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Fundamental Constants

Quantity Symbol Approximate Value Current Best Value†

Speed of light in vacuum c
Gravitational constant G
Avogadro’s number
Gas constant R

Boltzmann’s constant k
Charge on electron e
Stefan-Boltzmann constant
Permittivity of free space
Permeability of free space
Planck’s constant h
Electron rest mass

Proton rest mass

Neutron rest mass

Atomic mass unit (1 u)

† CODATA (3 07), Peter J. Mohr and Barry N. Taylor, National Institute of Standards and Technology. Numbers in parentheses indicate one-standard-
deviation experimental uncertainties in final digits. Values without parentheses are exact (i.e., defined quantities).

�

= 931.494028(23) MeV�c2
1.660538782(83) * 10–27 kg1.6605 * 10–27 kg = 931.49 MeV�c2
= 1.00866491597(43) u= 939.57 MeV�c2

1.674927211(84) * 10–27 kg1.6749 * 10–27 kg = 1.008665 umn

= 1.00727646677(10) u= 938.27 MeV�c2
1.672621637(83) * 10–27 kg1.6726 * 10–27 kg = 1.00728 ump

= 5.4857990943(23) * 10–4 u= 0.511 MeV�c2
9.10938215(45) * 10–31 kg9.11 * 10–31 kg = 0.000549 ume

6.62606896(33) * 10–34 J �s6.63 * 10–34 J �s
1.2566370614 p * 10–6 T �m�A4p * 10–7 T �m�Am0

8.854187817 p * 10–12 C2�N �m28.85 * 10–12 C2�N �m2�0 = A1�c2m0B
5.670400(40) * 10–8 W�m2 �K45.67 * 10–8 W�m2 �K4s

1.602176487(40) * 10–19 C1.60 * 10–19 C
1.3806504(24) * 10–23 J�K1.38 * 10–23 J�K

= 0.0821 L �atm�mol�K
8.314472(15) J�mol�K8.314 J�mol�K = 1.99 cal�mol�K
6.02214179(30) * 1023 mol–16.02 * 1023 mol–1NA

6.6728(67) * 10–11 N �m2�kg26.67 * 10–11 N �m2�kg2
2.99792458 * 108 m�s3.00 * 108 m�s

Other Useful Data

Joule equivalent (1 cal) 4.186 J
Absolute zero (0 K)
Acceleration due to gravity

at Earth’s surface (avg.)
Speed of sound in air (20°C) 343
Density of air (dry)

Earth: Mass
Radius (mean)

Moon: Mass
Radius (mean)

Sun: Mass
Radius (mean)

Earth–Sun distance (mean)
Earth–Moon distance (mean) 384 * 103 km

149.6 * 106 km
6.96 * 105 km
1.99 * 1030 kg
1.74 * 103 km
7.35 * 1022 kg
6.38 * 103 km
5.98 * 1024 kg

1.29 kg�m3
m�s

9.80 m�s2 (= g)

–273.15°C

The Greek Alphabet

Alpha
Beta
Gamma
Delta
Epsilon
Zeta
Eta
Theta
Iota
Kappa
Lambda
Mu m�

l¶
k�

i�

u™
h�

z�

� , e	

d¢
g


b�

a� Nu
Xi
Omicron
Pi
Rho
Sigma
Tau
Upsilon
Phi
Chi
Psi
Omega v


c°
x�

f, w£
y�

t�

s©
r�

pß
o�

j�

n�

Values of Some Numbers

1 rad  = 57.2957795°ln 10 = 2.3025851 13 = 1.7320508 e = 2.7182818
log10 e = 0.4342945ln 2  = 0.6931472 12 = 1.4142136 p = 3.1415927

Mathematical Signs and Symbols Properties of Water

Density (4°C)

Heat of fusion (0°C)
( )

Heat of vaporization 
(100°C) ( )

Specific heat (15°C)

Index of refraction 1.33

(1.00 kcal�kg �C°)
4186 J�kg �C°

539 kcal�kg
2260 kJ�kg

80 kcal�kg
333 kJ�kg

1.000 * 103 kg�m3is proportional to
is equal to
is approximately equal to
is not equal to
is greater than
is much greater than
is less than
is much less thanV

6
W
7
Z
L
=
r is less than or equal to

is greater than or equal to
sum of
average value of x
change in x

approaches zero
n! n(n - 1)(n - 2) p (1)

¢x¢x S 0
¢x
x
g

�

�
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Unit Conversions (Equivalents)

Length

(defined)

1 nautical mile (U.S.)

1 angstrom 
1 light-year 

Volume

Speed

Angle

1 rev�min (rpm) = 0.1047 rad�s
1° = 0.01745 rad
1 radian (rad) = 57.30° = 57°18¿

1 knot = 1.151 mi�h = 0.5144 m�s
1 m�s = 3.281 ft�s = 3.600 km�h = 2.237 mi�h
1 ft�s = 0.3048 m�s (exact) = 0.6818 mi�h = 1.0973 km�h
1 km�h = 0.2778 m�s = 0.6214 mi�h
1 mi�h = 1.4667 ft�s = 1.6093 km�h = 0.4470 m�s

1 m3 = 35.31 ft3
1 pint (British) = 1.20 pints (U.S.) = 568 mL
1 quart (U.S.) = 2 pints (U.S.) = 946 mL

0.8327 gal (British)
1 gal (U.S.) = 4 qt (U.S.) = 231 in.3 = 3.785 L =

1.057 qt (U.S.) = 61.02 in.3
1 liter (L) = 1000 mL = 1000 cm3 = 1.0 * 10–3 m3 =

1 parsec = 3.26 ly = 3.09 * 1016 m
(ly) = 9.461 * 1015 m
(Å) = 10–10 m = 0.1 nm

1 fermi = 1 femtometer (fm) = 10–15 m
= 1.151 mi = 6076 ft = 1.852 km

1 km = 0.6214 mi
1 mi = 5280 ft = 1.609 km
1 m = 39.37 in. = 3.281 ft
1 ft = 30.48 cm
1 cm = 0.3937 in.
1 in. = 2.54 cm

Time

Mass

1 atomic mass unit 

[1 kg has a weight of 2.20 lb where ]

Force

Energy and Work

Power

Pressure

1 Pa = 1 N�m2 = 1.450 * 10–4 lb�in.2
1 lb�in.2 = 6.895 * 103 N�m2

 = 14.7 lb�in.2 = 760 torr
 1 atm = 1.01325 bar = 1.01325 * 105 N�m2

1 hp = 550 ft� lb�s = 746 W
1 W = 1 J�s = 0.7376 ft � lb�s = 3.41 Btu�h

1 Btu = 1.055 * 103 J
1 kWh = 3.600 * 106 J = 860 kcal
1 eV = 1.6022 * 10–19 J
1 kcal = 4.19 * 103 J = 3.97 Btu
1 ft � lb = 1.356 J = 1.29 * 10–3 Btu = 3.24 * 10–4 kcal
1 J = 107 ergs = 0.7376 ft � lb

1 N = 105 dyne = 0.2248 lb
1 lb = 4.44822 N

g = 9.80 m�s2.
1 kg = 0.06852 slug

(u) = 1.6605 * 10–27 kg

1 year = 3.156 * 107 s
1 day = 8.640 * 104 s

SI Derived Units and Their Abbreviations

In Terms of
Quantity Unit Abbreviation Base Units†

Force newton N

Energy and work joule J

Power watt W

Pressure pascal Pa

Frequency hertz Hz

Electric charge coulomb C

Electric potential volt V

Electric resistance ohm

Capacitance farad F

Magnetic field tesla T

Magnetic flux weber Wb

Inductance henry H
† A = ampere (electric current).s = second (time),m = meter (length),kg = kilogram (mass),

kg �m2�As2 �A2B
kg �m2�AA �s2B
kg�AA �s2B
A2 �s4�Akg �m2B
kg �m2�AA2 �s3B


kg �m2�AA �s3B
A �s

s–1

kg�Am �s2B
kg �m2�s3

kg �m2�s2

kg �m�s2

Metric (SI) Multipliers

Prefix Abbreviation Value

yotta Y
zeta Z
exa E
peta P
tera T
giga G
mega M
kilo k
hecto h
deka da
deci d
centi c
milli m
micro
nano n
pico p
femto f
atto a
zepto z
yocto y 10–24

10–21
10–18
10–15
10–12
10–9
10–6m

10–3
10–2
10–1
101
102
103
106
109
1012
1015
1018
1021
1024
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Useful Geometry Formulas—Areas, Volumes

Circumference of circle

Area of circle

Area of rectangle

Area of parallelogram

Area of triangle

Right triangle 
(Pythagoras)

Sphere: surface area
volume

Rectangular solid:
volume

Cylinder (right):
surface area
volume

Right circular cone:
surface area 
volume  V = 1

3 pr2h

 A = pr2 + pr 3r2 + h2

 V = pr2
l

 A = 2prl + 2pr2

 V = lwh

 V = 4
3 pr3

 A = 4pr2

 c2 = a2 + b2

 A = 1
2 hb

 A = bh

 A = lw

 A = pr2 =
pd2

4

 C = pd = 2pr
Cd

r

l

w

h

b

h

h

b b

h

b

ac

lw
h

l
r

h
r

Exponents

[Example: ]
[Example: ]

[Ex.: ]

an

bn
= a a

b
b n

Aa5B Aa–2B = a3= an-m AanB Aa–mB = an

am

a
1
2 = 1a      a

1
4 = 21a

a–1 =
1
a
      a–n =

1
an

      a0 = 1

cExample: 

Example: 

Aa3B2 = a6

Aa1
4B4 = a

dAanBm = anm
Aa3B Ab3B = (ab)3AanB AbnB = (ab)n
Aa3B Aa2B = a5AanB AamB = an+m

Quadratic Formula 

Equation with unknown x, in the form

has solutions

x =
–b P 3b2 - 4ac

2a
.

ax2 + bx + c = 0, Binomial Expansion 

[for ]

[for ]x V 1 L 16nx

x2 6 1 (16x)n = 16nx +
n(n - 1)

2 �1
 x2
6

n(n - 1)(n - 2)

3 �2 �1
 x3 + p

Logarithms [Appendix A–7; Table A–1]

If 
If 

log an = n log a

log a a

b
b = log a - log b

log (ab) = log a + log b

y = ex,  then  x = loge y = ln y.
y = 10x,  then  x = log10 y = log y.

