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From Physics for Scientists & Engineers with Modern Physics, Fourth Edition, Douglas C. Giancoli.
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I was motivated from the beginning to write a textbook different from others that
present physics as a sequence of facts, like a Sears catalog: “here are the facts and
you better learn them.” Instead of that approach in which topics are begun
formally and dogmatically, I have sought to begin each topic with concrete
observations and experiences students can relate to: start with specifics and only then
go to the great generalizations and the more formal aspects of a topic, showing why

we believe what we believe. This approach reflects how science is actually practiced.

Why a Fourth Edition?
Two recent trends in physics texbooks are disturbing: (1) their revision cycles
have become short—they are being revised every 3 or 4 years; (2) the books are
getting larger, some over 1500 pages. I don’t see how either trend can be of
benefit to students. My response: (1) It has been 8 years since the previous
edition of this book. (2) This book makes use of physics education research,
although it avoids the detail a Professor may need to say in class but in a book shuts
down the reader. And this book still remains among the shortest.

This new edition introduces some important new pedagogic tools. It contains
new physics (such as in cosmology) and many new appealing applications (list on
previous page). Pages and page breaks have been carefully formatted to make the
physics easier to follow: no turning a page in the middle of a derivation or Example.
Great efforts were made to make the book attractive so students will want to read it.

Some of the new features are listed below.

What’s New
Chapter-Opening Questions : Each Chapter begins with a multiple-choice question,
whose responses include common misconceptions. Students are asked to answer
before starting the Chapter, to get them involved in the material and to get any
preconceived notions out on the table. The issues reappear later in the Chapter,
usually as Exercises, after the material has been covered. The Chapter-Opening
Questions also show students the power and usefulness of Physics.
APPROACH paragraph in worked-out numerical Examples : A short introductory
paragraph before the Solution, outlining an approach and the steps we can take to
get started. Brief NOTES after the Solution may remark on the Solution, may give
an alternate approach, or mention an application.
Step-by-Step Examples : After many Problem Solving Strategies (more than 20 in
the book), the next Example is done step-by-step following precisely the steps just
seen.
Exercises within the text, after an Example or derivation, give students a chance to
see if they have understood enough to answer a simple question or do a simple
calculation. Many are multiple choice.
Greater clarity : No topic, no paragraph in this book was overlooked in the search
to improve the clarity and conciseness of the presentation. Phrases and sentences
that may slow down the principal argument have been eliminated: keep to the
essentials at first, give the elaborations later.
Vector notation, arrows : The symbols for vector quantities in the text and Figures
now have a tiny arrow over them, so they are similar to what we write by hand.
Cosmological Revolution : With generous help from top experts in the field,
readers have the latest results.

B
B
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Page layout : more than in the previous edition, serious attention has been paid to
how each page is formatted. Examples and all important derivations and
arguments are on facing pages. Students then don’t have to turn back and forth.
Throughout, readers see, on two facing pages, an important slice of physics.

New Applications : LCDs, digital cameras and electronic sensors (CCD, CMOS),
electric hazards, GFCIs, photocopiers, inkjet and laser printers, metal detectors,
underwater vision, curve balls, airplane wings, DNA, how we actually see images.
(Turn back a page to see a longer list.)

Examples modified : more math steps are spelled out, and many new Examples
added. About 10% of all Examples are Estimation Examples.

This Book is Shorter than other complete full-service books at this level. Shorter
explanations are easier to understand and more likely to be read.

Content and Organizational Changes
• Rotational Motion: Chapters 10 and 11 have been reorganized. All of angular

momentum is now in Chapter 11.
• First law of thermodynamics, in Chapter 19, has been rewritten and extended.

The full form is given: where internal energy is
and  U is potential energy; the form  is kept so that  

• Kinematics and Dynamics of Circular Motion are now treated together in
Chapter 5.

• Work and Energy, Chapters 7 and 8, have been carefully revised.
• Work done by friction is discussed now with energy conservation (energy

terms due to friction).
• Chapters on Inductance and AC Circuits have been combined into one:

Chapter 30.
• Graphical Analysis and Numerical Integration is a new optional Section 2–9.

Problems requiring a computer or graphing calculator are found at the end
of most Chapters.

• Length of an object is a script rather than normal l, which looks like 1 or I
(moment of inertia, current), as in Capital L is for angular
momentum, latent heat, inductance, dimensions of length [L].

• Newton’s law of gravitation remains in Chapter 6. Why? Because the 
law is too important to relegate to a late chapter that might not be covered
at all late in the semester; furthermore, it is one of the basic forces in nature.
In Chapter 8 we can treat real gravitational potential energy and have a fine
instance of using  

• New Appendices include the differential form of Maxwell’s equations and
more on dimensional analysis.

• Problem Solving Strategies are found on pages 30, 58, 64, 96, 102, 125, 166,
198, 229, 261, 314, 504, 551, 571, 600, 685, 716, 740, 763, 849, 871, and 913.

Organization
Some instructors may find that this book contains more material than can be
covered in their courses. The text offers great flexibility. Sections marked with a
star * are considered optional. These contain slightly more advanced physics
material, or material not usually covered in typical courses and/or interesting
applications; they contain no material needed in later Chapters (except perhaps in
later optional Sections). For a brief course, all optional material could be dropped
as well as major parts of Chapters 1, 13, 16, 26, 30, and 35, and selected parts of
Chapters 9, 12, 19, 20, 33, and the modern physics Chapters. Topics not covered in
class can be a valuable resource for later study by students. Indeed, this text can
serve as a useful reference for years because of its wide range of coverage.

U = – �  F
B # d  L

B
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Versions of this Book

Complete version: 44 Chapters
including 9 Chapters of modern
physics.

Classic version: 37 Chapters
including one each on relativity
and quantum theory.

3 Volume version: Available
separately or packaged together
(Vols. 1 & 2 or all 3 Volumes):

Volume 1: Chapters 1–20 on
mechanics, including fluids,
oscillations, waves, plus heat 
and thermodynamics.

Volume 2: Chapters 21–35 on
electricity and magnetism, plus
light and optics.

Volume 3: Chapters 36–44 on
modern physics: relativity,
quantum theory, atomic physics,
condensed matter, nuclear
physics, elementary particles,
cosmology and astrophysics.
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I owe special thanks to Prof. Bob Davis for much valuable input, and especially for
working out all the Problems and producing the Solutions Manual for all Problems, as
well as for providing the answers to odd-numbered Problems at the end of this book.
Many thanks also to J. Erik Hendrickson who collaborated with Bob Davis on the
solutions, and to the team they managed (Profs. Anand Batra, Meade Brooks, David
Currott, Blaine Norum, Michael Ottinger, Larry Rowan, Ray Turner, John Vasut,
William Younger). I am grateful to Profs. John Essick, Bruce Barnett, Robert Coakley,
Biman Das, Michael Dennin, Kathy Dimiduk, John DiNardo, Scott Dudley,
David Hogg, Cindy Schwarz, Ray Turner, and Som Tyagi, who inspired many of
the Examples, Questions, Problems, and significant clarifications.

Crucial for rooting out errors, as well as providing excellent suggestions, were
Profs. Kathy Dimiduk, Ray Turner, and Lorraine Allen. A huge thank you to them
and to Prof. Giuseppe Molesini for his suggestions and his exceptional photographs
for optics.

Thanks
Many physics professors provided input or direct feedback on every aspect of this
textbook. They are listed below, and I owe each a debt of gratitude.
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For Chapters 43 and 44 on Particle Physics and Cosmology and Astrophysics,
I was fortunate to receive generous input from some of the top experts in the field,
to whom I owe a debt of gratitude: George Smoot, Paul Richards, Alex Filippenko,
James Siegrist, and William Holzapfel (UC Berkeley), Lyman Page (Princeton and
WMAP), Edward Wright (UCLA and WMAP), and Michael Strauss (University
of Oklahoma).

I especially wish to thank Profs. Howard Shugart, Chair Frances Hellman, and
many others at the University of California, Berkeley, Physics Department for
helpful discussions, and for hospitality. Thanks also to Prof. Tito Arecchi and others
at the Istituto Nazionale di Ottica, Florence, Italy.

Finally, I am grateful to the many people at Prentice Hall with whom I 
worked on this project, especially Paul Corey, Karen Karlin, Christian Botting,
John Christiana, and Sean Hogan.

The final responsibility for all errors lies with me. I welcome comments,
corrections, and suggestions as soon as possible to benefit students for the next reprint.

D.C.G.
email: Paul.Corey@Pearson.com

Post: Paul Corey
One Lake Street
Upper Saddle River, NJ 07458

About the Author
Douglas C. Giancoli obtained his BA in physics (summa cum laude) from the
University of California, Berkeley, his MS in physics at the Massachusetts Institute
of Technology, and his PhD in elementary particle physics at the University of Cali-
fornia, Berkeley. He spent 2 years as a post-doctoral fellow at UC Berkeley’s Virus
lab developing skills in molecular biology and biophysics. His mentors include
Nobel winners Emilio Segrè and Donald Glaser.

He has taught a wide range of undergraduate courses, traditional as well as
innovative ones, and continues to update his texbooks meticulously, seeking ways to
better provide an understanding of physics for students.

Doug’s favorite spare-time activity is the outdoors, especially climbing peaks
(here on a dolomite summit, Italy). He says climbing peaks is like learning physics:
it takes effort and the rewards are great.
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by Thomas L. O’Kuma, David P. Maloney, and Curtis J. Hieggelke

E&M TIPERs: Electricity & Magnetism Tasks Inspired by Physics
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Mathematics for Physics with Calculus (0-13-191336-0)
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To Students

HOW TO STUDY

1. Read the Chapter. Learn new vocabulary and notation. Try to respond to
questions and exercises as they occur.

2. Attend all class meetings. Listen. Take notes, especially about aspects you do
not remember seeing in the book. Ask questions (everyone else wants to, but
maybe you will have the courage). You will get more out of class if you read
the Chapter first.

3. Read the Chapter again, paying attention to details. Follow derivations and
worked-out Examples. Absorb their logic. Answer Exercises and as many of
the end of Chapter Questions as you can.

4. Solve 10 to 20 end of Chapter Problems (or more), especially those assigned.
In doing Problems you find out what you learned and what you didn’t. Discuss
them with other students. Problem solving is one of the great learning tools.
Don’t just look for a formula—it won’t cut it.

NOTES ON THE FORMAT AND PROBLEM SOLVING

1. Sections marked with a star (*) are considered optional. They can be omitted
without interrupting the main flow of topics. No later material depends on
them except possibly later starred Sections. They may be fun to read, though.

2. The customary conventions are used: symbols for quantities (such as m for
mass) are italicized, whereas units (such as m for meter) are not italicized.
Symbols for vectors are shown in boldface with a small arrow above:

3. Few equations are valid in all situations. Where practical, the limitations of
important equations are stated in square brackets next to the equation. The
equations that represent the great laws of physics are displayed with a tan
background, as are a few other indispensable equations.

4. At the end of each Chapter is a set of Problems which are ranked as Level I, II, or
III, according to estimated difficulty. Level I Problems are easiest, Level II are
standard Problems, and Level III are “challenge problems.” These ranked
Problems are arranged by Section, but Problems for a given Section may depend
on earlier material too. There follows a group of General Problems, which are not
arranged by Section nor ranked as to difficulty. Problems that relate to optional
Sections are starred (*). Most Chapters have 1 or 2 Computer Numerical
Problems at the end, requiring a computer or graphing calculator. Answers to
odd-numbered Problems are given at the end of the book.

5. Being able to solve Problems is a crucial part of learning physics, and provides
a powerful means for understanding the concepts and principles. This book
contains many aids to problem solving: (a) worked-out Examples and their
solutions in the text, which should be studied as an integral part of the text;
(b) some of the worked-out Examples are Estimation Examples, which show
how rough or approximate results can be obtained even if the given data are
sparse (see Section 1–6); (c) special Problem Solving Strategies placed
throughout the text to suggest a step-by-step approach to problem solving 
for a particular topic—but remember that the basics remain the same;
most of these “Strategies” are followed by an Example that is solved by 
explicitly following the suggested steps; (d) special problem-solving Sections;
(e) “Problem Solving” marginal notes which refer to hints within the text for
solving Problems; (f) Exercises within the text that you should work out imme-
diately, and then check your response against the answer given at the bottom of
the last page of that Chapter; (g) the Problems themselves at the end of each
Chapter (point 4 above).

6. Conceptual Examples pose a question which hopefully starts you to think and
come up with a response. Give yourself a little time to come up with your own
response before reading the Response given.

7. Math review, plus some additional topics, are found in Appendices. Useful data,
conversion factors, and math formulas are found inside the front and back covers.

�
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CONTENTS

1 The Nature of Science

2 Models, Theories, and Laws

3 Measurement and Uncertainty;
Significant Figures

4 Units, Standards, and 
the SI System

5 Converting Units

6 Order of Magnitude:
Rapid Estimating

7 Dimensions and Dimensional
Analysis

CHAPTER-OPENING QUESTION—Guess now!
[Don’t worry about getting the right answer now—the idea is to get your preconceived notions out on

the table.]
Suppose you wanted to actually measure the radius of the Earth, at least roughly,
rather than taking other people’s word for what it is. Which response below
describes the best approach?

(a) Give up; it is impossible using ordinary means.
(b) Use an extremely long measuring tape.
(c) It is only possible by flying high enough to see the actual curvature of the Earth.
(d) Use a standard measuring tape, a step ladder, and a large smooth lake.
(e) Use a laser and a mirror on the Moon or on a satellite.

Introduction, 
Measurement, Estimating

* 
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Image of the Earth from a NASA satellite. The sky
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P
hysics is the most basic of the sciences. It deals with the behavior and
structure of matter.The field of physics is usually divided into classical physics

which includes motion, fluids, heat, sound, light, electricity and magnetism;
and modern physics which includes the topics of relativity, atomic structure,

condensed matter, nuclear physics, elementary particles, and cosmology and astrophysics.
An understanding of physics is crucial for anyone making a career in science

or technology. Engineers, for example, must know how to calculate the forces within
a structure to design it so that it remains standing (Fig. 1a). Indeed, a simple physics
calculation—or even intuition based on understanding the physics of forces—
can save hundreds of lives (Fig. 1b). Physics is useful in many fields, and in
everyday life.

1 The Nature of Science
The principal aim of all sciences, including physics, is generally considered to be
the search for order in our observations of the world around us. Many people
think that science is a mechanical process of collecting facts and devising theories.
But it is not so simple. Science is a creative activity that in many respects resem-
bles other creative activities of the human mind.

One important aspect of science is observation of events, which includes the
design and carrying out of experiments. But observation and experiment require
imagination, for scientists can never include everything in a description of what
they observe. Hence, scientists must make judgments about what is relevant in
their observations and experiments.

Consider, for example, how two great minds, Aristotle (384–322 B.C.) and
Galileo (1564–1642), interpreted motion along a horizontal surface. Aristotle
noted that objects given an initial push along the ground (or on a tabletop) always
slow down and stop. Consequently, Aristotle argued that the natural state of an
object is to be at rest. Galileo, in his reexamination of horizontal motion in the
1600s, imagined that if friction could be eliminated, an object given an initial
push along a horizontal surface would continue to move indefinitely without
stopping. He concluded that for an object to be in motion was just as natural as for
it to be at rest. By inventing a new approach, Galileo founded our modern view of
motion, and he did so with a leap of the imagination. Galileo made this leap
conceptually, without actually eliminating friction.

Observation, with careful experimentation and measurement, is one side of the
scientific process. The other side is the invention or creation of theories to explain
and order the observations. Theories are never derived directly from observations.
Observations may help inspire a theory, and theories are accepted or rejected based
on the results of observation and experiment.

The great theories of science may be compared, as creative achievements, with
great works of art or literature. But how does science differ from these other
creative activities? One important difference is that science requires testing of its
ideas or theories to see if their predictions are borne out by experiment.

Although the testing of theories distinguishes science from other creative
fields, it should not be assumed that a theory is “proved” by testing. First of all, no
measuring instrument is perfect, so exact confirmation is not possible. Further-
more, it is not possible to test a theory in every single possible circumstance. Hence
a theory cannot be absolutely verified. Indeed, the history of science tells us that
long-held theories can be replaced by new ones.

2 Models, Theories, and Laws
When scientists are trying to understand a particular set of phenomena, they often
make use of a model. A model, in the scientist’s sense, is a kind of analogy or
mental image of the phenomena in terms of something we are familiar with. One

(a)

(b)

FIGURE 1 (a) This Roman
aqueduct was built 2000 years ago
and still stands. (b) The Hartford
Civic Center collapsed in 1978, just
two years after it was built.
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example is the wave model of light. We cannot see waves of light as we can water
waves. But it is valuable to think of light as made up of waves because experiments
indicate that light behaves in many respects as water waves do.

The purpose of a model is to give us an approximate mental or visual picture—
something to hold on to—when we cannot see what actually is happening. Models
often give us a deeper understanding: the analogy to a known system (for instance,
water waves in the above example) can suggest new experiments to perform and can
provide ideas about what other related phenomena might occur.

You may wonder what the difference is between a theory and a model. Usually
a model is relatively simple and provides a structural similarity to the phenomena
being studied. A theory is broader, more detailed, and can give quantitatively testable
predictions, often with great precision.

It is important, however, not to confuse a model or a theory with the real
system or the phenomena themselves.

Scientists give the title law to certain concise but general statements about
how nature behaves (that energy is conserved, for example). Sometimes the state-
ment takes the form of a relationship or equation between quantities (such as
Newton’s second law, ).

To be called a law, a statement must be found experimentally valid over a wide
range of observed phenomena. For less general statements, the term principle is
often used (such as Archimedes’ principle).

Scientific laws are different from political laws in that the latter are
prescriptive: they tell us how we ought to behave. Scientific laws are descriptive:
they do not say how nature should behave, but rather are meant to describe how
nature does behave. As with theories, laws cannot be tested in the infinite variety
of cases possible. So we cannot be sure that any law is absolutely true. We use the
term “law” when its validity has been tested over a wide range of cases, and when
any limitations and the range of validity are clearly understood.

Scientists normally do their research as if the accepted laws and theories were
true. But they are obliged to keep an open mind in case new information should
alter the validity of any given law or theory.

3 Measurement and Uncertainty;
Significant Figures

In the quest to understand the world around us, scientists seek to find relationships
among physical quantities that can be measured.

Uncertainty

Reliable measurements are an important part of physics. But no measurement is
absolutely precise. There is an uncertainty associated with every measurement. Among
the most important sources of uncertainty, other than blunders, are the limited accuracy
of every measuring instrument and the inability to read an instrument beyond some
fraction of the smallest division shown. For example, if you were to use a centimeter
ruler to measure the width of a board (Fig. 2), the result could be claimed to be precise
to about 0.1 cm (1 mm), the smallest division on the ruler, although half of this value
might be a valid claim as well. The reason is that it is difficult for the observer to esti-
mate (or interpolate) between the smallest divisions. Furthermore, the ruler itself may
not have been manufactured to an accuracy very much better than this.

When giving the result of a measurement, it is important to state the estimated
uncertainty in the measurement. For example, the width of a board might be
written as The (“plus or minus 0.1 cm”) represents the
estimated uncertainty in the measurement, so that the actual width most likely lies
between 8.7 and 8.9 cm. The percent uncertainty is the ratio of the uncertainty 
to the measured value, multiplied by 100. For example, if the measurement is 8.8
and the uncertainty about 0.1 cm, the percent uncertainty is

where means “is approximately equal to.”L

0.1
8.8

* 100%  L   1%,

&0.1 cm8.860.1 cm.

F = ma

FIGURE 2 Measuring the width 
of a board with a centimeter ruler.
The uncertainty is about &1 mm.
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P R O B L E M  S O L V I N G

Significant figure rule:
Number of significant figures in final

result should be same as the least
significant input value

C A U T I O N

Calculators err with significant figures

P R O B L E M  S O L V I N G

Report only the proper number of
significant figures in the final result.

