of the two functions. We also write ƒ # g for the product function ƒg.

Function Formula Domain

ƒ + g (ƒ + g)(x) = 2x + 21 - x 30, 14 = D(ƒ) ¨ D(g)

ƒ - g (ƒ - g)(x) = 2x - 21 - x 30, 14
g - ƒ (g - ƒ)(x) = 21 - x - 2x 30, 14
ƒ # g (ƒ # g)(x) = ƒ(x)g(x) = 2x(1 - x) 30, 14
ƒ>g ƒ

g (x) =
ƒ(x)
g(x) = A x

1 - x
30, 1)  (x = 1 excluded)

g>ƒ g
ƒ (x) =

g(x)
ƒ(x) = A1 - x

x
(0, 14  (x = 0 excluded)

�

The graph of the function ƒ + g is obtained from the graphs of ƒ and g by adding the 
corresponding y-coordinates ƒ(x) and g(x) at each point x∊D(ƒ) ¨ D(g), as in Figure 1.25. 
The graphs of ƒ + g and ƒ # g from Example 1 are shown in Figure 1.26.
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Composite Functions

Composition is another method for combining functions. In this operation the output from 
one function becomes the input to a second function.

y = ( f + g)(x)

y = g(x)

y = f (x) f (a)
g(a)

f (a) + g(a)

a

2

0

4

6

8

y

x

FIGURE 1.25  Graphical addition of two 
functions.

5
1

5
2

5
3

5
4 10

1

x

y

2
1

g(x) = "1 - x f (x) = "x
y = f + g

y = f   g

FIGURE 1.26  The domain of the function 
ƒ + g is the intersection of the domains of ƒ and 
g, the interval 30, 14  on the x-axis where these 
domains overlap. This interval is also the domain 
of the function ƒ # g (Example 1).

DEFINITION  If ƒ and g are functions, the composite function ƒ ∘ g (“ƒ com-
posed with g”) is defined by

(ƒ ∘ g)(x) = ƒ(g(x)).

The domain of ƒ ∘ g consists of the numbers x in the domain of g for which g(x) 
lies in the domain of ƒ.

The definition implies that ƒ ∘ g can be formed when the range of g lies in the domain 
of ƒ. To find (ƒ ∘ g)(x), first find g(x) and second find ƒ(g(x)). Figure 1.27 pictures ƒ ∘ g as 
a machine diagram, and Figure 1.28 shows the composition as an arrow diagram.

x g fg(x) f (g(x))

FIGURE 1.27  A composite function ƒ ∘ g uses  
the output g(x) of the first function g as the input  
for the second function ƒ.

x

f (g(x))

g(x)

g
f

f ∘ g

FIGURE 1.28  Arrow diagram for ƒ ∘ g. If x lies in the 
domain of g and g(x) lies in the domain of ƒ, then the 
functions ƒ and g can be composed to form (ƒ ∘ g)(x).

To evaluate the composite function g ∘ ƒ (when defined), we find ƒ(x) first and then 
find g(ƒ(x)). The domain of g ∘ ƒ is the set of numbers x in the domain of ƒ such that ƒ(x) 
lies in the domain of g.

The functions ƒ ∘ g and g ∘ ƒ are usually quite different.
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36	 Chapter 1  Functions

EXAMPLE  2    If ƒ(x) = 2x and g(x) = x + 1, find

(a)	 (ƒ ∘ g)(x)    (b)  (g ∘ ƒ)(x)    (c)  (ƒ ∘ ƒ)(x)    (d)  (g ∘ g)(x).

Solution

Composition Domain

(a)	 (ƒ ∘ g)(x) = ƒ(g(x)) = 2g(x) = 2x + 1 3-1, q)

(b)	 (g ∘ ƒ)(x) = g(ƒ(x)) = ƒ(x) + 1 = 2x + 1 30, q)

(c)	 (ƒ ∘ ƒ)(x) = ƒ(ƒ(x)) = 2ƒ(x) = 21x = x1>4 30, q)
(d)	 (g ∘ g)(x) = g(g(x)) = g(x) + 1 = (x + 1) + 1 = x + 2 (-q, q)

To see why the domain of ƒ ∘ g is 3-1, q), notice that g(x) = x + 1 is defined for all real 
x but g(x) belongs to the domain of ƒ only if x + 1 Ú 0, that is to say, when x Ú -1.�

Notice that if ƒ(x) = x2 and g(x) = 2x, then (ƒ ∘ g)(x) = 12x22 = x. However, the 
domain of ƒ ∘ g is 30, q), not (-q, q), since 2x requires x Ú 0.

Shifting a Graph of a Function

A common way to obtain a new function from an existing one is by adding a constant to 
each output of the existing function, or to its input variable. The graph of the new function 
is the graph of the original function shifted vertically or horizontally, as follows.

Shift Formulas

Vertical Shifts

y = ƒ(x) + k Shifts the graph of ƒ up k units if k 7 0
Shifts it down 0 k 0  units if k 6 0

Horizontal Shifts

y = ƒ(x + h) Shifts the graph of ƒ left h units if h 7 0
Shifts it right 0 h 0  units if h 6 0

EXAMPLE  3

(a)	 Adding 1 to the right-hand side of the formula y = x2 to get y = x2 + 1 shifts the 
graph up 1 unit (Figure 1.29).

(b)	 Adding -2 to the right-hand side of the formula y = x2 to get y = x2 - 2 shifts the 
graph down 2 units (Figure 1.29).

(c)	 Adding 3 to x in y = x2 to get y = (x + 3)2 shifts the graph 3 units to the left, while 
adding -2 shifts the graph 2 units to the right (Figure 1.30).

(d)	 Adding -2 to x in y = 0 x 0 , and then adding -1 to the result, gives y = 0 x - 2 0 - 1 
and shifts the graph 2 units to the right and 1 unit down (Figure 1.31).�

Scaling and Reflecting a Graph of a Function

To scale the graph of a function y = ƒ(x) is to stretch or compress it, vertically or horizon-
tally. This is accomplished by multiplying the function ƒ, or the independent variable x, by 
an appropriate constant c. Reflections across the coordinate axes are special cases where 
c = -1.

x

y

2

1

2

2 units

1 unit

- 2

- 2

- 1
0

y = x2 - 2

y = x2

y = x2 + 1

y = x2 + 2

FIGURE 1.29  To shift the graph of 
ƒ(x) = x2 up (or down), we add positive 
(or negative) constants to the formula for  
ƒ (Examples 3a and b).
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EXAMPLE  4    Here we scale and reflect the graph of y = 2x.

(a)	 Vertical: Multiplying the right-hand side of y = 2x by 3 to get y = 32x stretches 
the graph vertically by a factor of 3, whereas multiplying by 1>3 compresses the graph 
vertically by a factor of 3 (Figure 1.32).

(b)	 Horizontal: The graph of y = 23x is a horizontal compression of the graph of 
y = 2x by a factor of 3, and y = 2x>3 is a horizontal stretching by a factor of 3 
(Figure 1.33). Note that y = 23x = 232x so a horizontal compression may cor-
respond to a vertical stretching by a different scaling factor. Likewise, a horizontal 
stretching may correspond to a vertical compression by a different scaling factor.

(c)	 Reflection: The graph of y = - 2x is a reflection of y = 2x across the x-axis, and 
y = 2-x is a reflection across the y-axis (Figure 1.34).�

x

y

0- 3 2

1

1

y = (x - 2)2y = x2y = (x + 3)2

Add a positive
constant to x.

Add a negative
constant to x.

FIGURE 1.30  To shift the graph of y = x2 to 
the left, we add a positive constant to x (Example 
3c). To shift the graph to the right, we add a 
negative constant to x.

- 4 - 2 2 4 6- 1

1

4

x

y

y = 0 x - 2 0  - 1 

FIGURE 1.31  The graph of y = 0 x 0  
shifted 2 units to the right and 1 unit 
down (Example 3d).

Vertical and Horizontal Scaling and Reflecting Formulas

For c + 1, the graph is scaled:

y = cƒ(x) Stretches the graph of ƒ vertically by a factor of c.

y = 1
c ƒ(x) Compresses the graph of ƒ vertically by a factor of c.

y = ƒ(cx) Compresses the graph of ƒ horizontally by a factor of c.

y = ƒ(x>c) Stretches the graph of ƒ horizontally by a factor of c.

For c = −1, the graph is reflected:

y = -ƒ(x) Reflects the graph of ƒ across the x-axis.

y = ƒ(-x) Reflects the graph of ƒ across the y-axis.

- 1 10 2 3 4

1

2

3

4

5

x

y

y = "x

y =    "x

y = 3"x

3
1

stretch

compress

FIGURE 1.32  Vertically stretching 
and compressing the graph y = 1x by 
a factor of 3 (Example 4a).

- 1 0 1 2 3 4

1

2

3

4

x

y

y = "3 x

y = "x>3

y = "x
compress

stretch

FIGURE 1.33  Horizontally stretching and 
compressing the graph y = 1x by a factor of 
3 (Example 4b).

- 3 - 2 - 1 1 2 3

- 1

1

x

y

y = "x

y = - "x

y = "- x

FIGURE 1.34  Reflections of the 
graph y = 1x across the coordinate 
axes (Example 4c).
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38	 Chapter 1  Functions

EXAMPLE  5    Given the function ƒ(x) = x4 - 4x3 + 10 (Figure 1.35a), find formu-
las to

(a)	 compress the graph horizontally by a factor of 2 followed by a reflection across the 
y-axis (Figure 1.35b).

(b)	 compress the graph vertically by a factor of 2 followed by a reflection across the x-axis 
(Figure 1.35c).

- 1 0 1 2 3 4

- 20

- 10

10

20

x

y

f (x) = x4 - 4x3 + 10

(a)

- 2 - 1 0 1

- 20

- 10

10

20

x

y

(b)

y = 16x4 + 32x3 + 10

- 1 0 1 2 3 4

- 10

10

x

y

y =  -   x4 + 2x3 - 51
2

(c)

FIGURE 1.35  (a) The original graph of ƒ. (b) The horizontal compression of y = ƒ(x) in part (a) by a factor of 2, followed 
by a reflection across the y-axis. (c) The vertical compression of y = ƒ(x) in part (a) by a factor of 2, followed by a reflection 
across the x-axis (Example 5).

Solution
(a)	 We multiply x by 2 to get the horizontal compression, and by -1 to give reflection 

across the y-axis. The formula is obtained by substituting -2x for x in the right-hand 
side of the equation for ƒ:

 y = ƒ(-2x) = (-2x)4 - 4(-2x)3 + 10

 = 16x4 + 32x3 + 10.

(b)	 The formula is

	 y = -  12 ƒ(x) = -  12 x4 + 2x3 - 5.�

Algebraic Combinations
In Exercises 1 and 2, find the domains and ranges of ƒ, g, ƒ + g, and 
ƒ # g.

	 1.	 ƒ(x) = x, g(x) = 2x - 1

	 2.	 ƒ(x) = 2x + 1, g(x) = 2x - 1

In Exercises 3 and 4, find the domains and ranges of ƒ, g, ƒ>g, and 
g>ƒ.

	 3.	 ƒ(x) = 2, g(x) = x2 + 1

	 4.	 ƒ(x) = 1, g(x) = 1 + 2x

Compositions of Functions

	 5.	 If ƒ(x) = x + 5 and g(x) = x2 - 3, find the following.

a.	 ƒ(g(0))	 b.	 g(ƒ(0))

c.	 ƒ(g(x))	 d.	 g(ƒ(x))

e.	 ƒ(ƒ(-5))	 f.	 g(g(2))

g.	 ƒ(ƒ(x))	 h.	 g(g(x))

	 6.	 If ƒ(x) = x - 1 and g(x) = 1>(x + 1), find the following.

a.	 ƒ(g(1>2))	 b.	 g(ƒ(1>2))

c.	 ƒ(g(x))	 d.	 g(ƒ(x))

e.	 ƒ(ƒ(2))	 f.	 g(g(2))

g.	 ƒ(ƒ(x))	 h.	 g(g(x))

Exercises  1.2
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In Exercises 17 and 18, (a) write formulas for ƒ ∘ g and g ∘ ƒ and find 
the (b) domain and (c) range of each.

	17.	 ƒ(x) = 2x + 1, g(x) = 1
x

	18.	 ƒ(x) = x2, g(x) = 1 - 2x

	19.	 Let ƒ(x) = x
x - 2

. Find a function y = g(x) so that (ƒ ∘ g)(x) = x.

	20.	 Let ƒ(x) = 2x3 - 4. Find a function y = g(x) so that 
(ƒ ∘ g)(x) = x + 2.

	21.	 A balloon’s volume V is given by V = s2 + 2s + 3 cm3, where s 
is the ambient temperature in °C. The ambient temperature s at 
time t minutes is given by s = 2t - 3 °C. Write the balloon’s 
volume V as a function of time t.

	22.	 Use the graphs of ƒ and g to sketch the graph of y = ƒ(g(x)).

a.	 	 b.	

Shifting Graphs

	23.	 The accompanying figure shows the graph of y = -x2 shifted to 
two new positions. Write equations for the new graphs.

x

y

- 7 0 4

Position (a) Position (b)y = - x2

	24.	 The accompanying figure shows the graph of y = x2 shifted to 
two new positions. Write equations for the new graphs.

x

y
Position (a)

Position (b)

y = x2

- 5

0

3

x

y

−2

−4

0 2 4−2−4

2

4

f g

x

y

−2

−4

0 2 4−2−4

2

4

f

g

24

2

2

2

In Exercises 7–10, write a formula for ƒ ∘ g ∘ h.

	 7.	 ƒ(x) = x + 1,  g(x) = 3x,  h(x) = 4 - x

	 8.	 ƒ(x) = 3x + 4,  g(x) = 2x - 1,  h(x) = x2

	 9.	 ƒ(x) = 2x + 1,  g(x) = 1
x + 4

 ,  h(x) = 1
x

	10.	 ƒ(x) = x + 2
3 - x

 ,  g(x) = x2

x2 + 1
 ,  h(x) = 22 - x

Let ƒ(x) = x - 3, g(x) = 2x, h(x) = x3, and j(x) = 2x. Express 
each of the functions in Exercises 11 and 12 as a composition involv-
ing one or more of ƒ, g, h, and j.

	11.	 a.	 y = 2x - 3	 b.	 y = 22x

c.	 y = x1>4	 d.	 y = 4x

e.	 y = 2(x - 3)3	 f.	 y = (2x - 6)3

	12.	 a.	 y = 2x - 3	 b.	 y = x3>2

c.	 y = x9	 d.	 y = x - 6

e.	 y = 22x - 3	 f.	 y = 2x3 - 3

	13.	 Copy and complete the following table.

	 g(x) 	 ƒ(x) (ƒ ∘ g) (x)

a.	 x - 7 	 2x 	 ?

b.	 x + 2 	 3x 	 ?

c.	 ? 2x - 5 2x2 - 5

d.	
x

x - 1
	

x
x - 1

	 ?

e.	 ? 	 1 + 1
x

	 x

f.	 1
x

	 ? 	 x

	14.	 Copy and complete the following table.

	 g(x) 	 ƒ(x) (ƒ ∘ g) (x)

a.	 1
x - 1

	 0 x 0 	 ?

b.	 ? x - 1
x 	

x
x + 1

c.	 ? 	 2x 	 0 x 0
d.	 2x 	 ? 	 0 x 0

	15.	 Evaluate each expression using the given table of values:

x -2 -1    0    1 2

ƒ(x)    1    0 -2    1 2

g(x)    2    1    0 -1 0

a.	 ƒ(g(-1))	 b.	 g(ƒ(0))	 c.	 ƒ(ƒ(-1))

d.	 g(g(2))	 e.	 g(ƒ(-2))	 f.	 ƒ(g(1))

	16.	 Evaluate each expression using the functions

ƒ(x) = 2 - x, g(x) = b-x, -2 … x 6 0
x - 1, 0 … x … 2.

a.	 ƒ(g(0))	 b.	 g(ƒ(3))	 c.	 g(g(-1))

d.	 ƒ(ƒ(2))	 e.	 g(ƒ(0))	 f.	 ƒ(g(1>2))

M01_HASS9020_14_SE_C01.indd   39 19/10/2018   18:49



40	 Chapter 1  Functions

	39.	 y = � x - 2 � 	 40.	 y = � 1 - x � - 1

	41.	 y = 1 + 2x - 1	 42.	 y = 1 - 2x

	43.	 y = (x + 1)2>3	 44.	 y = (x - 8)2>3

	45.	 y = 1 - x2>3	 46.	 y + 4 = x2>3

	47.	 y = 23 x - 1 - 1	 48.	 y = (x + 2)3>2 + 1

	49.	 y = 1
x - 2

	 50.	 y = 1
x - 2

	51.	 y = 1
x + 2	 52.	 y = 1

x + 2

	53.	 y = 1
(x - 1)2	 54.	 y = 1

x2 - 1

	55.	 y = 1
x2 + 1	 56.	 y = 1

(x + 1)2

	57.	 The accompanying figure shows the graph of a function ƒ(x) with 
domain 30, 24  and range 30, 14 . Find the domains and ranges of 
the following functions, and sketch their graphs.

x

y

0 2

1 y  = f (x)

a.	 ƒ(x) + 2	 b.	 ƒ(x) - 1

c.	 2ƒ(x)	 d.	 -ƒ(x)

e.	 ƒ(x + 2)	 f.	 ƒ(x - 1)

g.	 ƒ(-x)	 h.	 -ƒ(x + 1) + 1

	58.	 The accompanying figure shows the graph of a function g(t) with 
domain 3-4, 04  and range 3-3, 04 . Find the domains and 
ranges of the following functions, and sketch their graphs.

t

y

- 3

- 2 0- 4

y = g(t)

a.	 g(- t)	 b.	 -g(t)

c.	 g(t) + 3	 d.	 1 - g(t)

e.	 g(- t + 2)	 f.	 g(t - 2)

g.	 g(1 - t)	 h.	 -g(t - 4)

Vertical and Horizontal Scaling
Exercises 59–68 tell by what factor and direction the graphs of the 
given functions are to be stretched or compressed. Give an equation 
for the stretched or compressed graph.

	59.	 y = x2 - 1, stretched vertically by a factor of 3

	60.	 y = x2 - 1, compressed horizontally by a factor of 2

	61.	 y = 1 + 1
x2 , compressed vertically by a factor of 2

	25.	 Match the equations listed in parts (a) – (d) to the graphs in the 
accompanying figure.

a.	 y = (x - 1)2 - 4	 b.	 y = (x - 2)2 + 2

c.	 y = (x + 2)2 + 2	 d.	 y = (x + 3)2 - 2

x

y

Position 2 Position 1

Position 4

Position 3

- 4 - 3 - 2 - 1 0 1 2 3

(- 2, 2) (2, 2)

(- 3, - 2)

(1, - 4)

1

2

3

	26.	 The accompanying figure shows the graph of y = -x2 shifted to 
four new positions. Write an equation for each new graph.

x

y

(- 2, 3)

(- 4, - 1)

(1, 4)

(2, 0)

(b)

(c) (d)

(a)

Exercises 27–36 tell how many units and in what directions the graphs 
of the given equations are to be shifted. Give an equation for the 
shifted graph. Then sketch the original and shifted graphs together, 
labeling each graph with its equation.

	27.	 x2 + y2 = 49 Down 3, left 2

	28.	 x2 + y2 = 25 Up 3, left 4

	29.	 y = x3 Left 1, down 1

	30.	 y = x2>3 Right 1, down 1

	31.	 y = 2x Left 0.81

	32.	 y = - 2x Right 3

	33.	 y = 2x - 7 Up 7

	34.	 y = 1
2

 (x + 1) + 5 Down 5, right 1

	35.	 y = 1>x Up 1, right 1

	36.	 y = 1>x2 Left 2, down 1

Graph the functions in Exercises 37–56.

	37.	 y = 2x + 4	 38.	 y = 29 - x
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If the circle is a unit circle having radius r = 1, then from Figure 1.36 and Equation (1), 
we see that the central angle u measured in radians is just the length of the arc that the 
angle cuts from the unit circle. Since one complete revolution of the unit circle is 360° or 
2p radians, we have

	 p radians = 180°	 (2)

and

1 radian = 180
p  (≈57.3) degrees  or  1 degree =  p180 (≈0.017) radians.

Table 1.1 shows the equivalence between degree and radian measures for some basic 
angles.

	75.	 y = - 23 x	 76.	 y = (-2x)2>3

	77.	 Graph the function y = 0 x2 - 1 0 .
	78.	 Graph the function y = 3 0 x 0 .
Combining Functions

	79.	 Assume that ƒ is an even function, g is an odd function, and both 
ƒ and g are defined on the entire real line (-q, q). Which of the 
following (where defined) are even? odd?

a.	 ƒg	 b.	 ƒ>g	 c.	 g>ƒ

d.	 ƒ2 = ƒƒ	 e.	 g2 = gg	 f.	 ƒ ∘ g

g.	 g ∘ ƒ	 h.	 ƒ ∘ ƒ	 i.	 g ∘ g

	80.	 Can a function be both even and odd? Give reasons for your 
answer.

	81.	 (Continuation of Example 1.) Graph the functions ƒ(x) = 2x 
	 	 and g(x) = 21 - x together with their (a) sum, (b) product,  

(c) two differences, (d) two quotients.

	82.	 Let ƒ(x) = x - 7 and g(x) = x2. Graph ƒ and g together with 
ƒ ∘ g and g ∘ ƒ.

T

T

	62.	 y = 1 + 1
x2 , stretched horizontally by a factor of 3

	63.	 y = 2x + 1, compressed horizontally by a factor of 4

	64.	 y = 2x + 1, stretched vertically by a factor of 3

	65.	 y = 24 - x2, stretched horizontally by a factor of 2

	66.	 y = 24 - x2, compressed vertically by a factor of 3

	67.	 y = 1 - x3, compressed horizontally by a factor of 3

	68.	 y = 1 - x3, stretched horizontally by a factor of 2

Graphing
In Exercises 69–76, graph each function, not by plotting points, but by 
starting with the graph of one of the standard functions presented in 
Figures 1.14–1.17 and applying an appropriate transformation.

	69.	 y = - 22x + 1	 70.	 y = A1 - x
2

	71.	 y = (x - 1)3 + 2	 72.	 y = (1 - x)3 + 2

	73.	 y = 1
2x

- 1	 74.	 y = 2
x2 + 1

1.3	 Trigonometric Functions

This section reviews radian measure and the basic trigonometric functions.

Angles

Angles are measured in degrees or radians. The number of radians in the central angle 
A′CB′ within a circle of radius r is defined as the number of “radius units” contained  
in the arc s subtended by that central angle. If we denote this central angle by u when mea-
sured in radians, this means that u = s>r  (Figure 1.36), or

	 s = ru  (u in radians).� (1)

B¿

B
s

A¿
C A

r

1

Circle of radius r
 

U nit circle
 

u

FIGURE 1.36  The radian measure  
of the central angle A′CB′ is the  
number u = s>r. For a unit circle of  
radius r = 1,  u is the length of arc AB  
that central angle ACB cuts from the  
unit circle.

TABLE 1.1  Angles measured in degrees and radians

Degrees −180 −135 −90 −45 0 30 45 60 90 120 135 150 180 270 360

U (radians) −P −3P
4

−P
2

−P
4

0 P
6

P
4

P
3

P
2

2P
3

3P
4

5P
6

P 3P
2

2P
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42	 Chapter 1  Functions

An angle in the xy-plane is said to be in standard position if its vertex lies at the ori-
gin and its initial ray lies along the positive x-axis (Figure 1.37). Angles measured counter-
clockwise from the positive x-axis are assigned positive measures; angles measured clock-
wise are assigned negative measures.

x

y

x

y

Positive
measure

Initial ray

Terminal ray

Terminal
ray

Initial ray

Negative
measure

FIGURE 1.37  Angles in standard position in the xy-plane.

Angles describing counterclockwise rotations can go arbitrarily far beyond 2p radi-
ans or 360°. Similarly, angles describing clockwise rotations can have negative measures 
of all sizes (Figure 1.38).

x

y

4
9p

x

y

3p

x

y

4
-3p

x

y

2
- 5p

FIGURE 1.38  Nonzero radian measures can be positive or negative and can go beyond 2p.

Angle Convention: Use Radians  From now on, in this book it is assumed that all 
angles are measured in radians unless degrees or some other unit is stated explicitly. When 
we talk about the angle p>3, we mean p>3 radians (which is 60°), not p>3 degrees. 
Using radians simplifies many of the operations and computations in calculus.

The Six Basic Trigonometric Functions

The trigonometric functions of an acute angle are given in terms of the sides of a right 
triangle (Figure 1.39). We extend this definition to obtuse and negative angles by first 
placing the angle in standard position in a circle of radius r. We then define the trigono-
metric functions in terms of the coordinates of the point P(x, y) where the angle’s terminal 
ray intersects the circle (Figure 1.40).

	 sine:	 sin u =
y
r 	 cosecant:	 csc u = r

y	

	 cosine:	 cos u = x
r 	 secant:	 sec u = r

x	

	 tangent:	 tan u =
y
x	 cotangent:	 cot u = x

y	

These extended definitions agree with the right-triangle definitions when the angle is 
acute.

Notice also that whenever the quotients are defined,

 tan u = sin u
cos u   cot u = 1

tan u

 sec u = 1
cos u   csc u = 1

sin u

hypotenuse

adjacent

opposite

u

sin =u
opp
hyp

=u
adj
hyp

cos

tan =u
opp
adj

csc =u
hyp
opp

=u
hyp
adj

sec

cot =u
adj
opp

FIGURE 1.39  Trigonometric  
ratios of an acute angle.

x

y

P(x, y)
r

rO

u

y

x

FIGURE 1.40  The trigonometric  
functions of a general angle u are  
defined in terms of x, y, and r.
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As you can see, tan u and sec u are not defined if x = cos u = 0. This means they are not 
defined if u is {p>2, {3p>2, c. Similarly, cot u and csc u are not defined for values 
of u for which y = 0, namely u = 0, {p, {2p, c.

The exact values of these trigonometric ratios for some angles can be read from the 
triangles in Figure 1.41. For instance,

 sin p4 = 122
   sin p

6
= 1

2   sin p3 = 23
2

 cos p4 = 122
   cos p

6
= 23

2    cos p3 = 1
2

 tan p4 = 1   tan p
6

= 123
   tan p3 = 23

The ASTC rule (Figure 1.42) is useful for remembering when the basic trigonometric func-
tions are positive or negative. For instance, from the triangle in Figure 1.43, we see that

sin 2p3 = 23
2 ,  cos 2p3 = -  12 ,  tan 2p3 = - 23.

1

1

p
2

p
4

p
4

"2

    1

p
3

p
2

p
6

2 "3

FIGURE 1.41  Radian angles and side 
lengths of two common triangles.

y

x

S
sin pos

A
all pos

T
tan pos

C
cos pos

FIGURE 1.42  The ASTC rule, remem-
bered by the statement “All Students Take 
Calculus,” tells which trigonometric func-
tions are positive in each quadrant.

x

y

"3
2

2p
3

1
2

1

2p
3

2p
3

, ,acos b bsin = 1
2

a-
2

P

"3

FIGURE 1.43  The triangle for cal-
culating the sine and cosine of 2p>3 
radians. The side lengths come from 
the geometry of right triangles.

Using a similar method we obtain the values of sin u, cos u, and tan u shown in Table 1.2.

TABLE 1.2  Values of sin u , cos u , and tan u  for selected values of u

Degrees −180 −135 −90 −45 0 	30 	45 	60 90 	120 	 135 	 150 180 270 360

U (radians) 	−P 	−3P
4

	−P
2 	−P

4
0 	P6 	P4 	P3

P
2 	 2P

3 	 3P
4

	 5P
6

P 3P
2

2P

sin U 	    0 	
- 22

2
	 -1 - 22

2
0 	 1

2
22
2

23
2

1 	
23
2 	

22
2

	 1
2

	   0 	-1 	 0

cos U 	 -1 	
- 22

2
	    0 	

22
2

1 23
2

22
2

	 1
2

0 	 -  12
- 22

2
- 23

2
	-1 	   0 	 1

tan U 	    0 	 1 	 -1 0 23
3

	 1 23 - 23 	 -1 - 23
3

	   0 	 0
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44	 Chapter 1  Functions

Periodicity and Graphs of the Trigonometric Functions

When an angle of measure u and an angle of measure u + 2p are in standard position, 
their terminal rays coincide. The two angles therefore have the same trigonometric func-
tion values: sin (u + 2p) = sin u, tan (u + 2p) = tan u, and so on. Similarly, 
cos (u - 2p) = cos u, sin (u - 2p) = sin u, and so on. We describe this repeating 
behavior by saying that the six basic trigonometric functions are periodic.

DEFINITION  A function ƒ(x) is periodic if there is a positive number p such 
that ƒ(x + p) = ƒ(x) for every value of x. The smallest such value of p is the 
period of ƒ.

When we graph trigonometric functions in the coordinate plane, we usually denote the 
independent variable by x instead of u. Figure 1.44 shows that the tangent and cotangent 
functions have period p = p, and the other four functions have period 2p. Also, the sym-
metries in these graphs reveal that the cosine and secant functions are even and the other 
four functions are odd (although this does not prove those results).

Periods of Trigonometric Functions

Period P:	 tan (x + p) = tan x
	 cot (x + p) = cot x

Period 2P:	 sin (x + 2p) = sin x
	 cos (x + 2p) = cos x
	 sec (x + 2p) = sec x
	 csc (x + 2p) = csc x

Even

cos (-x) = cos x
sec (-x) = sec x

Odd

 sin (-x) = -sin x
 tan (-x) = - tan x
 csc (-x) = -csc x
 cot (-x) = -cot x

(a) (b) (c)

(f)(e)(d)

xx

x

y

x

y y

x

y

x

y y

y = cos x

Domain: - q 6 x 6 q
Range:    - 1 … y … 1
Period:     2p

0- p p 2p-   p
2

p
2

3p
2

0- p p 2p-   p
2

p
2

3p
2

y = sin x

y = tan x

Domain: - q 6 x 6 q
Range:    - 1 … y … 1
Period:    2p

3p
2

-    - p-    p
2

0 p
2

p 3p
2

p
2

3p
2

Domain: x Z ;    , ;       , . . . 

Range:   - q 6 y 6 q
Period:    p

y = sec x y = csc x y = cot x

3p
2

- - p-p2
0

1

p
2

p 3p
2

0

1

- p p 2p-p
2

p
2

3p
2

0

1

- p p 2p-p
2

p
2

3p
2

Domain: x Z 0, ; p, ; 2p, . . .
Range:    y … - 1 or y Ú 1
Period:    2p

Domain: x Z 0, ; p, ; 2p, . . .
Range:    - q 6 y 6 q
Period:    p

Domain: x Z ;    , ;        , . . . 

Range:    y … - 1 or y Ú 1
Period:    2p

p
2

3p
2

FIGURE 1.44  Graphs of the six basic trigonometric functions using radian measure. The shading for each 
trigonometric function indicates its periodicity.

Trigonometric Identities

The coordinates of any point P(x, y) in the plane can be expressed in terms of the point’s 
distance r from the origin and the angle u that ray OP makes with the positive x-axis 
(Figure 1.40). Since x>r = cos u and y>r = sin u, we have

x = r cos u,  y = r sin u.

When r = 1 we can apply the Pythagorean theorem to the reference right triangle in 
Figure 1.45 and obtain the equation

y

x

u

1

P(cos u, sin u) x2 + y2 = 1

0 cos u 0

0 sin u 0

O

FIGURE 1.45  The reference triangle for 
a general angle u.

	 cos2 u + sin2 u = 1.� (3)
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This equation, true for all values of u, is the most frequently used identity in trigonometry. 
Dividing this identity in turn by cos2 u and sin2 u gives

1 + tan2 u = sec2 u

1 + cot2 u = csc2 u

The following formulas hold for all angles A and B (Exercise 58).

Addition Formulas

	  cos (A + B) = cos A cos B - sin A sin B�

	  sin (A + B) = sin A cos B + cos A sin B�
(4)

There are similar formulas for cos (A - B) and sin (A - B) (Exercises 35 and 36). 
All the trigonometric identities needed in this book derive from Equations (3) and (4). For 
example, substituting u for both A and B in the addition formulas gives

Double-Angle Formulas

	  cos 2u = cos2 u - sin2 u�

	  sin 2u = 2 sin u cos u �
(5)

Additional formulas come from combining the equations

cos2 u + sin2 u = 1,  cos2 u - sin2 u = cos 2u.

We add the two equations to get 2 cos2 u = 1 + cos 2u and subtract the second from the 
first to get 2 sin2 u = 1 - cos 2u. This results in the following identities, which are useful 
in integral calculus.

Half-Angle Formulas

	  cos2 u = 1 + cos 2u
2 	 (6)

	  sin2 u = 1 - cos 2u
2 	 (7)

The Law of Cosines

If a, b, and c are sides of a triangle ABC and if u is the angle opposite c, then

	 c2 = a2 + b2 - 2ab cos u.� (8)

This equation is called the law of cosines.
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46	 Chapter 1  Functions

To see why the law holds, we position the triangle in the xy-plane with the origin at C 
and the positive x-axis along one side of the triangle, as in Figure 1.46. The coordinates of 
A are (b, 0); the coordinates of B are (a cos u, a sin u). The square of the distance between 
A and B is therefore

 c2 = (a cos u - b)2 + (a sin u)2

 = a2(cos2 u + sin2 u) + b 

2 - 2ab cos u
	 (+++)+++*
	 1

 = a2 + b 

2 - 2ab cos u.

The law of cosines generalizes the Pythagorean theorem. If u = p>2, then cos u = 0 
and c2 = a2 + b2.

Two Special Inequalities

For any angle u measured in radians, the sine and cosine functions satisfy

y

x
C

a
c

b

B(a cos u, a sin u)

A(b, 0)

u

FIGURE 1.46  The square of the distance 
between A and B gives the law of cosines.

- 0 u 0 … sin u … 0 u 0  and  - 0 u 0 … 1 - cos u … 0 u 0 .

To establish these inequalities, we picture u as a nonzero angle in standard position 
(Figure 1.47). The circle in the figure is a unit circle, so 0 u 0 equals the length of the circular 
arc AP. The length of line segment AP is therefore less than 0 u 0 .

Triangle APQ is a right triangle with sides of length

QP = 0 sin u 0 ,  AQ = 1 - cos u.

From the Pythagorean theorem and the fact that AP 6 0 u 0 , we get

	 sin2 u + (1 - cos u)2 = (AP)2 … u2.� (9)

The terms on the left-hand side of Equation (9) are both positive, so each is smaller than 
their sum and hence is less than or equal to u2:

sin2 u … u2  and  (1 - cos u)2 … u2.

