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The Dawn 
of a New Age

Chapter Outline

1 Troubling Questions
2 A Glimpse of the New World

Introductory classical physics covers a body of knowledge that can
explain a vast amount of what goes on around us, from the every-

day to the abstract. Why does a bicycle go forward when the rider pushes
downward on a pedal? What forms can energy take, and if it is conserved, why
can’t we reuse indefinitely? How do waves propagate energy and information
without any matter moving from source to receiver? What are electric and
magnetic fields?

However, early in the 20th century, revolutionary ideas arose that shook
classical physics to its foundation. Even the most basic and “obvious” truths
about space and time and the nature of the matter around us came under
assault.  In this chapter, we discuss several telling signs that something was
wrong with the classical picture, then we survey the path ahead. (Certain top-
ics from classical physics are particularly important to modern physics. A
review of these topics is available on the companion website.)

1  Troubling Questions

The core topics of classical physics are mechanics, electromagnetism, and
thermodynamics. Let us take a look at some of the problems that loomed in
these areas at the dawn of the modern age.

Classical mechanics attained a cohesive form in the late 1600s with the
work of Sir Isaac Newton. Triumphant in explaining the behaviors of macro-
scopic objects at ordinary speeds, Newton’s work reigned unchallenged for cen-
turies. As convincing as anything were its successes in celestial applications.
When the orbit of the planet Uranus was found to deviate slightly from what
Newton’s laws predicted it should be, the instinctive response was to attribute
the deviation not to any failure of those laws but rather to some unseen heavenly
body. Newton’s laws predicted its location, and Neptune was later found right
where it should be. After such satisfying confirmation, it was natural to expect
further examples. Mercury’s orbit is somewhat elliptical, but the ellipse is not
retraced again and again. It precesses—that is, its points of maximum radius
advance slightly with each orbit about the Sun. Newton’s laws predicted one

From Chapter 1 of Modern Physics, Second Edition. Randy Harris. Copyright © 2008 by Pearson Education, Inc. 
Published by Pearson Addison-Wesley. All rights reserved.
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The Dawn of a New Age

rate of precession; actual observation differed. The discrepancy was again
thought to be due to an unseen planet, but in this case, none could be found.

Maturing in the mid-19th century with James Clerk Maxwell’s comple-
tion and integration of the laws of Gauss, Ampere, and Faraday, electromag-
netism has been extremely successful. It superbly explains the physics behind
telephonic communication and electrical power supply, which had become
commonplace by the end of the 19th century, and it continues to prove its
validity in countless applications to this day. Early on, however, doubts were
raised about the theory’s prediction of waves of electromagnetic radiation. For
one thing, the lack of explicit reference to a medium of propagation seemed to
put light in a special category among wave phenomena. Another problem had
to do with the energy expected in electromagnetic radiation exchanged with 
matter. Charges in the matter should jiggle around at rates dependent on the 
temperature, producing and absorbing electromagnetic energy as they do. 
A standard wave calculation predicted that the electromagnetic intensity
nearby should be infinite! Yet another perplexing question concerned the abil-
ity of light to eject electrons from a metal, known as the photoelectric effect.
In the classical view, a light wave is simply a pair of self-propagating electric
and magnetic fields spread diffusely through some region of space. If light
encounters an electron in a metal, these fields should be able to transfer energy
to the electron and knock it out of the metal. Light of low intensity might
require considerable time to deposit enough energy, but a high intensity
should knock electrons out at a high rate and—owing to its stronger electric
and magnetic fields—should eject them with greater kinetic energy. In fact,
even very low-intensity light can eject electrons immediately, and the kinetic
energy of an ejected electron is completely independent of the light’s intensity.
The frequency of the light seemed to be the deciding factor, and classical elec-
tromagnetism could not explain why.

By the end of the 19th century, statistical thermodynamics had become
one of the cornerstones of physics. Its laws had been established, and correct
predictions were being made. A major step forward was the formulation of the
equipartition theorem. This says that each independent degree of freedom pos-
sessed by a particle in a thermodynamic system should manifest of
energy on average, where kB is the Boltzmann constant and T is the tempera-
ture. There are three dimensions of translational freedom, leading to the
famous formula for the average translational kinetic energy of a particle: .
In a solid, each atom has three additional degrees of freedom due to elastic
potential energy in each dimension. With six total degrees of freedom per
atom, the equipartition theorem predicts that a solid should have a heat capacity—
energy per degree per mole—of 3kBNAv, where NAv is Avogadro’s number.
This prediction supported an early empirical observation that many solids
seem to have a heat capacity very near this value. However, even solids that
adhered to the prediction at ordinary temperatures deviated noticeably at low
temperatures, where the heat capacity seemed to drop off toward zero. To clas-
sical statistical physics, this was thoroughly baffling.

Perhaps attracting more scrutiny than any other classically inexplicable
phenomenon at the turn of the 20th century was the subject of atomic spectra.
Atoms emit only certain wavelengths of light. Why? With the discovery of the

3
2 kBT

1
2 kBT
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electron by J. J. Thomson in 1898, hopes of explaining spectra rose—for a small
charged particle somehow jiggling around in an atom should emit electromag-
netic radiation. Neither the proton nor the atomic nucleus was yet known, and
Thomson’s model of the atom assumed that its electrons were embedded in a
uniform sea of positive charge. No plausible oscillations of the electrons in this
model could explain the observations. About a dozen years later, the work of
Ernest Rutherford and his students produced the now-familiar model of electrons
orbiting a positive nucleus. Although the quantum age had by then begun,
Rutherford’s nuclear model was still classical, and it actually compounded the
mystery. An orbiting electron would be accelerating continuously, and any time a
charged particle accelerates, it radiates electromagnetic energy. The nuclear atom
should be unstable, with the electron spiralling into the nucleus! Perhaps not sur-
prisingly, this model also failed to explain the spectral evidence. Some of its basic
elements survived, but it was to be profoundly altered by the new paradigm.

2  A Glimpse of the New World

Much of modern physics rests on two basic ideas: First, space and time are not
the absolutes they might seem to be. Second, things we might think of as particles
may behave as waves, and vice versa. Although these ideas are now accepted as
fundamental to physics, they initially met with considerable opposition.

The main reason they remained hidden for so long is that they involve
behaviors not easily observed. And the reason they were not universally wel-
comed is that they often seem counterintuitive. These two reasons are related.
A behavior certainly would not be counterintuitive if it were subject to simple
observation. By the same token, we cannot justifiably claim to possess intu-
ition about a phenomenon we cannot observe. Loosely speaking, modern physics
is the study of the small and the fast, but no one has ever actually seen an indi-
vidual atom nor has anyone ever traveled at a significant fraction of the speed
of light relative to Earth. We must be careful not to apply preexisting notions
based on experience to situations in which we have no experience.

The branch of modern physics dealing with space and time is special rela-
tivity. Although it is often said to be the physics that applies when objects or
frames of reference are moving at very high speed, this is rather misleading, for
it makes relativity sound like a special case. Relativity agrees with classical
physics at low speeds, but it also succeeds at speeds comparable to that of light,
where classical physics fails. Thus, classical mechanics is the special case. Of
the many startling claims of special relativity, one is particularly helpful as an
introduction and preparation for the challenges ahead: If passengers on a (very)
high-speed train confirm that clocks at the front and back of their train strike
noon simultaneously, observers on the ground will confirm that these clocks do
not strike noon simultaneously. This discrepancy is very small at ordinary
speeds, but it is not an optical illusion.

The other main branch of modern physics is quantum mechanics, which
has its own challenging notions. In classical mechanics and electromagnetism,

The Dawn of a New Age
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The Dawn of a New Age

we treat the electron as a particle, but in small confines, it behaves as a diffuse
wave. It does not have a specific location! All we can know are probabilities of
finding the electron if an attempt were made to do so, and the probabilities are
related to the amplitude of the wave. These claims are met with amusement
and disbelief by some people, but upon them rest major areas of science, such
as chemistry, modern electronics, materials science, modern optics (lasers),
nuclear physics, and a host of others. We say that quantum mechanics applies
in the realm of very small confines, not usually open to casual scrutiny, but as
in the case of relativity, this is somewhat inaccurate. Quantum mechanics is
correct for small and large and converges to the special case of classical
mechanics in the limit of large things.

It is natural to ask how classical mechanics can be a special case of two
different things. The figure schematically depicts the realms of applicability of
the different theories. The special relativity we study in this text is valid only
for large things. It is not correct quantum mechanically. Similarly, the quan-
tum mechanics we study is, with a few noted exceptions, not relativistically
correct; rather, it is valid only for slow-moving things. Classical physics is the
region where these two overlap. The region conspicuously missed by both
regions is the realm of the small and fast. This is the focus of high-energy
physics—the search for the fundamental structure of the universe.

Classical physics is tremendously successful in its realm, but modern
physics is truly an eye-opener. On to the new world!

Slow

Classical
physics

Quantum
mechanics

Special
relativityLarge

Small

Fast
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Waves and Particles I:
Electromagnetic 
Radiation Behaving
as Particles

Chapter Outline

1 Blackbody Radiation: A New Fundamental Constant
2 The Photoelectric Effect
3 The Production of X-Rays
4 The Compton Effect
5 Pair Production
6 Is It a Wave or a Particle?

We now begin our investigation of quantum mechanics. In some
sense, quantum mechanics is the study of small things—so

small that it is essentially impossible to observe them without affecting their
very behavior. For example, the simplest way of observing an object is to look
at it. But to do that, light must be bounced off it, and light carries energy, some
of which will unavoidably be transferred to the object. Ordinarily, the effect is
inconsequential, but if the object is very small, such as a single electron, it
might be significant. Thus, we shouldn’t be too surprised that the behavior
might vary, depending on how the observation is made.

A cornerstone of quantum mechanics is wave-particle duality: Things
may behave as waves or as discrete particles, depending on the situation.
The “situation” might be imposed by a deliberate experiment or governed
simply by the dimensions of the region where the thing is confined. Two of
the most important things we study are massive objects and electromagnetic
radiation. In classical situations, our observations reveal electromagnetic
radiation behaving as waves and massive objects as discrete particles. We now
look at the nonclassical side of the coin. In this chapter, we study the comple-
mentary topic—electromagnetic radiation behaving as a collection of discrete
particles. We begin with a brief look at the discovery that sparked the quantum
revolution.

From Chapter 3 of Modern Physics, Second Edition. Randy Harris. Copyright © 2008 by Pearson Education, Inc. 
Published by Pearson Addison-Wesley. All rights reserved.
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Classical wave theory

Experimental data,
and Planck’s theory

f

dU
/d

f

Figure 2 Experiment shows that as
frequency increases, the blackbody
spectral energy density reaches a maxi-
mum, then falls off. Classical wave
theory predicts a divergence.

Incoming radiation 
is absorbed completely
in multiple internal 
reflections.

Outgoing radiation
is due only to thermal 
motion of charges in 
walls.

T

Figure 1 Radiation exits a cavity
through a hole, which behaves as a
blackbody.

Waves and Particles I: Electromagnetic Radiation Behaving as Particles

1  Blackbody Radiation: A New Fundamental
Constant

The quantum age dawned with the work of Max Planck in the year 1900.
Planck was trying to find a theory that would explain blackbody radiation.
All materials emit electromagnetic radiation, because they contain charged
particles that jiggle around, and an accelerating charge radiates electromag-
netic energy. The amount of energy radiated depends on the average energy of
the motion, which, in turn, depends on the temperature. For example, coals
radiate invisible infrared energy even when cold, but when heated, they emit
more radiation, much of it in the red end of the spectrum. They visibly glow
“red hot.” Most materials, however, also reflect electromagnetic energy. A
blackbody is defined to be any object from which electromagnetic radiation
emanates solely due to the thermal motion of its charges. Any radiation that
strikes it must be absorbed rather than reflected, hence the name. (The term
must not be taken too literally. The Sun’s surface, from which reflection is
insignificant, is a blackbody.)

While coal is a good approximation, fabricating a true blackbody might
seem problematic. Imagine, however, an object with an interior cavity and a
small hole connecting it to the exterior, depicted in Figure 1. Any radiation
entering the hole would reflect from the cavity’s inner surface many times,
losing energy to the object at each reflection. Essentially none would reflect
back directly through the hole. On the other hand, all areas of the inner surface
contain charges in thermal motion, constantly absorbing electromagnetic
energy and reradiating it as they jiggle around. They will furthermore be in
equilibrium with the electromagnetic energy in the cavity—the charges and
the radiation will have the same temperature, T. The portion of the radiation
leaking out of the small hole will be characteristic of this temperature, so the
hole behaves as a blackbody of temperature T.

Experiment demonstrates that the energy emitted by a blackbody, or
equivalently a cavity, is small at low frequency, reaches a maximum, then
falls again toward zero thereafter. This is illustrated by the experimental
curve in Figure 2, which plots electromagnetic energy dU per frequency
range df, known as spectral energy density. Classical theory, on the other
hand, differed. If the electromagnetic radiation in a cavity behaves strictly
as sinusoidally oscillating waves of arbitrary amplitude, the average energy
of a wave of any given frequency should be kBT. Multiplying this by a factor
that accounts for the number of different waves per frequency range df in
volume V, the classical prediction for spectral energy density is

Something is certainly wrong here, for as Figure 2 shows, this parabolic func-
tion diverges as f increases without bound. If true, all materials would radiate
infinite power.

dU

df
= kBT *

8pV

c3  f  
2  

Spectral energy density

via classical wave theory
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Waves and Particles I: Electromagnetic Radiation Behaving as Particles

Electron

Light

Figure 3 The photoelectric effect:
Light liberating an electron from a
metal surface.

Planck’s spectral energy density

Planck found that he could match the experimental data with a curious
assumption: The energy at frequency f is somehow restricted to E � nhf, where n
is an integer and h is a constant. The specific error in classical wave theory is in the
average energy of a given wave, which is obtained by integrating over an assumed
continuum of possible energy values. Under Planck’s assumption, these values are
discrete, so the integral becomes a sum, with a notably different result. Replacing
the kBT of wave theory with Planck’s result, the spectral energy density becomes

(1)

which fits the experimental curve perfectly.
The value Planck quoted for h, the now famous Planck’s constant, was

6.63 � 10�34 J # s. Naturally, it was the value that matched his formula to the
experimental curve. While it is tempting to question why he couldn’t derive it,
the fact that it was even possible to match the curve was significant. Although
varying h would change the energy density’s magnitude at all frequencies, it
would not alter its shape. Had there been no merit in Planck’s assumption, it
would have been the most bizarre coincidence for that shape to match the
experimental curve. With hindsight, we now realize that Planck’s constant
cannot be derived, for it is one of nature’s fundamental constants (e.g., the uni-
versal gravitational constant G), all of which are a matter of experimental
observation. For the discovery, Planck was awarded the 1918 Nobel Prize.

Planck’s spectral energy density is the crucial link between temperature
and electromagnetic radiation. Interestingly, although the assumption E � nhf,
on which Planck based his formula, might suggest electromagnetic radiation
behaving as an integral number of particles of energy hf, Planck hesitated at
the new frontier—others carried the revolution forward. Let us take a look at
the next major step.

2  The Photoelectric Effect

Classically, electromagnetic radiation is a wave. The energy it carries is dif-
fuse, distributed continuously along a broad wave front, and its intensity—
energy per unit time per unit area—is proportional to , where E0 is the
amplitude of the electric field oscillations. In the 1880s, Heinrich Hertz
demonstrated that a light beam directed at the surface of a metal could liberate
electrons. This is called the photoelectric effect—light producing a flow of
electricity—and is depicted in Figure 3. It was also known that a certain
amount of energy is required simply to free an electron. The electron is bound
to the metal; pulling it loose takes energy; and any surplus becomes the freed
electron’s kinetic energy. The minimum energy required to free an electron, the
work function �, is a characteristic of the particular metal. Table 1 lists some
values (subject to variation, depending on impurities and other factors).

If light were strictly a wave, this effect should have several specific traits.
First, if light of one wavelength is able to eject electrons, then light of any
wavelength should be able to do it. Independent of the wavelength, the rate at
which energy arrives (the intensity)—and therefore the rate at which electrons

E0
2

dU

df
=

hf

ehf>kBT - 1
*

8pV

c3  f  
2

Planck’s constant
h � 6.63 � 10�34 J ·s
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Photoelectric effect

Energy of a photon

Waves and Particles I: Electromagnetic Radiation Behaving as Particles

TABLE 1

Metal Work Function
� (in eV)

Cesium 1.9

Potassium 2.2

Sodium 2.3

Magnesium 3.7

Zinc 4.3

Chromium 4.4

Tungsten 4.5

are ejected—could be made arbitrarily large simply by increasing E0. Second,
if the intensity is low, then even though electrons might still be ejected, a mea-
surable time lag should arise. Because a wave is diffuse, considerable time
might be needed for enough energy to accumulate in the electron’s vicinity.
(See Exercise 16.) Finally, at any given frequency, if the intensity is increased,
the departing electrons should be more energetic. A stronger electric field
should produce a larger acceleration.

Imagine the experimenter’s surprise when weak light of 500 nm wave-
length ejects electrons from sodium, with no time lag, while light of 600 nm
wavelength cannot, even at many times the intensity. Moreover, the energy of
the electrons liberated by the 500 nm light is completely independent of the
intensity. Classically, this cannot be explained!