Keep extra digits during 
the calculation

(a) (b)

FIGURE 3 These two calculators
show the wrong number of significant
figures. In (a), 2.0 was divided by 3.0.
The correct final result would be 0.67.
In (b), 2.5 was multiplied by 3.2. The
correct result is 8.0.

FIGURE 4 Example 1.
A protractor used to measure an angle.

Introduction, Measurement, Estimating

Douglas C. Giancoli 
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Often the uncertainty in a measured value is not specified explicitly. In such cases,
the uncertainty is generally assumed to be one or a few units in the last digit specified.
For example, if a length is given as 8.8 cm, the uncertainty is assumed to be about
0.1 cm or 0.2 cm. It is important in this case that you do not write 8.80 cm, for this
implies an uncertainty on the order of 0.01 cm; it assumes that the length is probably
between 8.79 cm and 8.81 cm, when actually you believe it is between 8.7 and 8.9 cm.

Significant Figures

The number of reliably known digits in a number is called the number of
significant figures. Thus there are four significant figures in the number 23.21 cm
and two in the number 0.062 cm (the zeros in the latter are merely place holders
that show where the decimal point goes). The number of significant figures may
not always be clear. Take, for example, the number 80. Are there one or two signif-
icant figures? We need words here: If we say it is roughly 80 km between two 
cities, there is only one significant figure (the 8) since the zero is merely a place
holder. If there is no suggestion that the 80 is a rough approximation, then we can
often assume that it is 80 km within an accuracy of about 1 or 2 km, and then the
80 has two significant figures. If it is precisely 80 km, to within then we
write 80.0 km (three significant figures).

When making measurements, or when doing calculations, you should avoid the
temptation to keep more digits in the final answer than is justified. For example, to
calculate the area of a rectangle 11.3 cm by 6.8 cm, the result of multiplication would
be But this answer is clearly not accurate to since (using the
outer limits of the assumed uncertainty for each measurement) the result could be
between and At best,
we can quote the answer as which implies an uncertainty of about 1 or 
The other two digits (in the number ) must be dropped because they are not
significant. As a rough general rule (i.e., in the absence of a detailed consideration 
of uncertainties), we can say that the final result of a multiplication or division should

have only as many digits as the number with the least number of significant figures

used in the calculation. In our example, 6.8 cm has the least number of significant
figures, namely two. Thus the result needs to be rounded off to 

EXERCISE A The area of a rectangle 4.5 cm by 3.25 cm is correctly given by (a) 
(b) (c) (d) 

When adding or subtracting numbers, the final result is no more precise than
the least precise number used. For example, the result of subtracting 0.57 from 3.6
is 3.0 (and not 3.03).

Keep in mind when you use a calculator that all the digits it produces may not
be significant. When you divide 2.0 by 3.0, the proper answer is 0.67, and not some
such thing as 0.666666666. Digits should not be quoted in a result, unless they are
truly significant figures. However, to obtain the most accurate result, you should
normally keep one or more extra significant figures throughout a calculation, and

round off only in the final result. (With a calculator, you can keep all its digits in
intermediate results.) Note also that calculators sometimes give too few significant
figures. For example, when you multiply a calculator may give the
answer as simply 8. But the answer is accurate to two significant figures, so the proper
answer is 8.0. See Fig. 3.

CONCEPTUAL EXAMPLE 1 Significant figures. Using a protractor (Fig. 4), you
measure an angle to be 30°. (a) How many significant figures should you quote in this
measurement? (b) Use a calculator to find the cosine of the angle you measured.

RESPONSE (a) If you look at a protractor, you will see that the precision with
which you can measure an angle is about one degree (certainly not 0.1°). So you
can quote two significant figures, namely, 30° (not 30.0°). (b) If you enter cos 30°
in your calculator, you will get a number like 0.866025403. However, the angle
you entered is known only to two significant figures, so its cosine is correctly
given by 0.87; you must round your answer to two significant figures.

2.5 * 3.2,

15 cm2.14.6 cm2 ;14.63 cm2 ;
14.625 cm2 ;

77 cm2.76.84 cm2

76.84 cm2
2 cm2.77 cm2,

11.4 cm * 6.9 cm = 78.66 cm2.11.2 cm * 6.7 cm = 75.04 cm2

0.01 cm2,76.84 cm2.

&0.1 km,
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EXERCISE B Do 0.00324 and 0.00056 have the same number of significant figures?

Be careful not to confuse significant figures with the number of decimal places.

EXERCISE C For each of the following numbers, state the number of significant figures
and the number of decimal places: (a) 1.23; (b) 0.123; (c) 0.0123.

Scientific Notation

We commonly write numbers in “powers of ten,” or “scientific” notation—for
instance 36,900 as or 0.0021 as One advantage of scientific
notation is that it allows the number of significant figures to be clearly expressed.
For example, it is not clear whether 36,900 has three, four, or five significant
figures. With powers of ten notation the ambiguity can be avoided: if the number is
known to three significant figures, we write but if it is known to four,
we write 

EXERCISE D Write each of the following in scientific notation and state the number of
significant figures for each: (a) 0.0258, (b) 42,300, (c) 344.50.

Percent Uncertainty versus Significant Figures

The significant figures rule is only approximate, and in some cases may underestimate
the accuracy (or uncertainty) of the answer. Suppose for example we divide 97 by 92:

Both 97 and 92 have two significant figures, so the rule says to give the answer
as 1.1. Yet the numbers 97 and 92 both imply an uncertainty of if no other
uncertainty is stated. Now and both imply an uncertainty of
about 1% But the final result to two significant figures
is 1.1, with an implied uncertainty of which is an uncertainty of

In this case it is better to give the answer as 1.05 (which is
three significant figures). Why? Because 1.05 implies an uncertainty of 
which is just like the uncertainty in the original
numbers 92 and 97.

SUGGESTION: Use the significant figures rule, but consider the % uncer-
tainty too, and add an extra digit if it gives a more realistic estimate of uncertainty.

Approximations

Much of physics involves approximations, often because we do not have the
means to solve a problem precisely. For example, we may choose to ignore air
resistance or friction in doing a Problem even though they are present in the real
world, and then our calculation is only an approximation. In doing Problems, we
should be aware of what approximations we are making, and be aware that the
precision of our answer may not be nearly as good as the number of significant
figures given in the result.

Accuracy versus Precision

There is a technical difference between “precision” and “accuracy.” Precision in a strict
sense refers to the repeatability of the measurement using a given instrument. For
example, if you measure the width of a board many times, getting results like 8.81 cm,
8.85 cm, 8.78 cm, 8.82 cm (interpolating between the 0.1 cm marks as best as possible
each time), you could say the measurements give a precision a bit better than 0.1 cm.
Accuracy refers to how close a measurement is to the true value. For example, if the
ruler shown in Fig. 2 was manufactured with a 2% error, the accuracy of its measure-
ment of the board’s width (about 8.8 cm) would be about 2% of 8.8 cm or about

Estimated uncertainty is meant to take both accuracy and precision into
account.
&0.2 cm.

0.01�1.05 L 0.01 L 1%,
&0.01

0.1�1.1 L 0.1 L 10%.
&0.1,

(1�92 L 0.01 = 1%).
97619261

&1

97
92

= 1.05  L   1.1.

3.690 * 104.
3.69 * 104,

2.1 * 10–3.3.69 * 104,
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4 Units, Standards, and the SI System
The measurement of any quantity is made relative to a particular standard or unit,
and this unit must be specified along with the numerical value of the quantity. For
example, we can measure length in British units such as inches, feet, or miles, or in
the metric system in centimeters, meters, or kilometers. To specify that the length
of a particular object is 18.6 is meaningless. The unit must be given; for clearly,
18.6 meters is very different from 18.6 inches or 18.6 millimeters.

For any unit we use, such as the meter for distance or the second for time, we
need to define a standard which defines exactly how long one meter or one second
is. It is important that standards be chosen that are readily reproducible so that
anyone needing to make a very accurate measurement can refer to the standard in
the laboratory.

Length

The first truly international standard was the meter (abbreviated m) established as
the standard of length by the French Academy of Sciences in the 1790s. The stan-
dard meter was originally chosen to be one ten-millionth of the distance from the
Earth’s equator to either pole,† and a platinum rod to represent this length was
made. (One meter is, very roughly, the distance from the tip of your nose to the tip
of your finger, with arm and hand stretched out to the side.) In 1889, the meter was
defined more precisely as the distance between two finely engraved marks on a
particular bar of platinum–iridium alloy. In 1960, to provide greater precision and
reproducibility, the meter was redefined as 1,650,763.73 wavelengths of a particular
orange light emitted by the gas krypton-86. In 1983 the meter was again redefined,
this time in terms of the speed of light (whose best measured value in terms of the
older definition of the meter was 299,792,458 m s, with an uncertainty of 1 m s).
The new definition reads: “The meter is the length of path traveled by light in
vacuum during a time interval of 1 299,792,458 of a second.” ‡

British units of length (inch, foot, mile) are now defined in terms of the
meter. The inch (in.) is defined as precisely 2.54 centimeters (cm; ).
Table 1 presents some typical lengths, from very small to very large, rounded off
to the nearest power of ten. See also Fig. 5. [Note that the abbreviation for
inches (in.) is the only one with a period, to distinguish it from the word “in”.]

Time

The standard unit of time is the second (s). For many years, the second was defined as
1 86,400 of a mean solar day 
The standard second is now defined more precisely in terms of the frequency of radi-
ation emitted by cesium atoms when they pass between two particular states.
[Specifically, one second is defined as the time required for 9,192,631,770 periods of
this radiation.] There are, by definition, 60 s in one minute (min) and 60 minutes in
one hour (h). Table 2 presents a range of measured time intervals, rounded off to the
nearest power of ten.

Mass

The standard unit of mass is the kilogram (kg). The standard mass is a particular
platinum–iridium cylinder, kept at the International Bureau of Weights and
Measures near Paris, France, whose mass is defined as exactly 1 kg. A range of
masses is presented in Table 3. [For practical purposes, 1 kg weighs about
2.2 pounds on Earth.]

(24 h�day * 60 min�h * 60 s�min = 86,400 s�day).�

1 cm = 0.01 m

�

��

†Modern measurements of the Earth’s circumference reveal that the intended length is off by about
one-fiftieth of 1%. Not bad!
‡The new definition of the meter has the effect of giving the speed of light the exact value of
299,792,458 m s.�

FIGURE 5 Some lengths:
(a) viruses (about long)
attacking a cell; (b) Mt. Everest’s
height is on the order of 
(8850 m, to be precise).

104 m

10–7 m

TABLE 1 Some Typical
Lengths or Distances 
(order of magnitude)

Length Meters
(or Distance) (approximate)

Neutron or proton 
(diameter) m

Atom 
(diameter) m

Virus [see Fig. 5a] m
Sheet of paper 

(thickness) m
Finger width m
Football field length m
Height of Mt. Everest 

[see Fig. 5b] m
Earth diameter m
Earth to Sun m
Earth to nearest star m
Earth to nearest galaxy m
Earth to farthest 

galaxy visible m1026

1022
1016
1011
107
104

102
10–2
10–4

10–7
10–10

10–15

(a)

(b)
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TABLE 2 Some Typical Time Intervals

Time Interval Seconds (approximate)

Lifetime of very unstable subatomic particle
Lifetime of radioactive elements to 
Lifetime of muon
Time between human heartbeats
One day
One year
Human life span
Length of recorded history
Humans on Earth
Life on Earth
Age of Universe 1018  s

1017  s
1014  s
1011  s

2 * 109  s
3 * 107  s

105  s
100  s (  = 1 s)
10–6  s

1028 s10–22 s
10–23 s

TABLE 3 Some Masses

Object Kilograms (approximate)

Electron kg
Proton, neutron kg
DNA molecule kg
Bacterium kg
Mosquito kg
Plum kg
Human kg
Ship kg
Earth kg
Sun kg
Galaxy kg1041

10302 *

10246 *

108
102
10–1
10–5
10–15
10–17
10–27
10–30

When dealing with atoms and molecules, we usually use the unified atomic
mass unit (u). In terms of the kilogram,

Unit Prefixes

In the metric system, the larger and smaller units are defined in multiples of 10 from
the standard unit, and this makes calculation particularly easy. Thus 1 kilometer (km)
is 1000 m, 1 centimeter is 1 millimeter (mm) is or and so on.
The prefixes “centi-,” “kilo-,” and others are listed in Table 4 and can be applied not
only to units of length but to units of volume, mass, or any other metric unit. For
example, a centiliter (cL) is liter (L), and a kilogram (kg) is 1000 grams (g).

Systems of Units

When dealing with the laws and equations of physics it is very important to use a
consistent set of units. Several systems of units have been in use over the years.
Today the most important is the Système International (French for International
System), which is abbreviated SI. In SI units, the standard of length is the meter,
the standard for time is the second, and the standard for mass is the kilogram. This
system used to be called the MKS (meter-kilogram-second) system.

A second metric system is the cgs system, in which the centimeter, gram, and
second are the standard units of length, mass, and time, as abbreviated in the title.
The British engineering system has as its standards the foot for length, the pound
for force, and the second for time.

We use SI units almost exclusively in this text.

Base versus Derived Quantities

Physical quantities can be divided into two categories: base quantities and derived

quantities. The corresponding units for these quantities are called base units and
derived units. A base quantity must be defined in terms of a standard. Scientists, in the
interest of simplicity, want the smallest number of base quantities possible consistent
with a full description of the physical world. This number turns out to be seven, and
those used in the SI are given in Table 5. All other quantities can be defined in terms
of these seven base quantities,† and hence are referred to as derived quantities. An
example of a derived quantity is speed, which is defined as distance divided by the time
it takes to travel that distance. To define any quantity, whether base or derived, we can
specify a rule or procedure, and this is called an operational definition.

1
100

1
10 cm,1

1000 m1
100 m,

1 u = 1.6605 * 10–27 kg.

TABLE 4 Metric (SI) Prefixes

Prefix Abbreviation Value

yotta Y
zetta Z
exa E
peta P
tera T
giga G
mega M
kilo k
hecto h
deka da
deci d
centi c
milli m
micro†

nano n
pico p
femto f
atto a
zepto z
yocto y
† is the Greek letter “mu.”m

10–24
10–21
10–18
10–15
10–12
10–9
10–6m

10–3
10–2
10–1
101
102
103
106
109
1012
1015
1018
1021
1024

TABLE 5
SI Base Quantities and Units

Unit
Quantity Unit Abbreviation

Length meter m
Time second s
Mass kilogram kg
Electric 

current ampere A
Temperature kelvin K
Amount 

of substance mole mol
Luminous 

intensity candela cd

†The only exceptions are for angle (radians) and solid angle (steradian). No general agreement has
been reached as to whether these are base or derived quantities.
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5 Converting Units
Any quantity we measure, such as a length, a speed, or an electric current, consists
of a number and a unit. Often we are given a quantity in one set of units, but we
want it expressed in another set of units. For example, suppose we measure that a
table is 21.5 inches wide, and we want to express this in centimeters. We must use a
conversion factor, which in this case is (by definition) exactly

or, written another way,

Since multiplying by one does not change anything, the width of our table, in cm, is

Note how the units (inches in this case) cancelled out. Let’s consider some conversion
Examples.

EXAMPLE 2 The 8000-m peaks. The fourteen tallest peaks in the world
(Fig. 6 and Table 6) are referred to as “eight-thousanders,” meaning their
summits are over 8000 m above sea level. What is the elevation, in feet, of an
elevation of 8000 m?

APPROACH We need simply to convert meters to feet, and we can start with the
conversion factor which is exact. That is, to
any number of significant figures, because it is defined to be.

SOLUTION One foot is 12 in., so we can write

which is exact. Note how the units cancel (colored slashes). We can rewrite this
equation to find the number of feet in 1 meter:

We multiply this equation by 8000.0 (to have five significant figures):

An elevation of 8000 m is 26,247 ft above sea level.

NOTE We could have done the conversion all in one line:

The key is to multiply conversion factors, each equal to one and to
make sure the units cancel.

EXERCISE E There are only 14 eight-thousand-meter peaks in the world (see Example 2),
and their names and elevations are given in Table 6. They are all in the Himalaya moun-
tain range in India, Pakistan, Tibet, and China. Determine the elevation of the world’s
three highest peaks in feet.

(�  1.0000),

8000.0 m = (8000.0  m ) ¢ 100  cm 

1  m 
≤ ¢ 1  in. 

2.54  cm 
≤ ¢ 1 ft

12  in. 
≤ = 26,247 ft.

8000.0 m = (8000.0  m ) ¢3.28084 
ft

 m 
≤ = 26,247 ft.

1 m =

1 ft
0.3048

= 3.28084 ft.

1 ft = (12  in. ) ¢2.54 
cm
 in. 

≤ = 30.48 cm = 0.3048 m,

1 in. = 2.5400 cm1 in. = 2.54 cm,

21.5 inches = (21.5  in. ) * a2.54 
cm
 in. 

b = 54.6 cm.

1 = 2.54 cm�in.

1 in. = 2.54 cm

FIGURE 6 The world’s second
highest peak, K2, whose summit is
considered the most difficult of the
“8000-ers.” K2 is seen here from 
the north (China).

P H Y S I C S  A P P L I E D

The world’s tallest peaks

TABLE 6
The 8000-m Peaks

Peak Height (m)

Mt. Everest 8850
K2 8611
Kangchenjunga 8586
Lhotse 8516
Makalu 8462
Cho Oyu 8201
Dhaulagiri 8167
Manaslu 8156
Nanga Parbat 8125
Annapurna 8091
Gasherbrum I 8068
Broad Peak 8047
Gasherbrum II 8035
Shisha Pangma 8013
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EXAMPLE 3 Apartment area. You have seen a nice apartment whose floor
area is 880 square feet What is its area in square meters?

APPROACH We use the same conversion factor, but this time
we have to use it twice.
SOLUTION Because then

So
NOTE As a rule of thumb, an area given in is roughly 10 times the number of
square meters (more precisely, about .

EXAMPLE 4 Speeds. Where the posted speed limit is 55 miles per hour (
or mph), what is this speed (a) in meters per second (m s) and (b) in kilometers
per hour (km h)?

APPROACH We again use the conversion factor and we recall
that there are 5280 ft in a mile and 12 inches in a foot; also, one hour contains 

SOLUTION (a) We can write 1 mile as

We also know that 1 hour contains 3600 s, so

where we rounded off to two significant figures.
(b) Now we use then

NOTE Each conversion factor is equal to one.

EXERCISE F Would a driver traveling at in a zone be exceeding the speed
limit?

When changing units, you can avoid making an error in the use of conversion
factors by checking that units cancel out properly. For example, in our conversion
of 1 mi to 1609 m in Example 4(a), if we had incorrectly used the factor 
instead of the centimeter units would not have cancelled out; we
would not have ended up with meters.

6 Order of Magnitude: Rapid Estimating
We are sometimes interested only in an approximate value for a quantity. This
might be because an accurate calculation would take more time than it is worth
or would require additional data that are not available. In other cases, we may
want to make a rough estimate in order to check an accurate calculation made
on a calculator, to make sure that no blunders were made when the numbers
were entered.

A rough estimate is made by rounding off all numbers to one significant figure
and its power of 10, and after the calculation is made, again only one significant
figure is kept. Such an estimate is called an order-of-magnitude estimate and can
be accurate within a factor of 10, and often better. In fact, the phrase “order of
magnitude” is sometimes used to refer simply to the power of 10.