By taking square roots, this is equivalent to saying that

0 sin u 0 … 0 u 0  and  0 1 - cos u 0 … 0 u 0 ,
so

- 0 u 0 … sin u … 0 u 0  and  - 0 u 0 … 1 - cos u … 0 u 0 .
These inequalities will be useful in the next chapter.

Transformations of Trigonometric Graphs

The rules for shifting, stretching, compressing, and reflecting the graph of a function sum-
marized in the following diagram apply to the trigonometric functions we have discussed 
in this section.

u

1

P

A(1, 0)

cos u 1 - cos u

sin u

O Q

u

x

y

FIGURE 1.47  From the geometry of 
this figure, drawn for u 7 0, we get the 
inequality sin2 u + (1 - cos u)2 … u2.

Vertical stretch or compression; 
reflection about y = d  if negative 

y = aƒ(b(x + c)) + d

Horizontal stretch or compression; 
reflection about x = -c if negative

Vertical shift

Horizontal shift
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The transformation rules applied to the sine function give the general sine function 
or sinusoid formula

ƒ(x) = A sin a2p
B  (x - C )b + D,

where 0A 0  is the amplitude, 0B 0  is the period, C is the horizontal shift, and D is the vertical 
shift. A graphical interpretation of the various terms is given below.

D

y

x

Vertical
shift (D)

Horizontal
shift (C)

D - A

D + A

Amplitude (A)

This distance is
the period (B).

This axis is the
line y =  D.

a                  by  = A sin  + D(x  - C)2p
B

0

Radians and Degrees

	 1.	 On a circle of radius 10 m, how long is an arc that subtends a cen-
tral angle of (a) 4p>5 radians? (b) 110°?

	 2.	 A central angle in a circle of radius 8 is subtended by an arc of 
length 10p. Find the angle’s radian and degree measures.

	 3.	 You want to make an 80° angle by marking an arc on the perime-
ter of a 12-cm-diameter disk and drawing lines from the ends of 
the arc to the disk’s center. To the nearest millimeter, how long 
should the arc be?

	 4.	 If you roll a 1-m-diameter wheel forward 30 cm over level 
ground, through what angle will the wheel turn? Answer in radi-
ans (to the nearest tenth) and degrees (to the nearest degree).

Evaluating Trigonometric Functions

	 5.	 Copy and complete the following table of function values. If the 
function is undefined at a given angle, enter “UND.” Do not use a 
calculator or tables.

U −P −2P ,3 0 P ,2 3P ,4
sin u

cos u

tan u

cot u

sec u

csc u

	 6.	 Copy and complete the following table of function values. If the 
function is undefined at a given angle, enter “UND.” Do not use a 
calculator or tables.

U -3P ,2 −P ,3 −P ,6 P ,4 5P ,6
sin u

cos u

tan u

cot u

sec u

csc u

In Exercises 7–12, one of sin x, cos x, and tan x is given. Find the 
other two if x lies in the specified interval.

	 7.	 sin x = 3
5

, x∊ cp
2

, p d 	 8.	 tan x = 2, x∊ c 0, 
p

2
d

	 9.	 cos x = 1
3

, x∊ c-  
p

2
, 0 d 	 10.	 cos x = -  

5
13

, x∊ cp
2

, p d

	11.	 tan x = 1
2

, x∊ cp , 
3p
2

d 	 12.	 sin x = -  
1
2

, x∊ cp, 
3p
2

d

Graphing Trigonometric Functions
Graph the functions in Exercises 13–22. What is the period of each 
function?

	13.	 sin 2x	 14.	 sin (x>2)

	15.	 cos px	 16.	 cos 
px
2

	17.	 -sin 
px
3

	 18.	 -cos 2px

	19.	 cos ax - p

2
b 	 20.	 sin ax + p

6
b

Exercises  1.3

M01_HASS9020_14_SE_C01.indd   47 19/10/2018   18:50



48	 Chapter 1  Functions

Solving Trigonometric Equations
For Exercises 51–54, solve for the angle u, where 0 … u … 2p.

	51.	 sin2 u = 3
4

	 52.	 sin2 u = cos2 u

	53.	 sin 2u - cos u = 0	 54.	 cos 2u + cos u = 0

Theory and Examples

	55.	 The tangent sum formula  The standard formula for the 
tangent of the sum of two angles is

tan(A + B) = tan A + tan B
1 - tan A tan B

.

	 Derive the formula.

	56.	 (Continuation of Exercise 55.) Derive a formula for tan (A - B).

	57.	 Apply the law of cosines to the triangle in the accompanying 
figure to derive the formula for cos (A - B).

x

y

A
B

0 1

1

1

	58.	 a.	� Apply the formula for cos (A - B) to the identity sin u =

	 			  cos ap
2

- ub  to obtain the addition formula for sin (A + B).

b.	 Derive the formula for cos (A + B) by substituting -B for B 
in the formula for cos (A - B) from Exercise 35.

	59.	 A triangle has sides a = 2 and b = 3 and angle C = 60°. Find 
the length of side c.

	60.	 A triangle has sides a = 2 and b = 3 and angle C = 40°. Find 
the length of side c.

	61.	  The law of sines  The law of sines says that if a, b, and c are the 
sides opposite the angles A, B, and C in a triangle, then

sin A
a = sin B

b
= sin C

c .

	 Use the accompanying figures and the identity sin(p - u) =  
sin u, if required, to derive the law.

A

B Ca

hc b

A

B Ca

hc
b

	62.	 A triangle has sides a = 2 and b = 3 and angle C = 60° (as in 
Exercise 59). Find the sine of angle B using the law of sines.

	21.	 sin ax - p

4
b + 1	 22.	 cos ax + 2p

3
b - 2

Graph the functions in Exercises 23–26 in the ts-plane (t-axis horizon-
tal, s-axis vertical). What is the period of each function? What sym-
metries do the graphs have?

	23.	 s = cot 2t	 24.	 s = - tan pt

	25.	 s = sec apt
2
b 	 26.	 s = csc a t

2
b

	27.	 a.	� Graph y = cos x and y = sec x together for -3p>2 … x 
…  3p>2. Comment on the behavior of sec x in relation to the 
signs and values of cos x.

b.	 Graph y = sin x and y = csc x together for -p … x … 2p. 
Comment on the behavior of csc x in relation to the signs and 
values of sin x.

	28.	 Graph y = tan x and y = cot x together for -7 … x … 7. Com-
ment on the behavior of cot x in relation to the signs and values of 
tan x.

	29.	 Graph y = sin x and y = :sin x;  together. What are the domain 
and range of :sin x;?

	30.	 Graph y = sin x and y = <sin x=  together. What are the domain 
and range of <sin x=?

Using the Addition Formulas
Use the addition formulas to derive the identities in Exercises 31–36.

	31.	 cos ax - p

2
b = sin x	 32.	 cos ax + p

2
b = -sin x

	33.	 sin ax + p

2
b = cos x	 34.	 sin ax - p

2
b = -cos x

	35.	 cos (A - B) = cos A cos B + sin A sin B (Exercise 57 provides a 
different derivation.)

	36.	 sin (A - B) = sin A cos B - cos A sin B

	37.	 What happens if you take B = A in the trigonometric identity 
cos (A - B) = cos A cos B + sin A sin B? Does the result agree 
with something you already know?

	38.	 What happens if you take B = 2p in the addition formulas? Do 
the results agree with something you already know?

In Exercises 39–42, express the given quantity in terms of sin x and 
cos x.

	39.	 cos (p + x)	 40.	 sin (2p - x)

	41.	 sin a3p
2

- xb 	 42.	 cos a3p
2

+ xb

	43.	 Evaluate sin 
7p
12

 as sin ap
4

+ p

3
b .

	44.	 Evaluate cos 
11p
12

 as cos ap
4

+ 2p
3
b .

	45.	 Evaluate cos 
p

12
.	 46.	 Evaluate sin 

5p
12

.

Using the Half-Angle Formulas
Find the function values in Exercises 47–50.

	47.	 cos2 
p

8
	 48.	 cos2 

5p
12

	49.	 sin2 
p

12
	 50.	 sin2 

3p
8

T

T
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	67.	 y = 2 sin (x + p) - 1	 68.	 y = 1
2

 sin (px - p) + 1
2

	69.	 y = -  
2
p sin ap

2
 tb + 1

p	 70.	 y = L
2p

 sin 
2pt
L , L 7 0

COMPUTER EXPLORATIONS
In Exercises 71–74, you will explore graphically the general sine 
function

ƒ(x) = A sina2p
B  (x - C)b + D

as you change the values of the constants A, B, C, and D. Use a CAS 
or computer grapher to perform the steps in the exercises.

	71.	 The period B  Set the constants A = 3, C = D = 0.

a.	 Plot ƒ(x) for the values B = 1, 3, 2p, 5p over the interval 
-4p … x … 4p. Describe what happens to the graph of the 
general sine function as the period increases.

b.	 What happens to the graph for negative values of B? Try it 
with B = -3 and B = -2p.

	72.	 The horizontal shift C  Set the constants A = 3, B = 6, D = 0.

a.	 Plot ƒ(x) for the values C = 0, 1, and 2 over the interval 
-4p … x … 4p. Describe what happens to the graph of the 
general sine function as C increases through positive values.

b.	 What happens to the graph for negative values of C?

c.	 What smallest positive value should be assigned to C so the 
graph exhibits no horizontal shift? Confirm your answer with 
a plot.

	73.	 The vertical shift D  Set the constants A = 3, B = 6, C = 0.

a.	 Plot ƒ(x) for the values D = 0, 1, and 3 over the interval 
-4p … x … 4p. Describe what happens to the graph of the 
general sine function as D increases through positive values.

b.	 What happens to the graph for negative values of D?

	74.	 The amplitude A  Set the constants B = 6, C = D = 0.

a.	 Describe what happens to the graph of the general sine func-
tion as A increases through positive values. Confirm your 
answer by plotting ƒ(x) for the values A = 1, 5, and 9.

b.	 What happens to the graph for negative values of A?

	63.	 A triangle has side c = 2 and angles A = p>4 and B = p>3. 
Find the length a of the side opposite A.

	64.	 Consider the length h of the perpendicular from point B to side b 
in the given triangle. Show that

h =
b tan a tan g

tan a + tan g

B

A C

h

b

a g

	65.	 Refer to the given figure. Write the radius r of the circle in terms 
of a and u.

ra

u

	66.	 The approximation sin x ? x  It is often useful to know that, 
when x is measured in radians, sin x ≈ x for numerically small 
values of x. In Section 3.11, we will see why the approximation 
holds. The approximation error is less than 1 in 5000 if 0 x 0 6 0.1.

a.	 With your grapher in radian mode, graph y = sin x and 
y = x together in a viewing window about the origin. What 
do you see happening as x nears the origin?

b.	 With your grapher in degree mode, graph y = sin x and 
y = x together about the origin again. How is the picture 
different from the one obtained with radian mode?

General Sine Curves
For

ƒ(x) = A sin a2p
B  (x - C)b + D,

identify A, B, C, and D for the sine functions in Exercises 67–70 and 
sketch their graphs.

T

1.4	 Exponential Functions

Exponential functions occur in a wide variety of applications, including interest rates, 
radioactive decay, population growth, the spread of a disease, consumption of natural 
resources, the earth’s atmospheric pressure, temperature change of a heated object placed 
in a cooler environment, and the dating of fossils. In this section we introduce these func-
tions informally, using an intuitive approach. We give a rigorous development of them in 
Chapter 7, based on the ideas of integral calculus.

Exponential Behavior

When a positive quantity P doubles, it increases by a factor of 2 and the quantity becomes 
2P. If it doubles again, it becomes 2(2P) = 22P, and a third doubling gives 2(22P) = 23P. 
Continuing to double in this fashion leads us to consider the function ƒ(x) = 2x. We call 
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50	 Chapter 1  Functions

this an exponential function because the variable x appears in the exponent of 2x. Func-
tions such as g(x) = 10 x and h(x) = (1>2)x are other examples of exponential functions. 
In general, if a ≠ 1 is a positive constant, the function

ƒ(x) = ax, a 7 0

is the exponential function with base a.

EXAMPLE  1    In 2014, $100 is invested in a savings account, where it grows by 
accruing interest that is compounded annually (once a year) at an interest rate of 5.5%. 
Assuming no additional funds are deposited to the account and no money is withdrawn, 
give a formula for a function describing the amount A in the account after x years have 
elapsed.

Solution  If P = 100, at the end of the first year the amount in the account is the original 
amount plus the interest accrued, or

P + a 5.5
100bP = (1 + 0.055)P = (1.055)P.

At the end of the second year the account earns interest again and grows to

(1 + 0.055) # (1.055P) = (1.055)2P = 100 # (1.055)2.    P = 100

Continuing this process, after x years the value of the account is

A = 100 # (1.055)x.

This is a multiple of the exponential function ƒ(x) = (1.055)x with base 1.055. Table 1.3 
shows the amounts accrued over the first four years. Notice that the amount in the account 
each year is always 1.055 times its value in the previous year.

TABLE 1.3  Savings account growth

Year 	 Amount (dollars) Yearly increase

2014 100

2015 100(1.055) = 105.50 5.50

2016 100(1.055)2 = 111.30 5.80

2017 100(1.055)3 = 117.42 6.12

2018 100(1.055)4 = 123.88 6.46

In general, the amount after x years is given by P(1 + r)x, where P is the starting 
amount and r is the interest rate (expressed as a decimal).�

For integer and rational exponents, the value of an exponential function ƒ(x) = ax is 
obtained arithmetically by taking an appropriate number of products, quotients, or roots. If 
x = n is a positive integer, the number an is given by multiplying a by itself n times:

an = a # a # g # a.
	               (+++)+++*
	 n factors	

If x = 0, then we set a0 = 1, and if x = -n for some positive integer n, then

a-n = 1
an = a1

ab
n

.

If x = 1>n for some positive integer n, then

a1>n = 2n a,

Don’t confuse the exponential 2x with 
the power function x2. In the exponential, 
the variable x is in the exponent, whereas 
the variable x is the base in the power 
function.
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which is the positive number that when multiplied by itself n times gives a. If x = p>q is 
any rational number, then

ap>q = 2q ap = 12q a2p
.

When x is irrational, the meaning of ax is not immediately apparent. The value of ax can 
be approximated by raising a to rational numbers that get closer and closer to the irrational 
number x. We will describe this informally now and will give a rigorous definition in 
Chapter 7.

The graphs of several exponential functions are shown in Figure 1.48. These graphs 
show the values of the exponential functions for real inputs x. We choose the value of ax 
when x is irrational so that there are no “holes” or “jumps” in the graph of ax (these words 
are not rigorous mathematical terms, but they informally convey the underlying idea). The 
value of ax when x is irrational is chosen so that the function ƒ(x) = ax is continuous, a 
notion that will be carefully developed in Chapter 2. This choice ensures that the graph is 
increasing when a 7 1 and is decreasing when 0 6 a 6 1 (see Figure 1.48).

We illustrate how to define the value of an exponential function at an irrational power 
using the exponential function ƒ(x) = 2x. How do we make sense of the expression 223 ? 
Any particular irrational number, say x = 23, has a decimal expansion23 = 1.732050808 c.

We then consider the list of powers of 2 with more and more digits in the decimal expansion,

	 21, 21.7, 21.73, 21.732, 21.7320, 21.73205, c.� (1)

We know the meaning of each number in list (1) because the successive decimal approxi-
mations to 23 given by 1, 1.7, 1.73, 1.732, and so on are all rational numbers. As these 
decimal approximations get closer and closer to 23, it seems reasonable that the list of 
numbers in (1) gets closer and closer to some fixed number, which we specify to be 223.

Table 1.4 illustrates how taking better approximations to 23 gives better approximations 
to the number 223 ≈ 3.321997086. It is the completeness property of the real numbers (dis-
cussed in Appendix 7) which guarantees that this procedure gives a single number we define to 
be 223 (although it is beyond the scope of this text to give a proof). In a similar way, we can 
identify the number 2x (or ax, a 7 0) for any irrational x. By identifying the number ax for 
both rational and irrational x, we eliminate any “holes” or “gaps” in the graph of ax.

(a)  y = 2x, y = 3x, y = 10x (b) y = 2-x, y = 3-x, y = 10-x
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(a)  y = 2x, y = 3x, y = 10x (b) y = 2-x, y = 3-x, y = 10-x
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FIGURE 1.48  Graphs of exponential 
functions.

TABLE 1.4  Values of 223  for  

rational r closer and closer to 23

	 r 2r

1.0 2.000000000

1.7 3.249009585

1.73 3.317278183

1.732 3.321880096

1.7320 3.321880096

1.73205 3.321995226

1.732050 3.321995226

1.7320508 3.321997068

1.73205080 3.321997068
1.732050808 3.321997086

Rules for Exponents
If a 7 0 and b 7 0, the following rules hold for all real numbers x and y.

1.	 ax # ay = ax + y	 2.	 ax

ay = ax - y

3.	 (ax)y = (ay)x = axy	 4.	 ax # bx = (ab)x

5.	 ax

bx = aa
b
b

x

Exponential functions obey the rules of exponents listed below. It is easy to check 
these rules using algebra when the exponents are integers or rational numbers. We prove 
them for all real exponents in Chapter 7.

EXAMPLE  2    We use the rules for exponents to simplify some numerical expressions.

	 1.	 31.1 # 30.7 = 31.1 + 0.7 = 31.8	 Rule 1

	 2.	
121023210

= 121023 - 1 = 121022 = 10	 Rule 2

	 3.	 1522222 = 522 #  22 = 52 = 25	 Rule 3
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52	 Chapter 1  Functions

	 4.	 7p # 8p = (56)p	 Rule 4

	 5.	 a4
9b

1>2
= 41>2

91>2 = 2
3	 Rule 5�

The Natural Exponential Function ex

The most important exponential function used for modeling natural, physical, and eco-
nomic phenomena is the natural exponential function, whose base is the special number e. 
The number e is irrational, and its value to nine decimal places is 2.718281828. (In 
Section 3.8 we will see a way to calculate the value of e.) It might seem strange that we 
would use this number for a base rather than a simple number like 2 or 10. The advantage 
in using e as a base is that it greatly simplifies many of the calculations in calculus.

In Figure 1.48a you can see that the graphs of the exponential functions y = ax get 
steeper as the base a gets larger. This idea of steepness is conveyed by the slope of the tan-
gent line to the graph at a point. Tangent lines to graphs of functions are defined precisely in 
the next chapter, but intuitively the tangent line to the graph at a point is the line that best 
approximates the graph at the point, like a tangent to a circle. Figure 1.49 shows the slope 
of the graph of y = ax as it crosses the y-axis for several values of a. Notice that the slope 
is exactly equal to 1 when a equals the number e. The slope is smaller than 1 if a 6 e, and 
larger than 1 if a 7 e. The graph of y = ex has slope 1 when it crosses the y-axis.

0
x

y

m L 0.7

(a)

y = 2x

x

y

0

(c)

m L 1.1

y = 3x

x

y

0

(b)

m = 1

y = e x

1 1 1

FIGURE 1.49  Among the exponential functions, the graph of y = ex has the property that 
the slope m of the tangent line to the graph is exactly 1 when it crosses the y-axis. The slope is 
smaller for a base less than e, such as 2x, and larger for a base greater than e, such as 3x.

Exponential Growth and Decay

The function y = y0 e 

kx, where k is a nonzero constant, is a model for exponential growth 
if k 7 0 and a model for exponential decay if k 6 0. Here y0 is a constant that represents 
the value of the function when x = 0. An example of exponential growth occurs when 
computing interest compounded continuously. This is modeled by the formula y = Pert, 
where P is the initial monetary investment, r is the interest rate as a decimal, and t is time 
in units consistent with r. An example of exponential decay is the model y = Ae-1.2 * 10-4t, 
which represents how the radioactive isotope carbon-14 decays over time. Here A is the 
original amount of carbon-14 and t is the time in years. Carbon-14 decay is used to date 

(b)

00 0.5
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15

10

5

20

2
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FIGURE 1.50  Graphs of (a) exponential growth, k = 1.5 7 0, and (b) exponential decay, 
k = -1.2 6 0.
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the remains of dead organisms such as shells, seeds, and wooden artifacts. Figure 1.50 
shows graphs of exponential growth and exponential decay.

EXAMPLE  3    Investment companies often use the model y = Pert in calculating the 
growth of an investment. Use this model to track the growth of $100 invested in 2014 at an 
annual interest rate of 5.5%.

Solution  Let t = 0 represent 2014, t = 1 represent 2015, and so on. Then the exponen-
tial growth model is y(t) = Pert, where P = 100 (the initial investment), r = 0.055 (the 
annual interest rate expressed as a decimal), and t is time in years. To predict the amount in 
the account in 2018, after four years have elapsed, we take t = 4 and calculate

 y(4) = 100e0.055(4)

 = 100e0.22

 = 124.61.     Nearest cent using calculator

This compares with $123.88 in the account when the interest is compounded annually, as 
was done in Example 1.�

EXAMPLE  4    Laboratory experiments indicate that some atoms emit a part of their 
mass as radiation, with the remainder of the atom re-forming to make an atom of some 
new element. For example, radioactive carbon-14 decays into nitrogen; radium eventually 
decays into lead. If y0 is the number of radioactive nuclei present at time zero, the number 
still present at any later time t will be

y = y0 e-rt,  r 7 0.

The number r is called the decay rate of the radioactive substance. (We will see how this 
formula is obtained in Section 7.2.) For carbon-14, the decay rate has been determined 
experimentally to be about r = 1.2 * 10-4 when t is measured in years. Predict the per-
cent of carbon-14 present after 866 years have elapsed.

Solution  If we start with an amount y0 of carbon-14 nuclei, after 866 years we are left 
with the amount

 y(866) = y0 e(-1.2 * 10-4) (866)

 ≈ (0.901)y0.     Calculator evaluation

That is, after 866 years, we are left with about 90% of the original amount of carbon-14, 
so about 10% of the original nuclei have decayed.�

You may wonder why we use the family of functions y = ekx for different values of the 
constant k instead of the general exponential functions y = ax. In the next section, we 
show that the exponential function ax is equal to ekx for an appropriate value of k. So the 
formula y = ekx covers the entire range of possibilities, and it is generally easier to use.

Sketching Exponential Curves
In Exercises 1–6, sketch the given curves together in the appropriate 
coordinate plane and label each curve with its equation.

	 1.	 y = 2x, y = 4x, y = 3-x, y = (1>5)x

	 2.	 y = 3x, y = 8x, y = 2-x, y = (1>4)x

	 3.	 y = 2-t and y = -2t	 4.	 y = 3-t and y = -3t

	 5.	 y = ex and y = 1>ex	 6.	 y = -ex and y = -e-x

In each of Exercises 7–10, sketch the shifted exponential curves.

	 7.	 y = 2x - 1 and y = 2-x - 1

	 8.	 y = 3x + 2 and y = 3-x + 2

	 9.	 y = 1 - ex and y = 1 - e-x

	10.	 y = -1 - ex and y = -1 - e-x

Exercises  1.4

M01_HASS9020_14_SE_C01.indd   53 19/10/2018   18:50



54	 Chapter 1  Functions

EXAMPLE  1    Some functions are one-to-one on their entire natural domain. Other 
functions are not one-to-one on their entire domain, but by restricting the function to a 
smaller domain we can create a function that is one-to-one. The original and restricted 
functions are not the same functions, because they have different domains. However, the 
two functions have the same values on the smaller domain.

	30.	 Population growth  The population of Silver Run in the year 
1890 was 6250. Assume the population increased at a rate of 
2.75% per year.

a.	 Estimate the population in 1915 and 1940.

b.	 Approximately when did the population reach 50,000?

	31.	 Radioactive decay  The half-life of phosphorus-32 is about 14 
days. There are 6.6 grams present initially.

a.	 Express the amount of phosphorus-32 remaining as a func-
tion of time t.

b.	 When will there be 1 gram remaining?

	32.	 If Jean invests $2300 in a retirement account with a 6% interest 
rate compounded annually, how long will it take until Jean’s 
account has a balance of $4150?

	33.	 Doubling your money  Determine how much time is required 
for an investment to double in value if interest is earned at the rate 
of 6.25% compounded annually.

	34.	 Tripling your money  Determine how much time is required 
for an investment to triple in value if interest is earned at the rate 
of 5.75% compounded continuously.

	35.	 Cholera bacteria  Suppose that a colony of bacteria starts with 
1 bacterium and doubles in number every half hour. How many 
bacteria will the colony contain at the end of 24 hours?

	36.	 Eliminating a disease  Suppose that in any given year the num-
ber of cases of a disease is reduced by 20%. If there are 10,000 
cases today, how many years will it take

a.	 to reduce the number of cases to 1000?

b.	 to eliminate the disease; that is, to reduce the number of cases 
to less than 1?

Applying the Laws of Exponents
Use the laws of exponents to simplify the expressions in Exer
cises 11–20.

	11.	 162 # 16-1.75	 12.	 91>3 # 91>6

	13.	 44.2

43.7	 14.	
35>3

32>3

	15.	 1251>824	 16.	 11322222>2

	17.	 223 # 723	 18.	 12321>2 # 121221>2

	19.	 a 222
b

4

	 20.	 a26
3

b
2

Compositions Involving Exponential Functions
Find the domain and range for each of the functions in Exercises 
21–24.

	21.	 ƒ(x) = 1
2 + ex	 22.	 g(t) = cos (e-t)

	23.	  g(t) = 21 + 3-t	 24.	 ƒ(x) = 3
1 - e2x

Applications
In Exercises 25–28, use graphs to find approximate solutions.

	25.	 2x = 5	 26.	 ex = 4

	27.	 3x - 0.5 = 0	 28.	 3 - 2-x = 0

In Exercises 29–36, use an exponential model and a graphing calcula-
tor to estimate the answer in each problem.

	29.	 Population growth  The population of Knoxville is 500,000 
and is increasing at the rate of 3.75% each year. Approximately 
when will the population reach 1 million?

T

T

1.5	 Inverse Functions and Logarithms

A function that undoes, or inverts, the effect of a function ƒ is called the inverse of ƒ. 
Many common functions, though not all, are paired with an inverse. In this section we 
present the natural logarithmic function y = ln x as the inverse of the exponential function 
y = ex, and we also give examples of several inverse trigonometric functions.

One-to-One Functions

A function is a rule that assigns a value from its range to each element in its domain. Some 
functions assign the same range value to more than one element in the domain. The func-
tion ƒ(x) = x2 assigns the same value, 1, to both of the numbers -1 and +1. Similarly the 
sines of p>3 and 2p>3 are both 23>2. Other functions assume each value in their range 
no more than once. The square roots and cubes of different numbers are always different. 
A function that has distinct values at distinct elements in its domain is called one-to-one.

DEFINITION  A function ƒ(x) is one-to-one on a domain D if ƒ(x1) ≠ ƒ(x2) 
whenever x1 ≠ x2 in D.
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(a)	 ƒ(x) = 2x is one-to-one on any domain of nonnegative numbers because 2x1 ≠2x2 whenever x1 ≠ x2.

(b)	 g(x) = sin x is not one-to-one on the interval 30, p4  because sin (p>6) = sin (5p>6). 
In fact, for each element x1 in the subinterval 30, p>2) there is a corresponding ele-
ment x2 in the subinterval (p>2, p] satisfying sin x1 = sin x2. The sine function is 
one-to-one on 30, p>24 , however, because it is an increasing function on 30, p>24  
and hence gives distinct outputs for distinct inputs in that interval.�

The graph of a one-to-one function y = ƒ(x) can intersect a given horizontal line at 
most once. If the function intersects the line more than once, then it assumes the same 
y-value for at least two different x-values and is therefore not one-to-one (Figure 1.51).

0 0

(a) One-to-one: Graph meets each
      horizontal line at most once.

x

y y

y = x3 y = "x

x

0- 1 1

0.5

(b) Not one-to-one: Graph meets one or
      more horizontal lines more than once.

1

y

y

x x

y = x2

Same y-value

Same y-value

y = sin x

p
6

5p
6

FIGURE 1.51  (a) y = x3 and y = 1x 
are one-to-one on their domains (-q, q) 
and 30, q). (b) y = x2 and y = sin x are 
not one-to-one on their domains (-q, q).

The Horizontal Line Test for One-to-One Functions
A function y = ƒ(x) is one-to-one if and only if its graph intersects each horizon-
tal line at most once.

Inverse Functions

Since each output of a one-to-one function comes from just one input, the effect of the 
function can be inverted to send each output back to the input from which it came.

DEFINITION  Suppose that ƒ is a one-to-one function on a domain D with range 
R. The inverse function ƒ -1 is defined by

ƒ -1(b) = a if ƒ(a) = b.

The domain of ƒ -1 is R and the range of ƒ -1 is D.

The symbol ƒ -1 for the inverse of ƒ is read “ƒ inverse.” The “-1” in ƒ -1 is not an 
exponent; ƒ -1(x) does not mean 1>ƒ(x). Notice that the domains and ranges of ƒ and ƒ -1 
are interchanged.

EXAMPLE  2    Suppose a one-to-one function y = ƒ(x) is given by a table of values

   x 1 2 3 4 5 6 7 8

ƒ(x) 3 4.5 7 10.5 15 20.5 27 34.5

A table for the values of x = ƒ -1(y) can then be obtained by simply interchanging the 
values in each column of the table for ƒ:�

	 y 3 4.5 7 10.5 15 20.5 27 34.5

ƒ −1(  y) 1 2 3 4 5 6 7 8

If we apply ƒ to send an input x to the output ƒ(x) and follow by applying ƒ -1 to ƒ(x), 
we get right back to x, just where we started. Similarly, if we take some number y in the 
range of ƒ, apply ƒ -1 to it, and then apply ƒ to the resulting value ƒ -1( y), we get back the 
value y from which we began. Composing a function and its inverse has the same effect as 
doing nothing.

 (ƒ -1 ∘ ƒ) (x) = x,  for all x in the domain of ƒ

 (ƒ ∘ ƒ -1) (y) = y,  for all y in the domain of ƒ -1 (or range of ƒ)

Only a one-to-one function can have an inverse. The reason is that if ƒ(x1) = y and 
ƒ(x2) = y for two distinct inputs x1 and x2, then there is no way to assign a value to ƒ -1(y) 
that satisfies both ƒ -1(ƒ(x1)) = x1 and ƒ -1(ƒ(x2)) = x2.

Caution
Do not confuse the inverse function ƒ -1 
with the reciprocal function 1>ƒ.
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A function that is increasing on an interval satisfies the inequality ƒ(x2) 7 ƒ(x1) when 
x2 7 x1, so it is one-to-one and has an inverse. A function that is decreasing on an interval 
also has an inverse. Functions that are neither increasing nor decreasing may still be one-
to-one and have an inverse, as with the function ƒ(x) = 1>x for x ≠ 0 and ƒ(0) = 0, 
defined on (-q, q) and passing the horizontal line test.

Finding Inverses

The graphs of a function and its inverse are closely related. To read the value of a function 
from its graph, we start at a point x on the x-axis, go vertically to the graph, and then move 
horizontally to the y-axis to read the value of y. The inverse function can be read from the 
graph by reversing this process. Start with a point y on the y-axis, go horizontally to the 
graph of y = ƒ(x), and then move vertically to the x-axis to read the value of x = ƒ -1(y) 
(Figure 1.52).
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(a) To find the value of f at x, we start at x,
go up to the curve, and then over to the y-axis.
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(b) The graph of  f -1 is the graph of f, but
with x and y interchanged.  To find the x that
gave y, we start at y and go over to the curve
and down to the x-axis. The domain of f -1 is the
range of f.  The range of f -1 is the domain of f.
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(c) To draw the graph of f -1 in the
more usual way, we reflect the
system across the line y =  x. 
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(d) Then we interchange the letters x and y.
We now have a normal-looking graph of f -1

as a function of x.

FIGURE 1.52  The graph of y = ƒ -1(x) is obtained by reflecting the graph of y = ƒ(x) 
about the line y = x.

We want to set up the graph of ƒ -1 so that its input values lie along the x-axis, as is usu-
ally done for functions, rather than on the y-axis. To achieve this we interchange the x- and 
y-axes by reflecting across the 45° line y = x. After this reflection we have a new graph that 
represents ƒ -1. The value of ƒ -1(x) can now be read from the graph in the usual way, by 
starting with a point x on the x-axis, going vertically to the graph, and then horizontally to 
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the y-axis to get the value of ƒ -1(x). Figure 1.52 indicates the relationship between the 
graphs of ƒ and ƒ -1. The graphs are interchanged by reflection through the line y = x.

The process of passing from ƒ to ƒ -1 can be summarized as a two-step procedure.

1.	 Solve the equation y = ƒ(x) for x. This gives a formula x = ƒ -1(y) where x is 
expressed as a function of y.

2.	 Interchange x and y, obtaining a formula y = ƒ -1(x) where ƒ -1 is expressed in the 
conventional format with x as the independent variable and y as the dependent variable.

EXAMPLE  3    Find the inverse of y = 1
2 x + 1, expressed as a function of x.

Solution

	 1.	 Solve for x in terms of y:   y = 1
2 x + 1	� The graph satisfies the horizontal line test,   

so it is one-to-one (Fig. 1.58).

 2y = x + 2

 x = 2y - 2.

	 2.	 Interchange x and y:  y = 2x - 2.	� Expresses the function in the usual form  
where y is the dependent variable.

The inverse of the function ƒ(x) = (1>2)x + 1 is the function ƒ -1(x) = 2x - 2. (See 
Figure 1.53.) To check, we verify that both compositions give the identity function:

 ƒ -1(ƒ(x)) = 2a1
2 x + 1b - 2 = x + 2 - 2 = x

	  ƒ(ƒ -1(x)) = 1
2 (2x - 2) + 1 = x - 1 + 1 = x. �

EXAMPLE  4    Find the inverse of the function y = x2, x Ú 0, expressed as a function 
of x.

Solution  For x Ú 0, the graph satisfies the horizontal line test, so the function is one-to-
one and has an inverse. To find the inverse, we first solve for x in terms of y:

 y = x2

 2y = 2x2 = 0 x 0 = x    0 x 0 = x because x Ú 0

We then interchange x and y, obtaining

y = 2x .

The inverse of the function y = x2, x Ú 0, is the function y = 1x (Figure 1.54).�

Notice that the function y = x2, x Ú 0, with domain restricted to the nonnegative real 
numbers, is one-to-one (Figure 1.54) and has an inverse. On the other hand, the function y = x2, 
with no domain restrictions, is not one-to-one (Figure 1.51b) and therefore has no inverse.