Some Derivatives and Integrals†

�  xm dx =
1

m + 1
 xm+ 1

d

dx
 cos ax = –a sin ax

d

dx
 sin ax = a cos ax

d

dx
 xn = nxn-1

Trigonometric Formulas [Appendix A–9]

 tan u =
opp

adj

 cos u =
adj

hyp

 sin u =
opp

hyp

[for small ]

[for small ]

For any triangle:
(law of cosines)

(law of sines)
sin a

a
=

sin b

b
=

sin g

c

c2 = a2 + b2 - 2ab cos g

cos (A P B) = cos A cos B7sin A sin B
sin (A P B) = sin A cos B P cos A sin B

u f 0.2 radcos u L 1 -
u2

2

u f 0.2 radsin u L u
cos 12 u = 3(1 + cos u)�2sin 12 u = 3(1 - cos u)�2

cos(90° - u) = sin u

sin (90° - u) = cos u

cos (180° - u) = –cos usin (180° - u) = sin u

hyp (h
ypotenuse)

adj (adjacent)

opp (opposite)

θ

c
α γ

β a

b

r

(Pythagorean theorem)

cos 2u = (cos2 u - sin2 u) = (1 - 2 sin2 u) = (2 cos2 u - 1)

sin 2u = 2 sin u cos u

sin2 u + cos2 u = 1

tan u =
sin u

cos u

adj2 + opp2 = hyp2

�  eax dx =
1
a

 eax

�  1
x

 dx = ln x

�  cos ax dx =
1
a

 sin ax

�  sin ax dx = –
1
a

 cos ax

† See Appendix B for more.
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I was motivated from the beginning to write a textbook different from others that
present physics as a sequence of facts, like a Sears catalog: “here are the facts and
you better learn them.” Instead of that approach in which topics are begun
formally and dogmatically, I have sought to begin each topic with concrete
observations and experiences students can relate to: start with specifics and only then
go to the great generalizations and the more formal aspects of a topic, showing why
we believe what we believe. This approach reflects how science is actually practiced.

Why a Fourth Edition?
Two recent trends in physics texbooks are disturbing: (1) their revision cycles
have become short—they are being revised every 3 or 4 years; (2) the books are
getting larger, some over 1500 pages. I don’t see how either trend can be of
benefit to students. My response: (1) It has been 8 years since the previous
edition of this book. (2) This book makes use of physics education research,
although it avoids the detail a Professor may need to say in class but in a book shuts
down the reader. And this book still remains among the shortest.

This new edition introduces some important new pedagogic tools. It contains
new physics (such as in cosmology) and many new appealing applications (list on
previous page). Pages and page breaks have been carefully formatted to make the
physics easier to follow: no turning a page in the middle of a derivation or Example.
Great efforts were made to make the book attractive so students will want to read it.

Some of the new features are listed below.

What’s New
Chapter-Opening Questions : Each Chapter begins with a multiple-choice question,
whose responses include common misconceptions. Students are asked to answer
before starting the Chapter, to get them involved in the material and to get any
preconceived notions out on the table. The issues reappear later in the Chapter,
usually as Exercises, after the material has been covered. The Chapter-Opening
Questions also show students the power and usefulness of Physics.
APPROACH paragraph in worked-out numerical Examples : A short introductory
paragraph before the Solution, outlining an approach and the steps we can take to
get started. Brief NOTES after the Solution may remark on the Solution, may give
an alternate approach, or mention an application.
Step-by-Step Examples : After many Problem Solving Strategies (more than 20 in
the book), the next Example is done step-by-step following precisely the steps just
seen.
Exercises within the text, after an Example or derivation, give students a chance to
see if they have understood enough to answer a simple question or do a simple
calculation. Many are multiple choice.
Greater clarity : No topic, no paragraph in this book was overlooked in the search
to improve the clarity and conciseness of the presentation. Phrases and sentences
that may slow down the principal argument have been eliminated: keep to the
essentials at first, give the elaborations later.
Vector notation, arrows : The symbols for vector quantities in the text and Figures
now have a tiny arrow over them, so they are similar to what we write by hand.
Cosmological Revolution : With generous help from top experts in the field,
readers have the latest results.

B
B

vB,F
B

,
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Page layout : more than in the previous edition, serious attention has been paid to
how each page is formatted. Examples and all important derivations and
arguments are on facing pages. Students then don’t have to turn back and forth.
Throughout, readers see, on two facing pages, an important slice of physics.

New Applications : LCDs, digital cameras and electronic sensors (CCD, CMOS),
electric hazards, GFCIs, photocopiers, inkjet and laser printers, metal detectors,
underwater vision, curve balls, airplane wings, DNA, how we actually see images.
(Turn back a page to see a longer list.)

Examples modified : more math steps are spelled out, and many new Examples
added. About 10% of all Examples are Estimation Examples.

This Book is Shorter than other complete full-service books at this level. Shorter
explanations are easier to understand and more likely to be read.

Content and Organizational Changes
• Rotational Motion: Chapters 10 and 11 have been reorganized. All of angular

momentum is now in Chapter 11.
• First law of thermodynamics, in Chapter 19, has been rewritten and extended.

The full form is given: where internal energy is
and  U is potential energy; the form  is kept so that  

• Kinematics and Dynamics of Circular Motion are now treated together in
Chapter 5.

• Work and Energy, Chapters 7 and 8, have been carefully revised.
• Work done by friction is discussed now with energy conservation (energy

terms due to friction).
• Chapters on Inductance and AC Circuits have been combined into one:

Chapter 30.
• Graphical Analysis and Numerical Integration is a new optional Section 2–9.

Problems requiring a computer or graphing calculator are found at the end
of most Chapters.

• Length of an object is a script rather than normal l, which looks like 1 or I
(moment of inertia, current), as in Capital L is for angular
momentum, latent heat, inductance, dimensions of length [L].

• Newton’s law of gravitation remains in Chapter 6. Why? Because the 
law is too important to relegate to a late chapter that might not be covered
at all late in the semester; furthermore, it is one of the basic forces in nature.
In Chapter 8 we can treat real gravitational potential energy and have a fine
instance of using  

• New Appendices include the differential form of Maxwell’s equations and
more on dimensional analysis.

• Problem Solving Strategies are found on pages 30, 58, 64, 96, 102, 125, 166,
198, 229, 261, 314, 504, 551, 571, 600, 685, 716, 740, 763, 849, 871, and 913.

Organization
Some instructors may find that this book contains more material than can be
covered in their courses. The text offers great flexibility. Sections marked with a
star * are considered optional. These contain slightly more advanced physics
material, or material not usually covered in typical courses and/or interesting
applications; they contain no material needed in later Chapters (except perhaps in
later optional Sections). For a brief course, all optional material could be dropped
as well as major parts of Chapters 1, 13, 16, 26, 30, and 35, and selected parts of
Chapters 9, 12, 19, 20, 33, and the modern physics Chapters. Topics not covered in
class can be a valuable resource for later study by students. Indeed, this text can
serve as a useful reference for years because of its wide range of coverage.

U = – �  F
B # d  L

B

.

1�r2

F = IlB.
l

dW = P dV.Q - WEint ,
¢K + ¢U + ¢Eint = Q - W,

Versions of this Book

Complete version: 44 Chapters
including 9 Chapters of modern
physics.

Classic version: 37 Chapters
including one each on relativity
and quantum theory.

3 Volume version: Available
separately or packaged together
(Vols. 1 & 2 or all 3 Volumes):

Volume 1: Chapters 1–20 on
mechanics, including fluids,
oscillations, waves, plus heat 
and thermodynamics.

Volume 2: Chapters 21–35 on
electricity and magnetism, plus
light and optics.

Volume 3: Chapters 36–44 on
modern physics: relativity,
quantum theory, atomic physics,
condensed matter, nuclear
physics, elementary particles,
cosmology and astrophysics.
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I owe special thanks to Prof. Bob Davis for much valuable input, and especially for
working out all the Problems and producing the Solutions Manual for all Problems, as
well as for providing the answers to odd-numbered Problems at the end of this book.
Many thanks also to J. Erik Hendrickson who collaborated with Bob Davis on the
solutions, and to the team they managed (Profs. Anand Batra, Meade Brooks, David
Currott, Blaine Norum, Michael Ottinger, Larry Rowan, Ray Turner, John Vasut,
William Younger). I am grateful to Profs. John Essick, Bruce Barnett, Robert Coakley,
Biman Das, Michael Dennin, Kathy Dimiduk, John DiNardo, Scott Dudley,
David Hogg, Cindy Schwarz, Ray Turner, and Som Tyagi, who inspired many of
the Examples, Questions, Problems, and significant clarifications.

Crucial for rooting out errors, as well as providing excellent suggestions, were
Profs. Kathy Dimiduk, Ray Turner, and Lorraine Allen. A huge thank you to them
and to Prof. Giuseppe Molesini for his suggestions and his exceptional photographs
for optics.

Thanks
Many physics professors provided input or direct feedback on every aspect of this
textbook. They are listed below, and I owe each a debt of gratitude.
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For Chapters 43 and 44 on Particle Physics and Cosmology and Astrophysics,
I was fortunate to receive generous input from some of the top experts in the field,
to whom I owe a debt of gratitude: George Smoot, Paul Richards, Alex Filippenko,
James Siegrist, and William Holzapfel (UC Berkeley), Lyman Page (Princeton and
WMAP), Edward Wright (UCLA and WMAP), and Michael Strauss (University
of Oklahoma).

I especially wish to thank Profs. Howard Shugart, Chair Frances Hellman, and
many others at the University of California, Berkeley, Physics Department for
helpful discussions, and for hospitality. Thanks also to Prof. Tito Arecchi and others
at the Istituto Nazionale di Ottica, Florence, Italy.

Finally, I am grateful to the many people at Prentice Hall with whom I 
worked on this project, especially Paul Corey, Karen Karlin, Christian Botting,
John Christiana, and Sean Hogan.

