
9 781292 024516

ISBN 978-1-29202-451-6

The AVR Microcontroller and Embedded
Systems: Using Assembly and C

Muhammad Ali Mazidi | Sarmad Naimi
Sepehr Naimi

The
 A

V
R

 M
ic

ro
c

o
ntro

lle
r a

nd
 Em

b
e

d
d

e
d

 Syste
m

s M
a

zid
i

Pearson New International Edition

International_PCL_TP.indd 1 7/29/13 11:23 AM

The AVR Microcontroller and Embedded
Systems: Using Assembly and C

Muhammad Ali Mazidi | Sarmad Naimi
Sepehr Naimi

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England and Associated Companies throughout the world

Visit us on the World Wide Web at: www.pearsoned.co.uk

© Pearson Education Limited 2014

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the
prior written permission of the publisher or a licence permitting restricted copying in the United Kingdom
issued by the Copyright Licensing Agency Ltd, Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark
in this text does not vest in the author or publisher any trademark ownership rights in such
trademarks, nor does the use of such trademarks imply any affi liation with or endorsement of this
book by such owners.

ISBN 10: 1-269-37450-8
ISBN 13: 978-1-269-37450-7

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

 Printed in the United States of America

Copyright_Pg_7_24.indd 1 7/29/13 11:28 AM

ISBN 10: 1-292-02451-8
ISBN 13: 978-1-292-02451-6

ISBN 10: 1-292-02451-8
ISBN 13: 978-1-292-02451-6

Table of Contents

P E A R S O N C U S T O M L I B R A R Y

I

1. Introduction to Computing

1

1Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

2. The AVR Microcontroller: History and Features

39

39Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

3. AVR Architecture and Assembly Language Programming

55

55Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

4. Branch, Call, and Time Delay Loop

107

107Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

5. AVR I/O Port Programming

139

139Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

6. Arithmetic, Logic Instructions, and Programs

161

161Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

7. AVR Advanced Assembly Language Programming

197

197Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

8. AVR Programming in C

255

255Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

9. AVR Hardware Connection, Hex File, and Flash Loaders

289

289Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

10. AVR Timer Programming in Assembly and C

311

311Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

11. AVR Interrupt Programming in Assembly and C

363

363Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

12. AVR Serial Port Programming in Assembly and C

395

395Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

13. LCD and Keyboard Interfacing

429

429Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

II

14. ADC, DAC, and Sensor Interfacing

463

463Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

15. Relay, Optoisolator, and Stepper Motor Interfacing with AVR

491

491Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

16. Input Capture and Wave Generation in AVR

509

509Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

17. PWM Programming and DC Motor Control in AVR

549

549Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

18. SPI Protocol and MAX7221 Display Interfacing

603

603Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

19. I2C Protocol and DS1307 RTC Interfacing

629

629Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

Appendix: AVR Instructions Explained

695

695Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

Appendix: Data Sheets

733

733Muhammad Ali Mazidi/Sarmad Naimi/Sepehr Naimi

739

739Index

OBJECTIVES

Upon completion of this chapter, you will be able to:

>> >> Convert any number from base 2, base 10, or base 16 to any of the
other two bases

>> >> Describe the logical operations AND, OR, NOT, XOR, NAND, and NOR
>> >> Use logic gates to diagram simple circuits
>> >> Explain the difference between a bit, a nibble, a byte, and a word
>> >> Give precise mathematical definitions of the terms kilobyte, megabyte,

gigabyte, and terabyte
>> >> Describe the purpose of the major components of a computer system
>> >> Contrast and compare various types of semiconductor memories

in terms of their capacity, organization, and access time
>> >> Describe the relationship between the number of memory locations

on a chip, the number of data pins, and the chip's memory capacity
>> >> Contrast and compare PROM, EPROM, UV-EPROM, EEPROM,

Flash memory EPROM, and mask ROM memories
>> >> Contrast and compare SRAM, NV-RAM, and DRAM memories
>> >> List the steps a CPU follows in memory address decoding
>> >> List the three types of buses found in computers and describe the

purpose of each type of bus
>> >> Describe the role of the CPU in computer systems
>> >> List the major components of the CPU and describe the purpose of each
>> >> Understand the RISC and Harvard architectures

INTRODUCTION
TO COMPUTING

From the Introduction of The AVR Microcontroller and Embedded Systems: Using Assembly and C, First Edition,

Published by Pearson Prentice Hall. All rights reserved.

Muhammad Ali Mazidi, Sarmad Naimi, Sepehr Naimi. Copyright © 2011 by Pearson Education, Inc.
1

the base 2 (binary) system. In this section we explain how to convert from the dec-

imal system to the binary system, and vice versa. The convenient representation of

binary numbers, called hexadecimal, also is covered. Finally, the binary format of

the alphanumeric code, called ASCII, is explored.

Decimal and binary number systems

Although there has been speculation that the origin of the base 10 system

is the fact that human beings have 10 fingers, there is absolutely no speculation

about the reason behind the use of the binary system in computers. The binary sys-

tem is used in computers because 1 and 0 represent the two voltage levels of on

and off. Whereas in base 10 there are 10 distinct symbols, 0, 1, 2, ..., 9, in base 2

there are only two, 0 and 1, with which to generate numbers. Base 10 contains dig-

its 0 through 9; binary contains digits 0 and 1 only. These two binary digits, 0 and

1, are commonly referred to as bits.

Converting from decimal to binary

One method of converting from decimal to binary is to divide the decimal

number by 2 repeatedly, keeping track of the remainders. This process continues

until the quotient becomes zero. The remainders are then written in reverse order

Convert 2510 to binary.

Solution:
Quotient Remainder

25/2 = 12 1 LSB (least significant bit)
12/2 = 6 0
6/2 = 3 0
3/2 = 1 1
1/2 = 0 1 MSB (most significant bit)

Therefore, 2510 = 110012.

INTRODUCTION TO COMPUTING

SECTION 1: NUMBERING AND CODING SYSTEMS

to obtain the binary number. This is demonstrated in Example 1.

Example 1

To understand the software and hardware of a microcontroller-based sys-

tem, one must first master some very basic concepts underlying computer archi-

sented in Section 1. In Section 2, an overview of logic gates is given. The semicon-

CPUs and Harvard and von Neumann architectures are discussed. Finally, in the

last section we give a brief history of RISC architecture. Although some readers

may have an adequate background in many of the topics of this chapter, it is rec-

ommended that the material be reviewed, however briefly.

tecture. In this chapter, the fundamentals of numbering and coding systems are pre-

Whereas human beings use base 10 (decimal) arithmetic, computers use

ductor memory and memory interfacing are discussed in Section 3. In Section 4,

2

Converting from binary to decimal

To convert from binary to decimal, it is

important to understand the concept of weight

associated with each digit position. First, as an

analogy, recall the weight of numbers in the base

10 system, as shown in the diagram. By the same

token, each digit position of a number in base 2

has a weight associated with it:

1101012 = Decimal Binary
1 × 20 = 1 × 1 = 1 1
0 × 21 = 0 × 2 = 0 00
1 × 22 = 1 × 4 = 4 100
0 × 23 = 0 × 8 = 0 0000
1 × 24 = 1 × 16 = 16 10000
1 × 25 = 1 × 32 = 32 100000

53 110101

Knowing the weight of each bit in a binary number makes it simple to add

Knowing the weight associated with each binary bit position allows one to

convert a decimal number to binary directly instead of going through the process

INTRODUCTION TO COMPUTING

Convert 110012 to decimal.

Solution:

Weight: 16 8 4 2 1

Digits: 1 1 0 0 1

Sum: 16 + 8 + 0 + 0 + 1 = 2510

Use the concept of weight to convert 3910 to binary.

Solution:

Weight: 32 16 8 4 2 1

1 0 0 1 1 1

32 + 0 + 0 + 4 + 2 + 1 = 39

Therefore, 3910 = 1001112.

74068310 =

3 × 100 = 3
8 × 101 = 80
6 × 102 = 600
0 × 103 = 0000
4 × 104 = 40000
7 × 105 = 700000

740683

them together to get its decimal equivalent, as shown in Example 2.

of repeated division. This is shown in Example 3.

Example 2

Example 3

3

Hexadecimal system

Base 16, or the hexadecimal system as it is called in

computer literature, is used as a convenient representation

of binary numbers. For example, it is much easier for a

human being to represent a string of 0s and 1s such as

100010010110 as its hexadecimal equivalent of 896H. The

binary system has 2 digits, 0 and 1. The base 10 system has

10 digits, 0 through 9. The hexadecimal (base 16) system

has 16 digits. In base 16, the first 10 digits, 0 to 9, are the

same as in decimal, and for the remaining six digits, the let-

equivalent binary, decimal, and hexadecimal representa-

tions for 0 to 15.

Converting between binary and hex

To represent a binary number as its equivalent hexa-

decimal number, start from the right and group 4 bits at a

time, replacing each 4-bit binary number with its hex equiv-

each hex digit is replaced with its 4-bit binary equivalent.

Converting from decimal to hex

Converting from decimal to hex could be approached in two ways:

method of converting decimal to hex.

2. Convert directly from decimal to hex by repeated division, keeping track of the

remainders. Experimenting with this method is left to the reader.

Number System

Decimal Binary Hex
0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

10 1010 A

11 1011 B

12 1100 C

13 1101 D

14 1110 E

15 1111 F

Convert hex 29B to binary.

Solution:
2 9 B

29B = 0010 1001 1011
Dropping the leading zeros gives 1010011011.

Represent binary 100111110101 in hex.

Solution:
First the number is grouped into sets of 4 bits: 1001 1111 0101.

Then each group of 4 bits is replaced with its hex equivalent:

1001 1111 0101

9 F 5

Therefore, 1001111101012 = 9F5 hexadecimal.

INTRODUCTION TO COMPUTING

Table 1: Base 16

See Examples 4 and 5.

alent shown in Table 1. To convert from hex to binary,

Example 4

Example 5

1. Convert to binary first and then convert to hex. Example 6 shows this

ters A, B, C, D, E, and F are used. Table 1 shows the

4

Converting from hex to decimal

Conversion from hex to decimal can also be approached in two ways:

this method of converting from hex to decimal.

2. Convert directly from hex to decimal by summing the weight of all digits.

(a) Convert 4510 to hex.

32 16 8 4 2 1 First, convert to binary.

1 0 1 1 0 1 32 + 8 + 4 + 1 = 45

4510 = 0010 11012 = 2D hex

(b) Convert 62910 to hex.

512 256 128 64 32 16 8 4 2 1

1 0 0 1 1 1 0 1 0 1

62910 = (512 + 64 + 32 + 16 + 4 + 1) = 0010 0111 01012 = 275 hex

(c) Convert 171410 to hex.

1024 512 256 128 64 32 16 8 4 2 1

1 1 0 1 0 1 1 0 0 1 0

171410 = (1024 + 512 + 128 + 32 + 16 + 2) = 0110 1011 00102 = 6B2 hex

Convert the following hexadecimal numbers to decimal.

(a) 6B216 = 0110 1011 00102

1024 512 256 128 64 32 16 8 4 2 1

1 1 0 1 0 1 1 0 0 1 0

1024 + 512 + 128 + 32 + 16 + 2 = 171410

(b) 9F2D16 = 1001 1111 0010 11012

32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

1 0 0 1 1 1 1 1 0 0 1 0 1 1 0 1

32768 + 4096 + 2048 + 1024 + 512 + 256 + 32 + 8 + 4 + 1 = 40,74910

INTRODUCTION TO COMPUTING

Example 6

Example 7

1. Convert from hex to binary and then to decimal. Example 7 demonstrates

5

Counting in bases 10, 2, and 16

To show the relationship between all

of numbers from 0 to 31 in decimal, along with

the equivalent binary and hex numbers. Notice

in each base that when one more is added to the

highest digit, that digit becomes zero and a 1 is

carried to the next-highest digit position. For

example, in decimal, 9 + 1 = 0 with a carry to the

next-highest position. In binary, 1 + 1 = 0 with a

carry; similarly, in hex, F + 1 = 0 with a carry.

Addition of binary and hex numbers

traction of binary numbers is bypassed since all

computers

use the

a d d i t i o n

process to

implement

s u b t r a c -

t i o n .

A l though

computers have adder circuitry, there is no sep-

arate circuitry for subtractors. Instead, adders

are used in conjunction with 2’s complement
circuitry to perform subtraction. In other words,

to implement “x – y”, the computer takes the 2’s

complement of y and adds it to x. The concept

of 2’s complement is reviewed next. Example

2’s complement

To get the 2’s complement of a binary number, invert all the bits and then

Decimal Binary Hex
0 00000 0

1 00001 1

2 00010 2

3 00011 3

4 00100 4

5 00101 5

6 00110 6

7 00111 7

8 01000 8

9 01001 9

10 01010 A

11 01011 B

12 01100 C

13 01101 D

14 01110 E

15 01111 F

16 10000 10

17 10001 11

18 10010 12

19 10011 13

20 10100 14

21 10101 15

22 10110 16

23 10111 17

24 11000 18

25 11001 19

26 11010 1A

27 11011 1B

28 11100 1C

29 11101 1D

30 11110 1E

31 11111 1F

A + B Carry Sum
0 + 0 0 0

0 + 1 0 1

1 + 0 0 1

1 + 1 1 0

Add the following binary numbers. Check against their decimal equivalents.

Solution:
Binary Decimal
1101 13

+ 1001 9

10110 22

INTRODUCTION TO COMPUTING

Table 2: Counting in Bases

Example 8

three bases, in Table 2 we show the sequence

Table 3: Binary Addition

8 shows the addition of binary numbers.

The addition of b inary numbers is a very

straightforward process. Table 3 shows the

addition of two bits. The discussion of sub-

6

add 1 to the result. Inverting the bits is simply a matter of changing all 0s to 1s and

Addition and subtraction of hex numbers

In studying issues related to software and hardware of computers, it is

often necessary to add or subtract hex numbers. Mastery of these techniques is

essential. Hex addition and subtraction are discussed separately below.

Addition of hex numbers

This section describes the process of adding hex numbers. Starting with the

least significant digits, the digits are added together. If the result is less than 16,

write that digit as the sum for that position. If it is greater than 16, subtract 16 from

it to get the digit and carry 1 to the next digit. The best way to explain this is by

Subtraction of hex numbers

In subtracting two hex numbers, if the second digit is greater than the first,

Take the 2’s complement of 10011101.

Solution:
10011101 binary number

01100010 1’s complement

+ 1

01100011 2’s complement

Perform hex addition: 23D9 + 94BE.

Solution:
23D9 LSD: 9 + 14 = 23 23 – 16 = 7 with a carry

+ 94BE 1 + 13 + 11 = 25 25 – 16 = 9 with a carry

B897 1 + 3 + 4 = 8

MSD: 2 + 9 = B

Perform hex subtraction: 59F – 2B8.

Solution:

59F LSD: 8 from 15 = 7

– 2B8 11 from 25 (9 + 16) = 14 (E)

2E7 2 from 4 (5 – 1) = 2

INTRODUCTION TO COMPUTING

1s to 0s. This is called the 1’s complement. See Example 9.

Example 9

example, as shown in Example 10.

Example 10

Example 11

borrow 16 from the preceding digit. See Example 11.

7

ASCII code

The discussion so far has

revolved around the representation of

number systems. Because all informa-

tion in the computer must be represent-

ed by 0s and 1s, binary patterns must be

assigned to letters and other characters.

In the 1960s a standard representation

called ASCII (American Standard Code

for Information Interchange) was estab-

lished. The ASCII (pronounced “ask-E”) code assigns binary patterns for numbers

0 to 9, all the letters of the English alphabet, both uppercase (capital) and lower-

case, and many control codes and punctuation marks. The great advantage of this

system is that it is used by most computers, so that information can be shared

among computers. The ASCII system uses a total of 7 bits to represent each code.

For example, 100 0001 is assigned to the uppercase letter “A” and 110 0001 is for

Notice that the pattern of ASCII codes was designed to allow for easy

manipulation of ASCII data. For example, digits 0 through 9 are represented by

ASCII codes 30 through 39. This enables a program to easily convert ASCII to

decimal by masking off the “3” in the upper nibble. Also notice that there is a rela-

tionship between the uppercase and lowercase letters. The uppercase letters are

represented by ASCII codes 41 through 5A while lowercase letters are represent-

ed by codes 61 through 7A. Looking at the binary code, the only bit that is differ-

ent between the uppercase “A” and lowercase “a” is bit 5. Therefore, conversion

between uppercase and lowercase is as simple as changing bit 5 of the ASCII code.

Review Questions

1. Why do computers use the binary number system instead of the decimal sys-

tem?

2. Convert 3410 to binary and hex.

3. Convert 1101012 to hex and decimal.

4. Perform binary addition: 101100 + 101.

5. Convert 1011002 to its 2’s complement representation.

6. Add 36BH + F6H.

7. Subtract 36BH – F6H.

8. Write “80x86 CPUs” in its ASCII code (in hex form).

Hex Symbol Hex Symbol
41 A 61 a

42 B 62 b

43 C 63 c

44 D 64 d

...

59 Y 79 y

5A Z 7A z

INTRODUCTION TO COMPUTING

Figure 1. Selected ASCII Codes

the lowercase “a”. Often, a zero is placed in the most-significant bit position to

make it an 8-bit code. Figure 1 shows selected ASCII codes. The use of ASCII is

not only standard for keyboards used in the United States and many other coun-

tries but also provides a standard for printing and displaying characters by output

devices such as printers and monitors.

8

This section gives an overview of digital logic and design. First, we cover

binary logic operations, then we show gates that perform these functions. Next,

logic gates are put together to form simple digital circuits. Finally, we cover some

logic devices commonly found in microcontroller interfacing.