Logarithmic Functions

If a is any positive real number other than 1, then the base a exponential function 
ƒ(x) = ax is one-to-one. It therefore has an inverse. Its inverse is called the logarithm 
function with base a.

x

y

- 2

1

- 2

1

y = 2x - 2
y = x

y = x + 11
2

FIGURE 1.53  Graphing 
ƒ(x) = (1>2)x + 1 and ƒ -1(x) = 2x - 2 
together shows the graphs’ symmetry with 
respect to the line y = x (Example 3).

x

y

0

y = x2, x Ú 0

y = x

y = "x

FIGURE 1.54  The functions y = 1x 
and y = x2, x Ú 0, are inverses of one 
another (Example 4).

DEFINITION  The logarithm function with base a, written y = loga x, is the 
inverse of the base a exponential function y = ax (a 7 0, a ≠ 1).
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The domain of loga x is (0, q), the same as the range of ax. The range of loga x is 
(-q, q), the same as the domain of ax.

Figure 1.55a shows the graph of y = log2 x. The graph of y = ax, a 7 1, increases 
rapidly for x 7 0, so its inverse, y = loga x, increases slowly for x 7 1.

Because we have no technique yet for solving the equation y = ax for x in terms of y, 
we do not have an explicit formula for computing the logarithm at a given value of x. 
Nevertheless, we can obtain the graph of y = loga x by reflecting the graph of the expo-
nential y = ax across the line y = x. Figure 1.55a shows the graphs for a = 2 and a = e.

Logarithms with base 2 are often used when working with binary numbers, as is 
common in computer science. Logarithms with base e and base 10 are so important in 
applications that many calculators have special keys for them. They also have their own 
special notation and names:

 loge x is written as ln x.

 log10 x is written as log x.

The function y = ln  x is called the natural logarithm function, and y = log x is 
often called the common logarithm function. For the natural logarithm,

x

y

1
2

0 1 2

y = log2x

y = 2x

y = x

(a)

x

y

1

10 2 e 4

2

e

4

- 1- 2

5

6

7

8

(1, e)

y = ln x

y = ex

(b)

FIGURE 1.55  (a) The graph of 2x and 
its inverse, log2 x. (b) The graph of ex and 
its inverse, ln x.

ln x = y 3  ey = x.

ln e = 1.

In particular, because e1 = e, we obtain

Properties of Logarithms

Logarithms, invented by John Napier, were the single most important improvement in 
arithmetic calculation before the modern electronic computer. The properties of loga-
rithms reduce multiplication of positive numbers to addition of their logarithms, division 
of positive numbers to subtraction of their logarithms, and exponentiation of a number to 
multiplying its logarithm by the exponent.

We summarize these properties for the natural logarithm as a series of rules that we 
prove in Chapter 3. Although here we state the Power Rule for all real powers r, the case 
when r is an irrational number cannot be dealt with properly until Chapter 4. We establish 
the validity of the rules for logarithmic functions with any base a in Chapter 7.

HISTORICAL BIOGRAPHY

John Napier
(1550–1617) 
bit.ly/2IsZUN5

THEOREM 1—Algebraic Properties of the Natural Logarithm
For any numbers b 7 0 and x 7 0, the natural logarithm satisfies the following 
rules:

1.  Product Rule: ln bx = ln b + ln x

2.  Quotient Rule: ln bx = ln b - ln x

3.  Reciprocal Rule: ln 1x = - ln x    Rule 2 with b = 1

4. Power Rule: ln xr = r ln x
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EXAMPLE  5    We use the properties in Theorem 1 to simplify three expressions.

(a)	 ln 4 + ln sin x = ln (4 sin x)	 Product Rule

(b)	 ln x + 1
2x - 3 = ln (x + 1) - ln (2x - 3)	 Quotient Rule

(c)	  ln 18 = - ln 8 	 Reciprocal Rule

		   = - ln 23 = -3 ln 2	 Power Rule�

Because ax and loga x are inverses, composing them in either order gives the identity function.

Inverse Properties for ax and loga x

1.	 Base a:	  aloga x = x,   loga ax = x,   a 7 0, a ≠ 1, x 7 0

2.	 Base e:	  eln x = x,    ln ex = x,    x 7 0

Substituting ax for x in the equation x = eln x enables us to rewrite ax as a power of e:

 ax = eln (ax)     Substitute ax for x in x = eln x.

 = ex ln a     Power Rule for logs

 = e(ln a)x.    Exponent rearranged

Thus, the exponential function ax is the same as e kx with k = ln a.

Every exponential function is a power of the natural exponential function.

ax = ex ln a

That is, ax is the same as ex raised to the power ln a: ax = ekx for k = ln a.

For example,

2x = e(ln 2)x = ex ln 2,  and  5- 3x = e(ln 5) ( - 3x) = e- 3x ln 5.

Returning once more to the properties of ax and loga x, we have

 ln x = ln (aloga x)     Inverse Property for ax and loga x

 = (loga x) (ln a).    Power Rule for logarithms, with r = loga x

Rewriting this equation as loga x = (ln x)>(ln a) shows that every logarithmic function is a 
constant multiple of the natural logarithm ln x. This allows us to extend the algebraic 
properties for ln x to loga x. For instance, loga bx = loga b + loga x.

Change of Base Formula
Every logarithmic function is a constant multiple of the natural logarithm.

loga x = ln x
ln a

    (a 7 0, a ≠ 1)

Applications

In Section 1.4 we looked at examples of exponential growth and decay problems. Here we 
use properties of logarithms to answer more questions concerning such problems.

EXAMPLE  6    If $1000 is invested in an account that earns 5.25% interest com-
pounded annually, how long will it take the account to reach $2500?
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Solution  From Example 1, Section 1.4, with P = 1000 and r = 0.0525, the amount in 
the account at any time t in years is 1000(1.0525)t, so to find the time t when the account 
reaches $2500 we need to solve the equation

1000(1.0525)t = 2500.

Thus we have

 (1.0525)t = 2.5     Divide by 1000.

ln (1.0525)t = ln 2.5     Take logarithms of both sides.

t ln 1.0525 = ln 2.5     Power Rule

 t = ln 2.5
ln 1.0525

≈ 17.9    Values obtained by calculator

The amount in the account will reach $2500 in 18 years, when the annual interest payment 
is deposited for that year.�

EXAMPLE  7    The half-life of a radioactive element is the time expected to pass until 
half of the radioactive nuclei present in a sample decay. The half-life is a constant that does 
not depend on the number of radioactive nuclei initially present in the sample, but only on 
the radioactive substance.

To compute the half-life, let y0 be the number of radioactive nuclei initially present in 
the sample. Then the number y present at any later time t will be y = y0 e-kt. We seek the 
value of t at which the number of radioactive nuclei present equals half the original number:

	  y0 e-kt = 1
2 y0 	

	  e-kt = 1
2 	

	  -kt = ln 12 = - ln 2    Reciprocal Rule for logarithms	

	  t = ln 2
k

. � (1)

This value of t is the half-life of the element. It depends only on the value of k; the number 
y0 does not have any effect.

The effective radioactive lifetime of polonium-210 is so short that we measure it in 
days rather than years. The number of radioactive atoms remaining after t days in a sample 
that starts with y0 radioactive atoms is

y = y0 e-5 * 10-3 t.

The element’s half-life is

Half@life = ln 2
k

	 Eq. (1)

 = ln 2
5 * 10-3	 The k from polonium’s decay equation

 ≈ 139 days.

This means that after 139 days, 1>2 of y0 radioactive atoms remain; after another 139 
days (278 days altogether) half of those remain, or 1>4 of y0 radioactive atoms remain, and 
so on (see Figure 1.56).�

Inverse Trigonometric Functions

The six basic trigonometric functions are not one-to-one (since their values repeat periodi-
cally). However, we can restrict their domains to intervals on which they are one-to-one. 

y = y0e-5 * 10–3t

y0

y0

y0

t (days)

Amount
present

Half-life
0 139 278

2
1

4
1

FIGURE 1.56  Amount of  
polonium-210 present at time t,  
where y0 represents the number of  
radioactive atoms initially present 
(Example 7).
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The sine function increases from -1 at x = -p>2 to +1 at x = p>2. By restricting its 
domain to the interval 3-p>2, p>2] we make it one-to-one, so that it has an inverse 
which is called arcsin x (Figure 1.57). Similar domain restrictions can be applied to all six 
trigonometric functions.

Domain:
Range:

x

y

1−1

x = sin y

p
2

p
2

−

y = arcsin x 
−1 ≤ x ≤ 1

−p�2 ≤ y ≤ p�2

FIGURE 1.57  The graph of 
y = arcsin x.

Since these restricted functions are now one-to-one, they have inverses, which we 
denote by

 y = sin-1 x or y = arcsin x,    y = cos-1 x or y = arccos x

 y = tan-1 x or y = arctan x,    y = cot-1 x or y = arccot x

 y = sec-1 x or  y = arcsec x,  y = csc-1 x or y = arccsc x

These equations are read “y equals the arcsine of x” or “y equals arcsin x” and so on.

Caution  The -1 in the expressions for the inverse means “inverse.” It does not mean 
reciprocal. For example, the reciprocal of sin x is (sin x)-1 = 1>sin x = csc x.�

The graphs of the six inverse trigonometric functions are obtained by reflecting the 
graphs of the restricted trigonometric functions through the line y = x. Figure 1.58b 
shows the graph of y = arcsin x and Figure 1.59 shows the graphs of all six functions. We 
now take a closer look at two of these functions.

The Arcsine and Arccosine Functions

We define the arcsine and arccosine as functions whose values are angles (measured in 
radians) that belong to restricted domains of the sine and cosine functions.

x

y

x

y

1

−1
0

0 1−1

(a)

(b)

p
2

p
2

p
2

−

p
2−

y = sin x, p
2

p
2

− ≤ x ≤

Domain:
Range:

[−p�2, p�2]
[−1, 1] 

x = sin y

y = arcsin x 

Domain:
Range:

[−1, 1] 
[−p�2, p�2]

FIGURE 1.58  The graphs of  
(a) y = sin x, -p>2 … x … p>2, and  
(b) its inverse, y = arcsin x. The graph 
of arcsin x, obtained by reflection across 
the line y = x, is a portion of the curve 
x = sin y.

x

y

0 p
2

p
2

-
sin x

- 1

1

	

0
- 1

1

p p
2

cos x

x

y

	

tan x

x

y

0 p
2

p
2

-

Domain restrictions that make the trigonometric functions one-to-one

y = sin x
Domain: 3-p>2, p>24
Range: 3-1, 14

y = cos x
Domain: 30, p4
Range: 3-1, 14

y = tan x
Domain: (-p>2, p>2)
Range: (-q, q)

y = csc x
Domain: 3-p>2, 0) ∪ (0, p>24
Range: (-q, -14 ∪ 31, q)

y = cot x
Domain: (0, p)
Range: (-q, q)

y = sec x
Domain: 30, p>2) ∪ (p>2, p4
Range: (-q, -14 ∪ 31, q)

0 p p
2

cot x

x

y

	

0

1

pp
2

sec x

x

y

- 1

	

0

1

- 1
p
2-    p

2

csc x

x

y
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The graph of y = arcsin x (Figure 1.58b) is symmetric about the origin (it lies along the 
graph of x = sin y). The arcsine is therefore an odd function:

	 arcsin (-x) = -arcsin x.� (2)

The graph of y = arccos x (Figure 1.60b) has no such symmetry.

EXAMPLE  8    Evaluate (a) arcsin a23
2 b  and (b) arccos a-1

2b .

Solution

(a)	 We see that

arcsin a23
2 b = p

3

	 because sin (p>3) = 23>2 and p>3 belongs to the range 3-p>2, p>24  of the arc-
sine function. See Figure 1.61a.

(b)	 We have

arccos a-1
2b = 2p

3

	 because cos (2p>3) = -1>2 and 2p>3 belongs to the range 30, p4  of the arccosine 
function. See Figure 1.61b.�

x

y

p
2

p
2

−

1−1

(a)

Domain:
Range:

−1 ≤ x ≤ 1
≤ y ≤p

2
−

p
2

y = arcsin x 

x

y

p

p

2

1−1

Domain:
Range:

−1 ≤ x ≤ 1
0 ≤ y ≤ p

(b)

y = arccos x 

x

y

(c)

Domain: −∞ < x < ∞
Range: < y <p

2
− p

2

1−1−2 2

p
2

p
2−

y = arctan x 

x

y

(d)

Domain:
Range:

x ≤ −1 or x ≥ 1
0 ≤ y ≤ p, y ≠

1−1−2 2

y = arcsec x 

p

p
2

p
2

x

y

Domain:
Range:

x ≤ −1 or x ≥ 1
≤ y ≤ , y ≠ 0p

2
−

p
2

(e)

1−1−2 2

p
2

p
2

−

y = arccsc x 

x

y

Domain:
Range: 0 < y < p

(f )

p

p
2

1−1−2 2

y = arccot x 

−∞ < x < ∞

FIGURE 1.59  Graphs of the six basic inverse trigonometric functions.

DEFINITION

 y = arcsin x is the number in 3-p>2, p>24   for which sin y = x.

 y = arccos x is the number in 30, p4  for which cos y = x.

The “Arc” in Arcsine and Arccosine
For a unit circle and radian angles, the arc 
length equation s = ru becomes s = u, so 
central angles and the arcs they subtend have 
the same measure. If x = sin y, then, in ad-
dition to being the angle whose sine is x, y is 
also the length of arc on the unit circle that 
subtends an angle whose sine is x. So we call y 
“the arc whose sine is x.”

Arc whose sine is x

Arc whose
cosine is x

x2 +  y2 =  1

Angle whose
sine is x

Angle whose
cosine is x

x

y

0 x 1
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Using the same procedure illustrated in Example 8, we can create the following table of 
common values for the arcsine and arccosine functions.

	 x arcsin x arccos x

	 23>2 	 p>3 	 p>6

	 22>2 	 p>4 	 p>4

	 1>2 	 p>6 	 p>3

	 -1>2 	 -p>6 	 2p>3

- 22>2 	 -p>4 	 3p>4

- 23>2 	 -p>3 	 5p>6

x

y

x

y

0 p p
2

y = cos x, 0 ≤ x ≤ p
Domain:
Range:

[0, p]
[−1, 1] 

y = arccos x 
Domain:
Range:

[−1, 1] 
[0, p]

1

−1

(a)

(b)

p

p

2

0−1 1

x = cos y

FIGURE 1.60  The graphs of  
(a) y = cos x, 0 … x … p, and  
(b) its inverse, y = arccos x. The graph 
of arccos x, obtained by reflection across 
the line y = x, is a portion of the curve 
x = cos y.

arccos

x

y

p
3

0 1

2 "3

p
3

sin = "3
2

p
3

arcsin ="3
2

(a)

a  b

0−1
x

y

"3
2

p
3
2

3
2p

−
1
2

=

3
2pcos = –1

2
(b)

a  b

FIGURE 1.61  Values of the arcsine and arccosine functions 
(Example 8).

EXAMPLE  9    During a 240 km airplane flight from Zurich to Geneva after flying 
180 km the navigator determines that the plane is 12 km off course, as shown in Figure 
1.62. Find the angle a for a course parallel to the original correct course, the angle b, and 
the drift correction angle c = a + b.

Solution  From the Pythagorean theorem and given information, we compute an approxi-
mate hypothetical flight distance of 179 km, had the plane been flying along the original 
correct course (see Figure 1.62). Knowing the flight distance from Zurich to Geneva, we next 
calculate the remaining leg of the original course to be 61 km. Applying the Pythagorean 
theorem again then gives an approximate distance of 62 km from the position of the plane to 
Geneva. Finally, from Figure 1.62, we see that 180 sin a = 12 and 62 sin b = 12, so

 a = arcsin 12
180 ≈ 0.067 radian ≈ 3.8°

 b = arcsin 12
62

≈ 0.195 radian ≈ 11.2°

	  c = a + b ≈ 15°. �

Identities Involving Arcsine and Arccosine

As we can see from Figure 1.63, the arccosine of x satisfies the identity

	 arccos x + arccos (-x) = p,� (3)

or

	 arccos (-x) = p - arccos x.� (4)

Also, we can see from the triangle in Figure 1.64 that for x 7 0,

	 arcsin x + arccos x = p>2.� (5)

Zurich

Plane position
Geneva

62
61 12

180

179

a

b

c

FIGURE 1.62  Diagram for drift  
correction (Example 9), with distances 
rounded to the nearest kilometer (drawing  
not to scale).

arccos x

x

y

0−x x−1 1

arccos(−x)

FIGURE 1.63  arccos x and arccos (-x) 
are supplementary angles (so their sum  
is p).
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Equation (5) holds for the other values of x in 3-1, 1] as well, but we cannot conclude this 
from the triangle in Figure 1.64. It is, however, a consequence of Equations (2) and (4) 
(Exercise 80).

The arctangent, arccotangent, arcsecant, and arccosecant functions are defined in Sec-
tion 3.9. There we develop additional properties of the inverse trigonometric functions 
using the identities discussed here.

arcsin x

arccos x1
x

FIGURE 1.64  arcsin x and arccos x are 
complementary angles (so their sum is p>2).

Identifying One-to-One Functions Graphically
Which of the functions graphed in Exercises 1–6 are one-to-one, and 
which are not?

	 1.	

x

y

0

y = - 3x3

	 2.	

x

y

0- 1 1

y = x4 - x2

	 3.	 y

x

y = 2 ƒx ƒ

	 4.	

x

y

y =  int x

	 5.	

x

y

0

y = 1
x

	 6.	

x

y

y = x1>3

In Exercises 7–10, determine from its graph if the function is one-to-
one.

	 7.	 ƒ(x) = e3 - x, x 6 0
3, x Ú 0

	 8.	 ƒ(x) = e2x + 6, x … -3
x + 4, x 7 -3

	 9.	 ƒ(x) = d 1 - x
2

, x … 0

x
x + 2

, x 7 0

	10.	 ƒ(x) = e2 - x2, x … 1
x2, x 7 1

Graphing Inverse Functions
Each of Exercises 11–16 shows the graph of a function y = ƒ(x). 
Copy the graph and draw in the line y = x. Then use symmetry with 
respect to the line y = x to add the graph of ƒ -1 to your sketch. (It is 
not necessary to find a formula for ƒ -1.) Identify the domain and 
range of ƒ -1.

	11.	

x

y

10

1

y = f (x) = , x Ú 01
x2 + 1

	12.	

x

y

10

1
y = f (x) = 1 - , x 7 01

x

	13.	

x

y

0 p
2

p
2-    

1

- 1

p
2

p
2

-   
y =  f (x) = sin x,

…  x …

	14.	

p
2

p
2-   

y =  f (x)  = tan x,

6 x 6

x

y

0 p
2

p
2

-    

	15.			   16.	
	 	

x

y

0

6

3

f (x) = 6 - 2x,
0 … x … 3

�

x

y

0

1

- 1 3

- 2

x + 1,   - 1 … x … 0

- 2 +    x,    0 6 x 6 3
f (x) = 2

3

	17.	 a.	� Graph the function ƒ(x) = 21 - x2, 0 … x … 1. What sym-
metry does the graph have?

b.	 Show that ƒ is its own inverse. (Remember that 2x2 = x if 
x Ú 0.)

	18.	 a.	� Graph the function ƒ(x) = 1>x. What symmetry does the 
graph have?

b.	 Show that ƒ is its own inverse.

Exercises  1.5
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Inverses of Lines

	37.	 a.	� Find the inverse of the function ƒ(x) = mx, where m is a con-
stant different from zero.

b.	 What can you conclude about the inverse of a function 
y = ƒ(x) whose graph is a line through the origin with a 
nonzero slope m?

	38.	 Show that the graph of the inverse of ƒ(x) = mx + b, where m 
and b are constants and m ≠ 0, is a line with slope 1>m and 
y-intercept -b>m.

	39.	 a.	� Find the inverse of ƒ(x) = x + 1. Graph ƒ and its inverse 
together. Add the line y = x to your sketch, drawing it with 
dashes or dots for contrast.

b.	 Find the inverse of ƒ(x) = x + b (b constant). How is the 
graph of ƒ -1 related to the graph of ƒ?

c.	 What can you conclude about the inverses of functions whose 
graphs are lines parallel to the line y = x?

	40.	 a.	� Find the inverse of ƒ(x) = -x + 1. Graph the line 
y = -x + 1 together with the line y = x. At what angle do 
the lines intersect?

b.	 Find the inverse of ƒ(x) = -x + b (b constant). What angle 
does the line y = -x + b make with the line y = x?

c.	 What can you conclude about the inverses of functions whose 
graphs are lines perpendicular to the line y = x?

Logarithms and Exponentials

	41.	  Express the following logarithms in terms of ln 2 and ln 3.

a.	 ln 0.75	 b.	 ln (4>9)

c.	 ln (1>2)	 d.	 ln23 9

e.	 ln 322	 f.	 ln 213.5

	42.	  Express the following logarithms in terms of ln 5 and ln 7.

a.	 ln (1>125)	 b.	 ln 9.8

c.	 ln 727	 d.	 ln 1225

e.	 ln 0.056	 f.	 (ln 35 + ln (1>7))>(ln 25)

Use the properties of logarithms to write the expressions in Exercises 
43 and 44 as a single term.

	43.	 a.	 ln sin u - ln asin u
5

b 	 b.	 ln (3x2 - 9x) + ln a 1
3x
b

c.	 1
2

 ln (4t4) - ln b

	44.	 a.	 ln sec u + ln cos u	 b.	 ln (8x + 4) - 2 ln c

c.	 3 ln23 t2 - 1 - ln (t + 1)

Find simpler expressions for the quantities in Exercises 45–48.

	45.	 a.	 eln 7.2	 b.	 e-ln x2
	 c.	 eln x - ln y

	46.	 a.	 eln (x2 + y2)	 b.	 e-ln 0.3	 c.	 eln px - ln 2

	47.	 a.	 2 ln 2e	 b.	 ln (ln ee)	 c.	 ln (e-x2 - y2
)

	48.	 a.	 ln (esec u)	 b.	 ln (e(ex))	 c.	 ln (e2 ln x)

In Exercises 49–54, solve for y in terms of t or x, as appropriate.

	49.	 ln y = 2t + 4	 50.	 ln y = - t + 5

	51.	 ln (y - b) = 5t	 52.	 ln (c - 2y) = t

	53.	 ln (y - 1) - ln 2 = x + ln x

	54.	 ln (y2 - 1) - ln (y + 1) = ln (sin x)

Formulas for Inverse Functions
Each of Exercises 19–24 gives a formula for a function y = ƒ(x) and 
shows the graphs of ƒ and ƒ -1. Find a formula for ƒ -1 in each case.

	19.	 ƒ(x) = x2 + 1, x Ú 0	 20.	  ƒ(x) = x2, x … 0

x

y

1

10

y = f (x)

y = f -1(x)

	 	

x

y

1

10

y = f -1(x)

y = f (x)

	21.	 ƒ(x) = x3 - 1	 22.	  ƒ(x) = x2 - 2x + 1, x Ú 1

x

y

1

1- 1

- 1

y = f (x)

y = f -1(x)

	 	

x

y

1

10

y = f (x)

y = f -1(x)

	23.	 ƒ(x) = (x + 1)2, x Ú -1	 24.	 ƒ(x) = x2>3, x Ú 0

x

y

0

1

- 1
1- 1

y = f (x)

y = f -1(x)

	 	

x

y

0

1

1

y = f -1(x)

y = f (x)

Each of Exercises 25–36 gives a formula for a function y = ƒ(x). In 
each case, find ƒ -1(x) and identify the domain and range of ƒ -1. As a 
check, show that ƒ(ƒ -1(x)) = ƒ -1(ƒ(x)) = x.

	25.	 ƒ(x) = x5	 26.	 ƒ(x) = x4, x Ú 0

	27.	 ƒ(x) = x3 + 1	 28.	 ƒ(x) = (1>2)x - 7>2

	29.	 ƒ(x) = 1>x2, x 7 0	 30.	 ƒ(x) = 1>x3, x ≠ 0

	31.	 ƒ(x) = x + 3
x - 2

	 32.	 ƒ(x) = 2x2x - 3

	33.	 ƒ(x) = x2 - 2x, x … 1	 34.	 ƒ(x) = (2x3 + 1)1>5

(Hint: Complete the square.)

	35.	 ƒ(x) = x + b
x - 2

, b 7 -2 and constant

	36.	 ƒ(x) = x2 - 2bx, b 7 0 and constant, x … b
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66	 Chapter 1  Functions

	78.	 If a composition ƒ ∘ g is one-to-one, must g be one-to-one? Give 
reasons for your answer.

	79.	 Find a formula for the inverse function ƒ -1 and verify that 
(ƒ ∘ ƒ -1)(x) = (ƒ -1 ∘ ƒ)(x) = x.

a.	 ƒ(x) = 100
1 + 2-x	 b.	 ƒ(x) = 50

1 + 1.1-x

c.	 ƒ(x) = ex - 1
ex + 1

	 d.	 ƒ(x) = ln x
2 - ln x

	80.	 The identity sin− 1 x + cos− 1 x = P ,2  Figure 1.64 estab-
lishes the identity for 0 6 x 6 1. To establish it for the rest of 
3-1, 1], verify by direct calculation that it holds for x = 1, 0, 
and -1. Then, for values of x in (-1, 0), let x = -a, a 7 0, and 
apply Eqs. (3) and (5) to the sum sin-1 (-a) + cos-1 (-a).

	81.	 Start with the graph of y = ln x. Find an equation of the graph 
that results from

a.	 shifting down 3 units.

b.	 shifting right 1 unit.

c.	 shifting left 1, up 3 units.

d.	 shifting down 4, right 2 units.

e.	 reflecting about the y-axis.

f.	 reflecting about the line y = x.

	82.	 Start with the graph of y = ln x. Find an equation of the graph 
that results from

a.	 vertical stretching by a factor of 2.

b.	 horizontal stretching by a factor of 3.

c.	 vertical compression by a factor of 4.

d.	 horizontal compression by a factor of 2.

	83.	 The equation x2 = 2x has three solutions: x = 2, x = 4, and one 
other. Estimate the third solution as accurately as you can by 
graphing.

	84.	 Could xln 2 possibly be the same as 2ln x for x 7 0? Graph the 
two functions and explain what you see.

	85.	 Radioactive decay  The half-life of a certain radioactive sub-
stance is 12 hours. There are 8 grams present initially.

a.	 Express the amount of substance remaining as a function of 
time t.

b.	 When will there be 1 gram remaining?

	86.	 Doubling your money  Determine how much time is required 
for a $500 investment to double in value if interest is earned at the 
rate of 4.75% compounded annually.

	87.	 Population growth  The population of Glenbrook is 375,000 
and is increasing at the rate of 2.25% per year. Predict when the 
population will be 1 million.

	88.	 Radon-222  The decay equation for radon-222 gas is known to 
be y = y0 e-0.18t, with t in days. About how long will it take the 
radon in a sealed sample of air to fall to 90% of its original value?

In Exercises 55 and 56, solve for k.

	55.	 a.	 e2k = 4	 b.	 100e10k = 200	 c.	 ek>1000 = a

	56.	 a.	 e5k = 1
4

	 b.	 80ek = 1	 c.	 e(ln 0.8)k = 0.8

In Exercises 57–64, solve for t.

	57.	 a.	 e-0.3t = 27	 b.	 ekt = 1
2

	 c.	 e(ln 0.2)t = 0.4

	58.	 a.	 e-0.01t = 1000	 b.	 ekt = 1
10

	 c.	 e(ln 2)t = 1
2

	59.	 e2t = x2	 60.	 e(x2)e(2x + 1) = et

	61.	 e2t - 3et = 0	 62.	 e- 2t + 6 = 5e- t

	63.	 lna t
t - 1

b = 2	 64.	 ln(t - 2) = ln 8 - ln t

Simplify the expressions in Exercises 65–68.

	65.	 a.	 5log5 7	 b.	 8log822	 c.	 1.3log1.3 75

d.	 log4 16	 e.	 log323	 f.	 log4 a1
4
b

	66.	 a.	 2log2 3	 b.	 10log10 (1>2)	 c.	 plogp 7

d.	 log11 121	 e.	 log121 11	 f.	 log3 a1
9
b

	67.	 a.	 2log4 x	 b.	 9log3 x	 c.	 log2 (e(ln 2)(sin x))

	68.	 a.	 25log5 (3x2)	 b.	 loge (ex)	 c.	 log4 (2ex sin x)

Express the ratios in Exercises 69 and 70 as ratios of natural loga-
rithms and simplify.

	69.	 a.	
log2 x
log3 x

	 b.	
log2 x
log8 x

	 c.	
logx a
logx2 a

	70.	 a.	
log9 x
log3 x

	 b.	
log210  x
log22  x

	 c.	
loga b
logb a

Arcsine and Arccosine
In Exercises 71–74, find the exact value of each expression.

	71.	 a.	 sin-1 a-1
2
b 	 b.	 sin-1 a 122

 b 	 c.	 sin-1 a- 23
2

 b

	72.	 a.	 cos-1 a1
2
b 	 b.	 cos-1 a -122

 b 	 c.	 cos-1 a23
2

 b

	73.	 a.	 arccos (-1)	 b.	 arccos (0)

	74.	 a.	 arcsin (-1)	 b.	 arcsin a-  
122

 b

Theory and Examples

	75.	 If ƒ(x) is one-to-one, can anything be said about g(x) = -ƒ(x)? Is 
it also one-to-one? Give reasons for your answer.

	76.	 If ƒ(x) is one-to-one and ƒ(x) is never zero, can anything be said 
about h(x) = 1>ƒ(x)? Is it also one-to-one? Give reasons for your 
answer.

	77.	 Suppose that the range of g lies in the domain of ƒ so that the 
composition ƒ ∘ g is defined. If ƒ and g are one-to-one, can any-
thing be said about ƒ ∘ g? Give reasons for your answer.
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	 Chapter 1  Practice Exercises	 67

	 1.	 What is a function? What is its domain? Its range? What is an ar-
row diagram for a function? Give examples.

	 2.	 What is the graph of a real-valued function of a real variable? 
What is the vertical line test?

	 3.	 What is a piecewise-defined function? Give examples.

	 4.	 What are the important types of functions frequently encountered 
in calculus? Give an example of each type.

	 5.	 What is meant by an increasing function? A decreasing function? 
Give an example of each.

	 6.	 What is an even function? An odd function? What symmetry prop-
erties do the graphs of such functions have? What advantage can 
we take of this? Give an example of a function that is neither even 
nor odd.

	 7.	 If ƒ and g are real-valued functions, how are the domains of 
ƒ + g, ƒ - g, ƒg, and ƒ>g related to the domains of ƒ and g? 
Give examples.

	 8.	 When is it possible to compose one function with another? Give 
examples of compositions and their values at various points. Does 
the order in which functions are composed ever matter?

	 9.	 How do you change the equation y = ƒ(x) to shift its graph verti-
cally up or down by � k �   units? Horizontally to the left or right? 
Give examples.

	10.	 How do you change the equation y = ƒ(x) to compress or stretch 
the graph by a factor c 7 1? Reflect the graph across a coordinate 
axis? Give examples.

	11.	 What is radian measure? How do you convert from radians to de-
grees? Degrees to radians?

	12.	 Graph the six basic trigonometric functions. What symmetries do 
the graphs have?

	13.	 What is a periodic function? Give examples. What are the periods 
of the six basic trigonometric functions?

	14.	 Starting with the identity sin2 u + cos2 u = 1 and the formulas 
for cos (A + B) and sin (A + B), show how a variety of other 
trigonometric identities may be derived.

	15.	 How does the formula for the general sine function ƒ(x) =
A sin ((2p>B)(x - C)) + D relate to the shifting, stretching, 
compressing, and reflection of its graph? Give examples. Graph 
the general sine curve and identify the constants A, B, C, and D.

	16.	 Name three issues that arise when functions are graphed using a 
calculator or computer with graphing software. Give examples.

	17.	 What is an exponential function? Give examples. What laws of 
exponents does it obey? How does it differ from a simple power 
function like ƒ(x) = xn? What kind of real-world phenomena are 
modeled by exponential functions?

	18.	 What is the number e, and how is it defined? What are the domain 
and range of ƒ(x) = ex? What does its graph look like? How do 
the values of ex relate to x2, x3, and so on?

	19.	 What functions have inverses? How do you know if two functions 
ƒ and g are inverses of one another? Give examples of functions 
that are (are not) inverses of one another.

	20.	 How are the domains, ranges, and graphs of functions and their 
inverses related? Give an example.

	21.	 What procedure can you sometimes use to express the inverse of a 
function of x as a function of x?

	22.	 What is a logarithmic function? What properties does it satisfy? 
What is the natural logarithm function? What are the domain and 
range of y = ln x? What does its graph look like?

	23.	 How is the graph of loga x related to the graph of ln x? What truth 
is in the statement that there is really only one exponential func-
tion and one logarithmic function?

	24.	 How are the inverse trigonometric functions defined? How can 
you sometimes use right triangles to find values of these func-
tions? Give examples.

Chapter 1 Questions to Guide Your Review

Functions and Graphs

	 1.	 Express the area and circumference of a circle as functions of the 
circle’s radius. Then express the area as a function of the circum-
ference.

	 2.	 Express the radius of a sphere as a function of the sphere’s surface 
area. Then express the surface area as a function of the volume.

	 3.	 A point P in the first quadrant lies on the parabola y = x2. Express 
the coordinates of P as functions of the angle of inclination of the 
line joining P to the origin.

	 4.	 A hot-air balloon rising straight up from a level field is tracked by 
a range finder located 500 m from the point of liftoff. Express the 
balloon’s height as a function of the angle the line from the range 
finder to the balloon makes with the ground.

In Exercises 5–8, determine whether the graph of the function is sym-
metric about the y-axis, the origin, or neither.

	 5.	 y = x1>5	 6.	 y = x2>5

	 7.	 y = x2 - 2x - 1	 8.	 y = e-x2

In Exercises 9–16, determine whether the function is even, odd, or 
neither.

	 9.	 y = x2 + 1	 10.	 y = x5 - x3 - x

	11.	 y = 1 - cos x	 12.	 y = sec x tan x

	13.	 y = x4 + 1
x3 - 2x

	 14.	 y = x - sin x

	15.	 y = x + cos x	 16.	 y = x cos x

Chapter 1 Practice Exercises
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68	 Chapter 1  Functions

In Exercises 41 and 42, (a) write formulas for ƒ ∘ g and g ∘ ƒ and find 
the (b) domain and (c) range of each.

	41.	 ƒ(x) = 2 - x2,  g(x) = 2x + 2

	42.	 ƒ(x) = 2x,  g(x) = 21 - x

For Exercises 43 and 44, sketch the graphs of ƒ and ƒ ∘ ƒ.

	43.	 ƒ(x) = c -x - 2, -4 … x … -1
-1, -1 6 x … 1
x - 2, 1 6 x … 2

	44.	 ƒ(x) = b x + 1, -2 … x 6 0
x - 1, 0 … x … 2

Composition with absolute values  In Exercises 45–52, graph ƒ1 
and ƒ2 together. Then describe how applying the absolute value func-
tion in ƒ2 affects the graph of ƒ1.