The final responsibility for all errors lies with me. I welcome comments,
corrections, and suggestions as soon as possible to benefit students for the next reprint.

D.C.G.
email: Paul.Corey@Pearson.com

Post: Paul Corey
One Lake Street
Upper Saddle River, NJ 07458
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Douglas C. Giancoli obtained his BA in physics (summa cum laude) from the
University of California, Berkeley, his MS in physics at the Massachusetts Institute
of Technology, and his PhD in elementary particle physics at the University of Cali-
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To Students
HOW TO STUDY
1. Read the Chapter. Learn new vocabulary and notation. Try to respond to

questions and exercises as they occur.
2. Attend all class meetings. Listen. Take notes, especially about aspects you do

not remember seeing in the book. Ask questions (everyone else wants to, but
maybe you will have the courage). You will get more out of class if you read
the Chapter first.

3. Read the Chapter again, paying attention to details. Follow derivations and
worked-out Examples. Absorb their logic. Answer Exercises and as many of
the end of Chapter Questions as you can.

4. Solve 10 to 20 end of Chapter Problems (or more), especially those assigned.
In doing Problems you find out what you learned and what you didn’t. Discuss
them with other students. Problem solving is one of the great learning tools.
Don’t just look for a formula—it won’t cut it.

NOTES ON THE FORMAT AND PROBLEM SOLVING
1. Sections marked with a star (*) are considered optional. They can be omitted

without interrupting the main flow of topics. No later material depends on
them except possibly later starred Sections. They may be fun to read, though.

2. The customary conventions are used: symbols for quantities (such as m for
mass) are italicized, whereas units (such as m for meter) are not italicized.
Symbols for vectors are shown in boldface with a small arrow above:

3. Few equations are valid in all situations. Where practical, the limitations of
important equations are stated in square brackets next to the equation. The
equations that represent the great laws of physics are displayed with a tan
background, as are a few other indispensable equations.

4. At the end of each Chapter is a set of Problems which are ranked as Level I, II, or
III, according to estimated difficulty. Level I Problems are easiest, Level II are
standard Problems, and Level III are “challenge problems.” These ranked
Problems are arranged by Section, but Problems for a given Section may depend
on earlier material too. There follows a group of General Problems, which are not
arranged by Section nor ranked as to difficulty. Problems that relate to optional
Sections are starred (*). Most Chapters have 1 or 2 Computer Numerical
Problems at the end, requiring a computer or graphing calculator. Answers to
odd-numbered Problems are given at the end of the book.

5. Being able to solve Problems is a crucial part of learning physics, and provides
a powerful means for understanding the concepts and principles. This book
contains many aids to problem solving: (a) worked-out Examples and their
solutions in the text, which should be studied as an integral part of the text;
(b) some of the worked-out Examples are Estimation Examples, which show
how rough or approximate results can be obtained even if the given data are
sparse (see Section 1–6); (c) special Problem Solving Strategies placed
throughout the text to suggest a step-by-step approach to problem solving 
for a particular topic—but remember that the basics remain the same;
most of these “Strategies” are followed by an Example that is solved by 
explicitly following the suggested steps; (d) special problem-solving Sections;
(e) “Problem Solving” marginal notes which refer to hints within the text for
solving Problems; (f) Exercises within the text that you should work out imme-
diately, and then check your response against the answer given at the bottom of
the last page of that Chapter; (g) the Problems themselves at the end of each
Chapter (point 4 above).

6. Conceptual Examples pose a question which hopefully starts you to think and
come up with a response. Give yourself a little time to come up with your own
response before reading the Response given.

7. Math review, plus some additional topics, are found in Appendices. Useful data,
conversion factors, and math formulas are found inside the front and back covers.

�
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An early science fantasy book (1940), called Mr Tompkins in Wonderland by physicist George Gamow, imagined a
world in which the speed of light was only Mr Tompkins had studied relativity and when he
began “speeding” on a bicycle, he “expected that he would be immediately shortened, and was very happy about it
as his increasing figure had lately caused him some anxiety. To his great surprise, however, nothing happened to
him or to his cycle. On the other hand, the picture around him completely changed. The streets grew shorter,

the windows of the shops began to look
like narrow slits, and the policeman 
on the corner became the thinnest man
he had ever seen. ‘By Jove!’ exclaimed
Mr Tompkins excitedly, ‘I see the trick
now. This is where the word relativity
comes in.’ ”

Relativity does indeed predict that
objects moving relative to us at high
speed, close to the speed of light c, are
shortened in length. We don’t notice 
it as Mr Tompkins did, because

is incredibly fast. We
will study length contraction, time
dilation, simultaneity non-agreement,
and how energy and mass are
equivalent AE = mc2B.

c = 3 * 108 m�s

10 m�s (20 mi�h).

The Special Theory of
Relativity

CHAPTER-OPENING QUESTION—Guess now!
[Don’t worry about getting the right answer now—the idea is to get your preconceived notions out on
the table.]

A rocket is headed away from Earth at a speed of 0.80c. The rocket fires a missile
at a speed of 0.70c (the missile is aimed away from Earth and leaves the rocket at
0.70c relative to the rocket). How fast is the missile moving relative to Earth?

(a) 1.50c;
(b) a little less than 1.50c;
(c) a little over c;
(d) a little under c;
(e) 0.75c.

P
hysics at the end of the nineteenth century looked back on a period of great
progress.The theories developed over the preceding three centuries had been
very successful in explaining a wide range of natural phenomena. Newtonian
mechanics beautifully explained the motion of objects on Earth and in the

heavens. Furthermore, it formed the basis for successful treatments of fluids, wave
motion, and sound. Kinetic theory explained the behavior of gases and other materials.
Maxwell’s theory of electromagnetism not only brought together and explained
electric and magnetic phenomena, but it predicted the existence of electromagnetic
waves that would behave in every way just like light—so light came to be thought of
as an electromagnetic wave. Indeed, it seemed that the natural world, as seen through
the eyes of physicists, was very well explained. A few puzzles remained, but it was felt
that these would soon be explained using already known principles.

CONTENTS
1 Galilean–Newtonian Relativity

2 The Michelson–Morley
Experiment

3 Postulates of the Special
Theory of Relativity

4 Simultaneity

5 Time Dilation and the Twin
Paradox

6 Length Contraction

7 Four-Dimensional
Space–Time

8 Galilean and Lorentz
Transformations

9 Relativistic Momentum 

10 The Ultimate Speed

11 Mass and Energy

12 Doppler Shift for Light

13 The Impact of Special
Relativity

E = mc2;

* 

Cambridge University Press; “The City Blocks Became Still Shorter” photo from page 4 of the book “Mr Tompkins in Paperback”
by George Gamow. Reprinted with the permission of Cambridge University Press

Note: Sections marked with an asterisk (*) may be considered optional by the instructor.

From Chapter Physics for Scientists & Engineers with Modern Physics, Fourth Edition, Douglas C. Giancoli.
Copyright © 2009 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.
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(a)
Reference frame = car

(b)
Reference frame = Earth

FIGURE 2 A coin is dropped by a
person in a moving car. The upper
views show the moment of the coin’s
release, the lower views are a short
time later. (a) In the reference frame
of the car, the coin falls straight
down (and the tree moves to the
left). (b) In a reference frame fixed
on the Earth, the coin has an initial
velocity (= to car’s) and  follows a
curved (parabolic) path.

FIGURE 1 Albert Einstein
(1879–1955), one of the great minds
of the twentieth century, was the
creator of the special and general
theories of relativity.

†On a rotating platform (say a merry-go-round), for example, an object at rest starts moving outward
even though no object exerts a force on it. This is therefore not an inertial frame.

It did not turn out so simply. Instead, these puzzles were to be solved only by
the introduction, in the early part of the twentieth century, of two revolutionary
new theories that changed our whole conception of nature: the theory of relativity
and quantum theory.

Physics as it was known at the end of the nineteenth century (what we’ve
covered up to now in this book) is referred to as classical physics. The new physics
that grew out of the great revolution at the turn of the twentieth century is now
called modern physics. In this Chapter, we present the special theory of relativity,
which was first proposed by Albert Einstein (1879–1955; Fig. 1) in 1905.

1 Galilean–Newtonian Relativity
Einstein’s special theory of relativity deals with how we observe events, particularly
how objects and events are observed from different frames of reference. This
subject had, of course, already been explored by Galileo and Newton.

The special theory of relativity deals with events that are observed and
measured from so-called inertial reference frames, which are reference frames in
which Newton’s first law is valid: if an object experiences no net force, the object
either remains at rest or continues in motion with constant speed in a straight line.
It is usually easiest to analyze events when they are observed and measured by
observers at rest in an inertial frame. The Earth, though not quite an inertial frame
(it rotates), is close enough that for most purposes we can consider it an inertial
frame. Rotating or otherwise accelerating frames of reference are noninertial
frames,† and won’t concern us in this Chapter (they are dealt with in Einstein’s
general theory of relativity).

A reference frame that moves with constant velocity with respect to an inertial
frame is itself also an inertial frame, since Newton’s laws hold in it as well. When
we say that we observe or make measurements from a certain reference frame, it
means that we are at rest in that reference frame.

Both Galileo and Newton were aware of what we now call the relativity principle
applied to mechanics: that the basic laws of physics are the same in all inertial
reference frames. You may have recognized its validity in everyday life. For example,
objects move in the same way in a smoothly moving (constant-velocity) train or
airplane as they do on Earth. (This assumes no vibrations or rocking which would
make the reference frame noninertial.) When you walk, drink a cup of soup, play
pool, or drop a pencil on the floor while traveling in a train, airplane, or ship moving
at constant velocity, the objects move just as they do when you are at rest on Earth.
Suppose you are in a car traveling rapidly at constant velocity. If you drop a coin
from above your head inside the car, how will it fall? It falls straight downward with
respect to the car, and hits the floor directly below the point of release, Fig. 2a.
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C A U T I O N
Laws are the same, but 
paths may be different in different 
reference frames

C A U T I O N
Position and velocity are different in
different reference frames, but length
is the same (classical)

†We are ignoring the rotation and curvature of the Earth.