A 1 m
100 cmB,

A100 cm
1 m B

35 mi�h15 m�s

= 88 
km
h

. 55 
mi
h

= ¢ 55 
 mi 
h
≤ ¢ 1.609 

km
 mi 

≤1 mi = 1609 m = 1.609 km;

= 25 
m
s

, 55 
mi
h

= ¢ 55 
 mi 
 h 
≤ ¢ 1609 

m
 mi 

≤ ¢ 1  h 

3600 s
≤

= 1609 m. 1 mi = (5280  ft ) ¢12 
 in. 
 ft 
≤ ¢2.54 

 cm 

 in. 
≤ ¢ 1 m

100  cm 
≤

3600 s�h.=(60 min�h) * (60 s�min)

1 in. = 2.54 cm,

�

�

mi�h

10.8   * )
ft2

L 82 m2.(0.0929 m2�ft2)880 ft2 = A880 ft2B0.0929 m2.
=1 ft2 = (12 in.)2(0.0254 m�in.)20.0254 m,=1 in. = 2.54 cm

1 in. = 2.54 cm,

Aft2B.

P R O B L E M  S O L V I N G

Conversion factors = 1

P R O B L E M  S O L V I N G

Unit conversion is wrong if units do 
not cancel

P R O B L E M  S O L V I N G

How to make a rough estimate
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EXAMPLE 5 ESTIMATE Volume of a lake. Estimate how much water there
is in a particular lake, Fig. 7a, which is roughly circular, about 1 km across, and
you guess it has an average depth of about 10 m.

APPROACH No lake is a perfect circle, nor can lakes be expected to have a
perfectly flat bottom. We are only estimating here. To estimate the volume, we
can use a simple model of the lake as a cylinder: we multiply the average depth
of the lake times its roughly circular surface area, as if the lake were a cylinder
(Fig. 7b).
SOLUTION The volume V of a cylinder is the product of its height h times the
area of its base: where r is the radius of the circular base. The radius r
is so the volume is approximately

where was rounded off to 3. So the volume is on the order of ten
million cubic meters. Because of all the estimates that went into this calculation,
the order-of-magnitude estimate is probably better to quote than the

figure.
NOTE To express our result in U.S. gallons, we see in the Table on the inside 
front cover that Hence, the lake contains1 liter = 10–3 m3 L 1

4 gallon.

8 * 106 m3
A107 m3B

107 m3,p

V = hpr2
  L   (10 m) * (3) * A5 * 102 mB2  L   8 * 106 m3

  L   107 m3,

1
2 km = 500 m,

V = hpr2,

(b)

(a)

10 m

r = 500 m

FIGURE 7 Example 5. (a) How much
water is in this lake? (Photo is of one
of the Rae Lakes in the Sierra Nevada
of California.) (b) Model of the lake 
as a cylinder. [We could go one step
further and estimate the mass or
weight of this lake. We will see later
that water has a density of 
so this lake has a mass of about

which is
about 10 billion kg or 10 million metric
tons. (A metric ton is 1000 kg, about
2200 lbs, slightly larger than a British
ton, 2000 lbs.)]

A103 kg�m3B A107 m3B L 1010 kg,

1000 kg�m3,

P H Y S I C S  A P P L I E D

Estimating the volume (or mass) of
a lake; see also Fig. 7

P R O B L E M  S O L V I N G

Use symmetry when possible

Introduction, Measurement, Estimating

Douglas C. Giancoli 

gallons of water.

EXAMPLE 6 ESTIMATE Thickness of a page. Estimate the thickness 
of a page of a text.

APPROACH At first you might think that a special measuring device, a micrometer
(Fig. 8), is needed to measure the thickness of one page since an ordinary 
ruler clearly won’t do. But we can use a trick or, to put it in physics terms, make
use of a symmetry: we can make the reasonable assumption that all the pages of
a text are equal in thickness.
SOLUTION We can use a ruler to measure many pages at once. If you measure
the thickness of the first 500 pages of a book (page 1 to page 500), you might 
get something like 1.5 cm. Note that 500 numbered pages, counted front 

A8 * 106 m3B A1 gallon�4 * 10–3 m3B L 2 * 109
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FIGURE 8 Example 6. Micrometer used
for measuring small thicknesses.

16 m

18 m

2 m

1.5 m

(b)

x = ?

1.5 m

3 m

(a)

1.5 m

?

2 m

FIGURE 9 Example 7.
Diagrams are really useful!

Earth

Lake

R R

d

h

FIGURE 10 Example 8, but not to
scale. You can see small rocks at
water level on the opposite shore of
a lake 6.1 km wide if you stand on a
stepladder.

Introduction, Measurement, Estimating

and back, is 250 separate sheets of paper. So one page must have a thickness of
about

or less than a tenth of a millimeter (0.1 mm).

EXAMPLE 7 ESTIMATE Height by triangulation. Estimate the height 
of the building shown in Fig. 9, by “triangulation,” with the help of a bus-stop
pole and a friend.

APPROACH By standing your friend next to the pole, you estimate the height of
the pole to be 3 m. You next step away from the pole until the top of the pole is in
line with the top of the building, Fig. 9a. You are 5 ft 6 in. tall, so your eyes are
about 1.5 m above the ground. Your friend is taller, and when she stretches out her
arms, one hand touches you, and the other touches the pole, so you estimate that
distance as 2 m (Fig. 9a). You then pace off the distance from the pole to the base
of the building with big, 1-m-long steps, and you get a total of 16 steps or 16 m.
SOLUTION Now you draw, to scale, the diagram shown in Fig. 9b using these
measurements. You can measure, right on the diagram, the last side of the
triangle to be about Alternatively, you can use similar triangles to
obtain the height x:

Finally you add in your eye height of 1.5 m above the ground to get your final
result: the building is about 15 m tall.

EXAMPLE 8 ESTIMATE Estimating the radius of Earth. Believe it or not,
you can estimate the radius of the Earth without having to go into space. If you
have ever been on the shore of a large lake, you may have noticed that you
cannot see the beaches, piers, or rocks at water level across the lake on the oppo-
site shore. The lake seems to bulge out between you and the opposite shore—a
good clue that the Earth is round. Suppose you climb a stepladder and discover
that when your eyes are 10 ft (3.0 m) above the water, you can just see the rocks
at water level on the opposite shore. From a map, you estimate the distance to
the opposite shore as Use Fig. 10 with to estimate the
radius R of the Earth.

APPROACH We use simple geometry, including the theorem of Pythagoras,
where c is the length of the hypotenuse of any right triangle, and a

and b are the lengths of the other two sides.
SOLUTION For the right triangle of Fig. 10, the two sides are the radius of the
Earth R and the distance The hypotenuse is approxi-
mately the length where By the Pythagorean theorem,

We solve algebraically for R, after cancelling on both sides:

NOTE Precise measurements give 6380 km. But look at your achievement! With a
few simple rough measurements and simple geometry, you made a good estimate
of the Earth’s radius.You did not need to go out in space, nor did you need a very long
measuring tape. Now you know the answer to the Chapter-Opening Question.

= 6.2 * 106 m = 6200 km. R  L   
d2 - h2

2h
=

(6100 m)2 - (3.0 m)2

6.0 m
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   L   R2 + 2hR + h2.
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EXAMPLE 9 ESTIMATE Total number of heartbeats. Estimate the total
number of beats a typical human heart makes in a lifetime.

APPROACH A typical resting heart rate is 70 beats min. But during exercise it
can be a lot higher. A reasonable average might be 80 beats min.
SOLUTION One year in terms of seconds is  
If an average person lives  , then the
total number of heartbeats would be about

or 3 trillion.

Another technique for estimating, this one made famous by Enrico Fermi to
his physics students, is to estimate the number of piano tuners in a city, say,
Chicago or San Francisco. To get a rough order-of-magnitude estimate of the
number of piano tuners today in San Francisco, a city of about 700,000 inhabitants,
we can proceed by estimating the number of functioning pianos, how often each
piano is tuned, and how many pianos each tuner can tune. To estimate the number
of pianos in San Francisco, we note that certainly not everyone has a piano.
A guess of 1 family in 3 having a piano would correspond to 1 piano per 12 persons,
assuming an average family of 4 persons. As an order of magnitude, let’s say 
1 piano per 10 people. This is certainly more reasonable than 1 per 100 people, or
1 per every person, so let’s proceed with the estimate that 1 person in 10 has a
piano, or about 70,000 pianos in San Francisco. Now a piano tuner needs an hour
or two to tune a piano. So let’s estimate that a tuner can tune 4 or 5 pianos a day.
A piano ought to be tuned every 6 months or a year—let’s say once each year.
A piano tuner tuning 4 pianos a day, 5 days a week, 50 weeks a year can tune
about 1000 pianos a year. So San Francisco, with its (very) roughly 70,000 pianos,
needs about 70 piano tuners. This is, of course, only a rough estimate.† It tells us
that there must be many more than 10 piano tuners, and surely not as many as 1000.

7 Dimensions and Dimensional Analysis
When we speak of the dimensions of a quantity, we are referring to the type of base
units or base quantities that make it up. The dimensions of area, for example, are
always length squared, abbreviated using square brackets; the units can be
square meters, square feet, and so on. Velocity, on the other hand, can be
measured in units of m s, or mi h, but the dimensions are always a length [L]
divided by a time [T]: that is,

The formula for a quantity may be different in different cases, but the dimen-
sions remain the same. For example, the area of a triangle of base b and height h is 

whereas the area of a circle of radius r is The formulas are 
different in the two cases, but the dimensions of area are always 

Dimensions can be used as a help in working out relationships, a procedure
referred to as dimensional analysis. One useful technique is the use of dimensions
to check if a relationship is incorrect. Note that we add or subtract quantities only
if they have the same dimensions (we don’t add centimeters and hours); and 
the quantities on each side of an equals sign must have the same dimensions. (In
numerical calculations, the units must also be the same on both sides of an equation.)

For example, suppose you derived the equation where is the
speed of an object after a time , is the object’s initial speed, and the object
undergoes an acceleration a. Let’s do a dimensional check to see if this equation

v0t
vv = v0 + 1

2 at2,

CL2 D .A = pr2.A = 1
2 bh,

[L�T].
��km�h,

cm2,
CL2 D ,

¢80 
beats
min

≤ ¢ 1 min
60 s

≤ A2 * 109 sB   L   3 * 109,

70 years = (70 yr)(3 * 107 s�yr) L 2 * 109 s
(24 h)(3600 s�h)(365 d) L 3 * 107 s.

�

�

P R O B L E M  S O L V I N G

Estimating how many piano tuners
there are in a city

†A check of the San Francisco Yellow Pages (done after this calculation) reveals about 50 listings. Each
of these listings may employ more than one tuner, but on the other hand, each may also do repairs as
well as tuning. In any case, our estimate is reasonable.

* 
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could be correct or is surely incorrect. Note that numerical factors, like the here,
do not affect dimensional checks. We write a dimensional equation as follows,
remembering that the dimensions of speed are and the dimensions of accel-
eration are 

The dimensions are incorrect: on the right side, we have the sum of quantities
whose dimensions are not the same. Thus we conclude that an error was made in
the derivation of the original equation.

A dimensional check can only tell you when a relationship is wrong. It can’t
tell you if it is completely right. For example, a dimensionless numerical factor (such
as or ) could be missing.

Dimensional analysis can also be used as a quick check on an equation you are
not sure about. For example, suppose that you can’t remember whether the equa-
tion for the period of a simple pendulum T (the time to make one back-and-forth
swing) of length is or where g is the acceleration
due to gravity and, like all accelerations, has dimensions (Do not worry
about these formulas; what we are concerned about here is a person’s recalling
whether it contains or ) A dimensional check shows that the former 
is correct:

whereas the latter is not:

Note that the constant has no dimensions and so can’t be checked using dimensions.

EXAMPLE 10 Planck length. The smallest meaningful measure of length is
called the “Planck length,” and is defined in terms of three fundamental constants
in nature, the speed of light the gravitational constant 

and Planck’s constant 
The Planck length ( is the Greek letter “lambda”) is given by the following
combination of these three constants:

Show that the dimensions of are length [L], and find the order of magnitude of 

APPROACH We rewrite the above equation in terms of dimensions. The dimen-
sions of c are of G are and of h are 
SOLUTION The dimensions of are

which is a length. The value of the Planck length is

which is on the order of or 
NOTE Some recent theories suggest that the smallest particles (quarks, leptons)
have sizes on the order of the Planck length, These theories also suggest
that the “Big Bang,” with which the Universe is believed to have begun, started
from an initial size on the order of the Planck length.
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 =  C A6.67 * 10–11 m3�kg �s2B A6.63 * 10–34 kg �m2�sB

A3.0 * 108 m�sB3  L  4 * 10–35 m,

C CL3�MT2 D CML2�T DCL3�T3 D = 3 CL2 D = [L]

lP

CML2�T D .CL3�MT2 D ,[L�T],

lP .lP

lP = BGh

c3
.

llP

h = 6.63 * 10–34 kg �m2�s.G = 6.67 * 10–11 m3�kg �s2,
c = 3.00 * 108 m�s,

2p

[T]  Z   C CL�T2 D
[L]

= B 1CT2 D =

1
[T]

�

(g�l)

[T] = C [L]CL�T2 D = 3 CT2 D = [T],

(l�g)g�l.l�g

CL�T2 D .T = 2p1g�l,T = 2p1l�gl

2p1
2

= BL

T
R + [L]. BL

T
R   �   BL

T
R + B L

T2
R CT2 D

CL�T2 D : [L�T]

1
2

Introduction, Measurement, Estimating

19



Summary

Answers to Exercises

Physics, like other sciences, is a creative endeavor. It is not
simply a collection of facts. Important theories are created with
the idea of explaining observations. To be accepted, theories are
tested by comparing their predictions with the results of actual
experiments. Note that, in general, a theory cannot be “proved”
in an absolute sense.

Scientists often devise models of physical phenomena. A
model is a kind of picture or analogy that helps to describe the
phenomena in terms of something we already know. A theory,
often developed from a model, is usually deeper and more
complex than a simple model.

A scientific law is a concise statement, often expressed in
the form of an equation, which quantitatively describes a wide
range of phenomena.

Measurements play a crucial role in physics, but can never
be perfectly precise. It is important to specify the uncertainty

of a measurement either by stating it directly using the 
notation, and/or by keeping only the correct number of
significant figures.

Physical quantities are always specified relative to a partic-
ular standard or unit, and the unit used should always be stated.
The commonly accepted set of units today is the Système
International (SI), in which the standard units of length, mass,
and time are the meter, kilogram, and second.

When converting units, check all conversion factors for
correct cancellation of units.

Making rough, order-of-magnitude estimates is a very
useful technique in science as well as in everyday life.

[*The dimensions of a quantity refer to the combination of
base quantities that comprise it. Velocity, for example, has
dimensions of [length time] or Dimensional analysis can
be used to check a relationship for correct form.]

[L�T].�

&
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A: (d).

B: No: they have 3 and 2, respectively.

C: All three have three significant figures, although the
number of decimal places is (a) 2, (b) 3, (c) 4.

D: (a) (b) 
(c) 5.

E: Mt. Everest, 29,035 ft; K2, 28,251 ft; Kangchenjunga, 28,169 ft.
F: No: 15 m�s L 34 mi�h.

3.4450 * 102,
4.23 * 104, 3 (probably);2.58 * 10–2, 3;
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Questions
1. What are the merits and drawbacks of using a person’s foot as

a standard? Consider both (a) a particular person’s foot, and
(b) any person’s foot. Keep in mind that it is advantageous
that fundamental standards be accessible (easy to compare to),
invariable (do not change), indestructible, and reproducible.

2. Why is it incorrect to think that the more digits you
represent in your answer, the more accurate it is?

3. When traveling a highway in the mountains, you may see
elevation signs that read “914 m (3000 ft).” Critics of the
metric system claim that such numbers show the metric
system is more complicated. How would you alter such signs
to be more consistent with a switch to the metric system?

4. What is wrong with this road sign:
Memphis 7 mi (11.263 km)?

5. For an answer to be complete, the units need to be speci-
fied. Why?

6. Discuss how the notion of symmetry could be used to
estimate the number of marbles in a 1-liter jar.

7. You measure the radius of a wheel to be 4.16 cm. If you
multiply by 2 to get the diameter, should you write the
result as 8 cm or as 8.32 cm? Justify your answer.

8. Express the sine of 30.0° with the correct number of
significant figures.

9. A recipe for a soufflé specifies that the measured ingredients
must be exact, or the soufflé will not rise. The recipe calls for 

6 large eggs. The size of “large” eggs can vary by 10%,
according to the USDA specifications. What does this tell you
about how exactly you need to measure the other ingredients?

10. List assumptions useful to estimate the number of car
mechanics in (a) San Francisco, (b) your hometown, and
then make the estimates.

11. Suggest a way to measure the distance from Earth to the Sun.
12. Can you set up a complete set of base quantities, as in 

Table 5, that does not include length as one of them?
* 

Problems

3 Measurement, Uncertainty, Significant Figures
(Note: In Problems, assume a number like 6.4 is accurate to 
and 950 is unless 950 is said to be “precisely” or “very nearly”
950, in which case assume )

1. (I) The age of the universe is thought to be about 14 billion
years. Assuming two significant figures, write this in powers
of ten in (a) years, (b) seconds.

2. (I) How many significant figures do each of the following
numbers have: (a) 214, (b) 81.60, (c) 7.03, (d) 0.03,
(e) 0.0086, ( ) 3236, and (g) 8700?

3. (I) Write the following numbers in powers of ten notation:
(a) 1.156, (b) 21.8, (c) 0.0068, (d) 328.65, (e) 0.219, and ( ) 444.

4. (I) Write out the following numbers in full with the 
correct number of zeros: (a) (b) 
(c) (d) and (e) 3.62 * 10–5.4.76 * 102,8.8 * 10–1,

9.1 * 103,8.69 * 104,

f

f

95061.
&10

&0.1;

5. (II) What is the percent uncertainty in the measurement

6. (II) Time intervals measured with a stopwatch typically have
an uncertainty of about 0.2 s, due to human reaction time at
the start and stop moments. What is the percent uncertainty
of a hand-timed measurement of (a) 5 s, (b) 50 s, (c) 5 min?

7. (II) Add 

8. (II) Multiply by taking into
account significant figures.

9. (III) For small angles the numerical value of is
approximately the same as the numerical value of 
Find the largest angle for which sine and tangent agree to
within two significant figures.

10. (III) What, roughly, is the percent uncertainty in the volume
of a spherical beach ball whose radius is 

4 and 5 Units, Standards, SI, Converting Units
11. (I) Write the following as full (decimal) numbers with stan-

dard units: (a) 286.6 mm, (b) (c) 760 mg, (d) 60.0 ps,
(e) 22.5 fm, ( ) 2.50 gigavolts.

12. (I) Express the following using the prefixes of Table 4:
(a) volts, (b) meters, (c) days,
(d) bucks, and (e) seconds.8 * 10–818 * 102

6 * 1032 * 10–61 * 106

f
85 mV,

r = 0.8460.04 m?

tan u.
sin uu,

0.082 * 10–1,2.079 * 102 m

A9.2 * 103 sB + A8.3 * 104 sB + A0.008 * 106 sB.

5.4860.25 m?

Introduction, Measurement, Estimating 
Problem Set

TABLE 5
SI Base Quantities and Units

Unit
Quantity Unit Abbreviation

Length meter m
Time second s
Mass kilogram kg
Electric 

current ampere A
Temperature kelvin K
Amount 

of substance mole mol
Luminous 

intensity candela cd

[The Problems in this Section are ranked I, II, or III according to
estimated difficulty, with (I) Problems being easiest. Level (III)
Problems are meant mainly as a challenge for the best students, for
“extra credit.” The Problems are arranged by Sections, meaning that
the reader should have read up to and including that Section, but
this Chapter also has a group of General Problems that are not
arranged by Section and not ranked.]