ƒ1(x) ƒ2(x)

	45.	 x 	0 x 0
	46.	 x2 	0 x 0 2
	47.	 x3 	0 x3 0
	48.	 x2 + x 	0 x2 + x 0
	49.	 4 - x2 	0 4 - x2 0
	50.	 1

x 	 1
0 x 0

	51.	 2x 	3 0 x 0
	52.	 sin x 	sin 0 x 0
Shifting and Scaling Graphs

	53.	 Suppose the graph of g is given. Write equations for the graphs 
that are obtained from the graph of g by shifting, scaling, or re-
flecting, as indicated.

a.	 Up 
1
2

 unit, right 3

b.	 Down 2 units, left 
2
3

c.	 Reflect about the y-axis

d.	 Reflect about the x-axis

e.	 Stretch vertically by a factor of 5

f.	 Compress horizontally by a factor of 5

	54.	 Describe how each graph is obtained from the graph of y = ƒ(x).

a.	 y = ƒ(x - 5)	 b.	 y = ƒ(4x)

c.	 y = ƒ(-3x)	 d.	 y = ƒ(2x + 1)

e.	 y = ƒax
3
b - 4	 f.	 y = -3ƒ(x) + 1

4

In Exercises 55–58, graph each function, not by plotting points, but by 
starting with the graph of one of the standard functions presented in 
Figures 1.15–1.17, and applying an appropriate transformation.

	55.	 y = - A1 + x
2

	 56.	 y = 1 - x
3

	57.	 y = 1
2x2 + 1	 58.	 y = (-5x)1>3

	17.	 Suppose that ƒ and g are both odd functions defined on the entire 
real line. Which of the following (where defined) are even? odd?

a.	 ƒg    b.  ƒ3    c.  ƒ(sin x)    d.  g(sec x)    e.  0 g 0
	18.	 If ƒ(a - x) = ƒ(a + x), show that g(x) = ƒ(x + a) is an even 

function.

In Exercises 19–32, find the (a) domain and (b) range.

	19.	 y = � x � - 2	 20.	 y = -2 + 21 - x

	21.	 y = 216 - x2	 22.	 y = 32 - x + 1

	23.	 y = 2e-x - 3	 24.	 y = tan (2x - p)

	25.	 y = 2 sin (3x + p) - 1	 26.	 y = x2>5

	27.	 y = ln (x - 3) + 1	 28.	 y = -1 + 23 2 - x

	29.	 y = 5 - 2x2 - 2x - 3	 30.	 y = 2 + 3x2

x2 + 4
	31.	 y = 4 sin a1

xb 	 32.	 y = 3 cos x + 4 sin x
			�   (Hint: A trig identity is  

required.)

	33.	 State whether each function is increasing, decreasing, or neither.

a.	 Volume of a sphere as a function of its radius

b.	 Greatest integer function

c.	 Height above Earth’s sea level as a function of atmospheric 
pressure (assumed nonzero)

d.	 Kinetic energy as a function of a particle’s velocity

	34.	 Find the largest interval on which the given function is increasing.

a.	 ƒ(x) = 0 x - 2 0 + 1	 b.	 ƒ(x) = (x + 1)4

c.	 g(x) = (3x - 1)1>3	 d.	 R(x) = 22x - 1

Piecewise-Defined Functions

In Exercises 35 and 36, find the (a) domain and (b) range.

	35.	 y = e 2-x, -4 … x … 02x, 0 6 x … 4

	36.	 y = c -x - 2, -2 … x … -1
  x, -1 6 x … 1
-x + 2, 1 6 x … 2

In Exercises 37 and 38, write a piecewise formula for the function.

	37.	

x

1

10 2

y 	 38.	

x

5
(2, 5)

0 4

y

Composition of Functions

In Exercises 39 and 40, find

a.	 (ƒ ∘ g) (-1).	 b.	 (g ∘ ƒ) (2).

c.	 (ƒ ∘ ƒ) (x).	 d.	 (g ∘ g) (x).

	39.	 ƒ(x) = 1
x,  g(x) = 12x + 2

	40.	 ƒ(x) = 2 - x,  g(x) = 23 x + 1

M01_HASS9020_14_SE_C01.indd   68 19/10/2018   18:50
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	74.	 a.	 ƒ(x) = e1>x2
	 b.	 g(x) = ln 0 4 - x2 0

	75.	 a.	 h(x) = sin-1ax
3
b 	 b.	 ƒ(x) = cos-1 (2x - 1)

	76.	 a.	 h(x) = ln (cos-1 x)	 b.	 ƒ(x) = 2p - sin-1x

	77.	 If ƒ(x) = ln x and g(x) = 4 - x2, find the functions 
ƒ ∘ g, g ∘ ƒ, ƒ ∘ ƒ, g ∘ g, and their domains.

	78.	 Determine whether ƒ is even, odd, or neither.

a.	 ƒ(x) = e-x2
	 b.	 ƒ(x) = 1 + sin-1(-x)

c.	 ƒ(x) = 0 ex 0 	 d.	 ƒ(x) = eln �x� + 1

	79.	 Graph ln x, ln 2x, ln 4x, ln 8x, and ln 16x (as many as you can) 
together for 0 6 x … 10. What is going on? Explain.

	80.	 Graph y = ln (x2 + c) for c = -4, -2, 0, 3, and 5. How does the 
graph change when c changes?

	81.	 Graph y = ln � sin x �  in the window 0 … x … 22, -2 … y … 0. 
Explain what you see. How could you change the formula to turn 
the arches upside down?

	82.	 Graph the three functions y = xa, y = ax, and y = loga x to
gether on the same screen for a = 2, 10, and 20. For large values 
of x, which of these functions has the largest values and which has 
the smallest values?

Theory and Examples

In Exercises 83 and 84, find the domain and range of each compos-
ite function. Then graph the compositions on separate screens. Do the 
graphs make sense in each case? Give reasons for your answers and 
comment on any differences you see.

	83.	 a.	 y = sin-1(sin x)	 b.	 y = sin (sin-1 x)

	84.	 a.	 y = cos-1(cos x)	 b.	 y = cos (cos-1 x)

	85.	 Use a graph to decide whether ƒ is one-to-one.

a.	 ƒ(x) = x3 - x
2

	 b.	 ƒ(x) = x3 + x
2

	86.	 Use a graph to find to 3 decimal places the values of x for which 
ex 7 10,000,000.

	87.	 a.	� Show that ƒ(x) = x3 and g(x) = 23 x are inverses of one 
another.

b.	 Graph ƒ and g over an x-interval large enough to show the 
graphs intersecting at (1, 1) and (-1, -1). Be sure the picture 
shows the required symmetry in the line y = x.

	88.	 a.	� Show that h(x) = x3>4 and k(x) = (4x)1>3 are inverses of one 
another.

b.	 Graph h and k over an x-interval large enough to show the 
graphs intersecting at (2, 2) and (-2, -2). Be sure the picture 
shows the required symmetry in the line y = x.

T

T

T

T

T

T

T

Trigonometry

In Exercises59–62, sketch the graph of the given function. What is the 
period of the function?

	59.	 y = cos 2x	 60.	 y = sin 
x
2

	61.	 y = sin px	 62.	 y = cos 
px
2

	63.	 Sketch the graph y = 2 cos ax - p

3
b .

	64.	 Sketch the graph y = 1 + sin ax + p

4
b .

In Exercises 65–68, ABC is a right triangle with the right angle at C. 
The sides opposite angles A, B, and C are a, b, and c, respectively.

	65.	 a.	 Find a and b if c = 2, B = p>3.

b.	 Find a and c if b = 2, B = p>3.

	66.	 a.	 Express a in terms of A and c.

b.	 Express a in terms of A and b.

	67.	 a.	 Express a in terms of B and b.

b.	 Express c in terms of A and a.

	68.	 a.	 Express sin A in terms of a and c.

b.	 Express sin A in terms of b and c.

	69.	 Height of a pole  Two wires stretch from the top T of a vertical 
pole to points B and C on the ground, where C is 10 m closer to 
the base of the pole than is B. If wire BT makes an angle of 35° 
with the horizontal and wire CT makes an angle of 50° with the 
horizontal, how high is the pole?

	70.	 Height of a weather balloon  Observers at positions A and B 
2 km apart simultaneously measure the angle of elevation of a 
weather balloon to be 40° and 70°, respectively. If the balloon is 
directly above a point on the line segment between A and B, find 
the height of the balloon.

	71.	 a.	� Graph the function ƒ(x) = sin x + cos(x>2).

b.	 What appears to be the period of this function?

c.	 Confirm your finding in part (b) algebraically.

	72.	 a.	� Graph ƒ(x) = sin (1>x).

b.	 What are the domain and range of ƒ?

c.	 Is ƒ periodic? Give reasons for your answer.

Transcendental Functions

In Exercises  73–76, find the domain of each function.

	73.	 a.	 ƒ(x) = 1 + e-sin x	 b.	 g(x) = ex + ln 2x

T

T

Functions and Graphs

	 1.	 Are there two functions ƒ and g such that ƒ ∘ g = g ∘ ƒ? Give rea-
sons for your answer.

	 2.	 Are there two functions ƒ and g with the following property? The 
graphs of ƒ and g are not straight lines but the graph of ƒ ∘ g is a 
straight line. Give reasons for your answer.

	 3.	 If ƒ(x) is odd, can anything be said of g(x) = ƒ(x) - 2? What if ƒ 
is even instead? Give reasons for your answer.

	 4.	 If g(x) is an odd function defined for all values of x, can anything 
be said about g(0)? Give reasons for your answer.

	 5.	 Graph the equation 0 x 0 + 0 y 0 = 1 + x.

	 6.	 Graph the equation y + � y � = x + � x � .

Chapter 1 Additional and Advanced Exercises
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70	 Chapter 1  Functions

Geometry

	15.	 An object’s center of mass moves at a constant velocity y along a 
straight line past the origin. The accompanying figure shows the 
coordinate system and the line of motion. The dots show positions 
that are 1 second apart. Why are the areas A1, A2, c, A5 in the 
figure all equal? As in Kepler’s equal area law (see Section 12.6), 
the line that joins the object’s center of mass to the origin sweeps 
out equal areas in equal times.

x
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	16.	 a.	� Find the slope of the line from the origin to the midpoint P of 
side AB in the triangle in the accompanying figure (a, b 7 0).

x

y

P

B(0, b)

A(a, 0)O

b.	 When is OP perpendicular to AB?

	17.	 Consider the quarter-circle of radius 1 and right triangles ABE and 
ACD given in the accompanying figure. Use standard area formu-
las to conclude that

1
2

 sin u cos u 6 u

2
6 1

2
 
sin u
cos u

.

x

y

B

E

C(0, 1)

A (1, 0)
D

1

u

	18.	 Let ƒ(x) = ax + b and g(x) = cx + d. What condition must 
be satisfied by the constants a, b, c, d in order that (ƒ ∘ g)(x) =
(g ∘ ƒ)(x) for every value of x?

Derivations and Proofs

	 7.	 Prove the following identities.

a.	
1 - cos x

sin x
= sin x

1 + cos x
	 b.	

1 - cos x
1 + cos x

= tan2 
x
2

	 8.	 Explain the following “proof without words” of the law of cosines. 
(Source: Kung, Sidney H., “Proof Without Words: The Law of Co-
sines,” Mathematics Magazine, Vol. 63, no. 5, Dec. 1990, p. 342.)

a a

a

c b

a - c
2a cos u - b

u

	 9.	 Show that the area of triangle ABC is given by 
(1>2)ab sin C = (1>2)bc sin A = (1>2)ca sin B.

BA

C

ab

c

	10.	 Show that the area of triangle ABC is given by 2s(s - a)(s - b)(s - c) where s = (a + b + c)>2 is the 
semiperimeter of the triangle.

	11.	 Show that if ƒ is both even and odd, then ƒ(x) = 0 for every x in 
the domain of ƒ.

	12.	 a.	 �Even-odd decompositions   Let ƒ be a function whose do-
main is symmetric about the origin, that is, -x belongs to the 
domain whenever x does. Show that ƒ is the sum of an even 
function and an odd function:

ƒ(x) = E(x) + O(x),

	 where E is an even function and O is an odd function. (Hint: 
Let E(x) = (ƒ(x) + ƒ(-x))>2. Show that E(-x) = E(x), so 
that E is even. Then show that O(x) = ƒ(x) - E(x) is odd.)

b.	 Uniqueness  Show that there is only one way to write ƒ as 
the sum of an even and an odd function. (Hint: One way is 
given in part (a). If also ƒ(x) = E1(x) + O1(x) where E1 is 
even and O1 is odd, show that E - E1 = O1 - O. Then use 
Exercise 11 to show that E = E1 and O = O1.)

Effects of Parameters on Graphs

	13.	 What happens to the graph of y = ax2 + bx + c as

a.	 a changes while b and c remain fixed?

b.	 b changes (a and c fixed, a ≠ 0)?

c.	 c changes (a and b fixed, a ≠ 0)?

	14.	 What happens to the graph of y = a(x + b)3 + c as

a.	 a changes while b and c remain fixed?

b.	 b changes (a and c fixed, a ≠ 0)?

c.	 c changes (a and b fixed, a ≠ 0)?

T

T
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	23.	 Finding investment time  If Juanita invests $1500 in a retire-
ment account that earns 8% compounded annually, how long will 
it take this single payment to grow to $5000?

	24.	 The rule of 70  If you use the approximation ln 2 ≈ 0.70 (in 
place of 0.69314c), you can derive a rule of thumb that says, 
“To estimate how many years it will take an amount of money to 
double when invested at r percent compounded continuously, di-
vide r into 70.” For instance, an amount of money invested at 5% 
will double in about 70>5 = 14 years. If you want it to double in 
10 years instead, you have to invest it at 70>10 = 7%. Show how 
the rule of 70 is derived. (A similar “rule of 72” uses 72 instead of 
70, because 72 has more integer factors.)

	25.	 For what x 7 0 does x(xx) = (xx)x? Give reasons for your answer.

	26.	 a.	 If (ln x)>x = (ln 2)>2, must x = 2?

b.	 If (ln x)>x = -2 ln 2, must x = 1>2?

Give reasons for your answers.

	27.	 The quotient (log4 x)>(log2 x) has a constant value. What value? 
Give reasons for your answer.

	28.	 logx (2)  vs. log2 (x)   How does ƒ(x) = logx (2) compare with 
g(x) = log2 (x)? Here is one way to find out.

a.	 Use the equation loga b = (ln b)>(ln a) to express ƒ(x) and 
g(x) in terms of natural logarithms.

b.	 Graph ƒ and g together. Comment on the behavior of ƒ in 
relation to the signs and values of g.

T

T

Theory and Examples

	19.	 Domain and range  Suppose that a ≠ 0, b ≠ 1, and b 7 0. 
Determine the domain and range of the function.

a.	 y = a(bc - x) + d 	 b.	 y = a logb(x - c) + d

	20.	 Inverse functions  Let

ƒ(x) = ax + b
cx + d

,    c ≠ 0,    ad - bc ≠ 0.

a.	 Give a convincing argument that ƒ is one-to-one.

b.	 Find a formula for the inverse of ƒ.

	21.	 Depreciation  Smith Hauling purchased an 18-wheel truck for 
$100,000. The truck depreciates at the constant rate of $10,000 per 
year for 10 years.

a.	 Write an expression that gives the value y after x years.

b.	 When is the value of the truck $55,000?

	22.	 Drug absorption  A drug is administered intravenously for pain. 
The function

ƒ(t) = 90 - 52 ln (1 + t),    0 … t … 4

gives the number of units of the drug remaining in the body after 
t hours.

a.	 What was the initial number of units of the drug adminis-
tered?

b.	 How much is present after 2 hours?

c.	 Draw the graph of ƒ.

Mathematica/Maple Projects

Projects can be found within MyLab Math.

•	 An Overview of Mathematica
An overview of Mathematica sufficient to complete the Mathematica modules appearing on the Web site.

•	 Modeling Change: Springs, Driving Safety, Radioactivity, Trees, Fish, and Mammals
Construct and interpret mathematical models, analyze and improve them, and make predictions using them.

Chapter 1 Technology Application Projects
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OVERVIEW  In this chapter we develop the concept of a limit, first intuitively and then 
formally. We use limits to describe the way a function varies. Some functions vary contin-
uously; small changes in x produce only small changes in ƒ(x). Other functions can have 
values that jump, vary erratically, or tend to increase or decrease without bound. The 
notion of limit gives a precise way to distinguish among these behaviors.

2.1	 Rates of Change and Tangent Lines to Curves

Average and Instantaneous Speed

In the late sixteenth century, Galileo discovered that a solid object dropped from rest 
(initially not moving) near the surface of the earth and allowed to fall freely will fall a 
distance proportional to the square of the time it has been falling. This type of motion is 
called free fall. It assumes negligible air resistance to slow the object down, and that 
gravity is the only force acting on the falling object. If y denotes the distance fallen in 
meters after t seconds, then Galileo’s law is

y = 4.9t2 m,

where 4.9 is the (approximate) constant of proportionality. 
More generally, suppose that a moving object has traveled distance ƒ(t) at time t. The 

object’s average speed during an interval of time 3 t1, t24  is found by dividing the distance 
traveled ƒ(t2) - ƒ(t1) by the time elapsed t2 - t1. The unit of measure is length per unit 
time: kilometers per hour, or whatever is appropriate to the problem at hand.

Limits and Continuity

2

HISTORICAL BIOGRAPHY

Galileo Galilei
(1564–1642)
bit.ly/2OpdNBs

Average Speed
When ƒ(t) measures the distance traveled at time t,

Average speed over 3 t1, t24 = distance traveled
elapsed time

=
ƒ(t2) - ƒ(t1)

t2 - t1

EXAMPLE  1    A rock breaks loose from the top of a tall cliff. What is its average 
speed

(a)	 during the first 2 seconds of fall?

(b)	 during the 1-second interval between second 1 and second 2?
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Solution  The average speed of the rock during a given time interval is the change in 
distance, ∆y, divided by the length of the time interval, ∆t. (Increments like ∆y and ∆t 
are reviewed in Appendix 4, and pronounced “delta y” and “delta t.”) Measuring distance 
in meters and time in seconds, we have the following calculations:

(a)	 For the first 2 seconds:	
∆y
∆t

=
4.9(2)2 - 4.9(0)2

2 - 0 = 9.8 ms

(b)	 From second 1 to second 2:	
∆y
∆t

=
4.9(2)2 - 4.9(1)2

2 - 1 = 14.7 ms 	

We want a way to determine the speed of a falling object at a single instant t0, instead 
of using its average speed over an interval of time. To do this, we examine what happens 
when we calculate the average speed over shorter and shorter time intervals starting at t0. 
The next example illustrates this process. Our discussion is informal here but will be made 
precise in Chapter 3.

EXAMPLE  2    Find the speed of the falling rock in Example 1 at t = 1 and t = 2 s.

Solution  We can calculate the average speed of the rock over a time interval 3 t0, t0 + h4 , 
having length ∆t = h, as

	
∆y
∆t

=
4.9(t0 + h)2 - 4.9t0 

2

h
.	 (1)

We cannot use this formula to calculate the “instantaneous” speed at the exact moment t0 
by simply substituting h = 0, because we cannot divide by zero. But we can use it to 
calculate average speeds over increasingly short time intervals starting at t0 = 1 and 
t0 = 2. When we do so, by taking smaller and smaller values of h, we see a pattern  
(Table 2.1).

The average speed on intervals starting at t0 = 1 seems to approach a limiting value of 
9.8 as the length of the interval decreases. This suggests that the rock is falling at a speed 
of 9.8 m>s at t0 = 1 s. Let’s confirm this algebraically.

TABLE 2.1  Average speeds over short time intervals  3t0, t0 + h 4

Average speed: 
∆y
∆t

=
4.9(t0 + h)2 - 4.9t0 

2

h

Length of  
time interval  
h

Average speed over  
interval of length h 
starting at t0 = 1

Average speed over  
interval of length h  
starting at t0 = 2

1 14.7 24.5

0.1 10.29 20.09

0.01 9.849 19.649

0.001 9.8049 19.6049

0.0001 9.80049 19.60049

∆  is the capital Greek letter Delta
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74	 Chapter 2  Limits and Continuity

If we set t0 = 1 and then expand the numerator in Equation (1) and simplify, we find that

 
∆y
∆t

=
4.9(1 + h)2 - 4.9(1)2

h
=

4.9(1 + 2h + h2) - 4.9
h

= 9.8h + 4.9h2

h
= 9.8 + 4.9h.

For values of h different from 0, the expressions on the right and left are equivalent and the 
average speed is 9.8 + 4.9h m>s. We can now see why the average speed has the limiting 
value 9.8 + 4.9(0) = 9.8 m>s as h approaches 0.

Similarly, setting t0 = 2 in Equation (1), the procedure yields

∆y
∆t

= 19.6 + 4.9h

for values of h different from 0. As h gets closer and closer to 0, the average speed has the 
limiting value 19.6 m > s when t0 = 2 s, as suggested by Table 2.1.	

The average speed of a falling object is an example of a more general idea, an average 
rate of change.

Average Rates of Change and Secant Lines

Given any function y = ƒ(x), we calculate the average rate of change of y with respect to 
x over the interval [x1, x2] by dividing the change in the value of y, ∆y = ƒ(x2) - ƒ(x1), 
by the length ∆x = x2 - x1 = h of the interval over which the change occurs. (We use 
the symbol h for ∆x to simplify the notation here and later on.)

DEFINITION  The average rate of change of y = ƒ(x) with respect to x over 
the interval 3x1, x24  is

∆y
∆x

=
ƒ(x2) - ƒ(x1)

x2 - x1
=

ƒ(x1 + h) - ƒ(x1)
h

,  h ≠ 0.

Geometrically, the rate of change of ƒ over 3x1, x24  is the slope of the line through the 
points P(x1, ƒ(x1)) and Q(x2, ƒ(x2)) (Figure 2.1). In geometry, a line joining two points of a 
curve is called a secant line. Thus, the average rate of change of ƒ from x1 to x2 is identi-
cal with the slope of secant line PQ. As the point Q approaches the point P along the 
curve, the length h of the interval over which the change occurs approaches zero. We will 
see that this procedure leads to the definition of the slope of a curve at a point.

Defining the Slope of a Curve

We know what is meant by the slope of a straight line, which tells us the rate at which it 
rises or falls—its rate of change as a linear function. But what is meant by the slope of a 
curve at a point P on the curve? If there is a tangent line to the curve at P—a line that 
grazes the curve like the tangent line to a circle—it would be reasonable to identify the 
slope of the tangent line as the slope of the curve at P. We will see that, among all the lines 
that pass through the point P, the tangent line is the one that gives the best approximation 
to the curve at P. We need a precise way to specify the tangent line at a point on a curve.

Specifying a tangent line to a circle is straightforward. A line L is tangent to a circle at 
a point P if L passes through P and is perpendicular to the radius at P (Figure 2.2). But 
what does it mean to say that a line L is tangent to a more general curve at a point P?

y

x
0

Secant

P(x1, f (x1))

Q(x2, f (x2))

≤x = h

≤y

x2x1

y = f (x)

FIGURE 2.1  A secant to the graph 
y = ƒ(x). Its slope is ∆y>∆x, the  
average rate of change of ƒ over the  
interval 3x1, x24 .

P

L

O

FIGURE 2.2  L is tangent to the circle at 
P if it passes through P perpendicular to 
radius OP.
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P

Q
Secant Lines

P

Tangent Line

Tangent Line

Q

Secant Lines

FIGURE 2.3  The tangent line to the curve at P is the line through P whose slope is the limit 
of the secant line slopes as Q S P from either side.

To define tangency for general curves, we use an approach that analyzes the behavior 
of the secant lines that pass through P and nearby points Q as Q moves toward P along the 
curve (Figure 2.3). We start with what we can calculate, namely the slope of the secant 
line PQ. We then compute the limiting value of the secant line’s slope as Q approaches P 
along the curve. (We clarify the limit idea in the next section.) If the limit exists, we take it 
to be the slope of the curve at P and define the tangent line to the curve at P to be the line 
through P with this slope.

The next example illustrates the geometric idea for finding the tangent line to a curve.

x

y

0 2

NOT TO SCALE

Tangent line slope = 4

Δy = (2 + h)2 − 4

y = x2

Q(2 + h, (2 + h)2)

Δx = h

2 + h

P(2, 4)

Secant line slope is = h + 4.(2 + h)2 − 4
h

FIGURE 2.4  Finding the slope of the parabola y = x2 at the point P(2, 4) as the 
limit of secant line slopes (Example 3).

HISTORICAL BIOGRAPHY

Pierre de Fermat
(1601–1665)
bit.ly/2NRJEeC

EXAMPLE  3    Find the slope of the tangent line to the parabola y = x2 at the point 
(2, 4) by analyzing the slopes of secant lines through (2, 4). Write an equation for the  
tangent line to the parabola at this point.

Solution  We begin with a secant line through P(2, 4) and a nearby point 
Q(2 + h, (2 + h)2). We then write an expression for the slope of the secant line PQ and 
investigate what happens to the slope as Q approaches P along the curve:

 Secant line slope =
∆y
∆x

=
(2 + h)2 - 22

h
= h2 + 4h + 4 - 4

h

 = h2 + 4h
h

= h + 4.

If h 7 0, then Q lies above and to the right of P, as in Figure 2.4. If h 6 0, then Q lies to 
the left of P (not shown). In either case, as Q approaches P along the curve, h approaches 
zero and the secant line slope h + 4 approaches 4. We take 4 to be the parabola’s slope at P.
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76	 Chapter 2  Limits and Continuity

The tangent line to the parabola at P is the line through P with slope 4:

 y = 4 + 4(x - 2)	 Point-slope equation

 y = 4x - 4.

Rates of Change and Tangent Lines

The rates at which the rock in Example 2 was falling at the instants t = 1 and t = 2 are 
called instantaneous rates of change. Instantaneous rates of change and slopes of tangent 
lines are closely connected, as we see in the following examples.

EXAMPLE  4    Figure 2.5 shows how a population p of fruit flies (Drosophila) grew in 
a 50-day experiment. The number of flies was counted at regular intervals, the counted 
values plotted with respect to the number of elapsed days t, and the points joined by a smooth 
curve (colored blue in Figure 2.5). Find the average growth rate from day 23 to day 45.

Solution  There were 150 flies on day 23 and 340 flies on day 45. Thus the number of 
flies increased by 340 - 150 = 190 in 45 - 23 = 22 days. The average rate of change 
of the population from day 23 to day 45 was

Average rate of change: 
∆p
∆t

= 340 - 150
45 - 23

= 190
22 ≈ 8.6 flies>day.

t

p
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Q(45, 340)

≤t = 22
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FIGURE 2.5  Growth of a fruit fly population in a controlled 
experiment. The average rate of change over 22 days is the slope 
∆p>∆t of the secant line (Example 4).

This average is the slope of the secant line through the points P and Q on the graph in 
Figure 2.5.�

The average rate of change from day 23 to day 45 calculated in Example 4 does not 
tell us how fast the population was changing on day 23 itself. For that we need to examine 
time intervals closer to the day in question.

EXAMPLE  5    How fast was the number of flies in the population of Example 4 grow-
ing on day 23?

Solution  To answer this question, we examine the average rates of change over shorter 
and shorter time intervals starting at day 23. In geometric terms, we find these rates by 
calculating the slopes of secant lines from P to Q, for a sequence of points Q approaching 
P along the curve (Figure 2.6).
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A(14, 0)

P(23, 150)

B(35, 350)

Q(45, 340)

The values in the table show that the secant line slopes rise from 8.6 to 16.4 as the 
t-coordinate of Q decreases from 45 to 30, and we would expect the slopes to rise slightly 
higher as t continued decreasing toward 23. Geometrically, the secant lines rotate counter-
clockwise about P and seem to approach the red tangent line in the figure. Since the line 
appears to pass through the points (14, 0) and (35, 350), its slope is approximately

350 - 0
35 - 14

= 16.7 flies>day.

On day 23 the population was increasing at a rate of about 16.7 flies >day.�

The instantaneous rate of change is the value the average rate of change approaches as 
the length h of the interval over which the change occurs approaches zero. The average 
rate of change corresponds to the slope of a secant line; the instantaneous rate corresponds 
to the slope of the tangent line at a fixed value. So instantaneous rates and slopes of tan-
gent lines are closely connected. We give a precise definition for these terms in the next 
chapter, but to do so we first need to develop the concept of a limit.

 
Q

Slope of PQ = �p ,�t  
(flies , day)

(45, 340)  340 - 150
45 - 23

≈ 8.6

(40, 330)  330 - 150
40 - 23 ≈ 10.6

(35, 310)  310 - 150
35 - 23

≈ 13.3

(30, 265)  265 - 150
30 - 23 ≈ 16.4

FIGURE 2.6  The positions and slopes of four secant lines through the point P on the fruit fly graph (Example 5).

Average Rates of Change
In Exercises 1–6, find the average rate of change of the function over 
the given interval or intervals.

	 1.	 ƒ(x) = x3 + 1

a.	 32, 34 	 b.  3-1, 14
	 2.	 g(x) = x2 - 2x

a.	 31, 34 	 b.  3-2, 44
	 3.	 h(t) = cot t

a.	 3p>4, 3p>44 	 b.  3p>6, p>24
	 4.	 g(t) = 2 + cos t

a.	 30, p4 	 b.  3-p, p4
	 5.	 R(u) = 24u + 1; 30, 24
	 6.	 P(u) = u3 - 4u2 + 5u; 31, 24

Slope of a Curve at a Point
In Exercises 7–18, use the method in Example 3 to find (a) the slope 
of the curve at the given point P, and (b) an equation of the tangent 
line at P.

	 7.	 y = x2 - 5, P(2, -1)

	 8.	 y = 7 - x2, P(2, 3)

	 9.	 y = x2 - 2x - 3, P(2, -3)

	10.	 y = x2 - 4x, P(1, -3)

	11.	 y = x3, P(2, 8)

	12.	 y = 2 - x3, P(1, 1)

	13.	 y = x3 - 12x, P(1, -11)

	14.	 y = x3 - 3x2 + 4, P(2, 0)

	15.	 y = 1
x , P(-2, -1>2)

Exercises  2.1

M02_HASS9020_14_SE_C02.indd   77 20/10/2018   00:51



78	 Chapter 2  Limits and Continuity

	16.	 y = x
2 - x

, P(4, -2)

	17.	 y = 1x, P(4, 2)

	18.	 y = 27 - x, P(-2, 3)

Instantaneous Rates of Change
	19.	 Speed of a car  The accompanying figure shows the time-to- 

distance graph for a sports car accelerating from a standstill.
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a.	 Estimate the slopes of secant lines PQ1, PQ2, PQ3, and PQ4, 
arranging them in order in a table like the one in Figure 2.6. 
What are the appropriate units for these slopes?

b.	 Then estimate the car’s speed at time t = 20 s.

	20.	 The accompanying figure shows the plot of distance fallen versus 
time for an object that fell from the lunar landing module a dis-
tance 80 m to the surface of the moon.

a.	 Estimate the slopes of the secant lines PQ1, PQ2, PQ3, and 
PQ4, arranging them in a table like the one in Figure 2.6.

b.	 About how fast was the object going when it hit the surface?
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	21.	 The profits of a small company for each of the first five years of 
its operation are given in the following table:

Year Profit in $1000s

2010     6
2011   27
2012   62
2013 111
2014 174

a.	 Plot points representing the profit as a function of year, and 
join them by as smooth a curve as you can.

T

b.	 What is the average rate of increase of the profits between 
2012 and 2014?

c.	 Use your graph to estimate the rate at which the profits were 
changing in 2012.

	22.	 Make a table of values for the function F(x) = (x + 2)>(x - 2) 
at the points x = 1.2, x = 11>10, x = 101>100, x = 1001>1000, 
 x = 10001>10000, and x = 1.

a.	 Find the average rate of change of F(x) over the intervals 
31, x4  for each x ≠ 1 in your table.

b.	 Extending the table if necessary, try to determine the rate of 
change of F(x) at x = 1.

	23.	 Let g(x) = 2x for x Ú 0.

a.	 Find the average rate of change of g(x) with respect to x over 
the intervals 31, 24 , 31, 1.54  and 31, 1 + h4 .

b.	 Make a table of values of the average rate of change of g with 
respect to x over the interval 31, 1 + h4  for some values of h 
approaching zero, say h = 0.1, 0.01, 0.001, 0.0001, 0.00001, 
and 0.000001.

c.	 What does your table indicate is the rate of change of g(x) 
with respect to x at x = 1?

d.	 Calculate the limit as h approaches zero of the average rate of 
change of g(x) with respect to x over the interval 31, 1 + h4 .

	24.	 Let ƒ(t) = 1>t for t ≠ 0.

a.	 Find the average rate of change of ƒ with respect to t over 
the intervals (i) from t = 2 to t = 3, and (ii) from t = 2 to 
t = T.

b.	 Make a table of values of the average rate of change of ƒ with 
respect to t over the interval 32, T4 , for some values of T ap-
proaching 2, say T = 2.1, 2.01, 2.001, 2.0001, 2.00001, and 
2.000001.

c.	 What does your table indicate is the rate of change of ƒ with 
respect to t at t = 2?

d.	 Calculate the limit as T approaches 2 of the average rate of 
change of ƒ with respect to t over the interval from 2 to T. You 
will have to do some algebra before you can substitute T = 2.

	25.	 The accompanying graph shows the total distance s traveled by a 
bicyclist after t hours.
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a.	 Estimate the bicyclist’s average speed over the time intervals 
30, 14 , 31, 2.54 , and 32.5, 3.54 .

b.	 Estimate the bicyclist’s instantaneous speed at the times 
t = 1

2 , t = 2, and t = 3.

c.	 Estimate the bicyclist’s maximum speed and the specific time 
at which it occurs.

T

T

T
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2.2	 Limit of a Function and Limit Laws

In Section 2.1 we saw how limits arise when finding the instantaneous rate of change of a 
function or the tangent line to a curve. We begin this section by presenting an informal 
definition of the limit of a function. We then describe laws that capture the behavior of 
limits. These laws enable us to quickly compute limits for a variety of functions, including 
polynomials and rational functions. We present the precise definition of a limit in the next 
section.

Limits of Function Values

Frequently when studying a function y = ƒ(x), we find ourselves interested in the func-
tion’s behavior near a particular point c, but not at c itself. An important example occurs 
when the process of trying to evaluate a function at c leads to division by zero, which is 
undefined. We encountered this when seeking the instantaneous rate of change in y by 
considering the quotient function ∆y>h for h closer and closer to zero. In the next example 
we explore numerically how a function behaves near a particular point at which we cannot 
directly evaluate the function.