Binary logic

As mentioned earlier, computers use the

binary number system because the two voltage lev-

els can be represented as the two digits 0 and 1.

Signals in digital electronics have two distinct volt-

age levels. For example, a system may define 0 V as

system with the built-in tolerances for variations in

the voltage. A valid digital signal in this example

should be within either of the two shaded areas.

Logic gates

Binary logic gates are simple circuits that

take one or more input signals and send out one out-

put signal. Several of these gates are defined below.

AND gate

The AND gate takes two or more inputs and

performs a logic AND on them. See the truth table

and diagram of the AND gate. Notice that if both

inputs to the AND gate are 1, the output will be 1.

Any other combination of inputs will give a 0 output.

The example shows two inputs, x and y. Multiple

outputs are also possible for logic gates. In the case

of AND, if all inputs are 1, the output is 1. If any

input is 0, the output is 0.

OR gate

The OR logic function will output a 1 if one

or more inputs is 1. If all inputs are 0, then and only

then will the output be 0.

Tri-state buffer

A buffer gate does not change the logic level

of the input. It is used to isolate or amplify the sig-

nal.

Logical AND Function

Inputs Output

X Y X AND Y
0 0 0

0 1 0

1 0 0

1 1 1

X
Y

X AND Y

Logical OR Function

Inputs Output

X Y X OR Y
0 0 0

0 1 1

1 0 1

1 1 1

X
Y

X OR Y

Buffer

X

Control

Y

5

4

3

2

1

0
Logic 0

Logic 1

INTRODUCTION TO COMPUTING

Figure 2. Binary Signals

logic 0 and +5 V as logic 1. Figure 2 shows this

SECTION 2: DIGITAL PRIMER

9

Inverter

The inverter, also called NOT, outputs the

value opposite to that input to the gate. That is, a 1

input will give a 0 output, while a 0 input will give a

1 output.

XOR gate

The XOR gate performs an exclusive-OR

operation on the inputs. Exclusive-OR produces a 1

output if one (but only one) input is 1. If both

operands are 0, the output is 0. Likewise, if both

operands are 1, the output is also 0. Notice from the

XOR truth table, that whenever the two inputs are

the same, the output is 0. This function can be used

to compare two bits to see if they are the same.

NAND and NOR gates

The NAND gate functions like an AND gate

with an inverter on the output. It produces a 0 output

when all inputs are 1; otherwise, it produces a 1 out-

put. The NOR gate functions like an OR gate with an

inverter on the output. It produces a 1 if all inputs are

0; otherwise, it produces a 0. NAND and NOR gates

are used extensively in digital design because they

are easy and inexpensive to fabricate. Any circuit

that can be designed with AND, OR, XOR, and

INVERTER gates can be implemented using only

NAND and NOR gates. A simple example of this is

given below. Notice in NAND, that if any input is 0,

the output is 1. Notice in NOR, that if any input is 1,

the output is 0.

Logic design using gates

Next we will show a simple logic design to

add two binary digits. If we add two binary digits

there are four possible outcomes:

Carry Sum
0 + 0 = 0 0

0 + 1 = 0 1

1 + 0 = 0 1

1 + 1 = 1 0

Logical Inverter

Input Output

X NOT X
0 1

1 0

X NOT X

Logical NAND Function

Inputs Output

X Y X NAND Y
0 0 1

0 1 1

1 0 1

1 1 0

X
Y

X NAND Y

Logical NOR Function

Inputs Output

X Y X NOR Y
0 0 1

0 1 0

1 0 0

1 1 0

X
Y

X NOR Y

Logical XOR Function

Inputs Output

X Y X XOR Y
0 0 0

0 1 1

1 0 1

1 1 0

X
Y

X XOR Y

INTRODUCTION TO COMPUTING

10

Notice that when we add 1 + 1 we get 0 with a carry to the next higher

place. We will need to determine the sum and the carry for this design. Notice that

the sum column above matches the output for the XOR function, and that the carry

circuit implemented with AND and OR gates and inverters.

gram of a half-adder. Two half-adders

can be combined to form an adder that

can add three input digits. This is called

diagram of a full-adder, along with a

block diagram that masks the details of

adder using three full-adders.

Sum

Sum

Final Sum

C out

CarryHalf-

Adder

Half-

Adder

X

Y

Carry

Final

Carry

C in

X

Y

C in

X

Y
Sum

Carry

X

Y

X

Y

X

Y

Sum

Carry

(a) Half-Adder Using XOR and AND (b) Half-Adder Using AND, OR, Inverters

Half-

Adder

X Sum

Carry

out

Y

INTRODUCTION TO COMPUTING

Figure 3. Two Implementations of a Half-Adder

Figure 5. Full-Adder Built from a Half-Adder

Figure 4. Block Diagram of a Half-Adder

a full-adder. Figure 5 shows the logic

column matches the output for the AND function. Figure 3(a) shows a simple

adder implemented with XOR and AND gates. Figure 3(b) shows the same logic

Figure 4 shows a block dia-

the circuit. Figure 6 shows a 3-bit

11

Decoders

Another example of the application

of logic gates is the decoder. Decoders are

widely used for address decoding in com-

for 9 (1001 binary) and 5 (0101) using

inverters and AND gates.

Flip-flops

A widely used component in digital

systems is the flip-flop. Frequently, flip-

shows the logic diagram, block diagram,

and truth table for a flip-flop.

The D flip-flop is widely used to

latch data. Notice from the truth table that

a D-FF grabs the data at the input as the

clock is activated. A D-FF holds the data as

long as the power is on.

Adders

Full-
Adder

Full-
Adder

Full-
Adder

X0 S0

S1

S2

S3

Carry

Carry

Carry

Y0

X1

Y1

X2

Y2

LSB LSB

(a) Address decoder for 9 (binary 1001)

The output of the AND gate will be 1

if and only if the input is binary 1001.

(b) Address decoder for 5 (binary 0101)

The output of the AND gate will be 1

if and only if the input is binary 0101.

Clk D Q
No x no change

0 0

1 1

x = don’t care

D Q

Clk

Q

D

Q

Q

Clk

(a) Circuit diagram (b) Block diagram (c) Truth table

INTRODUCTION TO COMPUTING

puter design. Figure 7 shows decoders

Figure 7. Address Decoders

Figure 8. D Flip-Flops

flops are used to store data. Figure 8

Figure 6. 3-Bit Adder Using Three Full-

12

Review Questions

1. The logical operation _____ gives a 1 output when all inputs are 1.

2. The logical operation _____ gives a 1 output when one or more of its inputs is

1.

3. The logical operation _____ is often used to compare two inputs to determine

whether they have the same value.

4. A _____ gate does not change the logic level of the input.

5. Name a common use for flip-flops.

6. An address ______ is used to identify a predetermined binary address.

In this section we discuss various types of semiconductor memories and

their characteristics such as capacity, organization, and access time. We will also

show how the memory is connected to CPU. Before we embark on the subject of

memory, it will be helpful to give an overview of computer organization and

review some widely used terminology in computer literature.

Some important terminology

Recall from the discussion above

that a bit is a binary digit that can have the

value 0 or 1. A byte is defined as 8 bits. A

nibble is half a byte, or 4 bits. A word is

two bytes, or 16 bits. The display is intended to show the relative size of these

units. Of course, they could all be composed of any combination of zeros and ones.

A kilobyte is 210 bytes, which is 1024 bytes. The abbreviation K is often

used to represent kilobytes. A megabyte, or meg as some call it, is 220 bytes. That

is a little over 1 million bytes; it is exactly 1,048,576 bytes. Moving rapidly up the

scale in size, a gigabyte is 230 bytes (over 1 billion), and a terabyte is 240 bytes

(over 1 trillion). As an example of how some of these terms are used, suppose that

a given computer has 16 megabytes of memory. That would be 16 × 220, or 24 ×
220, which is 224. Therefore 16 megabytes is 224 bytes.

Two types of memory commonly used in microcomputers are RAM, which

stands for “random access memory” (sometimes called read/write memory), and

ROM, which stands for “read-only memory.” RAM is used by the computer for

temporary storage of programs that it is running. That data is lost when the com-

puter is turned off. For this reason, RAM is sometimes called volatile memory.

ROM contains programs and information essential to operation of the computer.

The information in ROM is permanent, cannot be changed by the user, and is not

lost when the power is turned off. Therefore, it is called nonvolatile memory.

Internal organization of computers

Bit 0
Nibble 0000
Byte 0000 0000
Word 0000 0000 0000 0000

INTRODUCTION TO COMPUTING

SECTION 3: SEMICONDUCTOR MEMORY

The internal working of every computer can be broken down into three

parts: CPU (central processing unit), memory, and I/O (input/output) devices.

Figure 9 shows a block diagram of the internal organization of a computer.

13

The function of the CPU is to execute (process) information stored in memory. The

function of I/O devices such as the keyboard and video monitor is to provide a

means of communicating with the CPU. The CPU is connected to memory and I/O

through strips of wire called a bus. The bus inside a computer allows carrying

information from place to place just as a street allows cars to carry people from

place to place. In every computer there are three types of buses: address bus, data

bus, and control bus.

For a device (memory or I/O) to be recognized by the CPU, it must be

assigned an address. The address assigned to a given device must be unique; no

two devices are allowed to have the same address. The CPU puts the address (in

binary, of course) on the address bus, and the decoding circuitry finds the device.

Then the CPU uses the data bus either to get data from that device or to send data

to it. The control buses are used to provide read or write signals to the device to

indicate if the CPU is asking for information or sending information. Of the three

buses, the address bus and data bus determine the capability of a given CPU.

More about the data bus

Because data buses are used to carry information in and out of a CPU, the

more data buses available, the better the CPU. If one thinks of data buses as high-

way lanes, it is clear that more lanes provide a better pathway between the CPU

the same token, that increase in the number of lanes increases the cost of construc-

tion. More data buses mean a more expensive CPU and computer. The average

size of data buses in CPUs varies between 8 and 64 bits. Early personal comput-

ers such as Apple 2 used an 8-bit data bus, while supercomputers such as Cray

used a 64-bit data bus. Data buses are bidirectional, because the CPU must use

them either to receive or to send data. The processing power of a computer is relat-

ed to the size of its buses, because an 8-bit bus can send out 1 byte a time, but a

16-bit bus can send out 2 bytes at a time, which is twice as fast.

More about the address bus

Because the address bus is used to identify the devices and memory con-

nected to the CPU, the more address buses available, the larger the number of

CPU

Read/write

RAM ROM Printer Disk Monitor Keyboard

Address Bus

Data Bus

Control Buses (MEMR, MEMW, IORD, and IOWR)

INTRODUCTION TO COMPUTING

Figure 9. Internal Organization of a Computer

and its external devices (such as printers, RAM, ROM, etc.; see Figure 9). By

14

devices that can be addressed. In other words, the number of address buses for a

CPU determines the number of locations with which it can communicate. The

number of locations is always equal to 2x, where x is the number of address lines,

regardless of the size of the data bus. For example, a CPU with 16 address lines

can provide a total of 65,536 (216) or 64K of addressable memory. Each location

can have a maximum of 1 byte of data. This is because all general-purpose micro-

processor CPUs are what is called byte addressable. As another example, the IBM

PC AT uses a CPU with 24 address lines and 16 data lines. Thus, the total acces-

sible memory is 16 megabytes (224 = 16 megabytes). In this example there would

be 224 locations, and because each location is one byte, there would be 16

megabytes of memory. The address bus is a unidirectional bus, which means that

the CPU uses the address bus only to send out addresses. To summarize: The total

number of memory locations addressable by a given CPU is always equal to 2x

where x is the number of address bits, regardless of the size of the data bus.

CPU and its relation to RAM and ROM

For the CPU to process information, the data must be stored in RAM or

ROM. The function of ROM in computers is to provide information that is fixed

and permanent. This is information such as tables for character patterns to be dis-

played on the video monitor, or programs that are essential to the working of the

computer, such as programs for testing and finding the total amount of RAM

installed on the system, or for displaying information on the video monitor. In con-

trast, RAM stores temporary information that can change with time, such as vari-

ous versions of the operating system and application packages such as word pro-

cessing or tax calculation packages. These programs are loaded from the hard

drive into RAM to be processed by the CPU. The CPU cannot get the information

from the disk directly because the disk is too slow. In other words, the CPU first

seeks the information to be processed from RAM (or ROM). Only if the data is not

there does the CPU seek it from a mass storage device such as a disk, and then it

transfers the information to RAM. For this reason, RAM and ROM are sometimes

referred to as primary memory and disks are called secondary memory. Next, we

discuss various types of semiconductor memories and their characteristics such as

capacity, organization, and access time.

Memory capacity

The number of bits that a semiconductor memory chip can store is called

chip capacity. It can be in units of Kbits (kilobits), Mbits (megabits), and so on.

This must be distinguished from the storage capacity of computer systems. While

the memory capacity of a memory IC chip is always given in bits, the memory

capacity of a computer system is given in bytes. For example, an article in a tech-

nical journal may state that the 128M chip has become popular. In that case, it is

understood, although it is not mentioned, that 128M means 128 megabits since the

article is referring to an IC memory chip. However, if an advertisement states that

a computer comes with 128M memory, it is understood that 128M means 128

megabytes since it is referring to a computer system.

INTRODUCTION TO COMPUTING

15

Memory organization

Memory chips are organized into a number of locations within the IC.

Each location can hold 1 bit, 4 bits, 8 bits, or even 16 bits, depending on how it is

designed internally. The number of bits that each location within the memory chip

can hold is always equal to the number of data pins on the chip. How many loca-

tions exist inside a memory chip? That depends on the number of address pins. The

number of locations within a memory IC always equals 2 to the power of the num-

ber of address pins. Therefore, the total number of bits that a memory chip can

store is equal to the number of locations times the number of data bits per location.

To summarize:

1. A memory chip contains 2x locations, where x is the number of address pins.
2. Each location contains y bits, where y is the number of data pins on the chip.

3. The entire chip will contain 2x × y bits, where x is the number of address pins

and y is the number of data pins on the chip.

Speed

One of the most important characteristics of a

memory chip is the speed at which its data can be

accessed. To access the data, the address is presented to

the address pins, the READ pin is activated, and after a

certain amount of time has elapsed, the data shows up

at the data pins. The shorter this elapsed time, the bet-

ter, and consequently, the more expensive the memory

chip. The speed of the memory chip is commonly

referred to as its access time. The access time of mem-

ory chips varies from a few nanoseconds to hundreds

of nanoseconds, depending on the IC technology used

in the design and fabrication process.

The three important memory characteristics of

capacity, organization, and access time will be

a reference for the calculation of memory organization.

ROM (read-only memory)

ROM is a type of memory that does not lose its

contents when the power is turned off. For this reason, ROM is also called non-
volatile memory. There are different types of read-only memory, such as PROM,

EPROM, EEPROM, Flash EPROM, and mask ROM. Each is explained next.

PROM (programmable ROM) and OTP

PROM refers to the kind of ROM that the user can burn information into.

In other words, PROM is a user-programmable memory. For every bit of the

PROM, there exists a fuse. PROM is programmed by blowing the fuses. If the

information burned into PROM is wrong, that PROM must be discarded since its

internal fuses are blown permanently. For this reason, PROM is also referred to as

x 2x

10 1K

11 2K

12 4K

13 8K

14 16K

15 32K

16 64K

17 128K

18 256K

19 512K

20 1M

21 2M

22 4M

23 8M

24 16M

25 32M

26 64M

27 128M

INTRODUCTION TO COMPUTING

Table 4: Powers of 2

explored extensively in this chapter. Table 4 serves as

Examples 12 and 13 demonstrate these concepts.

16

OTP (one-time programmable). Programming ROM, also called burning ROM,

requires special equipment called a ROM burner or ROM programmer.

EPROM (erasable programmable ROM) and UV-EPROM

EPROM was invented to allow making changes in the contents of PROM

after it is burned. In EPROM, one can program the memory chip and erase it thou-

sands of times. This is especially necessary during development of the prototype

of a microprocessor-based project. A widely used EPROM is called UV-EPROM,

where UV stands for ultraviolet. The only problem with UV-EPROM is that eras-

ing its contents can take up to 20 minutes. All UV-EPROM chips have a window

through which the programmer can shine ultraviolet (UV) radiation to erase the

chip’s contents. For this reason, EPROM is also referred to as UV-erasable

chips.

To program a UV-EPROM chip, the following steps must be taken:

1. Its contents must be erased. To erase a chip, remove it from its socket on the

system board and place it in EPROM erasure equipment to expose it to UV

radiation for 15–20 minutes.

2. Program the chip. To program a UV-EPROM chip, place it in the ROM burn-

er (programmer). To burn code or data into EPROM, the ROM burner uses

12.5 volts or higher, depending on the EPROM type. This voltage is referred

A 512K memory chip has 8 pins for data. Find:

(a) the organization, and (b) the number of address pins for this memory chip.

Solution:

(a) A memory chip with 8 data pins means that each location within the chip can hold

8 bits of data. To find the number of locations within this memory chip, divide the

capacity by the number of data pins. 512K/8 = 64K; therefore, the organization for

this memory chip is 64K × 8.

(b) The chip has 16 address lines since 216 = 64K.

A given memory chip has 12 address pins and 4 data pins. Find:

(a) the organization, and (b) the capacity.

Solution:

(a) This memory chip has 4,096 locations (212 = 4,096), and each location can hold 4

bits of data. This gives an organization of 4,096 × 4, often represented as 4K × 4.

(b) The capacity is equal to 16K bits since there is a total of 4K locations and each loca-

tion can hold 4 bits of data.

INTRODUCTION TO COMPUTING

EPROM or simply UV-EPROM. Figure 10 shows the pins for UV-EPROM

Example 12

Example 13

17

to as VPP in the UV-EPROM data sheet.