From Chapter Physics for Scientists & Engineers with Modern Physics, Fourth Edition, Douglas C. Giancoli.
Copyright © 2009 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.
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13. (I) Determine
your own height in
meters, and your mass
in kg.
14. (I) The Sun, on
average, is 93 million
miles from Earth. How
many meters is this?
Express (a) using
powers of ten, and (b)
using a metric prefix.
15. (II) What is the
conversion factor
between (a) and

(b) and 
16. (II) An airplane
travels at 950 km h.
How long does it take
to travel 1.00 km?
17. (II) A typical
atom has a diameter of
about 
(a) What is this in
inches? (b) Approxi-
mately how many
atoms are there along
a 1.0-cm line?
18. (II) Express the
following sum with the

correct number of significant figures:

19. (II) Determine the conversion factor between (a) km h 
and mi h, (b) m s and ft s, and (c) km h and m s.

20. (II) How much longer (percentage) is a one-mile race than 
a 1500-m race (“the metric mile”)?

21. (II) A light-year is the distance light travels in one year 
(at ). (a) How many meters are
there in 1.00 light-year? (b) An astronomical unit (AU) is
the average distance from the Sun to Earth,
How many AU are there in 1.00 light-year? (c) What is the
speed of light in AU h?

22. (II) If you used only a keyboard to enter data, how many
years would it take to fill up the hard drive in your
computer that can store 82 gigabytes of
data? Assume “normal” eight-hour working days, and that
one byte is required to store one keyboard character, and
that you can type 180 characters per minute.

23. (III) The diameter of the Moon is 3480 km. (a) What is the
surface area of the Moon? (b) How many times larger is the
surface area of the Earth?

6 Order-of-Magnitude Estimating
(Note: Remember that for rough estimates, only round numbers are
needed both as input to calculations and as final results.)
24. (I) Estimate the order of magnitude (power of ten) of: (a) 2800,

(b) (c) 0.0076, and (d) 
25. (II) Estimate how many books can be shelved in a college

library with of floor space. Assume 8 shelves high,
having books on both sides, with corridors 1.5 m wide.
Assume books are about the size of this one, on average.

26. (II) Estimate how many hours it would take a runner to run (at
10 km h) across the United States from New York to California.�

3500 m2

15.0 * 108.86.30 * 102,

(82 * 109 bytes)

�

1.50 * 108 km.

speed = 2.998 * 108 m�s

�����

�

142.5 cm + 5.34 * 105 mm.
1.80 m +

1.0 * 10–10 m.

�

ft2?m2yd2,
ft2

27. (II) Estimate the number of liters of water a human drinks
in a lifetime.

28. (II) Estimate how long it would take one person to mow a
football field using an ordinary home lawn mower (Fig. 11).
Assume the mower moves with a 1-km h speed, and has a
0.5-m width.

�

FIGURE 11
Problem 28.

29. (II) Estimate the number of dentists (a) in San Francisco
and (b) in your town or city.

30. (III) The rubber worn from tires mostly enters the atmosphere
as particulate pollution. Estimate how much rubber (in kg) is
put into the air in the United States every year. To get started,
a good estimate for a tire tread’s depth is 1 cm when new, and
rubber has a mass of about of volume.

31. (III) You are in a hot air balloon, 200 m above the flat Texas
plains. You look out toward the horizon. How far out can
you see—that is, how far is your horizon? The Earth’s
radius is about 6400 km.

32. (III) I agree to hire you for 30 days and you can decide between
two possible methods of payment: either (1) $1000 a day, or
(2) one penny on the first day, two pennies on the second day
and continue to double your daily pay each day up to day 30.
Use quick estimation to make your decision, and justify it.

33. (III) Many sailboats are moored at a marina 4.4 km away on the
opposite side of a lake.You stare at one of the sailboats because,
when you are lying flat at the water’s edge, you can just see its
deck but none of the side of the sailboat. You then go to that
sailboat on the other side of the
lake and measure that the deck
is 1.5 m above the level of the
water. Using Fig. 12, where

estimate the radius R
of the Earth.
h = 1.5 m,

1200 kg per m3

Earth

Lake

R R

d

h

FIGURE 12 Problem 33.
You see a sailboat across a 
lake (not to scale). R is the
radius of the Earth.You are a
distance from the
sailboat when you can see only
its deck and not its side.
Because of the curvature of the
Earth, the water “bulges out”
between you and the boat.

d = 4.4 km

TABLE 4 Metric (SI) Prefixes

Prefix Abbreviation Value

yotta Y
zetta Z
exa E
peta P
tera T
giga G
mega M
kilo k
hecto h
deka da
deci d
centi c
milli m
micro†

nano n
pico p
femto f
atto a
zepto z
yocto y
† is the Greek letter “mu.”m

10–24
10–21
10–18
10–15
10–12
10–9
10–6m

10–3
10–2
10–1
101
102
103
106
109
1012
1015
1018
1021
1024

34. (III) Another experiment you can do also uses the radius of
the Earth. The Sun sets, fully disappearing over the horizon as
you lie on the beach, your eyes 20 cm above the sand. You
immediately jump up, your eyes now 150 cm above the sand,
and you can again see the top of the Sun. If you count the
number of seconds until the Sun fully disappears again,
you can estimate the radius of the Earth. But for this Problem,
use the known radius of the Earth and calculate the time t.

(  = t)

Introduction, Measurement, Estimating: Problem Set
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FIGURE 14 Problem 48.
Estimate the number of
gumballs in the machine.

General Problems

7 Dimensions
35. (I) What are the dimensions of density, which is mass per

volume?
36. (II) The speed of an object is given by the equation 

where refers to time. (a) What are the
dimensions of A and B? (b) What are the SI units for the
constants A and B?

37. (II) Three students derive the following equations in which 
x refers to distance traveled, the speed, a the acceleration

the time, and the subscript zero means a quantity
at time (a) (b) and
(c) Which of these could possibly be
correct according to a dimensional check?

x = v0 t + 2at2.
x = v0 t + 1

2 at2,x = vt2 + 2at,t = 0:
A0BtAm�s2B,

v

tv = At3 - Bt,
v

48. Estimate the number of gumballs in the machine of Fig. 14.

39. Global positioning satellites (GPS) can be used to deter-
mine positions with great accuracy. If one of the satellites is
at a distance of 20,000 km from you, what percent uncertainty
in the distance does a 2-m uncertainty represent? How
many significant figures are needed in the distance?

40. Computer chips (Fig. 13) etched on circular silicon wafers of
thickness 0.300 mm are sliced from a solid cylindrical silicon
crystal of length 25 cm. If each
wafer can hold 100 chips, what
is the maximum number of
chips that can be produced
from one entire cylinder?

FIGURE 13 Problem 40.
The wafer held by the hand (above)
is shown below, enlarged and
illuminated by colored light. Visible
are rows of integrated circuits (chips).

41. (a) How many seconds are there in 1.00 year? (b) How
many nanoseconds are there in 1.00 year? (c) How many
years are there in 1.00 second?

42. American football uses a field that is 100 yd long, whereas a
regulation soccer field is 100 m long. Which field is longer,
and by how much (give yards, meters, and percent)?

43. A typical adult human lung contains about 300 million tiny
cavities called alveoli. Estimate the average diameter of 
a single alveolus.

44. One hectare is defined as One acre is
How many acres are in one hectare?

45. Estimate the number of gallons of gasoline consumed by
the total of all automobile drivers in the United States,
per year.

46. Use Table 3 to estimate the total number of protons or
neutrons in (a) a bacterium, (b) a DNA molecule, (c) the
human body, (d) our Galaxy.

47. An average family of four uses roughly 1200 L (about
300 gallons) of water per day How much
depth would a lake lose per year if it uniformly covered an
area of and supplied a local town with a population
of 40,000 people? Consider only population uses, and
neglect evaporation and so on.

50 km2

A1 L = 1000 cm3B.

4.356 * 104 ft2.
1.000 * 104 m2.

Introduction, Measurement, Estimating: Problem Set
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38. (II) Show that the following combination of the three funda-
mental constants of nature that we used in Example 10 of
“Introduction, Measurement, Estimating” (that is G, c, and h)
forms a quantity with the dimensions of time:

This quantity, is called the Planck time and is thought to
be the earliest time, after the creation of the Universe, at
which the currently known laws of physics can be applied.

tP ,

tP = BGh

c5
.

* 

* 

* 

TABLE 3 Some Masses

Object Kilograms (approximate)

Electron kg
Proton, neutron kg
DNA molecule kg
Bacterium kg
Mosquito kg
Plum kg
Human kg
Ship kg
Earth kg
Sun kg
Galaxy kg1041

10302 *

10246 *

108
102
10–1
10–5
10–15
10–17
10–27
10–30

49. Estimate how many kilograms of laundry soap are used in
the U.S. in one year (and therefore pumped out of washing
machines with the dirty water). Assume each load of
laundry takes 0.1 kg of soap.

50. How big is a ton? That is, what is the volume of something
that weighs a ton? To be specific, estimate the diameter of a
1-ton rock, but first make a wild guess: will it be 1 ft across,
3 ft, or the size of a car? [Hint: Rock has mass per volume
about 3 times that of water, which is 1 kg per liter 
or 62 lb per cubic foot.]

A103 cm3B

*

* 
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51. A certain audio compact disc (CD) contains 783.216 megabytes
of digital information. Each byte consists of exactly 8 bits.
When played, a CD player reads the CD’s digital information
at a constant rate of 1.4 megabits per second. How many
minutes does it take the player to read the entire CD?

52. Hold a pencil in front of your eye at a position where its
blunt end just blocks out the Moon (Fig. 15). Make appro-
priate measurements to estimate
the diameter of the Moon, given
that the Earth–Moon distance is
3.8 * 105 km.

FIGURE 16
Problem 57.

53. A heavy rainstorm dumps 1.0 cm of rain on a city 5 km wide
and 8 km long in a 2-h period. How many metric tons 

of water fell on the city? ( of
water has a mass of ) How many gallons 
of water was this?

54. Noah’s ark was ordered to be 300 cubits long, 50 cubits wide,
and 30 cubits high. The cubit was a unit of measure equal to
the length of a human forearm, elbow to the tip of the
longest finger. Express the dimensions of Noah’s ark in
meters, and estimate its volume 

55. Estimate how many days it would take to walk around the
world, assuming 10 h walking per day at 4 km h.

56. One liter of oil is spilled onto a smooth lake. If
the oil spreads out uniformly until it makes an oil slick just
one molecule thick, with adjacent molecules just touching,
estimate the diameter of the oil slick. Assume the oil mole-
cules have a diameter of 

57. Jean camps beside a wide river and wonders how wide it is.
She spots a large rock on the bank directly across from her.
She then walks upstream until she judges that the angle
between her and the rock, which she can still see clearly, is
now at an angle of 30° downstream (Fig. 16). Jean measures
her stride to be
about 1 yard long.
The distance back
to her camp is 120
strides. About how
far across, both in
yards and in meters,
is the river?

2 * 10–10 m.

A1000 cm3B
�

Am3B.

1 g = 10–3 kg.
1 cm3A1 metric ton = 103 kgB

58. A watch manufacturer claims that its watches gain or lose
no more than 8 seconds in a year. How accurate is this
watch, expressed as a percentage?

59. An angstrom (symbol Å) is a unit of length, defined as
which is on the order of the diameter of an atom.

(a) How many nanometers are in 1.0 angstrom? (b) How
many femtometers or fermis (the common unit of length in
nuclear physics) are in 1.0 angstrom? (c) How many
angstroms are in 1.0 m? (d) How many angstroms are in 
1.0 light-year (see Problem 21)?

60. The diameter of the Moon is 3480 km. What is the volume
of the Moon? How many Moons would be needed to create
a volume equal to that of Earth?

61. Determine the percent uncertainty in and in when
(a) (b) 

62. If you began walking along one of Earth’s lines of longi-
tude and walked north until you had changed latitude by
1 minute of arc (there are 60 minutes per degree), how far
would you have walked (in miles)? This distance is called a
“nautical mile.”

63. Make a rough estimate of the volume of your body (in ).
64. Estimate the number of bus drivers (a) in Washington, D.C.,

and (b) in your town.
65. The American Lung Association gives the following formula

for an average person’s expected lung capacity V (in liters,
where ):

where H and A are the person’s height (in meters), and
age (in years), respectively. In this formula, what are the
units of the numbers 4.1, 0.018, and 2.69?

66. The density of an object is defined as its mass divided by its
volume. Suppose the mass and volume of a rock are
measured to be 8 g and To the correct number
of significant figures, determine the rock’s density.

67. To the correct number of significant figures, use the infor-
mation inside the front cover of this book to determine the
ratio of (a) the surface area of Earth compared to the
surface area of the Moon; (b) the volume of Earth
compared to the volume of the Moon.

68. One mole of atoms consists of individual atoms. If
a mole of atoms were spread uniformly over the surface of the
Earth, how many atoms would there be per square meter?

69. Recent findings in astrophysics suggest that the observable
Universe can be modeled as a sphere of radius 

light-years with an average mass density of
about where only about 4% of the
Universe’s total mass is due to “ordinary” matter (such as
protons, neutrons, and electrons). Use this information to
estimate the total mass of ordinary matter in the observable
Universe. ( )1 light-year = 9.46 * 1015 m.

1 * 10–26 kg�m3,
R = 13.7 * 109

6.02 * 1023

2.8325 cm3.

V = 4.1 H - 0.018 A - 2.69,

1 L = 103 cm3

m3

u = 75.0°60.5°.u = 15.0°60.5°,
sin u,u,

10–10 m,

Introduction, Measurement, Estimating: Problem Set

FIGURE 15 Problem 52.
How big is the Moon?

120 Strides

30°

Answers to Odd-Numbered Problems
1. (a)

(b)
3. (a)

(b)
(c) 6.8 * 10–3;

2.18 * 101;
1.156 * 100;
4.4 * 1017 s.
1.4 * 1010 y; (d)

(e)
( f )

5. 4.6%.
7.

9. 0.24 rad.
1.00 * 105 s.

4.44 * 102.
2.19 * 10–1;
3.2865 * 102; 11. (a) 0.2866 m;

(b) 0.000085 V;
(c) 0.00076 kg;
(d) 0.0000000000600 s;
(e) 0.0000000000000225 m;
( f ) 2,500,000,000 V.
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13.

15. (a)
(b)

17. (a)
(b)

19. (a)
(b)
(c)

21. (a)
(b)
(c)

23. (a)
(b) 13.4.

25.

27. 5 * 104 L.
6 * 105 books.

3.80 * 1013 m2;
7.20 AU�h.
6.31 * 104 AU;
9.46 * 1015 m;
1 km�h = 0.278 m�s.
1 m�s = 3.28 ft�s;
1 km�h = 0.621 mi�h;
1.0 * 108 atoms.
3.9 * 10–9 in.;
1 m2 = 10.8 ft2 .
1 ft2 = 0.111 yd2 ;

5¿10– = 1.8 m, 165 lbs = 75.2 kg. 29. (a) 1800.
31.

33.

35.

37. (a) Cannot;
(b) can;
(c) can.

39. 8 significant figures.
41. (a)

(b)
(c)

43.

45.

47.

49. 2 * 109 kg�y.
9 cm�y.
1 * 1011 gal�y.
2 * 10–4 m.

3.17 * 10–8 y.
3.16 * 1016 ns;
3.16 * 107 s;

A1 * 10–5B%,

CM�L3 D .6.5 * 106 m.
5 * 104 m.

51. 75 min.
53.

55.

57. 210 yd, 190 m.
59. (a) 0.10 nm;

(b)
(c) Å;
(d) Å.

61. (a) 3%, 3%;
(b) 0.7%, 0.2%.

63.

65. L.
67. (a) 13.4;

(b) 49.3.
69. 4 * 1051 kg.

L�m, L�y,
8 * 10–2 m3.

9.5 * 1025
1.0 * 1010
1.0 * 105 fm;

1 * 103 days
4 * 105 metric tons, 1 * 108 gal.

Introduction, Measurement, Estimating: Problem Set
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Describing Motion: 
Kinematics in One Dimension

CHAPTER-OPENING QUESTION—Guess now!
[Don’t worry about getting the right answer now—the idea is to get your preconceived

notions out on the table.]
Two small heavy balls have the same diameter but one weighs twice as much as the
other. The balls are dropped from a second-story balcony at the exact same time.
The time to reach the ground below will be:

(a) twice as long for the lighter ball as for the heavier one.
(b) longer for the lighter ball, but not twice as long.
(c) twice as long for the heavier ball as for the lighter one.
(d) longer for the heavier ball, but not twice as long.
(e) nearly the same for both balls.

T
he motion of objects—baseballs, automobiles, joggers, and even the Sun
and Moon—is an obvious part of everyday life. It was not until the
sixteenth and seventeenth centuries that our modern understanding of
motion was established. Many individuals contributed to this understanding,

particularly Galileo Galilei (1564–1642) and Isaac Newton (1642–1727).

CONTENTS

1 Reference Frames and
Displacement

2 Average Velocity

3 Instantaneous Velocity

4 Acceleration

5 Motion at Constant
Acceleration

6 Solving Problems

7 Freely Falling Objects

8 Variable Acceleration;
Integral Calculus

9 Graphical Analysis and
Numerical Integration

A high-speed car has released a parachute to reduce 
its speed quickly. The directions of the car’s velocity and
acceleration are shown by the green and gold arrows.

Motion is described using 
the concepts of velocity and
acceleration. In the case shown
here, the acceleration is in the
opposite direction from the
velocity which means the object
is slowing down. We examine 
in detail motion with constant
acceleration, including the vertical
motion of objects falling under
gravity.

vB,

a
B

AaBBAvBB

*

*

George D. Lepp/Corbis/Bettmann

Note: Sections marked with an asterisk (*) may be considered optional by the instructor.
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Describing Motion: Kinematics in One Dimension

− y

+ y

+ x− x
0

FIGURE 3 Standard set of xy

coordinate axes.

(a) (b)

FIGURE 1 The pinecone in (a)
undergoes pure translation as it falls,
whereas in (b) it is rotating as well as
translating.

The study of the motion of objects, and the related concepts of force and
energy, form the field called mechanics. Mechanics is customarily divided into two
parts: kinematics, which is the description of how objects move, and dynamics,
which deals with force and why objects move as they do.

For now we only discuss objects that move without rotating (Fig. 1a). Such
motion is called translational motion. In this Chapter we will be concerned 
with describing an object that moves along a straight-line path, which is 
one-dimensional translational motion.

We will often use the concept, or model, of an idealized particle which is
considered to be a mathematical point with no spatial extent (no size).A point particle
can undergo only translational motion. The particle model is useful in many real
situations where we are interested only in translational motion and the object’s
size is not significant. For example, we might consider a billiard ball, or even a
spacecraft traveling toward the Moon, as a particle for many purposes.

1 Reference Frames and Displacement
Any measurement of position, distance, or speed must be made with respect to a
reference frame, or frame of reference. For example, while you are on a train trav-
eling at 80 km h, suppose a person walks past you toward the front of the train at
a speed of, say, 5 km h (Fig. 2). This 5 km h is the person’s speed with respect to
the train as frame of reference. With respect to the ground, that person is moving
at a speed of It is always important to specify the
frame of reference when stating a speed. In everyday life, we usually mean “with
respect to the Earth” without even thinking about it, but the reference frame must
be specified whenever there might be confusion.

80 km�h + 5 km�h = 85 km�h.

��

�

FIGURE 2 A person walks toward
the front of a train at 5 km h. The
train is moving 80 km h with respect
to the ground, so the walking
person’s speed, relative to the
ground, is 85 km h.�

�

�

When specifying the motion of an object, it is important to specify not only the
speed but also the direction of motion. Often we can specify a direction by using
the cardinal points, north, east, south, and west, and by “up” and “down.” In
physics, we often draw a set of coordinate axes, as shown in Fig. 3, to represent a
frame of reference. We can always place the origin 0, and the directions of the x
and y axes, as we like for convenience. The x and y axes are always perpendicular
to each other. Objects positioned to the right of the origin of coordinates (0) on
the x axis have an x coordinate which we usually choose to be positive; then points
to the left of 0 have a negative x coordinate. The position along the y axis is usually
considered positive when above 0, and negative when below 0, although the
reverse convention can be used if convenient. Any point on the plane can be
specified by giving its x and y coordinates. In three dimensions, a z axis perpendicular
to the x and y axes is added.