This is just how objects fall on the Earth—straight down—and thus our experiment
in the moving car is in accord with the relativity principle. (If you drop the coin out
the car’s window, this won’t happen because the moving air drags the coin backward
relative to the car.) 

Note in this example, however, that to an observer on the Earth, the coin follows
a curved path, Fig. 2b. The actual path followed by the coin is different as viewed
from different frames of reference. This does not violate the relativity principle
because this principle states that the laws of physics are the same in all inertial frames.
The same law of gravity, and the same laws of motion, apply in both reference frames.
The acceleration of the coin is the same in both reference frames. The difference 
in Figs. 2a and b is that in the Earth’s frame of reference, the coin has an initial
velocity (equal to that of the car). The laws of physics therefore predict it will follow a
parabolic path like any projectile. In the car’s reference frame, there is no initial
velocity, and the laws of physics predict that the coin will fall straight down. The laws
are the same in both reference frames, although the specific paths are different.

Galilean–Newtonian relativity involves certain unprovable assumptions that
make sense from everyday experience. It is assumed that the lengths of objects are
the same in one reference frame as in another, and that time passes at the same
rate in different reference frames. In classical mechanics, then, space and time
intervals are considered to be absolute: their measurement does not change from
one reference frame to another. The mass of an object, as well as all forces, are
assumed to be unchanged by a change in inertial reference frame.

The position of an object, however, is different when specified in different
reference frames, and so is velocity. For example, a person may walk inside a bus
toward the front with a speed of But if the bus moves with respect to the
Earth, the person is then moving with a speed of with respect to the Earth.The
acceleration of an object, however, is the same in any inertial reference frame according
to classical mechanics. This is because the change in velocity, and the time interval,
will be the same. For example, the person in the bus may accelerate from 0 to 
in 1.0 seconds, so in the reference frame of the bus. With respect to the
Earth, the acceleration is which is the same.

Since neither F, m, nor a changes from one inertial frame to another, then
Newton’s second law, does not change. Thus Newton’s second law
satisfies the relativity principle. It is easily shown that the other laws of mechanics
also satisfy the relativity principle.

That the laws of mechanics are the same in all inertial reference frames
implies that no one inertial frame is special in any sense. We express this important
conclusion by saying that all inertial reference frames are equivalent for the
description of mechanical phenomena. No one inertial reference frame is any
better than another. A reference frame fixed to a car or an aircraft traveling at
constant velocity is as good as one fixed on the Earth. When you travel smoothly
at constant velocity in a car or airplane, it is just as valid to say you are at rest and
the Earth is moving as it is to say the reverse.† There is no experiment you can do
to tell which frame is “really” at rest and which is moving. Thus, there is no way to
single out one particular reference frame as being at absolute rest.

A complication arose, however, in the last half of the nineteenth century.
Maxwell’s comprehensive and successful theory of electromagnetism predicted that
light is an electromagnetic wave. Maxwell’s equations gave the velocity of light c as

and this is just what is measured. The question then arose: in what
reference frame does light have precisely the value predicted by Maxwell’s theory? It
was assumed that light would have a different speed in different frames of reference.
For example, if observers were traveling on a rocket ship at a speed of 
away from a source of light, we might expect them to measure the speed of the 
light reaching them to be But
Maxwell’s equations have no provision for relative velocity. They predicted the speed
of light to be which seemed to imply that there must be some
preferred reference frame where c would have this value.

c = 3.0 * 108 m�s,

A3.0 * 108 m�sB - A1.0 * 108 m�sB = 2.0 * 108 m�s.

1.0 * 108 m�s

3.00 * 108 m�s;

F = ma,

(12 m�s - 10 m�s)�(1.0 s) = 2 m�s2,
a = 2 m�s2

2 m�s

12 m�s
10 m�s2 m�s.
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Waves can travel on water and along ropes or strings, and sound waves travel
in air and other materials. Nineteenth-century physicists viewed the material world
in terms of the laws of mechanics, so it was natural for them to assume that light
too must travel in some medium. They called this transparent medium the ether
and assumed it permeated all space.† It was therefore assumed that the velocity of
light given by Maxwell’s equations must be with respect to the ether.

At first it appeared that Maxwell’s equations did not satisfy the relativity
principle. They were simplest in the frame where that is, in a
reference frame at rest in the ether. In any other reference frame, extra terms
would have to be added to take into account the relative velocity. Thus, although
most of the laws of physics obeyed the relativity principle, the laws of electricity
and magnetism apparently did not. Einstein’s second postulate (Section 3)
resolved this problem: Maxwell’s equations do satisfy relativity.

Scientists soon set out to determine the speed of the Earth relative to this
absolute frame, whatever it might be. A number of clever experiments were
designed. The most direct were performed by A. A. Michelson and E. W. Morley in
the 1880s. They measured the difference in the speed of light in different directions
using Michelson’s interferometer. They expected to find a difference depending on
the orientation of their apparatus with respect to the ether. For just as a boat has
different speeds relative to the land when it moves upstream, downstream, or
across the stream, so too light would be expected to have different speeds
depending on the velocity of the ether past the Earth.

Strange as it may seem, they detected no difference at all. This was a great
puzzle. A number of explanations were put forth over a period of years, but they
led to contradictions or were otherwise not generally accepted. This null result was
one of the great puzzles at the end of the nineteenth century.

Then in 1905, Albert Einstein proposed a radical new theory that reconciled
these many problems in a simple way. But at the same time, as we shall see, it
completely changed our ideas of space and time.

2 The Michelson–Morley Experiment
The Michelson–Morley experiment was designed to measure the speed of the
ether—the medium in which light was assumed to travel—with respect to the Earth.
The experimenters thus hoped to find an absolute reference frame, one that could
be considered to be at rest.

One of the possibilities nineteenth-century scientists considered was that the
ether is fixed relative to the Sun, for even Newton had taken the Sun as the center
of the universe. If this were the case (there was no guarantee, of course), the
Earth’s speed of about in its orbit around the Sun could produce a
change of 1 part in in the speed of light Direct measurement
of the speed of light to this precision was not possible. But A. A. Michelson, later
with the help of E. W. Morley, was able to use his interferometer to measure the
difference in the speed of light in different directions to this precision.

This famous experiment is based on the principle shown in Fig. 3. Part (a) is a
diagram of the Michelson interferometer, and it is assumed that the “ether wind” is
moving with speed to the right. (Alternatively, the Earth is assumed to move to the
left with respect to the ether at speed ) The light from a source is split into two
beams by a half-silvered mirror One beam travels to mirror and the other to
mirror The beams are reflected by and and are joined again after passing
through The now superposed beams interfere with each other and the resultant
is viewed by the observer’s eye as an interference pattern.

Whether constructive or destructive interference occurs at the center of the
interference pattern depends on the relative phases of the two beams after they have
traveled their separate paths. Let us consider an analogy of a boat traveling up and

MS .
M2M1M2 .

M1MS .
v.

v

A3.0 * 108 m�sB.104
3 * 104 m�s

c = 3.00 * 108 m�s;

†The medium for light waves could not be air, since light travels from the Sun to Earth through nearly
empty space. Therefore, another medium was postulated, the ether. The ether was not only transparent
but, because of difficulty in detecting it, was assumed to have zero density.

* 
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FIGURE 3 The Michelson–Morley experiment. (a) Michelson
interferometer. (b) Boat analogy: boat 1 goes across the stream and back;
boat 2 goes downstream and back upstream (boat has speed c relative to
the water). (c) Calculation of the velocity of boat (or light beam) traveling
perpendicular to the current (or ether wind).

down, and across, a river whose current moves with speed as shown in Fig. 3b. In
still water, the boat can travel with speed c (not the speed of light in this case).

First we consider beam 2 in Fig. 3a, which travels parallel to the “ether wind.” In
its journey from to the light would travel with speed according to
classical physics, just as for a boat traveling downstream (see Fig. 3b) we add the
speed of the river water to the boat’s own speed (relative to the water) to get the
boat’s speed relative to the shore. Since the beam travels a distance the time it
takes to go from to would be To make the return trip from

to the light moves against the ether wind (like the boat going upstream),
so its relative speed is expected to be The time for the return trip would be

The total time for beam 2 to travel from to and back to is

Now let us consider beam 1, which travels crosswise to the ether wind. Here
the boat analogy (Fig. 3b) is especially helpful. The boat is to go from wharf A to
wharf B directly across the stream. If it heads directly across, the stream’s current
will drag it downstream. To reach wharf B, the boat must head at an 
angle upstream. The precise angle depends on the magnitudes of c and but 
is of no interest to us in itself. Part (c) of Fig. 3 shows how to calculate the velocity

of the boat relative to Earth as it crosses the stream. Since c, and form a
right triangle, we have that The boat has the same 
speed when it returns. If we now apply these principles to light beam 1 in 
Fig. 3a, we expect the beam to travel with speed in going from 

to and back again. The total distance traveled is so the time required 
for beam 1 to make the round trip would be or

Notice that the denominator in this equation for involves a square root, whereas
that for does not.t2

t1

t1 =
2l1

c 31 - v2�c2
.

2l1�2c2 - v2 ,
2l1 ,M1MS

2c2 - v2

v¿ = 2c2 - v2 .
v¿v,v¿

v,

t2 =
l2

c + v
+

l2

c - v
=

2l2
c  A1 - v2�c2B .

MSM2MSl2�(c - v).
c - v.

MS ,M2

t = l2�(c + v).M2MS

l2 ,

c + v,M2 ,MS

v,
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If we see that beam 2 will lag behind beam 1 by an amount

If then and the two beams will return in phase since they were
initially in phase. But if then and the two beams will return out 
of phase. If this change of phase from the condition to that for could
be measured, then could be determined. But the Earth cannot be stopped.
Furthermore, we should not be too quick to assume that lengths are not affected
by motion and therefore to assume 

Michelson and Morley realized that they could detect the difference in phase
(assuming that ) if they rotated their apparatus by 90°, for then the interference
pattern between the two beams should change. In the rotated position, beam 1 would
now move parallel to the ether and beam 2 perpendicular to it. Thus the roles could
be reversed, and in the rotated position the times (designated by primes) would be

The time lag between the two beams in the nonrotated position (unprimed) would be

In the rotated position, the time difference would be

When the rotation is made, the fringes of the interference pattern will shift an
amount determined by the difference:

This expression can be considerably simplified if we assume that In this
case we can use the binomial expansion, so

Then

Now we assume the speed of the Earth in its orbit around the
Sun. In Michelson and Morley’s experiments, the arms and were about 11 m
long. The time difference would then be about

For visible light of wavelength say, the frequency would be 
which means that

wave crests pass by a point every Thus, with 
a time difference of Michelson and Morley should have noted a
movement in the interference pattern of fringe.
They could easily have detected this, since their apparatus was capable of observing
a fringe shift as small as 0.01 fringe.