EXAMPLE  1    How does the function

ƒ(x) = x2 - 1
x - 1

behave near x = 1?

Solution  The given formula defines ƒ for all real numbers x except x = 1 (since we 
cannot divide by zero). For any x ≠ 1, we can simplify the formula by factoring the 
numerator and canceling common factors:

ƒ(x) =
(x - 1)(x + 1)

x - 1 = x + 1  for  x ≠ 1.

The graph of ƒ is the line y = x + 1 with the point (1, 2) removed. This removed point 
is shown as a “hole” in Figure 2.7. Even though ƒ(1) is not defined, it is clear that we 
can make the value of ƒ(x) as close as we want to 2 by choosing x close enough to 1 
(Table 2.2).�

An Informal Description of the Limit of a Function

We now give an informal definition of the limit of a function ƒ at an interior point of the 
domain of ƒ. Suppose that ƒ(x) is defined on an open interval about c, except possibly at c 

x

y

0 1

2

1

x

y

0 1

2

1
y = f (x) = x2 - 1

x - 1

y = x + 1

-1

-1

FIGURE 2.7  The graph of ƒ is identical 
with the line y = x + 1 except at x = 1, 
where ƒ is not defined (Example 1).

HISTORICAL ESSAY

Limits
bit.ly/2P04ZyV

	26.	 The accompanying graph shows the total amount of gasoline A in 
the gas tank of a motorcycle after being driven for t days.
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a.	 Estimate the average rate of gasoline consumption over 
the time intervals 30, 34 , 30, 54 , and 37, 104 .

b.	 Estimate the instantaneous rate of gasoline consumption 
at the times t = 1, t = 4, and t = 8.

c.	 Estimate the maximum rate of gasoline consumption and 
the specific time at which it occurs.

M02_HASS9020_14_SE_C02.indd   79 20/10/2018   00:51



80	 Chapter 2  Limits and Continuity

itself. If ƒ(x) is arbitrarily close to the number L (as close to L as we like) for all x suffi-
ciently close to c, other than c itself, then we say that ƒ approaches the limit L as x 
approaches c, and write

lim
xSc

 ƒ(x) = L,

which is read “the limit of ƒ(x) as x approaches c is L.” In Example 1 we would say that 
ƒ(x) approaches the limit 2 as x approaches 1, and write

lim
xS1

 ƒ(x) = 2,  or  lim
xS1

 x
2 - 1

x - 1 = 2.

Essentially, the definition says that the values of ƒ(x) are close to the number L whenever x 
is close to c. The value of the function at c itself is not considered.

Our definition here is informal, because phrases like arbitrarily close and sufficiently 
close are imprecise; their meaning depends on the context. (To a machinist manufacturing 
a piston, close may mean within a few hundredths of a millimeter. To an astronomer study-
ing distant galaxies, close may mean within a few thousand light-years.) Nevertheless, the 
definition is clear enough to enable us to recognize and evaluate limits of many specific 
functions. We will need the precise definition given in Section 2.3, when we set out to 
prove theorems about limits or study complicated functions. Here are several more exam-
ples exploring the idea of limits.

TABLE 2.2  As x gets closer to 1, 

ƒ(x)  gets closer to 2.

x ƒ(x) = x2−1
x−1

0.9 1.9

1.1 2.1

0.99 1.99

1.01 2.01

0.999 1.999

1.001 2.001

0.999999 1.999999

1.000001 2.000001

x2 - 1
x - 1

x

y

0 1

2

1

x

y

0 1

2

1

x

y

0 1-1-1-1

2

1

1,

,
(a)  f (x) = (b)  g(x) =x2 - 1

x - 1

   x Z 1

   x = 1

(c)  h(x) = x + 1

FIGURE 2.8  The limits of ƒ(x), g(x), and h(x) all equal 2 as x approaches 1. However, only h(x) 
has the same function value as its limit at x = 1 (Example 2).

(a) Identity function

(b) Constant function

0

k

x

y

x

y

y = x

c

c

c

y = k

FIGURE 2.9  The functions in Example 3 
have limits at all points c.

The process of finding a limit can be broken up into a series of steps involving limits 
of basic functions, which are combined using a sequence of simple operations that we will 
develop. We start with two basic functions.

EXAMPLE  2    The limit of a function does not depend on how the function is defined 
at the point being approached. Consider the three functions in Figure 2.8. The function ƒ 
has limit 2 as x S 1 even though ƒ is not defined at x = 1. The function g has limit 2 as 
x S 1 even though 2 ≠ g(1). The function h is the only one of the three functions in Fig-
ure 2.8 whose limit as x S 1 equals its value at x = 1. For h, we have limxS1 h(x) = h(1). 
This equality of limit and function value has an important meaning. As illustrated by the 
three examples in Figure 2.8, equality of limit and function value captures the notion of 
“continuity.” We study this in detail in Section 2.6.�

EXAMPLE  3    We find the limits of the identity function and of a constant function as 
x approaches x = c.

	(a)	 If ƒ is the identity function ƒ(x) = x, then for any value of c (Figure 2.9a),

lim
xSc

 ƒ(x) = lim
xSc

 x = c.
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(b)	 If ƒ is the constant function ƒ(x) = k (function with the constant value k), then for 
any value of c (Figure 2.9b),

lim
xSc

 ƒ(x) = lim
xSc

 k = k.

For instances of each of these rules we have

lim
xS3

 x = 3

x

y

0
x

y

0

1

x

y

0

1

-1

y = 0,   x < 0

1,   x ≥ 0

(a) Unit step function U(x) (b) g(x) (c) f (x)

y =
1
x ,  x Z 0

0, x = 0

y =
0,         x ≤ 0

1
xsin   ,  x > 0

FIGURE 2.10  None of these functions has a limit as x approaches 0 (Example 4).

EXAMPLE  4    Discuss the behavior of the following functions, explaining why they 
have no limit as x S 0.

	(a)	 U(x) = e0,    x 6 0
1,    x Ú 0

(b)	 g(x) = •
1
x ,    x ≠ 0

0,    x = 0

(c)	 ƒ(x) = c 0, x … 0

sin 1x , x 7 0

Solution
(a)	 The function jumps: The unit step function U(x) has no limit as x S 0 because its 

values jump at x = 0. For negative values of x arbitrarily close to zero, U(x) = 0. For 
positive values of x arbitrarily close to zero, U(x) = 1. There is no single value L ap-
proached by U(x) as x S 0 (Figure 2.10a).

(b)	 The function grows too “large” to have a limit: g(x) has no limit as x S 0 because the 
values of g grow arbitrarily large in absolute value as x S 0 and therefore do not stay 
close to any fixed real number (Figure 2.10b). We say the function is not bounded.

Limit of identity function at x = 3

and

lim
xS-7

 (4) = lim
xS2

 (4) = 4.  Limit of constant function 

ƒ(x) = 4 at x = -7 or at x = 2

We prove these rules in Example 3 in Section 2.3.�

A function may not have a limit at a particular point. Some ways that limits can fail to 
exist are illustrated in Figure 2.10 and described in the next example.
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82	 Chapter 2  Limits and Continuity

(c)	 The function oscillates too much to have a limit: ƒ(x) has no limit as x S 0 because 
the function’s values oscillate between +1 and -1 in every open interval containing 
0. The values do not stay close to any single number as x S 0 (Figure 2.10c).�

The Limit Laws

A few basic rules allow us to break down complicated functions into simple ones when 
calculating limits. By using these laws, we can greatly simplify many limit computations.

THEOREM 1—Limit Laws 
If L, M, c, and k are real numbers and

lim
xSc

 ƒ(x) = L  and  lim
xSc

 g(x) = M, then

1.	 Sum Rule: lim
xSc

(ƒ(x) + g(x)) = L + M

2.	 Difference Rule: lim
xSc

(ƒ(x) - g(x)) = L - M

3.	 Constant Multiple Rule: lim
xSc

(k # ƒ(x)) = k # L

4.	 Product Rule: lim
xSc

(ƒ(x) # g(x)) = L # M

5.	 Quotient Rule: lim
xSc

  
ƒ(x)
g(x) = L

M , M ≠ 0

6.	 Power Rule: lim
xSc

3ƒ(x)4 n = L 

n, n a positive integer

7.	 Root Rule: lim
xSc

2n ƒ(x) = 2n L = L 

1>n, n a positive integer

(If n is even, we assume that ƒ(x) Ú 0 for x in an interval containing c.)

The Sum Rule says that the limit of a sum is the sum of the limits. Similarly, the next rules 
say that the limit of a difference is the difference of the limits; the limit of a constant times 
a function is the constant times the limit of the function; the limit of a product is the prod-
uct of the limits; the limit of a quotient is the quotient of the limits (provided that the limit 
of the denominator is not 0); the limit of a positive integer power (or root) of a function is 
the integer power (or root) of the limit (provided that the root of the limit is a real number).

There are simple intuitive arguments for why the properties in Theorem 1 are true 
(although these do not constitute proofs). If x is sufficiently close to c, then ƒ(x) is close to L 
and g(x) is close to M, from our informal definition of a limit. It is then reasonable that 
ƒ(x) + g(x) is close to L + M; ƒ(x) - g(x) is close to L - M; kƒ(x) is close to kL; ƒ(x)g(x) 
is close to LM; and ƒ(x)>g(x) is close to L>M  if M is not zero. We prove the Sum Rule in 
Section 2.3, based on a rigorous definition of the limit. Rules 2–5 are proved in Appendix 5. 
Rule 6 is obtained by applying Rule 4 repeatedly. Rule 7 is proved in more advanced texts. The 
Sum, Difference, and Product Rules can be extended to any number of functions, not just two.

EXAMPLE  5    Use the observations limxSc k = k and limxSc x = c (Example 3) and 
the limit laws in Theorem 1 to find the following limits.

	(a)	 lim
xSc

(x3 + 4x2 - 3)

(b)	 lim
xSc

 x
4 + x2 - 1

x2 + 5

(c)	 lim
xS-2

24x2 - 3
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Solution

(a)	 lim
xSc

(x3 + 4x2 - 3) = lim
xSc

 x3 + lim
xSc

 4x2 - lim
xSc

 3 	 Sum and Difference Rules

		   = c3 + 4c2 - 3	 Power and Multiple Rules

(b)	 lim
xSc

 x
4 + x2 - 1

x2 + 5
 =

lim
xSc 

(x4 + x2 - 1)

lim
xSc

 (x2 + 5)
	 Quotient Rule

		   =
lim
xSc

 x4 + lim
xSc

 x2 - lim
xSc

 1

lim
xSc

 x2 + lim
xSc

 5
	 Sum and Difference Rules

		   = c4 + c2 - 1
c2 + 5

	 Power or Product Rule

(c)	  lim
xS  -2

24x2 - 3 = 2 lim
xS  -2

(4x2 - 3)	 Root Rule with n = 2

		   = 2 lim
xS-2

 4x2 - lim
xS-2

 3	 Difference Rule

		   = 24(-2)2 - 3	 �Product and Multiple Rules and limit 
of a constant function

		   = 216 - 3

		   = 213�

Evaluating Limits of Polynomials and Rational Functions

Theorem 1 simplifies the task of calculating limits of polynomials and rational functions. 
To evaluate the limit of a polynomial function as x approaches c, just substitute c for x in the 
formula for the function. To evaluate the limit of a rational function as x approaches a point 
c at which the denominator is not zero, substitute c for x in the formula for the function. 
(See Examples 5a and 5b.) We state these results formally as theorems.

THEOREM 2—Limits of Polynomials
If P(x) = an xn + an - 1 xn - 1 + g + a0, then

lim
xSc

 P(x) = P(c) = an cn + an - 1 cn - 1 + g + a0.

THEOREM 3—Limits of Rational Functions
If P(x) and Q(x) are polynomials and Q(c) ≠ 0, then

lim
xSc

  
P(x)
Q(x) =

P(c)
Q(c) .

EXAMPLE  6    The following calculation illustrates Theorems 2 and 3:

lim
xS  -1

 x
3 + 4x2 - 3

x2 + 5
=

(-1)3 + 4(-1)2 - 3

(-1)2 + 5
= 0

6
= 0

Since the denominator of this rational expression does not equal 0 when we substitute -1 
for x, we can just compute the value of the expression at x = -1 to evaluate the limit.�

Eliminating Common Factors from Zero Denominators

Theorem 3 applies only if the denominator of the rational function is not zero at the limit 
point c. If the denominator is zero, canceling common factors in the numerator and 
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84	 Chapter 2  Limits and Continuity

denominator may reduce the fraction to one whose denominator is no longer zero at c. If 
this happens, we can find the limit by substitution in the simplified fraction.

EXAMPLE  7    Evaluate

lim
xS1

 x
2 + x - 2

x2 - x
.

Solution  We cannot substitute x = 1 because it makes the denominator zero. We test 
the numerator to see if it, too, is zero at x = 1. It is, so it has a factor of (x - 1) in com-
mon with the denominator. Canceling this common factor gives a simpler fraction with the 
same values as the original for x ≠ 1:

x2 + x - 2
x2 - x

=
(x - 1)(x + 2)

x(x - 1) = x + 2
x ,  if x ≠ 1.

Using the simpler fraction, we find the limit of these values as x S 1 by evaluating the 
function at x = 1, as in Theorem 3:

lim
xS1

 x
2 + x - 2

x2 - x
= lim

xS1
 x + 2

x = 1 + 2
1 = 3.

See Figure 2.11.�

Using Calculators and Computers to Estimate Limits

We can try using a calculator or computer to guess a limit numerically. However, calcula-
tors and computers can sometimes give false values and misleading evidence about limits. 
Usually the problem is associated with rounding errors, as we now illustrate.

EXAMPLE  8    Estimate the value of lim
xS0

 
2x2 + 100 - 10

x2 .

Solution  Table 2.3 lists values of the function obtained on a calculator for several points 
approaching x = 0. As x approaches 0 through the points {1, {0.5, {0.10, and {0.01,  
the function seems to approach the number 0.05.

As we take even smaller values of x, {0.0005, {0.0001, {0.00001, and {0.000001, 
the function appears to approach the number 0.

Is the answer 0.05 or 0, or some other value? We resolve this question in the next 
example.�

x

y

1-2 0

(1, 3)

(b)

3

x

y

10-2

(1, 3)

(a)

3

y = x2 + x - 2
x2 - x

y = x + 2
x

FIGURE 2.11  The graph of 
ƒ(x) = (x2 + x - 2)>(x2 - x) in 
part (a) is the same as the graph of 
g(x) = (x + 2)>x in part (b) except 
at x = 1, where ƒ is undefined. The 
functions have the same limit as x S 1 
(Example 7).

TABLE 2.3  Computed values of ƒ(x) = 2x 2 + 100 − 10
x 2

 near x = 0

x	 ƒ(x)

{1     0.049876
{0.5     0.049969
{0.1     0.049999
{0.01     0.050000

t  approaches 0.05?

{0.0005 0.050000
{0.0001 0.000000
{0.00001 0.000000
{0.000001 0.000000

t  approaches 0?

Identifying Common Factors
If Q(x) is a polynomial and Q(c) = 0, then 
(x - c) is a factor of Q(x). Thus, if the nu-
merator and denominator of a rational function 
of x are both zero at x = c, they have (x - c) 
as a common factor.
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Using a computer or calculator may give ambiguous results, as in Example 8. A com-
puter cannot always keep track of enough digits to avoid rounding errors in computing the 
values of ƒ(x) when x is very small. We cannot substitute x = 0 in the problem, and the 
numerator and denominator have no obvious common factors (as they did in Example 7). 
Sometimes, however, we can create a common factor algebraically.

EXAMPLE  9    Evaluate

lim
xS0

 
2x2 + 100 - 10

x2 .

Solution  This is the limit we considered in Example 8. We can create a common factor 
by multiplying both numerator and denominator by the conjugate radical expression 2x2 + 100 + 10 (obtained by changing the sign after the square root). The preliminary 
algebra rationalizes the numerator:

 
2x2 + 100 - 10

x2 = 2x2 + 100 - 10
x2

# 2x2 + 100 + 102x2 + 100 + 10
	� Multiply and divide by 

the conjugate.

 = x2 + 100 - 100
x2(2x2 + 100 + 10)

	 Simplify

 = x2

x2(2x2 + 100 + 10)
	 Common factor x2

 = 12x2 + 100 + 10
.	 Cancel x2 for x ≠ 0.

Therefore,

 lim
xS0

 
2x2 + 100 - 10

x2 = lim
xS0

 12x2 + 100 + 10

 = 1202 + 100 + 10

 = 1
20 = 0.05.

Limit Quotient Rule: Denominator 
not 0 at x = 0 so can substitute.

This calculation provides the correct answer, resolving the ambiguous computer results in 
Example 8.�

We cannot always manipulate the terms in an expression to find the limit of a quotient 
where the denominator becomes zero. In some cases the limit might then be found with 
geometric arguments (see the proof of Theorem 7 in Section 2.4), or through methods of 
calculus (developed in Section 4.5). The next theorem shows how to evaluate difficult lim-
its by comparing them with functions having known limits.

The Sandwich Theorem

The following theorem enables us to calculate a variety of limits. It is called the Sandwich 
Theorem because it refers to a function ƒ whose values are sandwiched between the val-
ues of two other functions g and h that have the same limit L at a point c. Being trapped 
between the values of two functions that approach L, the values of ƒ must also approach L 
(Figure 2.12). A proof is given in Appendix 5.

x

y

0

L

c

h

f

g

FIGURE 2.12  The graph of ƒ is sand-
wiched between the graphs of g and h.
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The Sandwich Theorem is also called the Squeeze Theorem or the Pinching Theorem.

EXAMPLE  10    Given a function u that satisfies

1 - x2

4 … u(x) … 1 + x2

2  for all x ≠ 0,

find limxS0 u(x), no matter how complicated u is.

Solution  Since

lim
xS0 

(1 - (x2>4)) = 1  and  lim
xS0 

(1 + (x2>2)) = 1,

the Sandwich Theorem implies that limxS0 u(x) = 1 (Figure 2.13).�

EXAMPLE  11    The Sandwich Theorem helps us establish several important limit 
rules:

(a)	 lim
uS0

 sin u = 0

(b)	 lim
uS0

  cos u = 1

(c)	 For any function ƒ, lim
xSc

 0 ƒ(x) 0 = 0 implies lim
xSc

 ƒ(x) = 0.

Solution

(a)	 In Section 1.3 we established that - 0 u 0 … sin u … 0 u 0  for all u (see Figure 2.14a). 
Since limuS0 (- 0 u 0 ) = limuS0 0 u 0 = 0, we have

lim
uS0

 sin u = 0.

(b)	 From Section 1.3, 0 … 1 - cos u … 0 u 0  for all u (see Figure 2.14b), and we have 
limuS0 (1 - cos u) = 0 so

 lim
uS0

  1 - (1 - cos u) = 1 - lim
uS0

 (1 - cos u) = 1 - 0,

 lim
uS0

 cos u = 1.     Simplify

(c)	 Since - 0 ƒ(x) 0 … ƒ(x) … 0 ƒ(x) 0  and - 0 ƒ(x) 0  and 0 ƒ(x) 0  have limit 0 as x S c, it fol-
lows that limxSc ƒ(x) = 0.�

Example 11 shows that the sine and cosine functions are equal to their limits at 
u = 0. We have not yet established that for any c, lim

uSc
 sin u = sin c, and lim

uSc
 cos u = cos c. 

These limit formulas do hold, as will be shown in Section 2.6.

THEOREM  4—The Sandwich Theorem
Suppose that g(x) … ƒ(x) … h(x) for all x in some open interval containing c, 
except possibly at x = c itself. Suppose also that

lim
xSc

 g(x) = lim
xSc

 h(x) = L.

Then lim
xSc

 ƒ(x) = L.

y = 0 u 0

y = - 0 u 0

y = sin u  

u

1

-1

- p p

y

(a)

y = 0 u 0

y = 1 - cos u

u

y

(b)

2

2

1

1-1-2 0

FIGURE 2.14  The Sandwich Theorem 
confirms the limits in Example 11.

x

y

0 1-1

2

1

y = 1 + x2

2

y = 1 - x2

4

y = u(x)

FIGURE 2.13  Any function u(x) 
whose graph lies in the region between 
y = 1 + (x2>2) and y = 1 - (x2>4) has 
limit 1 as x S 0 (Example 10).
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Limits from Graphs

	 1.	 For the function g(x) graphed here, find the following limits or 
explain why they do not exist.

a.  lim
xS1

 g(x)  b.  lim
xS2

 g(x)  c.  lim
xS3

 g(x)  d.  lim
xS2.5

 g(x)

3
x

y

2

1

1

y = g(x)

	 2.	 For the function ƒ(t) graphed here, find the following limits or 
explain why they do not exist.

a.  lim
tS  -2

 ƒ(t)  b.  lim
tS  -1

 ƒ(t)  c.  lim
tS0

 ƒ(t)  d.  lim
tS  -0.5

 ƒ(t)

t

s

1

10

s = f (t)

-1

-1-2

	 3.	 Which of the following statements about the function y = ƒ(x) 
graphed here are true, and which are false?

a.	 lim
xS0

 ƒ(x) exists.

b.	 lim
xS0

 ƒ(x) = 0

c.	 lim
xS0

 ƒ(x) = 1

d.	 lim
xS1

 ƒ(x) = 1

e.	 lim
xS1

 ƒ(x) = 0

f.	 lim
xSc

 ƒ(x) exists at every point c in (-1, 1).

g.	 lim
xS1

 ƒ(x) does not exist.

e.	 lim
xSc

 ƒ(x) exists at every point c in (1, 3).

Exercises  2.2

x

y

21-1

1

-1

y = f (x)

h.	 ƒ(0) = 0

i.	 ƒ(0) = 1

j.	 ƒ(1) = 0

k.	 ƒ(1) = -1

	 4.	 Which of the following statements about the function y = ƒ(x) 
graphed here are true, and which are false?

a.	 lim
xS2

 ƒ(x) does not exist.

b.	 lim
xS2

 ƒ(x) = 2

c.	 lim
xS1

 ƒ(x) does not exist.

d.	 lim
xSc

 ƒ(x) exists at every point c in (-1, 1).

x

y

321-1

1

-1

-2

y = f (x)
f.	 ƒ(1) = 0

g.	 ƒ(1) = -2

h.	 ƒ(2) = 0

i.	 ƒ(2) = 1

Existence of Limits
In Exercises 5 and 6, explain why the limits do not exist.

	 5.	 lim
xS0

  
x
0 x 0 	 6.	 lim

xS1
  

1
x - 1

	 7.	 Suppose that a function ƒ(x) is defined for all real values of x 
except x = c. Can anything be said about the existence of 
limxSc ƒ(x)? Give reasons for your answer.

	 8.	 Suppose that a function ƒ(x) is defined for all x in 3-1, 1]. Can 
anything be said about the existence of limxS0 ƒ(x)? Give reasons 
for your answer.

	 9.	 If limxS1 ƒ(x) = 5, must ƒ be defined at x = 1? If it is, must 
ƒ(1) = 5? Can we conclude anything about the values of ƒ at 
x = 1? Explain.

	10.	 If ƒ(1) = 5, must limxS1 ƒ(x) exist? If it does, then must 
limxS1 ƒ(x) = 5? Can we conclude anything about limxS1 ƒ(x)? 
Explain.

Calculating Limits
Find the limits in Exercises 11–22.

	11.	 lim
xS  -3

 (x2 - 13)	 12.	 lim
xS2

(-x2 + 5x - 2)

	13.	 lim
tS6

 8(t - 5)(t - 7)	 14.	 lim
xS  -2

(x3 - 2x2 + 4x + 8)

	15.	 lim
xS2

 
2x + 5
11 - x3	 16.	 lim

sS2>3
 (8 - 3s)(2s - 1)

	17.	 lim
xS-1>2

 4x(3x + 4)2	 18.	 lim
yS2

  
y + 2

y2 + 5y + 6

	19.	 lim
yS  -3

 (5 - y)4>3	 20.	 lim
zS4

 2z2 - 10

	21.	 lim
hS0

 
323h + 1 + 1

	 22.	 lim
hS0

 
25h + 4 - 2

h

Limits of quotients  Find the limits in Exercises 23–42.

	23.	 lim
xS5

 
x - 5

x2 - 25
	 24.	 lim

xS  -3
 

x + 3
x2 + 4x + 3

	25.	 lim
xS  -5

 
x2 + 3x - 10

x + 5
	 26.	 lim

xS2
  
x2 - 7x + 10

x - 2

	27.	 lim
tS1

 
t2 + t - 2

t2 - 1
	 28.	 lim

tS  -1
  
t2 + 3t + 2
t2 - t - 2

	29.	 lim
xS  -2

  
-2x - 4
x3 + 2x2	 30.	 lim

yS0
  

5y3 + 8y2

3y4 - 16y2
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	31.	 lim
xS1

  
x-1 - 1
x - 1

	 32.	 lim
xS0

  
1

x - 1 + 1
x + 1

x

	33.	 lim
uS1

  
u4 - 1
u3 - 1

	 34.	 lim
yS2

  
y3 - 8
y4 - 16

	35.	 lim
xS9

 
2x - 3
x - 9

	 36.	 lim
xS4

 
4x - x2

2 - 2x

	37.	 lim
xS1

 
x - 12x + 3 - 2

	 38.	 lim
xS  -1

 
2x2 + 8 - 3

x + 1

	39.	 lim
xS2

 
2x2 + 12 - 4

x - 2
	 40.	 lim

xS  -2
 

x + 22x2 + 5 - 3

	41.	 lim
xS  -3

 
2 - 2x2 - 5

x + 3
	 42.	 lim

xS4
  

4 - x

5 - 2x2 + 9

Limits with trigonometric functions  Find the limits in Exercises 
43–50.

	43.	 lim
xS0

 (2 sin x - 1)	 44.	 lim
xS0

 sin2 x

	45.	 lim
xS0

 sec x	 46.	 lim
xS0

 tan x

	47.	 lim
xS0

 
1 + x + sin x

3 cos x
	 48.	 lim

xS0
 (x2 - 1)(2 - cos x)

	49.	 lim
xS  -p

 2x + 4 cos (x + p)	 50.	 lim
xS0

 27 + sec2 x

Using Limit Rules
	51.	 Suppose limxS0 ƒ(x) = 1 and limxS0 g(x) = -5. Name the rules 

in Theorem 1 that are used to accomplish steps (a), (b), and (c) of 
the following calculation.

lim
xS0

  
2ƒ(x) - g(x)

(ƒ(x) + 7)2>3 =
lim
xS0

 (2ƒ(x) - g(x))

lim
xS0

 (ƒ(x) + 7)2>3 	 (a)

=
lim
xS0

 2ƒ(x) - lim
xS0

 g(x)

a lim
xS0

 (ƒ(x) + 7)b
2>3 	 (b)

=
2 lim

xS0
 ƒ(x) - lim

xS0
 g(x)

a lim
xS0

 ƒ(x) + lim
xS0

 7b
2>3	 (c)

=
(2)(1) - (-5)

(1 + 7)2>3 = 7
4

	52.	 Let limxS1 h(x) = 5, limxS1 p(x) = 1, and limxS1 r(x) = 2. 
Name the rules in Theorem 1 that are used to accomplish steps 
(a), (b), and (c) of the following calculation.

lim
xS1

  
25h(x)

p(x)(4 - r(x))
=

lim
xS1

25h(x)

lim
xS1

 (p(x)(4 - r(x)))
	 (a)

=
2 lim

xS1
 5h(x)

a lim
xS1

 p(x)b a lim
xS1

 (4 - r(x))b
	 (b)

=
25lim

xS1
 h(x)

a lim
xS1

 p(x)b a lim
xS1

 4 - lim
xS1

 r(x)b
	 (c)

=
2(5)(5)

(1)(4 - 2)
= 5

2

	53.	 Suppose limxSc ƒ(x) = 5 and limxSc g(x) = -2. Find

a.	 lim
xSc

 ƒ(x)g(x)	 b.	 lim
xSc

 2ƒ(x)g(x)

c.	 lim
xSc

 (ƒ(x) + 3g(x))	 d.	 lim
xSc

  
ƒ(x)

ƒ(x) - g(x)
	54.	 Suppose limxS4 ƒ(x) = 0 and limxS4 g(x) = -3. Find

a.	 lim
xS4

 (g(x) + 3)	 b.	 lim
xS4

 xƒ(x)

c.	 lim
xS4

 (g(x))2	 d.	 lim
xS4

  
g(x)

ƒ(x) - 1
	55.	 Suppose limxSb ƒ(x) = 7 and limxSb g(x) = -3. Find

a.	 lim
xSb

 (ƒ(x) + g(x))	 b.	 lim
xSb

 ƒ(x) # g(x)

c.	 lim
xSb

 4g(x)	 d.	 lim
xSb

 ƒ(x)>g(x)

	56.	 Suppose that limxS  -2  p(x) = 4, limxS  -2  r(x) = 0, and limxS  -2 
s(x) = -3. Find

a.	 lim
xS  -2

 (p(x) + r(x) + s(x))

b.	 lim
xS  -2

  p(x) # r(x) # s(x)

c.	 lim
xS  -2

(-4p(x) + 5r(x))>s(x)

Limits of Average Rates of Change
Because of their connection with secant lines, tangents, and instanta-
neous rates, limits of the form

lim
hS0

 
ƒ(x + h) - ƒ(x)

h

occur frequently in calculus. In Exercises 57–62, evaluate this limit 
for the given value of x and function ƒ.

	57.	 ƒ(x) = x2, x = 1

	58.	 ƒ(x) = x2, x = -2

	59.	 ƒ(x) = 3x - 4, x = 2

	60.	 ƒ(x) = 1>x, x = -2

	61.	 ƒ(x) = 2x, x = 7

	62.	 ƒ(x) = 23x + 1, x = 0

Using the Sandwich Theorem

	63.	 If 25 - 2x2 … ƒ(x) … 25 - x2 for -1 … x … 1, find  
limxS0 ƒ(x).

	64.	 If 2 - x2 … g(x) … 2 cos x for all x, find limxS0 g(x).

	65.	 a.	 It can be shown that the inequalities

1 - x2

6
6 x sin x

2 - 2 cos x
6 1

	 		�  hold for all values of x close to zero. What, if anything, does 
this tell you about

lim
xS0

  
x sin x

2 - 2 cos x
 ?

	 		  Give reasons for your answer.

	 	 b.	� Graph y = 1 - (x2>6), y = (x sin x)>(2 - 2 cos x), and 
y = 1 together for -2 … x … 2. Comment on the behavior 
of the graphs as x S 0.

T
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	66.	 a.  Suppose that the inequalities

1
2

- x2

24
6 1 - cos x

x2 6 1
2

	 		�  hold for values of x close to zero. (They do, as you will see in 
Section 9.9.) What, if anything, does this tell you about

lim
xS0

 
1 - cos x

x2  ?

	 		  Give reasons for your answer.

	 	 b.	� Graph the equations y = (1>2) - (x2>24),
	 			�  y = (1 - cos x)>x2, and y = 1>2 together for -2 … x … 2. 

Comment on the behavior of the graphs as x S 0.

Estimating Limits
You will find a graphing calculator useful for Exercises 67–76.

	67.	 Let ƒ(x) = (x2 - 9)>(x + 3).

a.	 Make a table of the values of ƒ at the points x = -3.1, 
-3.01, -3.001, and so on as far as your calculator can go. 
Then estimate limxS  -3 ƒ(x). What estimate do you arrive at if 
you evaluate ƒ at x = -2.9, -2.99, -2.999, c instead?

b.	 Support your conclusions in part (a) by graphing ƒ near 
c = -3 and using Zoom and Trace to estimate y-values on 
the graph as x S  -3.

c.	 Find limxS  -3 ƒ(x) algebraically, as in Example 7.

	68.	 Let g(x) = (x2 - 2)>(x - 22).

a.	 Make a table of the values of g at the points x = 1.4, 1.41, 
1.414, and so on through successive decimal approximations 
of 22. Estimate limxS22  g(x).

b.	 Support your conclusion in part (a) by graphing g near 
c = 22 and using Zoom and Trace to estimate y-values on 
the graph as x S 22.

c.	 Find limxS22  g(x) algebraically.

	69.	 Let G(x) = (x + 6)>(x2 + 4x - 12).

a.	 Make a table of the values of G at x = -5.9, -5.99, -5.999, 
and so on. Then estimate limxS  -6 G(x). What estimate 
do you arrive at if you evaluate G at x = -6.1, -6.01, 
-6.001, cinstead?

b.	 Support your conclusions in part (a) by graphing G and 
using Zoom and Trace to estimate y-values on the graph as 
x S  -6.

c.	 Find limxS  -6 G(x) algebraically.

	70.	 Let h(x) = (x2 - 2x - 3)>(x2 - 4x + 3).

a.	 Make a table of the values of h at x = 2.9, 2.99, 2.999,  
and so on. Then estimate limxS3 h(x). What estimate do 
you arrive at if you evaluate h at x = 3.1, 3.01, 3.001, c  
instead?

b.	 Support your conclusions in part (a) by graphing h near 
c = 3 and using Zoom and Trace to estimate y-values on the 
graph as x S 3.

c.	 Find limxS3 h(x) algebraically.

	71.	 Let ƒ(x) = (x2 - 1)>( 0 x 0 - 1).

a.	 Make tables of the values of ƒ at values of x that approach 
c = -1 from above and below. Then estimate limxS  -1 ƒ(x).

T

T

b.	 Support your conclusion in part (a) by graphing ƒ near 
c = -1 and using Zoom and Trace to estimate y-values on 
the graph as x S  -1.

c.	 Find limxS  -1 ƒ(x) algebraically.

	72.	 Let F(x) = (x2 + 3x + 2)>(2 - 0 x 0 ).
a.	 Make tables of values of F at values of x that approach 

c = -2 from above and below. Then estimate limxS  -2 F(x).

b.	 Support your conclusion in part (a) by graphing F near 
c = -2 and using Zoom and Trace to estimate y-values on 
the graph as x S  -2.

c.	 Find limxS  -2 F(x) algebraically.

	73.	 Let g(u) = (sin u)>u.

a.	 Make a table of the values of g at values of u that approach 
u0 = 0 from above and below. Then estimate limuS0 g(u).

b.	 Support your conclusion in part (a) by graphing g near 
u0 = 0.

	74.	 Let G(t) = (1 - cos t)>t2.

a.	 Make tables of values of G at values of t that approach t0 = 0 
from above and below. Then estimate limtS0 G(t).

b.	 Support your conclusion in part (a) by graphing G near t0 = 0.

	75.	 Let ƒ(x) = x1>(1 - x).

a.	 Make tables of values of ƒ at values of x that approach c = 1 
from above and below. Does ƒ appear to have a limit as 
x S 1? If so, what is it? If not, why not?

b.	 Support your conclusions in part (a) by graphing ƒ near c = 1.