For one-dimensional motion, we often choose the x axis as the line along
which the motion takes place. Then the position of an object at any moment is
given by its x coordinate. If the motion is vertical, as for a dropped object, we
usually use the y axis.
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x
0

70 m

West East40 m

Displacement

30 m

y

FIGURE 4 A person walks 70 m
east, then 30 m west. The total
distance traveled is 100 m (path is
shown dashed in black); but the
displacement, shown as a solid blue
arrow, is 40 m to the east.
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C A U T I O N

The displacement may not equal the
total distance traveled

x

y

x1 x2

100 20 30 40
Distance (m)

FIGURE 5 The arrow represents
the displacement Distances
are in meters.

x2 - x1 .

y

x

x2 x1

10
0

20 30 40
Distance (m)

�x

FIGURE 6 For the displacement

the displacement vector points to
the left.

¢x = x2 - x1 = 10.0 m - 30.0 m,

We need to make a distinction between the distance an object has traveled and
its displacement, which is defined as the change in position of the object. That is,
displacement is how far the object is from its starting point. To see the distinction
between total distance and displacement, imagine a person walking 70 m to the
east and then turning around and walking back (west) a distance of 30 m 
(see Fig. 4). The total distance traveled is 100 m, but the displacement is only 40 m
since the person is now only 40 m from the starting point.

Displacement is a quantity that has both magnitude and direction. Such quan-
tities are called vectors, and are represented by arrows in diagrams. For example, in
Fig. 4, the blue arrow represents the displacement whose magnitude is 40 m and
whose direction is to the right (east).

In this chapter, we deal only with motion in one dimension, along a line. In this
case, vectors which point in one direction will have a positive sign, whereas vectors
that point in the opposite direction will have a negative sign, along with their
magnitude.

Consider the motion of an object over a particular time interval. Suppose that
at some initial time, call it the object is on the x axis at the position in the
coordinate system shown in Fig. 5. At some later time, suppose the object has
moved to position The displacement of our object is and is repre-
sented by the arrow pointing to the right in Fig. 5. It is convenient to write

where the symbol (Greek letter delta) means “change in.” Then means “the
change in x,” or “change in position,” which is the displacement. Note that the “change
in” any quantity means the final value of that quantity, minus the initial value.

Suppose and Then

so the displacement is 20.0 m in the positive direction, Fig. 5.
Now consider an object moving to the left as shown in Fig. 6. Here the object,

say, a person, starts at and walks to the left to the point 
In this case her displacement is

and the blue arrow representing the vector displacement points to the left. For
one-dimensional motion along the x axis, a vector pointing to the right has a
positive sign, whereas a vector pointing to the left has a negative sign.

EXERCISE A An ant starts at on a piece of graph paper and walks along the 
x axis to It then turns around and walks back to What is 
the ant’s displacement and total distance traveled?

2 Average Velocity
The most obvious aspect of the motion of a moving object is how fast it is
moving—its speed or velocity.

The term “speed” refers to how far an object travels in a given time interval,
regardless of direction. If a car travels 240 kilometers (km) in 3 hours (h), we say its
average speed was 80 km h. In general, the average speed of an object is defined as the

total distance traveled along its path divided by the time it takes to travel this distance:

(1)

The terms “velocity” and “speed” are often used interchangeably in ordinary
language. But in physics we make a distinction between the two. Speed is simply a

average speed =

distance traveled
time elapsed

.

�

x = –10 cm.x = –20 cm.
x = 20 cm

¢x = x2 - x1 = 10.0 m - 30.0 m = –20.0 m,

x2 = 10.0 m.
x1 = 30.0 m

¢x = x2 - x1 = 30.0 m - 10.0 m = 20.0 m,

x2 = 30.0 m.x1 = 10.0 m

¢x¢

¢x = x2 - x1 ,

x2 - x1 ,x2 .
t2 ,

x1t1 ,
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C A U T I O N

Average speed is not necessarily
equal to the magnitude of the
average velocity

P R O B L E M  S O L V I N G

or sign can signify the direction
for linear motion

–±

positive number, with units. Velocity, on the other hand, is used to signify both the
magnitude (numerical value) of how fast an object is moving and also the direction

in which it is moving. (Velocity is therefore a vector.) There is a second difference
between speed and velocity: namely, the average velocity is defined in terms of
displacement, rather than total distance traveled:

Average speed and average velocity have the same magnitude when the
motion is all in one direction. In other cases, they may differ: recall the walk we
described earlier, in Fig. 4, where a person walked 70 m east and then 30 m west.
The total distance traveled was but the displacement was
40 m. Suppose this walk took 70 s to complete. Then the average speed was:

The magnitude of the average velocity, on the other hand, was:

This difference between the speed and the magnitude of the velocity can occur
when we calculate average values.

To discuss one-dimensional motion of an object in general, suppose that at
some moment in time, call it the object is on the x axis at position in a coor-
dinate system, and at some later time, suppose it is at position The elapsed
time is during this time interval the displacement of our object is 

Then the average velocity, defined as the displacement divided by

the elapsed time, can be written

(2)

where stands for velocity and the bar over the is a standard symbol
meaning “average.”

For the usual case of the axis to the right, note that if is less than the
object is moving to the left, and then is less than zero. The sign of
the displacement, and thus of the average velocity, indicates the direction: the
average velocity is positive for an object moving to the right along the axis and
negative when the object moves to the left. The direction of the average velocity is
always the same as the direction of the displacement.

Note that it is always important to choose (and state) the elapsed time, or time

interval, the time that passes during our chosen period of observation.

EXAMPLE 1 Runner’s average velocity. The position of a runner as a func-
tion of time is plotted as moving along the x axis of a coordinate system. During
a 3.00-s time interval, the runner’s position changes from to 

as shown in Fig. 7. What was the runner’s average velocity?

APPROACH We want to find the average velocity, which is the displacement
divided by the elapsed time.

SOLUTION The displacement is 
The elapsed time, or time interval, is The average velocity is

The displacement and average velocity are negative, which tells us that the
runner is moving to the left along the x axis, as indicated by the arrow in Fig. 7.
Thus we can say that the runner’s average velocity is 6.50 m s to the left.�

v =

¢x

¢t
=

–19.5 m
3.00 s

= –6.50 m�s.

¢t = 3.00 s.
¢x = x2 - x1 = 30.5 m - 50.0 m = –19.5 m.

x2 = 30.5 m,
x1 = 50.0 m

t2 - t1 ,

±x

¢x = x2 - x1

x1 ,x2±x

v(  )v

v =

x2 - x1

t2 - t1
=

¢x

¢t
,

¢x = x2 - x1 .
¢t = t2 - t1 ;

x2 .t2 ,
x1t1 ,

displacement
time elapsed

=

40 m
70 s

= 0.57 m�s.

distance
time elapsed

=

100 m
70 s

= 1.4 m�s.

70 m + 30 m = 100 m,

average velocity =

displacement
time elapsed

=

final position - initial position
time elapsed

.

y

x
100 20 30 40 50 60

Distance (m)

Start
(x1)

Finish
(x2)

�x

FIGURE 7 Example 1.
A person runs from to 

The displacement 
is –19.5 m.
x2 = 30.5 m.

x1 = 50.0 m
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EXAMPLE 2 Distance a cyclist travels. How far can a cyclist travel in 2.5 h
along a straight road if her average velocity is 18 km h?

APPROACH We want to find the distance traveled, so we solve Eq. 2 for 

SOLUTION We rewrite Eq. 2 as and find

EXERCISE B A car travels at a constant 50 km h for 100 km. It then speeds up to 
100 km h and is driven another 100 km. What is the car’s average speed for the 200 km
trip? (a) 67 km h; (b) 75 km h; (c) 81 km h; (d) 50 km h.

3 Instantaneous Velocity
If you drive a car along a straight road for 150 km in 2.0 h, the magnitude of your
average velocity is 75 km h. It is unlikely, though, that you were moving at
precisely 75 km h at every instant. To describe this situation we need the concept
of instantaneous velocity, which is the velocity at any instant of time. (Its magni-
tude is the number, with units, indicated by a speedometer, Fig. 8.) More precisely,
the instantaneous velocity at any moment is defined as the average velocity over an

infinitesimally short time interval. That is, Eq. 2 is to be evaluated in the limit of 
becoming extremely small, approaching zero. We can write the definition of instan-
taneous velocity, , for one-dimensional motion as

(3)

The notation means the ratio is to be evaluated in the limit of 
approaching zero. But we do not simply set in this definition, for then 
would also be zero, and we would have an undefined number. Rather, we are
considering the ratio as a whole. As we let approach zero,
approaches zero as well. But the ratio approaches some definite value,
which is the instantaneous velocity at a given instant.

In Eq. 3, the limit as is written in calculus notation as and is
called the derivative of x with respect to :

(4)

This equation is the definition of instantaneous velocity for one-dimensional
motion.

For instantaneous velocity we use the symbol whereas for average velocity
we use with a bar above. When we use the term “velocity” it will refer to instan-
taneous velocity. When we want to speak of the average velocity, we will make this
clear by including the word “average.”

Note that the instantaneous speed always equals the magnitude of the instan-
taneous velocity. Why? Because distance traveled and the magnitude of the
displacement become the same when they become infinitesimally small.

If an object moves at a uniform (that is, constant) velocity during a particular
time interval, then its instantaneous velocity at any instant is the same as its
average velocity (see Fig. 9a). But in many situations this is not the case. For
example, a car may start from rest, speed up to 50 km h, remain at that velocity for
a time, then slow down to 20 km h in a traffic jam, and finally stop at its destina-
tion after traveling a total of 15 km in 30 min. This trip is plotted on the graph of 
Fig. 9b. Also shown on the graph is the average velocity (dashed line), which is 
v = ¢x�¢t = 15 km�0.50 h = 30 km�h.
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FIGURE 9 Velocity of a car as a
function of time: (a) at constant
velocity; (b) with varying velocity.

FIGURE 8 Car speedometer
showing mi h in white, and km h in
orange.
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P1

P2

∆x = x2 − x1

∆t = t2 − t1

t2t1

x1

x2

0

x

t

FIGURE 10 Graph of a particle’s
position x vs. time . The slope of the
straight line represents the
average velocity of the particle during
the time interval ¢t = t2 - t1 .

P1 P2

t
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tangent at P1

0 t2t1

x1

x2

x

t

Pi
xi

x2

FIGURE 11 Same position vs. time
curve as in Fig. 10, but note that the
average velocity over the time interval

(which is the slope of ) is
less than the average velocity over the
time interval The slope of the
thin line tangent to the curve at point

equals the instantaneous velocity at
time t1 .
P1

t2 - t1 .

P1 Piti - t1

To better understand instantaneous velocity, let us consider a graph of the
position of a particular particle versus time (x vs. ), as shown in Fig. 10. (Note that
this is different from showing the “path” of a particle on an x vs. y plot.) The
particle is at position at a time and at position at time and repre-
sent these two points on the graph. A straight line drawn from point to
point forms the hypotenuse of a right triangle whose sides are and 
The ratio is the slope of the straight line But is also the
average velocity of the particle during the time interval Therefore,
we conclude that the average velocity of a particle during any time interval 

is equal to the slope of the straight line (or chord) connecting the two
points and on an x vs. graph.

Consider now a time intermediate between and at which time the
particle is at (Fig. 11). The slope of the straight line is less than the slope of

in this case. Thus the average velocity during the time interval is less
than during the time interval 

Now let us imagine that we take the point in Fig. 11 to be closer and closer
to point That is, we let the interval which we now call to become
smaller and smaller. The slope of the line connecting the two points becomes
closer and closer to the slope of a line tangent to the curve at point The
average velocity (equal to the slope of the chord) thus approaches the slope of 
the tangent at point The definition of the instantaneous velocity (Eq. 3) is the
limiting value of the average velocity as approaches zero. Thus the
instantaneous velocity equals the slope of the tangent to the curve at that point
(which we can simply call “the slope of the curve” at that point).

Because the velocity at any instant equals the slope of the tangent to the x vs.
graph at that instant, we can obtain the velocity at any instant from such a graph.
For example, in Fig. 12 (which shows the same curve as in Figs. 10 and 11), as our
object moves from to the slope continually increases, so the velocity is
increasing. For times after however, the slope begins to decrease and in fact
reaches zero (so ) where x has its maximum value, at point in Fig. 12.
Beyond this point, the slope is negative, as for point The velocity is therefore
negative, which makes sense since x is now decreasing—the particle is moving
toward decreasing values of x, to the left on a standard xy plot.

If an object moves with constant velocity over a particular time interval, its
instantaneous velocity is equal to its average velocity. The graph of x vs. in this
case will be a straight line whose slope equals the velocity. The curve of Fig. 10 has
no straight sections, so there are no time intervals when the velocity is constant.
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FIGURE 12 Same x vs. curve as in 
Figs. 10 and 11, but here showing the slope at
four different points: At the slope is zero, so

At the slope is negative, so v 6 0.P4v = 0.
P3 ,

t
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P4

0

P1

P2
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x1

x2

x

t
t3

EXERCISE C What is your speed at the instant you turn around to move in the opposite
direction? (a) Depends on how quickly you turn around; (b) always zero; (c) always
negative; (d) none of the above.

The derivatives of polynomial functions (which we use a lot) are:

where C is any constant.

d

dt
 ACtnB = nCtn- 1 and dC

dt
= 0,
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FIGURE 13 Example 3.
(a) Engine traveling on a straight track.
(b) Graph of x vs. : x = At2 + B.t

EXAMPLE 3 Given x as a function of t. A jet engine moves along an exper-
imental track (which we call the x axis) as shown in Fig. 13a. We will treat the
engine as if it were a particle. Its position as a function of time is given by the
equation where and and this equa-
tion is plotted in Fig. 13b. (a) Determine the displacement of the engine during
the time interval from to (b) Determine the average
velocity during this time interval. (c) Determine the magnitude of the instanta-
neous velocity at 

APPROACH We substitute values for and in the given equation for x to obtain
and The average velocity can be found from Eq. 2. We take the derivative

of the given x equation with respect to to find the instantaneous velocity, using
the formulas just given.
SOLUTION (a) At the position (point in Fig. 13b) is

At the position ( in Fig. 13b) is

The displacement is thus

(b) The magnitude of the average velocity can then be calculated as

This equals the slope of the straight line joining points and shown in 
Fig. 13b.
(c) The instantaneous velocity at equals the slope of the tangent
to the curve at point shown in Fig. 13b. We could measure this slope off the
graph to obtain But we can calculate more precisely for any time , using 
the given formula

which is the engine’s position x as a function of time . We take the derivative of
x with respect to time (see formulas at bottom of previous page):

We are given so for 

4 Acceleration
An object whose velocity is changing is said to be accelerating. For instance, a car
whose velocity increases in magnitude from zero to 80 km h is accelerating.
Acceleration specifies how rapidly the velocity of an object is changing.

Average Acceleration

Average acceleration is defined as the change in velocity divided by the time taken
to make this change:

In symbols, the average acceleration over a time interval during¢t = t2 - t1

average acceleration =

change of velocity
time elapsed

.

�

v2 = 2At = 2A2.10 m�s2B(5.00 s) = 21.0 m�s.

t = t2 = 5.00 s,A = 2.10 m�s2,

v =

dx

dt
=

d

dt
 AAt2 + BB = 2At.

t

x = At2 + B,

tvv2 .
P2

t = t2 = 5.00 s

P2P1

v =

¢x

¢t
=

x2 - x1

t2 - t1
=

33.6 m
2.00 s

= 16.8 m�s.

x2 - x1 = 55.3 m - 21.7 m = 33.6 m.

x2 = A2.10 m�s2B(5.00 s)2 + 2.80 m = 55.3 m.

P2t2 = 5.00 s,

x1 = At1
2 + B = A2.10 m�s2B(3.00 s)2 + 2.80 m = 21.7 m.

P1t1 = 3.00 s,

t
x2 .x1

t2t1

t = 5.00 s.

t2 = 5.00 s.t1 = 3.00 s

B = 2.80 m,A = 2.10 m�s2x = At2 + B,
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which the velocity changes by is defined as

(5)

Because velocity is a vector, acceleration is a vector too. But for one-dimensional
motion, we need only use a plus or minus sign to indicate acceleration direction
relative to a chosen coordinate axis.

EXAMPLE 4 Average acceleration. A car accelerates along a straight road
from rest to 90 km h in 5.0 s, Fig. 14. What is the magnitude of its average accel-
eration?

APPROACH Average acceleration is the change in velocity divided by the elapsed
time, 5.0 s. The car starts from rest, so The final velocity is 

SOLUTION From Eq. 5, the average acceleration is

This is read as “five meters per second per second” and means that, on
average, the velocity changed by 5.0 m s during each second. That is, assuming
the acceleration was constant, during the first second the car’s velocity
increased from zero to 5.0 m s. During the next second its velocity increased
by another 5.0 m s, reaching a velocity of 10.0 m s at and so on. See
Fig. 14.

t = 2.0 s,��

�

�

a =

v2 - v1

t2 - t1
=

25 m�s - 0 m�s
5.0 s

= 5.0 
m�s

s
.

v2 = 90 km�h = 90 * 103 m�3600 s = 25 m�s.
v1 = 0.

�

a =

v2 - v1

t2 - t1
=

¢v

¢t
.

¢v = v2 - v1 ,

Acceleration

[a  =  5.0 m/s2]

v1  =  0
t1  =  0

at  t  =  2.0 s
    v  =  10.0 m/s

at  t  =  1.0 s
    v  =  5.0 m/s

at  t = t2  =  5.0 s
    v = v2 =  25 m/s

FIGURE 14 Example 4. The car is shown
at the start with at 
The car is shown three more times, at 

and at the end of our
time interval, We assume the
acceleration is constant and equals

The green arrows represent the
velocity vectors; the length of each arrow
represents the magnitude of the velocity
at that moment. The acceleration vector 
is the orange arrow. Distances are not 
to scale.

5.0 m�s2.

t2 = 5.0 s.
t = 2.0 s,t = 1.0 s,

t1 = 0.v1 = 0

We almost always write the units for acceleration as (meters per second
squared) instead of m s s. This is possible because:

According to the calculation in Example 4, the velocity changed on average by
5.0 m s during each second, for a total change of 25 m s over the 5.0 s; the average
acceleration was 5.0 .

Note that acceleration tells us how quickly the velocity changes, whereas
velocity tells us how quickly the position changes.

m�s2
��

m�s
s

=

m
s �s

=

m

s2
.

��

m�s2
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Acceleration

a = −2.0 m/s2
v1  =  15.0 m/s

at  t1  =  0

v2  =  5.0 m/s
at  t2  =  5.0 s

FIGURE 15 Example 6, showing the
position of the car at times and 
as well as the car’s velocity
represented by the green arrows. The
acceleration vector (orange) points to
the left as the car slows down while
moving to the right.

t2 ,t1

v1  =  −15.0 m/sv2  =  −5.0 m/s

a

FIGURE 16 The car of Example 6, now
moving to the left and decelerating. The
acceleration is

 =

–5.0 m�s + 15.0 m�s
5.0 s

= ±2.0 m�s.

 =

(–5.0 m�s) - (–15.0 m�s)

5.0 s

 a =

v2 - v1

¢t

CONCEPTUAL EXAMPLE 5 Velocity and acceleration. (a) If the velocity of an
object is zero, does it mean that the acceleration is zero? (b) If the acceleration is
zero, does it mean that the velocity is zero? Think of some examples.

RESPONSE A zero velocity does not necessarily mean that the acceleration is
zero, nor does a zero acceleration mean that the velocity is zero. (a) For example,
when you put your foot on the gas pedal of your car which is at rest, the velocity
starts from zero but the acceleration is not zero since the velocity of the car
changes. (How else could your car start forward if its velocity weren’t changing—
that is, accelerating?) (b) As you cruise along a straight highway at a constant
velocity of 100 km h, your acceleration is zero:

EXERCISE D A powerful car is advertised to go from zero to 60 mi h in 6.0 s. What does
this say about the car: (a) it is fast (high speed); or (b) it accelerates well?