But they found no significant fringe shift whatever! They set their apparatus at
various orientations. They made observations day and night so that they would 
be at various orientations with respect to the Sun (due to the Earth’s rotation).

A7.3 * 10–16 sB�A1.8 * 10–15 sB = 0.4
7.3 * 10–16 s,

1�A5.5 * 1014 HzB = 1.8 * 10–15 s.
f = c�l = A3.0 * 108 m�sB�A5.5 * 10–7 mB = 5.5 * 1014 Hz,

l = 5.5 * 10–7 m,

(22 m)A3.0 * 104 m�sB2
A3.0 * 108 m�sB3   L   7.3 * 10–16 s.

l2l1

v = 3.0 * 104 m�s,
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They tried at different seasons of the year (the Earth at different locations due to
its orbit around the Sun). Never did they observe a significant fringe shift.

This null result was one of the great puzzles of physics at the end of the
nineteenth century. To explain it was a difficult challenge. One possibility to
explain the null result was put forth independently by G. F. Fitzgerald and 
H. A. Lorentz (in the 1890s) in which they proposed that any length (including
the arm of an interferometer) contracts by a factor in the direction of
motion through the ether. According to Lorentz, this could be due to the ether
affecting the forces between the molecules of a substance, which were assumed to be
electrical in nature. This theory was eventually replaced by the far more comprehen-
sive theory proposed by Albert Einstein in 1905—the special theory of relativity.

3 Postulates of the Special Theory 
of Relativity

The problems that existed at the start of the twentieth century with regard to
electromagnetic theory and Newtonian mechanics were beautifully resolved by
Einstein’s introduction of the theory of relativity in 1905. Unaware of the
Michelson–Morley null result, Einstein was motivated by certain questions
regarding electromagnetic theory and light waves. For example, he asked himself:
“What would I see if I rode a light beam?” The answer was that instead of a
traveling electromagnetic wave, he would see alternating electric and magnetic
fields at rest whose magnitude changed in space, but did not change in time. Such
fields, he realized, had never been detected and indeed were not consistent with
Maxwell’s electromagnetic theory. He argued, therefore, that it was unreasonable to
think that the speed of light relative to any observer could be reduced to zero, or in
fact reduced at all. This idea became the second postulate of his theory of relativity.

In his famous 1905 paper, Einstein proposed doing away completely with the idea
of the ether and the accompanying assumption of a preferred or absolute reference
frame at rest.This proposal was embodied in two postulates. The first postulate was an
extension of the Galilean–Newtonian relativity principle to include not only the laws
of mechanics but also those of the rest of physics, including electricity and magnetism:

First postulate (the relativity principle): The laws of physics have the same form
in all inertial reference frames.

The first postulate can also be stated as: There is no experiment you can do in an
inertial reference frame to tell if you are at rest or moving uniformly at constant velocity.

The second postulate is consistent with the first:

Second postulate (constancy of the speed of light): Light propagates through empty
space with a definite speed c independent of the speed of the source or observer.

These two postulates form the foundation of Einstein’s special theory of relativity.
It is called “special” to distinguish it from his later “general theory of relativity,”
which deals with noninertial (accelerating) reference frames. The special theory,
which is what we discuss here, deals only with inertial frames.

The second postulate may seem hard to accept, for it seems to violate common
sense. First of all, we have to think of light traveling through empty space. Giving
up the ether is not too hard, however, since it had never been detected. But the
second postulate also tells us that the speed of light in vacuum is always the same,

no matter what the speed of the observer or the source. Thus, a
person traveling toward or away from a source of light will measure the same speed
for that light as someone at rest with respect to the source. This conflicts with our
everyday experience: we would expect to have to add in the velocity of the
observer. On the other hand, perhaps we can’t expect our everyday experience to
be helpful when dealing with the high velocity of light. Furthermore, the null result
of the Michelson–Morley experiment is fully consistent with the second postulate.†

3.00 * 108 m�s,

21 - v2�c2

†The Michelson–Morley experiment can also be considered as evidence for the first postulate, since it
was intended to measure the motion of the Earth relative to an absolute reference frame. Its failure to
do so implies the absence of any such preferred frame.
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the two events
at A and B
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B

FIGURE 4 A moment after lightning strikes at
points A and B, the pulses of light (shown as
blue waves) are traveling toward the observer
O, but O “sees” the lightning only when the
light reaches O.

Einstein’s proposal has a certain beauty. By doing away with the idea of an
absolute reference frame, it was possible to reconcile classical mechanics with
Maxwell’s electromagnetic theory. The speed of light predicted by Maxwell’s
equations is the speed of light in vacuum in any reference frame.

Einstein’s theory required us to give up common sense notions of space 
and time, and in the following Sections we will examine some strange but
interesting consequences of special relativity. Our arguments for the most part
will be simple ones. We will use a technique that Einstein himself did: we will
imagine very simple experimental situations in which little mathematics is
needed. In this way, we can see many of the consequences of relativity theory
without getting involved in detailed calculations. Einstein called these “thought”
experiments.

4 Simultaneity
An important consequence of the theory of relativity is that we can no longer
regard time as an absolute quantity. No one doubts that time flows onward and
never turns back. But the time interval between two events, and even whether or
not two events are simultaneous, depends on the observer’s reference frame. By an
event, which we use a lot here, we mean something that happens at a particular
place and at a particular time.

Two events are said to occur simultaneously if they occur at exactly the same
time. But how do we know if two events occur precisely at the same time? If they
occur at the same point in space—such as two apples falling on your head at the
same time—it is easy. But if the two events occur at widely separated places, it is
more difficult to know whether the events are simultaneous since we have to take
into account the time it takes for the light from them to reach us. Because light
travels at finite speed, a person who sees two events must calculate back to find
out when they actually occurred. For example, if two events are observed to occur
at the same time, but one actually took place farther from the observer than the
other, then the more distant one must have occurred earlier, and the two events
were not simultaneous.

We now imagine a simple thought experiment. Assume an observer, called O,
is located exactly halfway between points A and B where two events occur,
Fig. 4. Suppose the two events are lightning that strikes the points A and B, as
shown. For brief events like lightning, only short pulses of light (blue in Fig. 4) will
travel outward from A and B and reach O. Observer O “sees” the events when the
pulses of light reach point O. If the two pulses reach O at the same time, then the
two events had to be simultaneous. This is because the two light pulses travel at 
the same speed (postulate 2), and since the distance OA equals OB, the time for the
light to travel from A to O and B to O must be the same. Observer O can 
then definitely state that the two events occurred simultaneously. On the other
hand, if O sees the light from one event before that from the other, then the
former event occurred first.
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The question we really want to examine is this: if two events are simultaneous to
an observer in one reference frame, are they also simultaneous to another observer
moving with respect to the first? Let us call the observers and and assume they
are fixed in reference frames 1 and 2 that move with speed relative to one another.
These two reference frames can be thought of as two rockets or two trains (Fig. 5).
says that is moving to the right with speed as in Fig. 5a; and says is moving
to the left with speed as in Fig. 5b. Both viewpoints are legitimate according to the
relativity principle. [There is no third point of view which will tell us which one is
“really” moving.]

Now suppose that observers and observe and measure two lightning
strikes. The lightning bolts mark both trains where they strike: at and on 
train, and at and on train, Fig. 6a. For simplicity, we assume that is
exactly halfway between and and that is halfway between and Let
us first put ourselves in reference frame, so we observe moving to the right
with speed Let us also assume that the two events occur simultaneously in 
frame, and just at the instant when and are opposite each other, Fig. 6a.
A short time later, Fig. 6b, the light from and reaches at the same time (we
assumed this). Since knows (or measures) the distances and as equal,

knows the two events are simultaneous in the reference frame.O2O2
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FIGURE 6 Thought experiment on simultaneity. In both (a) and (b) we
are in the reference frame of observer who sees the reference frame
of moving to the right. In (a), one lightning bolt strikes the two
reference frames at and and a second lightning bolt strikes at 
and (b) A moment later, the light (shown in blue) from the two
events reaches at the same time. So according to observer the two
bolts of lightning struck simultaneously. But in reference frame, the
light from has already reached whereas the light from has not
yet reached So in reference frame, the event at must have
preceded the event at Simultaneity in time is not absolute.A1 .
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But what does observer observe and measure? From our reference
frame, we can predict what will observe. We see that moves to the right
during the time the light is traveling to from and As shown in 
Fig. 6b, we can see from our reference frame that the light from 
has already passed whereas the light from has not yet reached 
That is, observes the light coming from before observing the light 
coming from Given (1) that light travels at the same speed c in any direction
and in any reference frame, and (2) that the distance equals 
then observer can only conclude that the event at occurred before the event
at The two events are not simultaneous for even though they are for 

We thus find that two events which take place at different locations and are
simultaneous to one observer, are actually not simultaneous to a second observer
who moves relative to the first.

It may be tempting to ask: “Which observer is right, or ” The 
answer, according to relativity, is that they are both right. There is no “best” reference
frame we can choose to determine which observer is right. Both frames are equally
good. We can only conclude that simultaneity is not an absolute concept, but is relative.
We are not aware of this lack of agreement on simultaneity in everyday life because
the effect is noticeable only when the relative speed of the two reference frames is
very large (near c), or the distances involved are very large.

EXERCISE A Examine the experiment of Fig. 6 from reference frame. In this case,
will be at rest and will see event occur before Will recognize that who is
moving with speed to the left, will see the two events as simultaneous? [Hint: Draw a
diagram equivalent to Fig. 6.]
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FIGURE 5 Observers and 
on two different trains (two different
reference frames), are moving with
relative speed says that is
moving to the right (a); says t
hat is moving to the left (b). Both
viewpoints are legitimate: it all
depends on your reference frame.
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FIGURE 7 Time dilation can be
shown by a thought experiment: the
time it takes for light to travel across
a spaceship and back is longer for the
observer on Earth (b) than for the
observer on the spaceship (a).