In 1905, Albert Einstein proposed the following explanation: The light is
behaving as a collection of particles, called photons, each with energy given by

E � hf (2)

where h is Planck’s constant. A given electron is ejected by a single photon, with
the photon transferring all its energy to the electron and then disappearing—
multiple photons very rarely gang up on one electron. If the light’s frequency is
too low, such that the photon energy hf is less than the work function �, then there
is simply insufficient energy in any given photon to free an electron. So none are
freed, no matter how high the intensity; no matter how abundant the photons.
(The photon energy becomes internal energy or reflected light.) However, if the
frequency is high enough, such that hf � �, then electrons can be ejected. The
kinetic energy given to the electron would then be the difference between the
photon’s energy and the energy � required to free the electron from the metal.

KEmax � hf � � (3)

The subscript “max” arises because � is the energy needed to free the least
strongly bound electrons. Others may also be freed, but less of the photon’s
energy would then be left for kinetic energy.

Einstein’s interpretation of the photoelectric effect explains not only the
observation that a certain minimum frequency is required but also the other
classically unexpected results. If a single photon—a particle of concentrated
energy rather than a diffuse wave—does have enough energy, ejection should
be immediate, with no time lag. Also, the electron’s kinetic energy should
depend only on the energy of the single photon—the frequency—not on how
many strike the metal per unit time (the intensity). In all respects, Einstein’s
explanation agrees with the experimental evidence, and the achievement
earned him the 1921 Nobel Prize in physics.

EXAMPLE 1

Light of 380 nm wavelength is directed at a metal electrode. To determine the energy
of electrons ejected, an opposing electrostatic potential difference is established
between it and another electrode, as shown in Figure 4. The current of photoelec-
trons from one to the other is stopped completely when the potential difference is

8



Waves and Particles I: Electromagnetic Radiation Behaving as Particles

1.10 V. Determine (a) the work function of the metal and (b) the maximum-wave-
length light that can eject electrons from this metal.

SOLUTION

(a) In the region between the electrodes, the electrons lose kinetic energy as they
gain potential energy. If a potential energy difference of qV � (1.6 � 10�19 C)
(1.10 V) � 1.76 � 10�19 J � 1.10 eV is the most they can surmount, their
kinetic energy leaving the first electrode must be no larger than 1.10 eV. The
potential difference that barely stops the flow is known as the stopping poten-
tial. Using equation (3),

(b) If the wavelength of the light were increased to �′, the frequency—and thus 
the photon energy—would decrease. The limit for ejecting electrons is when an
incoming photon has only enough energy to free an electron from the metal,
with none left for kinetic energy. Again using equation (3),

Wavelengths longer than 573 nm have insufficient energy per photon, so no
photoelectrons are produced. The maximum wavelength for which electrons
are freed is called the threshold wavelength, and the corresponding minimum
frequency is the threshold frequency.

The central point in Einstein’s explanation of the photoelectric effect is that
electromagnetic radiation appears to be behaving as a collection of particles,
each with a discrete energy. Something that is discrete, as opposed to continu-
ous, is said to be quantized. In the photoelectric effect, the energy in light is
quantized.

EXAMPLE 2

How many photons per second emanate from a 10 mW 633 nm laser?

SOLUTION

For each photon,

To find number of particles per unit time, we divide energy per unit time by energy
per particle:

Clearly, photons are rather “small,” and it is easy to see how a light beam could
appear continuous.

number of particles

time
=

10 * 10-3 J>s
3.14 * 10-19 J>particle

= 3.18 * 1016 particles/s

E = hf = h 

c

l
= 16.63 * 10-34 J # s2¢ 3 * 108 m>s

633 * 10-9 m
≤ = 3.14 * 10-19 J

Q  l¿ = 573 nm

0 = hf ¿ - f = 16.63 * 10-34 J # s2¢3 * 108 m>s
l¿

≤ - 3.47 * 10-19 J

 Q  f = 3.47 * 10-19 J = 2.17 eV

 1.76 * 10-19 J = 16.63 * 10-34 J # s2¢ 3 * 108 m>s
380 * 10-9 m

≤ - f Light �V

 � 

 � 

Figure 4 Current between the 
electrodes stops when the opposing
potential energy difference equals the
maximum kinetic energy of the 
photoelectrons.
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Waves and Particles I: Electromagnetic Radiation Behaving as Particles

The photoelectric effect has long been used in simple light sensors, where
light intensity registers as a photocurrent, but it is also used in more sophisti-
cated ways. Let us take a look at one.

REAL-WORLD EXAMPLE NIGHT VISION

By “replacing” a photon with an electron, whose charge makes it easier to “amplify,”
the photoelectric effect is a common front end on optical imaging systems. One
example is the night vision device (NVD). A typical NVD is shown schematically in
Figure 5. An objective lens focuses an optical image onto a thin piece of material,
called a photocathode, where the photoelectric effect transforms it into an image of
freed electrons. Naturally, the dimmer the light, the fewer the photoelectrons. Ampli-
fication is accomplished via a microchannel plate. This element has hundreds of
thousands of channels per square centimeter. An electron entering a channel at one
end, driven through by a potential difference, knocks off other electrons at each col-
lision with the channel walls, emerging at the other end with about 10,000 fellow
electrons. (Macroscopic objects that work this way are known as photomultiplier
tubes and are widely used in astronomy and particle physics, as well as in medical
imaging.) This greatly amplified signal then strikes a phosphorescent screen to pro-
duce the final visible image in the phosphor’s characteristic color.

Optimizing photocathode materials is front-line research, but we can easily
grasp one of the basic constraints.

Applying the Physics

(a) If we wish a light-sensing device relying on the photoelectric effect to be sensi-
tive to the entire visible spectrum (400 –700 nm), explain why zinc would be a poor
choice of photocathode. See Table 1. (b) A common photocathode containing the
alkali metals cesium, potassium, and sodium has a very low effective work function
of about 1.4 eV. What wavelengths can it “see”?

SOLUTION

(a) Zinc has a work function of 4.3 eV. Example 1 showed that a material with a
lower work function has a threshold wavelength of 573 nm. Thus, wavelengths
in the orange and red end of the spectrum would not liberate any photoelec-
trons. Zinc would “see” even less of the visible spectrum.

(b) The work function equals the energy of the longest-wavelength photon that can
free an electron. Before finding this wavelength, we note that it is quite common
to express wavelengths in nanometers and energies in electronvolts, so a value
for the product hc in these units is very convenient. Exercise 27 shows that it is
1240 eV # nm. Thus,

This material can see all wavelengths in the visible spectrum and well into the
infrared.

3  The Production of X-Rays

We use the name X-rays for electromagnetic radiation whose wavelengths are
in the 10�2 nm to 10 nm region of the spectrum. The name was coined by
Wilhelm Röentgen, who first studied the radiation. Among other things, he

Q  l = 886 nm

E =
hc

l
 : 1.4 eV =

1240 eV # nm

l

Incoming
light

Objective
lens

Photocathode

Multichannel
plate

Phosphorescent
screen

Photoelectrons 
are produced 
here.

Electrons multiply
at each collision
inside the channel.

Figure 5 In a night vision device, a
light image becomes an image of free
electrons, amplified in a multichannel
plate and then revealed on a screen.

hc � 1240 eV · nm
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Figure 7 The X-ray spectrum produced
when 25 keV electrons strike a molyb-
denum target.

�

Target

Accelerating
potential

Violent
deceleration X-rays

Hot
filament

X-ray tube
(evacuated)

Figure 6 X-rays are produced when electrons “boiled” off a hot filament are acceler-
ated into a metal target.

1Not shown are characteristic X-ray spikes due to
interactions specific to the elements in the target
material rather than simple deceleration. 

found that X-rays could expose photographic film after passing through a
solid object, such as a human being. For his work, he received the first Nobel
Prize in physics in 1901. Nowadays, X-rays are an important tool in many
areas of research, but their production also gives key evidence of electromag-
netic radiation’s particle nature.

As shown in Figure 6, X-rays can be produced by smashing high-speed
electrons into a metal target. When they hit, these violently decelerating
charges produce much radiation, called bremsstrahlung, a German word
meaning “braking radiation.” The fact that electromagnetic radiation can be
produced this way is not surprising from the classical perspective, but if it is
strictly a wave, we might expect it to cover the entire spectrum. Although the
total energy is limited by the number of electrons arriving per unit time, there
is no reason waves shouldn’t emerge with some amplitude at all wavelengths.
But this isn’t what happens.

Figure 7 depicts the spectrum produced when electrons of kinetic energy
25 keV strike a molybdenum target. A broad range is apparent,1 but none of
wavelength less than �c � 0.050 nm. This is called the cutoff wavelength,
and there is no classical explanation for so sharp a termination of the spec-
trum.

The nonclassical explanation is that electromagnetic radiation of a given
frequency simply cannot be of arbitrarily small amplitude. If the radiation is
quantized, the minimum energy allowed at frequency f is hf, a single photon.
We cannot produce half a photon, so if multiple electrons do not combine
their energies into a single photon, no photon could ever be produced of
energy greater than the kinetic energy of a single electron. Is this the case?
Setting the kinetic energy of an incoming electron equal to the energy of one
photon,

This is fairly convincing evidence. Electrons apparently do not combine their
energies.

Q  l = 0.050 nm

25 * 103 eV =
hc

l
=

1240 eV # nm

l
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4  The Compton Effect

We now consider yet another phenomenon that couldn’t be explained by the
classical view of electromagnetic radiation as strictly waves, one that uncovers
another important property of photons. The situation is the scattering of elec-
tromagnetic radiation from free stationary electrons. According to classical
electromagnetic wave theory, the electrons would oscillate and therefore rera-
diate, or “scatter,” electromagnetic energy in all directions initially at the same
frequency as the incoming radiation.

Arthur Holly Compton, investigating this phenomenon with X-rays
and using carbon atoms as the source of electrons, found that some radi-
ation scattered backward immediately with a wavelength significantly
longer than that of the incoming X-rays. (The electrons involved are ini-
tially bound to carbon atoms, but so weakly as to be effectively free. See
Exercise 30.) Compton’s explanation treated the X-rays as a collection of
photons, each with a discrete energy but also with another property we usu-
ally associate with a particle—momentum. Signs point this way from two
directions:

1. According to special relativity, an object with zero mass should have
momentum related to its energy by

E � pc

2. According to classical electromagnetic wave theory, electromagnetic
waves do carry momentum. However, for a diffuse wave, we speak of
momentum density, which is related to the energy density by

With two such compatible clues, it seems reasonable that the momentum of a
photon might be given by

Is this true? Compton provided the first experimental evidence. Let us set the
stage.

A Two-Particle Collision

In the particle view of electromagnetic radiation, the interaction of X-rays and
electrons is simply a collection of separate two-particle collisions between pho-
ton and electron, for which we may now express momentum and energy con-
servation. As shown in Figure 8, we assume that an X-ray photon of
wavelength � strikes a stationary electron, and afterward, the electron scatters

p =
E
c

=
hf

c
=

h

l

energy

volume
=

momentum

volume
* c

Waves and Particles I: Electromagnetic Radiation Behaving as Particles
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at speed u and angle �, while a scattered photon of wavelength �′ departs at 	.
Using hc/� for the photon energy (more convenient than the equivalent hf), we
have

Momentum conserved:

(4)

(5)

Energy conserved:

(6)

As it happens, the electron often moves very fast after the collision, so we
must use the relativistically correct expressions for its momentum and energy.
The photon expressions are already correct; nonrelativistic ones do not exist
for things that always move at c.

Equations (4) to (6) have been found to agree completely with experimen-
tal observations when a photon collides with a free electron. All tests since
Compton’s original work have reaffirmed the conclusion: The momentum of a
photon is given by

(7)p =
h

l

h 

c

l
+ mec

2 = h 

c

l¿
+ gumec

2

y-component: 0 =
h

l¿
   sin u - gumeu sin f

x-component: 
h

l
=

h

l¿
   cos u + gumeu cos f
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Boxes show momentum
(top) and energy (bottom)
expressions.

�


Before collision: A photon 
of wavelength    approaches 
an electron at rest.

After collision: The electron scatters
at speed u, angle    .  A photon of
wavelength      scatters at angle   .�
 	

��

hc/�


h/�


h/�

hc/�

0

mec2
�umeu

�umec2

e�

e�

�y

�x	

�

�

u

Figure 8 Momentum and energy when a photon strikes a free electron.

Momentum of a photon
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Compton effect

Waves and Particles I: Electromagnetic Radiation Behaving as Particles

The Compton effect’s most striking departure from classical expectation
is the large and immediate wavelength shift in the scattered radiation. We clar-
ify this by eliminating the electron speed u and scattering angle � from among
equations (4) to (6). (The somewhat lengthy algebra is left to Exercise 38.)
What remains is

(8)

The difference in wavelength between the incident and scattered photons
depends only on the angle of scatter, a discovery that won for Compton the 1927
Nobel Prize. We see also that the scattered photon is always of longer wavelength
than the incident. Its energy is always less, which makes sense, for kinetic energy
is given to the electron. In particular, the maximum increase in wavelength is for
backward scatter of the photon, 	 � 180°, because a “head-on” collision imparts
the maximum possible energy to the electron. (Note: In Compton’s experiment,
some radiation of the incident wavelength was scattered at all angles, because
some X-rays effectively interact with a much heavier mass—the whole atom—
giving a negligible wavelength shift. See Exercise 33.)

EXAMPLE 3

An X-ray photon of 0.0500 nm wavelength strikes a free, stationary electron, and the
scattered photon departs at 90° from the initial photon direction. Determine the
momenta of the incident photon, the scattered photon, and the electron.

SOLUTION

For the incident photon,

We may solve (8) for the scattered photon’s wavelength.

Thus,

For the electron’s direction, we use equations (4) and (5).

 0 =
h

l¿
 sin 90° - gumeu sin f :  

h

0.0524 nm
= gumeu sin f

 
h

l
=

h

l¿
 cos 90° + gumeu cos f :  

h

0.0500 nm
= gumeu cos f

p¿ =
h

l¿
=

6.63 * 10-34 J # s

0.0524 * 10-9 m
= 1.26 * 10-23 kg # m>s

Q  l¿ = 0.0524 nm

l¿ - 0.0500 * 10-9 m =
6.63 * 10-34 J # s

19.11 * 10-31 kg213 * 108 m>s2  11 - cos 90°2

pincident =
h

l
=

6.63 * 10-34 J # s

0.05 * 10-9 m
= 1.33 * 10-23 kg # m>s

l¿ - l =
h

mec
 11 - cos u2
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pincident

pe

43.6˚

p


Figure 9 Momentum conservation in
photon-electron collision.

Dividing the bottom equation (y) by the top (x), γumeu cancels.

Reinserting in either gives the magnitude of the electron’s momentum.

Thus,
pe � 1.83 � 10�23 kg·m/s at 43.6° from direction of incident photon.

The vector momentum addition is shown in Figure 9. Even though massless,
X-rays are very energetic particles. The electron is “bumped” to 2 � 107 m/s, nearly
one-tenth the speed of light.

If treating X-rays as a collection of photons predicts so well what we
experimentally observe, why is the wave theory of electromagnetic radia-
tion still around? The answer is deceptively simple: The behavior of elec-
tromagnetic radiation is just as wave theory predicts, if the wavelength is
long. Particle and wave behaviors converge at long wavelengths. Of course,
this “answer” raises a thornier question: Can a line be drawn between wave
and particle? This issue we take up in Section 6. For now, we simply note
that if instead of a 0.0500 nm wavelength X-ray, we “hit” the electron
in Example 3 with visible light of 500 nm wavelength, the wavelength
change predicted by equation (8) would be the same as before. The percent
change, rather than the approximate 5% in the example, would be only
0.0005%. Without great precision, the scattered radiation would seem to be
the same wavelength as the incident—the prediction of classical wave
theory.

Here we have one example of the correspondence principle. This
principle, which should be viewed as a guideline rather than a quantitative
“law” of physics, states that a nonclassical theory should agree with the
previous classical one in the appropriate limit. For example, special relativ-
ity is a nonclassical theory that agrees with classical mechanics in the limit
of small velocities. To this we add that the nonclassical particle theory of
electromagnetic radiation agrees with classical wave theory in the limit of
long wavelengths. As the wavelength of a beam of electromagnetic radiation
is increased, the energy per photon decreases. A given intensity would then
comprise a larger number of less-energetic photons and would begin
to exhibit the behavior we expect of a continuous wave. (Occurring only
for short wavelengths, the photoelectric effect might appear to violate
the principle, but no “classical expectation” is really valid, because electron
binding in solids is fundamentally quantum mechanical.)

Q  gumeu = 1.83 * 10-23 kg # m>s

0 =
6.63 * 10-34 J # s

0.0524 * 10-9 m
 sin 90° - gumeu sin 43.6°

0.0500

0.0524
= tan f Q  f = 43.6°
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Figure 10 A photon disintegrates a
nucleus.
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In connection with the correspondence principle, it is often said that clas-
sical behavior follows in the limit that h goes to zero. It is true that photon
energies and momenta tend to be small because h is so small. If h were indeed
zero, E and p (i.e., hf and h/�) would be zero, and light would never behave as
a granular collection of particles. However, Planck’s constant is a fundamental
constant of nature—the constant associated with quantum phenomena—and
as such, never “goes” anywhere. Thus, it is better to say that classical behavior
follows in the limit of long wavelengths.