EXAMPLE 6 Car slowing down. An automobile is moving to the right along
a straight highway, which we choose to be the positive x axis (Fig. 15). Then the
driver puts on the brakes. If the initial velocity (when the driver hits the brakes)
is and it takes 5.0 s to slow down to what was the
car’s average acceleration?

APPROACH We put the given initial and final velocities, and the elapsed time,
into Eq. 5 for .
SOLUTION In Eq. 5, we call the initial time and set 
(Note that our choice of doesn’t affect the calculation of because only 

appears in Eq. 5.) Then

The negative sign appears because the final velocity is less than the initial
velocity. In this case the direction of the acceleration is to the left (in the negative 
x direction)—even though the velocity is always pointing to the right.We say that the
acceleration is to the left, and it is shown in Fig. 15 as an orange arrow.

Deceleration

When an object is slowing down, we can say it is decelerating. But be careful: deceler-
ation does not mean that the acceleration is necessarily negative. The velocity of an
object moving to the right along the positive x axis is positive; if the object is slowing
down (as in Fig. 15), the acceleration is negative. But the same car moving to the left
(decreasing x), and slowing down, has positive acceleration that points to the right, as
shown in Fig. 16. We have a deceleration whenever the magnitude of the velocity is
decreasing, and then the velocity and acceleration point in opposite directions.

2.0 m�s2

a =

5.0 m�s - 15.0 m�s
5.0 s

= –2.0 m�s2.

¢t = t2 - t1

at1 = 0
t2 = 5.0 s.t1 = 0,

a

v2 = 5.0 m�s,v1 = 15.0 m�s,

�

a = 0, v Z 0.�

C A U T I O N

Deceleration means the magnitude
of the velocity is decreasing; a is not

necessarily negative

EXERCISE E A car moves along the x axis. What is the sign of the car’s acceleration if it is
moving in the positive x direction with (a) increasing speed or (b) decreasing speed? What
is the sign of the acceleration if the car moves in the negative direction with (c) increasing
speed or (d) decreasing speed?
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Instantaneous Acceleration

The instantaneous acceleration, a, is defined as the limiting value of the average

acceleration as we let approach zero:

(6)

This limit, is the derivative of with respect to . We will use the term
“acceleration” to refer to the instantaneous value. If we want to discuss the
average acceleration, we will always include the word “average.”

If we draw a graph of the velocity, vs. time, , as shown in Fig. 17, then the
average acceleration over a time interval is represented by the slope
of the straight line connecting the two points and as shown. [Compare this to
the position vs. time graph of Fig. 10 for which the slope of the straight line repre-
sents the average velocity.] The instantaneous acceleration at any time, say is
the slope of the tangent to the vs. curve at that time, which is also shown in 
Fig. 17. Let us use this fact for the situation graphed in Fig. 17; as we go from time

to time the velocity continually increases, but the acceleration (the rate at
which the velocity changes) is decreasing since the slope of the curve is decreasing.

EXAMPLE 7 Acceleration given t . A particle is moving in a straight line
so that its position is given by the relation as in
Example 3. Calculate (a) its average acceleration during the time interval from 

to and (b) its instantaneous acceleration as a function of time.

APPROACH To determine acceleration, we first must find the velocity at and 
by differentiating x: Then we use Eq. 5 to find the average
acceleration, and Eq. 6 to find the instantaneous acceleration.
SOLUTION (a) The velocity at any time is

as we saw in Example 3c. Therefore, at 
and at Therefore,

(b) With the instantaneous acceleration at any time is

The acceleration in this case is constant; it does not depend on time. Figure 18
shows graphs of (a) x vs. (the same as Fig. 13b), (b) vs. , which is linearly
increasing as calculated above, and (c) a vs. , which is a horizontal straight line
because 

Like velocity, acceleration is a rate. The velocity of an object is the rate at
which its displacement changes with time; its acceleration, on the other hand, is the
rate at which its velocity changes with time. In a sense, acceleration is a “rate of a
rate.” This can be expressed in equation form as follows: since and 

then

Here is the second derivative of x with respect to time: we first take the
derivative of x with respect to time and then we again take the derivative
with respect to time, to get the acceleration.

EXERCISE F The position of a particle is given by the following equation:

What is the acceleration of the particle at (a) (b) 
(c) (d) 2.00 m�s2.24.0 m�s2;

22.5 m�s2;13.0 m�s2;t = 2.00 s?

x = A2.00 m�s3B     t3 + (2.50 m�s)  t.

(dx�dt),(d�dt)
(dx�dt),

d2x�dt2

a =

dv

dt
=

d

dt
 ¢ dx

dt
≤ =

d2x

dt2
.

v = dx�dt,
a = dv�dt
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t

tvt

a =

dv

dt
=

d

dt
 C A4.20 m�s2B     t D = 4.20 m�s2.

v = A4.20 m�s2B     t,

a =

¢v

¢t
=

21.0 m�s - 12.6 m�s
5.00 s - 3.00 s

= 4.20 m�s2.

t2 = 5.00 s, v2 = 21.0 m�s.12.6 m�s
=t1 = 3.00 s, v1 = A4.20 m�s2B(3.00 s)
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dt
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dt
 C A2.10 m�s2B     t2 + 2.80 m D = A4.20 m�s2B     t,
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FIGURE 17 A graph of velocity 
vs. time . The average acceleration
over a time interval is
the slope of the straight line 

The instantaneous
acceleration at time is the slope of
the vs. curve at that instant.tv
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FIGURE 18 Example 7. Graphs of
(a) x vs. , (b) vs. ,
and (c) a vs. for the motion 

Note that increases
linearly with and that the
acceleration a is constant. Also, is
the slope of the x vs. curve, whereas
a is the slope of the vs. curve.tv
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CONCEPTUAL EXAMPLE 8 Analyzing with graphs. Figure 19 shows the
velocity as a function of time for two cars accelerating from 0 to 100 km h in a time
of 10.0 s. Compare (a) the average acceleration; (b) instantaneous acceleration; and
(c) total distance traveled for the two cars.

RESPONSE (a) Average acceleration is Both cars have the same 
(100 km h) and the same (10.0 s), so the average acceleration is the same for
both cars. (b) Instantaneous acceleration is the slope of the tangent to the vs.
curve. For about the first 4 s, the top curve is steeper than the bottom curve, so
car A has a greater acceleration during this interval. The bottom curve is steeper
during the last 6 s, so car B has the larger acceleration for this period. (c) Except
at and car A is always going faster than car B. Since it is going
faster, it will go farther in the same time.

5 Motion at Constant Acceleration
We now examine the situation when the magnitude of the acceleration is
constant and the motion is in a straight line. In this case, the instantaneous and
average accelerations are equal. We use the definitions of average velocity and
acceleration to derive a set of valuable equations that relate x, a, and when a is
constant, allowing us to determine any one of these variables if we know the others.

To simplify our notation, let us take the initial time in any discussion to be zero,
and we call it  (This is effectively starting a stopwatch at ) We can
then let be the elapsed time.The initial position and the initial velocity 
of an object will now be represented by and since they represent x and 
at At time the position and velocity will be called x and (rather than 

and ). The average velocity during the time interval will be (Eq. 2)

since we chose The acceleration, assumed constant in time, is (Eq. 5)

A common problem is to determine the velocity of an object after any elapsed
time , when we are given the object’s constant acceleration. We can solve such
problems by solving for in the last equation to obtain:

[constant acceleration] (7)

If an object starts from rest  and accelerates at after an elapsed
time its velocity will be 

Next, let us see how to calculate the position x of an object after a time when
it undergoes constant acceleration. The definition of average velocity (Eq. 2) is 

which we can rewrite as

(8)

Because the velocity increases at a uniform rate, the average velocity, will be
midway between the initial and final velocities:

[constant acceleration] (9)

(Careful: Equation 9 is not necessarily valid if the acceleration is not constant.) We
combine the last two Equations with Eq. 7 and find

or
[constant acceleration] (10)

Equations 7, 9, and 10 are three of the four most useful equations for motion at

 x = x0 + v0 t + 1
2 at2.

 = x0 + ¢ v0 + v0 + at

2
≤ t

 = x0 + ¢ v0 + v

2
≤ t
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v =
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2
.

v,
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t
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=
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=
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FIGURE 19 Example 8.

C A U T I O N

Average velocity, but only if
a = constant
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constant acceleration. We now derive the fourth equation, which is useful in situa-
tions where the time is not known. We substitute Eq. 9 into Eq. 8:

Next we solve Eq. 7 for , obtaining

and substituting this into the previous equation we have

We solve this for and obtain
[constant acceleration] (11)

which is the useful equation we sought.
We now have four equations relating position, velocity, acceleration, and time,

when the acceleration a is constant. We collect these kinematic equations here in one
place for future reference (the tan background screen emphasizes their usefulness):

(12a)

(12b)

(12c)

(12d)

These useful equations are not valid unless a is a constant. In many cases we can set 
and this simplifies the above equations a bit. Note that x represents posi-

tion, not distance, that is the displacement, and that is the elapsed time.

EXAMPLE 9 Runway design. You are designing an airport for small planes.
One kind of airplane that might use this airfield must reach a speed before
takeoff of at least 27.8 m s (100 km h), and can accelerate at (a) If the
runway is 150 m long, can this airplane reach the required speed for takeoff? (b)
If not, what minimum length must the runway have?
APPROACH The plane’s acceleration is constant, so we can use the kinematic
equations for constant acceleration. In (a), we want to find , and we are given:

Known Wanted

SOLUTION (a) Of the above four equations, Eq. 12c will give us when we know
a, x, and 

This runway length is not sufficient.
(b) Now we want to find the minimum length of runway, given

and So we again use Eq. 12c, but rewritten as

A 200-m runway is more appropriate for this plane.
NOTE We did this Example as if the plane were a particle, so we round off our
answer to 200 m.

EXERCISE G A car starts from rest and accelerates at a constant during a 
(402 m) race. How fast is the car going at the finish line? (a) 8090 m s; (b) 90 m s;
(c) 81 m s; (d) 809 m s.��

��

1
4 mile10 m�s2

Ax - x0B =

v2 - v0
2

2a
=

(27.8 m�s)2 - 0

2A2.00 m�s2B = 193 m.

a = 2.00 m�s2.v = 27.8 m�s
x - x0 ,

 v = 3600 m2�s2
= 24.5 m�s.

 = 0 + 2A2.00 m�s2B(150 m) = 600 m2�s2

 v2
= v0

2 + 2aAx - x0B
x0 :v0 ,

v

 a = 2.00 m�s2
 x = 150 m

 v0 = 0
v x0 = 0

v

2.00 m�s2.��

tx - x0

x0 = 0,

[a = constant] v =

v + v0

2
.

[a = constant] v2
= v0

2 + 2aAx - x0B
[a = constant] x = x0 + v0 t + 1

2 at2

[a = constant] v = v0 + at

v2
= v0

2 + 2aAx - x0B,
v2

x = x0 + ¢ v + v0

2
≤ ¢ v - v0

a
≤ = x0 +

v2 - v0
2

2a
.

t =

v - v0

a
,

t

x = x0 + v  t = x0 + ¢ v + v0

2
≤ t.

t

Kinematic equations 

for constant acceleration 

(we’ll use them a lot)

P H Y S I C S  A P P L I E D

Airport design

P R O B L E M  S O L V I N G

Equations–12 are valid only when
the acceleration is constant, which we
assume in this Example
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0

a  =  2.00 m/s2 a  =  2.00 m/s2

x0  = 0
v

x =
30.0 m=  0

FIGURE 20 Example 10.
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1. Read and reread the whole problem carefully before
trying to solve it.

2. Decide what object (or objects) you are going to
study, and for what time interval. You can often
choose the initial time to be 

3. Draw a diagram or picture of the situation, with
coordinate axes wherever applicable. [You can place
the origin of coordinates and the axes wherever you
like to make your calculations easier.]

4. Write down what quantities are “known” or “given,”
and then what you want to know. Consider quanti-
ties both at the beginning and at the end of the
chosen time interval.

5. Think about which principles of physics apply in this
problem. Use common sense and your own experi-
ences. Then plan an approach.

6. Consider which equations (and or definitions) relate
the quantities involved. Before using them, be sure
their range of validity includes your problem (for
example, Eqs. 12 are valid only when the accelera-
tion is constant). If you find an applicable equation
that involves only known quantities and one desired
unknown, solve the equation algebraically for the

�

t = 0.

P
R

O
B

L
E

M
S O L V I N

G

unknown. Sometimes several sequential calculations,
or a combination of equations, may be needed. It is
often preferable to solve algebraically for the desired
unknown before putting in numerical values.

7. Carry out the calculation if it is a numerical problem.
Keep one or two extra digits during the calculations,
but round off the final answer(s) to the correct
number of significant figures.

8. Think carefully about the result you obtain: Is it
reasonable? Does it make sense according to your
own intuition and experience? A good check is to do
a rough estimate using only powers of ten. Often it is
preferable to do a rough estimate at the start of a
numerical problem because it can help you focus
your attention on finding a path toward a solution.

9. A very important aspect of doing problems is
keeping track of units. An equals sign implies the
units on each side must be the same, just as the
numbers must. If the units do not balance, a mistake
has no doubt been made. This can serve as a check
on your solution (but it only tells you if you’re
wrong, not if you’re right). Always use a consistent
set of units.

6 Solving Problems
Before doing more worked-out Examples, let us look at how to approach problem
solving. First, it is important to note that physics is not a collection of equations to
be memorized. Simply searching for an equation that might work can lead you to a
wrong result and will surely not help you understand physics. A better approach is
to use the following (rough) procedure, which we put in a special “Problem
Solving Strategy.”

EXAMPLE 10 Acceleration of a car. How long does it take a car to cross a
30.0-m-wide intersection after the light turns green, if the car accelerates from
rest at a constant 

APPROACH We follow the Problem Solving Strategy above, step by step.
SOLUTION

1. Reread the problem. Be sure you understand what it asks for (here, a time
interval).

2. The object under study is the car. We choose the time interval: the
initial time, is the moment the car starts to accelerate from rest 
the time is the instant the car has traveled the full 30.0-m width of the 
intersection.

3. Draw a diagram: the situation is shown in Fig. 20, where the car is shown
moving along the positive x axis. We choose at the front bumper of the
car before it starts to move.

x0 = 0

t
Av0 = 0B;t = 0,

2.00 m�s2?
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Known Wanted

 v0 = 0
 a = 2.00 m�s2
 x = 30.0 m

t x0 = 0

5. The physics: the motion takes place at constant acceleration, so we can use the
kinematic equations, Eqs. 12.

6. Equations: we want to find the time, given the distance and acceleration; Eq.
12b is perfect since the only unknown quantity is . Setting and 

in Eq. 12b we can solve for :

so

7. The calculation:

This is our answer. Note that the units come out correctly.
8. We can check the reasonableness of the answer by calculating the final velocity 

and then finding 
which is our given distance.

9. We checked the units, and they came out perfectly (seconds).

NOTE In steps 6 and 7, when we took the square root, we should have 
written Mathematically there are two solutions. But
the second solution, is a time before our chosen time interval and
makes no sense physically. We say it is “unphysical” and ignore it.

We explicitly followed the steps of the Problem Solving Strategy for Example 10.
In upcoming Examples, we will use our usual “Approach” and “Solution” to avoid
being wordy.

EXAMPLE 11 ESTIMATE Air bags. Suppose you want to design an air-bag
system that can protect the driver at a speed of 100 km h (60 mph) if the car hits
a brick wall. Estimate how fast the air bag must inflate (Fig. 21) to effectively
protect the driver. How does the use of a seat belt help the driver?

APPROACH We assume the acceleration is roughly constant, so we can use
Eqs. 12. Both Eqs. 12a and 12b contain , our desired unknown. They both
contain a, so we must first find a, which we can do using Eq. 12c if we know the
distance x over which the car crumples.A rough estimate might be about 1 meter.We
choose the time interval to start at the instant of impact with the car moving at 

and to end when the car comes to rest after traveling 1 m.
SOLUTION We convert the given initial speed to SI units:

We then find the acceleration from Eq. 12c:

This enormous acceleration takes place in a time given by (Eq. 12a):

To be effective, the air bag would need to inflate faster than this.
What does the air bag do? It spreads the force over a large area of the chest

(to avoid puncture of the chest by the steering wheel). The seat belt keeps the
person in a stable position against the expanding air bag.

t =

v - v0

a
=

0 - 28 m�s

–390 m�s2
= 0.07 s.

a = –  
v0

2

2x
= –  

(28 m�s)2

2.0 m
= –390 m�s2.

100 * 103 m�3600 s = 28 m�s.
=100 km�h

(v = 0)v0 = 100 km�h,

t

�

t = –5.48 s,
t = &22x�a = &5.48 s.

0 + 1
2 (10.96 m�s + 0)(5.48 s) = 30.0 m,

=x = x0 + vtv = at = A2.00 m�s2B(5.48 s) = 10.96 m�s,

t = B2x

a
= B 2(30.0 m)

2.00 m�s2
= 5.48 s.

 t = B2x

a
.

 t2
=

2x

a
,

 x =
1
2 at2,

tAx = x0 + v0 t + 1
2 at2B,x0 = 0

v0 = 0t

P H Y S I C S  A P P L I E D

Car safety—air bags

FIGURE 21 Example 11.
An air bag deploying on impact.

4. The “knowns” and the “wanted” are shown in the Table in the margin, and we
choose Note that “starting from rest” means at that is,
v0 = 0.

t = 0;v = 0x0 = 0.

SuperStock, Inc.
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Travel during
reaction time

Travel during
braking

    = constant = 14 m/s
 t = 0.50 s
a = 0

a = − 6.0 m/s2

x

decreases from 14 m/s to zerovv

FIGURE 22 Example 12: stopping
distance for a braking car.
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20

15

t (s)(b)

x 
(m

)
v

 (
m

/s
)

t = 0.50 s

0 2.00.5 1.0 1.5 2.5

10
8
6

2
4

14
12

t (s)(a)

t = 0.50 s

0 2.00.5 1.0 1.5 2.5

FIGURE 23 Example 12.
Graphs of (a) vs. and (b) x vs. .ttv

EXAMPLE 12 ESTIMATE Braking distances. Estimate the minimum stop-
ping distance for a car, which is important for traffic safety and traffic design. The
problem is best dealt with in two parts, two separate time intervals. (1) The first
time interval begins when the driver decides to hit the brakes, and ends when the
foot touches the brake pedal. This is the “reaction time” during which the speed
is constant, so (2) The second time interval is the actual braking period
when the vehicle slows down and comes to a stop. The stopping distance
depends on the reaction time of the driver, the initial speed of the car (the final
speed is zero), and the acceleration of the car. For a dry road and good tires, good
brakes can decelerate a car at a rate of about to Calculate the total
stopping distance for an initial velocity of and
assume the acceleration of the car is (the minus sign appears because
the velocity is taken to be in the positive x direction and its magnitude is
decreasing). Reaction time for normal drivers varies from perhaps 0.3 s to about
1.0 s; take it to be 0.50 s.

APPROACH During the “reaction time,” part (1), the car moves at constant
speed of 14 m s, so Once the brakes are applied, part (2), the acceleration
is and is constant over this time interval. For both parts a is
constant, so we can use Eqs. 12.

a = –6.0 m�s2
a = 0.�

–6.0 m�s2
(  = 14 m�s L 31 mi�h)50 km�h

8 m�s2.5 m�s2

(a Z 0)
a = 0.