5 Time Dilation and the Twin Paradox
The fact that two events simultaneous to one observer may not be simultaneous 
to a second observer suggests that time itself is not absolute. Could it be that time
passes differently in one reference frame than in another? This is, indeed, just what
Einstein’s theory of relativity predicts, as the following thought experiment shows.

Figure 7 shows a spaceship traveling past Earth at high speed.The point of view of
an observer on the spaceship is shown in part (a), and that of an observer on Earth in
part (b). Both observers have accurate clocks. The person on the spaceship
(Fig. 7a) flashes a light and measures the time it takes the light to travel directly across
the spaceship and return after reflecting from a mirror (the rays are drawn at a slight
angle for clarity). In the reference frame of the spaceship, the light travels a distance
2D at speed c; so the time required to go across and back, which we call is

The observer on Earth, Fig. 7b, observes the same process. But to this observer,
the spaceship is moving. So the light travels the diagonal path shown going across
the spaceship, reflecting off the mirror, and returning to the sender. Although the
light travels at the same speed to this observer (the second postulate), it travels a
greater distance. Hence the time required, as measured by the observer on Earth,
will be greater than that measured by the observer on the spaceship.

Let us determine the time interval  measured by the observer on Earth between
sending and receiving the light. In time the spaceship travels a distance 
where is the speed of the spaceship (Fig. 7b). The light travels a total distance on its
diagonal path (Pythagorean theorem) of where . Therefore

We square both sides,

and solve for to find

We combine this equation for with the formula above, , and find

(1a)

Since is always less than 1, we see that That is, the time
interval between the two events (the sending of the light, and its reception on the

¢t 7 ¢t0 .31 - v2�c2

¢t =
¢t0

31 - v2�c2
.

¢t0 = 2D�c¢t

¢t =
2D

c 31 - v2�c2
.

¢t,

c2 =
4D2

(¢t)2
+ v2,

c =
2 3D2 + l2

¢t
=

2 3D2 + v2(¢t)2�4

¢t
.

l = v ¢t�222D2 + l 2 ,
v

2l = v ¢t¢t,
¢t

¢t0 = 2D�c.
¢t0 ,
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spaceship) is greater for the observer on Earth than for the observer on 
the spaceship. This is a general result of the theory of relativity, and is known as
time dilation. Stated simply, the time dilation effect says that

clocks moving relative to an observer are measured to run more slowly (as
compared to clocks at rest relative to that observer).

However, we should not think that the clocks are somehow at fault. Time is actually
measured to pass more slowly in any moving reference frame as compared to your
own. This remarkable result is an inevitable outcome of the two postulates of the
theory of relativity.

The factor occurs so often in relativity that we often give it the
shorthand symbol (the Greek letter “gamma”), and write Eq. 1a as

(1b)
where

(2)

Note that is never less than one, and has no units. At normal speeds, to a
few decimal places; in general,

The concept of time dilation may be hard to accept, for it contradicts our
experience. We can see from Eqs. 1 that the time dilation effect is indeed negligible
unless is reasonably close to c. If is much less than c, then the term is much
smaller than the 1 in the denominator of Eq. 1a, and then (see Example 2).
The speeds we experience in everyday life are much smaller than c, so it is little
wonder we don’t ordinarily notice time dilation. Experiments have tested the time
dilation effect, and have confirmed Einstein’s predictions. In 1971, for example,
extremely precise atomic clocks were flown around the Earth in jet planes. The
speed of the planes was much less than c, so the clocks had to be accu-
rate to nanoseconds in order to detect any time dilation. They were this
accurate, and they confirmed Eqs. 1 to within experimental error. Time dilation had
been confirmed decades earlier, however, by observations on “elementary particles”
which have very small masses (typically to ) and so require little energy
to be accelerated to speeds close to the speed of light, c. Many of these elementary
particles are not stable and decay after a time into lighter particles. One example is
the muon, whose mean lifetime is when at rest. Careful experiments showed
that when a muon is traveling at high speeds, its lifetime is measured to be longer
than when it is at rest, just as predicted by the time dilation formula.

EXAMPLE 1 Lifetime of a moving muon. (a) What will be the mean lifetime
of a muon as measured in the laboratory if it is traveling at 

with respect to the laboratory? Its mean lifetime 
at rest is (b) How far does a muon travel in the
laboratory, on average, before decaying?

APPROACH If an observer were to move along with the muon (the muon would
be at rest to this observer), the muon would have a mean life of To
an observer in the lab, the muon lives longer because of time dilation. We find the
mean lifetime using Eq. 1a and the average distance using 
SOLUTION (a) From Eq. 1a with we have

(b) Relativity predicts that a muon with speed would travel an
average distance and this is
the distance that is measured experimentally in the laboratory.
NOTE At a speed of classical physics would tell us that 
with a mean life of an average muon would travel 

This is shorter than the distance measured.

EXERCISE B What is the muon’s mean lifetime (Example 1) if it is traveling at 
(a) (b) (c) (d) (e) 12.0 ms.5.3 ms;5.0 ms;2.3 ms;0.42 ms;v = 0.90c?

A1.8 * 108 m�sB A2.2 * 10–6 sB = 400 m.
=d = vt2.2 ms,

1.8 * 108 m�s,

d = v ¢t = A1.80 * 108 m�sB A2.8 * 10–6 sB = 500 m,
1.80 * 108 m�s

¢t = ¢t0

31 - v2�c2 
= 2.20 * 10–6 s

31 - 0.36c2�c2
= 2.20 * 10–6 s

20.64
= 2.8 * 10–6 s.

v = 0.60c,
d = v ¢t.

2.20 * 10–6 s.

2.20 ms = 2.20 * 10–6 s.
v = 0.60c = 1.80 * 108 m�s

2.2 ms

10–27 kg10–30

A10–9 sBA103 km�hB

¢t L ¢t0

v2�c2vv

g � 1.
g = 1g

g =
1

31 - v2�c2
.

¢t = g ¢t0

g
1�31 - v2�c2
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We need to clarify how to use Eqs. 1, and the meaning of and The
equation is true only when represents the time interval between the two events
in a reference frame where the two events occur at the same point in space (as in
Fig. 7a where the two events are the light flash being sent and being received). This
time interval, is called the proper time. Then in Eqs. 1 represents the time
interval between the two events as measured in a reference frame moving with
speed with respect to the first. In Example 1 above, (and not ) was set
equal to because it is only in the rest frame of the muon that the two
events (“birth” and “decay”) occur at the same point in space. The proper 
time is the shortest time between the events any observer can measure. In any
other moving reference frame, the time is greater.¢t

¢t0

2.2 * 10–6 s
¢t¢t0v

¢t¢t0 ,

¢t0

¢t0 .¢t

P R O B L E M  S O L V I N G
Use of the binomial expansion

EXAMPLE 2 Time dilation at Let us check time dilation for
everyday speeds. A car traveling covers a certain distance in 10.00 s
according to the driver’s watch. What does an observer at rest on Earth measure
for the time interval?

APPROACH The car’s speed relative to Earth is
The driver is at rest in the reference frame of the car, so we set

in the time dilation formula.
SOLUTION We use Eq. 1a:

If you put these numbers into a calculator, you will obtain since
the denominator differs from 1 by such a tiny amount. Indeed, the time measured
by an observer on Earth would show no difference from that measured by the
driver, even with the best instruments. A computer that could calculate to a large
number of decimal places would reveal a difference between and We can
estimate the difference using the binomial expansion,

[for ]

In our time dilation formula, we have the factor Thus

So the difference between and is predicted to be an extremely
small amount.

4 * 10–14 s,¢t0¢t

 L   10.00 s + 4 * 10–14 s.   L   10.00 s c1 + 1
2

 ¢ 27.8 m�s

3.00 * 108 m�s
≤ 2 d

 ¢t = g ¢t0 = ¢t0 ¢1 -
v2

c2
≤ – 

1
2

  L   ¢t0 ¢ 1 +
1
2

 
v2

c2
 ≤

g = A1 - v2�c2B– 
1
2.

x V 1(16x)n  L   16nx.

¢t0 .¢t

¢t = 10.00 s,

¢t =
¢t0

C1 -
v2

c2

=
10.00 s

C1 - ¢ 27.8 m�s

3.00 * 108 m�s
≤ 2

=
10.00 s

31 - A8.59 * 10–15B .

¢t0 = 10.00 s
� 27.8 m�s.

100 km�h = A1.00 * 105 mB�A3600 sB

100 km�h
100 km�h.

EXERCISE C A certain atomic clock keeps perfect time on Earth. If the clock is taken on a
spaceship traveling at a speed does this clock now run slow according to the
people (a) on the spaceship, (b) on Earth?

v = 0.60c,

EXAMPLE 3 Reading a magazine on a spaceship. A passenger on a high-
speed spaceship traveling between Earth and Jupiter at a steady speed of 0.75c
reads a magazine which takes 10.0 min according to her watch. (a) How long does
this take as measured by Earth-based clocks? (b) How much farther is the spaceship
from Earth at the end of reading the article than it was at the beginning?

APPROACH (a) The time interval in one reference frame is related to the time
interval in the other by Eq. 1a or b. (b) At constant speed, distance is 
Since there are two times (a and a ) we will get two distances, one for each
reference frame. [This surprising result is explored in the next Section (6).]

¢t0¢t
speed * time.

C A U T I O N
Proper time is for 2 events at

the same point in space.
¢t0
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SOLUTION (a) The given 10.0-min time interval is the proper time—starting and
finishing the magazine happen at the same place on the spaceship. Earth clocks
measure

(b) In the Earth frame, the rocket travels a distance 

In the spaceship’s frame, the Earth is moving away from the spaceship at 
0.75c, but the time is only 10.0 min, so the distance is measured to be

Values for at a few speeds are given in Table 1.