An Inelastic Collision

The photon-electron collision in the Compton effect is necessarily elastic.
Because the mass/internal energy of fundamental particles like the electron
cannot change, neither can the system’s kinetic energy. In fact, we may
rearrange the energy-conservation equation (6) as E � E′ � (γu � 1)
mec

2. Photons have only kinetic energy (no mass/internal energy), so this 
is a statement of kinetic energy conservation. (Note: The electron kinetic
energy is the relativistically correct form.) Let us reinforce our grasp of the
conservation laws by considering a system in which mass is subject to
change.

EXAMPLE 4

A neutron and proton bound together by the “strong force” is called a deuteron. It is
the nucleus of the hydrogen isotope deuterium, also known as “heavy hydrogen.”
A helium nucleus is two protons and two neutrons bound together by the same force.
Suppose a very energetic photon strikes a helium nucleus and breaks it into two
deuterons, each departing at 0.6c, as depicted in Figure 10. The photon vanishes in
the process. (a) What was the photon’s energy? (b) In what directions do the
deuterons depart? (The mass of a deuteron is 2.01355 u, and of a helium nucleus,
4.00151 u, where 1 u � 1.66 � 10�27 kg.)

SOLUTION

(a) Let us use a subscript He for helium and D for a deuteron. Before the collision,
we have a photon and a stationary helium nucleus. Afterward, we have two
deuterons moving at 0.6c. Energy is conserved:

Noting that γ0.6c � 1.25, we have

 = 1.54 * 10-10 J � 1 GeV

 = 13 * 108 m>s2211.0324 u * 1.66 * 10-27 kg>u2
 = c211.0324 u2
 = c232 * 1.2512.01355 u2 - 4.00151 u4

 h 

c

l
= c212 * 1.25 mD - mHe2

h 

c

l
+ mHec

2 = 2 * g0.6c mDc2
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Invisible path of
incoming photon

B (into page)

e�

e�

Electron
path

Positron
path

Figure 11 In pair production,
a gamma-ray photon becomes an 
electron, which curves one way in 
a magnetic field, and a positron, which
curves the other way.

An energetic photon, indeed! This exceeds the entire mass-energy of a proton,
(1.67 � 1027 kg) (3 � 108 m/s)2 � 1.5 � 10�10 J. In the collision we are
analyzing, almost all the photon’s energy goes into kinetic energy of the
deuterons; the system’s final mass (4.0271) is only slightly higher than the
initial (4.00151).

(b) Directions arise only in the vector momentum-conservation equations. Con-
serving py, which is initially 0, would merely tell us that 	1 must equal 	2, as
symmetry demands. This, in turn, tells us that the deuterons have equal px.
Thus

Multiplying by c and again using γ0.6c � 1.25 enables us to use our earlier
result on the left side.

5  Pair Production

The photoelectric effect and the Compton effect are two important ways in
which electromagnetic radiation interacts as a particle with matter. We now
discuss a third.

In 1932, a revolutionary new particle was discovered. Carl D. Anderson
(Nobel Prize, 1936) was studying the effects of cosmic rays, energetic parti-
cles bombarding Earth, when he noticed something behaving like an electron
but of positive charge. It curved the right amount but the “wrong” way in a
magnetic field. This positively charged electron was termed the positron. We
now know that high-energy photons are constantly creating positrons all
around us (fortunately not in dangerous numbers) through pair production.
This process can be revealed, as depicted in Figure 11, by a bubble chamber
detector immersed in a magnetic field, in which charged particles leave visible
trails of bubbles as they curve. From apparently nothing, there suddenly
appear two charged particles deflecting in opposite directions. The energy to
produce the massive electron-positron pair comes from a high-energy photon,
which, being uncharged, leaves no trail. Charge is conserved because the total
charge of the pair is zero. Figure 12 shows actual bubble chamber trails of two
electron-positron pairs.

The revolutionary aspect of the positron is that it is antimatter. For the
positron, life is short and its end dramatic. It quickly finds an electron—any
will do—and after a brief quantum dance, they annihilate together: erased, their
entire energy suddenly transformed to two photons. The process, pair annihi-
lation, is addressed in Exercises 41 and 42.

 Q  u = 70°
 1.54 * 10-10 J = 1.512.01355 * 1.66 * 10-27 kg213 * 108 m>s22 cos u

 
hc

l
= 1.5mDc2 cos u

px conserved:  

h

l
= 2 * 1g0.6cmD 0.6c2 cos u

Figure 12 Bubble chamber trails show-
ing electron-positron pair production.
Photons, uncharged and invisible, are
incident from the top. The lower,
slowly diverging arcs are one pair. The
electron and positron in the upper pair
have less energy and spiral faster
because much of the photon energy
goes to a freed atomic electron (the
straighter trail).
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EXAMPLE 5

Calculate the energy and wavelength of the least energetic photon capable of pro-
ducing an electron-positron pair.

SOLUTION

The photon’s energy goes to the massive particles as mass/internal energy plus
kinetic. The least energetic one must still create the particles but would leave them
no kinetic energy. Thus, the photon energy must equal twice the particle mass
energy.

Knowing the photon’s energy, we may solve for its wavelength.

The term often used for electromagnetic radiation of wavelength shorter than the
X-ray range is gamma rays. Here, a gamma-ray photon becomes an electron-
positron pair.

Judging from the example, it might seem that pair production isn’t really a
way in which electromagnetic radiation interacts with existing matter, but
rather a way of producing matter. It does involve an interaction, however, for a
photon cannot become an electron-positron pair in a vacuum. Conspicuously
missing from the example was any consideration of momentum. Momentum
isn’t conserved if a (moving) photon becomes two stationary massive parti-
cles. Even if the photon were more energetic, allowing the pair some kinetic
energy after their creation, momentum could not be conserved. We can always
choose to consider the process from a reference frame where the newly cre-
ated particles have opposite velocities. The final momentum would again be
zero, but we would still have a nonzero initial momentum—a single photon.
Impossible!

What actually happens is that the gamma ray passes by a massive parti-
cle, such as an atomic nucleus; they interact via the electromagnetic force;
and then a pair is created and some momentum is transferred to the nucleus.
Although momentum can’t be conserved without it, the nucleus isn’t
affected much—it “steals” little energy. To show this, suppose we add to the
situation in Example 5 a stationary lead nucleus of mass 3.5 � 10�25 kg, to
which the photon transfers all its momentum. The speed of the nucleus
would be

v =
pphoton

mnucleus
=

h>l
mnucleus

=
6.63 * 10-34 J # s>1.21 * 10-12 m

3.5 * 10-25 kg
 � 1600 m>s

 = 1.21 * 10-12 m

 =
16.63 * 10-34 J # s213 * 108 m>s2

1.64 * 10-13 J

 h 

c

l
= 2mec

2 Q  l =
hc

2mec
2

 = 1.64 * 10-13 J � 1 MeV

 2mec
2 = 219.11 * 10-31 kg213 * 108 m>s22
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D

D

�

�

When     > D,
a wave is
detected.

When     << D,
a particle 
is detected.

�

�
Wave!

We've
been hit!

Figure 13 An “experiment” in which a
disturbance behaves as a wave or a par-
ticle, depending on the relative size of
the wavelength and the relevant dimen-
sion D of the apparatus.

� << D: particle

�  D: wave

Its kinetic energy would be approximately 4 � 10�19 J, or about 6 orders of
magnitude less than the total energy involved in the process. Thus, we see that
the nucleus can indeed ensure momentum conservation without significantly
affecting the energy.

The preceding discussion raises a point that crops up often in physics.
Whenever “small” particles interact with “large” ones, the small ones tend to
have nearly all the kinetic energy. Why? The kinetic energy of a nonrelativistic
particle may be written as p2/2m, so if the interacting particles have compara-
ble momenta (numerator), then a particle with a much larger mass (denomina-
tor) will have a much smaller kinetic energy. The rule also tends to hold when
massless and massive particles interact, with the massless one filling the small
role. For instance, when an atom emits a photon, the recoiling atom and pho-
ton have equal momenta, but almost all the kinetic energy goes to the photon.

6  Is It a Wave or a Particle?

This may be the most perplexing question for the student of quantum mechan-
ics. The simplest answer is that “it” has no predetermined nature. The observa-
tion itself—whether the experimenter bounces light off “it,” places something in
its path, or interacts with it in any way—determines whether “it” will exhibit a
wave or a particle nature. Much of what we discuss here applies not only to elec-
tromagnetic radiation but also to massive objects. To cover case, let us refer 
simply to “the phenomenon.”

The Wavelength and the Experiment

We advance the answer a step further with a rough criterion: The behavior
a phenomenon exhibits depends on how its wavelength � compares with
the “relevant dimensions” of the experimental apparatus, which we repre-
sent simply as D. All phenomena may, in principle, be described by a
wave function. The familiar sinusoidal functions for the electric and mag-
netic fields in a plane wave of  light  are  one  example.  A  massive  object  might
also be described by a sinusoidal wave function. If its wavelength is much
smaller than D, the phenomenon will exhibit a particle behavior; if compara-
ble to or larger than D, it will exhibit a wave behavior.

Figure 13 depicts how the behavior a phenomenon exhibits might depend
on a relevant dimension of the apparatus. The boaters are conducting an
experiment—blindfolded. If the wavelength of the approaching disturbance
(the phenomenon) is larger than D, the width of the boat, these experimenters
will certainly proclaim it a wave, because the boat is small enough to respond
to its crests and troughs separately. But if the wavelength is much smaller than
D, the boat responds to the whole thing at once, and the experimenters might
conclude that a particle, not a diffuse wave, has struck. By the same logic, pas-
sengers on an immense ocean liner would see even the top disturbance as a
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particle, because � �� D, while ants floating on a popcorn kernel would see
the bottom one as a wave, because � � D.

A simple application of the criterion to electromagnetic radiation is the
case of light passing through a single slit. To see the obvious wave phenome-
non of diffraction, the slit width must be narrower than or comparable to the
wavelength. If it is much greater, the wave passes straight through, as would
particles.

Useful though the criterion may be, it is dangerous to view wave-particle
duality too rigidly, as wave versus particle. The natures are not incompatible
but complementary, just two faces of the same phenomenon. We can’t fully
explain the behavior of a given phenomenon by either nature alone, and there
is a close relationship between the two natures. The famous E � hf and p �
h/�, which quantitatively link the particle properties E and p to the wave prop-
erties f and �, are one part of the relationship. We now discuss another.

A Double-Slit Experiment

There is no more direct way to see the link between wave and particle natures
than the double-slit experiment. Suppose light is directed at a double slit and
is thereafter detected on photographic film beyond the slits. At high intensi-
ties, we observe a typical interference pattern, the intensity varying from a
maximum (constructive) at the center of the film, to zero (destructive), then
back to a maximum, and so on. The light is exhibiting the wave nature we
attribute to it classically. Particles don’t interfere or cancel; waves do.

Now suppose the intensity is greatly reduced, so that a pattern is no
longer visible on the screen. The film still registers the arrival of light, but
sporadically at scattered locations. Apparently, the light is being detected one
photon—one particle—at a time. Figure 14 shows the result if the film regis-
ters an arrival with a spot. Although the locations of the spots at first seem
almost completely unpredictable, we eventually begin to discern a regular
pattern. Understanding the link between wave and particle rests on two key
observations: First, the exact location where the next photon will be found
evidently can’t be known, but logically, the probability of detecting it in a
given region should be proportional to the density of spots there—high where
density is high, low where density is low. Therefore, if the density of spots
assumes a pattern, the probability assumes a pattern. Second, careful study
reveals that the density of spots in a region is directly proportional to what
wave theory (physical optics) predicts should be the relative intensity in that
region, which is, in turn, proportional to the square of the amplitude of the
electromagnetic wave. In particular, no photons are ever detected at the loca-
tions where wave theory says there should be points of destructive interfer-
ence. Although the light is being detected one particle at a time, its wave
nature is still apparent.

Combining the two observations, we conclude that because both are pro-
portional to the density of spots, there is a proportionality between the proba-
bility of detecting the particle and the square of the amplitude of the wave.
This connection between particle and wave natures is a cornerstone of quan-
tum mechanics:
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After 10,000 detected

After 1000 detected

After 100 detected

After 10 detected

Double-slit intensity

Figure 14 Photons producing a 
double-slit interference pattern—one
particle at a time.

When a phenomenon is detected as particles, we cannot predict with cer-
tainty where a given particle will be found. The most we can determine
is a probability of finding it in a given region, which is proportional
to the square of the amplitude of the associated wave in that region.

probability of finding amplitude of wave
in that region    particle in a region ∝

To clarify the nomenclature, if the wave in question is the electromagnetic
field, its “associated particle” is the photon. Equivalently, if the particle in ques-
tion is the photon, its “associated wave,” its alter ego, is the electromagnetic
field. In electricity and magnetism, we learn that electromagnetic fields exert
forces on charges, and we now claim that they also measure the probability of
finding the associated particle—the photon. We point this out partly to prepare
the reader for a possible shock: The wave associated with a massive object is
indeed a measure of the probability of finding the particle, but it doesn’t appear
to have any other side to its personality.

EXAMPLE 6

Light of wavelength 633 nm is directed at a double slit, and the interference pattern is
viewed on a screen. The intensity at the center of the pattern is 4.0 W/m2. (a) At what
rate are photons detected at the pattern’s center? (b) At what rate are photons detected
at the first interference minimum? (c) At what rate are photons detected at a point on
the screen where the waves from the two sources are out of phase by one-third of a
cycle? (Note: From physical optics, the double-slit intensity varies according to 

, where � is the phase difference between the waves from the two 

slits and I0 is the intensity when � � 0, that is, at the center of the pattern.)

I = I0 cos2112 f2

a b
2
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SOLUTION

(a) Each photon has energy

We must therefore have

(b) The first interference minimum is a point of destructive interference, because
the difference in distances traveled to the screen creates a phase difference 
of � (one-half cycle) between the waves from the two sources. If the net wave
(electric field) is zero, its square is zero and so is the intensity. No photons are
detected here.

(c) Somewhere between the center of the pattern and the first minimum, the waves
will be out of phase by one-third cycle: . We know that I0 is 4.0
W/m2, so we have

Because this is one-fourth the value at the center, the probability of detecting
photons here is one-fourth as large, so only one-fourth as many will be
detected per unit time per unit area around this point.

3.18 � 1018 photons/s ·m2

Although we detect particles, the probability of their detection is governed by
the behavior of the associated electromagnetic wave.

Finally, we address a point central to quantum mechanics. In the double slit,
it is not proper to ask, “Through which slit did the 17th photon pass?” We haven’t
allowed for this, and by altering the experiment so as to observe a particle passing
through a slit—an experiment in itself, requiring some interaction with light in
one slit alone—we would alter the very behavior we wish to observe. Because
interference requires two coherent waves, the pattern would be disturbed. We
can’t have it both ways. Wavelike interference can only be observed by allowing
each “particle” to behave as a wave—passing through both slits simultaneously.

Is it a wave or a particle? It may behave as either, depending on the situa-
tion, but the two natures are inextricably related.

I = 14.0 W>m22 cos23121132p24 = 1.0 W>m2

f =
1
3 2p

4.0 J>s # m2

3.14 * 10-19 J>photon
= 1.27 * 1019 photons>s # m2

h 

c

l
= 16.63 * 10-34 J # s2 

3 * 108 m>s
633 * 10-9 m

= 3.14 * 10-19 J

PROGRESS AND APPLICATIONS

Ejecting Electrons with X-Rays Section 2 discusses the
photoelectric effect in which photons roughly in the visible
wavelength range eject the least tightly bound electrons in a
metal. Logically, shorter-wavelength, more-energetic photons
should be able to free electrons that are more tightly bound.
Today this effect is being exploited to reveal much about how
electrons are bound to atoms in materials and how the atoms
themselves are arranged. At the forefront of the work is the

University of California’s Advanced Light Source (ALS). 
The “light” in this case is X-rays whose wavelength can be
tuned from 0.1 nm to 100 nm. To produce the powerful beam
needed, the simple method of smashing electrons into a 
target gives way to a stream of electrons circulating in a
synchrotron. Any charged particle emits electromagnetic
radiation when it accelerates, and at the ALS, special magnets,
called undulators, wiggle the circulating electrons so as to
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Two photons from an electron-
positron annihilation are
detected simultaneously.

Figure 15 Positron emission tomography. (a) A tracer emits a
positron that annihilates with a nearby electron, yielding two pho-
tons that place the annihilation along a line between the detectors.
Many lines combine to produce a two-dimensional image of a
slice. (b) Multiple slices produce a three-dimensional image—in
this case, showing high tracer uptake in the liver and kidneys.