3. Place the chip back into its socket on the system board.

As can be seen from the above steps, not only is there an EPROM program-

mer (burner), but there is also separate EPROM erasure equipment. The main

problem, and indeed the major disadvantage of UV-EPROM, is that it cannot be

erased and programmed while it is in the system board. To provide a solution to

this problem, EEPROM was invented.

ber 27128-25 refers to UV-EPROM that has a capacity of 128K bits and access

time of 250 nanoseconds. The capacity of the memory chip is indicated in the part

part numbers, C refers to CMOS technology. Notice that 27XX always refers to

UV-EPROM chips. For a comprehensive list of available memory chips see the

JAMECO (jameco.com) or JDR (jdr.com) catalogs.

For ROM chip 27128, find the number of data and address pins.

Solution:

The 27128 has a capacity of 128K bits. It has 16K × 8 organization (all ROMs have 8

data pins), which indicates that there are 8 pins for data and 14 pins for address

(214 = 16K).

Vcc
PGM
N.C.
A8
A9
A11
OE
A10
CE
O7
O6
O5
O4
O3

1
2
3
4
5
6
7
8
9
10
11
12
13
14

28
27
26
25
24
23
22
21
20
19
18
17
16
15

Vpp
A12

A7
A6
A5
A4
A3
A2
A1
A0
O0
O1
O2

GND

Vcc
A8
A9
Vpp
OE
A10
CE
O7
O6
O5
O4
O3

Vcc
A14
A13
A8
A9
Vpp
OE
A10
CE
O7
O6
O5
O4
O3

Vcc
PGM
A13
A8
A9
Vpp
OE
A10
CE
O7
O6
O5
O4
O3

Vcc
A8
A9
A11

OE/Vpp
A10
CE
O7
O6
O5
O4
O3

27
16

27
12

8

27
25

6

27
32

A

Vpp
A12
A7
A6
A5
A4
A3
A2
A1
A0
O0
O1
O2

GND

A7
A6
A5
A4
A3
A2
A1
A0
O0
O1
O2

GND

A7
A6
A5
A4
A3
A2
A1
A0
O0
O1
O2

GND

Vpp
A12
A7
A6
A5
A4
A3
A2
A1
A0
O0
O1
O2

GND

27
25

6

27
32

A

27
16

27
12

8

2764

INTRODUCTION TO COMPUTING

Notice the patterns of the IC numbers in Table 5. For example, part num-

Figure 10. Pin Configurations for 27xx ROM Family

Example 14

number and the access time is given with a zero dropped. See Example 14. In

18

EEPROM (electrically erasable programmable ROM)

EEPROM has several advantages over EPROM, such as the fact that its

method of erasure is electrical and therefore instant, as opposed to the 20-minute

erasure time required for UV-EPROM. In addition, in EEPROM one can select

which byte to be erased, in contrast to UV-EPROM, in which the entire contents

of ROM are erased. However, the main advantage of EEPROM is that one can pro-

gram and erase its contents while it is still in the system board. It does not require

physical removal of the memory chip from its socket. In other words, unlike UV-

EPROM, EEPROM does not require an external erasure and programming device.

To utilize EEPROM fully, the designer must incorporate the circuitry to program

the EEPROM into the system board. In general, the cost per bit for EEPROM is

much higher than for UV-EPROM.

Flash memory EPROM

Since the early 1990s, Flash EPROM has become a popular user-program-

mable memory chip, and for good reasons. First, the erasure of the entire contents

takes less than a second, or one might say in a flash, hence its name, Flash mem-

ory. In addition, the erasure method is electrical, and for this reason it is sometimes

referred to as Flash EEPROM. To avoid confusion, it is commonly called Flash

memory. The major difference between EEPROM and Flash memory is that when

Flash memory's contents are erased, the entire device is erased, in contrast to EEP-

ROM, where one can erase a desired byte. Although in many Flash memories

recently made available the contents are divided into blocks and the erasure can be

done block by block, unlike EEPROM, Flash memory has no byte erasure option.

Because Flash memory can be programmed while it is in its socket on the system

board, it is widely used to upgrade the BIOS ROM of the PC. Some designers

believe that Flash memory will replace the hard disk as a mass storage medium.

Part # Capacity Org. Access Pins VPP
2716 16K 2K × 8 450 ns 24 25 V
2732 32K 4K × 8 450 ns 24 25 V

2732A-20 32K 4K × 8 200 ns 24 21 V

27C32-1 32K 4K × 8 450 ns 24 12.5 V CMOS

2764-20 64K 8K × 8 200 ns 28 21 V

2764A-20 64K 8K × 8 200 ns 28 12.5 V

27C64-12 64K 8K × 8 120 ns 28 12.5 V CMOS

27128-25 128K 16K × 8 250 ns 28 21 V

27C128-12 128K 16K × 8 120 ns 28 12.5 V CMOS

27256-25 256K 32K × 8 250 ns 28 12.5 V

27C256-15 256K 32K × 8 150 ns 28 12.5 V CMOS

27512-25 512K 64K × 8 250 ns 28 12.5 V

27C512-15 512K 64K × 8 150 ns 28 12.5 V CMOS

27C010-15 1024K 128K × 8 150 ns 32 12.5 V CMOS

27C020-15 2048K 256K × 8 150 ns 32 12.5 V CMOS

27C040-15 4096K 512K × 8 150 ns 32 12.5 V CMOS

INTRODUCTION TO COMPUTING

Table 5: Some UV-EPROM Chips

19

This would increase the performance of the computer tremendously, since Flash

memory is semiconductor memory with access time in the range of 100 ns com-

pared with disk access time in the range of tens of milliseconds. For this to hap-

pen, Flash memory's program/erase cycles must become infinite, just like hard

disks. Program/erase cycle refers to the number of times that a chip can be erased

and reprogrammed before it becomes unusable. At this time, the program/erase

cycle is 100,000 for Flash and EEPROM, 1000 for UV-EPROM, and infinite for

Mask ROM

Mask ROM refers to a kind of ROM in which the contents are programmed

by the IC manufacturer. In other words, it is not a user-programmable ROM. The

term mask is used in IC fabrication. Since the process is costly, mask ROM is used

when the needed volume is high (hundreds of thousands) and it is absolutely cer-

tain that the contents will not change. It is common practice to use UV-EPROM or

Flash for the development phase of a project, and only after the code/data have

been finalized is the mask version of the product ordered. The main advantage of

mask ROM is its cost, since it is significantly cheaper than other kinds of ROM,

but if an error is found in the data/code, the entire batch must be thrown away. It

must be noted that all ROM memories have 8 bits for data pins; therefore, the

organization is ×8.

RAM (random access memory)

RAM memory is called volatile memory since cutting off the power to the

IC results in the loss of data. Sometimes RAM is also referred to as RAWM (read

and write memory), in contrast to ROM, which cannot be written to. There are

three types of RAM: static RAM (SRAM), NV-RAM (nonvolatile RAM), and

dynamic RAM (DRAM). Each is explained separately.

EEPROMs

Part No. Capacity Org. Speed Pins VPP

2816A-25 16K 2K × 8 250 ns 24 5 V

2864A 64K 8K × 8 250 ns 28 5 V

28C64A-25 64K 8K × 8 250 ns 28 5 V CMOS

28C256-15 256K 32K × 8 150 ns 28 5 V

28C256-25 256K 32K × 8 250 ns 28 5 V CMOS

Flash

Part No. Capacity Org. Speed Pins VPP

28F256-20 256K 32K × 8 200 ns 32 12 V CMOS

28F010-15 1024K 128K × 8 150 ns 32 12 V CMOS

28F020-15 2048K 256K × 8 150 ns 32 12 V CMOS

INTRODUCTION TO COMPUTING

Table 6: Some EEPROM and Flash Chips

RAM and disks. See Table 6 for some sample chips.

20

SRAM (static RAM)

Storage cells in static RAM memo-

ry are made of flip-flops and therefore do

not require refreshing in order to keep their

data. This is in contrast to DRAM, dis-

cussed below. The problem with the use of

flip-flops for storage cells is that each cell

requires at least 6 transistors to build, and

the cell holds only 1 bit of data. In recent

years, the cells have been made of 4 tran-

sistors, which still is too many. The use of

4-transistor cells plus the use of CMOS

technology has given birth to a high-capac-

ity SRAM, but its capacity is far below

for an SRAM chip.

The following is a description of the 6116 SRAM pins.

A0–A10 are for address inputs, where 11 address lines gives 211 = 2K.

WE (write enable) is for writing data into SRAM (active low).

OE (output enable) is for reading data out of SRAM (active low)

CS (chip select) is used to select the memory chip.

I/O0–I/O7 are for data I/O, where 8-bit data lines give an organization of 2K × 8.

ADDRESS
DECODER

128 X 128
MEMORY ARRAY

I/O CONTROLINPUT
DATA

CIRCUIT

CONTROL
CIRCUIT

...

... . . .
...

...

A0 Vcc

GND
A10

I/O0

I/O7

CS
OE
WE

Vcc
A8
A9
WE
OE
A10
CS
I/O 8
I/O 7
I/O 6
I/O 5
I/O 4

1
2
3
4
5
6
7
8
9
10
11
12

24
23
22
21
20
19
18
17
16
15
14
13

A7
A6
A5
A4
A3
A2
A1
A0

I/O 1
I/O 2

1/O 3
GND

INTRODUCTION TO COMPUTING

Figure 12. Functional Block Diagram for 6116 SRAM

The functional diagram for the 6116 SRAM is given in Figure 12.

DRAM. Figure 11 shows the pin diagram

Figure 11. 2K × 8 SRAM Pins

21

1. Provide the addresses to pins A0–A10.

2. Activate the CS pin.

3. Make WE = 0 while RD = 1.

4. Provide the data to pins I/O0–I/O7.

5. Make WE = 1 and data will be written into SRAM on the positive edge of the

WE signal.

1. Provide the addresses to pins A0–A10. This is the start of the access time

(tAA).

2. Activate the CS pin.

3. While WE = 1, a high-to-low pulse on the OE pin will read the data out of the

chip.

NV-RAM (nonvolatile RAM)

Whereas SRAM is volatile, there is a new type of nonvolatile RAM called

NV-RAM. Like other RAMs, it allows the CPU to read and write to it, but when

the power is turned off the contents are not lost. NV-RAM combines the best of

RAM and ROM: the read and write ability of RAM, plus the nonvolatility of

ROM. To retain its contents, every NV-RAM chip internally is made of the follow-

ing components:

1. It uses extremely power-efficient (very low-power consumption) SRAM cells

built out of CMOS.

Address

CS

OE

Data out Data valid

Address valid

tRC

tAA

Address

CS

Data in

WE

Data valid

Data
set up

Data
hold

INTRODUCTION TO COMPUTING

Figure 13 shows the following steps to write data into SRAM.

Figure 14. Memory Read Timing for SRAM

Figure 13. Memory Write Timing for SRAM

The following are steps to read data from SRAM. See Figure 14.

22

2. It uses an internal lithium battery as a backup energy source.

3. It uses an intelligent control circuitry. The main job of this control circuitry is

to monitor the VCC pin constantly to detect loss of the external power supply.

If the power to the VCC pin falls below out-of-tolerance conditions, the control

circuitry switches automatically to its internal power source, the lithium bat-

tery. The internal lithium power source is used to retain the NV-RAM contents

only when the external power source is off.

It must be emphasized that all three of the components above are incorpo-

rated into a single IC chip, and for this reason nonvolatile RAM is a very expen-

sive type of RAM as far as cost per bit is concerned. Offsetting the cost, however,

is the fact that it can retain its contents up to ten years after the power has been

turned off and allows one to read and write in exactly the same way as SRAM.

DRAM (dynamic RAM)

Since the early days of the computer, the need for huge, inexpensive

read/write memory has been a major preoccupation of computer designers. In

1970, Intel Corporation introduced the first dynamic RAM (random access mem-

ory). Its density (capacity) was 1024 bits and it used a capacitor to store each bit.

Using a capacitor to store data cuts down the number of transistors needed to build

the cell; however, it requires constant refreshing due to leakage. This is in contrast

to SRAM (static RAM), whose individual cells are made of flip-flops. Since each

bit in SRAM uses a single flip-flop, and each flip-flop requires six transistors,

SRAM

Part No. Capacity Org. Speed Pins VPP

6116P-1 16K 2K × 8 100 ns 24 CMOS

6116P-2 16K 2K × 8 120 ns 24 CMOS

6116P-3 16K 2K × 8 150 ns 24 CMOS

6116LP-1 16K 2K × 8 100 ns 24 Low-power CMOS

6116LP-2 16K 2K × 8 120 ns 24 Low-power CMOS

6116LP-3 16K 2K × 8 150 ns 24 Low-power CMOS

6264P-10 64K 8K × 8 100 ns 28 CMOS

6264LP-70 64K 8K × 8 70 ns 28 Low-power CMOS

6264LP-12 64K 8K × 8 120 ns 28 Low-power CMOS

62256LP-10 256K 32K × 8 100 ns 28 Low-power CMOS

62256LP-12 256K 32K × 8 120 ns 28 Low-power CMOS

NV-RAM from Dallas Semiconductor

Part No. Capacity Org. Speed Pins VPP

DS1220Y-150 16K 2K × 8 150 ns 24

DS1225AB-150 64K 8K × 8 150 ns 28

DS1230Y-85 256K 32K × 8 85 ns 28

INTRODUCTION TO COMPUTING

Table 7: Some SRAM and NV-RAM Chips

Table 7 shows some examples of SRAM and NV-RAM parts.

23

SRAM has much larger memory cells and consequently lower density. The use of

capacitors as storage cells in DRAM results in much smaller net memory cell size.

The advantages and disadvantages of DRAM memory can be summarized

as follows. The major advantages are high density (capacity), cheaper cost per bit,

and lower power consumption per bit. The disadvantage is that it must be refreshed

periodically because the capacitor cell loses its charge; furthermore, while DRAM

is being refreshed, the data cannot be accessed. This is in contrast to SRAM's flip-

flops, which retain data as long as the power is on, do not need to be refreshed, and

whose contents can be accessed at any time. Since 1970, the capacity of DRAM

has exploded. After the 1K-bit (1024) chip came the 4K-bit in 1973, and then the

16K chip in 1976. The 1980s saw the introduction of 64K, 256K, and finally 1M

and 4M memory chips. The 1990s saw 16M, 64M, 256M, and the beginning of

1G-bit DRAM chips. In the 2000s, 2G-bit chips are standard, and as the fabrica-

tion process gets smaller, larger memory chips will be rolling off the manufactur-

ing line. Keep in mind that when talking about IC memory chips, the capacity is

always assumed to be in bits. Therefore, a 1M chip means a 1-megabit chip and a

256K chip means a 256K-bit memory chip. However, when talking about the

memory of a computer system, it is always assumed to be in bytes.

Packaging issue in DRAM

In DRAM there is a problem of packing a large number of cells into a sin-

gle chip with the normal number of pins assigned to addresses. For example, a

64K-bit chip (64K × 1) must have 16 address lines and 1 data line, requiring 16

pins to send in the address if the conventional method is used. This is in addition

to VCC power, ground, and read/write control pins. Using the conventional method

of data access, the large number of pins defeats the purpose of high density and

small packaging, so dearly cherished by IC designers. Therefore, to reduce the

number of pins needed for addresses, multiplexing/demultiplexing is used. The

method used is to split the address in half and send in each half of the address

through the same pins, thereby requiring fewer address pins. Internally, the DRAM

structure is divided into a square of rows and columns. The first half of the address

is called the row and the second half is called the column. For example, in the case

of DRAM of 64K × 1 organization, the first half of the address is sent in through

the 8 pins A0–A7, and by activating RAS (row address strobe), the internal latch-

es inside DRAM grab the first half of the address. After that, the second half of the

address is sent in through the same pins, and by activating CAS (column address

strobe), the internal latches inside DRAM latch the second half of the address. This

results in using 8 pins for addresses plus RAS and CAS, for a total of 10 pins,

instead of the 16 pins that would be required without multiplexing. To access a bit

of data from DRAM, both row and column addresses must be provided. For this

concept to work, there must be a 2-by-1 multiplexer outside the DRAM circuitry

and a demultiplexer inside every DRAM chip. Due to the complexities associated

with DRAM interfacing (RAS, CAS, the need for multiplexer and refreshing cir-

cuitry), some DRAM controllers are designed to make DRAM interfacing much

easier. However, many small microcontroller-based projects that do not require

much RAM (usually less than 64K bytes) use SRAM of types EEPROM and NV-

RAM, instead of DRAM.

INTRODUCTION TO COMPUTING

24

DRAM organization

In the discussion of ROM, we noted

that all of these chips have 8 pins for data.

This is not the case for DRAM memory

chips, which can have ×1, ×4, ×8, or ×16

In memory chips, the data pins are

also called I/O. In some DRAMs there are

in and Dout

shows a 256K × 1 DRAM chip with pins
A0–A8 for address, RAS and CAS, WE (write enable), and data in and data out,

as well as power and ground.

Memory address decoding

Next we discuss address decoding. The CPU provides the address of the

data desired, but it is the job of the decoding circuitry to locate the selected mem-

ory block. To explore the concept of decoding circuitry, we look at various meth-

ods used in decoding the addresses. In this discussion we use SRAM or ROM for

the sake of simplicity.