Space Travel?
Time dilation has aroused interesting speculation about space travel. According to
classical (Newtonian) physics, to reach a star 100 light-years away would not be
possible for ordinary mortals (1 light-year is the distance light can travel in 

). Even if a spaceship could travel at
close to the speed of light, it would take over 100 years to reach such a star.
But time dilation tells us that the time involved could be less. In a spaceship 
traveling at the time for such a trip would be only about 

Thus time dilation allows
such a trip, but the enormous practical problems of achieving such speeds may not
be possible to overcome, certainly not in the near future.

In this example, 100 years would pass on Earth, whereas only 4.5 years would pass
for the astronaut on the trip. Is it just the clocks that would slow down for the astronaut?
No.All processes, including aging and other life processes, run more slowly for the astro-
naut according to the Earth observer. But to the astronaut, time would pass in a normal
way. The astronaut would experience 4.5 years of normal sleeping, eating, reading,
and so on. And people on Earth would experience 100 years of ordinary activity.

Twin Paradox
Not long after Einstein proposed the special theory of relativity, an apparent
paradox was pointed out. According to this twin paradox, suppose one of a pair of
20-year-old twins takes off in a spaceship traveling at very high speed to a distant
star and back again, while the other twin remains on Earth. According to the Earth
twin, the astronaut twin will age less. Whereas 20 years might pass for the Earth
twin, perhaps only 1 year (depending on the spacecraft’s speed) would pass for the
traveler. Thus, when the traveler returns, the earthbound twin could expect to be
40 years old whereas the traveling twin would be only 21.

This is the viewpoint of the twin on the Earth. But what about the traveling
twin? If all inertial reference frames are equally good, won’t the traveling twin
make all the claims the Earth twin does, only in reverse? Can’t the astronaut twin
claim that since the Earth is moving away at high speed, time passes more slowly
on Earth and the twin on Earth will age less? This is the opposite of what the
Earth twin predicts. They cannot both be right, for after all the spacecraft returns
to Earth and a direct comparison of ages and clocks can be made.

There is, however, no contradiction here. One of the viewpoints is indeed incorrect.
The consequences of the special theory of relativity—in this case, time dilation—can
be applied only by observers in an inertial reference frame. The Earth is such a frame
(or nearly so), whereas the spacecraft is not. The spacecraft accelerates at the start and
end of its trip and when it turns around at the far point of its journey. During the accel-
eration, the twin on the spacecraft is not in an inertial frame. In between, the astronaut
twin may be in an inertial frame (and is justified in saying the Earth twin’s clocks run
slow), but it is not always the same frame. So she cannot use special relativity to predict
their relative ages when she returns to Earth. The Earth twin stays in the same inertial
frame, and we can thus trust her predictions based on special relativity. Thus, there is no
paradox.The prediction of the Earth twin that the traveling twin ages less is the proper one.

¢t0 = ¢t 31 - v2�c2 = (100 yr)31 - (0.999)2 = 4.5 yr.
v = 0.999c,

3.0 * 108 m�s * 3.16 * 107 s = 9.5 * 1015 m
=1 year

vg = 1�31 - v2�c2

D0 = v ¢t0 = (2.25 * 108
 m�s)(600s) = 1.35 * 1011

 m.

(0.75c)(15.1 min) = (0.75)A3.0 * 108 m�sB(15.1 min * 60 s�min) = 2.04 * 1011 m.
= D = v ¢t

¢t =
¢t0

C
1 -

v2

c2

=
10.00 min

31 - (0.75)2
= 15.1 min.

TABLE 1 Values of 

0 1.000
0.01c 1.000
0.10c 1.005
0.50c 1.15
0.90c 2.3
0.99c 7.1

G£

G
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Global Positioning System (GPS)
Airplanes, cars, boats, and hikers use global positioning system (GPS) receivers to
tell them quite accurately where they are, at a given moment. The 24 global
positioning system satellites send out precise time signals using atomic clocks. Your
receiver compares the times received from at least four satellites, all of whose
times are carefully synchronized to within 1 part in By comparing the time
differences with the known satellite positions and the fixed speed of light, the
receiver can determine how far it is from each satellite and thus where it is on 
the Earth. It can do this to a typical accuracy of 15 m, if it has been constructed to
make corrections such as the one below due to special relativity.

1013.

†We assume is much greater than the relative speed of Neptune and Earth, so the latter can be ignored.v

P H Y S I C S  A P P L I E D
Global positioning system 

(GPS)

* 

CONCEPTUAL EXAMPLE 4 A relativity correction to GPS. GPS satellites
move at about Show that a good GPS receiver needs to correct
for time dilation if it is to produce results consistent with atomic clocks accurate 
to 1 part in 

RESPONSE Let us calculate the magnitude of the time dilation effect by inserting
into Eq. 1a:

We use the binomial expansion: for which here is
That is

The time “error” divided by the time interval is

Time dilation, if not accounted for, would introduce an error of about 1 part in 
which is 1000 times greater than the precision of the atomic clocks. Not correcting
for time dilation means a receiver could give much poorer position accuracy.
NOTE GPS devices must make other corrections as well, including effects associated
with general relativity.

1010,

A¢t - ¢t0B
¢t0

= 1 + 9 * 10–11 - 1 = 9 * 10–11
  L   1 * 10–10.

¢t = A1 + 1
2 A1.8 * 10–10B B ¢t0 = A1 + 9 * 10–11B ¢t0 .

(1 - x)-
1
2 L 1 + 1

2 x.
x V 1(16x)n L 16nx

 =
1

31 - 1.8 * 10–10
 ¢t0 .

 =
1

C
1 - ¢ 4 * 103 m�s

3 * 108 m�s
≤ 2

 ¢t0

 ¢t =
1

C
1 -

v2

c2

 ¢t0

v = 4000 m�s

1013.

4 km�s = 4000 m�s.

6 Length Contraction
Time intervals are not the only things different in different reference frames. Space
intervals—lengths and distances—are different as well, according to the special
theory of relativity, and we illustrate this with a thought experiment.

Observers on Earth watch a spacecraft traveling at speed from Earth to, say,
Neptune, Fig. 8a. The distance between the planets, as measured by the Earth
observers, is The time required for the trip, measured from Earth, is

[Earth observer]

In Fig. 8b we see the point of view of observers on the spacecraft. In this frame of
reference, the spaceship is at rest; Earth and Neptune move† with speed 
The time between departure of Earth and arrival of Neptune (observed from the
spacecraft) is the “proper time,” since the two events occur at the same point in
space (i.e., on the spacecraft). Therefore the time interval is less for the spacecraft

v.

¢t =
l0

v
.

l0 .

v
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Earth

(b)

Neptune

Neptune

(a)

Earth

vv

Earth at rest

Spacecraft at rest

v FIGURE 8 (a) A spaceship
traveling at very high speed from
Earth to the planet Neptune, as seen
from Earth’s frame of reference.
(b) According to an observer on the
spaceship, Earth and Neptune are
moving at the very high speed 
Earth leaves the spaceship, and a
time later Neptune arrives at the
spaceship.

¢t0

v:

observers than for the Earth observers. That is, because of time dilation (Eq. 1a), the
time for the trip as viewed by the spacecraft is

[spacecraft observer]

Because the spacecraft observers measure the same speed but less time between
these two events, they also measure the distance as less. If we let be the distance
between the planets as viewed by the spacecraft observers, then 
which we can rewrite as Thus 
we have the important result that

(3a)

or, using (Eq. 2),

(3b)

This is a general result of the special theory of relativity and applies to lengths of objects
as well as to distance between objects.The result can be stated most simply in words as:

the length of an object moving relative to an observer is measured to be
shorter along its direction of motion than when it is at rest.

This is called length contraction. The length in Eqs. 3 is called the proper length.
It is the length of the object (or distance between two points whose positions are
measured at the same time) as determined by observers at rest with respect to the
object. Equations 3 give the length that will be measured by observers when the
object travels past them at speed 

It is important to note that length contraction occurs only along the direction
of motion. For example, the moving spaceship in Fig. 8a is shortened in length, but
its height is the same as when it is at rest.

Length contraction, like time dilation, is not noticeable in everyday life because the
factor in Eq. 3a differs from 1.00 significantly only when is very large.

EXAMPLE 5 Painting’s contraction. A rectangular painting measures 1.00 m
tall and 1.50 m wide. It is hung on the side wall of a spaceship which is moving
past the Earth at a speed of 0.90c. See Fig. 9a. (a) What are the dimensions of the
picture according to the captain of the spaceship? (b) What are the dimensions as
seen by an observer on the Earth?

APPROACH We apply the length contraction formula, Eq. 3a, to the dimension
parallel to the motion; is the speed of the painting relative to the observer.
SOLUTION (a) The painting is at rest on the spaceship so it (as well as
everything else in the spaceship) looks perfectly normal to everyone on the
spaceship. The captain sees a 1.00-m by 1.50-m painting.
(b) Only the dimension in the direction of motion is shortened, so the height is
unchanged at 1.00 m, Fig. 9b. The length, however, is contracted to

So the picture has dimensions 1.00 m * 0.65 m.

 = (1.50 m)31 - (0.90)2 = 0.65 m.

 l = l0C1 -
v2

c2

(v = 0)

v

v31 - v2�c2

v.
l

l0

l =
l0

g
.

g

l = l031 - v2�c2

l = v ¢t0 = v ¢t 31 - v2�c2 = l031 - v2�c2 .
l = v ¢t0 ,

l

 ¢t0 = ¢t 31 - v2�c2   =   ¢t�g.

?

1.00 m

1.50 m

1.00 m

(a)

(b)

FIGURE 9 Example 5.

C A U T I O N
Proper length is measured 
in reference frame where the 
two positions are at rest

LENGTH CONTRACTION
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EXAMPLE 6 A fantasy supertrain. A very fast train with a proper length of
500 m is passing through a 200-m-long tunnel. Let us imagine the train’s speed to
be so great that the train fits completely within the tunnel as seen by an observer
at rest on the Earth. That is, the engine is just about to emerge from one end of
the tunnel at the time the last car disappears into the other end. What is the
train’s speed?