(a)

(b)

produce a very bright narrow beam of X-rays. When the
beam is directed at a sample, photoelectrons are produced.
Studying their kinetic energies when free, known as
photoelectron spectroscopy, tells us about their energies
when bound in the material, and studying their motion 
when free tells us about their locations when bound and,
thus, the locations of the atoms. The latter technique is
termed photoelectron diffraction. The diffraction isn’t
that of the X-rays but of photoelectrons. As noted in
Section 6, objects with mass also exhibit wave-particle
duality, and these photoelectrons behave as waves of such
short wavelengths as to provide a very high-resolution
picture of the atomic landscape from which they were
ejected.

A New Way to Produce X-Rays Because of their
penetrating abilities, X-rays have found a great host of uses
in learning what is inside things without breaking them 
open, probing everything from human bodies to construction
materials to superconductors. While the century-old tried-
and-true method of Section 3 is still the leader, the conven-
tional X-ray machine, with its hot filament sealed in a tube,
is rather unwieldy, and the tube’s lifetime is often short. The
huge and growing field of nanotechnology—applications in
which some crucial element is measured in nanometers—
may provide a new method. In work conducted at the
University of North Carolina, carbon nanotubes are allied
with the quantum-mechanical effect of “field emission” to
produce a beam of X-rays strong enough to replace the
conventional X-ray machine in several uses. A nanotube is
a regular meshwork of carbon atoms, forming a cylinder of
only about 1 nm radius, and is closely related to many other
all-carbon structures discovered in the 1980s. These continue
to surprise us with new, remarkable properties and are a very
hot topic of physics research. In the X-ray source
application, bundles of nanotubes are deposited in a thin
layer on a metal disk. Electrons are coaxed from the layer
toward a target not by heating a filament, which wastes
power and produces electrical noise, but by field emission, a
room-temperature way of producing a flow of electrons that
relies on the quantum-mechanical effect of tunneling. The
resolution of the new technique is excellent, and another
potential advantage is faster response time for tracking
moving objects. (See Yue et al., Applied Physics Letters, 8
July 2002.)

Medical Imaging with Positrons As noted in Section 5,
once a positron is produced, it soon engages in pair
annihilation, simultaneously yielding two photons of a
characteristic energy (see Exercise 42). This trait is
exploited in an increasingly common medical imaging
procedure known as positron emission tomography (PET).

A tracer material containing a radioisotope that emits
positrons at a safely low rate is introduced into the patient
via the bloodstream, where it collects in certain tissues. The
patient is then placed inside a machine surrounded by a ring
of detectors that “look” for photons of the characteristic
energy. A positron emitted by the tracer—after no more
than about a millimeter of bouncing around—finds an
electron with which to annihilate. Each pair is nearly
stationary when annihilation occurs, so the two photons
created in a given annihilation move in opposite directions.
When two photons are detected simultaneously, pair
annihilation must have occurred along the line connecting
the two detectors. Many intersecting lines indicate a high
density of annihilations at a point—a concentration of the
tracer—in the two-dimensional “slice” of the patient viewed
by the detector ring. As the ring passes along the patient’s
body, looking at each slice, a three-dimensional image of
density versus position emerges. Figure 15 shows (a) the
basic layout of a PET machine and (b) an actual image.
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Electromagnetic radiation behaves in some situations as a col-
lection of particles—photons—having the particlelike proper-
ties of discrete energy and momentum, which are related to the
wave properties of frequency and wavelength:

(2)

(7)

where h is Planck’s constant, 6.63 � 10�34 J · s. Electromagnetic
radiation is more likely to exhibit a particle nature when the wave-
length is small compared with the relevant dimensions of the
experimental apparatus. For a given intensity, a short wavelength
corresponds to a large energy per particle and a correspond-
ingly small particle flux—number per unit time per unit area. The
radiation is thus relatively particlelike. For long wavelengths, it is
more likely to behave as a continuous wave.

Electromagnetic radiation may exhibit its particle nature
in several ways. In the photoelectric effect, a photon gives up
a discrete amount of energy to an electron in a metal. In the
Compton effect, a short-wavelength photon scatters from an
essentially free electron, and both electron and photon obey the
usual conservation laws for particles with discrete momentum
and energy. In pair production, these conservation laws are also
obeyed as a high-energy photon disappears, transferring its dis-
crete energy to a pair of massive particles.

When electromagnetic radiation is detected as particles, it is
uncertain where a given photon will be found. The most that can
be determined is a probability of finding it in a given region,
which is proportional to the square of the amplitude of the associ-
ated wave—the oscillating electromagnetic field—in that region.

* indicates advanced questions

Conceptual Questions
1. Consider two separate objects of unequal temperature.

What would you do with them and what would have to
happen thereafter to enable them to reach the same
common temperature? Use this idea to explain why the
electromagnetic radiation enclosed in a cavity has a
temperature that is the same as that of the cavity walls.

2. The charge on a piece of metal can be “watched” fairly eas-
ily by connecting it to an electroscope, a device with thin
leaves that repel when a net charge is present. You place a
large excess negative charge on a piece of metal, then sepa-
rately shine light sources of two pure but different colors at
it. The first source is extremely bright, but the electroscope
shows no change in the net charge. The second source is
feeble, but the charge disappears. Appealing to as few

p =
h

l

E = hf

fundamental claims as possible, explain to your friend what
evidence this provides for the particle nature of light.

3. You are conducting a photoelectric effect experiment by
shining light of 500 nm wavelength at a piece of metal
and determining the stopping potential. If, unbeknownst
to you, your 500 nm light source actually contained a
small amount of ultraviolet light, would it throw off your
results by a small amount or by quite a bit? Explain.

4. Suppose we produce X-rays not by smashing electrons
into targets but by smashing protons, which are far
more massive. If the same accelerating potential differ-
ence were used for both, how would the cutoff wave-
lengths of the two X-ray spectra compare? Explain.

5. In the Compton effect, we choose the electron to be at
the origin and the initial photon’s direction of motion 
to be in the �x direction. (a) We may also choose the
xy-plane so that it contains the velocities of the outgoing
electron and photon. Why? (b) The incoming photon’s
wavelength � is assumed to be known. The unknowns
after the collision are the outgoing photon’s wavelength
and direction, �′ and 	, and the speed and direction of
the electron, ue and �. With only three equations—two
components of momentum conservation and one of
energy—we can’t find all four. Equation (8) gives �′ in
terms of 	. Our lack of knowledge of 	 after the colli-
sion (without an experiment) is directly related to a lack
of knowledge of something before the collision. What is
it? (Imagine the two objects are hard spheres.) (c) Is it
reasonable to suppose that we could know this? Explain.

6. An isolated atom can emit a photon, and the atom’s
internal energy drops. In fact, the process has a name:
spontaneous emission. Can an isolated electron emit a
photon? Why or why not?

7. We analyze the photoelectric effect using photon energy
alone. Why isn’t the photon momentum a consideration?
(It may help to reread the discussion of momentum and
energy in connection with pair production.)

8. A ball rebounds elastically from the floor. What does
this situation share with the ideas of momentum conser-
vation discussed in connection with pair production?

9. A low-intensity beam of light is sent toward a narrow
single slit. On the far side, individual flashes are seen
sporadically at detectors over a broad area that is orders
of magnitude wider than the slit width. What aspects of
the experiment suggest a wave nature for light, and what
aspects suggest a particle nature?

10. A coherent beam of light strikes a single slit and pro-
duces a spread-out diffraction pattern beyond. The
number of photons detected per unit time at a detector
in the very center of the pattern is X. Now two more
slits are opened nearby, the same width as the original,
equally spaced on either side of it, and equally well

Chapter Summary
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illuminated by the beam. How many photons will be
detected per unit time at the center detector now? Why?

Exercises
Section 1

11. For small z, ez is approximately 1 � z. (a) Use this to
show that Planck’s spectral energy density (1) agrees 
with the result of classical wave theory in the limit of
small frequencies. (b) Show that, whereas the classical
formula diverges at high frequencies—the so-called
ultraviolet catastrophe of this theory—Planck’s formula
approaches 0.

12. At what wavelength does the human body emit the max-
imum electromagnetic radiation? Use Wien’s law from
Exercise 14 and assume a skin temperature of 70°F.

13. Equation (1) expresses Planck’s spectral energy density as
an energy per range df of frequencies. Quite often, it is
more convenient to express it as an energy per range d�
of wavelengths. By differentiating f � c/�, we find that 
df � �c/�2 d�. Ignoring the minus sign (we are interested
only in relating the magnitudes of the ranges df and d�),
show that, in terms of wavelength, Planck’s formula is

14. According to Wien’s law, the wavelength �max of
maximum thermal emission of electromagnetic energy
from a body of temperature T obeys

�maxT � 2.898 � 10�3 m · K

Show that this law follows from the spectral energy den-
sity dU/d� obtained in Exercise 13. Obtain an expression
that, when solved, would yield the wavelength at which
this function is maximum. The transcendental equation
cannot be solved exactly, so it is enough to show that �
� 2.898 � 10�3 m · K/T solves it to a reasonable degree
of precision.

15. The electromagnetic intensity of all wavelengths ther-
mally radiated by a body of temperature T is given by

I � σT4 where σ � 5.67 � 10�8 W/m2 · K4

This is the Stefan-Boltzmann law. To derive it, show that
the total energy of the radiation in a volume V at tempera-
ture T is , by integrating Planck’s 
spectral energy density over all frequencies. Note that

Intensity, or power per unit area, is then the product of
energy per unit volume and distance per unit time. But
because intensity is a flow in a given direction away

L
q

0
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p4
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from the blackbody, c is not the correct speed. For radi-
ation moving uniformly in all directions, the average
component of velocity in a given direction is .

Section 2

16. In the photoelectric effect, photoelectrons begin leaving
the surface at essentially the instant that light is intro-
duced. If light behaved as a diffuse wave and an electron
at the surface of a material could be assumed localized
to roughly the area of an atom, it would take far longer. 
Estimate the time lag, assuming a work function of 4 eV,
an atomic radius of approximately 0.1 nm, and a reason-
able light intensity of 0.01 W/m2.

17. Light of 300 nm wavelength strikes a metal plate, and
photoelectrons are produced moving as fast as 0.002c. 
(a) What is the work function of the metal? (b) What is
the threshold wavelength for this metal?

18. What is the stopping potential when 250 nm light
strikes a zinc plate?

19. What wavelength of light is necessary to produce photo-
electrons of speed 2 � 106 m/s with a magnesium target?

20. What is the wavelength of a 2.0 mW laser from which 
6 � 1015 photons emanate every second?

21. A 940 kHz radio station broadcasts 40 kW of power.
How many photons emanate from the transmitting
antenna every second?

22. To expose photographic film, photons of light dissociate
silver bromide (AgBr) molecules, which requires an
energy of 1.2 eV. What limit does this impose on the
wavelengths that may be recorded by photographic film?

23. Light of wavelength 590 nm is barely able to eject electrons
from a metal plate. What would be the speed of the fastest
electrons ejected by light of one-third the wavelength?

24. With light of wavelength 520 nm, photoelectrons are
ejected from a metal surface with a maximum speed of
1.78 � 105 m/s. (a) What wavelength would be needed
to give a maximum speed of 4.81 � 105 m/s? (b) Can
you guess what metal it is?

25. You are an early 20th-century experimental physicist
and do not know the value of Planck’s constant. By a
suitable plot of the following data, and using Einstein’s
explanation of the photoelectric effect (KE � hf � �,
where h is not known), determine Planck’s constant.

Wavelength of Light Stopping Potential
(nm) (V)

550 0.060

500 0.286

450 0.563

400 0.908

1
4 c
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26. A sodium vapor light emits 10 W of light energy. Its
wavelength is 589 nm, and it spreads in all directions.
How many photons pass through your pupil, diameter 4
mm, in 1 s if you stand 10 m from the light?

27. Using the high-precision values of h, c, and e, show that
the product hc can be expressed as 1240 eV · nm.

Section 3

28. A television picture tube accelerates electrons through a
potential difference of 30,000 V. Find the minimum
wavelength to be expected in X-rays produced in this
tube. (Picture tubes incorporate shielding to control 
X-ray emission.)

29. When a beam of monoenergetic electrons is directed at
a tungsten target, X-rays are produced with wavelengths
no shorter than 0.062 nm. How fast are the electrons in
the beam moving?

Section 4

30. A typical ionization energy—the energy needed to
remove an electron—for the elements is 10 eV. Explain
why the energy binding the electron to its atom can 
be ignored in Compton scattering involving an X-ray
photon with wavelength about one-tenth of a nanometer.

31. A 0.057 nm X-ray photon “bounces off” an initially sta-
tionary electron and scatters with a wavelength of 
0.061 nm. Find the directions of scatter of (a) the pho-
ton and (b) the electron.

32. A 0.065 nm X-ray source is directed at a sample of car-
bon. Determine the maximum speed of scattered electrons.

33. Compton used X-rays of 0.071 nm wavelength. Some 
of carbon’s electrons are too tightly bound to be 
stripped away by these X-rays, which accordingly 
interact essentially with the atom as a whole. In effect,
me in equation (8) is replaced by carbon’s atomic mass.
Show that this explains why some X-rays of the inci-
dent wavelength were scattered at all angles.

* 34. An X-ray source of unknown wavelength is directed at
a carbon sample. An electron is scattered with a speed
of 4.5 � 107 m/s at an angle of 60�. Determine the
wavelength of the X-ray source.

35. Determine the wavelength of an X-ray photon that 
can impart, at most, 80 keV of kinetic energy to a free
electron.

36. A photon scatters off of a free electron. (a) What is the
maximum possible change in wavelength? (b) Suppose
a photon scatters off of a free proton. What is the
maximum possible change in wavelength now? 
(c) Which more clearly demonstrates the particle nature
of electromagnetic radiation—collision with an electron
or collision with a proton?

37. Verify that the formula �KE � ��mc2 applies in
Example 4.

* 38. From equations (4) to (6) obtain equation (8). It is 
easiest to start by eliminating � between equations (4)
and (5), using cos2 � � sin2 � � 1. The electron speed
u may then be eliminated between the remaining 
equations.

* 39. Show that the angles of scatter of the photon and elec-
tron in the Compton effect are related by the following
formula:

Section 5

40. A gamma-ray photon changes into a proton-antiproton
pair. Ignoring momentum conservation, what must have
been the wavelength of the photon (a) if the pair is sta-
tionary after creation, and (b) if each moves off at 0.6c,
perpendicular to the motion of the photon? (c) Assume
that these interactions occur as the photon encounters a
lead plate and that a lead nucleus participates in momen-
tum conservation. In each case, what fraction of the pho-
ton’s energy must be absorbed by a lead nucleus?

41. A stationary muon µ� annihilates with a stationary
antimuon µ� (same mass, 1.88 � 10�28 kg, but opposite
charge). The two disappear, replaced by electromagnetic
radiation. (a) Why is it not possible for a single photon
to result? (b) Suppose two photons result. Describe their
possible directions of motion and wavelengths.

42. In positron emission tomography (PET), discussed in
Progress and Applications, an electron and positron 
annihilate, and two photons of a characteristic energy are
detected (see also Exercise 41). What is this energy, and
what is the corresponding wavelength? The pair can be
assumed to be essentially stationary before annihilation.

43. As shown in Section 5, a lead nucleus can ensure
momentum conservation in electron-positron pair pro-
duction without affecting the energy balance. But
roughly what is the limit on the mass of such a
“detached participant”? Assume again that it acquires
all the momentum of the photon, whose wavelength is
1.21 � 10�12 m, but the energy it “steals” is less
insignificant, 0.01% of the photon’s energy. What is the
mass of this less-detached participant?

Section 6

44. A beam of 500 nm light strikes a barrier in which there 
is a narrow single slit. At the very center of a screen 
beyond the single slit, 1012 photons are detected per

cot 
u

2
= ¢1 +

h

mcl
≤  tan f
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square millimeter per second. (a) What is the intensity of
the light at the center of the screen? (b) A second slit is
now added very close to the first. How many photons
will be detected per square millimeter per second at the
center of the screen now?

45. Electromagnetic “waves” strike a single slit of 1 µm
width. Determine the angular full width (angle from
first minimum on one side of the center to first mini-
mum on the other) in degrees of the central diffraction
maximum if the waves are (a) visible light of wave-
length 500 nm and (b) X-rays of wavelength 0.05 nm.
(c) Which more clearly demonstrates a wave nature?

46. A bedrock topic in quantum mechanics is the uncer-
tainty principle. It is discussed mostly for massive
objects, but the idea also applies to light: Increasing
certainty in knowledge of photon position implies
increasing uncertainty in knowledge of its momentum,
and vice versa. A single-slit pattern that is developed
(like the double-slit pattern of Section 6) one photon at
a time provides a good example. Depicted in the accom-
panying figure, the pattern shows that photons emerg-
ing from a narrow slit are spread all over; a photon’s
x-component of momentum can be any value over a
broad range and is thus uncertain. On the other hand,
the x-coordinate of position of an emerging 
photon covers a fairly small range, for w is small. Using
the single-slit diffraction formula n� � w sin 	, show that
the range of likely values of px, which is roughly 
p sin 	, is inversely proportional to the range w of 
likely position values. Thus, an inherent wave nature
implies that the precisions with which the particle 
properties of position and momentum can be known 
are inversely proportional.