Memory chips have one or more pins called CS (chip select), which must

be activated for the memory's contents to be accessed. Sometimes the chip select

is also referred to as chip enable (CE). In connecting a memory chip to the CPU,

Part No. Speed Capacity Org. Pins
4164-15 150 ns 64K 64K × 1 16

41464-8 80 ns 256K 64K × 4 18

41256-15 150 ns 256K 256K × 1 16

41256-6 60 ns 256K 256K × 1 16

414256-10 100 ns 1M 256K × 4 20

511000P-8 80 ns 1M 1M × 1 18

514100-7 70 ns 4M 4M × 1 20

GND
CAS
D OUT
A6
A3
A4
A5
A7

1
2
3
4
5
6
7
8

16
15
14
13
12
11
10

9

A8
D IN
WE

RAS
A0
A2
A1

Vcc

Discuss the number of pins set aside for addresses in each of the following memory

chips. (a) 16K × 4 DRAM (b) 16K × 4 SRAM
Solution:
Since 214 = 16K:

(a) For DRAM we have 7 pins (A0–A6) for the address pins and 2 pins for RAS and

CAS.

(b) For SRAM we have 14 pins for address and no pins for RAS and CAS since they

are associated only with DRAM. In both cases we have 4 pins for the data bus.

INTRODUCTION TO COMPUTING

Table 8: Some DRAMs

separate D pins. Figure 15
Figure 15. 256K × 1 DRAM

Example 15

organizations. See Example 15 and Table 8.

25

note the following points.

1. The data bus of the CPU is connected directly to the data pins of the memory

chip.

2. Control signals RD (read) and WR (memory write) from the CPU are connect-

ed to the OE (output enable) and WE (write enable) pins of the memory chip,

respectively.

3. In the case of the address buses, while the lower bits of the addresses from the

CPU go directly to the memory chip address pins, the upper ones are used to

activate the CS pin of the memory chip. It is the CS pin that along with

RD/WR allows the flow of data in or out of the memory chip. No data can be

written into or read from the memory chip unless CS is activated.

As can be seen from the data sheets of SRAM and ROM, the CS input of

a memory chip is normally active low and is activated by the output of the mem-

ory decoder. Normally memories are divided into blocks, and the output of the

decoder selects a given memory block. There are three ways to generate a memo-

ry block selector: (a) using simple logic gates, (b) using the 74LS138, or (c) using

programmable logics such as CPLD and FPGA. Each method is described below.

Simple logic gate address decoder

The simplest method of constructing decoding circuitry is the use of a

NAND gate. The output of a NAND gate is active low, and the CS pin is also

active low, which makes them a perfect match. In cases where the CS input is

active high, an AND gate must be used. Using a combination of NAND gates and

inverters, one can decode any address range. An example of this is shown in Figure

results in the assignment of addresses 3000H to 3FFFH to this memory chip.

A12
A13
A14
A15

CS

RD WR

MEMR

MEMW

4K × 8

A0

A
0

-
A

11

A11

D7

D7

D0

D0

INTRODUCTION TO COMPUTING

16, which shows that A15–A12 must be 0011 in order to select the chip. This

Figure 16. Logic Gate as Decoder

26

Using the 74LS138 3-8
decoder

This used to be one of the

most widely used address

decoders. The 3 inputs A, B, and

C generate 8 active-low outputs

Y output is connected to CS of a

memory chip, allowing control

of 8 memory blocks by a single

74LS138. In the 74LS138,

where A, B, and C select which

output is activated, there are

three additional inputs, G2A,

G2B, and G1. G2A and G2B are

both active low, and G1 is active

high. If any one of the inputs

G1, G2A, or G2B is not connect-

ed to an address signal (some-

times they are connected to a

control signal), they must be

activated permanently by either

VCC or ground, depending on the

shows the design and the address

range calculation for the

74LS138 decoder.

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

A

B

C

G2A G2B

Enable

G1

Block Diagram

Function Table

Vcc GND

Inputs
Enable Select
G1 G2 C B A

Outputs

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

X H
L X
H L
H L
H L
H L
H L
H L
H L
H L

X X X
X X X
L L L
L L H
L H L
L H H
H L L
H L H
H H L
H H H

H
H
L
H
H
H
H
H
H
H

H
H
H
L
H
H
H
H
H
H

H
H
H
H
L
H
H
H
H
H

H
H
H
H
H
L
H
H
H
H

H
H
H
H
H
H
L
H
H
H

H
H
H
H
H
H
H
L
H
H

H
H
H
H
H
H
H
H
L
H

H
H
H
H
H
H
H
H
H
L

A12
A13
A14
A15

GND
Vcc

CE

OE Vpp

MEMR

Vcc

4K × 8

A0

A
0

-
A

11

A11

D7

D7

D0

D0

A
B
C
G2A
G2B
G1

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

INTRODUCTION TO COMPUTING

Y0–Y7. See Figure 17. Each

Figure 17. 74LS138 Decoder

Figure 18. Using 74LS138 as Decoder

activation level. Example 16

27

Using programmable logic as an address decoder

Other widely used decoders are programmable logic chips such as PAL,

GAL, and FPGA chips. One disadvantage of these chips is that they require

PAL/GAL/FPGA software and a burner (programmer), whereas the 74LS138

needs neither of these. The advantage of these chips is that they can be pro-

grammed for any combination of address ranges, and so are much more versatile.

This plus the fact that PAL/GAL/FPGA chips have 10 or more inputs (in contrast

to 6 in the 74138) means that they can accommodate more address inputs.

Review Questions

1. How many bytes is 24 kilobytes?

2. What does “RAM” stand for? How is it used in computer systems?

3. What does “ROM” stand for? How is it used in computer systems?

4. Why is RAM called volatile memory?

5. List the three major components of a computer system.

6. What does “CPU” stand for? Explain its function in a computer.

7. List the three types of buses found in computer systems and state briefly the

purpose of each type of bus.

8. State which of the following is unidirectional and which is bidirectional:

(a) data bus (b) address bus

(a) Y4, (b) Y2, and (c) Y7.

Solution:

(a) The address range for Y4 is calculated as follows.
A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

A15 must be 0 for the decoder to be activated. Y4 will be selected when A14 A13 A12

= 100 (4 in binary). The remaining A11–A0 will be 0 for the lowest address and 1 for

the highest address.

(b) The address range for Y2 is 2000H to 2FFFH.
A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1

(c) The address range for Y7 is 7000H to 7FFFH.
A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

INTRODUCTION TO COMPUTING

Example 16

Looking at the design in Figure 18, find the address range for the following:

The above shows that the range for Y4 is 4000H to 4FFFH. In Figure 18, notice that

28

9. If an address bus for a given computer has 16 lines, what is the maximum

amount of memory it can access?

10. The speed of semiconductor memory is in the range of

(a) microseconds (b) milliseconds

(c) nanoseconds (d) picoseconds

11. Find the organization and chip capacity for each ROM with the indicated num-

ber of address and data pins.

(a) 14 address, 8 data (b) 16 address, 8 data (c) 12 address, 8 data

12. Find the organization and chip capacity for each RAM with the indicated num-

ber of address and data pins.

(a) 11 address, 1 data SRAM (b) 13 address, 4 data SRAM

(c) 17 address, 8 data SRAM (d) 8 address, 4 data DRAM

(e) 9 address, 1 data DRAM (f) 9 address, 4 data DRAM

13. Find the capacity and number of pins set aside for address and data for mem-

ory chips with the following organizations.

(a) 16K × 4 SRAM (b) 32K × 8 EPROM (c) 1M × 1 DRAM

(d) 256K × 4 SRAM (e) 64K × 8 EEPROM (f) 1M × 4 DRAM

14. Which of the following is (are) volatile memory?

(a) EEPROM (b) SRAM (c) DRAM (d) NV-RAM

15. A given memory block uses addresses 4000H–7FFFH. How many kilobytes is

this memory block?

16. The 74138 is a(n) _____ by _____ decoder.

17. In the 74138 give the status of G2A and G2B for the chip to be enabled.

18. In the 74138 give the status of G1 for the chip to be enabled.

In this section we will examine the inside of a CPU. Then, we will com-

pare the Harvard and von Neumann architectures.

Inside CPU

A program stored in memory provides instructions to the CPU to perform

data or controlling a machine such as a robot. The function of the CPU is to fetch

these instructions from memory and execute them. To perform the actions of fetch

and execute, all CPUs are equipped with resources such as the following:

1. Foremost among the resources at the disposal of the CPU are a number of reg-
isters. The CPU uses registers to store information temporarily. The informa-

tion could be two values to be processed, or the address of the value needed to

be fetched from memory. Registers inside the CPU can be 8-bit, 16-bit, 32-bit,

or even 64-bit registers, depending on the CPU. In general, the more and big-

ger the registers, the better the CPU. The disadvantage of more and bigger reg-

isters is the increased cost of such a CPU.

2. The CPU also has what is called the ALU (arithmetic/logic unit). The ALU sec-

tion of the CPU is responsible for performing arithmetic functions such as add,

INTRODUCTION TO COMPUTING

19. In Example 16, what is the range of addresses assigned to Y5?

an action. See Figure 19. The action can simply be adding data such as payroll

SECTION 4: CPU ARCHITECTURE

29

subtract, multiply, and divide, and logic functions such as AND, OR, and NOT.

3. Every CPU has what is called a program counter. The function of the program

counter is to point to the address of the next instruction to be executed. As each

instruction is executed, the program counter is incremented to point to the

address of the next instruction to be executed. The contents of the program

counter are placed on the address bus to find and fetch the desired instruction.

In the IBM PC, the program counter is a register called IP, or the instruction

pointer.

4. The function of the instruction decoder is to interpret the instruction fetched

into the CPU. One can think of the instruction decoder as a kind of dictionary,

storing the meaning of each instruction and what steps the CPU should take

upon receiving a given instruction. Just as a dictionary requires more pages the

more words it defines, a CPU capable of understanding more instructions

requires more transistors to design.

Internal working of CPUs

To demonstrate some of the concepts discussed above, a step-by-step

analysis of the process a CPU would go through to add three numbers is given

next. Assume that an imaginary CPU has registers called A, B, C, and D. It has an

8-bit data bus and a 16-bit address bus. Therefore, the CPU can access memory

from addresses 0000 to FFFFH (for a total of 10000H locations). The action to be

performed by the CPU is to put hexadecimal value 21 into register A, and then add

to register A the values 42H and 12H. Assume that the code for the CPU to move

a value to register A is 1011 0000 (B0H) and the code for adding a value to regis-

ter A is 0000 0100 (04H). The necessary steps and code to perform these opera-

ALU
Flags

Program Counter

Register A

Register B

Register C

Register D

Instruction Register

Instruction

decoder, timing,

and control

A
d
d
ress B

u
s

C
o
n
tro

l B
u
ses

D
ata B

u
s

Internal

buses

INTRODUCTION TO COMPUTING

Figure 19. Internal Block Diagram of a CPU

30

tions are as follows.

Action Code Data
Move value 21H into register A B0H 21H
Add value 42H to register A 04H 42H
Add value 12H to register A 04H 12H

If the program to perform the actions listed above is stored in memory

locations starting at 1400H, the following would represent the contents for each

memory address location:

Memory address Contents of memory address
1400 (B0)code for moving a value to register A
1401 (21)value to be moved
1402 (04)code for adding a value to register A
1403 (42)value to be added
1404 (04)code for adding a value to register A
1405 (12)value to be added
1406 (F4)code for halt

The actions performed by the CPU to run the program above would be as

follows:

1. The CPU’s program counter can have a value between 0000 and FFFFH. The

program counter must be set to the value 1400H, indicating the address of the

first instruction code to be executed. After the program counter has been

loaded with the address of the first instruction, the CPU is ready to execute.

2. The CPU puts 1400H on the address bus and sends it out. The memory circuit-

ry finds the location while the CPU activates the READ signal, indicating to

memory that it wants the byte at location 1400H. This causes the contents of

memory location 1400H, which is B0, to be put on the data bus and brought

into the CPU.

3. The CPU decodes the instruction B0 with the help of its instruction decoder

dictionary. When it finds the definition for that instruction it knows it must

bring the byte in the next memory location into register A of the CPU.

Therefore, it commands its controller circuitry to do exactly that. When it

brings in value 21H from memory location 1401, it makes sure that the doors

of all registers are closed except register A. Therefore, when value 21H comes

into the CPU it will go directly into register A. After completing one instruc-

tion, the program counter points to the address of the next instruction to be exe-

cuted, which in this case is 1402H. Address 1402 is sent out on the address bus

to fetch the next instruction.

4. From memory location 1402H the CPU fetches code 04H. After decoding, the

CPU knows that it must add the byte sitting at the next address (1403) to the

contents of register A. After the CPU brings the value (in this case, 42H) into

register A, it provides the contents of register A along with this value to the

ALU to perform the addition. It then takes the result of the addition from the

ALU’s output and puts it into register A. Meanwhile the program counter

becomes 1404, the address of the next instruction.

INTRODUCTION TO COMPUTING

31

5. Address 1404H is put on the address bus and the code is fetched into the CPU,

decoded, and executed. This code again is adding a value to register A. The

program counter is updated to 1406H.

6. Finally, the contents of address 1406 are fetched in and executed. This HALT

instruction tells the CPU to stop incrementing the program counter and asking

for the next instruction. Without the HALT, the CPU would continue updating

the program counter and fetching instructions.

Now suppose that address 1403H contained value 04 instead of 42H. How

would the CPU distinguish between data 04 to be added and code 04? Remember

that code 04 for this CPU means “move the next value into register A.” Therefore,

the CPU will not try to decode the next value. It simply moves the contents of the

following memory location into register A, regardless of its value.

Harvard and von Neumann architectures

Every microprocessor must have memory space to store program (code)

and data. While code provides instructions to the CPU, the data provides the infor-

mation to be processed. The CPU uses buses (wire traces) to access the code ROM

and data RAM memory spaces. The early computers used the same bus for access-

ing both the code and data. Such an architecture is commonly referred to as von
Neumann (Princeton) architecture. That means for von Neumann computers, the

process of accessing the code or data could cause them to get in each other’s way

and slow down the processing speed of the CPU, because each had to wait for the

other to finish fetching. To speed up the process of program execution, some CPUs

use what is called Harvard architecture. In Harvard architecture, we have separate

four sets of buses: (1) a set of data buses for carrying data into and out of the CPU,

(2) a set of address buses for accessing the data, (3) a set of data buses for carry-

ing code into the CPU, and (4) an address bus for accessing the code. See Figure

both ROM code and data RAM are internal (on-chip) and distances are on the

micron and millimeter scale. But implementing Harvard architecture for systems

such as x86 IBM PC-type computers is very expensive because the RAM and

ROM that hold code and data are external to the CPU. Separate wire traces for data

and code on the motherboard will make the board large and expensive. For exam-

ple, for a Pentium microprocessor with a 64-bit data bus and a 32-bit address bus

we will need about 100 wire traces on the motherboard if it is von Neumann archi-

tecture (96 for address and data, plus a few others for control signals of read and

write and so on). But the number of wire traces will double to 200 if we use

Harvard architecture. Harvard architecture will also necessitate a large number of

pins coming out of the microprocessor itself. For this reason you do not see

Harvard architecture implemented in the world of PCs and workstations. This is

also the reason that microcontrollers such as AVR use Harvard architecture inter-

nally, but they still use von Neumann architecture if they need external memory

for code and data space. The von Neumann architecture was developed at

Princeton University, while the Harvard architecture was the work of Harvard

University.

INTRODUCTION TO COMPUTING

buses for the code and data memory. See Figure 20. That means that we need

20. This is easy to implement inside an IC chip such as a microcontroller where

32

Review Questions

1. What does “ALU” stand for? What is its purpose?

2. How are registers used in computer systems?

3. What is the purpose of the program counter?

4. What is the purpose of the instruction decoder?

5. True or false. Harvard architecture uses the same address and data buses to

fetch both code and data.

SUMMARY

The binary number system represents all numbers with a combination of

the two binary digits, 0 and 1. The use of binary systems is necessary in digital

computers because only two states can be represented: on or off. Any binary num-

ber can be coded directly into its hexadecimal equivalent for the convenience of

humans. Converting from binary/hex to decimal, and vice versa, is a straightfor-

ward process that becomes easy with practice. ASCII code is a binary code used

to represent alphanumeric data internally in the computer. It is frequently used in

peripheral devices for input and/or output.

The AND, OR, and inverter logic gates are the basic building blocks of

simple circuits. NAND, NOR, and XOR gates are also used to implement circuit

design. Diagrams of half-adders and full-adders were given as examples of the use

of logic gates for circuit design. Decoders are used to detect certain addresses.

Flip-flops are used to latch in data until other circuits are ready for it.

The major components of any computer system are the CPU, memory, and

INTRODUCTION TO COMPUTING

Figure 20. von Neumann vs. Harvard Architecture

33

I/O devices. “Memory” refers to temporary or permanent storage of data. In most

systems, memory can be accessed as bytes or words. The terms kilobyte,

megabyte, gigabyte, and terabyte are used to refer to large numbers of bytes. There

are two main types of memory in computer systems: RAM and ROM. RAM (ran-

dom access memory) is used for temporary storage of programs and data. ROM

(read-only memory) is used for permanent storage of programs and data that the

computer system must have in order to function. All components of the computer

system are under the control of the CPU. Peripheral devices such as I/O (input/out-

put) devices allow the CPU to communicate with humans or other computer sys-

tems. There are three types of buses in computers: address, control, and data.

Control buses are used by the CPU to direct other devices. The address bus is used

by the CPU to locate a device or a memory location. Data buses are used to send

information back and forth between the CPU and other devices.

This chapter provided an overview of semiconductor memories. Types of

memories were compared in terms of their capacity, organization, and access time.

ROM (read-only memory) is nonvolatile memory typically used to store programs

in embedded systems. The relative advantages of various types of ROM were

described, including PROM, EPROM, UV-EPROM, EEPROM, Flash memory

EPROM, and mask ROM.

Address decoding techniques using simple logic gates, decoders, and pro-

grammable logic were covered.