	76.	 Let ƒ(x) = (3x - 1)>x.

a.	 Make tables of values of ƒ at values of x that approach c = 0 
from above and below. Does ƒ appear to have a limit as 
x S 0? If so, what is it? If not, why not?

b.	 Support your conclusions in part (a) by graphing ƒ near 
c = 0.

Theory and Examples
	77.	 If x4 … ƒ(x) … x2 for x in 3-1, 14  and x2 … ƒ(x) … x4 for 

x 6 -1 and x 7 1, at what points c do you automatically know 
limxSc ƒ(x)? What can you say about the value of the limit at 
these points?

	78.	 Suppose that g(x) … ƒ(x) … h(x) for all x ≠ 2 and suppose that

lim
xS2

 g(x) = lim
xS2

 h(x) = -5.

	 	 Can we conclude anything about the values of ƒ, g, and h at 
x = 2? Could ƒ(2) = 0? Could limxS2 ƒ(x) = 0? Give reasons 
for your answers.

	79.	 If lim
xS4

 
ƒ(x) - 5

x - 2
= 1, find lim

xS4
 ƒ(x).

	80.	 If lim
xS  -2

 
ƒ(x)

x2 = 1, find

a.	 lim
xS  -2

 ƒ(x)	 b.	 lim
xS  -2

 
ƒ(x)

x

	81.	 a.	 If lim
xS2

 
ƒ(x) - 5

x - 2
= 3, find lim

xS2
 ƒ(x).

b.	 If lim
xS2

 
ƒ(x) - 5

x - 2
= 4, find lim

xS2
 ƒ(x).
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90	 Chapter 2  Limits and Continuity

	82.	 If lim
xS0

 
ƒ(x)

x2 = 1, find

a.	 lim
xS0

 ƒ(x)	 b.	 lim
xS0

 
ƒ(x)

x

	83.	 a.	� Graph g(x) = x sin (1>x) to estimate limxS0 g(x), zooming in 
on the origin as necessary.

b.	 Confirm your estimate in part (a) with a proof.

	84.	 a.	� Graph h(x) = x2 cos (1>x3) to estimate limxS0 h(x), zooming 
in on the origin as necessary.

b.	 Confirm your estimate in part (a) with a proof.

COMPUTER EXPLORATIONS
Graphical Estimates of Limits
In Exercises 85–90, use a CAS to perform the following steps:

a.	 Plot the function near the point c being approached.

b.	 From your plot guess the value of the limit.

T

T

	85.	 lim
xS2

  
x4 - 16
x - 2

	86.	 lim
xS  -1

  
x3 - x2 - 5x - 3

(x + 1)2

	87.	 lim
xS0

  
23 1 + x - 1

x

	88.	 lim
xS3

  
x2 - 92x2 + 7 - 4

	89.	 lim
xS0

  
1 - cos x

x sin x

	90.	 lim
xS0

  
2x2

3 - 3 cos x

2.3	 The Precise Definition of a Limit

We now turn our attention to the precise definition of a limit. The early history of calculus 
saw controversy about the validity of the basic concepts underlying the theory. Apparent con-
tradictions were argued over by both mathematicians and philosophers. These controversies 
were resolved by the precise definition, which allows us to replace vague phrases like “gets 
arbitrarily close to” in the informal definition with specific conditions that can be applied to 
any particular example. With a rigorous definition, we can avoid misunderstandings, prove 
the limit properties given in the preceding section, and establish many important limits.

To show that the limit of ƒ(x) as x S c equals the number L, we need to show that the 
gap between ƒ(x) and L can be made “as small as we choose” if x is kept “close enough” to 
c. Let us see what this requires if we specify the size of the gap between ƒ(x) and L.

EXAMPLE  1    Consider the function y = 2x - 1 near x = 4. Intuitively it seems 
clear that y is close to 7 when x is close to 4, so limxS4 (2x - 1) = 7. However, how close 
to x = 4 does x have to be so that y = 2x - 1 differs from 7 by, say, less than 2 units?

Solution  We are asked: For what values of x is 0 y - 7 0 6 2? To find the answer we 
first express 0 y - 7 0  in terms of x:

0 y - 7 0 = 0 (2x - 1) - 7 0 = 0 2x - 8 0 .
The question then becomes: what values of x satisfy the inequality 0 2x - 8 0 6 2? To find 
out, we solve the inequality:

0 2x - 8 0 6 2

-2 6 2x - 8 6 2

6 6 2x 6 10

3 6 x 6 5

-1 6 x - 4 6 1.

Removing absolute value gives two inequalities.

Add 8 to each term.

Solve for x.

Solve for x - 4.

Keeping x within 1 unit of x = 4 will keep y within 2 units of y = 7 (Figure 2.15).�

In the previous example we determined how close x must be to a particular value c to 
ensure that the outputs ƒ(x) of some function lie within a prescribed interval about a limit 
value L. To show that the limit of ƒ(x) as x S c actually equals L, we must be able to show 
that the gap between ƒ(x) and L can be made less than any prescribed error, no matter how 

x

y

0

5

3 54

7

9
To satisfy
this

Restrict
to this

Lower bound:
y = 5

Upper bound:
y = 9

y = 2x - 1

FIGURE 2.15  Keeping x within 1 unit of 
x = 4 will keep y within 2 units of y = 7 
(Example 1).

M02_HASS9020_14_SE_C02.indd   90 20/10/2018   00:52



	 2.3  The Precise Definition of a Limit	 91

small, by holding x close enough to c. To describe arbitrary prescribed errors, we intro-
duce two constants, d (delta) and e (epsilon). These Greek letters are traditionally used to 
represent small changes in a variable or a function.

Definition of Limit

Suppose we are watching the values of a function ƒ(x) as x approaches c (without taking 
on the value c itself). Certainly we want to be able to say that ƒ(x) stays within one-tenth 
of a unit from L as soon as x stays within some distance d of c (Figure 2.16). But that in 
itself is not enough, because as x continues on its course toward c, what is to prevent ƒ(x) 
from jumping around within the interval from L - (1>10) to L + (1>10) without tending 
toward L? We can be told that the error can be no more than 1>100 or 1>1000 or 
1>100,000. Each time, we find a new d@interval about c so that keeping x within that inter-
val satisfies the new error tolerance. And each time the possibility exists that ƒ(x) might 
jump away from L at some later stage.

The figures on the next page illustrate the problem. You can think of this as a quarrel 
between a skeptic and a scholar. The skeptic presents e@challenges to show there is room 
for doubt that the limit exists. The scholar counters every challenge with a d@interval 
around c which ensures that the function takes values within e of L.

How do we stop this seemingly endless series of challenges and responses? We can do 
so by proving that for every error tolerance e that the challenger can produce, we can present 
a matching distance d that keeps x “close enough” to c to keep ƒ(x) within that e@tolerance 
of L (Figure 2.17). This leads us to the precise definition of a limit.

c

f (x) lies
in hereL

x

f (x)

L + 1
10

L −
1
10

dd

for all x ≠ c
in here

c − d c + d
x

y

0

FIGURE 2.16  How should we define 
d 7 0 so that keeping x within the interval 
(c - d, c + d) will keep ƒ(x) within the 

interval aL - 1
10

, L + 1
10

b?

x

y

0

L

x
dd

f (x) lies
in here

for all x Z c
in here

L - e

L + e

f (x)

c - d c c + d

FIGURE 2.17  The relation of d and e in 
the definition of limit.

DEFINITION  Let ƒ(x) be defined on an open interval about c, except possibly at c 
itself. We say that the limit of ƒ(x)  as x approaches c is the number L, and write

lim
xSc

 ƒ(x) = L,

if, for every number e 7 0, there exists a corresponding number d 7 0 such that

� ƒ(x) - L � 6 e whenever 0 6 � x - c � 6 d.

To visualize the definition, imagine machining a cylindrical shaft to a close tolerance. 
The diameter of the shaft is determined by turning a dial to a setting measured by a vari-
able x. We try for diameter L, but since nothing is perfect we must be satisfied with a diam-
eter ƒ(x) somewhere between L - e and L + e. The number d is our control tolerance 
for the dial; it tells us how close our dial setting must be to the setting x = c in order to 
guarantee that the diameter ƒ(x) of the shaft will be accurate to within e of L. As the toler-
ance for error becomes stricter, we may have to adjust d. The value of d, how tight our 
control setting must be, depends on the value of e, the error tolerance.

The definition of limit extends to functions on more general domains. It is only 
required that each open interval around c contains points in the domain of the function 
other than c. See Additional and Advanced Exercises 39–43 for examples of limits for 
functions with complicated domains. In the next section we will see how the definition of 
limit applies at points lying on the boundary of an interval.

Examples: Testing the Definition

The formal definition of limit does not tell how to find the limit of a function, but it does 
enable us to verify that a conjectured limit value is correct. The following examples show 
how the definition can be used to verify limit statements for specific functions. However, 
the real purpose of the definition is not to do calculations like this, but rather to prove gen-
eral theorems so that the calculation of specific limits can be simplified, such as the theo-
rems stated in the previous section.

d is the Greek letter delta
e is the Greek letter epsilon
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y

x

L

L + 1
10

L - 1
10

0

y = f (x)

c

The challenge:

     Make 0  f (x) - L 0  6 e = 1
10

y

x

L

L + 1
10

L - 1
10

0

y = f (x)

c
c - d1/10 c + d1/10

Response:

      0  x - c 0  6 d1/10 (a number)

y

x

L

L + 1
100

L - 1
100

0

y = f (x)

c

New challenge:

     Make 0 f (x) - L 0  6 e = 1
100

y

x

L

L + 1
100

L - 1
100

0

y = f (x)

c
c - d1/100 c + d1/100

Response:

      0 x - c 0  6 d1/100

y

x

L

L + 1
1000

L - 1
1000

0

y = f (x)

c

New challenge:

   e = 1
1000

y

x

L

L + 1
1000

L + e

L - e

L - 1
1000

0

y = f (x)

c

Response:

      0  x - c 0  6 d1/1000

y

x

L

L + 1
100,000

L - 1
100,000

0

y = f (x)

c

New challenge:
1

100,000
e =

y

x
0

y = f (x)

c

Response:

      0  x - c 0  6 d1/100,000

L

L + 1
100,000

L - 1
100,000

y

L

0

y = f (x)

c

New challenge:

       e = ...

x

EXAMPLE  2    Show that

lim
xS1

 (5x - 3) = 2.

Solution  Set c = 1, ƒ(x) = 5x - 3, and L = 2 in the definition of limit. For any given 
e 7 0, we have to find a suitable d 7 0 so that if x ≠ 1 and x is within distance d of 
c = 1, that is, whenever

0 6 0 x - 1 0 6 d,

it is true that ƒ(x) is within distance e of L = 2, so

0 ƒ(x) - 2 0 6 e.
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We find d by working backward from the e@inequality:

 0 (5x - 3) - 2 0 = 0 5x - 5 0 6 e

 5 0 x - 1 0 6 e

 0 x - 1 0 6 e>5.

Thus, we can take d = e>5 (Figure 2.18). If 0 6 0 x - 1 0 6 d = e>5, then

0 (5x - 3) - 2 0 = 0 5x - 5 0 = 5 0 x - 1 0 6 5(e>5) = e,

which proves that limxS1(5x - 3) = 2.
The value of d = e>5 is not the only value that will make 0 6 0 x - 1 0 6 d imply 

0 5x - 5 0 6 e. Any smaller positive d will do as well. The definition does not ask for the 
“best” positive d, just one that will work.�

EXAMPLE  3    Prove the following results presented graphically in Section 2.2.

(a)	 lim
xSc

 x = c

(b)	 lim
xSc

 k = k (k constant)

Solution

(a)	 Let e 7 0 be given. We must find d 7 0 such that

0 x - c 0 6 e  whenever  0 6 0 x - c 0 6 d.

		  The implication will hold if d equals e or any smaller positive number (Figure 2.19). 
This proves that limxSc x = c.

(b)	 Let e 7 0 be given. We must find d 7 0 such that

0 k - k 0 6 e  whenever  0 6 0 x - c 0 6 d.

		  Since k - k = 0, we can use any positive number for d and the implication will hold 
(Figure 2.20). This proves that limxSc k = k.�

Finding Deltas Algebraically for Given Epsilons

In Examples 2 and 3, the interval of values about c for which 0 ƒ(x) - L 0  was less than e 
was symmetric about c and we could take d to be half the length of that interval. When the 
interval around c on which we have � ƒ(x) - L � 6 e is not symmetric about c, we can 
take d to be the distance from c to the interval’s nearer endpoint.

EXAMPLE  4    For the limit limxS52x - 1 = 2, find a d 7 0 that works for e = 1. 
That is, find a d 7 0 such that

0 2x - 1 - 2 0 6 1  whenever  0 6 0 x - 5 0 6 d.

Solution  We organize the search into two steps.

	 1.	 Solve the inequality 0 2x - 1 - 2 0 6 1 to find an interval containing x = 5 on 
which the inequality holds for all x ≠ 5.

0 2x - 1 - 2 0 6 1

-1 6 2x - 1 - 2 6 1

1 6 2x - 1 6 3

1 6 x - 1 6 9

2 6 x 6 10

x

y

0

2

1

2 - e

2 + e

y = 5x - 3

1 -
5
e 1 +

5
e

-3

NOT TO SCALE

FIGURE 2.18  If ƒ(x) = 5x - 3, then 
0 6 0 x - 1 0 6 e>5 guarantees that 
0 ƒ(x) - 2 0 6 e (Example 2).

c - e

c - d

c + d

c + e

c

0 c - d c + dc
x

y

y = x

FIGURE 2.19  For the function 
ƒ(x) = x, we find that 0 6 0 x - c 0 6 d 
will guarantee 0 ƒ(x) - c 0 6 e whenever 
d … e (Example 3a).

k - e

k + e
k

0 c - d c + dc
x

y

y = k

FIGURE 2.20  For the function 
ƒ(x) = k, we find that 0 ƒ(x) - k 0 6 e for 
any positive d (Example 3b).
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94	 Chapter 2  Limits and Continuity

		  The inequality holds for all x in the open interval (2, 10), so it holds for all x ≠ 5 in 
this interval as well.

	 2.	 Find a value of d 7 0 to place the centered interval 5 - d 6 x 6 5 + d (centered at  
x = 5) inside the interval (2, 10). The distance from 5 to the nearer endpoint of (2, 10)  
is 3 (Figure 2.21). If we take d = 3 or any smaller positive number, then the inequality  
0 6 0 x - 5 0 6 d will automatically place x between 2 and 10 and imply that 
0 2x - 1 - 2 0 6 1 (Figure 2.22):

0 2x - 1 - 2 0 6 1  whenever   0 6 0 x - 5 0 6 3.

x
102 8

3

5

3
( )

FIGURE 2.21  An open interval of radius 
3 about x = 5 will lie inside the open 
interval (2, 10).

x

y

0 1 2 5 8 10

1

2

3

3 3

y = "x - 1

NOT TO SCALE

FIGURE 2.22  The function and inter-
vals in Example 4.

How to Find Algebraically a D for a Given ƒ, L, c, and E + 0

The process of finding a d 7 0 such that

0 ƒ(x) - L 0 6 e  whenever  0 6 0 x - c 0 6 d

can be accomplished in two steps.

1.	 Solve the inequality 0 ƒ(x) - L 0 6 e to find an open interval (a, b) containing 
c on which the inequality holds for all x ≠ c. Note that we do not require the 
inequality to hold at x = c. It may hold there or it may not, but the value of ƒ at  
x = c does not influence the existence of a limit.

2.	 Find a value of d 7 0 that places the open interval (c - d, c + d) centered 
at c inside the interval (a, b). The inequality 0 ƒ(x) - L 0 6 e will hold for all 
x ≠ c in this d@interval.

EXAMPLE  5    Prove that limxS2 ƒ(x) = 4 if

ƒ(x) = e x2, x ≠ 2
1, x = 2.

Solution  Our task is to show that given e 7 0 there exists a d 7 0 such that

0 ƒ(x) - 4 0 6 e  whenever  0 6 0 x - 2 0 6 d.

	 1.	 Solve the inequality 0 ƒ(x) - 4 0 6 e to find an open interval containing x = 2 on 
which the inequality holds for all x ≠ 2.

		  For x ≠ c = 2, we have ƒ(x) = x2, and the inequality to solve is 0 x2 - 4 0 6 e:

0 x2 - 4 0 6 e

-e 6 x2 - 4 6 e

4 - e 6 x2 6 4 + e24 - e 6 0 x 0 6 24 + e24 - e 6 x 6 24 + e.

Assumes e 6 4; see below.

		  The inequality 0 ƒ(x) - 4 0 6 e holds for all x ≠ 2 in the open interval  
124 - e, 24 + e 2 (Figure 2.23).

	 2.	 Find a value of d 7 0 that places the centered interval (2 - d, 2 + d) inside the 
		  interval 124 - e, 24 + e 2.

		  Take d to be the distance from x = 2 to the nearer endpoint of 124 - e, 24 + e 2. 
		  In other words, take d = min52 - 24 - e, 24 + e - 26 , the minimum (the 

An open interval about x = 2 
that solves the inequality.

0

4

4 - e

4 + e

(2, 1)

(2, 4)

2
x

y

"4 - e "4 + e

y = x2

FIGURE 2.23  An interval containing 
x = 2 so that the function in Example 5 
satisfies 0 ƒ(x) - 4 0 6 e.
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smaller) of the two numbers 2 - 24 - e and 24 + e - 2. If d has this or any 
smaller positive value, the inequality 0 6 0 x - 2 0 6 d will automatically place x 

		  between 24 - e and 24 + e to make 0 ƒ(x) - 4 0 6 e. For all x,

0 ƒ(x) - 4 0 6 e  whenever  0 6 0 x - 2 0 6 d.

		  This completes the proof for e 6 4.
If e Ú 4, then we take d to be the distance from x = 2 to the nearer endpoint  

of the interval 10, 24 + e 2. In other words, take d = min52, 24 + e - 26 . (See 
Figure 2.23.)�

Using the Definition to Prove Theorems

We do not usually rely on the formal definition of limit to verify specific limits such as 
those in the preceding examples. Rather, we appeal to general theorems about limits, in 
particular the theorems of Section 2.2. The definition is used to prove these theorems 
(Appendix 6). As an example, we prove part 1 of Theorem 1, the Sum Rule.

Triangle Inequality: 
� a + b � … � a � + � b �

Since limxSc ƒ(x) = L, there exists a number d1 7 0 such that 

0 ƒ(x) - L 0 6 e>2  whenever  0 6 0 x - c 0 6 d1.
Can find d1 since 
lim
xSc

 ƒ(x) = L

Similarly, since limxSc g(x) = M, there exists a number d2 7 0 such that

0 g(x) - M 0 6 e>2  whenever  0 6 0 x - c 0 6 d2.
Can find d2 since 
lim
xSc

 g(x) = M

Let d = min5d1, d26 , the smaller of d1 and d2. If 0 6 0 x - c 0 6 d then 0 x - c 0 6 d1, 
so 0 ƒ(x) - L 0 6 e>2, and 0 x - c 0 6 d2, so 0 g(x) - M 0 6 e>2. Therefore

0 ƒ(x) + g(x) - (L + M) 0 6 e
2 + e

2 = e.

This shows that limxSc (ƒ(x) + g(x)) = L + M.�

EXAMPLE  6    Given that limxSc ƒ(x) = L and limxSc g(x) = M, prove that

lim
xSc

 (ƒ(x) + g(x)) = L + M.

Solution  Let e 7 0 be given. We want to find a positive number d such that

0 ƒ(x) + g(x) - (L + M) 0 6 e  whenever  0 6 0 x - c 0 6 d.

Regrouping terms, we get

0 ƒ(x) + g(x) - (L + M) 0  = 0 (ƒ(x) - L) + (g(x) - M) 0
 … 0 ƒ(x) - L 0 + 0 g(x) - M 0 .

Centering Intervals About a Point
In Exercises 1–6, sketch the interval (a, b) on the x-axis with the point 
c inside. Then find a value of d 7 0 such that 
 a 6 x 6 b whenever 0 6 0 x - c 0 6 d.

	 1.	 a = 1, b = 7, c = 5

	 2.	 a = 1, b = 7, c = 2

	 3.	 a = -7>2, b = -1>2, c = -3

	 4.	 a = -7>2, b = -1>2, c = -3>2

	 5.	 a = 4>9, b = 4>7, c = 1>2

	 6.	 a = 2.7591, b = 3.2391, c = 3

Exercises  2.3
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96	 Chapter 2  Limits and Continuity

Finding Deltas Graphically
In Exercises 7–14, use the graphs to find a d 7 0 such that

0 ƒ(x) - L 0 6 e whenever 0 6 0 x - c 0 6 d.

	 7.	 			  8.	

x

y

0

6.2
6

5.8

5
5.14.9

y = 2x - 4

f (x) = 2x - 4

NOT TO SCALE

c = 5
L = 6
e = 0.2

x

y

0

7.65
7.5
7.35

NOT TO SCALE

-3
-3.1 -2.9

f (x) =  -    x + 33
2

y =  -    x + 33
2

e = 0.15
L = 7.5
c = - 3

x

y

0

1

1

f (x) = "x

y = "x1
4

e = 5
4

3
4

9
16

25
16

L = 1
c = 1 f (x) = 2"x + 1

y = 2"x + 1

x

y

4.2
4

3.8

2

-1 0 2.61 3 3.41

NOT TO SCALE

e = 0.2
L = 4
c = 3

	 9.	 			  10.	

	11.				   12.	

L = 4

x

y

0

5

4

3

2

NOT TO SCALE

y = x2

f (x) = x2

c = 2

e = 1

"3 "5

3.25

3

2.75

y

x

y = 4 - x2

-1

L = 3

f (x) = 4 - x2

c = -1

e = 0.25

"5
2- "3

2-
0

NOT TO SCALE

	13.	 			  14.	

2.5

2

1.5

y

x
-1

L = 2

f (x) =

c = -1

e = 0.5

16
9

- 16
25

- 0

"-x
2

y =
"-x

2

0

y

x

c =
L = 2
e = 0.01

y = 1
x

f (x) = 1
x
1
22.01

2

1.99

1
21

2.01
1

1.99
NOT TO SCALE

Finding Deltas Algebraically
Each of Exercises 15–30 gives a function ƒ(x) and numbers L, c, and 
e 7 0. In each case, find an open interval about c on which the inequal-
ity 0 ƒ(x) - L 0 6 e holds. Then give a value for d 7 0 such that for all 
x satisfying 0 6 0 x - c 0 6 d the inequality 0 ƒ(x) - L 0 6 e holds.

	15.	 ƒ(x) = x + 1,  L = 5,  c = 4,  e = 0.01

	16.	 ƒ(x) = 2x - 2,  L = -6,  c = -2,  e = 0.02

	17.	 ƒ(x) = 2x + 1,  L = 1,  c = 0,  e = 0.1

	18.	 ƒ(x) = 2x,  L = 1>2,  c = 1>4,  e = 0.1

	19.	 ƒ(x) = 219 - x,  L = 3,  c = 10,  e = 1

	20.	 ƒ(x) = 2x - 7,  L = 4,  c = 23,  e = 1

	21.	 ƒ(x) = 1>x,  L = 1>4,  c = 4,  e = 0.05

	22.	 ƒ(x) = x2,  L = 3,  c = 23,  e = 0.1

	23.	 ƒ(x) = x2,  L = 4,  c = -2,  e = 0.5

	24.	 ƒ(x) = 1>x,  L = -1,  c = -1,  e = 0.1

	25.	 ƒ(x) = x2 - 5,  L = 11,  c = 4,  e = 1

	26.	 ƒ(x) = 120>x,  L = 5,  c = 24,  e = 1

	27.	 ƒ(x) = mx, m 7 0, L = 2m, c = 2, e = 0.03

	28.	 ƒ(x) = mx,  m 7 0,  L = 3m,  c = 3, e = c 7 0

	29.	 ƒ(x) = mx + b,  m 7 0,  L = (m>2) + b,
c = 1>2,  e = c 7 0

	30.	 ƒ(x) = mx + b, m 7 0, L = m + b, c = 1,  e = 0.05

Using the Formal Definition
Each of Exercises 31–36 gives a function ƒ(x), a point c, and a positive num-
ber e. Find L = lim

xSc
 ƒ(x). Then find a number d 7 0 such that 

0 ƒ(x) - L 0 6 e whenever 0 6 0 x - c 0 6 d.

	31.	 ƒ(x) = 3 - 2x,  c = 3,  e = 0.02

	32.	 ƒ(x) = -3x - 2,  c = -1,  e = 0.03

	33.	 ƒ(x) = x2 - 4
x - 2

,  c = 2,  e = 0.05
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	34.	 ƒ(x) = x2 + 6x + 5
x + 5

,  c = -5,  e = 0.05

	35.	 ƒ(x) = 21 - 5x,  c = -3,  e = 0.5

	36.	 ƒ(x) = 4>x,  c = 2,  e = 0.4

Prove the limit statements in Exercises 37–50.

	37.	 lim
xS4

 (9 - x) = 5	 38.	 lim
xS3

 (3x - 7) = 2

	39.	 lim
xS9

2x - 5 = 2	 40.	 lim
xS0

24 - x = 2

	41.	 lim
xS1

 ƒ(x) = 1 if ƒ(x) = e x2, x ≠ 1
2, x = 1

	42.	 lim
xS  -2

 ƒ(x) = 4 if ƒ(x) = e x2, x ≠ -2
1, x = -2

	43.	 lim
xS1

 
1
x = 1	 44.	 lim

xS23
  
1
x2 = 1

3

	45.	 lim
xS  -3

 
x2 - 9
x + 3

= -6	 46.	 lim
xS1

  
x2 - 1
x - 1

= 2

	47.	 lim
xS1

 ƒ(x) = 2 if ƒ(x) = e4 - 2x, x 6 1
6x - 4, x Ú 1

	48.	 lim
xS0

 ƒ(x) = 0 if ƒ(x) = e2x, x 6 0
x>2, x Ú 0

	49.	 lim
xS0

 x sin 
1
x = 0

x

y

y = x sin 1
x

1
p- 1

p

1
2p- 1

2p

	50.	 lim
xS0

 x2 sin 
1
x = 0

x

y

1

-1

0 1-1

y = x2

y = -x2

y = x2 sin 1
x

2
p

2
p-

Theory and Examples
	51.	 Define what it means to say that lim

xS0
 g(x) = k.

	52.	 Prove that lim
xSc

 ƒ(x) = L if and only if lim
hS0

 ƒ(h + c) = L.

	53.	 A wrong statement about limits  Show by example that the 
following statement is wrong.

The number L is the limit of ƒ(x) as x approaches c  
if ƒ(x) gets closer to L as x approaches c.

	 	 Explain why the function in your example does not have the 
given value of L as a limit as x S c.

	54.	 Another wrong statement about limits  Show by example that 
the following statement is wrong.

The number L is the limit of ƒ(x) as x approaches c if, given any 
e 7 0, there exists a value of x for which 0 ƒ(x) - L 0 6 e.

	 	 Explain why the function in your example does not have the 
given value of L as a limit as x S c.

	55.	 Grinding engine cylinders  Before contracting to grind engine 
cylinders to a cross-sectional area of 60 cm2, you need to know 
how much deviation from the ideal cylinder diameter of 
c = 8.7404 cm you can allow and still have the area come within 
0.1 cm2 of the required 60 cm2. To find out, you let A = p(x>2)2 
and look for the interval in which you must hold x to make 
0A - 60 0 … 0.1. What interval do you find?

	56.	 Manufacturing electrical 
resistors  Ohm’s law for elec-
trical circuits like the one shown 
in the accompanying figure 
states that V = RI. In this equa-
tion, V is a constant voltage, I is 
the current in amperes, and R is the resistance in ohms. Your firm has 
been asked to supply the resistors for a circuit in which V will be 120 
volts and I is to be 5 { 0.1 amp. In what interval does R have to lie 
for I to be within 0.1 amp of the value I0 = 5?

When Is a Number L Not the Limit of ƒ(x)  as x u c?
Showing L is not a limit We can prove that limxSc 

 ƒ(x) ≠ L by 
providing an e 7 0 such that no possible d 7 0 satisfies the condition

0 ƒ(x) - L 0 6 e whenever 0 6 0 x - c 0 6 d.

We accomplish this for our candidate e by showing that for each 
d 7 0 there exists a value of x such that

0 6 0 x - c 0 6 d  and  0 ƒ(x) - L 0 Ú e.

y

x
0 c c + dc - d

L

L - e

L + e

y = f (x)

a value of x for which

0 6 0  x - c 0  6 d and 0  f (x) - L 0  ≥ e

 f (x)

T

V RI
+

-
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	57.	 Let ƒ(x) = e x, x 6 1
x + 1, x 7 1.

x

y

y = x + 1

y = x

y = f (x)

1

1

2

	 a.	Let e = 1>2. Show that no possible d 7 0 satisfies the fol-
lowing condition:

0 ƒ(x) - 2 0 6 1>2 whenever 0 6 0 x - 1 0 6 d.

		  That is, for each d 7 0 show that there is a value of x such 
that

0 6 0 x - 1 0 6 d  and  0 ƒ(x) - 2 0 Ú 1>2.

		  This will show that limxS1 ƒ(x) ≠ 2.

	 b.	Show that limxS1 ƒ(x) ≠ 1.

	 c.	Show that limxS1 ƒ(x) ≠ 1.5.

	58.	 Let h(x) = c x2, x 6 2
3, x = 2
2, x 7 2.

x

y

0 2

1

2

3

4 y = h(x)

y = x2

y = 2

Show that

	 a.	 lim
xS2

 h(x) ≠ 4

	 b.	 lim
xS2

 h(x) ≠ 3

	 c.	 lim
xS2

 h(x) ≠ 2

	59.	 For the function graphed here, explain why

	 a.	 lim
xS3

 ƒ(x) ≠ 4

	 b.	 lim
xS3

 ƒ(x) ≠ 4.8

	 c.	 lim
xS3

 ƒ(x) ≠ 3

x

y

0 3

3

4

4.8

y = f (x)

	60.	 a.  For the function graphed here, show that limxS  -1 g(x) ≠ 2.

b.  Does limxS  -1 g(x) appear to exist? If so, what is the value of 
the limit? If not, why not?

y

x

y = g(x)

-1 0

1

2

COMPUTER EXPLORATIONS
In Exercises 61–66, you will further explore finding deltas graphi-
cally. Use a CAS to perform the following steps:

a.	 Plot the function y = ƒ(x) near the point c being approached.

b.	 Guess the value of the limit L and then evaluate the limit 
symbolically to see if you guessed correctly.

c.	 Using the value e = 0.2, graph the banding lines y1 = L - e 
and y2 = L + e together with the function ƒ near c.

d.	 From your graph in part (c), estimate a d 7 0 such that

0 ƒ(x) - L 0 6 e whenever  0 6 0 x - c 0 6 d.

		  Test your estimate by plotting ƒ, y1, and y2 over the interval 
0 6 0 x - c 0 6 d. For your viewing window use c - 2d …  
x … c + 2d and L - 2e … y … L + 2e. If any function 
values lie outside the interval 3L - e, L + e], your choice 
of d was too large. Try again with a smaller estimate.

e.	 Repeat parts (c) and (d) successively for e = 0.1, 0.05, and 
0.001.

	61.	 ƒ(x) = x4 - 81
x - 3

, c = 3	 62.	 ƒ(x) = 5x3 + 9x2

2x5 + 3x2 , c = 0

	63.	 ƒ(x) = sin 2x
3x

, c = 0	 64.	 ƒ(x) =
x(1 - cos x)

x - sin x
, c = 0

	65.	 ƒ(x) = 23 x - 1
x - 1

, c = 1

	66.	 ƒ(x) =
3x2 - (7x + 1)2x + 5

x - 1
, c = 1
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2.4	 One-Sided Limits

In this section we extend the limit concept to one-sided limits, which are limits as x 
approaches the number c from the left-hand side (where x 6 c) or the right-hand side 
(x 7 c) only. These allow us to describe functions that have different limits at a point, 
depending on whether we approach the point from the left or from the right. One-sided 
limits also allow us to say what it means for a function to have a limit at an endpoint of an 
interval.

Approaching a Limit from One Side

Suppose a function ƒ is defined on an interval that extends to both sides of a number c. In 
order for ƒ to have a limit L as x approaches c, the values of ƒ(x) must approach the value 
L as x approaches c from either side. Because of this, we sometimes say that the limit is 
two-sided.

If ƒ fails to have a two-sided limit at c, it may still have a one-sided limit, that is, a 
limit if the approach is only from one side. If the approach is from the right, the limit is a 
right-hand limit or limit from the right. From the left, it is a left-hand limit or limit 
from the left.

The function ƒ(x) = x> 0 x 0  (Figure 2.24) has limit 1 as x approaches 0 from the right, 
and limit -1 as x approaches 0 from the left. Since these one-sided limit values are not the 
same, there is no single number that ƒ(x) approaches as x approaches 0. So ƒ(x) does not 
have a (two-sided) limit at 0.

Intuitively, if we only consider the values of ƒ(x) on an interval (c, b), where c 6 b, 
and the values of ƒ(x) become arbitrarily close to L as x approaches c from within that 
interval, then ƒ has right-hand limit L at c. In this case we write

lim
xSc+

 ƒ(x) = L.

The notation “x S c+ ” means that we consider only values of ƒ(x) for x greater than c. We 
don’t consider values of ƒ(x) for x … c.

Similarly, if ƒ(x) is defined on an interval (a, c), where a 6 c and ƒ(x) approaches 
arbitrarily close to M as x approaches c from within that interval, then ƒ has left-hand 
limit M at c. We write

lim
xSc-

 ƒ(x) = M.

The symbol “x S c- ” means that we consider the values of ƒ only at x-values less than c.
These informal definitions of one-sided limits are illustrated in Figure 2.25. For the 

function ƒ(x) = x> 0 x 0  in Figure 2.24 we have

lim
xS0+

 ƒ(x) = 1  and  lim
xS0-

 ƒ(x) = -1.

x

y

1

0

-1

y = x
0 x 0

FIGURE 2.24  Different right-hand and 
left-hand limits at the origin.

x

y

0
x

y

c cx x

L f (x)

0

M
f (x)

lim    f (x) = L
x:c+

lim    f (x) = M(b)(a)
x:c

_

FIGURE 2.25  (a) Right-hand limit as x approaches c. (b) Left-hand limit as x  
approaches c.
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100	 Chapter 2  Limits and Continuity

We now give the definition of the limit of a function at a boundary point of its domain. 
This definition is consistent with limits at boundary points of regions in the plane and in 
space, as we will see in Chapter 13. When the domain of ƒ is an interval lying to the left of 
c, such as (a, c] or (a, c), then we say that ƒ has a limit at c if it has a left-hand limit at c. 
Similarly, if the domain of ƒ is an interval lying to the right of c, such as [c, b) or (c, b), 
then we say that ƒ has a limit at c if it has a right-hand limit at c.