Comprehensive Exercises
47. A photon has the same momentum as an electron mov-

ing at 106 m/s. (a) Determine the photon’s wavelength. 
(b) What is the ratio of the kinetic energies of the two?
(Note: A photon is all kinetic energy.)

48. A photon and an object of mass m have the same 
momentum p.

(a) Assuming that the massive object is moving
slowly, so that nonrelativistic formulas are valid,
find in terms of m, p, and c the ratio of the massive
object’s kinetic energy to the photon’s kinetic
energy, and argue that it is small.

(b) Find the same ratio found in part (a), but using rel-
ativistically correct formulas for the massive
object. (Note: E2 � p2c2 � m2c4 may be helpful.)

(c) Show that the low-speed limit of the ratio of part
(b) agrees with part (a) and that the high-speed
limit is 1.

(d) Show that at very high speed, the kinetic energy of
a massive object approaches pc.

49. Radiant energy from the Sun arrives at Earth with an
intensity of 1.5 kW/m2. Making the rough approxima-
tion that all photons are absorbed, find (a) the radiation
pressure and (b) the total force experienced by Earth
due to this “solar wind.”

50. A flashlight beam produces 2.5 W of electromagnetic
radiation in a narrow beam. Although the light it pro-
duces is white (all visible wavelengths), make the sim-
plifying assumption that the wavelength is 550 nm, the
middle of the visible spectrum. (a) How many photons
per second emanate from the flashlight? (b) What force
would the beam exert on a “perfect” mirror (i.e., one
that reflects all light completely)?

51. The average intensity of an electromagnetic wave is
, where E0 is the amplitude of the electric-field 

portion of the wave. Find a general expression for the
photon flux j (measured in photons/s · m2) in terms of
E0 and wavelength �.

52. Show that the laws of momentum and energy conser-
vation forbid the complete absorption of a photon by a
free electron. (Note: This is not the photoelectric effect. In
the photoelectric effect, the electron is not free; the metal
participates in momentum and energy conservation.)

53. An electron moving to the left at 0.8c collides with an
incoming photon moving to the right. After the colli-
sion, the electron is moving to the right at 0.6c and an
outgoing photon moves to the left. What was the wave-
length of the incoming photon?

54. An object moving to the right at 0.8c is struck head-on
by a photon of wavelength � moving to the left. The

1
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object absorbs the photon (i.e., the photon disappears)
and is afterward moving to the right at 0.6c. (a) Deter-
mine the ratio of the object’s mass after the collision to
its mass before the collision. (Note: The object is not a
“fundamental particle,” and its mass is therefore subject
to change.) (b) Does kinetic energy increase or
decrease?

Waves and Particles I: Electromagnetic Radiation Behaving as Particles

55. Photons from space are bombarding your laboratory
and smashing massive objects to pieces! Your detectors 
indicate that two fragments, each of mass m0, depart
such a collision moving at 0.6c at 60° to the photon’s
original direction of motion. In terms of m0, what are
the energy of the cosmic-ray photon and the mass M of
the particle being struck (assumed initially stationary)?

Answers to Selected Exercises 
17. 3.12 eV, 399 nm
19. 82.4 nm
21. 6.42 � 1031 photons per sec
23. 1.22 � 106 m/s
29. 8.15 � 107 m/s
31. 130.5°, 23.9°
35. 0.00659 nm
41. (b) opposite, 1.18 � 10�14 m

43. 9.1 � 10�27 kg
45. 60°, 5.73 � 10�3 degrees, visible light
47. 7.38 � 10�10 m, 600
49. 5 � 10�6 Pa, 6.37 � 108 N
51.

53. 2.91 � 10�12 m
55. 3

4m0c2, 74m0

1
2e0E2l>h

Credits
12: LBNL/Photo Researchers; (both): Positron Emission Tomography Department, NIH Clinical Center,
National Institutes of Health
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Matter Behaving as
Waves

Chapter Outline

1 A Double-Slit Experiment
2 Properties of Matter Waves
3 The Free-Particle Schrödinger Equation
4 The Uncertainty Principle
5 The Not-Unseen Observer
6 The Bohr Model of the Atom
7 Mathematical Basis of the Uncertainly Principle—

The Fourier Transform

Electromagnetic radiation, classically a wave, has a particle nature.
We now begin our study of the complementary and fascinating

truth that matter, classically particlelike, has a wave nature. Although a chal-
lenging notion, it is the key to understanding behaviors in the submicroscopic
world, and thus it lies at the heart of much of modern science.

To force light to show its wave nature, we need an apparatus with a
dimension comparable to its wavelength. For instance, light of 0.6 µm wave-
length, such as a sodium streetlight, seems to pass straight through a 1 m wide
doorway but visibly diffracts when passing through a 1 µm aperture—which
isn’t hard to make. The wave nature of matter would seem a much less foreign
concept if we could obtain similar evidence so easily, but we can’t, and the
reason is that the wavelength of matter waves, as a rule, is even smaller than
that of light—much smaller. Before we begin our quantitative study of this
“hidden” nature, it may be helpful to point out perhaps the most widely known
idea in science that rests directly on it: Electrons orbiting atoms can have only
certain energies. Why? The atom confines its electrons to very small dimen-
sions, in which case their wave nature should predominate. We know from
studying waves and sound that when a wave is confined, as on a stretched
string or in an organ pipe, only certain discrete standing waves are possible.
Why are only certain energies allowed in the atom? The electrons, confined to
dimensions less than a 1 nm, are behaving as standing waves.

Being diffuse, waves are analyzed differently from discrete particles. In
classical mechanics, objects are particles, and the equations governing their
behavior—kinematic equations, F � dp/dt, and so forth—are relatively sim-
ple. Waves, on the other hand, obey equations involving more sophisticated

From Chapter 4 of Modern Physics, Second Edition. Randy Harris. Copyright © 2008 by Pearson Education, Inc. 
Published by Pearson Addison-Wesley. All rights reserved.
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1The electron is our preferred massive object of
study because of its relatively small mass. As we
will soon see, this makes its wavelength not too
small, so its wave nature is more easily revealed.

calculus. For instance, waves on a string obey the “wave equation,” a partial
differential equation in position and time, and light obeys Maxwell’s equa-
tions, similarly involving calculus with both position and time variables. The
distinction between particle and wave natures also governs what questions we
ask. For particles, it is often, “Where is it going? When will it get there?” For
waves, we ask, “What is its amplitude? What is its wavelength? How spread
out is it? Where is it zero?”

We consider these questions soon, and afterward we introduce the
Schrödinger equation, the equation obeyed by matter waves. First, however, is
the Big Question: Just what is a matter wave, and how do we know it even
exists? Nothing illustrates the point better than the double-slit experiment.

1  A Double-Slit Experiment

Imagine a beam of monoenergetic electrons1 striking a barrier with a slit,
beyond which is a screen that registers each electron’s arrival by producing a
small flash. When the slit is “wide,” as shown at the top of Figure 1, the
beam passes straight through and produces—electron by electron—a stripe on
the screen essentially the same width as the slit. But with a narrow slit, we find
electrons registering sporadically over the entire screen. Although this spread-
ing alone is hard to reconcile with the notion of electrons as strictly particles,
if we add a second slit, the conclusion is inescapable.

Suppose, then, that we add a second narrow slit. Again, with either slit
open alone, electrons are detected sooner or later at all points on the screen.
But when both are open together, we see certain places, where electrons had
been detected with either slit open separately, where electrons are now never
detected. Opening a second “door” decreases to zero the number of electrons
arriving per unit time at specific, regularly spaced locations on the screen,
even at such low intensity that they must pass through one at a time! This is
impossible to explain if electrons are simply particles passing through one slit
or the other. A particle passing through one slit would not suddenly have rea-
son to avoid specific locations on the screen just because another slit had been
opened elsewhere. On the contrary, this is destructive interference. Because
interference requires multiple coherent waves, each electron must be behaving
as a wave passing through both slits at once.

Figure 2 shows how the electron flashes accumulate with both slits
open, and Figure 3 shows the final pattern in an actual electron double-slit
experiment. Figure 2 should look familiar—it is the double-slit photon-
detection pattern of Figure 14. The point is that both electromagnetic radia-
tion and massive objects exhibit the same kind of wave-particle duality.
Associated with the particle of light (photon) is a wave of oscillating electro-
magnetic field. We must now accept that there is also a wave associated with a
massive particle. So what is analogous to light’s electromagnetic fields? In a
matter wave, what is oscillating?

To identify at least one property of this wave, we return to the same two
observations we made about light: (1) Although it is apparently impossible to
say where the next electron will be detected, the probability that it will be

Double slit

Single narrow slit

Wide slit

Electron
beam

Electrons passing
through a wide slit
arrive at a screen 
one by one and 
produce a bright 
region essentially
the same width as
the slit.

With a single
narrow slit, 
electrons arrive
one by one all over
the screen.  They
don t avoid any
points . . .

. . . but when two
slits are open, 
there are certain
points at which
no electron ever
arrives.  Each
electron wave is
destructively
interfering with 
itself.

Figure 1 Intensity patterns when an
electron beam strikes various slits.
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Figure 3 Actual double-slit pattern
produced by electrons.

After 10,000 detected

After 1000 detected

After 100 detected

After 10 detected

Double-slit intensity

Figure 2 Electrons producing a double-
slit interference pattern—one particle at a
time.

found in a given region should be proportional to the density of spots there.
(2) If we concede that coherent waves of equal amplitude emerge from the two
slits, we would expect an interference pattern. In particular, we would expect
the amplitude at the pattern’s center, where the interference is constructive, to
be twice what it would be if only one slit were open, and the square of the
amplitude, proportional to intensity, should be four times as large. And what
does the experiment show? It shows a density of spots that is four times larger
at the center with both open than with either alone. In fact, for the entire pat-
tern, there is a proportionality between the density of spots and the intensity—
the square of the wave—arising from the standard analysis of the double slit.
Combining these observations—that the probability of finding the particle and
the square of the wave’s amplitude are proportional to the same thing (the
density of spots)—we reach the same conclusion as for light:

When a phenomenon is detected as particles, we cannot predict with cer-
tainty where a given particle will be found. The most we can determine
is a probability of finding it in a given region, which is proportional
to the square of the amplitude of the associated wave in that region.

probability of finding ∝ amplitude of wave
particle in a region in that region

Although electromagnetic radiation and massive objects share this funda-
mental wave-particle relationship, matter waves differ in an important way: They

a b
2
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cannot be directly detected. Electric and magnetic fields can be isolated and
caused to exert forces on objects—we can directly detect them. But we haven’t
found any analogous way to directly detect matter waves. No one has ever “seen”
one. So how do we answer the question, What is oscillating? Apparently, we
have only a single candidate—probability is oscillating.2

Matter Wave Interference: Evidence

The double slit is conceptually the simplest experiment for verifying matter
wave interference, but unfortunately it isn’t easy to do. The first evidence that
matter has a wave nature was obtained by Clinton J. Davisson and Lester H.
Germer in 1927. Investigating properties of metal surfaces by observing how a
nickel crystal scatters a beam of electrons, Davisson and Germer were sur-
prised to find that the electrons seemed to scatter preferentially at only certain
discrete angles. Particles should not do this.

Microscopically, a crystal is an arrangement of regularly spaced atoms. If
a wave is incident, each atom reflects the wave in all directions. In essence,
each becomes a point source of waves. These sources produce an interference
pattern, just as do the multiple slits of a diffraction grating, with sharp interfer-
ence maxima separated by broad regions of low intensity. In the Davisson-
Germer experiment, whose apparatus is shown in Figure 4, the experimental
detection rate versus angle agrees perfectly with a theoretical prediction (see
Exercise 23) based on the assumption that each electron behaves as a diffuse
wave reflecting from many atoms and interfering with itself.

The key to the experiment’s success in revealing the electron’s wave
nature is that the relevant dimension of the apparatus, the atomic spacing, is
very small. A crystal is thus an excellent testbed to verify a wave nature.
But nowadays, it is the other way around—the electron’s wave nature, taken
for granted, is exploited to learn about the crystal. In essence, the diff-
raction pattern maps out the microscopic geometry. Figure 5 is a good

Figure 4 Davisson and Germer’s original electron diffraction apparatus, showing
the mechanism for varying a sample’s angle.

2A common misconception is that the electron’s
mass is oscillating, perhaps that bits of it somehow
jiggle back and forth. The wave isn’t the particle.
Mass doesn’t oscillate in a matter wave any more
than photons oscillate in an electromagnetic
wave. It may be helpful to view both phenomena
consistently as essentially waves of oscillating
probability, addressing other possible traits only
as the need arises.
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example. Produced by electrons diffracting from a single grain of aluminum-
manganese alloy, it reveals atoms arranged in a five-sided geometry. (Actu-
ally, such a geometry came as a surprise when first seen in the 1980s,
and study of “quasicrystals” with such symmetries has been quite active
ever since.)

The Bragg Law

In a crystal, matter waves often penetrate to many atomic planes deeper than
the surface, and the most commonly used quantitative relationship for con-
structive interference, which we now obtain, thus requires a bit more work
than for a simple grating. Suppose, as depicted in Figure 6, a beam is directed
at an angle � with respect to a surface atomic plane, and the detector is positioned
to receive waves reflecting at the same angle with the plane. An atom in the
top plane reflects a small portion of the wave, ray 1, which scatters in all direc-
tions. But much of the wave penetrates deeper, so an atom in the second
atomic plane also scatters a portion in all directions. As shown in the figure,
ray 2 has 2d sin � farther to travel than ray 1 to reach the detector, where d is
the spacing between atomic planes. Ray 3 travels the same distance farther
than ray 2, and so on with each deeper atomic plane. With the incident beam and
detector at equal angles, the waves scattering from any atoms in the same plane—
for instance, rays 1 and 4—always have the same distance to travel from source
to detector. So we view interference only between atomic planes at different

Figure 5 Interference pattern of electron waves diffracted by aluminum manganese
alloy.
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Figure 6 Diffraction of a beam from multiple atomic planes.

depths in the crystal—very nice! Constructive interference occurs at angles
where

2d sin � � m� (1)

This is known as the Bragg law, for father-son team W. H. Bragg and
W. L. Bragg, who won the 1915 Nobel Prize for their diffraction work.
Their source wasn’t electrons, however—it was X-rays. But the same equa-
tion applies, because a wave is a wave. We noted in Section 4 that X-rays
may behave as particles where longer-wavelength visible light would
behave as waves. The spacing d of atomic planes in a crystal is so small that
even X-rays behave as waves. Anything will be wavelike in small enough
dimensions, and diffraction patterns have been produced by beams of neutrons
and even whole atoms. Of course, to exploit interference condition (1) in
the case of matter waves—to determine an actual plane spacing d—we
would need the wavelength. So let us now turn to the quantitative properties of
matter waves.

2  Properties of Matter Waves

What properties characterize a wave? It should have a wavelength, a fre-
quency, and a speed. It should also have an amplitude that varies with position
and time. The generic term for the function giving the amplitude is wave
function. Because what actually oscillates depends on the kind of wave, we
use different symbols for the wave functions of different kinds of waves. For a
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Wavelength of matter wave

Matter wave function: °(x, t)

Probability amplitude

transverse wave on a string, we often use the symbol y(x, t). The string’s trans-
verse displacement y varies as a function of the position x along the string and
time t. For an electromagnetic plane wave moving along the x-axis, we have
two wave functions, E(x, t) and B(x, t), which describe how the oscillating
electric and magnetic fields vary with position and time. For a matter wave,
the symbol we choose for the wave function is °(x, t). Strictly speaking, it
should be referred to as the probability amplitude, for it is the amplitude of
the wave that (when squared) tells us probability. In practice, however, we
usually just call it the wave function. In the next section, we will encounter the
“wave equation” that this wave function must obey. But first let us study some
properties and behaviors that don’t require us to have an explicit formula for
the wave function.

Wavelength

In our discussions so far, wavelength seems to play the pivotal role. What is it?
In 1924, Louis de Broglie submitted the following hypothesis: The wave-
length of the matter wave associated with a massive object depends on its
momentum p and is given by

(2)

This relationship has been confirmed beyond any doubt, even for relativistic
speeds, by experiments such as crystal diffraction, in which the momentum
of the electrons in a beam is known, and analysis of the pattern establishes
the wavelength. The contribution won for de Broglie the 1929 Nobel Prize,
and in recognition, we often refer to the wavelength of a matter wave as
the de Broglie  wavelength. This  relationship  between  wavelength  and

 momentum is universal —true for all phenomena.

EXAMPLE 1

If moving at 900 m/s, what would be the wavelength of (a) an electron and (b) a
25,000 kg airplane? (c) Which is more likely to exhibit a wave nature?

SOLUTION

(a)

(b)  lairplane =
6.63 * 10-34 J # s

125,000 kg21900 m>s2 = 2.9 * 10-41 m

 lelectron =
6.63 * 10-34 J # s

19.11 * 10-31 kg21900 m>s2 = 8.1 * 10-7 m

l =
h
p
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(c) An apparatus with a relevant dimension on the micrometer scale might
coax the electron to show its wave side. Actually, this is very slow as
electron speeds go, so considerably smaller dimensions are usually
needed. The airplane’s wavelength, however, is a good 25 orders of magni-
tude smaller than the atomic nucleus (∼10�15 m). Although “composite”
objects much bigger than electrons—whole atoms, for instance—have been
shown to behave in experiments as simple waves with a wavelength obeying
equation (2), where p is the object’s center-of-mass momentum, in no
conceivable experiment would something so big as an airplane ever behave
as a wave.