APPROACH Since the train just fits inside the tunnel, its length measured by the
person on the ground is 200 m. The length contraction formula, Eq. 3a or b, can
thus be used to solve for 

SOLUTION Substituting and into Eq. 3a gives

dividing both sides by 500 m and squaring, we get

or

and

NOTE No real train could go this fast. But it is fun to think about.

NOTE An observer on the train would not see the two ends of the train inside the
tunnel at the same time. Recall that observers moving relative to each other do
not agree about simultaneity.

 v = 0.92c.

 
v
c

= 31 - (0.40)2

(0.40)2 = 1 -
v2

c2

200 m = 500 m
 
 C

1 -
v2

c2
;

l0 = 500 ml = 200 m

v.

EXERCISE D What is the length of the tunnel as measured by observers on the train in
Example 6?

CONCEPTUAL EXAMPLE 7 Resolving the train and tunnel length. Observers
at rest on the Earth see a very fast 200-m-long train pass through a 
200-m-long tunnel (as in Example 6) so that the train momentarily disappears from
view inside the tunnel. Observers on the train measure the train’s length to be 
500 m and the tunnel’s length to be only 80 m (Exercise D, using Eq. 3a). Clearly a
500-m-long train cannot fit inside an 80-m-long tunnel. How is this apparent
inconsistency explained?

RESPONSE Events simultaneous in one reference frame may not be simultaneous
in another. Let the engine emerging from one end of the tunnel be “event A,” and
the last car disappearing into the other end of the tunnel “event B.” To observers in
the Earth frame, events A and B are simultaneous. To observers on the train,
however, the events are not simultaneous. In the train’s frame, event A occurs before
event B. As the engine emerges from the tunnel, observers on the train observe the
last car as still from the entrance to the tunnel.500 m - 80 m = 420 m
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7 Four-Dimensional Space–Time
Let us imagine a person is on a train moving at a very high speed, say 0.65c,
Fig. 10. This person begins a meal at 7:00 and finishes at 7:15, according to a clock
on the train. The two events, beginning and ending the meal, take place at the same
point on the train. So the proper time between these two events is 15 min. To
observers on Earth, the meal will take longer—20 min according to 
Eqs. 1. Let us assume that the meal was served on a 20-cm-diameter plate.
To observers on the Earth, the plate is only 15 cm wide (length contraction). Thus,
to observers on the Earth, the meal looks smaller but lasts longer.

In a sense the two effects, time dilation and length contraction, balance each
other. When viewed from the Earth, what an object seems to lose in size it gains in
length of time it lasts. Space, or length, is exchanged for time.

Considerations like this led to the idea of four-dimensional space–time: space
takes up three dimensions and time is a fourth dimension. Space and time are
intimately connected. Just as when we squeeze a balloon we make one dimension
larger and another smaller, so when we examine objects and events from different
reference frames, a certain amount of space is exchanged for time, or vice versa.

Although the idea of four dimensions may seem strange, it refers to the idea
that any object or event is specified by four quantities—three to describe where in
space, and one to describe when in time.The really unusual aspect of four-dimensional
space–time is that space and time can intermix: a little of one can be exchanged
for a little of the other when the reference frame is changed.

It is difficult for most of us to understand the idea of four-dimensional
space–time. Somehow we feel, just as physicists did before the advent of relativity,
that space and time are completely separate entities. Yet we have found in our
thought experiments that they are not completely separate. And think about
Galileo and Newton. Before Galileo, the vertical direction, that in which objects
fall, was considered to be distinctly different from the two horizontal dimensions.
Galileo showed that the vertical dimension differs only in that it happens to be the
direction in which gravity acts. Otherwise, all three dimensions are equivalent, a
viewpoint we all accept today. Now we are asked to accept one more dimension,
time, which we had previously thought of as being somehow different. This is not
to say that there is no distinction between space and time. What relativity has
shown is that space and time determinations are not independent of one another.

In Galilean–Newtonian relativity, the time interval between two events,
and the distance between two events or points, are invariant quantities no
matter what inertial reference frame they are viewed from. Neither of these
quantities is invariant according to Einstein’s relativity. But there is an invariant
quantity in four-dimensional space–time, called the space–time interval, which 
is We leave it as a Problem (97) to show that this quantity
is indeed invariant under a Lorentz transformation (Section 8).

(¢s)2 = (c ¢t)2 - (¢x)2.

¢x,
¢t,

(a)

7

(b)

7

FIGURE 10 According to an
accurate clock on a fast-moving
train, a person (a) begins dinner at
7:00 and (b) finishes at 7:15. At the
beginning of the meal, two observers
on Earth set their watches to
correspond with the clock on the
train. These observers measure the
eating time as 20 minutes.
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FIGURE 11 Inertial reference frame
moves to the right at constant speed

with respect to frame S.v
S¿

8 Galilean and Lorentz Transformations
We now examine in detail the mathematics of relating quantities in one inertial
reference frame to the equivalent quantities in another. In particular, we will see
how positions and velocities transform (that is, change) from one frame to the other.

We begin with the classical or Galilean viewpoint. Consider two inertial
reference frames S and which are each characterized by a set of coordinate axes,
Fig. 11. The axes x and y (z is not shown) refer to S and and to 
The and x axes overlap one another, and we assume that frame moves to the
right in the x direction at constant speed with respect to S. For simplicity let 
us assume the origins 0 and of the two reference frames are superimposed at
time t = 0.

0¿
v

S¿x¿
S¿.y¿x¿

S¿

Now consider an event that occurs at some point P (Fig. 11) represented by
the coordinates in reference frame at the time What will be the
coordinates of P in S? Since S and initially overlap precisely, after a time 
will have moved a distance Therefore, at time The y and z
coordinates, on the other hand, are not altered by motion along the x axis;
thus and Finally, since time is assumed to be absolute in
Galilean–Newtonian physics, clocks in the two frames will agree with each other;
so We summarize these in the following Galilean transformation equations:

[Galilean] (4)

These equations give the coordinates of an event in the S frame when those in the
frame are known. If those in the S frame are known, then the coordinates are

obtained from

[Galilean]

These four equations are the “inverse” transformation and are very easily obtained
from Eqs. 4. Notice that the effect is merely to exchange primed and unprimed
quantities and replace by This makes sense because from the frame, S
moves to the left (negative x direction) with speed 

Now suppose the point P in Fig. 11 represents a particle that is moving. Let the
components of its velocity vector in be (We use u to distinguish it
from the relative velocity of the two frames, .) Now 
and The velocity of P as seen from S will have components 
and We can show how these are related to the velocity components in by
differentiating Eqs. 4. For we get

since is assumed constant. For the other components, and souœz = uz ,uœy = uyv

ux =
dx
dt 

=
d(x¿ + vt¿)
dt¿                

= uœx + v

ux

S¿uz .
ux , uy ,uœz = dz¿�dt¿.

uœy = dy¿�dt¿uœx = dx¿�dt¿,v
uœx , uœy , uœz .S¿

v.
S¿–v.v

x¿ = x - vt,        y¿ = y,        z¿ = z,        t¿ = t.

S¿S¿

 t = t¿.
 z = z¿
 y = y¿
 x = x¿ + vt¿

t = t¿.

z = z¿.y = y¿

t¿, x = x¿ + vt¿.vt¿.
t¿, S¿S¿

t¿.S¿x¿, y¿, z¿
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we have

[Galilean] (5)

These are known as the Galilean velocity transformation equations. We see that
the y and z components of velocity are unchanged, but the x components 
differ by This is just what you may have seen when dealing with
relative velocity.

The Galilean transformations, Eqs. 4 and 5, are valid only when the velocities
involved are much less than c. We can see, for example, that the first 
of Eqs. 5 will not work for the speed of light: light traveling in with 
speed would have speed in S, whereas the theory of relativity insists it
must be c in S. Clearly, then, a new set of transformation equations is needed to
deal with relativistic velocities.

We derive the required equation, looking again at Fig. 11. We will try the
simple assumption that the transformation is linear and of the form

(i)

That is, we modify the first of Eqs. 4 by multiplying by a constant which is yet to 
be determined† ( non-relativistically). But we assume the y and z equations are
unchanged since there is no length contraction in these directions. We will not assume
a form for but will derive it. The inverse equations must have the same form with 
replaced by (The principle of relativity demands it, since moving to the right
with respect to S is equivalent to S moving to the left with respect to ) Therefore

(ii)

Now if a light pulse leaves the common origin of S and at time after
a time it will have traveled a distance or along the x axis.
Therefore, from Eqs. (i) and (ii) above,

(iii)

(iv)

We substitute from Eq. (iv) into Eq. (iii) and find 
We cancel out the on each side and solve for to find

The constant here has the same value as the we used before, Eq. 2. Now that
we have found we need only find the relation between and To do so, we
combine with 

We solve for and find In summary,

(6)

These are called the Lorentz transformation equations. They were first proposed,
in a slightly different form, by Lorentz in 1904 to explain the null result of the
Michelson–Morley experiment and to make Maxwell’s equations take the same
form in all inertial reference frames. A year later Einstein derived them
independently based on his theory of relativity. Notice that not only is the x equation
modified as compared to the Galilean transformation, but so is the equation;
indeed, we see directly in this last equation how the space and time coordinates mix.

t

 t = g ¢ t¿ +
vx¿
c2
≤

 z = z¿
 y = y¿
 x = g(x¿ + vt¿)

t = g  At¿ + vx¿�c2B.t

x¿ = g(x - vt) = g(g[x¿ + vt¿] - vt).

x = g(x¿ + vt¿):x¿ = g(x - vt)
t¿.tg,

gg

g =
1

31 - v2�c2
.

gtg2Ac2 - v2Bt�c.
=ct = g(c + v)g(c - v)(t�c)t¿

 ct¿ = g(ct - vt) = g(c - v)t.

 ct = g(ct¿ + vt¿) = g(c + v) t¿, 

x¿ = ct¿x = ctt
t = t¿ = 0,S¿

x¿ = g(x - vt).

S¿.
S¿–v.

vt,

g = 1
g

x = g(x¿ + vt¿),        y = y¿,        z = z¿.

c + vuœx = c
S¿

ux = uœx + v.v:

 uz = uœz .
 uy = uœy

 ux = uœx + v

LORENTZ 

TRANSFORMATIONS

† here is not assumed to be given by Eq. 2.g
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