EXAMPLE  1    The domain of ƒ(x) = 24 - x2 is 3-2, 24 ; its graph is the semicircle 
in Figure 2.26. We have

lim
xS  -2+

24 - x2 = 0  and  lim
xS2-

24 - x2 = 0.

This function has a two-sided limit at each point in (-2, 2). It has a left-hand limit at 
x = 2 and a right-hand limit at x = -2. The function does not have a left-hand limit at 
x = -2 or a right-hand limit at x = 2. It does not have a two-sided limit at either -2 or 2 
because ƒ is not defined on both sides of these points. At the domain boundary points, 
where the domain is an interval on one side of the point, we have limxS-224 - x2 = 0    
and limxS224 - x2 = 0. The function ƒ does have a limit at x = -2 and at x = 2.�

One-sided limits have all the properties listed in Theorem 1 in Section 2.2. The right-hand 
limit of the sum of two functions is the sum of their right-hand limits, and so on. The theorems 
for limits of polynomials and rational functions hold with one-sided limits, as does the Sand-
wich Theorem. One-sided limits are related to limits at interior points in the following way.

x

y

0 2-2

y = "4 - x2

FIGURE 2.26  The function 
ƒ(x) = 24 - x2 has a right-hand limit 0 
at x = -2 and a left-hand limit 0 at x = 2 
(Example 1).

THEOREM 6  Suppose that a function f is defined on an open interval  
containing c, except perhaps at c itself. Then ƒ(x) has a limit as x approaches c  
if and only if it has left-hand and right-hand limits there and these one-sided 
limits are equal:

lim
xSc

 ƒ(x) = L  3  lim
xSc-

 ƒ(x) = L  and  lim
xSc+

 ƒ(x) = L.

EXAMPLE  2    For the function graphed in Figure 2.27,

At x = 0: limxS0- ƒ(x) does not exist, 
limxS0+ ƒ(x) = 1,   
limxS0 ƒ(x) = 1. 

ƒ is not defined to the left of x = 0. 

ƒ has a right-hand limit at x = 0.

ƒ has a limit at domain endpoint x = 0.

At x = 1: limxS1- ƒ(x) = 0, 
limxS1+ ƒ(x) = 1,
limxS1 ƒ(x) does not exist. 

Even though ƒ(1) = 1.

Right- and left-hand limits are not equal.

At x = 2: limxS2- ƒ(x) = 1,
limxS2+ ƒ(x) = 1,
limxS2 ƒ(x) = 1. Even though ƒ(2) = 2.

At x = 3: limxS3- ƒ(x) = limxS3+ ƒ(x) = limxS3 ƒ(x) = ƒ(3) = 2. 

At x = 4: limxS4- ƒ(x) = 1, 
limxS4+ ƒ(x) does not exist, 
limxS4 ƒ(x) = 1.

Even though ƒ(4) ≠ 1.

ƒ is not defined to the right of x = 4.

ƒ has a limit at domain endpoint x = 4.

x

y

321

2

1

40

y = f (x)

FIGURE 2.27  Graph of the function 
in Example 2.

At every other point c in 30, 44 , ƒ(x) has limit ƒ(c).�

Theorem 6 applies at interior points of a function’s domain. At a boundary point of its 
domain, a function has a limit when it has an appropriate one-sided limit.
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	 2.4  One-Sided Limits	 101

Precise Definitions of One-Sided Limits

The formal definition of the limit in Section 2.3 is readily modified for one-sided limits.

y

x
0

L

x
d

f (x) lies
in here

for all x Z c
in here

L - e

L + e
f (x)

c c + d

FIGURE 2.28  Intervals associated with 
the definition of right-hand limit.

DEFINITIONS  (a) Assume the domain of ƒ contains an interval (c, d ) to the 
right of c. We say that ƒ(x) has right-hand limit L at c, and write

lim
xSc+

 ƒ(x) = L

if for every number e 7 0 there exists a corresponding number d 7 0 such that 

� ƒ(x) - L � 6 e whenever c 6 x 6 c + d.

(b)	 Assume the domain of ƒ contains an interval (b, c) to the left of c. We say that 
ƒ has left-hand limit L at c, and write

lim
xSc-

 ƒ(x) = L

if for every number e 7 0 there exists a corresponding number d 7 0 such that 

0 ƒ(x) - L 0 6 e whenever c - d 6 x 6 c.

EXAMPLE  3    Prove that

lim
xS0+

2x = 0.

Solution  Let e 7 0 be given. Here c = 0 and L = 0, so we want to find a d 7 0 such 
that

0 2x - 0 0 6 e  whenever  0 6 x 6 d,

or 2x 6 e  whenever  0 6 x 6 d.

Squaring both sides of this last inequality gives

x 6 e2  if  0 6 x 6 d.

If we choose d = e2 we have2x 6 e  whenever  0 6 x 6 d = e2,

or

0 2x - 0 0 6 e  whenever  0 6 x 6 e2.

According to the definition, this shows that limxS0+2x = 0 (Figure 2.30).�

The functions examined so far have had some kind of limit at each point of interest. In 
general, that need not be the case.

1x g 0 so 0 1x 0 = 1x

y

x
0

L

x
d

f (x) lies
in here

for all x Z c
in here

L - e

L + e
f (x)

cc - d

FIGURE 2.29  Intervals associated with 
the definition of left-hand limit.

x

y

e

f (x)

xL = 0 d = e2

 f (x) = "x

FIGURE 2.30  lim
xS0+

1x = 0 in Example 3.

The definitions are illustrated in Figures 2.28 and 2.29.
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102	 Chapter 2  Limits and Continuity

EXAMPLE  4    Show that y = sin (1>x) has no limit as x approaches zero from either 
side (Figure 2.31).

x

y

0

-1

1

y = sin 1
x

FIGURE 2.31  The function y = sin (1>x) has neither a right-
hand nor a left-hand limit as x approaches zero (Example 4). 
The graph here omits values very near the y-axis.

Solution  As x approaches zero, its reciprocal, 1>x, grows without bound and the values 
of sin (1>x) cycle repeatedly from -1 to 1. There is no single number L that the function’s 
values stay increasingly close to as x approaches zero. This is true even if we restrict x to 
positive values or to negative values. The function has neither a right-hand limit nor a left-
hand limit at x = 0.�

Limits Involving (sin U) ,U
A central fact about (sin u)>u is that in radian measure its limit as u S 0 is 1. We can see 
this in Figure 2.32 and confirm it algebraically using the Sandwich Theorem. You will see the 
importance of this limit in Section 3.5, where instantaneous rates of change of the trigono-
metric functions are studied.

y

1

NOT TO SCALE

2pp-p-2p-3p 3p

y = (radians)sin u
u

u

FIGURE 2.32  The graph of ƒ(u) = (sin u)>u suggests that the right- 
and left-hand limits as u approaches 0 are both 1.

THEOREM 7—Limit of the Ratio sin U ,U as U u 0

lim
uS0

 
sin u
u

= 1  (u in radians)	 (1)

Proof    The plan is to show that the right-hand and left-hand limits are both 1. Then we 
will know that the two-sided limit is 1 as well.

To show that the right-hand limit is 1, we begin with positive values of u less than 
p>2 (Figure 2.33). Notice that

Area ∆OAP 6  area sector OAP 6  area ∆OAT.

x

y

O

1

1

Q

tan u

P

sin u 

cos u 

1

T

A(1, 0)

u

FIGURE 2.33  The ratio TA>OA = tan u, 
and OA = 1, so TA = tan u.
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We can express these areas in terms of u as follows:

Area ∆OAP = 1
2 base * height = 1

2 (1)(sin u) = 1
2 sin u

Area sector OAP = 1
2 r2u =  12 (1)2u    = u

2

Area ∆OAT = 1
2 base * height = 1

2 (1)(tan u) = 1
2 tan u.�

(2)

Thus,
1
2 sin u 6 1

2 u 6 1
2 tan u.

This last inequality goes the same way if we divide all three terms by the number  
(1>2) sin u, which is positive, since 0 6 u 6 p>2:

1 6 u
sin u

6 1
cos u .

Taking reciprocals reverses the inequalities:

1 7 sin u
u

7 cos u.

Since limuS0+ cos u = 1 (Example 11b, Section 2.2), the Sandwich Theorem gives

lim
uS0+

 
sin u
u

= 1.

To consider the left-hand limit, we recall that sin u and u are both odd functions 
(Section 1.1). Therefore, ƒ(u) = (sin u)>u is an even function, with a graph symmetric 
about the y-axis (see Figure 2.32). This symmetry implies that the left-hand limit at 0 exists 
and has the same value as the right-hand limit:

lim
uS0-

 
sin u
u

= 1 = lim
uS0+

 
sin u
u

,

so limuS0 (sin u)>u = 1 by Theorem 6.�

EXAMPLE  5    Show that (a) lim
yS0

 
cos y - 1

y = 0  and  (b) lim
xS0

 sin 2x
5x

= 2
5

.

Solution
(a)	 Using the half-angle formula cos y = 1 - 2 sin2 (y>2), we calculate

 lim
yS0

 
cos y - 1

y = lim
yS0

-
2 sin2 (y>2)

y

 = - lim
uS0

  
sin u
u

 sin u

 = -(1)(0) = 0.

The use of radians to measure angles is 
essential in Equation (2): The area of 
sector OAP is u>2 only if u is measured 
in radians.

Let u = y>2.

(b)	 Equation (1) does not apply to the original fraction. We need a 2x in the denominator, 
not a 5x. We produce it by multiplying numerator and denominator by 2>5:

 lim
xS0

 sin 2x
5x

= lim
xS0

 
(2>5) #  sin 2x

(2>5) # 5x

 = 2
5

 lim
xS0

  sin 2x
2x

 = 2
5

 (1) = 2
5

.

Eq. (1) and Example 11a 
in Section 2.2

Eq. (1) applies with 
u = 2x.
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104	 Chapter 2  Limits and Continuity

EXAMPLE  6    Find lim
tS0

 tan t sec 2t
3t .

Solution  From the definition of tan t and sec 2t, we have

lim
tS0

 tan t sec 2t
3t  = lim

tS0
  13

# 1
t
# sin t
cos t

# 1
cos 2t

  = 1
3  lim

tS0
  sin t

t
# 1
cos t

# 1
cos 2t

 = 1
3 (1)(1)(1) = 1

3.
Eq. (1) and Example 11b 
in Section 2.2

EXAMPLE  7    Show that for nonzero constants A and B.

lim
uS0

  
sin Au
sin Bu

= A
B .

Solution

                             lim
uS0

  
sin Au
sin Bu

 = lim
uS0

 
sin Au

Au  Au 
Bu

sin Bu
 1
Bu

 = lim
uS0

 
sin Au

Au  
Bu

sin Bu
 AB

 = lim
uS0

 (1)(1) AB

 = A
B .

Finding Limits Graphically
	 1.	 Which of the following statements about the function y = ƒ(x) 

graphed here are true, and which are false?

x

y

21-1

1

0

y = f (x)

a.	 lim
xS  -1+

 ƒ(x) = 1	 b.	 lim
xS0-

 ƒ(x) = 0

c.	 lim
xS0-

 ƒ(x) = 1	 d.	 lim
xS0-

 ƒ(x) = lim
xS0+

 ƒ(x)

e.	 lim
xS0

 ƒ(x) exists.	 f.	 lim
xS0

 ƒ(x) = 0

g.	 lim
xS0

 ƒ(x) = 1	 h.	 lim
xS1

 ƒ(x) = 1

i.	 lim
xS1

 ƒ(x) = 0	 j.	 lim
xS2-

 ƒ(x) = 2

k.	 lim
xS  -1-

 ƒ(x) does not exist.	 l.	 lim
xS2+

 ƒ(x) = 0

	 2.	 Which of the following statements about the function y = ƒ(x) 
graphed here are true, and which are false?

y = f (x)

x

y

0

1

2

1 2 3−1

a.	 lim
xS  -1+

 ƒ(x) = 1	 b.	 lim
xS2

 ƒ(x) does not exist.

c.	 lim
xS2

 ƒ(x) = 2	 d.	 lim
xS1-

 ƒ(x) = 2

e.	 lim
xS1+

 ƒ(x) = 1	 f.	 lim
xS1

 ƒ(x) does not exist.

g.	 lim
xS0+

 ƒ(x) = lim
xS0-

 ƒ(x)

h.	 lim
xSc

 ƒ(x) exists at every c in the open interval (-1, 1).

i.	 lim
xSc

 ƒ(x) exists at every c in the open interval (1, 3).

j.	 lim
xS  -1-

 ƒ(x) = 0	 k.	 lim
xS3+

 ƒ(x) does not exist.

Exercises  2.4

Multiply and divide by Au and Bu.

lim
uS0

 
sin u

u = 1,  with u = Au

lim
yS0

  
y

sin y
= 1,  with y = Bu
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	 3.	 Let ƒ(x) = c 3 - x, x 6 2

x
2

+ 1, x 7 2.

x

y

3

20 4

y = 3 - x

y =     + 1x
2

a.	 Find limxS2+ ƒ(x) and limxS2- ƒ(x).

b.	 Does limxS2 ƒ(x) exist? If so, what is it? If not, why not?

c.	 Find limxS4- ƒ(x) and limxS4+ ƒ(x).

d.	 Does limxS4 ƒ(x) exist? If so, what is it? If not, why not?

	 4.	 Let ƒ(x) = d 3 - x, x 6 2
2, x = 2

x
2

, x 7 2.

x

y

y = 3 - x

0

3

2- 2

y =
2
x

a.	 Find limxS2+ ƒ(x), limxS2- ƒ(x), and ƒ(2).

b.	 Does limxS2 ƒ(x) exist? If so, what is it? If not, why not?

c.	 Find limxS  -1- ƒ(x) and limxS  -1+ ƒ(x).

d.	 Does limxS  -1 ƒ(x) exist? If so, what is it? If not, why not?

	 5.	 Let ƒ(x) = c 0, x … 0

sin 
1
x , x 7 0.

x

y

0

21

1

1
xsin    ,

y 5
0, x # 0

x . 0

a.	 Does limxS0+ ƒ(x) exist? If so, what is it? If not, why not?

b.	 Does limxS0- ƒ(x) exist? If so, what is it? If not, why not?

c.	 Does limxS0 ƒ(x) exist? If so, what is it? If not, why not?

	 6.	 Let g(x) = 2x sin(1>x).

x
0

-1

1

y

y = "x

y = -"x

11
p

1
2p

2
p

y = "x sin 1
x

a.	 Does limxS0+ g(x) exist? If so, what is it? If not, why not?

b.	 Does limxS0- g(x) exist? If so, what is it? If not, why not?

c.	 Does limxS0 g(x) exist? If so, what is it? If not, why not?

	 7.	 a.	 Graph ƒ(x) = e x3, x ≠ 1
0, x = 1.

b.	 Find limxS1- ƒ(x) and limxS1+ ƒ(x).

c.	 Does limxS1 ƒ(x) exist? If so, what is it? If not, why not?

	 8.	 a.	 Graph ƒ(x) = e1 - x2, x ≠ 1
2, x = 1.

b.	 Find limxS1+ ƒ(x) and limxS1- ƒ(x).

c.	 Does limxS1 ƒ(x) exist? If so, what is it? If not, why not?

Graph the functions in Exercises 9 and 10. Then answer these questions.

a.	 What are the domain and range of ƒ?

b.	 At what points c, if any, does limxSc ƒ(x) exist?

c.	 At what points does the left-hand limit exist but not the right-
hand limit?

d.	 At what points does the right-hand limit exist but not the left-
hand limit?

	 9.	 ƒ(x) = c 21 - x2,  0 … x 6 1
1,  1 … x 6 2
2,  x = 2

	10.	 ƒ(x) = c x,  -1 … x 6 0, or 0 6 x … 1
1,  x = 0
0,  x 6 -1 or x 7 1

Finding One-Sided Limits Algebraically
Find the limits in Exercises 11–20.

	11.	 lim
xS  -0.5-Ax + 2

x + 1
	 12.	 lim

xS1+Ax - 1
x + 2

	13.	 lim
xS  -2+

a x
x + 1

b a2x + 5
x2 + x

b
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106	 Chapter 2  Limits and Continuity

	14.	 lim
xS1-

a 1
x + 1

b ax + 6
x b a3 - x

7
b

	15.	 lim
hS0+

 
2h2 + 4h + 5 - 25

h

	16.	 lim
hS0-

 
26 - 25h2 + 11h + 6

h

	17.	 a.	 lim
xS  -2+

(x + 3) 
0 x + 2 0
x + 2

	 b.	 lim
xS  -2-

(x + 3) 
0 x + 2 0
x + 2

	18.	 a.	 lim
xS1+

 
22x (x - 1)

0 x - 1 0 	 b.	 lim
xS1-

 
22x (x - 1)

0 x - 1 0

	19.	 a.	 lim
xS0 +

 
� sin x �
sin x

	 b.	 lim
xS0-

 
� sin x �
sin x

	20.	 a.	 lim
xS0 +

 
1 - cos x

� cos x - 1 �
	 b.	 lim

xS0 -
 

cos x - 1
� cos x - 1 �

Use the graph of the greatest integer function y = :x;, Figure 1.10 in 
Section 1.1, to help you find the limits in Exercises 21 and 22.

	21.	 a.	 lim
uS3+

 
:u;
u

	 b.	 lim
uS3-

 
:u;
u

	22.	 a.	 lim
tS4+

(t - :t;)	 b.	 lim
tS4-

(t - :t;)

Using lim
Uu0

 
sin U
U

= 1

Find the limits in Exercises 23–46.

	23.	 lim
uS0

 
sin 22u22u

	 24.	 lim
tS0

 
sin kt

t  (k constant)

	25.	 lim
yS0

 
sin 3y

4y
	 26.	 lim

hS0-
 

h
sin 3h

	27.	 lim
xS0

 
tan 2x

x 	 28.	 lim
tS0

  
2t

tan t

	29.	 lim
xS0

 
x csc 2x
cos 5x

	 30.	 lim
xS0

 6x2(cot x)(csc 2x)

	31.	 lim
xS0

 
x + x cos x
sin x cos x

	 32.	 lim
xS0

 
x2 - x + sin x

2x

	33.	 lim
uS0

 
1 - cos u

sin 2u
	 34.	 lim

xS0
 
x - x cos x

sin2 3x

	35.	 lim
tS0

 
sin (1 - cos t)

1 - cos t
	 36.	 lim

hS0
 
sin (sin h)

sin h

	37.	 lim
uS0

  
sin u
sin 2u

	 38.	 lim
xS0

  
sin 5x
sin 4x

	39.	 lim
uS0

 u cos u	 40.	 lim
uS0

 sin u cot 2u

	41.	 lim
xS0

  
tan 3x
sin 8x

	 42.	 lim
yS0

 
sin 3y cot 5y

y cot 4y

	43.	 lim
uS0

  
tan u

u2 cot 3u
	 44.	 lim

uS0
  

u cot 4u
sin2 u cot2 2u

	45.	 lim
xS0

  
1 - cos 3x

2x
	 46.	 lim

xS0
  
cos2x - cos x

x2

Theory and Examples
	47.	 Once you know limxSa+ ƒ(x) and limxSa- ƒ(x) at an interior point 

of the domain of ƒ, do you then know limxSa ƒ(x)? Give reasons 
for your answer.

	48.	 If you know that limxSc ƒ(x) exists, can you find its value by  
calculating limxSc+ ƒ(x)? Give reasons for your answer.

	49.	 Suppose that ƒ is an odd function of x. Does knowing that 
limxS0+ ƒ(x) = 3 tell you anything about limxS0- ƒ(x)? Give rea-
sons for your answer.

	50.	 Suppose that ƒ is an even function of x. Does knowing that 
limxS2- ƒ(x) = 7 tell you anything about either limxS  -2- ƒ(x) or 
limxS  -2+ ƒ(x)? Give reasons for your answer.

Formal Definitions of One-Sided Limits
	51.	 Given e 7 0, find an interval I = (5, 5 + d), d 7 0, such that if 

x lies in I, then 2x - 5 6 e. What limit is being verified and 
what is its value?

	52.	 Given e 7 0, find an interval I = (4 - d, 4), d 7 0, such that if 
x lies in I, then 24 - x 6 e. What limit is being verified and 
what is its value?

Use the definitions of right-hand and left-hand limits to prove the 
limit statements in Exercises 53 and 54.

	53.	 lim
xS0-

 
x
0 x 0 = -1	 54.	 lim

xS2+
 

x - 2
0 x - 2 0 = 1

	55.	 Greatest integer function  Find (a) limxS400+ :x;  and (b) 
limxS400- :x;; then use limit definitions to verify your findings. 
(c) Based on your conclusions in parts (a) and (b), can you say 
anything about limxS400 :x;? Give reasons for your answer.

	56.	 One-sided limits  Let ƒ(x) = e x2 sin (1>x), x 6 02x, x 7 0.

	 	 Find (a) limxS0+ ƒ(x) and (b) limxS0- ƒ(x); then use limit defini-
tions to verify your findings. (c) Based on your conclusions in 
parts (a) and (b), can you say anything about limxS0 ƒ(x)? Give 
reasons for your answer.

2.5  Limits Involving Infinity; Asymptotes of Graphs

In this section we investigate the behavior of a function when the magnitude of the indepen-
dent variable x becomes increasingly large, or x S {q. We further extend the concept of 
limit to infinite limits. Infinite limits provide useful symbols and language for describing the 
behavior of functions whose values become arbitrarily large in magnitude. We use these 
ideas to analyze the graphs of functions having horizontal or vertical asymptotes.
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Finite Limits as x u tH
The symbol for infinity (q) does not represent a real number. We use q to describe the 
behavior of a function when the values in its domain or range outgrow all finite bounds. For 
example, the function ƒ(x) = 1>x is defined for all x ≠ 0 (Figure 2.34). When x is positive 
and becomes increasingly large, 1>x becomes increasingly small. When x is negative and its 
magnitude becomes increasingly large, 1>x again becomes small. We summarize these 
observations by saying that ƒ(x) = 1>x has limit 0 as x S q or x S  -q, or that 0 is a limit 
of ƒ(x) = 1>x at infinity and at negative infinity. Here are precise definitions for the limit of 
a function whose domain contains positive or negative numbers of unbounded magnitude.

y

0

1

-1
1-1 2 3 4

2

3

4

x

1
xy =

FIGURE 2.34  The graph of y = 1>x 
approaches 0 as x S q or x S  -q.

DEFINITIONS

1.	 We say that ƒ(x) has the limit L as x approaches infinity and write

lim
xS  q

 ƒ(x) = L

if, for every number e 7 0, there exists a corresponding number M such that 
for all x in the domain of ƒ 

� ƒ(x) - L � 6 e whenever x 7 M.

2.	 We say that ƒ(x) has the limit L as x approaches negative infinity and write

lim
xS  -  q

 ƒ(x) = L

if, for every number e 7 0, there exists a corresponding number N such that 
for all x in the domain of ƒ

� ƒ(x) - L � 6 e whenever x 6 N.

Intuitively, limxSq ƒ(x) = L if, as x moves increasingly far from the origin in the positive 
direction, ƒ(x) gets arbitrarily close to L. Similarly, limxS  -q ƒ(x) = L if, as x moves 
increasingly far from the origin in the negative direction, ƒ(x) gets arbitrarily close to L.

The strategy for calculating limits of functions as x S +q or as x S -q is similar 
to the one for finite limits in Section 2.2. There we first found the limits of the constant and 
identity functions y = k and y = x. We then extended these results to other functions by 
applying Theorem 1 on limits of algebraic combinations. Here we do the same thing, 
except that the starting functions are y = k and y = 1>x instead of y = k and y = x.

The basic facts to be verified by applying the formal definition are

lim
xS{q

 k = k   and   lim
xS{q

  1x = 0.	 (1)

We prove the second result in Example 1, and leave the first to Exercises 93 and 94.

EXAMPLE  1    Show that

(a)	 lim
xSq

  1x = 0		  (b)	 lim
xS  -q

  1x = 0.

Solution
(a)	 Let e 7 0 be given. We must find a number M such that

` 1x - 0 ` = ` 1x ` 6 e   whenever  x 7 M.

x

y
No matter what
positive number e is,
the graph enters
this band at x =
and stays.

1
e

y = e

M = 1
e

N = - 1
e

y = -e
0

No matter what
positive number e is,
the graph enters
this band at x = -
and stays.

1
e

e

-e

y = 1
x

FIGURE 2.35  The geometry behind the 
argument in Example 1.
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108	 Chapter 2  Limits and Continuity

	 	 The implication will hold if M = 1>e or any larger positive number (Figure 2.35). 
This proves limxSq (1>x) = 0.

(b)	 Let e 7 0 be given. We must find a number N such that

` 1x - 0 ` = ` 1x ` 6 e  whenever  x 6 N.

		  The implication will hold if N = -1>e or any number less than -1>e (Figure 2.35). 
This proves limxS  - q (1>x) = 0.�

Limits at infinity have properties similar to those of finite limits.

THEOREM 8  All the Limit Laws in Theorem 1 are true when we replace limxSc 
by limxS  q or limxS  - q. That is, the variable x may approach a finite number c 
or {q.

EXAMPLE  2    The properties in Theorem 8 are used to calculate limits in the same 
way as when x approaches a finite number c.

(a)	 lim
xS  q

a5 + 1
xb  = lim

xS  q
 5 + lim

xS  q
  1x			   Sum Rule

 = 5 + 0 = 5 			   Known limits

(b)	 lim
xS  -  q

 
p23

x2 = lim
xS  -  q

 p23 # 1
x
# 1
x

= lim
xS  -  q

 p23 # lim
xS  -  q

  1x
# lim

xS  -  q
  1x 	 Product Rule

= p23 # 0 # 0 = 0	 Known limits�

Limits at Infinity of Rational Functions

To determine the limit of a rational function as x S {q, we first divide the numerator 
and denominator by the highest power of x in the denominator. The result then depends on 
the degrees of the polynomials involved.

EXAMPLE  3    These examples illustrate what happens when the degree of the numer-
ator is less than or equal to the degree of the denominator.

(a)	 lim
xS  q

  5x2 + 8x - 3
3x2 + 2

= lim
xS  q

 
5 + (8>x) - (3>x2)

3 + (2>x2)
Divide numerator and 
denominator by x2.

= 5 + 0 - 0
3 + 0 = 5

3	 See Fig. 2.36.

(b)	 lim
xS  -  q

  11x + 2
2x3 - 1

= lim
xS  -  q

 
(11>x2) + (2>x3)

2 - (1>x3)
 

Divide numerator and 
denominator by x3.

  = 0 + 0
2 - 0 = 0	 See Fig. 2.37.�

Cases for which the degree of the numerator is greater than the degree of the denomi-
nator are illustrated in Examples 10 and 14.

x

y

0

-1

-2

1

2

5-5 10

y = 5x2 + 8x - 3
3x2 + 2

NOT TO SCALE

Line y = 5
3

FIGURE 2.36  The graph of the function 
in Example 3a. The graph approaches the 
line y = 5>3 as 0 x 0  increases.
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Horizontal Asymptotes

If the distance between the graph of a function and some fixed line approaches zero as a 
point on the graph moves increasingly far from the origin, we say that the graph approaches 
the line asymptotically and that the line is an asymptote of the graph.

Looking at ƒ(x) = 1>x (see Figure 2.34), we observe that the x-axis is an asymptote 
of the curve on the right because

lim
xS  q

  1x = 0

and on the left because

lim
xS  -  q

  1x = 0.

We say that the x-axis is a horizontal asymptote of the graph of ƒ(x) = 1>x.

x

y

0

-2

-4

-6

-8

2-2-4 4 6

2

4

6

8
y = 11x + 2

2x3 - 1

FIGURE 2.37  The graph of the function 
in Example 3b. The graph approaches the 
x-axis as 0 x 0  increases.

DEFINITION  A line y = b is a horizontal asymptote of the graph of a function 
y = ƒ(x) if either

lim
xS  q

 ƒ(x) = b  or  lim
xS  -  q

 ƒ(x) = b.

The graph of a function can have zero, one, or two horizontal asymptotes, depending 
on whether the function has limits as x S q and as x S -q.

The graph of the function

ƒ(x) = 5x2 + 8x - 3
3x2 + 2

sketched in Figure 2.36 (Example 3a) has the line y = 5>3 as a horizontal asymptote on 
both the right and the left because

lim
xS  q

 ƒ(x) = 5
3  and  lim

xS  -  q
 ƒ(x) = 5

3.

EXAMPLE  4    Find the horizontal asymptotes of the graph of

ƒ(x) = x3 - 2
� x � 3 + 1

.

Solution  We calculate the limits as x S {q.

For x Ú 0: lim
xS  q

 x3 - 2
0 x 0 3 + 1

 = lim
xS  q

 x
3 - 2

x3 + 1
= lim

xS  q
 
1 - (2>x3)

1 + (1>x3)
= 1.

For x 6 0: lim
xS  -  q

 x3 - 2
0 x 0 3 + 1

 = lim
xS  -  q

 x3 - 2
(-x)3 + 1

= lim
xS  -  q

 
1 - (2>x3)

-1 + (1>x3)
= -1.

The horizontal asymptotes are y = -1 and y = 1. The graph is displayed in Figure 
2.38. Notice that the graph crosses the horizontal asymptote y = -1 for a positive value 
of x.�

0

-2

2

x

y

y = -1

f(x) = x3 - 2
0 x 0 3 + 1

y = 1

FIGURE 2.38  The graph of the  
function in Example 4 has two  
horizontal asymptotes.
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110	 Chapter 2  Limits and Continuity

EXAMPLE  5    The x-axis (the line y = 0) is a horizontal asymptote of the graph of 
y = ex because

lim
xS  -  q

 ex = 0.

To see this, we use the definition of a limit as x approaches -q. So let e 7 0 be given, but 
arbitrary. We must find a constant N such that

0 ex - 0 0 6 e whenever x 6 N.

Now 0 ex - 0 0 = ex, so the condition that needs to be satisfied whenever x 6 N  is

ex 6 e.

Let x = N  be the number where ex =  e. Since ex is an increasing function, if x 6 N , then 
ex 6  e. We find N by taking the natural logarithm of both sides of the equation eN = e, so 
N = ln e (see Figure 2.39). With this value of N the condition is satisfied, and we conclude 
that limxS  - q ex = 0.�

EXAMPLE  6    Find (a) lim
xS  q

 sin (1>x) and (b) lim
xS{q

 x sin (1>x).

Solution
(a)	 We introduce the new variable t = 1>x. From Example 1, we know that t S 0+ as 

x S q (see Figure 2.34). Therefore,

lim
xS  q

 sin 1x = lim
tS0+

 sin t = 0.

(b)	 We calculate the limits as x S q and x S  -q:

lim
xS  q

 x sin 1x = lim
tS0+

 sin t
t = 1  and  lim

xS  -  q
 x sin 1x = lim

tS0-
 sin t

t = 1.

		  The graph is shown in Figure 2.40, and we see that the line y = 1 is a horizontal 
asymptote.�

Similarly, we can investigate the behavior of y = ƒ(1>x) as x S 0 by investigating 
y = ƒ(t) as t S {q, where t = 1>x.

EXAMPLE  7    Find lim
xS0-

e1>x.

Solution  We let t = 1>x. From Figure 2.34, we can see that t S  -q as x S 0-. (We 
make this idea more precise further on.) Therefore,

lim
xS0-

e1>x = lim
tS  -  q

et = 0	 Example 5

(Figure 2.41).�

The Sandwich Theorem also holds for limits as x S {q. You must be sure, though, 
that the function whose limit you are trying to find stays between the bounding functions 
at very large values of x in magnitude consistent with whether x S q or x S  -q.

EXAMPLE  8    Using the Sandwich Theorem, find the horizontal asymptote of the curve

y = 2 + sin x
x .

1

x

y

y = ex

N = ln e

e

FIGURE 2.39  The graph of y = ex 
approaches the x-axis as x S  -q 
(Example 5).

y = e1�x

-1-2-3 0

0.2
0.4
0.6
0.8

1

y

x

FIGURE 2.41  The graph of y = e1>x 
for x 6 0 shows limxS0- e1>x = 0 
(Example 7).

1

-1 1
x

y

y = x sin 1
x

FIGURE 2.40  The line y = 1 is a 
horizontal asymptote of the function 
graphed here (Example 6b).
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Solution  We are interested in the behavior as x S {q. Since

0 … ` sin x
x ` … ` 1x `

and limxS{q 0 1>x 0 = 0, we have limxS{q (sin x)>x = 0 by the Sandwich Theorem. 
Hence,

lim
xS{q

a2 + sin x
x b = 2 + 0 = 2,

and the line y = 2 is a horizontal asymptote of the curve on both left and right (Figure 2.42).
This example illustrates that a curve may cross one of its horizontal asymptotes many 

times.�

EXAMPLE  9    Find lim
xS  q

 1x - 2x2 + 162.

Solution  Both of the terms x and 2x2 + 16 approach infinity as x S q, so what hap-
pens to the difference in the limit is unclear (we cannot subtract q from q because the 
symbol does not represent a real number). In this situation we can multiply the numerator 
and the denominator by the conjugate radical expression to obtain an equivalent algebraic 
expression:

lim
xS  q

 1x - 2x2 + 162 = lim
xS  q

 1x - 2x2 + 162 
x + 2x2 + 16

x + 2x2 + 16

 = lim
xS  q

 
x2 - (x2 + 16)

x + 2x2 + 16
= lim

xS  q
 -16
x + 2x2 + 16

.

Multiply and 
divide by the 
conjugate.

As x S q, the denominator in this last expression becomes arbitrarily large, while the 
numerator remains constant, so we see that the limit is 0. We can also obtain this result by 
a direct calculation using the Limit Laws:

lim
xS  q

 -16
x + 2x2 + 16

= lim
xS  q

 
-  16

x

1 + Ax2

x2 + 16
x2

= 0
1 + 21 + 0

= 0.

Oblique Asymptotes

If the degree of the numerator of a rational function is 1 greater than the degree of the 
denominator, the graph has an oblique or slant line asymptote. We find an equation for 
the asymptote by dividing numerator by denominator to express ƒ as a linear function plus 
a remainder that goes to zero as x S {q.

EXAMPLE  10    Find the oblique asymptote of the graph of

ƒ(x) = x2 - 3
2x - 4

in Figure 2.43.