Describing Motion: Kinematics in One Dimension
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Braking distances

Part 2: Braking

Known Wanted

x

 a = –6.0 m�s2
 v = 0

 v0 = 14 m�s
 x0 = 7.0 m

Part 1: Reaction time

Known Wanted

x

 x0 = 0
 a = 0
 v = 14 m�s

 v0 = 14 m�s
 t = 0.50 s

Part (2). During the second time interval, the brakes are applied and the car is
brought to rest. The initial position is (result of part (1)), and other
variables are shown in the second Table in the margin. Equation 12a doesn’t
contain x; Eq. 12b contains x but also the unknown . Equation 12c,

is what we want; after setting we solve for x,
the final position of the car (when it stops):

The car traveled 7.0 m while the driver was reacting and another 16 m during the
braking period before coming to a stop, for a total distance traveled of 23 m.
Figure 23 shows graphs of (a) vs. and (b) x vs. .ttv

  = 7.0 m + 16 m = 23 m.

 = 7.0 m +
0 - (14 m�s)2

2A–6.0 m�s2B  = 7.0 m +
–196 m2�s2

–12 m�s2

 x = x0 +
v2 - v0

2

2a
 

x0 = 7.0 m,v2 - v0
2 = 2aAx - x0B,

t

x0 = 7.0 m

NOTE From the equation above for x, we see that the stopping distance after the
driver hit the brakes increases with the square of the initial speed, not
just linearly with speed. If you are traveling twice as fast, it takes four times the
distance to stop.

A   = x - x0B

SOLUTION Part (1). We take for the first time interval, when the driver
is reacting (0.50 s): the car travels at a constant speed of 14 m s so See
Fig. 22 and the Table in the margin. To find x, the position of the car at 

(when the brakes are applied), we cannot use Eq. 12c because x is
multiplied by a, which is zero. But Eq. 12b works:

Thus the car travels 7.0 m during the driver’s reaction time, until the instant the
brakes are applied. We will use this result as input to part (2).

x = v0 t + 0 = (14 m�s)(0.50 s) = 7.0 m.

t = 0.50 s

a = 0.�

x0 = 0
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EXAMPLE 13 ESTIMATE Two Moving Objects: Police and Speeder.
A car speeding at 150 km h passes a still police car which immediately takes off
in hot pursuit. Using simple assumptions, such as that the speeder continues at
constant speed, estimate how long it takes the police car to overtake the speeder.
Then estimate the police car’s speed at that moment and decide if the assump-
tions were reasonable.

APPROACH When the police car takes off, it accelerates, and the simplest
assumption is that its acceleration is constant. This may not be reasonable, but
let’s see what happens. We can estimate the acceleration if we have noticed
automobile ads, which claim cars can accelerate from rest to 100 km h in 5.0 s. So
the average acceleration of the police car could be approximately

SOLUTION We need to set up the kinematic equations to determine the unknown
quantities, and since there are two moving objects, we need two separate sets of
equations. We denote the speeding car’s position by and the police car’s
position by Because we are interested in solving for the time when the two
vehicles arrive at the same position on the road, we use Eq. 12b for each car:

where we have set and (speeder assumed to move at constant
speed). We want the time when the cars meet, so we set and solve for :

The solutions are

The first solution corresponds to the instant the speeder passed the police car.
The second solution tells us when the police car catches up to the speeder, 15 s
later. This is our answer, but is it reasonable? The police car’s speed at is

Not reasonable, and highly dangerous.
NOTE More reasonable is to give up the assumption of constant acceleration. The
police car surely cannot maintain constant acceleration at those speeds. Also, the
speeder, if a reasonable person, would slow down upon hearing the police siren.
Figure 24 shows (a) x vs. and (b) vs. graphs, based on the original assumption of

whereas (c) shows vs. for more reasonable assumptions.tvaP = constant,
tvt

or 300 km�h (L 190 mi�h).

vP = v0P + aP t = 0 + A5.6 m�s2B(15 s) = 84 m�s

t = 15 s

t = 0 and t =

42 m�s

2.8 m�s2
= 15 s.

(42 m�s)  t = A2.8 m�s2B     t2.

txS = xP

aS = 0v0P = 0

 xP = v0P t + 1
2 aP t2 

=
1
2 A5.6 m�s2B     t2,

 xS = v0S t + 1
2 aS t2 

= (150 km�h)  t = (42 m�s)  t

xP .
xS

aP =

100 km�h
5.0 s

= 20 
km�h

s
 ¢ 1000 m

1 km
≤ ¢ 1 h

3600 s
≤ = 5.6 m�s2.

�

�

C A U T I O N

Initial assumptions need to be
checked out for reasonableness

x v v

(a)

0 15 s

Police

Speeder

(b)

0

Police

Speeder Speeder

ttt

(c)

0

Police

FIGURE 24 Example 13.
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Air-filled tube

(a)

Evacuated tube

(b)

FIGURE 28 A rock 
and a feather are dropped
simultaneously (a) in air,
(b) in a vacuum.

FIGURE 26 Multiflash photograph
of a falling apple, at equal time
intervals. The apple falls farther
during each successive interval, which
means it is accelerating.

Describing Motion: Kinematics in One Dimension

(a) (b)

FIGURE 27 (a) A ball and a light
piece of paper are dropped at the
same time. (b) Repeated, with the
paper wadded up.

FIGURE 25 Galileo Galilei
(1564–1642).

C A U T I O N

A freely falling object increases 
in speed, but not in proportion 

to its mass or weight

7 Freely Falling Objects
One of the most common examples of uniformly accelerated motion is that of an
object allowed to fall freely near the Earth’s surface. That a falling object is accel-
erating may not be obvious at first. And beware of thinking, as was widely believed
before the time of Galileo (Fig. 25), that heavier objects fall faster than lighter
objects and that the speed of fall is proportional to how heavy the object is.

Galileo made use of his new technique of imagining what would happen in
idealized (simplified) cases. For free fall, he postulated that all objects would fall with
the same constant acceleration in the absence of air or other resistance. He showed
that this postulate predicts that for an object falling from rest, the distance traveled
will be proportional to the square of the time (Fig. 26); that is, We can see this
from Eq. 12b; but Galileo was the first to derive this mathematical relation.

To support his claim that falling objects increase in speed as they fall, Galileo
made use of a clever argument: a heavy stone dropped from a height of 2 m will
drive a stake into the ground much further than will the same stone dropped from
a height of only 0.2 m. Clearly, the stone must be moving faster in the former case.

Galileo claimed that all objects, light or heavy, fall with the same acceleration, at
least in the absence of air. If you hold a piece of paper horizontally in one hand and
a heavier object—say, a baseball—in the other, and release them at the same time as
in Fig. 27a, the heavier object will reach the ground first. But if you repeat the exper-
iment, this time crumpling the paper into a small wad (see Fig. 27b), you will find
that the two objects reach the floor at nearly the same time.

Galileo was sure that air acts as a resistance to very light objects that have a
large surface area. But in many ordinary circumstances this air resistance is negli-
gible. In a chamber from which the air has been removed, even light objects like a
feather or a horizontally held piece of paper will fall with the same acceleration as
any other object (see Fig. 28). Such a demonstration in vacuum was not possible in
Galileo’s time, which makes Galileo’s achievement all the greater. Galileo is often
called the “father of modern science,” not only for the content of his science
(astronomical discoveries, inertia, free fall) but also for his approach to science
(idealization and simplification, mathematization of theory, theories that have
testable consequences, experiments to test theoretical predictions).

Galileo’s specific contribution to our understanding of the motion of falling
objects can be summarized as follows:

at a given location on the Earth and in the absence of air resistance, all objects
fall with the same constant acceleration.

We call this acceleration the acceleration due to gravity on the surface of the
Earth, and we give it the symbol g. Its magnitude is approximately

[at surface of Earth]

In British units g is about Actually, g varies slightly according to latitude and
elevation, but these variations are so small that we will ignore them for most

32 ft�s2.

g = 9.80 m�s2.

d r t2.
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†The speed of an object falling in air (or other fluid) does not increase indefinitely. If the object falls far
enough, it will reach a maximum velocity called the terminal velocity due to air resistance.

purposes. The effects of air resistance are often small, and we will neglect them for
the most part. However, air resistance will be noticeable even on a reasonably heavy
object if the velocity becomes large.† Acceleration due to gravity is a vector as is any
acceleration, and its direction is downward, toward the center of the Earth.

When dealing with freely falling objects we can make use of Eqs. 12, where for
a we use the value of g given above. Also, since the motion is vertical we will
substitute y in place of x, and in place of We take unless otherwise
specified. It is arbitrary whether we choose y to be positive in the upward direction

or in the downward direction; but we must be consistent about it throughout a

problem’s solution.

EXERCISE H Return to the Chapter-Opening Question and answer it again now. Try to
explain why you may have answered differently the first time.

EXAMPLE 14 Falling from a tower. Suppose that a ball is dropped 
from a tower 70.0 m high. How far will it have fallen after a time 

and Ignore air resistance.

APPROACH Let us take y as positive downward, so the acceleration is 
We set and We want to find the position y

of the ball after three different time intervals. Equation 12b, with x replaced 
by y, relates the given quantities ( , a, and ) to the unknown y.
SOLUTION We set in Eq. 12b:

The ball has fallen a distance of 4.90 m during the time interval to 
Similarly, after 2.00 s the ball’s position is

Finally, after 3.00 s the ball’s position is (see Fig. 29)

EXAMPLE 15 Thrown down from a tower. Suppose the ball in Example 14 is
thrown downward with an initial velocity of 3.00 m s, instead of being dropped. (a)
What then would be its position after 1.00 s and 2.00 s? (b) What would its speed be
after 1.00 s and 2.00 s? Compare with the speeds of a dropped ball.

APPROACH Again we use Eq. 12b, but now is not zero, it is 
SOLUTION (a) At the position of the ball as given by Eq. 12b is

At (time interval to ), the position is

As expected, the ball falls farther each second than if it were dropped with 
(b) The velocity is obtained from Eq. 12a:

[at ]
[at ]

In Example 14, when the ball was dropped the first term in these
equations was zero, so

[at ]
[at ]

NOTE For both Examples 14 and 15, the speed increases linearly in time by
9.80 m s during each second. But the speed of the downwardly thrown ball at any
instant is always 3.00 m s (its initial speed) higher than that of a dropped ball.�

�

t2 = 2.00 s = A9.80 m�s2B(2.00 s) = 19.6 m�s.
t1 = 1.00 s = A9.80 m�s2B(1.00 s) = 9.80 m�s

 v = 0 + at

Av0BAv0 = 0B,
t2 = 2.00 s = 3.00 m�s + A9.80 m�s2B(2.00 s) = 22.6 m�s.
t1 = 1.00 s = 3.00 m�s + A9.80 m�s2B(1.00 s) = 12.8 m�s

 v = v0 + at

v0 = 0.

y = v0 t + 1
2 at2

= (3.00 m�s)(2.00 s) + 1
2 A9.80 m�s2B(2.00 s)2

= 25.6 m.

t = 2.00 st = 0t = 2.00 s,

y = v0 t + 1
2 at2

= (3.00 m�s)(1.00 s) + 1
2 A9.80 m�s2B(1.00 s)2

= 7.90 m.

t = 1.00 s,
v0 = 3.00 m�s.v0

�

y3 =
1
2 at3

2
=

1
2 A9.80 m�s2B(3.00 s)2

= 44.1 m.

A   = t3B,
y2 =

1
2 at2

2
=

1
2 A9.80 m�s2B(2.00 s)2

= 19.6 m.

A   = t2B,t1 = 1.00 s.
t = 0

= 0 + 1
2 at2

1 =
1
2 A9.80 m�s2B(1.00 s)2

= 4.90 m. y1 = v0 t1 + 1
2 at2

1

t = t1 = 1.00 s
v0t

y0 = 0.v0 = 0a = g = ±9.80 m�s2.

t3 = 3.00 s?t1 = 1.00 s, t2 = 2.00 s,
(v0 = 0)

y0 = 0x0 .y0

(a)

(b)

Acceleration
due to
gravity

40
30

20
10

y 
(m

)

20 1 3
t (s)

y = 0

y3 = 44.1 m
(After 3.00 s)

y2 = 19.6 m
(After 2.00 s)

y1 = 4.90 m
(After 1.00 s)

+y

+y

FIGURE 29 Example 14.
(a) An object dropped from a tower
falls with progressively greater
speed and covers greater distance
with each successive second. (See
also Fig. 26.) (b) Graph of y vs. .t

P R O B L E M  S O L V I N G

You can choose y to be positive
either up or down
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A C

(v = 0)B

v v

g g

FIGURE 30 An object thrown into
the air leaves the thrower’s hand at
A, reaches its maximum height at B,
and returns to the original position
at C. Examples 16, 17, 18, and 19.
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EXAMPLE 16 Ball thrown upward, I. A person throws a ball upward into the
air with an initial velocity of 15.0 m s. Calculate (a) how high it goes, and (b) how
long the ball is in the air before it comes back to the hand. Ignore air resistance.

APPROACH We are not concerned here with the throwing action, but only with
the motion of the ball after it leaves the thrower’s hand (Fig. 30) and until it
comes back to the hand again. Let us choose y to be positive in the upward direc-
tion and negative in the downward direction. (This is a different convention from
that used in Examples 14 and 15, and so illustrates our options.) The acceleration due
to gravity is downward and so will have a negative sign, As
the ball rises, its speed decreases until it reaches the highest point (B in Fig. 30),
where its speed is zero for an instant; then it descends, with increasing speed.
SOLUTION (a) We consider the time interval from when the ball leaves the
thrower’s hand until the ball reaches the highest point. To determine the
maximum height, we calculate the position of the ball when its velocity equals
zero ( at the highest point). At (point A in Fig. 30) we have 

and At time (maximum height),
and we wish to find y. We use Eq. 12c, replacing x

with y: We solve this equation for y:

The ball reaches a height of 11.5 m above the hand.
(b) Now we need to choose a different time interval to calculate how long the
ball is in the air before it returns to the hand. We could do this calculation in two
parts by first determining the time required for the ball to reach its highest point,
and then determining the time it takes to fall back down. However, it is simpler
to consider the time interval for the entire motion from A to B to C (Fig. 30) in
one step and use Eq. 12b. We can do this because y represents position or
displacement, and not the total distance traveled. Thus, at both points A and C,

We use Eq. 12b with and find

This equation is readily factored (we factor out one ):

There are two solutions:

The first solution corresponds to the initial point (A) in Fig. 30, when the
ball was first thrown from The second solution, corresponds to
point C, when the ball has returned to Thus the ball is in the air 3.06 s.
NOTE We have ignored air resistance, which could be significant, so our result is
only an approximation to a real, practical situation.

We did not consider the throwing action in this Example. Why? Because during
the throw, the thrower’s hand is touching the ball and accelerating the ball at a rate
unknown to us—the acceleration is not g. We consider only the time when the ball
is in the air and the acceleration is equal to g.

Every quadratic equation (where the variable is squared) mathematically
produces two solutions. In physics, sometimes only one solution corresponds to the
real situation, as in Example 10, in which case we ignore the “unphysical” solution.
But in Example 16, both solutions to our equation in are physically meaningful:

and t = 3.06 s.t = 0
t2

y = 0.
t = 3.06 s,y = 0.

(t = 0)

t = 0 and t =

15.0 m�s

4.90 m�s2
= 3.06 s.

A15.0 m�s - 4.90 m�s2 tB     t = 0.

t

 0 = 0 + (15.0 m�s)  t + 1
2 A–9.80 m�s2B     t2.

 y = y0 + v0 t + 1
2 at2

a = –9.80 m�s2y = 0.

y =

v2 - v0
2

2a
=

0 - (15.0 m�s)2

2A–9.80 m�s2B = 11.5 m.

v2 = v0
2 + 2ay.

v = 0,  a = –9.80 m�s2,
ta = –9.80 m�s2.y0 = 0,  v0 = 15.0 m�s,

t = 0v = 0

a = –g = –9.80 m�s2.

�

C A U T I O N

Quadratic equations have two
solutions. Sometimes only one

corresponds to reality,
sometimes both
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CONCEPTUAL EXAMPLE 17 Two possible misconceptions. Give examples to
show the error in these two common misconceptions: (1) that acceleration and
velocity are always in the same direction, and (2) that an object thrown upward has
zero acceleration at the highest point (B in Fig. 30).

RESPONSE Both are wrong. (1) Velocity and acceleration are not necessarily in
the same direction. When the ball in Example 16 is moving upward, its velocity is
positive (upward), whereas the acceleration is negative (downward). (2) At the
highest point (B in Fig. 30), the ball has zero velocity for an instant. Is the accel-
eration also zero at this point? No. The velocity near the top of the arc points
upward, then becomes zero (for zero time) at the highest point, and then points
downward. Gravity does not stop acting, so even there.
Thinking that at point B would lead to the conclusion that upon reaching
point B, the ball would stay there: if the acceleration ( of change of
velocity) were zero, the velocity would stay zero at the highest point, and the ball
would stay up there without falling. In sum, the acceleration of gravity always
points down toward the Earth, even when the object is moving up.

EXAMPLE 18 Ball thrown upward, II. Let us consider again the ball thrown
upward of Example 16, and make more calculations. Calculate (a) how much time
it takes for the ball to reach the maximum height (point B in Fig. 30), and (b) the
velocity of the ball when it returns to the thrower’s hand (point C).

APPROACH Again we assume the acceleration is constant, so we can use 
Eqs. 12. We have the height of 11.5 m from Example 16. Again we take y as
positive upward.

SOLUTION (a) We consider the time interval between the throw 
and the top of the path  ( ), and we

want to find . The acceleration is constant at Both Eqs.
12a and 12b contain the time with other quantities known. Let us use Eq. 12a
with and 

setting and solving for gives

This is just half the time it takes the ball to go up and fall back to its original
position [3.06 s, calculated in part (b) of Example 16]. Thus it takes the same time
to reach the maximum height as to fall back to the starting point.
(b) Now we consider the time interval from the throw 
until the ball’s return to the hand, which occurs at (as calculated in
Example 16), and we want to find when 

NOTE The ball has the same speed (magnitude of velocity) when it returns to the
starting point as it did initially, but in the opposite direction (this is the meaning
of the negative sign). And, as we saw in part (a), the time is the same up as down.
Thus the motion is symmetrical about the maximum height.

The acceleration of objects such as rockets and fast airplanes is often given as
a multiple of For example, a plane pulling out of a dive and under-
going 3.00 g’s would have an acceleration of 

EXERCISE I If a car is said to accelerate at 0.50 g, what is its acceleration in m�s2?

(3.00)A9.80 m�s2B = 29.4 m�s2.
g = 9.80 m�s2.

v = v0 + at = 15.0 m�s - A9.80 m�s2B(3.06 s) = –15.0 m�s.

t = 3.06 s:v
t = 3.06 s

At = 0,  v0 = 15.0 m�sB

t = –  
v0

a
= –  

15.0 m�s

–9.80 m�s2
= 1.53 s.

tv = 0

v = v0 + at;

v = 0:a = –9.80 m�s2, v0 = 15.0 m�s,
t

a = –g = –9.80 m�s2.t
y = ±11.5 m,  v = 0v0 = 15.0 m�sB At = 0,

  = rate
a = 0

a = –g = –9.80 m�s2

C A U T I O N

(1) Velocity and acceleration are
not always in the same direction;
the acceleration (of gravity) always
points down
(2) even at the highest point 
of a trajectory

a Z 0
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EXAMPLE 19 Ball thrown upward, III; the quadratic formula. For the ball
in Example 18, calculate at what time the ball passes a point 8.00 m above the
person’s hand. (See repeated Fig. 30 here).