In ordinary situations, the wavelengths of matter waves are short enough
to ensure particlelike behavior, because Planck’s constant is so small. How-
ever, as an object’s momentum approaches zero, wouldn’t its wavelength be-
come arbitrarily large? We might draw the unsettling conclusion that any
stationary object should behave as a wave. We shall face this predicament in
Example 5, but the upshot is that it is hard to be sure that something is
indeed stationary.

With our quantitative grasp of wavelength, let us return to the simplest
example of interference.

EXAMPLE 2

Suppose a beam of electrons moving at 3 � 106 m/s strikes a barrier that has two
narrow slits separated by 0.020 µm, beyond which are electron detectors.3 At the
center detector, directly in the path the beam would follow if unobstructed, 100 elec-
trons per second are detected. As the detector angle varies, the number per unit time
varies in a typical double-slit pattern between the maximum of 100 s�1 and the min-
imum of 0. The first minimum occurs at detector X, an angle �X from the center.
(a) Find �X. (b) How many electrons would be detected per second at the center
detector if one of the slits were blocked? (c) How many would be detected per sec-
ond at the center detector and at detector X if one slit were narrowed so that it alone
would give a count rate 36% of its original value?

SOLUTION

(a) At detector X, the first point of destructive interference, the wave from one slit
has farther to travel than the wave from the other. From physical optics, we
know that the difference in distances traveled by the two waves in a double-slit
experiment is d sin �, where d is the slit separation. Thus,

According to de Broglie’s hypothesis, equation (2),

l =
h

p
=

6.63 * 10-34 J # s

19.11 * 10-31 kg213 * 106 m>s2 = 2.43 * 10-10 m

d sinuX =
1

2
 l

1
2 l

3As noted earlier, it is hard to do the electron
double slit. In fact, the first success, shown in
Figure 3, didn’t come until the 1960s—and even
then, it required a few tricks. The problem is that
the smallest achievable slit separations are still
much larger than the electron wavelength, even if
the electron moves rather slowly, as assumed in
Example 2.
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Reinserting,

(b) With both slits open, the detection rate is 100 s�1. This is proportional to the
particle detection probability and, thus, to the square of the amplitude of the
matter wave, the total wave arriving from both slits.

(Note: To avoid distractions, we omit the units on °. As discussed in Exercise
29, including them would merely introduce a proportionality constant that
would cancel in the end.) The waves from the slits add equally at this point of
constructive interference, so the amplitude of either wave alone must be half
the total.

The electron detection rate would be 25 s�1 at the center detector. Note that
without a second slit/wave to interfere, 25 electrons per second would arrive
at all detectors. With two slits, twice as many should be detected each
second, but only on average. At points of constructive interference, 100
are detected per second, and at points of destructive interference, none. The
average is 50, but its distribution in such a pattern cannot be understood by
a strict particle view.

(c) If only the single narrowed slit were open, all detectors would register a detec-
tion rate 0.36 times 25 s�1, or 9 s�1:

The amplitude of the wave follows:

This is 60% of the original amplitude. Sensibly, an amplitude only 60% of the
original implies a square of the amplitude of only 36%.

With both slits open, we have two waves of different amplitudes, one pro-
portional to 5 (original) and one to 3 (narrowed). At the center detector, where
they add constructively, the total amplitude is proportional to 5 � 3:

At detector X, where the waves are 180° out of phase, the interference would
no longer be totally destructive—their amplitudes aren’t equal. Still, they
subtract, so the total amplitude would be proportional to 5 – 3:

ƒ °T
¿ ƒdestr r  2 Q  ƒ °T

¿ ƒdestr
2  r  4 s-1

ƒ °T
¿ ƒconstr r  8 Q  ƒ °T

¿ ƒconstr
2  r  64 s-1

ƒ °1
¿ ƒ2 r  9 s-1 Q  ƒ °1

¿ ƒ  r  3

ƒ °1
¿ ƒ2 =  0.36 *  ƒ °1 ƒ2 r  0.36 *  25 s-1 =  9 s-1

ƒ °1 ƒ  r  5 Q  ƒ °1 ƒ2 r  25 s-1

ƒ °T ƒ2 r 100 s-1  Q  ƒ °T ƒ r 10

10.020 * 10-6 m2sin uX =
1

2
 (2.43 * 10-10 m) Q  uX = 0.35°
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Figure 7 Electron detection rate
versus angle for equal-width slits,
unequal-width slits, and one slit.

The average is , which is the sum of the 9 s�1 and
25 s�1 expected from each slit alone. But to find the probability, or detection
rate, at a location, we do not add the probabilities from each slit. Probabilities
are always positive, so they can’t cancel. Rather, we add the waves, which may
add constructively or destructively, to find the total wave, and then square that
to find the probability.

Figure 7 shows how the electron detection rate in Example 2 varies
with angle for the equal-width, one-slit, and unequal-width cases. Note that,
except for part (a), Example 2 could have involved light. We would simply
replace the term matter wave with “electric field” and electron detection rate
or probability with “light intensity.” We have analyzed electron behavior via
standard wave theory.

Having gained some quantitative feel for matter waves, let us take a look
at producing and using a matter wave beam.

EXAMPLE 3

To put the wave nature of electrons to use, an accelerating potential is often the start.
Obtain a formula for the potential difference V required to give a particle of mass m
and charge q a wavelength of �. Assume that the potential difference is insufficient
to accelerate the particle to relativistic speeds.

SOLUTION

The accelerating potential gives the electron kinetic energy, and velocity is related
to the wavelength via the de Broglie formula.

Eliminating v between the two gives

We see that a shorter wavelength requires a higher accelerating potential. As noted
in Section 1, the electron’s small wavelength is now routinely exploited. This
result is an important element.

V =
h2

2mql2

qV =
1

2
 mv2  v =

p

m
=

h

ml

1
2164 s-1 + 4 s-12 = 34 s-1

REAL-WORLD EXAMPLE USEFUL WAVELENGTHS AND
ACCELERATING POTENTIAL

The transmission electron microscope (TEM) is a workhorse in biological sciences
and several other fields. The TEM replaces the optical microscope’s illuminating light
beam with a beam of electrons accelerated through a potential difference, while mag-
netic “lenses” take the place of glass ones, as depicted schematically in Figure 8.
After passing through the sample and a series of “lenses,” the electron beam produces
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Figure 8 In an electron microscope,
electrons replace light rays and
magnetic fields replace lenses.

an image on a screen. As we learn in optics, a microscope’s resolution is limited by
diffraction; features smaller than the wavelength are blurred. Light has wavelengths
measured in hundreds of nanometers. The TEM’s electrons have much shorter wave-
length, diffract less, and thus reveal much finer detail.

In low-energy electron diffraction (LEED), another application relying on an
accelerating potential, the fact that electrons diffract as waves is, as the name suggests,
the whole point. Like the Davisson-Germer experiment, LEED reflects an electron beam
from a crystal. By using “low” accelerating potentials, electrons in LEED don’t pene-
trate far, and the resulting diffraction peaks reveal the geometrical structure of the atoms
on the surface. Let us take a look at the accelerating potentials in these applications.

Applying the Physics

(a) To produce a good diffraction pattern in a technique like LEED, an incident beam
should have a wavelength comparable to the separation between the “slits”—the
atoms that scatter the beam. A typical atomic spacing in a crystal is 0.2 nm. Approx-
imately what potential difference is appropriate? (b) The accelerating potential in a
particular TEM is 50 kV. If this were the only factor governing resolution, how small
a detail could be seen?

SOLUTION

(a) Using the relationship derived in Example 3, we have

Accelerating voltages in LEED are typically 20–200 V, so our estimate is quite
good.

(b) By the same formula, the accelerating potential determines the wavelength

We conclude that such fast electrons, much less wavelike than in the LEED
application, could, in principle, resolve details of about 0.01 nm. As it turns out,
aberrations in the magnetic lenses limit even the best TEMs, which use nearly
10 times this accelerating potential, to resolutions no finer than about 0.1 nm.
Still, this is far better than the approximate 100 nm limit of optical microscopes.

 Q l = 0.0055 nm

 50 * 103 V =
16.63 * 10-34 J # s22

219.11 * 10-31kg211.6 * 10-19 kg2l2

V =
16.63 * 10-34 J # s22

219.11 * 10-31 kg211.6 * 10-19 C210.2 * 10-9m)2 = 38 V

Frequency

Interference patterns give clear evidence for the wavelength of matter waves.
The evidence for the frequency isn’t so direct, but again, the relationship is the
same as for electromagnetic radiation:

(3)f =
E

h
Frequency of matter waves
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Fundamental wave-particle relationships

It is often more convenient to express equations (2) and (3) in terms
of the wave number and angular frequency, defined as follows:

Note that wave number is a “spatial frequency.” Just as angular frequency ω is
inversely proportional to the temporal period T, k is inversely proportional to
the spatial period �. Another very convenient definition is

With these definitions, we express the fundamental wave-particle relationships as

(4)

E � hf � ω (5)

Velocity

We have left matter wave velocity for last because we simply won’t use it
much, but it is worthwhile to see why. The famous v � f� does correctly give
the wave speed. Using equations (4) and (5), it is

However, this may or may not be the speed of the particle . We saw  that
 massless  particles,  such  as  photons,  move at c, and their particle properties E
and p are  related  by E � pc . The above relationship then confirms that
electromagnetic waves also move at c. Matter waves would move at c if E � pc
also held for massive particles—but it doesn’t. They would at least move at the
particle speed if E were equal to pvparticle, but this too is not the case. (Exercise
31 discusses the point further.)

Wave and particle velocities, known respectively as phase and group
velocities. The main point here is that the formula  v � f� is  of  rather

 limited use for massive particles, because  v is  neither  the  speed  of  the
 particle nor the speed of light. The usual relationships  between strictly

particle properties (p � mv, KE � mv2, etc.) are fine, and equations (4) and
 (5)  are  universal.  But  for  massive particles,  E is not hc/� nor hvparticle /�,
 and  p is neither hf/c nor hf/v particle. (Exercise 32 focuses  on  the  correct
 way to relate energy to wavelength and momentum  to frequency.)

1
2

vwave = fl =
E

h
 
 h
p

=
E
p

U

p =
h

l
= Uk

U K
h

2p
= 1.055 * 10-34 J # s

v K
2p

T

Angular frequency

k K
2p

l

Wave number
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3  The Free-Particle Schrödinger Equation

How do we determine the wave function °(x, t) of a matter wave? In one
sense, all types of waves are the same. For each, there is an underlying wave
equation, of which the wave function (don’t confuse these terms!) must be a
solution. Let us look at two familiar cases.

Waves on a String

For transverse waves on a stretched string, the wave equation is

where v is the wave speed. The wave function is the solution y(x, t), which
gives the string’s transverse amplitude as a function of position and time. All
wave equations ultimately rest on fundamental laws, and this one comes (after
some clever adaptations) from Fnet � ma. A basic sinusoidal solution of this
wave equation, illustrated in Figure 9, is the wave function

Electromagnetic Waves

The fundamental laws governing electromagnetic phenomena are Maxwell’s
equations. In vacuum, where charges and currents are absent, they are

(6a) (6b)

(6c) (6d)

Although we omit the details, these, like Fnet � ma, can be rearranged
into wave equations—one for E, one for B—involving partial derivatives in
space and time. A primary difference is that electromagnetic waves by nature
have two parts, E and B. The basic sinusoidal solution/wave function in this
case is a plane wave. By definition, a plane wave moves in one direction and
has a constant amplitude—it doesn’t spread out. Figure 10 depicts a plane
wave moving in the x direction, and the solutions of Maxwell’s equations that
describe it are

(7)
E1x, t2 = A sin1kx - vt2yN

    B1x, t2 =
1
c

 A sin1kx - vt2zN
where

 

v

k
= c

CB # dl =
1

c2 
0

0t LE # dACE # dl = -
0

0t LB # dA

CB # dA = 0CE # dA = 0

y1x, t2 = A sin1kx - vt2 where 
v

k
= v

v2 
02y1x, t2

0x2 =
02y1x, t2

0t2

y(x, 0)

x

v

Figure 9 A wave disturbance on a
string.

E

B
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z

x

Figure 10 An electromagnetic plane
wave.
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Schrödinger equation 

(free particle)

Matter Waves

The wave equation obeyed by matter waves is the Schrödinger equation. In
this chapter, we consider only the special case of  free particles. In the ab-
sence of external forces, the Schrödinger equation is

(8)

This equation can trouble beginning students of quantum mechanics on
two accounts: First, because its form is certainly not intuitively obvious, we
might hope for a derivation from first principles. However, there simply is no
more basic physical principle on which it is built. Its acceptance as, in essence,
a “law” rests on its rendering correct predictions—probabilities of finding par-
ticles, for instance. Although we can’t derive it, we will soon argue that at
least it has a plausible foundation.

The second concern is that the Schrödinger equation is complex, involv-
ing i; that is, . 

 “real.” Unfortunately, this would also seem to fit perfectly with the point we
made earlier: The wave function is not directly observable. (Why should it
be, since it isn’t real anyway?) The reason for the i is not that matter waves
are unreal, but that they can’t be represented by a single real function. Like
electromagnetic waves, they, by nature, have two parts, and a complex
function, carrying twice the information of a real one, enables us to handle
them together. In analyzing an electromagnetic wave, we could treat E
and B as a single complex unit by including an i (see Exercise 35),
without making either field “unreal.” We don’t do this, because E and B have
different personalities, and we like to keep them separate. But we haven’t
found similar reasons to keep the two parts of a matter wave separate, so
we use a single complex function. It is simply a matter of convenience (see
Exercise 34).

It may be convenient, but can we physically interpret a complex wave
function? At the risk of sounding impertinent, there is no need, for the wave
function itself cannot be physically detected. What is open to experimental
scrutiny is the wave function’s “square,” which is a real, nonnegative quantity:
the probability density.

Probability Density

We have noted that for all phenomena, the probability of detecting the particle
is proportional to the square of the wave’s amplitude. But what does this mean
if the wave has two parts, an E and a B, or real and imaginary parts of °(x, t)?
For electromagnetic waves, experiment verifies that the probability is propor-
tional to E2 � (cB)2, which, not coincidentally, is proportional to the total
electromagnetic intensity. Adding the squares seems to be the natural way.

1-1

-  

U2

2m
 
02°1x, t2

0x2 = iU 
0°1x, t2

0t

   It might be incorrectly concluded that a matter wave is not
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Experiment verifies the same for matter waves—add the squares of the real
and imaginary parts.

[Re °(x, t)]2 � [lm °(x, t)]2 � °*(x, t)°(x, t) � |°(x, t)|2

where °(x, t) � Re °(x, t) � i Im °(x, t). Note that °* signifies the complex
conjugate of ° and, conveniently, gives the expression the appearance of a
simple square. Fortunately, we will usually work with just a single real wave
function, a piece of the full complex one, and when we say “the square of the
wave function,” it is a simple square. But when we do use the full complex
function, this expression is understood to mean the product of the function and
its complex conjugate.

Until now, we have been careful to say that the probability and square of
the wave’s amplitude are proportional. Suppose we look for the particle in a
region of width � surrounding a certain point. For a given wave amplitude,
there is a given probability of finding the particle there. But if � is so small
that the wave’s amplitude is essentially constant around that region, then the
probability of finding the particle in a region of width 2� must be twice as
large. Thus, the square of the wave function’s amplitude must give a probabil-
ity per  unit  length.  In  three  dimensions,  it is  probability per  unit  volume.

 The  generic  term  for  probability  per  unit  length  or  volume is probability
 density.

probability density = |°(x, t)|2 (9)

The Plane Wave

Let us now reveal the foundation of the free-particle Schrödinger equation by
considering its most basic solution. A plane-wave solution is the complex
exponential

°(x, t) � Aei(kx�ωt) (10)

where A is a constant. To verify that this is a solution of equation (8), the
question is

Taking the partial derivatives on both sides, we have

and canceling,

(11a)
U2k2

2m
= Uv

-    

U2

2m
 1ik22 Aei1kx  - vt2 = iU1- iv2Aei1kx  - vt2

-  
U2

2m
 
02 Aei1 kx  - vt2

0x2

?
= iU 

0Aei1kx  - vt2

0t
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Figure 11 A plane matter wave: The
real and imaginary parts of Aei(kx�ωt),
plotted at t � 0.

That the functional dependence on position and time cancels means that func-
tion (10) obeys the Schrödinger equation for all values of x and t, provided
only that k and ω are related as in condition (11a). It is left as an exercise
to show that the more familiar A sin(kx � ωt) and Acos(kx � ωt)—applicable
to waves on a string, for example—simply don’t work the same way. They
are not solutions. It is true by the Euler formula that Aei(kx � ωt) is equivalent to
Acos(kx � ωt) � iA sin(kx � ωt), so there is a similarity. But the complex
exponential has two parts, and they are out of phase by one-quarter cycle.