The computer organization and the internals of the CPU were also covered.

PROBLEMS

1. Convert the following decimal numbers to binary:

(a) 12 (b) 123 (c) 63 (d) 128 (e) 1000

2. Convert the following binary numbers to decimal:

(a) 100100 (b) 1000001 (c) 11101 (d) 1010 (e) 00100010

3. Convert the values in Problem 2 to hexadecimal.

4. Convert the following hex numbers to binary and decimal:

(a) 2B9H (b) F44H (c) 912H (d) 2BH (e) FFFFH

5. Convert the values in Problem 1 to hex.

6. Find the 2’s complement of the following binary numbers:

(a) 1001010 (b) 111001 (c) 10000010 (d) 111110001

7. Add the following hex values:

(a) 2CH + 3FH (b) F34H + 5D6H (c) 20000H + 12FFH

(d) FFFFH + 2222H

8. Perform hex subtraction for the following:

(a) 24FH – 129H (b) FE9H – 5CCH (c) 2FFFFH – FFFFFH

(d) 9FF25H – 4DD99H

9. Show the ASCII codes for numbers 0, 1, 2, 3, ..., 9 in both hex and binary.

10. Show the ASCII code (in hex) for the following strings:

“U.S.A. is a country” CR,LF

“in North America” CR,LF

(CR is carriage return, LF is line feed)

INTRODUCTION TO COMPUTING

SECTION 1: NUMBERING AND CODING SYSTEMS

34

11. Draw a 3-input OR gate using a 2-input OR gate.

12. Show the truth table for a 3-input OR gate.

13. Draw a 3-input AND gate using a 2-input AND gate.

14. Show the truth table for a 3-input AND gate.

15. Design a 3-input XOR gate with a 2-input XOR gate. Show the truth table for

a 3-input XOR.

16. List the truth table for a 3-input NAND.

17. List the truth table for a 3-input NOR.

18. Show the decoder for binary 1100.

19. Show the decoder for binary 11011.

20. List the truth table for a D-FF.

21. Answer the following:

(a) How many nibbles are 16 bits?

(b) How many bytes are 32 bits?

(c) If a word is defined as 16 bits, how many words is a 64-bit data item?

(d) What is the exact value (in decimal) of 1 meg?

(e) How many kilobytes is 1 meg?

(f) What is the exact value (in decimal) of 1 gigabyte?

(g) How many kilobytes is 1 gigabyte?

(h) How many megs is 1 gigabyte?

(i) If a given computer has a total of 8 megabytes of memory, how many

bytes (in decimal) is this? How many kilobytes is this?

22. A given mass storage device such as a hard disk can store 2 gigabytes of infor-

mation. Assuming that each page of text has 25 rows and each row has 80

columns of ASCII characters (each character = 1 byte), approximately how

many pages of information can this disk store?

23. In a given byte-addressable computer, memory locations 10000H to 9FFFFH

are available for user programs. The first location is 10000H and the last loca-

tion is 9FFFFH. Calculate the following:

(a) The total number of bytes available (in decimal)

(b) The total number of kilobytes (in decimal)

24. A given computer has a 32-bit data bus. What is the largest number that can be

carried into the CPU at a time?

25. Below are listed several computers with their data bus widths. For each com-

puter, list the maximum value that can be brought into the CPU at a time (in

both hex and decimal).

(a) Apple 2 with an 8-bit data bus

(b) x86 PC with a 16-bit data bus

(c) x86 PC with a 32-bit data bus

(d) Cray supercomputer with a 64-bit data bus

26. Find the total amount of memory, in the units requested, for each of the follow-

ing CPUs, given the size of the address buses:

INTRODUCTION TO COMPUTING

SECTION 2: DIGITAL PRIMER

SECTION 3: SEMICONDUCTOR MEMORY

35

(a) 16-bit address bus (in K)

(b) 24-bit address bus (in megs)

(c) 32-bit address bus (in megabytes and gigabytes)

(d) 48-bit address bus (in megabytes, gigabytes, and terabytes)

27. Of the data bus and address bus, which is unidirectional and which is bidirec-

tional?

28. What is the difference in capacity between a 4M memory chip and 4M of com-

puter memory?

29. True or false. The more address pins, the more memory locations are inside the

chip. (Assume that the number of data pins is fixed.)

30. True or false. The more data pins, the more each location inside the chip will

hold.

31. True or false. The more data pins, the higher the capacity of the memory chip.

32. True or false. The more data pins and address pins, the greater the capacity of

the memory chip.

33. The speed of a memory chip is referred to as its ________________.

34. True or false. The price of memory chips varies according to capacity and

speed.

35. The main advantage of EEPROM over UV-EPROM is ________________.

36. True or false. SRAM has a larger cell size than DRAM.

37. Which of the following, EPROM, DRAM, or SRAM, must be refreshed peri-

odically?

38. Which memory is used for PC cache?

39. Which of the following, SRAM, UV-EPROM, NV-RAM, or DRAM, is

volatile memory?

40. RAS and CAS are associated with which type of memory?

(a) EPROM (b) SRAM (c) DRAM (d) all of the above

41. Which type of memory needs an external multiplexer?

(a) EPROM (b) SRAM (c) DRAM (d) all of the above

42. Find the organization and capacity of memory chips with the following pins.

(a) EEPROM A0–A14, D0–D7 (b) UV-EPROM A0–A12, D0–D7

(c) SRAM A0–A11, D0–D7 (d) SRAM A0–A12, D0–D7

(e) DRAM A0–A10, D0 (f) SRAM A0–A12, D0

(g) EEPROM A0–A11, D0–D7 (h) UV-EPROM A0–A10, D0–D7

(i) DRAM A0–A8, D0–D3 (j) DRAM A0–A7, D0–D7

43. Find the capacity, address, and data pins for the following memory organiza-

tions.

(a) 16K × 8 ROM (b) 32K × 8 ROM

(c) 64K × 8 SRAM (d) 256K × 8 EEPROM

(e) 64K × 8 ROM (f) 64K × 4 DRAM

(g) 1M × 8 SRAM (h) 4M × 4 DRAM

(i) 64K × 8 NV-RAM

44. Find the address range of the memory design in the diagram.

45. Using NAND gates and inverters, design decoding circuitry for the address

range 2000H–2FFFH.

46. Find the address range for Y0, Y3, and Y6 of the 74LS138 for the diagrammed

INTRODUCTION TO COMPUTING

36

design.

47. Using the 74138, design the memory

decoding circuitry in which the mem-

ory block controlled by Y0 is in the

range 0000H to 1FFFH. Indicate the

size of the memory block controlled

by each Y.

48. Find the address range for Y3, Y6, and

Y7 in Problem 47.

49. Using the 74138, design memory decoding circuit-

ry in which the memory block controlled by Y0 is

in the 0000H to 3FFFH space. Indicate the size of

the memory block controlled by each Y.

50. Find the address range for Y1, Y2, and Y3 in

Problem 49.

TURE

51. Which register of the CPU holds the address of the instruction to be fetched?

52. Which section of the CPU is responsible for performing addition?

53. List the three bus types present in every CPU.

ANSWERS TO REVIEW QUESTIONS

1. Computers use the binary system because each bit can have one of two voltage levels: on and

off.

2. 3410 = 1000102 = 2216

3. 1101012 = 3516 = 5310

4. 1110001

5. 010100

6. 461

7. 275

8. 38 30 78 38 36 20 43 50 55 73

1. AND

2. OR

3. XOR

4. Buffer

5. Storing data

6. Decoder

1. 24,576

2. Random access memory; it is used for temporary storage of programs that the CPU is run-

A0

CS
A14

A0

A13

A15

D7 - D0

16K × 8

Diagram for Problem 44

A14

A12 A
B
C
G2A
G2B
G1

A13

GND
GND
A15

74LS138

Diagram for Problem 46

INTRODUCTION TO COMPUTING

SECTION 4: CPU AND HARVARD ARCHITEC-

SECTION 1: NUMBERING AND CODING SYSTEMS

SECTION 2: DIGITAL PRIMER

SECTION 3: SEMICONDUCTOR MEMORY

37

ning, such as the operating system, word processing programs, etc.

3. Read-only memory; it is used for permanent programs such as those that control the keyboard,

etc.

4. The contents of RAM are lost when the computer is powered off.

5. The CPU, memory, and I/O devices

6. Central processing unit; it can be considered the “brain” of the computer; it executes the pro-

grams and controls all other devices in the computer.

7. The address bus carries the location (address) needed by the CPU; the data bus carries infor-

mation in and out of the CPU; the control bus is used by the CPU to send signals controlling

I/O devices.

8. (a) bidirectional (b) unidirectional

9. 64K, or 65,536 bytes

10. c

11. (a) 16K × 8, 128K bits (b) 64K × 8, 512K (c) 4K × 8, 32K

12. (a) 2K × 1, 2K bits (b) 8K × 4, 32K (c) 128K × 8, 1M

(d) 64K × 4, 256K (e) 256K × 1, 256K (f) 256K × 4, 1M

13. (a) 64K bits, 14 address, and 4 data (b) 256K, 15 address, and 8 data

(c) 1M, 10 address, and 1 data (d) 1M, 18 address, and 4 data

(e) 512K, 16 address, and 8 data (f) 4M, 10 address, and 4 data

14. b, c

15. 16K bytes

16. 3, 8

17. Both must be low.

18. G1 must be high.

19. 5000H–5FFFH

1. Arithmetic/logic unit; it performs all arithmetic and logic operations.

2. They are used for temporary storage of information.

3. It holds the address of the next instruction to be executed.

4. It tells the CPU what actions to perform for each instruction.

5. False

INTRODUCTION TO COMPUTING

SECTION 4: CPU ARCHITECTURE

38

OBJECTIVES

Upon completion of this chapter, you will be able to:

>> >> Compare and contrast microprocessors and microcontrollers
>> >> Describe the advantages of microcontrollers for some applications
>> >> Explain the concept of embedded systems
>> >> Discuss criteria for considering a microcontroller
>> >> Explain the variations of speed, packaging, memory, and

cost per unit and how these affect choosing a microcontroller
>> >> Compare and contrast the various members of the AVR family
>> >> Compare the AVR with microcontrollers offered by other manufacturers

THE AVR
MICROCONTROLLER:

HISTORY AND FEATURES

Published by Pearson Prentice Hall. All rights reserved.

Muhammad Ali Mazidi, Sarmad Naimi, Sepehr Naimi. Copyright © 2011 by Pearson Education, Inc.

From Chapter 1 of The AVR Microcontroller and Embedded Systems: Using Assembly and C, First Edition,

39

This chapter begins with a discussion of the role and importance of micro-

choosing a microcontroller, as well as the use of microcontrollers in the embedded

In addition, we provide a brief discussion of alternatives to the AVR chip such as

the 8051, PIC, and 68HC11 microcontrollers.

PROCESSORS

In this section we discuss the need for microcontrollers and contrast them

with general-purpose microprocessors such as the Pentium and other x86 micro-

processors. We also look at the role of microcontrollers in the embedded market.

In addition, we provide some criteria on how to choose a microcontroller.

Microcontroller versus general-purpose microprocessor

What is the difference between a microprocessor and a microcontroller?

By microprocessor is meant the general-purpose microprocessors such as Intel’s

x86 family (8086, 80286, 80386, 80486, and the Pentium) or Motorola’s PowerPC

family. These microprocessors contain no RAM, no ROM, and no I/O ports on the

chip itself. For this reason, they are commonly referred to as general-purpose

A system designer using a general-purpose microprocessor such as the

Pentium or the PowerPC must add RAM, ROM, I/O ports, and timers externally

to make them functional. Although the addition of external RAM, ROM, and I/O

ports makes these systems bulkier and much more expensive, they have the advan-

tage of versatility, enabling the designer to decide on the amount of RAM, ROM,

and I/O ports needed to fit the task at hand. This is not the case with microcon-

trollers. A microcontroller has a CPU (a microprocessor) in addition to a fixed

amount of RAM, ROM, I/O ports, and a timer all on a single chip. In other words,

the processor, RAM, ROM, I/O ports, and timer are all embedded together on one

chip; therefore, the designer cannot add any external memory, I/O, or timer to it.

The fixed amount of on-chip ROM, RAM, and number of I/O ports in microcon-

trollers makes them ideal for many applications in which cost and space are criti-

CPU

General-

Purpose

Micro-

processor

Data bus

Address bus

RAM
Serial

COM

Port

TimerI/O

Port

ROM

CPU RAM ROM

I/O Timer Serial

----- COM

ADC Port

(a) General-Purpose Microprocessor System (b) Microcontroller

THE AVR MICROCONTROLLER

controllers in everyday life. In Section 1 we also discuss criteria to consider in

market. Section 2 covers various members of the AVR family and their features.

SECTION 1: MICROCONTROLLERS AND EMBEDDED

Figure 1. Microprocessor System Contrasted with Microcontroller System

microprocessors. See Figure 1.

40

cal. In many applications, for example, a TV remote control, there

is no need for the computing power of a 486 or even an 8086

microprocessor. In many applications, the space used, the power

consumed, and the price per unit are much more critical consider-

ations than the computing power. These applications most often

require some I/O operations to read signals and turn on and off

certain bits. For this reason some call these processors IBP, “itty-

bitty processors.” (See “Good Things in Small Packages Are

Generating Big Product Opportunities” by Rick Grehan, BYTE

magazine, September 1994 (http://www.byte.com) for an excel-

lent discussion of microcontrollers.)

It is interesting to note that many microcontroller manu-

facturers have gone as far as integrating an ADC (analog-to-digi-

tal converter) and other peripherals into the microcontroller.

Microcontrollers for embedded systems

In the literature discussing microprocessors, we often see

the term embedded system. Microprocessors and microcontrollers

are widely used in embedded system products. An embedded sys-

tem is controlled by its own internal microprocessor (or micro-

controller) as opposed to an external controller. Typically, in an

embedded system, the microcontroller’s ROM is burned with a

purpose for specific functions needed for the system. A printer is

an example of an embedded system because the processor inside

it performs one task only; namely, getting the data and printing it.

Contrast this with a Pentium-based PC (or any x86 PC), which

can be used for any number of applications such as word proces-

sor, print server, bank teller terminal, video game player, network

server, or Internet terminal. A PC can also load and run software

for a variety of applications. Of course, the reason a PC can per-

form myriad tasks is that it has RAM memory and an operating

system that loads the application software into RAM and lets the

CPU run it. In an embedded system, typically only one applica-

tion software is burned into ROM. An x86 PC contains or is con-

nected to various embedded products such as the keyboard, print-

er, modem, disk controller, sound card, CD-ROM driver, mouse,

and so on. Each one of these peripherals has a microcontroller

inside it that performs only one task. For example, inside every

mouse a microcontroller performs the task of finding the mouse’s

products.

x86 PC embedded applications

Although microcontrollers are the preferred choice for

many embedded systems, sometimes a microcontroller is inade-

quate for the task. For this reason, in recent years many manufac-

turers of general-purpose microprocessors such as Intel, Freescale

Home
Appliances

Intercom

Telephones

Security systems

Garage door openers

Answering machines

Fax machines

Home computers

TVs

Cable TV tuner

VCR

Camcorder

Remote controls

Video games

Cellular phones

Musical instruments

Sewing machines

Lighting control

Paging

Camera

Pinball machines

Toys

Exercise equipment

Office
Telephones

Computers

Security systems

Fax machine

Microwave

Copier

Laser printer

Color printer

Paging

Auto
Trip computer

Engine control

Air bag

ABS

Instrumentation

Security system

Transmission control

Entertainment

Climate control

Cellular phone

Keyless entry

Embedded Products
Using Microcontrollers

THE AVR MICROCONTROLLER

position and sending it to the PC. Table 1 lists some embedded

Table 1: Some

41

Semiconductor (formerly Motorola), and AMD (Advanced Micro Devices, Inc.)

have targeted their microprocessors for the high end of the embedded market. Intel

and AMD push their x86 processors for both the embedded and desktop PC mar-

kets. In the early 1990s, Apple computer began using the PowerPC microproces-

sors (604, 603, 620, etc.) in place of the 680x0 for the Macintosh. In 2007 Apple

switched to the x86 CPU for use in the Mac computers. The PowerPC micro-

processor is a joint venture between IBM and Freescale, and is targeted for the

high end of the embedded market. It must be noted that when a company targets a

general-purpose microprocessor for the embedded market it optimizes the proces-

sor used for embedded systems. For this reason these processors are often called

high-end embedded processors. Another chip widely used in the high end of the

embedded system design is the ARM (Advanced RISC Machine) microprocessor.

Very often the terms embedded processor and microcontroller are used inter-

changeably.

One of the most critical needs of an embedded system is to decrease power

consumption and space. This can be achieved by integrating more functions into

the CPU chip. All the embedded processors based on the x86 and PowerPC 6xx

have low power consumption in addition to some forms of I/O, COM port, and

ROM, all on a single chip. In high-performance embedded processors, the trend is

to integrate more and more functions on the CPU chip and let the designer decide

which features to use. This trend is invading PC system design as well. Normally,

in designing the PC motherboard we need a CPU plus a chipset containing I/O, a

cache controller, a Flash ROM containing BIOS, and finally a secondary cache

memory. New designs are emerging in industry. For example, many companies

have a chip that contains the entire CPU and all the supporting logic and memory,

except for DRAM. In other words, we have the entire computer on a single chip.

Currently, because of Linux and Windows standardization, many embed-

ded systems use x86 PCs. In many cases, using x86 PCs for the high-end embed-

ded applications not only saves money but also shortens development time

because a vast library of software already exists for the Linux and Windows plat-

forms. The fact that Windows and Linux are widely used and well-understood plat-

forms means that developing a Windows-based or Linux-based embedded product

reduces the cost and shortens the development time considerably.