Solution  We are interested in the behavior as x S {q. We divide (2x - 4) into 
(x2 - 3):

x

y

1

0

2

2pp-p-2p-3p 3p

y = 2 + sin x
x

FIGURE 2.42  A curve may cross one of 
its asymptotes infinitely often (Example 8).

x

y

0 1 2 3 4 x−1

1

−1

−2

−3

2

3

4

5

6

x = 2 Oblique
asymptote

The vertical distance
between curve and
line goes to zero as x : ∞

y =    + 1x
2

y = = + 1 +x2 − 3
2x − 4

1
2x − 4

x
2

FIGURE 2.43  The graph of the function 
in Example 10 has an oblique asymptote.
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x
2 + 1   

2x - 4)x2 + 0x - 3   
x2 - 2x  

2x - 3
2x - 4

1

This tells us that

ƒ(x) = x2 - 3
2x - 4 = ¢ x

2 + 1≤ + ¢ 1
2x - 4≤  .

()*           (1)1*
linear g(x)          remainder

As x S {q, the remainder, whose magnitude gives the vertical distance between the 
graphs of ƒ and g, goes to zero, making the slanted line

g(x) = x
2 + 1

an asymptote of the graph of ƒ (Figure 2.43). The line y = g(x) is an asymptote both to 
the right and to the left.�

Notice in Example 10 that if the degree of the numerator in a rational function is 
greater than the degree of the denominator, then the limit as 0 x 0  becomes large is +q or 
-q, depending on the signs assumed by the numerator and denominator.

Infinite Limits

Let us look again at the function ƒ(x) = 1>x. As x S 0+, the values of ƒ grow without 
bound, eventually reaching and surpassing every positive real number. That is, given any 
positive real number B, however large, the values of ƒ become larger still (Figure 2.44).

Thus, ƒ has no limit as x S 0+. It is nevertheless convenient to describe the behavior 
of ƒ by saying that ƒ(x) approaches q as x S 0+. We write

lim
xS0+

 ƒ(x) = lim
xS0+

 1x = q.

In writing this equation, we are not saying that the limit exists. Nor are we saying that 
there is a real number q, for there is no such number. Rather, this expression is just a con-
cise way of saying that limxS0+ (1>x) does not exist because 1>x becomes arbitrarily 
large and positive as x S 0+.

As x S 0 -, the values of ƒ(x) = 1>x become arbitrarily large and negative. Given 
any negative real number -B, the values of ƒ eventually lie below -B. (See Figure 2.44.) 
We write

lim
xS0-

 ƒ(x) = lim
xS0-

 1x = -q.

Again, we are not saying that the limit exists and equals the number -q. There is no real 
number -q. We are describing the behavior of a function whose limit as x S 0- does not 
exist because its values become arbitrarily large and negative.

EXAMPLE  11    Find lim
xS1+

  1
x - 1 and lim

xS1-
  1
x - 1.

Geometric Solution  The graph of y = 1>(x - 1) is the graph of y = 1>x shifted 1 
unit to the right (Figure 2.45). Therefore, y = 1>(x - 1) behaves near 1 exactly the way 
y = 1>x behaves near 0:

You can get as high
as you want by
taking x close enough
to 0. No matter how
high B is, the graph
goes higher.

x

y

You can get as low as
you want by taking
x close enough to 0.

No matter how
low -B is, the
graph goes lower.

x

x

B

-B

y = 1
x

0

FIGURE 2.44  One-sided infinite limits: 

lim
xS0+

 
1
x = q  and  lim

xS0-
 
1
x = -q.
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lim
xS1+

  1
x - 1 = q   and   lim

xS1-
  1
x - 1 = -q.

Analytic Solution  Think about the number x - 1 and its reciprocal. As x S 1+, we 
have (x - 1) S 0+ and 1>(x - 1) S q. As x S 1-, we have (x - 1) S 0  

- and 
1>(x - 1) S -q.�

EXAMPLE  12    Discuss the behavior of

ƒ(x) = 1
x2    as    x S 0.

Solution  As x approaches zero from either side, the values of 1>x2 are positive and 
become arbitrarily large (Figure 2.46). This means that

lim
xS0

 ƒ(x) = lim
xS0

  1
x2 = q.

The function y = 1>x shows no consistent behavior as x S 0. We have 1>x S q if 
x S 0+, but 1>x S -q if x S 0-. All we can say about limxS0 (1>x) is that it does not 
exist. The function y = 1>x2 is different. Its values approach infinity as x approaches zero 
from either side, so we can say that limxS0 (1>x2) = q.�

EXAMPLE  13    These examples illustrate that rational functions can behave in vari-
ous ways near zeros of the denominator.

(a)	 lim
xS2

  
(x - 2)2

x2 - 4
= lim

xS2
  

(x - 2)2

(x - 2)(x + 2) = lim
xS2

  x - 2
x + 2 = 0 x

y

No matter how
high B is, the graph
goes higher.

B

0x x

f (x) = 1
x2

FIGURE 2.46  The graph of ƒ(x) in Ex-
ample 12 approaches infinity as x S 0.

Can substitute 2 for x after 
algebraic manipulation  
eliminates division by 0.

(b)	 lim
xS2

  x - 2
x2 - 4

= lim
xS2

  x - 2
(x - 2)(x + 2) = lim

xS2
  1
x + 2 = 1

4 
Again substitute 2 for x 
after algebraic manipulation 
eliminates division by 0.

(c)	 lim
xS2+

  x - 3
x2 - 4

= lim
xS2+

  x - 3
(x - 2)(x + 2) = -q 

The values are negative 
for x 7 2, x near 2.

(d)	 lim
xS2-

  x - 3
x2 - 4

= lim
xS2-

  x - 3
(x - 2)(x + 2) = q 

The values are positive 
for x 6 2, x near 2.

(e)	 lim
xS2

  x - 3
x2 - 4

= lim
xS2

  x - 3
(x - 2)(x + 2)  does not exist. 

Limits from left and from 
right differ.

	(f)	 lim
xS2

  2 - x
(x - 2)3 = lim

xS2
  
-(x - 2)

(x - 2)3 = lim
xS2

  -1
(x - 2)2 = -q Denominator is positive, so  

values are negative near x = 2.

In parts (a) and (b) the effect of the zero in the denominator at x = 2 is canceled be-
cause the numerator is zero there also. Thus a finite limit exists. This is not true in part (f), 
where cancellation still leaves a zero factor in the denominator.�

EXAMPLE  14    Find lim
xS  -  q

  2x5 - 6x4 + 1
3x2 + x - 7

.

Solution  We are asked to find the limit of a rational function as x S -q, so we divide 
the numerator and denominator by x2, the highest power of x in the denominator:

lim
xS  -  q

  2x5 - 6x4 + 1
3x2 + x - 7  = lim

xS  -  q
  2x3 - 6x2 + x-2

3 + x-1 - 7x-2

y

x
0

B

y = f (x)

c - d c + d
c

FIGURE 2.47  For c - d 6 x 6 c + d, 
the graph of ƒ(x) lies above the line y = B.

x

y

1

0 1 2 3-1

y =
x - 1

1

FIGURE 2.45  Near x = 1, the func-
tion y = 1>(x - 1) behaves the way the 
function y = 1>x behaves near x = 0. Its 
graph is the graph of y = 1>x shifted 1 
unit to the right (Example 11).

M02_HASS9020_14_SE_C02.indd   113 20/10/2018   00:53



114	 Chapter 2  Limits and Continuity

 = lim
xS  -  q

  
2x2 (x - 3) + x-2

3 + x-1 - 7x-2

 = -q, x-n S 0, x - 3 S -q

because the numerator tends to -q while the denominator approaches 3 as x S -q.�

Precise Definitions of Infinite Limits

Instead of requiring ƒ(x) to lie arbitrarily close to a finite number L for all x sufficiently close 
to c, the definitions of infinite limits require ƒ(x) to lie arbitrarily far from zero. Except for 
this change, the language is very similar to what we have seen before. Figures 2.47 and 2.48 
accompany these definitions.

x

y

0

-B

y = f (x)

c - d c + d
c

FIGURE 2.48  For c - d 6 x 6 c + d, 
the graph of ƒ(x) lies below the line y = -B.

DEFINITIONS
1.	 We say that ƒ(x)  approaches infinity as x approaches c, and write

lim
xSc

 ƒ(x) = q,

if for every positive real number B there exists a corresponding d 7 0 such 
that

ƒ(x) 7 B whenever 0 6 � x - c � 6 d.

2.	 We say that ƒ(x)  approaches negative infinity as x approaches c, and write

lim
xSc

 ƒ(x) = -q,

if for every negative real number -B there exists a corresponding d 7 0 
such that

ƒ(x) 6 - B whenever 0 6 � x - c � 6 d.

The precise definitions of one-sided infinite limits at c are similar and are stated in the 
exercises.

EXAMPLE  15    Prove that lim
xS0

  1
x2 = q.

Solution  Given B 7 0, we want to find d 7 0 such that

0 6 � x - 0 � 6 d implies 1
x2 7 B.

Now,
1
x2 7 B  if and only if  x2 6 1

B

or, equivalently,

0 x 0 6 12B
.

Thus, choosing d = 1>2B (or any smaller positive number), we see that

0 x 0 6 d implies 1
x2 7 1

d2 Ú B.

Therefore, by definition,

lim
xS0

  1
x2 = q.
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Vertical Asymptotes

Notice that the distance between a point on the graph of ƒ(x) = 1>x and the y-axis 
approaches zero as the point moves vertically along the graph and away from the origin 
(Figure 2.49). The function ƒ(x) = 1>x is unbounded as x approaches 0 because

lim
xS0+

 1x = q  and  lim
xS0-

 1x = -q.

We say that the line x = 0 (the y-axis) is a vertical asymptote of the graph of ƒ(x) = 1>x. 
Observe that the denominator is zero at x = 0 and the function is undefined there.

x
0

1

1

y

Horizontal
asymptote,
y = 0

Horizontal
asymptote

Vertical asymptote

Vertical asymptote,
x = 0

y = 1
x

FIGURE 2.49  The coordinate axes are 
asymptotes of both branches of the hyper-
bola y = 1>x.

DEFINITION  A line x = a is a vertical asymptote of the graph of a function 
y = ƒ(x) if either

lim
xSa+

 ƒ(x) = {q  or  lim
xSa-

 ƒ(x) = {q.

EXAMPLE  16    Find the horizontal and vertical asymptotes of the curve

y = x + 3
x + 2.

Solution  We are interested in the behavior as x S {q and the behavior as x S -2, 
where the denominator is zero.

The asymptotes are revealed if we recast the rational function as a polynomial with a 
remainder, by dividing (x + 2) into (x + 3):

1   
x + 2)x + 3

x + 2
1

This result enables us to rewrite y as:

y = 1 + 1
x + 2 .

As x S {q, the curve approaches the horizontal asymptote y = 1; as x S -2, the curve 
approaches the vertical asymptote x = -2. We see that the curve in question is the graph 
of ƒ(x) = 1>x shifted 1 unit up and 2 units left (Figure 2.50). The asymptotes, instead of 
being the coordinate axes, are now the lines y = 1 and x = -2.�

EXAMPLE  17    Find the horizontal and vertical asymptotes of the graph of

ƒ(x) = -  8
x2 - 4

.

Solution  We are interested in the behavior as x S {q and as x S {2, where the 
denominator is zero. Notice that ƒ is an even function of x, so its graph is symmetric with 
respect to the y-axis.

	(a)	 The behavior as x S {q. Since limxSq ƒ(x) = 0, the line y = 0 is a horizontal 
asymptote of the graph to the right. By symmetry it is an asymptote to the left as well 
(Figure 2.51). Notice that the curve approaches the x-axis from only the negative side 
(or from below). Also, ƒ(0) = 2.

	(b)	 The behavior as x S {2. Since

x

y

0
-1

-2

-3

-4

1-1-2-3-4-5

1

2 3

2

3

4

5

6

y = x + 3
x + 2

= 1 + 1
x + 2

Vertical
asymptote,
x = -2

Horizontal
asymptote,
y = 1

FIGURE 2.50  The lines y = 1 and 
x = -2 are asymptotes of the curve in 
Example 16.

x

y

0 1-1

1

Vertical
asymptote, x = 2

Horizontal
asymptote, y = 02

3
4
5
6
7
8

3 42-2-3-4

Vertical
asymptote,

x = -2

y = - 8
x2 - 4

FIGURE 2.51  Graph of the function 
in Example 17. Notice that the curve ap-
proaches the x-axis from only one side. 
Asymptotes do not have to be two-sided.
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lim
xS2+

 ƒ(x) = -q  and  lim
xS2-

 ƒ(x) = q,

	 the line x = 2 is a vertical asymptote both from the right and from the left. By sym-
metry, the line x = -2 is also a vertical asymptote.

There are no other asymptotes because ƒ has a finite limit at all other points.�

EXAMPLE  18    The graph of the natural logarithm function has the y-axis (the line 
x = 0) as a vertical asymptote. We see this from the graph sketched in Figure 2.52 (which 
is the reflection of the graph of the natural exponential function across the line y = x) and 
the fact that the x-axis is a horizontal asymptote of y = ex (Example 5). Thus,

lim
xS0+

 ln x = -q.

The same result is true for y = loga x whenever a 7 1.�

EXAMPLE  19    The curves

y = sec x = 1
cos x  and  y = tan x = sin x

cos x

both have vertical asymptotes at odd-integer multiples of p>2, where cos x = 0 
(Figure 2.53).

-1 1 2 3 4
-1

1

2

3

4

x

y
y = ex

y = ln x

FIGURE 2.52  The line x = 0 is a  
vertical asymptote of the natural logarithm 
function (Example 18).

x

y

0

1
x

y

0

1

-1

y = sec x y = tan x

p
2

p
2

p- p 3p
2

3p
2

--p
2

p
2

p-p 3p
2

3p
2

--

FIGURE 2.53  The graphs of sec x and tan x have infinitely many vertical asymptotes 
(Example 19).

Dominant Terms

In Example 10 we saw that by using long division, we can rewrite the function

ƒ(x) = x2 - 3
2x - 4

as a linear function plus a remainder term:

ƒ(x) = ax
2 + 1b + a 1

2x - 4b .

This tells us immediately that

ƒ(x) ≈ x
2 + 1

ƒ(x) ≈ 1
2x - 4

For 0 x 0  large, 
1

2x - 4
 is near 0.

For x near 2, this term is very large 
in absolute value.
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If we want to know how ƒ behaves, this is the way to find out. It behaves like 
y = (x>2) + 1 when 0 x 0  is large and the contribution of 1>(2x - 4) to the total value of 
ƒ is insignificant. It behaves like 1>(2x - 4) when x is so close to 2 that 1>(2x - 4) 
makes the dominant contribution.

We say that (x>2) + 1 dominates when x approaches q or -q, and we say that 
1>(2x - 4) dominates when x approaches 2. Dominant terms like these help us predict a 
function’s behavior.

EXAMPLE  20    Let ƒ(x) = 3x4 - 2x3 + 3x2 - 5x + 6 and g(x) = 3x4. Show that 
although ƒ and g are quite different for numerically small values of x, they behave simi-
larly for 0 x 0  very large, in the sense that their ratios approach 1 as x S q or x S  -q.

Solution  The graphs of ƒ and g behave quite differently near the origin (Figure 2.54a), 
but appear as virtually identical on a larger scale (Figure 2.54b).

We can test that the term 3x4 in ƒ, represented graphically by g, dominates the poly-
nomial ƒ for numerically large values of x by examining the ratio of the two functions as 
x S {q. We find that

lim
xS{q

  
ƒ(x)
g(x) = lim

xS{q
 3x4 - 2x3 + 3x2 - 5x + 6

3x4

 = lim
xS{q

a1 - 2
3x + 1

x2 - 5
3x3 + 2

x4b
 = 1,

which means that ƒ and g appear nearly identical when 0 x 0  is large.�

x
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f (x)
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(b)

g(x) = 3x4
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x

y
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0

100,000
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(b)

g(x) = 3x4

FIGURE 2.54  The graphs of ƒ and g are 
(a) distinct for 0 x 0  small, and (b) nearly 
identical for 0 x 0  large (Example 20).

Exercises  2.5

Finding Limits
	 1.	 For the function ƒ whose graph is given, determine the following limits.

a.	 lim
xS2

 ƒ(x)	 b.	 lim
xS  -3 +

 ƒ(x)

c.	 lim
xS  -3 -

 ƒ(x)	 d.	 lim
xS  -3

 ƒ(x)

e.	 lim
xS0 +

 ƒ(x)	 f.	 lim
xS0 -

 ƒ(x)

g.	 lim
xS0

 ƒ(x)	 h.	 lim
xSq

 ƒ(x)

i.	 lim
xS  -q

 ƒ(x)

y

x

-2

-1

1

2

3

-3

2 3 4 5 61-1-2-3-4-5-6

f

	 2.	 For the function ƒ whose graph is given, determine the following limits.

a.	 lim
xS4

 ƒ(x)	 b.	 lim
xS2 +

 ƒ(x)	 c.	 lim
xS2 -

 ƒ(x)

d.	 lim
xS2

 ƒ(x)	 e.	 lim
xS  -3 +

 ƒ(x)	 f.	 lim
xS  -3 -

 ƒ(x)

g.	 lim
xS  -3

 ƒ(x)	 h.	 lim
xS0 +

 ƒ(x)	 i.	 lim
xS0 -

 ƒ(x)

j.	 lim
xS0

 ƒ(x)	 k.	 lim
xSq

 ƒ(x)	 l.	 lim
xS  -q

 ƒ(x)
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y

x

-2

-3

2 3 4 5 61-1-2-3-4-5-6

f
3

2

1

-1

In Exercises 3–8, find the limit of each function (a) as x S q and  
(b) as x S  -q. (You may wish to visualize your answer with a 
graphing calculator or computer.)

	 3.	 ƒ(x) = 2
x - 3	 4.	 ƒ(x) = p - 2

x2

	 5.	 g(x) = 1
2 + (1>x)

	 6.	 g(x) = 1
8 - (5>x2)

	 7.	 h(x) =
-5 + (7>x)

3 - (1>x2)
	 8.	 h(x) =

3 - (2>x)

4 + (22>x2)

Find the limits in Exercises 9–12.

	 9.	 lim
xSq

 
sin 2x

x 	 10.	 lim
uS  -q

 
cos u

3u

	11.	 lim
tS  -q

 
2 - t + sin t

t + cos t 	 12.	 lim
rSq

  
r + sin r

2r + 7 - 5 sin r

Limits of Rational Functions
In Exercises 13–22, find the limit of each rational function (a) as 
x S q and (b) as x S  -q.

	13.	 ƒ(x) = 2x + 3
5x + 7

	 14.	 ƒ(x) = 2x3 + 7
x3 - x2 + x + 7

	15.	 ƒ(x) = x + 1
x2 + 3

	 16.	 ƒ(x) = 3x + 7
x2 - 2

	17.	 h(x) = 7x3

x3 - 3x2 + 6x
	 18.	 h(x) = 9x4 + x

2x4 + 5x2 - x + 6

	19.	 g(x) = 10x5 + x4 + 31
x6 	 20.	 g(x) = x3 + 7x2 - 2

x2 - x + 1

	21.	 f(x) = 3x7 + 5x2 - 1
6x3 - 7x + 3

	 22.	 h(x) = 5x8 - 2x3 + 9
3 + x - 4x5

Limits as x uH or x u −H
The process by which we determine limits of rational functions applies 
equally well to ratios containing noninteger or negative powers of x: 
Divide numerator and denominator by the highest power of x in the 
denominator and proceed from there. Find the limits in Exercises 23–36.

	23.	 lim
xSq

 A8x2 - 3
2x2 + x

	 24.	 lim
xS  -q

 ¢x2 + x - 1
8x2 - 3

≤1>3

	25.	 lim
xS  -  q

 ¢ 1 - x3

x2 + 7x
≤5

	 26.	 lim
xS   q

 A x2 - 5x
x3 + x - 2

	27.	 lim
xS  q

  
22x + x-1

3x - 7
	 28.	 lim

xS  q  
2 + 2x

2 - 2x

	29.	 lim
xS  -  q

  
23 x - 25 x23 x + 25 x

	 30.	 lim
xS  q

  
x-1 + x-4

x-2 - x-3

	31.	 lim
xS  q  

2x5>3 - x1>3 + 7

x8>5 + 3x + 2x
	 32.	 lim

xS  -  q  
23 x - 5x + 3
2x + x2>3 - 4

	33.	 lim
xS  q

 
2x2 + 1

x + 1
	 34.	 lim

xS  -  q
 
2x2 + 1

x + 1

	35.	 lim
xS  q

 
x - 324x2 + 25

	 36.	 lim
xS  -  q

 
4 - 3x32x6 + 9

Infinite Limits
Find the limits in Exercises 37–48.

	37.	 lim
xS0+

 
1
3x

	 38.	 lim
xS0-

 
5
2x

	39.	 lim
xS2-

 
3

x - 2
	 40.	 lim

xS3+
 

1
x - 3

	41.	 lim
xS  -8+

 
2x

x + 8
	 42.	 lim

xS  -5-
 

3x
2x + 10

	43.	 lim
xS7

  
4

(x - 7)2	 44.	 lim
xS0

  
-1

x2(x + 1)

	45.	 a.	 lim
xS0+

 
2

3x1>3	 b.	 lim
xS0-

 
2

3x1>3

	46.	 a.	 lim
xS0+

 
2

x1>5	 b.	 lim
xS0-

 
2

x1>5

	47.	 lim
xS0

  
4

x2>5	 48.	 lim
xS0

  
1

x2>3

Find the limits in Exercises 49–52.

	49.	 lim
xS (p>2)-

 tan x	 50.	 lim
xS (-p>2)+

 sec x

	51.	 lim
uS0-   

(1 + csc u)	 52.	 lim
uS0

 (2 - cot u)

Find the limits in Exercises 53–58.

	53.	 lim 
1

x2 - 4
 as

a.	 x S 2+	 b.	 x S 2-

c.	 x S  -2+	 d.	 x S  -2-

	54.	 lim 
x

x2 - 1
 as

a.	 x S 1+	 b.	 x S 1-

c.	 x S  -1+	 d.	 x S  -1-

	55.	 lim ax2

2
- 1

xb  as

a.	 x S 0+	 b.	 x S 0-

c.	 x S 23 2	 d.	 x S  -1

	56.	 lim 
x2 - 1
2x + 4

 as

M02_HASS9020_14_SE_C02.indd   118 20/10/2018   00:53



	 2.5  Limits Involving Infinity; Asymptotes of Graphs	 119

a.	 x S -2+	 b.	 x S -2-

c.	 x S 1+	 d.	 x S 0-

	57.	 lim 
x2 - 3x + 2

x3 - 2x2  as

a.	 x S 0+	 b.	 x S 2+

c.	 x S 2-	 d.	 x S 2

e.	 What, if anything, can be said about the limit as x S 0?

	58.	 lim 
x2 - 3x + 2

x3 - 4x
  as

a.	 x S 2+	 b.	 x S -2+

c.	 x S 0-	 d.	 x S 1+

e.	 What, if anything, can be said about the limit as x S 0?

Find the limits in Exercises 59–62.

	59.	 lima2 - 3
t1>3b  as

a.	 t S 0+	 b.	 t S 0-

	60.	 lima 1
t3>5 + 7b  as

a.	 t S 0+	 b.	 t S 0-

	61.	 lima 1
x2>3 + 2

(x - 1)2>3b  as

a.	 x S 0+	 b.	 x S 0-

c.	 x S 1+	 d.	 x S 1-

	62.	 lima 1
x1>3 - 1

(x - 1)4>3b  as

a.	 x S 0+	 b.	 x S 0-

c.	 x S 1+	 d.	 x S 1-

Graphing Simple Rational Functions
Graph the rational functions in Exercises 63–68. Include the graphs 
and equations of the asymptotes and dominant terms.

	63.	 y = 1
x - 1

	 64.	 y = 1
x + 1

	65.	 y = 1
2x + 4

	 66.	 y = -3
x - 3

	67.	 y = x + 3
x + 2

	 68.	 y = 2x
x + 1

Domains, Ranges, and Asymptotes
Determine the domain and range of each function. Use various limits 
to find the asymptotes and the ranges.

	69.	 y = 4 + 3x2

x2 + 1
	 70.	 y = 2x

x2 - 1

	71.	 y = 8 - ex

2 + ex	 72.	 y = 4ex + e2x

ex + e2x

	73.	 y = 2x2 + 4
x 	 74.	 y = x3

x3 - 8

Inventing Graphs and Functions
In Exercises 75–78, sketch the graph of a function y = ƒ(x) that satis-
fies the given conditions. No formulas are required—just label the 
coordinate axes and sketch an appropriate graph. (The answers are not 
unique, so your graphs may not be exactly like those in the answer 
section.)

	75.	 ƒ(0) = 0, ƒ(1) = 2, ƒ(-1) = -2, lim
xS  -q

 ƒ(x) = -1, and 

lim
xSq

 ƒ(x) = 1

	76.	 ƒ(0) = 0, lim
xS{q

 ƒ(x) = 0, lim
xS0+

 ƒ(x) = 2,  and lim
xS0-

 ƒ(x) = -2

	77.	 ƒ(0) = 0, lim
xS{q

 ƒ(x) = 0, lim
xS1-

 ƒ(x) = lim
xS  -1+

 ƒ(x) = q, 

lim
xS1 +

 ƒ(x) = -q, and lim
xS  -1-

 ƒ(x) = -q

	78.	 ƒ(2) = 1, ƒ(-1) = 0, lim
xSq

 ƒ(x) = 0, lim
xS0+

 ƒ(x) = q, 

 lim
xS0-

 ƒ(x) = -q, and lim
xS  -q

 ƒ(x) = 1

In Exercises 79–82, find a function that satisfies the given conditions 
and sketch its graph. (The answers here are not unique. Any function 
that satisfies the conditions is acceptable. Feel free to use formulas 
defined in pieces if that will help.)

	79.	 lim
xS{q

 ƒ(x) = 0, lim
xS2-

 ƒ(x) = q, and lim
xS2+

 ƒ(x) = q

	80.	 lim
xS{q

 g(x) = 0, lim
xS3-

 g(x) = -q, and lim
xS3+

 g(x) = q

	81.	 lim
xS  -  q

 h(x) = -1, lim
xS  q

 h(x) = 1, lim
xS0-

 h(x) = -1, and 

 lim
xS0+

 h(x) = 1

	82.	 lim
xS{q

 k(x) = 1, lim
xS1-

 k(x) = q, and lim
xS1+

 k(x) = -q

	83.	 Suppose that ƒ(x) and g(x) are polynomials in x and that 
limxS  q (ƒ(x)>g(x)) = 2. Can you conclude anything about 
limxS  - q (ƒ(x)>g(x))? Give reasons for your answer.

	84.	 Suppose that ƒ(x) and g(x) are polynomials in x. Can the graph of 
ƒ(x)>g(x) have an asymptote if g(x) is never zero? Give reasons 
for your answer.

	85.	 How many horizontal asymptotes can the graph of a given rational 
function have? Give reasons for your answer.

Finding Limits of Differences When x u tH
Find the limits in Exercises 86–92. (Hint: Try multiplying and dividing 
by the conjugate.)

	86.	 lim
xS  q

 (2x + 9 - 2x + 4 )

	87.	 lim
xS  q

 (2x2 + 25 - 2x2 - 1 )

	88.	 lim
xS  -  q

 (2x2 + 3 + x )

	89.	 lim
xS  -  q

 (2x + 24x2 + 3x - 2 )

	90.	 lim
xS  q

 (29x2 - x - 3x)

	 91.	 lim
xS  q

 (2x2 + 3x - 2x2 - 2x )

	 92.	 lim
xS  q (2x2 + x - 2x2 - x )
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Using the Formal Definitions
Use the formal definitions of limits as x S {q to establish the limits 
in Exercises 93 and 94.

	 93.	 If ƒ has the constant value ƒ(x) = k, then lim
xSq

 ƒ(x) = k.

	 94.	 If ƒ has the constant value ƒ(x) = k, then lim
xS  -q

 ƒ(x) = k.

Use formal definitions to prove the limit statements in Exercises 95–98.

	 95.	 lim
xS0

  
-1
x2 = -q	 96.	 lim

xS0
  

1
0 x 0 = q

	 97.	 lim
xS3  

-2
(x - 3)2 = -q	 98.	 lim

xS  -5  

1
(x + 5)2 = q

	 99.	 Here is the definition of infinite right-hand limit.

	102.	 lim
xS2-

 
1

x - 2
= -q	 103.	 lim

xS2+
 

1
x - 2

= q

	104.	 lim
xS1-

 
1

1 - x2 = q

Oblique Asymptotes
Graph the rational functions in Exercises 105–110. Include the graphs 
and equations of the asymptotes.

	105.	 y = x2

x - 1
	 106.	 y = x2 + 1

x - 1

	107.	 y = x2 - 4
x - 1

	 108.	 y = x2 - 1
2x + 4

	109.	 y = x2 - 1
x 	 110.	 y = x3 + 1

x2

Additional Graphing Exercises
Graph the curves in Exercises 111–114. Explain the relationship 
between the curve’s formula and what you see.

	111.	 y = x24 - x2
	 112.	 y = -124 - x2

	113.	 y = x2>3 + 1
x1>3	 114.	 y = sin a p

x2 + 1
b

Graph the functions in Exercises 115 and 116. Then answer the fol-
lowing questions.

a.	 How does the graph behave as x S 0+?

b.	 How does the graph behave as x S {q?

c.	 How does the graph behave near x = 1 and x = -1?

Give reasons for your answers.

	115.	 y = 3
2

 ax - 1
xb

2>3

116.	 y = 3
2

 a x
x - 1

b
2>3

T

T

2.6  Continuity

When we plot function values generated in a laboratory or collected in the field, we often 
connect the plotted points with an unbroken curve to show what the function’s values are 
likely to have been at the points we did not measure (Figure 2.55). In doing so, we are 
assuming that we are working with a continuous function, so its outputs vary regularly and 
consistently with the inputs, and do not jump abruptly from one value to another without 
taking on the values in between. Intuitively, any function y = ƒ(x) whose graph can be 
sketched over its domain in one unbroken motion is an example of a continuous function. 
Such functions play an important role in the study of calculus and its applications.

Continuity at a Point

To understand continuity, it helps to consider a function like that in Figure 2.56, whose 
limits we investigated in Example 2 in Section 2.4.

EXAMPLE  1    At which numbers does the function ƒ in Figure 2.56 appear to be not 
continuous? Explain why. What occurs at other numbers in the domain?

t

y

0

125

5

250

Q1

Q2

Q3

Q4

FIGURE 2.55  Connecting plotted points.

Modify the definition to cover the following cases.

a.	 lim
xSc-

 ƒ(x) = q

b.	 lim
xSc+

 ƒ(x) = -q

c.	 lim
xSc-

 ƒ(x) = -q

Use the formal definitions from Exercise 99 to prove the limit state-
ments in Exercises 100–104.

	100.	 lim
xS0+

 
1
x = q	 101.	 lim

xS0-
 
1
x = -q

Suppose that an interval (c, d ) lies in the domain of f. 
We say that ƒ(x) approaches infinity as x approaches c 
from the right, and write

lim
xSc+

 ƒ(x) = q,

if, for every positive real number B, there exists a  
corresponding number d 7 0 such that

ƒ(x) 7 B whenever c 6 x 6 c + d.
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Solution  First we observe that the domain of the function is the closed interval 30, 44 , so we 
will be considering the numbers x within that interval. From the figure, we notice right away that 
there are breaks in the graph at the numbers x = 1, x = 2, and x = 4. The break at x = 1 
appears as a jump, which we identify later as a “jump discontinuity.” The break at x = 2 is called 
a “removable discontinuity” since by changing the function definition at that one point, we can 
create a new function that is continuous at x = 2. Similarly x = 4 is a removable discontinuity.

Numbers at which the graph of ƒ has breaks:

At the interior point x = 1, the function fails to have a limit. It does have both a left-
hand limit, limxS1- ƒ(x) = 0, as well as a right-hand limit, limxS1+ ƒ(x) = 1, but the limit 
values are different, resulting in a jump in the graph. The function is not continuous at x = 1. 
However the function value ƒ(1) = 1 is equal to the limit from the right, so the function is 
continuous from the right at x = 1.

At x = 2, the function does have a limit, limxS2 ƒ(x) = 1, but the value of the func-
tion is ƒ(2) = 2. The limit and function values are not the same, so there is a break in the 
graph and ƒ is not continuous at x = 2.

At x = 4, the function does have a left-hand limit at this right endpoint, 
limxS4- ƒ(x) = 1, but again the value of the function ƒ(4) = 1

2 differs from the value of the 
limit. We see again a break in the graph of the function at this endpoint and the function is 
not continuous from the left.

Numbers at which the graph of ƒ has no breaks:

At x = 3, the function has a limit, limxS3 ƒ(x) = 2. Moreover, the limit is the same 
value as the function there, ƒ(3) = 2. The function is continuous at x = 3.

At x = 0, the function has a right-hand limit at this left endpoint, limxS0+ ƒ(x) = 1, 
and the value of the function is the same, ƒ(0) = 1. The function is continuous from the 
right at x = 0. Because x = 0 is a left endpoint of the function’s domain, we have that 
limxS0 ƒ(x) = 1 and so ƒ is continuous at x = 0.

At all other numbers x = c in the domain, the function has a limit equal to the value of 
the function, so limxSc ƒ(x) = ƒ(c). For example, limxS5>2 ƒ(x) = ƒ15

22 = 3
2. No breaks 

appear in the graph of the function at any of these numbers and the function is continuous 
at each of them.�

The following definitions capture the continuity ideas we observed in Example 1.

DEFINITIONS  Let c be a real number that is either an interior point or an  
endpoint of an interval in the domain of ƒ.

The function ƒ is continuous at c if

lim
xSc

 ƒ(x) = ƒ(c).

The function ƒ is right-continuous at c (or continuous from the right) if

lim
xSc+  ƒ(x) = ƒ(c).

The function ƒ is left-continuous at c (or continuous from the left) if

lim
xSc-  ƒ(x) = ƒ(c).

x

y

321

2

1

40

y = f (x)

FIGURE 2.56  The function is not 
continuous at x = 1, x = 2, and x = 4 
(Example 1).

The function ƒ in Example 1 is continuous at every x in 30, 44  except x = 1, 2, and 
4. It is right-continuous but not left-continuous at x = 1, neither right- nor left-continu-
ous at x = 2, and not left-continuous at x = 4. 

From Theorem 6, it follows immediately that a function ƒ is continuous at an interior 
point c of an interval in its domain if and only if it is both right-continuous and left-contin-
uous at c (Figure 2.57). We say that a function is continuous over a closed interval 
3a, b4  if it is right-continuous at a, left-continuous at b, and continuous at all interior 

x
a c b

y = f (x)

Continuity
from the left

Two-sided
continuity

Continuity
from the right

FIGURE 2.57  Continuity at points a, b, 
and c.
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