The requirement that (11a) must hold is the key to seeing how the
Schrödinger wave equation relates to the classical physics of particles. We
hope that it isn’t at odds with the fundamental wave-particle relationships,

and . What happens if we insert them? Condition (11a)
becomes

(11b)

Given that , this merely says that the particle’s
kinetic energy must equal its total energy, which is the classical truth, because a
free particle has no potential energy. Thus, the Schrödinger equation is related
to a classical accounting of energy.

Although the wave function isn’t physically detectable, Figure 11,
which plots Aei(kx � ωt) at t � 0, provides some insight into the mathematical
nature of a plane wave. The real part of ° is a cosine, the imaginary part a
sine, and the two parts are out of phase in such a way that the magnitude is
constant—it varies neither in position nor in time. The direct calculation of the
probability density agrees:

|°(x, t)|2 = °*(x, t)°(x, t) � Ae�i(kx � ωt) Ae�i(kx � ωt) = A2

or

|°(x, t)| � A

That the probability per unit length is constant means that if we were to look
for it, a particle represented by a plane wave would be equally likely to be
found anywhere.

Obviously, a plane wave is not very realistic, but it is still quite useful. In
physical optics, we speak of plane waves of light, because they are often a suf-
ficiently good approximation of the actual wave. The same is true of matter
waves. But the plane wave’s importance goes even deeper, for a more general
wave can be treated as an algebraic sum of plane waves—they are easily ana-
lyzed “building blocks.” We will make use of this fact at several points later in
the text. Let us now turn to a topic where we need not know the actual °(x, t).
It is one of the most profound ideas in all of physics.
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4  The Uncertainty Principle

The mere fact that a phenomenon has a wave nature implies inherent uncertain-
ties in its particle properties. For example, passing through a single slit causes
an electromagnetic plane wave to spread out, so it must also cause uncertainty
in the momenta of the particles (photons) detected afterward. The same must
apply to an electron plane wave. Figure 12 depicts a single-slit pattern devel-
oped (like the earlier double slit) one electron at a time. The x-component of
momentum of an electron after passing through is obviously uncertain.

What we mean by “uncertainty” in momentum is that if the experiment is
repeated many times identically, the momentum detected after passing
through the slit still varies over a range of values. But how do we quantify
it? Suppose that the px-values we record fall within the range �1 kg # m/s to
�1 kg # m/s, except for one at �50 kg # m/s. What value do we assign to the
uncertainty? 1 kg # m/s? 25 kg # m/s? 51 kg # m/s?

The definition of uncertainty is an arbitrary choice, but it obviously
should measure how far deviations are from the mean (average) value. In
physics, we define it as standard deviation. For example, suppose repeated
experiments are carried out to determine a quantity Q, where Q might repre-
sent position x, a component of momentum px, or any other measurable quan-
tity. The value Q1 is obtained n1 times, the value Q2 is obtained n2 times, and
so on. We find the mean by multiplying a particular value Qi by the number
of times it is obtained, ni, summing over all values, then dividing by the total
number of times for all values.

(12)

The standard deviation 	Q is defined as the square root of the mean of the
squares of the values’ deviations from the mean (explaining its alternative
name, root-mean-square deviation).  Here we merely present the formula that

 goes with the words:

(13)

This definition is very well suited to its role. It is the most tractable one that
is zero if and only if there is only one value ever obtained, which would auto-
matically be , and when values do vary, it gets larger as they become more
spread out.

Although it is important to know that uncertainty has a logical definition,
as we continue to investigate the uncertainty principle in this section, we won’t
actually use the definition. The point is that when we say, for instance, that
there is “an uncertainty in the electrons’ momentum,” we aren’t speaking of
something nebulous but a specific value following from a concrete definition.

Q
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Figure 12 Single-slit diffraction of
an electron plane wave.

Waves and Particles II: Matter Behaving as Waves

45



Momentum-position uncertainty

principle

	x � ∞
position completely unknown;

  and p well defined�

	x finite
position better known;

   and p less well defined�

	x small
position even better known;

  and p even less well defined�

Figure 13 As a wave becomes more
compact, its overall wavelength and
momentum are less well defined.

So let us return to the single slit. As Figure 12 shows, there is an uncer-
tainty in the x-component of momentum of electrons detected beyond the slit,
for which the symbol is 	px. (The symbol 	 often means “change,” but not
here. Here it means uncertainty, or standard deviation.) On the other hand,
were we to conduct a different experiment, designed to establish the position
of electrons exiting the slit, there would be an uncertainty in this quantity,
too—	x. The electron wave front is spread over the entire width w, so there
would be a probability of finding the particle anywhere in this range, and the
narrower the slit, the smaller would be this uncertainty. Above all, there is a
link between the uncertainties in px and x. Because the width of a diffraction
pattern, related to 	px, is inversely proportional to the slit width, related to 	x,
the uncertainties are inversely proportional.

Although we have used the familiar single slit as a vehicle, the particular
experiment is not to “blame” for the conclusion. Regardless of the circum-
stances, it is an inescapable consequence of matter’s wave nature—whether
obvious or not—that increased precision in the knowledge of position implies
decreased precision in the knowledge of momentum and vice versa. Figure 13
illustrates a simplified, qualitative argument. The top wave is infinite and regu-
lar. While there is no doubt of its wavelength, there would be a probability of
finding the particle at places along the entire infinite x-axis. Wavelength and,
thus, momentum h/� are certain (	p � 0), but essentially nothing is known
about the particle’s position (	x � ∞). The center wave is regular over only a
finite region. The cost of obtaining a wave for which the particle’s probable
whereabouts are narrowed down (	x 
 ∞) is that the wave is not regular every-
where. In any fair way of taking into account all of space, the wavelength cannot
be said to be simply �, so neither can we claim that the momentum is precisely
h/� (	p 
 0). The bottom wave gives an even better known position, but only by
further restricting the region over which the wave is regular. Accordingly, it is
even less fair to say that the wavelength of this wave as a whole is �, so 	p is
larger still. The relationship between 	p and 	x is developed quantitatively in
Section 7. Here we concern ourselves only with the conclusion, known as the
uncertainty principle, and its ramifications.

Because of a particle’s wave nature, it is theoretically impossible to
know precisely both its position along an axis and its momentum
component along that axis; 	x and 	px cannot be zero simultaneously.
There is a strict theoretical lower limit on their product:

(14)

Often referred to as the Heisenberg uncertainty principle, for its discov-
erer Werner Heisenberg (Nobel Prize 1932), it is a shocking revelation. There
is a theoretical limit on the precision with which some familiar quantities can
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be known simultaneously. If we know a particle’s position exactly, we can
know nothing about its momentum (	x � 0 ⇒ 	px � ∞). If momentum is
known exactly, position is completely unknown. The plane wave is a good
example of the latter case. This fundamental matter wave has a wavelength
perfectly regular throughout space, giving it a perfectly precise momentum,
but it represents a particle equally likely to be found anywhere. A property in
which there is no uncertainty is said to be well defined. For the plane wave,
momentum is well defined (	px � 0), but position couldn’t be more undefined
(	x � ∞).

Don’t be troubled by the inequality in (14)—there is no uncertainty
about the uncertainty principle. The � reflects the simple fact that there is a
particular wave shape, called a Gaussian, also known as a bell curve, for
which the product of uncertainties is a minimum. Figure 14 shows a Gauss-
ian wave form, a constant C times a “Gaussian factor” where � is a
constant. It is maximum at x � 0, falls off toward 0 symmetrically as x
becomes large, and the rate of fall-off depends on �. If � is large, the wave
form is broad, falling off very slowly; whereas if � is small, the wave form
is narrow. We leave the actual calculation of uncertainties from wave func-
tions until later, but it shouldn’t be surprising that the position uncertainty 
	x is proportional to �. It is also true that 	p is inversely proportional to �,
and it is only for a particle whose matter wave function is of this form that the
product of the two uncertainties is the minimum theoretically possible, 
For any other shape, simultaneous knowledge of the two is less precise:

.
The whole idea behind the uncertainty principle is rather upsetting to a

student of classical physics. Classically, we claim that we can calculate a
particle’s position and velocity for all time via F � ma and kinematics.
We need only know the forces acting and the initial position and velocity. But
now we see that even starting such a calculation is problematic, for precise
knowledge of position and velocity simultaneously is impossible. Fortunately,
as we soon see, the uncertainty principle is of little consequence for “large”
things.

On the other hand, it is of great consequence for the small things we
study in quantum mechanics. As we saw in Example 1, while wavelengths
of macroscopic objects are ridiculously small, an electron might well have a
wavelength measured in nanometers or larger. Undoubtedly, it would
behave as a particle in a situation where distances are measured in meters, as
in a television’s cathode-ray tube. But it should definitely show its wave
side when confined in a system measured in fractions of a nanometer. Such a
system is the atom, probably the most logical test of quantum mechanics,
and the simplest atom is hydrogen—essentially an electron orbiting a sta-
tionary proton. In such small confines, the electron must be treated not as
an orbiting particle but as a bound three-dimensional wave surrounding the
proton. Because the wave is spread diffusely, the probability of finding the
electron is spread diffusely. Our knowledge of the atom’s approximate size
sets a rather small maximum possible value for the position uncertainty, and
there is, correspondingly, a rather large minimum theoretical uncertainty in
momentum.
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EXAMPLE 4

The hydrogen atom is known to be about 0.1 nm in radius. That is, the electron’s
orbit, whatever may be its shape, extends to about this far from the proton. Accord-
ingly, the uncertainty in the electron’s position is no larger than about 0.1 nm. What
is the minimum theoretical uncertainty in its velocity?

SOLUTION

An electron in an atom moves in three dimensions, but considering components of
motion along just one of the axes should give us a pretty good approximation.

Now using p � mv,

From Example 4, we conclude that an experiment designed to deter-
mine the hydrogen electron’s speed, if repeated identically, must produce a
range of values covering more than % of c. In fact, careful study of the
hydrogen atom reveals slight relativistic effects. Actually, the theoretical min-
imum 	px of 5.3 � 10�25 kg # m/s would apply only if the wave function were
a Gaussian, which it is not, so the true uncertainty is somewhat larger. But to
be too concerned with this point is to overlook much of the power of the
uncertainty principle. It governs all phenomena, for all have an underlying
wave nature, and it may be used for order-of-magnitude calculations in com-
plete ignorance of the wave function. We shall see just how useful this can be
in Example 6, which gives us an excellent estimate of the hydrogen elec-
tron’s energy. First, let us revisit the problem of reconciling the uncertainty
principle with classical mechanics.

The Classical Limit

The uncertainty principle places no significant limitation on the use of classi-
cal mechanics in classical situations. In the following example, we justify this
claim and also confront our earlier predicament: A stationary object, with a
corresponding infinite wavelength, should behave as a wave.

EXAMPLE 5

By simple visual inspection, we can establish the location of an object within an uncer-
tainty of about 550 nm, the wavelength of visible light. Suppose the object is a 1 mg
grain of sand, apparently stationary. (a) What is the minimum uncertainty in its veloc-
ity, and if moving at this speed, how long would it take to travel the smallest distance

1
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perceivable, about 1 µm? (b) A wavelength of 1 nm would be small enough to ensure
particle behavior in everyday circumstances. How fast would the grain of sand have to
move to have such a wavelength?

SOLUTION

(a)

In essence, 	px is small because is small.

In Example 4, the electron’s velocity uncertainty was nearly relativistic. It is
a relief to find it so much smaller here. Large mass is the reason. Quantum-
mechanically speaking, a grain of sand is huge.

Clearly, we can know both the position and the velocity of this object precisely
enough to apply classical mechanics.

(b) Using the de Broglie formula,

Part (a) calculates the theoretical minimum velocity uncertainty—more precise
knowledge of v is impossible—but measurements in classical situations don’t
even come close to such a ridiculously small speed. Here we see that even a
(classically) tiny object could appear absolutely stationary yet have a wave-
length so short as to behave particlelike for all classical purposes.

A Practical Application

he uncertainty principle alone explains a behavior for which classical argu-
ments fail. Classically, there is no lower limit on the energy a small particle
may have as it orbits a large body. For instance, a satellite may be positioned at
any distance from a planet and, if given the proper velocity, maintain a circular
orbit. The smaller the orbit radius, the lower would be the energy, though there
is a practical lower limit in which the satellite simply rests on the planet’s sur-
face. By analogy, if an electron orbits a proton in a hydrogen atom, there should
be no lower limit on the energy it may have. But there is a minimum energy,
called the ground-state energy, and it is inconsistent with the electron simply
resting on the proton. The electron’s wave nature—specifically, the inverse
relationship between its momentum and position uncertainties—is the answer
to the mystery.
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Figure 15 If px has nonzero mean, a
typical value of px differs considerably
from 	px, but if the mean is zero, a
typical value cannot be much larger
than 	px.

Before we show this, we discuss a point that bears on various applications
of the uncertainty principle: If the mean of a quantity is zero, then the
uncertainty in the quantity and typical values of the quantity are comparable.
If the mean is nonzero, this need not hold. For instance, a position mean of
100.0 m with an uncertainty of 0.1 m implies typical position values in the
range of 99.9 m to 100.1 m—obviously not comparable to 0.1 m. However,
the same uncertainty with a mean of zero would imply positions between
�0.1 m and �0.1 m (or 0 and 0.1 m, if negative values aren’t allowed), which
are comparable to the uncertainty.

Figure 15 illustrates the point in the context of momentum. The top dia-
gram shows results of a hypothetical experiment in which measured px values
have a mean that is large and positive. Essentially all px values are much larger
than 	px. The bottom diagram shows a case with the same 	px but a mean of
zero. Any px value within about 	px of the mean is likely. The chance of its
being 10	px is clearly quite small, and even the chance of its being within,
say, of zero is rather small. Therefore, the mostly likely values of px are
those roughly the same order of magnitude as 	px.

EXAMPLE 6

An electron is held in orbit about a proton by electrostatic attraction. Its total
mechanical energy is the sum of its kinetic energy and the electrostatic potential
energy between charges �e and �e that are a distance r apart.

(a) If the electron behaves as a classical particle, it must obey F � ma. Assuming
a circular orbit, apply F � ma to eliminate v in favor of r in the energy expres-
sion, and demonstrate that the energy has no minimum.

(b) Suppose now that the electron behaves as an orbiting wave. The energy expres-
sion decreases as both position r and momentum mv approach zero. Assume
that each is very small and thus comparable to its respective uncertainty:

. The uncertainty principle then implies that . Use
this to eliminate v in favor of r in the energy expression.
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(c) Sketch on the same axes the energy expressions from parts (a) and (b) versus r.

(d) Find the minimum possible energy for the orbiting electron wave and the cor-
responding value of r.

SOLUTION

(a) Coulomb’s law gives us the electrostatic force, and the acceleration of a parti-
cle in circular motion is v2/r.

Thus,

We see that the negative potential energy is of greater magnitude than the posi-
tive kinetic, and the total strictly decreases (becomes more negative) as r
decreases. There is no minimum energy.

(b) Assuming , we have or . Thus,

Now, as r decreases and the wave becomes more compact, likely values of the
speed increase inversely, and so must the kinetic energy.

(c) The two plots are shown in Figure 16. While the energy of a classical particle
decreases monotonically as r decreases, the energy of the matter wave reaches
a minimum and then increases.

(d) To find the minimum, we set the derivative to 0.

Reinserting,

 = -2.2 * 10-18 J = -13.6 eV

 = -  

19.11 * 10-31 kg211.6 * 10-19 C24
32p218.85 * 10-12 N # m2>C22211.055 * 10-34 J # s22

E
matter
wave

=
U2

2m
 ¢ me2

4pe0U2 ≤2
-

e2

4pe0
 ¢ me2

4pe0U2 ≤ = -  

me4

32p2 e0
2 U2

 = 5.3 * 10-11 m

 Q  r =
4pe0U2

me2 =
4p18.85 * 10-12 N # m2>C2211.055 * 10-34 J # s22

19.11 * 10-31 kg211.6 * 10-19 C22

 

dEmatter
wave

dr
= -

U2

mr3 +
e2

4pe0r2 = 0

Ematter
wave

=
1

2
 ma U

mr
b

2
-

1

4pe0
 

e2

r
=

U2

2mr2 -
e2

4pe0r

v = U>mrp = U>rpr = U

Eclassical
particle

=
1

2
 m¢ e2

4pe0mr
≤ -

1

4pe0
 

e2

r
=

e2

8pe0r

Kinetic

-
e2

4pe0r

Potential

= -  

e2

8pe0r

F = ma :  
1

4pe0
 

e2

r2 = m 

v2

r
 Q  v2 =

e2

4pe0mr

E matter
wave

E classical
particle

E
ne

rg
y

r

Figure 16 As the radius of an orbit-
ing matter wave approaches zero, its
momentum uncertainty and, thus,
kinetic energy approach infinity.
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Energy-time uncertainty principle

This value happens to equal the experimentally verified minimum energy, and the
radius is also the correct most probable radius at which to find the electron (which
doesn’t rest on the proton, whose radius is 10,000 times smaller). That they agree
so closely is an accident—we have made many approximations—but it is no acci-
dent that they are of the correct order of magnitude. The uncertainty principle is a
powerful tool.