Choosing a microcontroller

There are five major 8-bit microcontrollers. They are: Freescale

Semiconductor’s (formerly Motorola) 68HC08/68HC11, Intel’s 8051, Atmel’s

AVR, Zilog’s Z8, and PIC from Microchip Technology. Each of the above micro-

controllers has a unique instruction set and register set; therefore, they are not

compatible with each other. Programs written for one will not run on the others.

There are also 16-bit and 32-bit microcontrollers made by various chip makers.

With all these different microcontrollers, what criteria do designers consider in

choosing one? Three criteria in choosing microcontrollers are as follows: (1)

meeting the computing needs of the task at hand efficiently and cost effectively;

(2) availability of software and hardware development tools such as compilers,

assemblers, debuggers, and emulators; and (3) wide availability and reliable

sources of the microcontroller. Next, we elaborate on each of the above criteria.

THE AVR MICROCONTROLLER

42

Criteria for choosing a microcontroller

1. The first and foremost criterion in choosing a microcontroller is that it must

meet the task at hand efficiently and cost effectively. In analyzing the needs of

a microcontroller-based project, we must first see whether an 8-bit, 16-bit, or

32-bit microcontroller can best handle the computing needs of the task most

effectively. Among other considerations in this category are:

(a) Speed. What is the highest speed that the microcontroller supports?

(b) Packaging. Does it come in a DIP (dual inline package) or a QFP (quad flat

package), or some other packaging format? This is important in terms of

space, assembling, and prototyping the end product.

(c) Power consumption. This is especially critical for battery-powered prod-

ucts.

(d) The amount of RAM and ROM on the chip.

(e) The number of I/O pins and the timer on the chip.

(f) Ease of upgrade to higher-performance or lower-power-consumption ver-

sions.

(g) Cost per unit. This is important in terms of the final cost of the product in

which a microcontroller is used. For example, some microcontrollers cost

50 cents per unit when purchased 100,000 units at a time.

2. The second criterion in choosing a microcontroller is how easy it is to devel-

op products around it. Key considerations include the availability of an assem-

bler, a debugger, a code-efficient C language compiler, an emulator, technical

support, and both in-house and outside expertise. In many cases, third-party

vendor (i.e., a supplier other than the chip manufacturer) support for the chip

is as good as, if not better than, support from the chip manufacturer.

3. The third criterion in choosing a microcontroller is its ready availability in

needed quantities both now and in the future. For some designers this is even

more important than the first two criteria. Currently, of the leading 8-bit micro-

controllers, the 8051 family has the largest number of diversified (multiple

source) suppliers. (Supplier means a producer besides the originator of the

microcontroller.) In the case of the 8051, which was originated by Intel, many

companies also currently produce the 8051.

Notice that Freescale Semiconductor (Motorola), Atmel, Zilog, and

Microchip Technology have all dedicated massive resources to ensure wide and

timely availability of their products because their products are stable, mature, and

single sourced. In recent years, companies have begun to sell Field-Programmable
Gate Array (FPGA) and Application-Specific Integrated Circuit (ASIC) libraries

for the different microcontrollers.

Mechatronics and microcontrollers

The microcontroller is playing a major role in an emerging field called

mechatronics. Here is an excellent summary of what the field of mechatronics is

all about, taken from the website of Newcastle University (http://mechatron-

ics2004.newcastle.edu.au/mech2004), which holds a major conference every year

on this subject:

“Many technical processes and products in the area of mechanical and

THE AVR MICROCONTROLLER

43

electrical engineering show an increasing integration of mechanics with electron-

ics and information processing. This integration is between the components (hard-

ware) and the information-driven functions (software), resulting in integrated sys-

tems called mechatronic systems.

The development of mechatronic systems involves finding an optimal bal-

ance between the basic mechanical structure, sensor and actuator implementation,

automatic digital information processing and overall control, and this synergy

results in innovative solutions. The practice of mechatronics requires multidisci-

plinary expertise across a range of disciplines, such as: mechanical engineering,

electronics, information technology, and decision making theories.”

Review Questions

1. True or false. Microcontrollers are normally less expensive than microproces-

sors.

2. When comparing a system board based on a microcontroller and a general-

purpose microprocessor, which one is cheaper?

3. A microcontroller normally has which of the following devices on-chip?

(a) RAM (b) ROM (c) I/O (d) all of the above

4. A general-purpose microprocessor normally needs which of the following

devices to be attached to it?

(a) RAM (b) ROM (c) I/O (d) all of the above

5. An embedded system is also called a dedicated system. Why?

6. What does the term embedded system mean?

7. Why does having multiple sources of a given product matter?

In this section, we first look at the AVR microcontrollers and their features

and then examine the different families of AVR in more detail.

A brief history of the AVR microcontroller

The basic architecture of AVR was designed by two students of Norwegian

Institute of Technology (NTH), Alf-Egil Bogen and Vegard Wollan, and then was

bought and developed by Atmel in 1996.

You may ask what AVR stands for; AVR can have different meanings for

different people! Atmel says that it is nothing more than a product name, but it

might stand for Advanced Virtual RISC, or Alf and Vegard RISC (the names of the

AVR designers).

There are many kinds of AVR microcontroller with different properties.

Except for AVR32, which is a 32-bit microcontroller, AVRs are all 8-bit micro-

processors, meaning that the CPU can work on only 8 bits of data at a time. Data

larger than 8 bits has to be broken into 8-bit pieces to be processed by the CPU.

One of the problems with the AVR microcontrollers is that they are not all 100%

compatible in terms of software when going from one family to another family. To

run programs written for the ATtiny25 on a ATmega64, we must recompile the

program and possibly change some register locations before loading it into the

ATmega64. AVRs are generally classified into four broad groups: Mega, Tiny,

THE AVR MICROCONTROLLER

SECTION 2: OVERVIEW OF THE AVR FAMILY

44

microcontrollers are widely used. Also, we will focus on ATmega32 since it is

powerful, widely available, and comes in DIP packages, which makes it ideal for

educational purposes. For those who have mastered the Mega family, understand-

ing the other families is very easy and straightforward. The following is a brief

description of the AVR microcontroller.

AVR features
The AVR is an 8-bit RISC single-chip microcontroller with Harvard archi-

tecture that comes with some standard features such as on-chip program (code)

AVRs have some additional features like ADC, PWM, and different kinds of seri-

al interface such as USART, SPI, I2C (TWI), CAN, USB, and so on. See Figures

AVR microcontroller program ROM

In microcontrollers, the ROM is used to store programs and for that reason

it is called program or code ROM. Although the AVR has 8M (megabytes) of pro-

gram (code) ROM space, not all family members come with that much ROM

installed. The program ROM size can vary from 1K to 256K at the time of this

writing, depending on the family member. The AVR was one of the first microcon-

trollers to use on-chip Flash memory for program storage. The Flash memory is

PROGRAM
ROM

PortsOSC

CPU

Timers

Other
Peripherals

Program
Bus Bus

RAM

I/O
PINS

EEPROM

Interrupt
Unit

THE AVR MICROCONTROLLER

ROM, data RAM, data EEPROM, timers and I/O ports. See Figure 2. Most

3 and 4.

Figure 2. Simplified View of an AVR Microcontroller

Special purpose, and Classic. In this text we cover the Mega family because these

45

PROGRAM
COUNTER

INTERNAL
OSCILLATOR

WATCHDOG
TIMER

STACK
POINTER

PROGRAM
FLASH

SRAM

MCU CONTROL
REGISTER

GENERAL
PURPOSE

REGISTERS

INSTRUCTION
REGISTER

TIMER/
COUNTER0

SERIAL
UNIVERSAL

INTERFACE

TIMER/
COUNTER1

INSTRUCTION
DECODER

DATA DIR.
REG.PORT B

DATA REGISTER
PORT B

PROGRAMMING
LOGIC

TIMING AND
CONTROL

MCU STATUS
REGISTER

STATUS
REGISTER

ALU

PORT B DRIVERS

PB0-PB5

VCC

GND

CONTROL
LINES

8-BIT DATABUS

Z

 ADC /
ANALOG COMPARATOR

INTERRUPT
UNIT

DATA
EEPROM

CALIBRATED

OSCILLATORS

Y
X

RESET

THE AVR MICROCONTROLLER

Figure 3. ATtiny25 Block Diagram

46

INTERNAL
OSCILLATOR

OSCILLATOR

WATCHDOG
TIMER

MCU CTRL.
& TIMING

OSCILLATOR

TIMERS/
COUNTERS

INTERRUPT
UNIT

STACK
POINTER

EEPROM

SRAM

STATUS
REGISTER

USART

PROGRAM
COUNTER

PROGRAM
FLASH

INSTRUCTION
REGISTER

INSTRUCTION
DECODER

PROGRAMMING
LOGIC SPI

ADC
INTERFACE

COMP.
INTERFACE

PORTA DRIVERS/BUFFERS

PORTA DIGITAL INTERFACE

GENERAL
PURPOSE

REGISTERS

X

Y

Z

ALU

+
-

PORTC DRIVERS/BUFFERS

PORTC DIGITAL INTERFACE

PORTB DIGITAL INTERFACE

PORTB DRIVERS/BUFFERS

PORTD DIGITAL INTERFACE

PORTD DRIVERS/BUFFERS

XTAL1

XTAL2

RESET

CONTROL
LINES

VCC

GND

MUX &
ADC

AREF

PA0 - PA7 PC0 - PC7

PD0 - PD7PB0 - PB7

AVR CPU

TWI

AVCC

INTERNAL
CALIBRATED
OSCILLATOR

THE AVR MICROCONTROLLER

Figure 4. ATmega32 Block Diagram

47

ideal for fast development because Flash memory can be erased in seconds com-

pared to the 20 minutes or more needed for the UV-EPROM.

AVR microcontroller data RAM and EEPROM

AVR microcontroller I/O pins

The AVR can have from 3 to 86 pins for I/O. The number of I/O pins

depends on the number of pins in the package itself. The number of pins for the

AVR package goes from 8 to 100 at this time. In the case of the 8-pin AT90S2323,

we have 3 pins for I/O, while in the case of the 100-pin ATmega1280, we can use

AVR microcontroller peripherals

Part Num. Code Data Data I/O pins ADC Timers Pin numbers
ROM RAM EEPROM & Package

AT90S2313 2K 128 128 15 0 2 SOIC20, PDIP20

AT90S2323 2K 128 128 3 0 1 SOIC8, PDIP8

AT90S4433 4K 128 256 20 6 2 TQFP32, PDIP28

Notes:
1. All ROM, RAM, and EEPROM memories are in bytes.

2. Data RAM (general-purpose RAM) is the amount of RAM available for data manipulation (scratch

pad) in addition to the register space.

THE AVR MICROCONTROLLER

Table 2: Some Members of the Classic Family

up to 86 pins for I/O.

the I
2
C and SPI buses and some of them have USB or CAN bus as well.

Most of the AVRs come with ADC (analog-to-digital converter), timers,

and USART (Universal Synchronous Asynchronous Receiver Transmitter) as

standard peripherals. The ADC is 10-bit and the number of ADC channels in

AVR chips varies and can be up to 16, depending on the number of pins in the

package. The AVR can have up to 6 timers besides the watchdog timer. The

USART peripheral allows us to connect the AVR-based system to serial ports such

as the COM port of the x86 IBM PC. Most of the AVR family members come with

While ROM is used to store program (code), the RAM space is for data

storage. The AVR has a maximum of 64K bytes of data RAM space. Not all of the

family members come with that much RAM. The data RAM space has three com-

ponents: general-purpose registers, I/O memory, and internal SRAM. There are 32

general-purpose registers in all of the AVRs, but the SRAM’s size and the I/O

memory’s size varies from chip to chip. On the Atmel website, whenever the size

of RAM is mentioned the internal SRAM size is meant. The internal SRAM space

EEPROM to store critical data that does not need to be changed very often.

is used for a read/write scratch pad. In AVR, we also have a small amount of

48

AVR family overview

AVR can be classified into four groups: Classic, Mega, Tiny, and special

purpose.

Classic AVR (AT90Sxxxx)

This is the original AVR chip, which has been replaced by newer AVR

mended for new designs.

Mega AVR (ATmegaxxxx)

These are powerful microcontrollers with more than 120 instructions and

lots of different peripheral capabilities, which can be used in different designs. See

• Program memory: 4K to 256K bytes

• Package: 28 to 100 pins

• Extensive peripheral set

• Extended instruction set: They have rich instruction sets.

Tiny AVR (ATtinyxxxx)

As its name indicates, the microcontrollers in this group have less

instructions and smaller packages in comparison to mega family. You can design

systems with low costs and power consumptions using the Tiny AVRs. See Table

• Program memory: 1K to 8K bytes

• Package: 8 to 28 pins

• Limited peripheral set

• Limited instruction set: The instruction sets are limited. For exam-

ple, some of them do not have the multiply instruction.

Part Num. Code Data Data I/O pins ADC Timers Pin numbers
ROM RAM EEPROM & Package

ATmega8 8K 1K 0.5K 23 8 3 TQFP32, PDIP28

ATmega16 16K 1K 0.5K 32 8 3 TQFP44, PDIP40

ATmega32 32K 2K 1K 32 8 3 TQFP44, PDIP40

ATmega64 64K 4K 2K 54 8 4 TQFP64, MLF64

ATmega1280 128K 8K 4K 86 16 6 TQFP100, CBGA

Notes:
1. All ROM, RAM, and EEPROM memories are in bytes.

2. Data RAM (general-purpose RAM) is the amount of RAM available for data manipulation (scratch

pad) in addition to the register space.

3. All the above chips have USART for serial data transfer.

THE AVR MICROCONTROLLER

chips. Table 2 shows some members of the Classic AVR that are not recom-

Table 3. Some of their characteristics are as follows:

Table 3: Some Members of the ATmega Family

4. Some of their characteristics are as follows:

49

Special purpose AVR

The ICs of this group can be considered as a subset of other groups, but

their special capabilities are made for designing specific applications. Some of

the special capabilities are: USB controller, CAN controller, LCD controller,

AVR product number scheme

All of the product numbers start with AT, which stands for Atmel. Now,

look at the number located at the end of the product number, from left to right,

and find the biggest number that is a power of 2. This number most probably

shows the amount of the microcontroller’s ROM. For example, in ATmega1280

the biggest power of 2 that we can find is 128; so it has 128K bytes of ROM. In

ATtiny44, the amount of memory is 4K, and so on. Although this rule has a few

exceptions such as AT90PWM216, which has 16K of ROM instead of 2K, it

works in most of the cases.

Other microcontrollers

There are many other popular 8-bit microcontrollers besides the AVR chip.

Among them are the 8051, HCS08, PIC, and Z8. The AVR is made by Atmel Corp,

Motorola) makes the HCS08 and many of its variations. Zilog produces the Z8

microcontroller. The 8051 family is made by Intel and a number of other compa-

For a comprehensive treatment of the 8051, HCS12, and PIC microcon-

trollers, see “The 8051 Microcontroller and Embedded Systems,” “HCS12

Microcontroller and Embedded Systems,” and “PIC Microcontroller and

Embedded Systems” by Mazidi, et al.

Part Num. Code Data Data I/O pins ADC Timers Pin numbers
ROM RAM EEPROM & Package

ATtiny13 1K 64 64 6 4 1 SOIC8, PDIP8

ATtiny25 2K 128 128 6 4 2 SOIC8, PDIP8

ATtiny44 4K 256 256 12 8 2 SOIC14, PDIP14

ATtiny84 8K 512 512 12 8 2 SOIC14, PDIP14

Part Num. Code Data Data Max I/O Special Timers Pin numbers
ROM RAM EEPROM pins Capabilities & Package

AT90CAN128 128K 4K 4K 53 CAN 4 LQFP64

AT90USB1287 128K 8K 4K 48 USB Host 4 TQFP64

AT90PWM216 16K 1K 0.5K 19 Advanced PWM 2 SOIC24

ATmega169 16K 1K 0.5K 54 LCD 3 TQFP64, MLF64

THE AVR MICROCONTROLLER

Table 4: Some Members of the Tiny Family

Zigbee, Ethernet controller, FPGA, and advanced PWM. See Table 5.

Table 5: Some Members of the Special Purpose Family

as seen in Table 6. Microchip produces the PIC family. Freescale (formerly

nies. To contrast the ATmega32 with the 8052 chip and PIC, examine Table 7.

50

Review Questions

1. Name three features of the AVR.

2. The AVR is a(n) _______-bit microprocessor.

3 Name the different groups of the AVR chips.

4. Which group of AVR has smaller packages?

5. Give the size of RAM in each of the following:

(a) ATmega32 (b) ATtiny25

6. Give the size of the on-chip program ROM in each of the following:

(a) ATtiny84 (b) ATmega32 (c) ATtiny25

Company Web Site Architecture
Atmel http://www.atmel.com AVR and 8051

Microchip http://www.microchip.com PIC16xxx/18xxx

Intel http://www.intel.com/design/mcs51 8051

Philips/Signetics http://www.semiconductors.philips.com 8051

Zilog http://www.zilog.com Z8 and Z80

Dallas Semi/Maxim http://www.maxim-ic.com 8051

Freescale Semi http://www.freescale.com 68HC11/HCS08

See http://www.microcontroller.com for a complete list.

See the following websites for AVR microcontrollers and AVR trainers:

http://www.Atmel.com

http://www.MicroDigitalEd.com

http://www.digilentinc.com

Feature 8052 PIC18F452 ATmega32
Program ROM 8K 32K 32K

Data RAM (maximum space) 256 bytes 2K 2K

EEPROM 0 bytes 256 bytes 1K

Timers 3 4 3

I/O pins 32 35 32

THE AVR MICROCONTROLLER

Table 6: Some of the Companies that Produce Widely Used 8-bit Microcontrollers

Table 7: Comparison of 8051, PIC18 Family, and AVR (40-pin package)

51

SUMMARY

This chapter discussed the role and importance of microcontrollers in

everyday life. Microprocessors and microcontrollers were contrasted and com-

pared. We discussed the use of microcontrollers in the embedded market. We also

discussed criteria to consider in choosing a microcontroller such as speed, memo-

ry, I/O, packaging, and cost per unit. The second section of this chapter described

various families of the AVR, such as Mega and Tiny, and their features. In addi-

tion, we discussed some of the most common AVR microcontrollers such as the

ATmega32 and ATtiny25.

PROBLEMS

1. True or False. A general-purpose microprocessor has on-chip ROM.

2. True or False. Generally, a microcontroller has on-chip ROM.

3. True or False. A microcontroller has on-chip I/O ports.

4. True or False. A microcontroller has a fixed amount of RAM on the chip.

5. What components are usually put together with the microcontroller onto a sin-

gle chip?

6. Intel's Pentium chips used in Windows PCs need external ______ and _____

chips to store data and code.

7. List three embedded products attached to a PC.

8. Why would someone want to use an x86 as an embedded processor?

9. Give the name and the manufacturer of some of the most widely used 8-bit

microcontrollers.

10. In Question 9, which one has the most manufacture sources?

11. In a battery-based embedded product, what is the most important factor in

choosing a microcontroller?

12. In an embedded controller with on-chip ROM, why does the size of the ROM

matter?

13. In choosing a microcontroller, how important is it to have multiple sources for

that chip?

14. What does the term "third-party support" mean?

15. Suppose that a microcontroller architecture has both 8-bit and 16-bit versions.

Which of the following statements is true?

(a) The 8-bit software will run on the 16-bit system.

(b) The 16-bit software will run on the 8-bit system.

16. What is the advantage of Flash memory over the other kinds of ROM?

17. The ATmega32 has ____ pins for I/O.

18. The ATmega32 has _____ bytes of on-chip program ROM.

19. The ATtiny44 has _____ bytes of on-chip data RAM.

20. The ATtiny44 has _____ ADCs.

THE AVR MICROCONTROLLER

SECTION 1: MICROCONTROLLERS AND EMBEDDED PROCESSORS

SECTION 2: OVERVIEW OF THE AVR FAMILY

52

21. The ATmega64 has _____ bytes of on-chip data RAM.

22. The ATmega1280 has ____ on-chip timer(s).

23. The ATmega32 has ____ bytes of on-chip data RAM.

24. Check the Atmel website to see if there is a RAMless version of the AVR. Give

the part number if there is one.

25. Check the Atmel website to see if there is a ROMless version of the AVR. Give

the part number if there is one.

26. Check the Atmel website to find three members of the AVR family that have

USB controllers.

27. Check the Atmel website to find two members of the AVR family that have

CAN controllers.

28. Give the amount of program ROM and data RAM for the following chips:

(a) ATmega32 (b) ATtiny44 (c) ATtiny84 (d) 90CAN128

29. What are the main differences between the ATmega16 and the ATmega32?

30. The ATmega16 has ________ bytes of data EEPROM.

ANSWERS TO REVIEW QUESTIONS

1. True

2. A microcontroller-based system

3. (d)

4. (d)

5. It is dedicated because it is does only one type of job.

6. Embedded system means that the application and the processor are combined into a single sys-

tem.

7. Having multiple sources for a given part means you are not hostage to one supplier. More

importantly, competition among suppliers brings about lower cost for that product.

1. 64K of RAM space, 8M of on-chip ROM space, a large number of I/O pins, ADC, and differ-

ent serial protocols such as SPI, USART, I2C, etc.

2. 8

3. Tiny, Mega, Classic, and special purpose

4. Tiny

5. (a) 2K bytes

(b) 128 bytes

6. (a) 8K bytes (b) 32K bytes (c) 2K bytes

THE AVR MICROCONTROLLER

SECTION 1: MICROCONTROLLERS AND EMBEDDED PROCESSORS

SECTION 2: OVERVIEW OF THE AVR FAMILY

53

54

OBJECTIVES

Upon completion of this chapter, you will be able to:

>> >> List the registers of the AVR microcontroller
>> >> Examine the data memory of the AVR microcontroller
>> >> Perform simple operations, such as ADD and load, and access internal

RAM memory in the AVR microcontroller
>> >> Explain the purpose of the status register
>> >> Discuss data RAM memory space allocation in the AVR microcontroller
>> >> Code simple AVR Assembly language instructions
>> >> Describe AVR data types and directives
>> >> Assemble and run a AVR program using AVR Studio
>> >> Describe the sequence of events that occur upon AVR power-up
>> >> Examine programs in AVR ROM code
>> >> Detail the execution of AVR Assembly language instructions
>> >> Understand the RISC and Harvard architectures of the AVR

microcontroller
>> >> Examine the AVR’s registers and data RAM using the AVR Studio

simulator

AVR ARCHITECTURE AND
ASSEMBLY LANGUAGE

PROGRAMMING

Published by Pearson Prentice Hall. All rights reserved.

Muhammad Ali Mazidi, Sarmad Naimi, Sepehr Naimi. Copyright © 2011 by Pearson Education, Inc.

From Chapter 2 of The AVR Microcontroller and Embedded Systems: Using Assembly and C, First Edition,

55

CPUs use registers to store data temporarily. To program in Assembly lan-

guage, we must understand the registers and architecture of a given CPU and the

registers (GPRs) of the AVR. We demonstrate the use of GPRs with simple instruc-

tions such as LDI and ADD. Allocation of RAM memory inside the AVR and the

we discuss the status register’s flag bits and how they are affected by arithmetic

mnemonics, opcode, operand, and so on. The process of assembling and creating

cution of an AVR program and the role of the program counter are examined in

THE AVR
CPUs use many registers to store data temporarily. To program in

Assembly language, we must understand the registers and architecture of a given

CPU and the role they play in processing data. In this section we look at the gen-

eral purpose registers (GPRs) of the AVR and we demonstrate the use of GPRs

with simple instructions such as LDI and ADD.

AVR microcontrollers have many registers for arithmetic and logic opera-

tions. In the CPU, registers are used to store information temporarily. That infor-

mation could be a byte of data to be processed, or an address pointing to the data

to be fetched. The vast majority of AVR registers are 8-bit registers. In the AVR

there is only one data type: 8-bit. The 8 bits of a register are shown in the diagram

below. These range from the MSB (most-significant bit) D7

to the LSB (least-significant bit) D0. With an 8-bit data type,

any data larger than 8 bits must be broken into 8-bit chunks

before it is processed.

In AVR there are 32 general purpose registers. They

are R0–R31 and are located in the lowest location of memo-

The general purpose registers in AVR are the same as

the accumulator in other microprocessors. They can be used

by all arithmetic and logic instructions. To understand the use

of the general purpose registers, we will show it in the con-

text of two simple instructions: LDI and ADD.

AVR ARCHITECTURE AND ASSEMBLY LANGUAGE

role they play in processing data. In Section 1 we look at the general purpose

addressing mode of the AVR are discussed in Sections 2 and 3. In Section 4

Assembly language and machine language programming and define terms such as

instructions. In Section 5 we look at some widely used Assembly language direc-

tives, pseudocode, and data types related to the AVR. In Section 6 we examine

a ready-to-run program for the AVR is discussed in Section 7. Step-by-step exe-

Section 8. The merits of RISC architecture are examined in Section 9. Section

10 discusses the AVR Studio.

SECTION 1: THE GENERAL PURPOSE REGISTERS IN

ry address. See Figure 1. All of these registers are 8 bits.

Figure 1. GPRs

56

LDI instruction
Simply stated, the LDI instruction copies 8-bit data into the general pur-

pose registers. It has the following format:

LDI Rd,K ;load Rd (destination) with Immediate value K
;d must be between 16 and 31

K is an 8-bit value that can be 0–255 in decimal, or 00–FF in hex, and Rd

is R16 to R31 (any of the upper 16 general purpose registers). The I in LDI stands

for ”immediate.” If we see the word “immediate” in any instruction, we are deal-

ing with a value that must be provided right there with the instruction. The follow-

ing instruction loads the R20 register with a value of 0x25 (25 in hex).

LDI R20,0x25 ;load R20 with 0x25 (R20 = 0x25)

The following instruction loads the R31 register with the value 0x87 (87 in

hex).
LDI R31,0x87 ;load 0x87 into R31 (R31 = 0x87)

The following instruction loads R25 with the value 0x15 (15 in hex and 21

in decimal).

LDI R25,0x79 ;load 0x79 into R25 (R25 = 0x79)

Notice the position of the source and destination operands. As you can see,

the LDI loads the right operand into the left operand. In other words, the destina-

tion comes first.

To write a comment in Assembly language we use ‘;’. It is the same as ‘//‘

in C language, which causes the remainder of the line of code to be ignored. For

instance, in the above examples the expressions mentioned after ‘;’ just explain the

functionality of the instructions to you, and do not have any effects on the execu-

tion of the instructions.

When programming the GPRs of the AVR microcontroller with an imme-

diate value, the following points should be noted:

1. If we want to present a number in hex, we put a dollar sign ($) or a 0x in front

of it. If we put nothing in front of a number, it is in decimal. For example, in

“LDI R16,50”, R16 is loaded with 50 in decimal, whereas in “LDI
R16,0x50”, R16 is loaded with 50 in hex.

2. If values 0 to F are moved into an 8-bit register such as GPRs, the rest of the

bits are assumed to be all zeros. For example, in “LDI R16,0x5” the result

will be R16 = 0x05; that is, R16 = 00000101 in binary.

3. Moving a value larger than 255 (FF in hex) into the GPRs will cause an error.
LDI R17, 0x7F2 ;ILLEGAL $7F2 > 8 bits ($FF)

Note: We cannot load values into registers R0 to R15 using the LDI instruc-

tion. For example, the following instruction is not valid:

LDI R5,0x99 ;invalid instruction

AVR ARCHITECTURE AND ASSEMBLY LANGUAGE

57

ADD instruction
The ADD instruction has the following format:

ADD Rd,Rr ;ADD Rr to Rd and store the result in Rd

The ADD instruction tells the CPU to add the value of Rr to Rd and put the

result back into the Rd register. To add two numbers such as 0x25 and 0x34, one

can do the following:

LDI R16,0x25 ;load 0x25 into R16
LDI R17,0x34 ;load 0x34 into R17
ADD R16,R17 ;add value R17 to R16 (R16 = R16 + R17)

Executing the above lines results in R16 = 0x59 (0x25 + 0x34 = 0x59)

AVR. The affect of arithmetic and logic operations on the status register will be

Review Questions

1. Write instructions to move the value 0x34 into the R29 register.

2. Write instructions to add the values 0x16 and 0xCD. Place the result in the R19 register.

3. True or false. No value can be moved directly into the GPRs.

4. What is the largest hex value that can be moved into an 8-bit register? What is

the decimal equivalent of that hex value?

5. The vast majority of registers in the AVR are _____-bit.

STATUS
REGISTER

32 x 8
General Purpose

Registers

CARRY
BIT

H, S, V, N, Z, C
FLAGS

8-BIT
WIDE

8-BIT
WIDE

8-BIT
WIDE

AVR ARCHITECTURE AND ASSEMBLY LANGUAGE

discussed in Section 4.

Figure 2 shows the general purpose registers (GPRs) and the ALU in

Figure 2. AVR General Purpose Registers and ALU

58

In AVR microcontrollers there are two kinds of memory space: code mem-

ory space and data memory space. Our program is stored in code memory space,

whereas the data memory stores data. We will examine the code memory space in

ory is composed of three parts: GPRs (general purpose registers), I/O memory, and

GPRs (general purpose registers)

As we discussed in the last section, the GPRs use 32 bytes of data memo-

ry space. They always take the address location $00–$1F in the data memory

I/O memory (SFRs)

The I/O memory is dedicated to specific functions such as status register,

timers, serial communication, I/O ports, ADC, and so on. The function of each I/O

memory location is fixed by the CPU designer at the time of design because it is

used for control of the microcontroller or peripherals. The AVR I/O memory is

made of 8-bit registers. The number of locations in the data memory set aside for

I/O memory depends on the pin numbers and peripheral functions supported by

$0000
$0001

$0020

$001F

$005F

R31

...

TWBR
TWSR

SPH
SREG

...

$00
$01

$3E
$3F

$0060

...
...

Data Address
Space

I/O Address

...

8 bit

$FFFF

R2

R0
R1

AVR ARCHITECTURE AND ASSEMBLY LANGUAGE

SECTION 2: THE AVR DATA MEMORY

Section 8. In this section, we will discuss the data memory space. The data mem-

internal data SRAM. See Figure 3.

Figure 3. The Data Memory for AVRs with No Extended I/O Memory

space, regardless of the AVR chip number. See Figure 3.

59

that chip, although the number can vary from chip to chip even among members

of the same family. However, all of the AVRs have at least 64 bytes of I/O mem-

ory locations. This 64-byte section is called standard I/O memory. In AVRs with

more than 32 I/O pins (e.g., ATmega64, ATmega128, and ATmega256) there is

also an extended I/O memory, which contains the registers for controlling the extra

the I/O registers are called SFRs (special function registers) since each one is ded-

icated to a specific function. In contrast to SFRs, the GPRs do not have any spe-

cific function and are used for storing general data.

Internal data SRAM

$0000

$0020

Internal
SRAM

$001F

$005F

General
Purpose

Registers

Standard I/O
Registers

(SFRs)

$0100

...
...

Data
Address

.. .

$FFFF

$0060
Extended

I/O Memory
$00FF

Mega64
Mega64L
Mega128

Mega128L

$10FF

External
SRAM

$1100

$0000

$0020

Internal
SRAM

$001F

$005F

General
Purpose
Registers

Standard I/O
Registers

(SFRs)

$0200
...

...

Data
Address

...

$FFFF

$0060
Extended

I/O Memory
$01FF

Mega640/V
Mega1280/V
Mega1281/V
Mega2560/V
Mega2561/V

$21FF

External
SRAM

$2200

reserved
DDRF

PORTF

reserved

...

R0
R1
R2

R31

...

AVR ARCHITECTURE AND ASSEMBLY LANGUAGE

ports and the extra peripherals. See Figures 3 and 4. In other microcontrollers

Figure 4. The Data Memory for the AVRs with Extended I/O Memory

Internal data SRAM is widely used for storing data and parameters by AVR

programmers and C compilers. Generally, this is called scratch pad. Each location

of the SRAM can be accessed directly by its address. Each location is 8 bits wide

and can be used to store any data we want as long as it is 8-bit. Again, the size of

SRAM can vary from chip to chip, even among members of the same family. See

Table 1 for a comparison of the data memories of various AVR chips. Also, see

Figure 4.

60

SRAM vs. EEPROM in AVR chips

In AVR datasheets, EEPROM refers to the EEPROM’s size, and SRAM is

the internal SRAM size. By adding the sizes of GPR, SFRs (I/O registers), and

Review Questions

1. True or false. The I/O registers are used for storing data.

2. The GPRs together with I/O registers and SRAM are called______.

3. The I/O registers in AVR are _____-bit.

4. The data memory space in AVR is divided into _____ parts.

5. The data memory space in AVR can be a maximum of ______ bytes.

6. The standard I/O memory space in AVR is ______ bytes.

MEMORY

The instructions we have used so far worked with the immediate (constant)

value of K and the GPRs. They also used the GPRs as their destination. We saw

direct access to other locations in the data memory. In this section we show the

instructions accessing various locations of the data memory. This is one of the

guage programming.

Data Memory I/O Registers SRAM General Purpose
(Bytes) = (Bytes) + (Bytes) + Register

ATtiny25 224 64 128 32

ATtiny85 608 64 512 32

ATmega8 1120 64 1024 32

ATmega16 1120 64 1024 32

ATmega32 2144 64 2048 32

ATmega128 4352 64+160 4096 32

ATmega2560 8704 64+416 8192 32

Extracted from http://www.atmel.com

AVR ARCHITECTURE AND ASSEMBLY LANGUAGE

SECTION 3: USING INSTRUCTIONS WITH THE DATA

SRAMs we get the data memory size. See Table 1.

Table 1: Data Memory Size for AVR Chips

simple examples of using LDI and ADD earlier in Section 1. The AVR allows

The AVR has an EEPROM memory that is used for storing data. EEPROM

does not lose its data when power is off, whereas SRAM does. So, the EEPROM is

used for storing data that should rarely be changed and should not be lost when the

power is off (e.g., options and settings); whereas the SRAM is used for storing data

and parameters that are changed frequently. The three parts of the data memory

(GPRs, SFRs, and the internal SRAM) are made of SRAM.

most important sections in the text for mastering the topic of AVR Assembly lan-

61

LDS instruction (LoaD direct from data Space)
LDS Rd, K ;load Rd with the contents of location K (0 ≤ d ≤ 31)

;K is an address between $0000 to $FFFF
The LDS instruction tells the CPU to load (copy) one byte from an address

in the data memory to the GPR. After this instruction is executed, the GPR will

have the same value as the location in the data memory. The location in the data

memory can be in any part of the data space; it can be one of the I/O registers, a

location in the internal SRAM, or a GPR. For example, the “LDS R20,0x1”

instruction will copy the contents of location 1 (in hex) into R20. As you can see

address of R1. So, the instruction copies R1 to R20.