The Uncertainty Principle in Three Dimensions

The qualitative idea behind the uncertainty principle is the same in multiple
dimensions as in one. The more compact the wave along a given axis, the less
well we can specify the wavelength and therefore the momentum component
along that axis. The result is a logical generalization of the one-dimensional
result:

Note that the dimensions are independent. The single-slit pattern of Figure
12 bears this out. Passing through the slit, narrow along x only, produces a
large uncertainty in px, indicated by the subsequent detections being spread
over a large region of the screen. In the y-direction, the aperture is wide, so
less is known about this component of position, and there is correspondingly
little spreading of the pattern in that dimension. Thus, 	py and 	x can be small
simultaneously.

The Energy-Time Uncertainty Principle

The momentum-position uncertainty relation is, at heart, a mathematical rela-
tionship. A width in space is inversely proportional to a “width” in the spatial
frequency k � 2�/� (see Section 7). It is the fundamental wave-particle
physics, , that takes it the final step. The same math relates a width in
time to a width in the temporal frequency ω � 2�/T. With , the corre-
sponding physical consequence is

(15)

How do we interpret this? If a state, or even a particle, exists for only a
limited span of time, its energy is uncertain. One example is the fleeting life of
certain exotic subatomic particles. Their lifetimes can be quite short—less
than 10�20 seconds—and this leads to considerable uncertainty in their mass/
energy. Another example is the state temporarily occupied by an electron as it
jumps down through energy levels in an atom. Because the state is occupied
for a finite time interval 	t, its energy is uncertain by an amount 	E inversely
related to 	t, which in turn gives rise to an uncertainty in the energy of the
photon produced when the electron drops down. This effect contributes to the
broadening of atomic spectral lines (see Exercise 72).

¢E ¢t Ú  

U

2

E = Uv

p = Uk

¢px¢x Ú  

U

2
  ¢py¢y Ú  

U

2
  ¢pz¢z Ú  

U

2

Waves and Particles II: Matter Behaving as Waves

52



5  The Not-Unseen Observer

Let us spend a little time summarizing the limitations that quantum mechanics
places on our knowledge. 
tion may, in principle, be solved for the wave function of a massive object,
which contains all information that can be known. But this isn’t everything we
might expect classically. The uncertainty principle, for instance, says that a
wave function of simultaneously precise momentum and position is a theoreti-
cal impossibility. It follows that any experiment or measurement that precisely
determines position must result in a state in which nothing is known about the
momentum and vice versa.

Suppose we carry out an experiment on a particle, experiment A, applying
external forces in such a way as to determine both its position and its momen-
tum as precisely as possible, such that . Assume, for the sake of
discussion, that 	x is 100 µm, and call the wave function °A. We have found
the wave function, but we aren’t satisfied, for we haven’t really “found” the
particle—its “location.” All we have is this mysterious probability amplitude.

We conduct another experiment, experiment B, in which the particle reg-
isters its presence at a detector at a definite location. We rejoice—we have
found the particle. However, there are no “point detectors.” If the detector’s
width is smaller than the 100 µm position uncertainty in °A, then we have
indeed narrowed down the possible locations, but we haven’t established a
location with complete certainty. Yes, we have reduced the uncertainty in
position, but if this is so, experiment B has changed the wave function. At the
very least, it has increased 	p.

If we repeated this pair of experiments many times—experiment A to
establish the initial wave function °A and experiment B to “find” the particle—
experiment B would find it at various locations within the 100 µm uncertainty
of wave function °A, and the number detected at a given location would be
proportional to |°A|2. In essence, we would simply verify that |°A|2 is propor-
tional to the probability of finding the particle after experiment A. But because
experiment B changes the wave function, we can’t “watch”—repeatedly find—
the same particle while preserving a single wave function °A.

The double-slit experiment, depicted in Figure 17, is a good example of
these ideas. In effect, the slits are an experiment A, establishing an initial wave
function °A beyond them, and experiment B is the detection of a particle at

¢x ¢p = U>2

|�A|2

Experiment A Experiments B

Detector
bankElectron

beam

Figure 17 Experiment A establishes
°A, which repeated experiments B
verify.

If the forces are known, the Schrödinger equa-
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the screen. By sending in a beam of particles one at a time, we are carrying out
experiment A then experiment B repeatedly. Where °A is large, experiment B
registers particles in abundance; where °A is zero, experiment B registers no
particles. We cannot conduct an intermediate experiment, determining which
slit a given particle passes through, and yet hope to observe the interference
pattern exhibited by °A, for this intermediate experiment would itself alter the
wave function. (A recent confirmation is discussed in Progress and Applica-
tions.) To observe interference at the screen, we must allow each particle’s
wave function to pass through both slits simultaneously—otherwise there
would not be two coherent waves to interfere.

The discussion raises an interesting point: If we cannot know the location of
a particle until we actually look for it, it is hard to justify the claim that it even
has a location before we look for it. Early in the quantum age, many eminent
physicists, most notably Albert Einstein himself, asserted that theories of wave-
particle duality must be incomplete, that some modification is needed to allow
“real” quantities, such as position, to have definite values at all times. However,
the modern consensus, known as the Copenhagen interpretation, is that until
an experiment actually localizes it, a particle simply does not have a location.

In summary, rather than the classical ideas of position and velocity, quan-
tum mechanics allows us to know only probabilities and corresponding uncer-
tainties based on the most recent observation of the “particle,” and a
determination of one property is liable to alter another. (Note: There is a way
to precisely determine an uncertain property without in any way upsetting the
particle. It involves “entangled” particles. 

6  The Bohr Model of the Atom

It is instructive to take a look at an early attempt to solve the mysteries of the
atom. This work, for which Niels Bohr won the 1922 Nobel Prize, is known as
the Bohr model of the atom, or simply the Bohr atom.

When the fundamental workings of something are so obscure as to defy
formulation of a comprehensive theory, we construct a model. We observe that
a system behaves in a certain way, and the model is a simplified theory that
tries to explain the behavior. If it agrees with further experimental observation,
we cautiously take it as evidence that its basic assumptions are valid, and we
move forward. If, on the other hand, the model’s predictions are at odds with
further experiment, the model must be changed. Still, we learn something
worthwhile: At least one of the model’s assumptions is invalid.

The Bohr model predicted that the electron orbiting the proton in a hydro-
gen atom may take on only certain, discrete energies, and the predicted values
agreed with the experimental evidence. Combining simple quantum principles
with classical physics, it is based on (1) the classical second law of motion,
applied to an electron assumed to be held in circular orbit by its electrostatic
attraction to a proton, as shown in Figure 18; (2) a classical expression for
the energy of the orbiting electron; and (3) a postulate involving the quantiza-
tion of the electron’s angular momentum.

�e

�e

r

v
F

Figure 18 A classical picture of an
electron orbiting a proton.
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Bohr model energies for hydrogen

Bohr model radii for hydrogen
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Figure 19 Fitting whole waves
around a circumference.

The classical second law of motion sets the Coulomb force between
electron and proton equal to the mass times the centripetal acceleration for
circular motion:

(16)

The work of combining this with the classical expression for energy was done
in Example 6. The result is

(17)

It is negative because the negative potential energy exceeds the positive
kinetic. In this classical expression, energy varies continuously, for r may take
on any of a continuum of values.

Now we add Bohr’s main postulate: The electron’s angular momentum L
may take on only the values

Because L � mvr in a circular orbit, this condition may also be written

(18)

Figure 19 illustrates a plausible basis for Bohr’s postulate. If we assume that
the orbiting electron behaves as a wave wrapped around a circle and that it
must meet itself smoothly, so that the circumference is an integral number of
wavelengths, then � � h/p implies that the product mvr may take on only the
values .

Between equations (16) and (18), we may eliminate v and obtain a
condition restricting r only to certain values.

(19)

or

According to Bohr’s theory, the electron orbits at certain radii that are multiples
of the Bohr radius a0. Energy, in turn, is also quantized. Inserting equation 
(19) into (17),

(20)

The allowed values of the electron’s energy depend on the integer n, known as
the principal quantum number. As noted, these agree with the experimental
evidence.
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A

The Bohr model of the atom is an excellent example of working with the
knowledge at hand—the Schrödinger equation hadn’t even been developed
yet! However, it is flawed. Although orbiting electrons are most likely to be
found at certain distances from the proton, they must really be treated as dif-
fuse waves spread over a broad range of radii. This casts doubt on (19),
which, in turn, calls into question the model’s predicted energies. Further-
more, in reality, orbiting electron waves have not only rotational kinetic
energy, due to motion about the origin, but also radial kinetic energy due to
motion toward and away from the origin. 

7  Mathematical Basis of the Uncertainty
Principle—The Fourier Transform

The uncertainty principle rests on a mathematical relationship completely
independent of any physical application: The more spatially compact a wave
is, the less well its wavelength may be specified.

To begin, consider the left-hand plots in Figure 20, which show periodic
functions of position. All repeat within the same interval along the x-axis,
indicated by �1. The top waveform is a pure sinusoidal wave. The other
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Figure 20 Three functions of the same fundamental wavelength but different spectral
(harmonic) contents.
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4In some sense, an integral over k is like a sum
over all multiples of a fundamental wave number
that is infinitesimal, dk. Its infinite wavelength
allows the wave’s overall period to be infinite.
A pulse never repeats.

two are not pure, but they are algebraic sums of pure waveforms of different
wavelengths, as shown in the figure’s center plots. These sums have the same
fundamental (longest) wavelength as the top waveform, plus differing
amounts of wavelengths half as long and one-third as long. Waveforms rich in
such harmonics are common in musical instruments. A wave on a guitar
string, for example, consists of a large amplitude of the fundamental wave-
length, coexisting with shorter-wavelength harmonics of various amplitudes.
The important point here is that a complicated periodic waveform can often be
treated as an algebraic sum of pure sine waves of different wavelengths. To
know the amplitudes of the different wavelengths is to know the waveform’s
“spectral content,” and these are the right-hand plots in Figure 20. Such
plots may be familiar, for they are what the graphic equalizer on a stereo dis-
plays, with big spikes at one end when the bass is loud and at the other when
the treble is loud. And what does this have to do with the uncertainty princi-
ple? Making a wave very compact makes it a sum of pure waves covering a
huge range of wavelengths, and this means a huge range of momenta.

For what follows, it is more convenient to refer to wave number than to
wavelength. Don’t forget its definition, k � 2�/�, and that it is a spatial fre-
quency. For instance, if � were 1.0 m, k would be 2� m�1, a whole cycle
(radians is understood) per meter; if � is 0.5 m, k is 4� m�1, two cycles per
meter. As a simple but useful example of its convenience, the harmonics
shown in Figure 20 have wavelengths obeying �n � �1/n. The correspond-
ing wave numbers are 2�/(�1/n) � n 2�/�1, integral multiples of the funda-
mental wave number. It is usually more convenient to speak of something that
can be integral multiples of a basic value than a basic value over an integer.

Now, adding pure sine waves whose wave numbers are multiples of a fun-
damental wave number always yields a periodic function. But what of a non-
periodic waveform? A wave pulse, like that shown in Figure 21, is of great
interest in quantum mechanics, for it approximates a well-localized particle. It
isn’t periodic, but can it be considered as a sum of pure sine waves? The
answer is yes, but not if the sum is restricted to multiples of a fundamental
wave number.

Figure 22 shows why. Waveform (a) is a pure sine wave whose wave
number is the pulse’s apparent wave number k0. Obviously, it is a poor
approximation of the pulse. Waveform (b), a sum of just three sine waves of
different amplitudes and wave numbers, does considerably better. Waveforms
(c) and (d) add wave numbers more densely spaced and covering a greater
range above and below k0, and here we begin to see a trend. The periodic
“impostors” retreat from our desired waveform. We can eliminate them com-
pletely only by including an infinite number of waves in the sum. We will soon
see how we knew what amplitudes and wave numbers to add together. But, as
illustrated by waveform (e), the main point is this: A nonperiodic wave can be
treated as a sum of sine waves of different amplitudes covering a continuous
range of wave numbers. It isn’t a sum, but an integral.4

In quantum mechanics, our basic function is the pure sinusoidal plane
wave describing a free particle, given in equation (10): °(x, t) � Ae i(kx� ωt).
We aren’t interested here in how things behave in time, so we choose the con-
venient time of zero. Thus, our “building block” is eikx. Now we claim that any

Figure 21 A wave pulse.
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Fourier transform A(k) of function c(x)
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Figure 22 Building a single isolated pulse from pure sine waves requires a continuum of wave numbers.

general, nonperiodic wave function c(x) can be expressed as a sum/integral of
these building blocks over the continuum of wave numbers:5

(21)

The amplitude A(k) of the plane wave is naturally a function of k, for it tells us
how much of each different wave number goes into the sum. As we will soon
see, it is the key to the whole idea. Although we can’t, of course, pull it out of
the integral, the equation can be “solved” for A(k). The result is

(22)A1k2 =
1

2p
 3
 + q

- q 

c1x2 e-ikx dx

c1x2 = 3
 + q

- q 

A1k2 eikx dkFunction c(x) as a sum of plane waves of

amplitude A(k)

5It is conventional to use �(x, t) when time is a fac-
tor, and c(x) otherwise.

Waves and Particles II: Matter Behaving as Waves

58



Gaussian
bump

Re    (x)

Im    (x)
2   /k0

x

�

�

�

Figure 24 A Gaussian wave packet: A
plane wave of wavelength 2�/k0,
modulated by a Gaussian bump,

.e-1x>2e22

Ceik0x

Fall-off and    come
from gaussian bump 
e–(x/2   )2

Oscillatory nature
comes from eik0x

Re    (x)

� � 2�
k0

x

ε

ε

ε

�

Figure 23 The real part of a Gauss-
ian matter wave packet.

The proper name for A(k) is the Fourier transform of the function c(x).
Fourier analysis is the technique of treating general functions as sums of basic
ones, and the word transform suggests doing something with a function, such
as throwing c(x) in an integral with eikx and obtaining something else, A(k),
related to that function—which is what we’re doing. Before applying it, two
points are worth reiterating. First, although the building block eikx is not as easy
to visualize as a real sinusoidal function, it is just two such functions linked in a
special  way, cos(kx) � i sin(kx ). Second, equation (21) defines A(k) as the
amplitude of each building block, which means that, although continuous, it is
really the same quantity shown in the “amplitude” plots in Figures 20 and
22. Now let us use equation (22) to see what it really tells us.

Gaussian Wave Packet

A plausible wave function for a reasonably well-localized particle is the
Gaussian wave packet:

(23)

Let us inspect this one piece at a time. The C is just a constant setting the func-
tion’s “height” and related to the total probability, which doesn’t concern us
much here. The is what qualifies the whole function as “Gaussian.” As
noted in Section 4, it is a maximum at x � 0 and falls off on either side. The
fall-off is fast when � is large and slow when it is small. In other words, the
width of the bell curve is proportional to �. Multiplying the Gaussian factor is

, a plane wave of wave number k0. A Gaussian is just a bump, but multiply-
ing it by this sinusoidal function gives the product an oscillatory character.
Figure  23 shows  the real part  of  the product. From the cos(k 0x )—the real part
of —it gets its wavelength � � 2�/k0, and from the Gaussian factor, its
fall-off. Figure 24 represents the entire complex Gaussian wave packet in the
same way that Figure 11 does a pure plane wave. The difference here is that
our plane wave is modulated by the Gaussian factor. This certainly looks more
particlelike than a plane wave alone, but what else does this imply?

To answer this, we calculate A(k). Using (22),

The integral is a standard form, known not coincidentally as a Gaussian integral,

3
 + q

- q 

e-az2 +bz dz = Apa  eb2>4a

 =
C

2p
 3
 + q

- q 

e-11>4e22x2 + i1k0 -k2x dx

 A1k2 =
1

2p
 3
 + q

- q 

Ce-1x>2e22eik0xe-ikx dx

eik0x

eik0x

e-1x>2e22

c1x2 = Ce-1x>2e22 eik0x
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We have a � 1/(4�2) and b � i(k0 � k), so

(24)

Now we reach the pivotal question: What does A(k) tell us? It is plotted
in Figure 25, confirming what we see in the formula itself—that A(k) also
happens to be a Gaussian function (which explains the shape chosen for the
“amplitudes” in Figure 22). This one, however, is a function of k and is  cen-
tered  at  k � k0. Equation (21) says that we can create our Gaussian c(x) 
by adding pure eikx plane waves, each multiplied by the coefficient A(k) given in 
(24). We conclude that in this sum, we would need large amplitudes of plane
waves whose wave number is near k0 and smaller amplitudes for other wave
numbers. Furthermore, as � gets small, c(x) gets narrow, but A(k) gets wide, for
� is in the numerator of the Gaussian’s argument in A(k) and in the denominator
in c(x). The width of c(x) is inversely proportional to the width of A(k). (Why
the width of A(k) is shown as 1/(2�) rather than just 1/� we address a bit later.)

Figure  26 plots  A(k ) and the real part of c(x) for different � values.
When � is very large, the Gaussian factor in c(x) falls off slowly, and c(x) is

A1k2 =
C
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 e-e21k-k022 24e2p1
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ε

Figure 25 The Fourier transform
A(k) of a Gaussian wave packet.
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