The following instruction loads R5 with the contents of location 0x200. As

LDS R5,0x200 ;load R5 with the contents of location $200

The following program adds the contents of location 0x300 to location

0x302. To do so, first it loads R0 with the contents of location 0x300 and R1 with

the contents of location 0x302, then adds R0 to R1:

LDS R0, 0x300 ;R0 = the contents of location 0x300
LDS R1, 0x302 ;R1 = the contents of location 0x302
ADD R1, R0 ;add R0 to R1

You can see the execution of “LDS R0,0x300” and “LDS R1,0x302”

300 and 302 of data memory before and after the execution of each of the instruc-

respectively.

$0000
$0001
$0002

$0020

R0
R1
R2

$001F

$005F

R31

...

...
...

...

$0300
$0301
$0302

...

LDS R0, 0x300

LDS R1, 0x302

R0,0x300” and “LDS R1,0x302” Instructions

AVR ARCHITECTURE AND ASSEMBLY LANGUAGE

in Figure 3, location 1 of the data memory is in the GPR part, and it is the

you can see in Figure 3, 0x200 is located in the internal SRAM:

instructions in Figure 5. Figure 6 shows the contents of R0, R1 and locations

Figure 5. Execution of “LDS

tions, assuming that locations $300 and $302 contain a and β,

62

STS instruction (STore direct to data Space)
STS K, Rr ;store register into location K

;K is an address between $0000 to $FFFF

The STS instruction tells the CPU to store (copy) the contents of the GPR

to an address location in the data memory space. After this instruction is executed,

can be in any part of the data memory space; it can be one of the I/O registers, a

location in the SRAM, or a GPR. For example, the “STS 0x1,R10” instruction will

of the data memory is in the GPR part, and it is the address of R1. So, the instruc-

tion copies R10 to R1.

The following instruction stores the contents of R25 to location 0x230. As

STS 0x230, R25 ;store R25 to data space location 0x230

The following program first loads the R16 register with value 0x55, then

moves this value around to I/O registers of ports B, C, and D. As shown in

0x32, respectively:
LDI R16, 0x55 ;R16 = 55 (in hex)
STS 0x38, R16 ;copy R16 to Port B (PORTB = 0x55)
STS 0x35, R16 ;copy R16 to Port C (PORTC = 0x55)
STS 0x32, R16 ;copy R16 to Port D (PORTD = 0x55)

LDI R20, 0x99 ;R20 = 0x99
STS 0x200, R20 ;store R20 in loc 0x200
STS 0x201, R20 ;store R20 in loc 0x201
STS 0x202, R20
STS 0x203, R20 ;see the Mem. contents->

R0
Before LDS R0,0x300

After LDS R0,0x300

After LDS R1,0x302
After ADD R0, R1

� �??
R1 Loc $300 Loc $302

� ? ��
� ���

� + � ���

Address Data
$200 0x99

$201 0x99

$202 0x99

$203 0x99

Notice that you cannot copy (store) an immediate value directly into
the SRAM location in the AVR. This must be done via the GPRs.

AVR ARCHITECTURE AND ASSEMBLY LANGUAGE

Figure 6. The Contents of R0, R1, and Locations $300 and $302

copy the contents of R10 into location 1. As you can see in Figure 3, location 1

the location in the data space will have the same value as the GPR. The location

you can see in Figure 3, 0x230 is located in the internal SRAM:

Figure 7, the addresses of PORTB, PORTC, and PORTD are 0x38, 0x35, and

As we saw in Figure 3, PORTB, PORTC, and PORTD are part of the spe-

cial function registers in the I/O memory. They can be connected to the I/O pins of

the AVR microcontroller. We can also store the contents of a GPR into any location

in the SRAM region of the data space. The following program will put 0x99 into

locations 0x200–0x203 of the SRAM region in the data memory:

63

The following program adds the contents of location 0x220 to location

0x221, and stores the result in location 0x221:

LDS R30, 0x220 ;load R30 with the contents of location 0x220
LDS R31, 0x221 ;load R31 with the contents of location 0x221
ADD R31, R30 ;add R30 to R31
STS 0x221, R31 ;store R31 to data space location 0x221

IN instruction (IN from I/O location)
IN Rd, A ;load an I/O location to the GPR (0 ≤ d ≤31),(0 ≤ A ≤ 63)

The IN instruction tells the CPU to load one byte from an I/O register to

the GPR. After this instruction is executed, the GPR will have the same value as

the I/O register. For example, the “IN R20,0x16” instruction will copy the con-

tents of location 16 (in hex) of the I/O memory into R20. As you can see in

memory address. Each location in the data memory has a unique address called the

data memory address. Each I/O register has a relative address in comparison to the

beginning of the I/O memory; this address is called the I/O address. See

NameAddress
I/OMem.
$00$20 TWBR
$01$21 TWSR

$04$24 ADCL
$05$25 ADCH

$02$22 TWAR
$03$23 TWDR

$06$26 ADCSRA
$07$27 ADMUX
$08$28 ACSR
$09$29 UBRRL
$0A$2A UCSRB
$0B$2B UCSRA
$0C$2C UDR
$0D$2D SPCR
$0E$2E SPSR
$0F$2F

PIND$10$30
DDRD$11$31

PORTD$12$32
PINC$13$33
DDRC$14$34

PORTC$15$35

PINB$16$36
DDRB$17$37

PORTB$18$38
PINA$19$39
DDRA$1A$3A

PORTA$1B$3B
EECR$1C$3C
EEDR$1D$3D

EEARL$1E$3E
EEARH$1F$3F

SPDR

NameAddress
I/OMem.

NameAddress
I/OMem.

UBRRC
$20$40

UBRRH
$21$41 WDTCR
$22$42 ASSR
$23$43 OCR2
$24$44 TCNT2
$25$45 TCCR2
$26$46 ICR1L
$27$47 ICR1H
$28$48 OCR1BL
$29$49 OCR1BH

OCR1AH$2B$4B

SFIOR$30$50

OCDR
$31$51

OSCCAL
$32$52

TCCR0$33$53
MCUCSR$34$54
MCUCR$35$55
TWCR$36$56

SPMCR$37$57
TIFR$38$58

TIMSK$39$59

TCNT1L$2C$4C
TCNT1H$2D$4D
TCCR1B$2E$4E
TCCR1A$2F$4F

TCNT0

$3A$5A
GICR$3B$5B
OCR0$3C$5C
SPL$3D$5D
SPH$3E$5E

GIFR

OCR1AL$2A$4A SREG$3F$5F

Note: Although memory address $20-$5F is set aside for I /O registers (SFR) we
can access them as I /O locations with addresses starting at $00.

AVR ARCHITECTURE AND ASSEMBLY LANGUAGE

Figure 7. I/O Registers of the ATmega32 and Their Data Memory Address Locations

Figure 7, each location in I/O memory has two addresses: I/O address and data

See Examples 1 and 2.

Figure 3. You see the list of I/O registers in Figure 7.

64

State the contents of RAM locations $212 to $216 after the following program is executed:

LDI R16, 0x99 ;load R16 with value 0x99
STS 0x212, R16
LDI R16, 0x85 ;load R16 with value 0x85
STS 0x213, R16
LDI R16, 0x3F ;load R16 with value 0x3F
STS 0x214, R16
LDI R16, 0x63 ;load R16 with value 0x63
STS 0x215, R16
LDI R16, 0x12 ;load R16 with value 0x12
STS 0x216, R16

Solution:

After the execution of STS 0x212, R16 data memory location $212 has value 0x99;

after the execution of STS 0x213, R16 data memory location $213 has value 0x85;

after the execution of STS 0x214, R16 data memory location $214 has value 0x3F;

after the execution of STS 0x215, R16 data memory location $215 has value 0x63;

and so on, as shown in the chart.
Address Data

$212 0x99

$213 0x85

$214 0x3F

$215 0x63

$216 0x12

State the contents of R20, R21, and data memory location 0x120 after the following

program:

LDI R20, 5 ;load R20 with 5
LDI R21, 2 ;load R21 with 2
ADD R20, R21 ;add R21 to R20
ADD R20, R21 ;add R21 to R20
STS 0x120, R20 ;store in location 0x120 the contents of R20

Solution:

The program loads R20 with value 5. Then it loads R21 with value 2. Then it

adds the R21 register to R20 twice. At the end, it stores the result in location 0x120 of

data memory.

After After After After After
LDI R20, 5 LDI R21, 2 ADD R20, R21 ADD R20, R21 STS 0x120, R20

Location Data

R20 5

R21

0x120

Location Data

R20 5

R21 2

0x120

Location Data

R20 7

R21 2

0x120

Location Data

R20 9

R21 2

0x120

Location Data

R20 9

R21 2

0x120 9

AVR ARCHITECTURE AND ASSEMBLY LANGUAGE

Example 1

Example 2

65

In the IN instruction, the I/O registers are referred to by their I/O address-

es. For example, the “IN R20,0x16” instruction will copy the contents of location

$16 of the I/O memory (whose data memory address is 0x36) into R20. As shown

The following instruction loads R19 with the contents of location 0x10 of

the I/O memory:

IN R19,0x10 ;load R19 with location $10 (R19 = PIND)

To work with the I/O registers more easily, we can use their names instead

of their I/O addresses. For example, the following instruction loads R19 with the

contents of PIND:

IN R19,PIND ;load R19 with PIND

Notice that to be able to use the names of the I/O addresses instead of the

The following program adds the contents of PIND to PINB, and stores the

result in location 0x300 of the data memory:

IN R1,PIND ;load R1 with PIND
IN R2,PINB ;load R2 with PINB
ADD R1, R2 ;R1 = R1 + R2
STS 0x300, R1 ;store R1 to data space location $300

IN vs. LDS
As we mentioned earlier, we can use the LDS instruction to copy the con-

tents of a memory location to a GPR. This means that we can load an I/O register

into a GPR, using the LDS instruction. So, what is the advantage of using the IN

instruction for reading the contents of I/O registers over using the LDS instruc-

tion? The IN instruction has the following advantages:

1.

2. The IN is a 2-byte instruction, whereas LDS is a 4-byte instruction. This

means that the IN instruction occupies less code memory.

3. When we use the IN instruction, we can use the names of the I/O registers

instead of their addresses.

4. The IN instruction is available in all of the AVRs, whereas LDS is not

implemented in some of the AVRs.

Notice that in using the IN instruction we can access only the standard I/O

memory, while we can access all parts of the data memory using the LDS instruc-

tion.

AVR ARCHITECTURE AND ASSEMBLY LANGUAGE

5. I/O addresses we should include the proper header files, as discussed in Section

The CPU executes the IN instruction faster than LDS. The IN instruction

lasts 1 machine cycle, whereas LDS lasts 2 machine cycles.

in Figure 7, I/O address 0x16 belongs to PINB, so the instruction copies the contents

of PINB to R20.

66

OUT instruction (OUT to I/O location)
OUT A, Rr ;store register to I/O location (0 ≤ r ≤ 31),(0 ≤A ≤ 63)

The OUT instruction tells the CPU to store the GPR to the I/O register.

After the instruction is executed, the I/O register will have the same value as the

GPR. For example, the “OUT PORTD,R10” instruction will copy the contents of

R10 into PORTD (location 12 of the I/O memory).

Notice that in the OUT instruction, the I/O registers are referred to by their

I/O addresses (like the IN instruction).

The following program copies 0xE6 to the SPL register:

LDI R20,0xE6 ;load R20 with 0xE6
OUT SPL, R20 ;out R20 to SPL

We must remember that we cannot copy an immediate value to an I/O reg-

ister nor to an SRAM location.

The following program copies PIND to PORTA:
IN R0, PIND ;load R20 with the contents of I/O reg PIND
OUT PORTA, R0 ;out R20 to PORTA

MOV instruction

The MOV instruction is used to copy data among the GPR registers of

R0–R31. It has the following format:

MOV Rd,Rr ;Rd = Rr (copy Rr to Rd)
;Rd and Rr can be any of the GPRs

For example, the following instruction copies the contents of R20 to R10:

MOV R10,R20 ;R10 = R20

For instance, if R20 contains 60, after execution of the above instruction

both R20 and R10 will contain 60.

Write a program to get data from the PINB and send it to the I/O register of PORT C

continuously.

Solution:

AGAIN:IN R16, PINB ;bring data from PortB into R16
OUT PORTC,R16 ;send it to Port C
JMP AGAIN ;keep doing it forever

AVR ARCHITECTURE AND ASSEMBLY LANGUAGE

In Example 3 we use JMP to repeat an action indefinitely. JMP is simi-

Example 3

lar to “goto” in the C language.

67

More ALU instructions involving the GPRs

The following program adds 0x19 to the contents of location 0x220 and

stores the result in location 0x221:

LDI R20, 0x19 ;load R20 with 0x19
LDS R21, 0x220 ;load R21 with the contents of location 0x220
ADD R21, R20 ;R21 = R21 + R20
STS 0x221, R21 ;store R21 to location 0x221

INC instruction

INC Rd ;increment the contents of Rd by one (0 ≤ d ≤ 31)

The INC instruction increments the contents of Rd by 1. For example, the

following instruction adds 1 to the contents of R2:

INC R2 ;R2 = R2 + 1

The following program increments the contents of data memory location

0x430 by 1:

LDS R20, 0x430 ;R20 = contents of location 0x430
INC R20 ;R20 = R20 + 1
STS 0x430, R20 ;store R20 to location 0x430

SUB instruction

The SUB instruction has the following format:

SUB Rd,Rr ;Rd = Rd - Rr

The SUB instruction tells the CPU to subtract the value of Rr from Rd and

put the result back into the Rd register. To subtract 0x25 from 0x34, one can do

the following:

LDI R20, 0x34 ;R20 = 0x34
LDI R21, 0x25 ;R20 = 0x25
SUB R20, R21 ;R20 = R20 - R21

The following program subtracts 5 from the contents of location 0x300 and

stores the result in location 0x320:

LDS R0, 0x300 ;R0 = contents of location 0x300
LDI R16, 0x5 ;R16 = 0x5
SUB R0, R16 ;R0 = R0 - R16
STS 0x320,R0 ;store the contents of R0 to location 0x320

The following program decrements the contents of R10, by 1:

LDI R16, 0x1 ;load 1 to R16
SUB R10, R16 ;R10 = R10 - R16

AVR ARCHITECTURE AND ASSEMBLY LANGUAGE

68

DEC instruction

The DEC instruction has the following format:

DEC Rd ;Rd = Rd - 1

The DEC instruction decrements (subtracts 1 from) the contents of Rd and

puts the result back into the Rd register. For example, the following instruction

subtracts 1 from the contents of R10:

DEC R10 ;R10 = R10 - 1

In the following program, we put the value 3 into R30. Then the value in

R30 is decremented.

LDI R30, 3 ;R30 = 3
DEC R30 ;R30 has 2
DEC R30 ;R30 has 1
DEC R30 ;R30 has 0

Instruction
ADD Rd, Rr ADD Rd and Rr

ADC Rd, Rr ADD Rd and Rr with Carry

AND Rd, Rr AND Rd with Rr

EOR Rd, Rr Exclusive OR Rd with Rr

OR Rd, Rr OR Rd with Rr

SBC Rd, Rr Subtract Rr from Rd with carry

SUB Rd, Rr Subtract Rr from Rd without carry

Instruction
CLR Rd Clear Register Rd

INC Rd Increment Rd

DEC Rd Decrement Rd

COM Rd One’s Complement Rd

NEG Rd Negative (two’s complement) Rd

ROL Rd Rotate left Rd through carry

ROR Rd Rotate right Rd through carry

LSL Rd Logical Shift Left Rd

LSR Rd Logical Shift Right Rd

ASR Rd Arithmetic Shift Right Rd

SWAP Rd Swap nibbles in Rd

AVR ARCHITECTURE AND ASSEMBLY LANGUAGE

Table 2: ALU Instructions Using Two GPRs

Table 3: Some Instructions Using a GPR as Operand

Rd and Rr can be any of the GPRs.

69

COM instruction

The “COM Rd” instruction complements (inverts) the contents of Rd and

places the result back into the Rd register. In the following program, we put 0x55

into R16 and then send it to the SFR location of PORTB. Then the content of R16

is complemented, which becomes AA in hex. The 01010101 (0x55) is inverted and

becomes 10101010 (0xAA).

LDI R16,0x55 ;R16 = 0x55
OUT PORTB, R16 ;copy R16 to Port B SFR (PB = 0x55)
COM R16 ;complement R16 (R16 = 0xAA)
OUT PORTB, R16 ;copy R16 to Port B SFR (PB = 0xAA)

The above concepts are important and must be understood since there are

a large number of instructions with these formats.

and destination (rd) and then place the result in the destination register (Rd)

2.

result in the same register.

Review Questions

1. True or false. No value can be loaded directly into internal SRAM.

2. Write instructions to load value 0x95 into the SPL I/O register.

3. Write instructions to add 2 to the contents of R18.

4. Write instructions to add the values 0x16 and 0xCD. Place the result in loca-

tion 0x400 of the data memory.

5. What is the largest hex value that can be moved into a location in the data

memory? What is the decimal equivalent of the hex value?

6. “ADD R16, R3” puts the result in _____ .

7. What does “OUT OCR0, R23” do?

8. What is wrong with “STS OCR0, R23”? What does it do?

Write a simple program to toggle the I/O register of PORT B continuously forever.

Solution:

LDI R20, 0x55 ;R20 = 0x55
OUT PORTB, R20 ;move R20 to Port B SFR (PB = 0x55)

L1: COM R20 ;complement R20
OUT PORTB, R20 ;move R20 to Port B SFR
JMP L1 ;repeat forever

AVR ARCHITECTURE AND ASSEMBLY LANGUAGE

Examine Example 4.

Example 4

Regarding Tables 2 and 3 the following points must be noted:

The instructions in Table 3 operate on a single GPR register and place the

1. The instructions in Table 2 operate on two GPR registers of source (Rr)

70