APPROACH We choose the time interval from the throw 
until the time (to be determined) when the ball is at position using
Eq. 12b.
SOLUTION We want to find , given and 

We use Eq. 12b:

To solve any quadratic equation of the form where a, b, and c
are constants (a is not acceleration here), we use the quadratic formula:

We rewrite our y equation just above in standard form,

So the coefficient a is b is and c is 8.00 m. Putting these into
the quadratic formula, we obtain

which gives us and Are both solutions valid? Yes, because
the ball passes when it goes up and again when it
comes down 
NOTE Figure 31 shows graphs of (a) y vs. and (b) vs. for the ball thrown
upward in Fig. 30, incorporating the results of Examples 16, 18, and 19.

tvt

(t = 2.37 s).
(t = 0.69 s)y = 8.00 m

t = 2.37 s.t = 0.69 s

t =

15.0 m�s63(15.0 m�s)2 - 4A4.90 m�s2B(8.00 m)

2A4.90 m�s2B ,

–15.0 m�s,4.90 m�s2,

A4.90 m�s2B     t2 - (15.0 m�s)  t + (8.00 m) = 0.

at2 + bt + c = 0:

t =

–b63b2 - 4ac

2a
.

at2 + bt + c = 0,

 8.00 m = 0 + (15.0 m�s)  t + 1
2 A–9.80 m�s2B     t2.

 y = y0 + v0 t + 1
2 at2

a = –9.80 m�s2.
y = 8.00 m,  y0 = 0,  v0 = 15.0 m�s,t

y = 8.00 m,t
At = 0,  v0 = 15.0 m�sB

t
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2

0

4

6

8

10

12

t (s)

y 
(m

)

(a)

t =
2.37 s

t =
0.69 s

t = 1.53 s

y = 11.5 m
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FIGURE 31 Graphs of (a) y vs. , (b) vs. for a ball thrown upward,
Examples 16, 18, and 19.

tvt

A C

(v = 0)B

v v

g g

FIGURE 30
(Repeated for Example 19)

EXAMPLE 20 Ball thrown upward at edge of cliff. Suppose that the person
of Examples 16, 18, and 19 is standing on the edge of a cliff, so that the ball can
fall to the base of the cliff 50.0 m below as in Fig. 32. (a) How long does it take
the ball to reach the base of the cliff? (b) What is the total distance traveled by
the ball? Ignore air resistance (likely to be significant, so our result is an approx-
imation).

APPROACH We again use Eq. 12b, but this time we set the
bottom of the cliff, which is 50.0 m below the initial position Ay0 = 0B.y = –50.0 m,
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†The solution  could be meaningful in a different physical situation. Suppose that a 
person standing on top of a 50.0-m-high cliff sees a rock pass by him at  moving upward at
15.0 m s; at what time did the rock leave the base of the cliff, and when did it arrive back at the base 
of the cliff? The equations will be precisely the same as for our original Example, and the answers

and  will be the correct answers. Note that we cannot put all the information 
for a problem into the mathematics, so we have to use common sense in interpreting results.

t = 5.07 st = –2.01 s

�

t = 0
t = –2.01 s

SOLUTION (a) We use Eq. 12b with 
and 

Rewriting in the standard form we have

Using the quadratic formula, we find as solutions and 
The first solution, is the answer we are seeking: the time it takes 
the ball to rise to its highest point and then fall to the base of the cliff.
To rise and fall back to the top of the cliff took 3.06 s (Example 16); so it 
took an additional 2.01 s to fall to the base. But what is the meaning of the other
solution, This is a time before the throw, when our calculation
begins, so it isn’t relevant here.†

(b) From Example 16, the ball moves up 11.5 m, falls 11.5 m back down to the top
of the cliff, and then down another 50.0 m to the base of the cliff, for a total
distance traveled of 73.0 m. Note that the displacement, however, was 
Figure 33 shows the y vs. graph for this situation.

EXERCISE J Two balls are thrown from a cliff. One is thrown directly up, the other directly
down, each with the same initial speed, and both hit the ground below the cliff. Which
ball hits the ground at the greater speed: (a) the ball thrown upward, (b) the ball thrown
downward, or (c) both the same? Ignore air resistance.

8 Variable Acceleration; Integral Calculus
In this brief optional Section we use integral calculus to derive the kinematic equa-
tions for constant acceleration, Eqs. 12a and b. We also show how calculus can be
used when the acceleration is not constant. If you have not yet studied simple inte-
gration in your calculus course, you may want to postpone reading this Section
until you have.

First we derive Eq. 12a, assuming as we did in Section 5 that an object has
velocity at and a constant acceleration a. We start with the definition of
instantaneous acceleration, which we rewrite as

We take the definite integral of both sides of this equation, using the same nota-
tion we did in Section 5:

which gives, since 

This is Eq. 12a,
Next we derive Eq. 12b starting with the definition of instantaneous velocity,

Eq. 4, We rewrite this as

or

where we substituted in Eq. 12a.

 dx = Av0 + atB     dt

 dx = v dt

v = dx�dt.

v = v0 + at.
v - v0 = at.

a = constant,

�
v

v = v0

dv = �
t

t = 0

a dt

dv = a dt.
a = dv�dt,

t = 0v0

t
–50.0 m.

t = –2.01 s?

t = 5.07 s,
t = –2.01 s.t = 5.07 s

A4.90 m�s2B     t2 - (15.0 m�s)  t - (50.0 m) = 0.

 –50.0 m = 0 + (15.0 m�s)  t - 1
2 A9.80 m�s2B     t2.

 y = y0 + v0 t + 1
2 at2

y = –50.0 m:
a = –9.80 m�s2,  v0 = 15.0 m�s,  y0 = 0,

* 

10 2 4 53 6
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)

Base
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t =
5.07 s

FIGURE 33 Example 20,
the y vs. graph.t

FIGURE 32 Example 20.
The person in Fig. 30 stands on the
edge of a cliff. The ball falls to the
base of the cliff, 50.0 m below.

y

y = 0

y = �50 m
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Now we integrate:

since and a are constants. This result is just Eq. 12b,
Finally let us use calculus to find velocity and displacement, given an acceleration

that is not constant but varies in time.

EXAMPLE 21 Integrating a time-varying acceleration. An experimental
vehicle starts from rest at and accelerates at a rate given by 

What is (a) its velocity and (b) its displacement 2.00 s later?

APPROACH We cannot use Eqs. 12 because a is not constant. We integrate the
acceleration over time to find as a function of time; and then
integrate to get the displacement.
SOLUTION From the definition of acceleration, we have

We take the integral of both sides from at to velocity at an arbi-
trary time :

At  
(b) To get the displacement, we assume and start with which
we rewrite as Then we integrate from at to position
x at time :

In sum, at and 

9 Graphical Analysis and Numerical
Integration

This Section is optional. It discusses how to solve certain Problems numerically,
often needing a computer to do the sums.

If we are given the velocity of an object as a function of time , we can obtain the
displacement, x. Suppose the velocity as a function of time, is given as a graph
(rather than as an equation that could be integrated as discussed in Section 8), as shown
in Fig 34a. If we are interested in the time interval from to as shown, we divide the
time axis into many small subintervals, which are indicated by the
dashed vertical lines. For each subinterval, a horizontal dashed line is drawn to indicate
the average velocity during that time interval. The displacement during any subinterval
is given by where the subscript i represents the particular subinterval ¢xi ,

¢t1 , ¢t2 , ¢t3 , p ,
t2 ,t1

v(t),
tv

x = 9.33 m.t = 2.00 s,  v = 14.0 m�s

 x = �
2.00 s

0

A3.50 m�s3B     t2 dt = A3.50 m�s3B t3

3
 2

0

2.00 s

= 9.33 m.

 �
x

0

dx = �
t

0

v dt

t
t = 0x = 0dx = v dt.
v = dx�dtx0 = 0

t = 2.00 s,  v = A3.50 m�s3B(2.00 s)2 = 14.0 m�s.

 = A7.00 m�s3B ¢ t2

2
≤ 2

0

t

= A7.00 m�s3B ¢ t2

2
- 0 ≤ = A3.50 m�s3B     t2.

 v = �
t

0

A7.00 m�s3B     t dt

 �
v

0

dv = �
t

0

a dt

t
vt = 0v = 0

dv = a dt.

a = dv�dt,
v = dx�dt

va = dv�dt

a = A7.00 m�s3B     t.
t = 0Av0 = 0B

x = x0 + v0 t + 1
2 at2.v0

 x - x0 = v0 t + 1
2 at2

 x - x0 = �
t

t = 0

v0 dt + �
t

t = 0

at dt

 �
x

x=x0

dx = �
t

t = 0

Av0 + atB  dt

* 
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0
0 t1 t2

t

(a)
�ti

0
0 t1 t2

t

(b)

v

vi

v

FIGURE 34 Graph of vs. for the
motion of a particle. In (a), the time
axis is broken into subintervals of
width the average velocity
during each is and the area of
all the rectangles, is
numerically equal to the total
displacement during the
total time In (b),
and the area under the curve is
equal to Ax2 - x1B.

¢ti S 0At2 - t1B.
Ax2 - x1B
gvi ¢ti ,
vi ,¢ti

¢ti ,

tv

From the definition of average velocity (Eq. 2) we have

Thus the displacement during each subinterval equals the product of and 
and equals the area of the dark rectangle in Fig. 34a for that subinterval. The total
displacement between times and is the sum of the displacements over all the
subintervals:

(13a)

where is the position at and is the position at This sum equals the area
of all the rectangles shown.

It is often difficult to estimate with precision for each subinterval from the
graph. We can get greater accuracy in our calculation of by breaking the
interval into more, but narrower, subintervals. Ideally, we can let each 
approach zero, so we approach (in principle) an infinite number of subintervals. In
this limit the area of all these infinitesimally thin rectangles becomes exactly equal
to the area under the curve (Fig. 34b). Thus the total displacement between any two

times is equal to the area between the velocity curve and the axis between the two

times and This limit can be written

or, using standard calculus notation,

(13b)

We have let and renamed it to indicate that it is now infinitesimally small.
The average velocity, over an infinitesimal time is the instantaneous velocity at
that instant, which we have written to remind us that is a function of .
The symbol is an elongated S and indicates a sum over an infinite number of
infinitesimal subintervals. We say that we are taking the integral of over from
time to time and this is equal to the area between the curve and the axis
between the times and (Fig. 34b). The integral in Eq. 13b is a definite integral,
since the limits and are specified.

Similarly, if we know the acceleration as a function of time, we can obtain the
velocity by the same process. We use the definition of average acceleration 
(Eq. 5) and solve for 

If a is known as a function of over some time interval to we can subdivide
this time interval into many subintervals, just as we did in Fig. 34a. The change
in velocity during each subinterval is The total change in velocity
from time until time is

(14a)

where represents the velocity at and the velocity at This relation can be written
as an integral by letting (the number of intervals then approaches infinity)

or

(14b)

Equations 14 will allow us to determine the velocity at some time if the
velocity is known at and a is known as a function of time.

If the acceleration or velocity is known at discrete intervals of time, we can use the
summation forms of the above equations, Eqs. 13a and 14a, to estimate velocity or
displacement. This technique is known as numerical integration. We now take an
Example that can also be evaluated analytically, so we can compare the results.

t1

t2v2

v2 - v1 = �
t2

t1

a(t) dt.

v2 - v1 = lim
¢t S 0

 a
t2

t1

ai ¢ti

¢t S 0
t1 .v1t2v2

v2 - v1 = a
t2

t1

ai ¢ti ,

t2t1

¢vi = ai ¢ti .
¢ti ,

t2 ,t1t
¢v = a ¢t.

¢v:

t2t1

t2t1

tv(t)t2 ,t1

dtv(t)
�

tvv(t)
dtv,

dt¢t S 0

x2 - x1 = �
t2

t1

 v(t) dt.

x2 - x1 = lim
¢t S 0

 a
t2

t1

vi ¢ti

t2 .t1

t

¢tit2 - t1

x2 - x1

vi

t2 .x2t1x1

x2 - x1 = a
t2

t1

vi ¢ti ,

t2t1

¢ti ,vi

¢xi = vi ¢ti .

(i = 1, 2, 3, p).
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EXAMPLE 22 Numerical integration. An object starts from rest at 
and accelerates at a rate Determine its velocity after 2.00 s
using numerical methods.

APPROACH Let us first divide up the interval to into four
subintervals each of duration (Fig. 35). We use Eq. 14a with 

and For each of the subintervals we need to
estimate There are various ways to do this and we use the simple method of
choosing to be the acceleration at the midpoint of each interval (an even
simpler but usually less accurate procedure would be to use the value of a at the
start of the subinterval). That is, we evaluate at 
(which is midway between 0.00 s and 0.50 s), 0.75 s, 1.25 s, and 1.75 s.
SOLUTION The results are as follows:

i 1 2 3 4

0.50 4.50 12.50 24.50

Now we use Eq. 14a, and note that all equal 0.50 s (so they can be factored out):

We can compare this result to the analytic solution given by Eq. 14b since the
functional form for a is integrable analytically:

or 21.3 m s to the proper number of significant figures. This analytic solution is
precise, and we see that our numerical estimate is not far off even though we only
used four intervals. It may not be close enough for purposes requiring high accu-
racy. If we use more and smaller subintervals, we will get a more accurate result. If
we use 10 subintervals, each with we have to evaluate

at 0.30 s, 1.90 s to get the and these are as follows:

i 1 2 3 4 5 6 7 8 9 10

0.08 0.72 2.00 3.92 6.48 9.68 13.52 18.00 23.12 28.88

Then, from Eq. 14a we obtain

where we have kept an extra significant figure to show that this result is much
closer to the (precise) analytic one but still is not quite identical to it. The
percentage difference has dropped from 1.4% for the four-
subinterval computation to only 0.2% (0.05 21.3) for the 10-subinterval one.

In the Example above we were given an analytic function that was integrable, so
we could compare the accuracy of the numerical calculation to the known precise one.
But what do we do if the function is not integrable, so we can’t compare our numerical
result to an analytic one? That is, how do we know if we’ve taken enough subintervals
so that we can trust our calculated estimate to be accurate to within some desired uncer-
tainty, say 1 percent? What we can do is compare two successive numerical calculations:
the first done with n subintervals and the second with, say, twice as many subintervals
(2n). If the two results are within the desired uncertainty (say 1 percent), we can usually
assume that the calculation with more subintervals is within the desired uncertainty of
the true value. If the two calculations are not that close, then a third calculation, with
more subintervals (maybe double, maybe 10 times as many, depending on how good
the previous approximation was) must be done, and compared to the previous one.

The procedure is easy to automate using a computer spreadsheet application.

�

A0.3 m�s2�21.3 m�s2B

 = A106.4 m�s2B(0.200 s) = 21.28 m�s,

 v(t = 2.00 s) = a
 

 
ai ¢ti = Aa

 

 
aiB(0.200 s)

ai Am�s2B

ai ,p ,t = 0.10 s,a(t)
¢t = 2.00 s�10 = 0.20 s,

¢t

�

 =

8.00 m�s4

3
 C(2.00 s)3 - (0)3 D = 21.33 m�s

 v = �
2.00 s

0
A8.00 m�s4B     t2 dt =

8.00 m�s4

3
 t3

 2
0

2.00 s

 = 21.0 m�s.
 = A0.50 m�s2 + 4.50 m�s2 + 12.50 m�s2 + 24.50 m�s2B(0.50 s)

 v(t = 2.00 s) = a
t = 2.00 s

t = 0
ai ¢ti

¢ti

ai Am�s2B

t = 0.25 sa(t) = A8.00 m�s4B     t2

a(t)ai
ai .

t1 = 0.t2 = 2.00 s,v1 = 0,v2 = v,
¢ti = 0.50 s

t = 2.00 st = 0.00 s

a(t) = A8.00 m�s4B     t2.
t = 0

0

8.00

16.00

24.00

32.00

0 0.50 1.00 1.50 2.00
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FIGURE 35 Example 22.
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If we wanted to also obtain the displacement x at some time, we would have to
do a second numerical integration over which means we would first need to
calculate for many different times. Programmable calculators and computers are
very helpful for doing the long sums.

v
v,

Summary
Kinematics deals with the description of how objects move. The
description of the motion of any object must always be given
relative to some particular reference frame.

The displacement of an object is the change in position of
the object.

Average speed is the distance traveled divided by the
elapsed time or time interval, the time period over which we
choose to make our observations. An object’s average velocity
over a particular time interval is its displacement during
that time interval, divided by 

(2)

The instantaneous velocity, whose magnitude is the same as
the instantaneous speed, is defined as the average velocity taken
over an infinitesimally short time interval 

(4)

where is the derivative of x with respect to .
On a graph of position vs. time, the slope is equal to the

instantaneous velocity.

tdx�dt

v = lim
¢t S 0

 
¢x

¢t
=

dx

dt
,

(¢t S 0):

v =

¢x

¢t
.

¢t:
¢x¢t

¢t,

Acceleration is the change of velocity per unit time. An
object’s average acceleration over a time interval is

(5)

where is the change of velocity during the time interval 
Instantaneous acceleration is the average acceleration

taken over an infinitesimally short time interval:

(6)

If an object moves in a straight line with constant acceleration, the
velocity and position x are related to the acceleration a, the elapsed
time , the initial position and the initial velocity by Eqs. 12:

(12)

Objects that move vertically near the surface of the Earth,
either falling or having been projected vertically up or down,
move with the constant downward acceleration due to gravity,
whose magnitude is if air resistance can be ignored.

[*The kinematic Equations 12 can be derived using integral
calculus.]

g = 9.80 m�s2

 v =

v + v0

2
. v2

= v0
2 + 2aAx - x0B,

 x = x0 + v0 t + 1
2 at2, v = v0 + at,

v0x0 ,t
v

a = lim
¢t S 0

 
¢v

¢t
=

dv

dt
.

¢t.¢v

a =

¢v

¢t
,

¢t

Answers to Exercises
A: 50 cm.

B: (a).

C: (b).

D: (b).

E: (a) ± ; (b) – ; (c) – ; (d) ± .

–30 cm; F: (c).

G: (b).

H: (e).

I:

J: (c).

4.9 m�s2.
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Questions
1. Does a car speedometer measure speed, velocity, or both?
2. Can an object have a varying speed if its velocity is

constant? Can it have varying velocity if its speed is
constant? If yes, give examples in each case.

3. When an object moves with constant velocity, does its
average velocity during any time interval differ from its
instantaneous velocity at any instant?

4. If one object has a greater speed than a second object, does
the first necessarily have a greater acceleration? Explain,
using examples.

5. Compare the acceleration of a motorcycle that accelerates
from 80 km h to 90 km h with the acceleration of a bicycle
that accelerates from rest to 10 km h in the same time.

6. Can an object have a northward velocity and a southward
acceleration? Explain.

7. Can the velocity of an object be negative when its accelera-
tion is positive? What about vice versa?

8. Give an example where both the velocity and acceleration
are negative.

9. Two cars emerge side by side from a tunnel. Car A is trav-
eling with a speed of 60 km h and has an acceleration of
40 km h min. Car B has a speed of 40 km h and has an
acceleration of 60 km h min. Which car is passing the other
as they come out of the tunnel? Explain your reasoning.

10. Can an object be increasing in speed as its acceleration
decreases? If so, give an example. If not, explain.

11. A baseball player hits a ball straight up into the air. It leaves the
bat with a speed of 120 km h. In the absence of air resistance,
how fast would the ball be traveling when the catcher catches it?

12. As a freely falling object speeds up, what is happening to its
acceleration—does it increase, decrease, or stay the same?
(a) Ignore air resistance. (b) Consider air resistance.

13. You travel from point A to point B in a car moving at a
constant speed of 70 km h. Then you travel the same
distance from point B to another point C, moving at a constant
speed of 90 km h. Is your average speed for the entire trip
from A to C 80 km h? Explain why or why not.

14. Can an object have zero velocity and nonzero acceleration
at the same time? Give examples.

15. Can an object have zero acceleration and nonzero velocity
at the same time? Give examples.

�

�

�

�

��

���

�

�

��

16. Which of these motions is not at constant acceleration: a
rock falling from a cliff, an elevator moving from the second
floor to the fifth floor making stops along the way, a dish
resting on a table?

17. In a lecture demonstration, a 3.0-m-long vertical string with ten
bolts tied to it at equal intervals is dropped from the ceiling of
the lecture hall. The string falls on a tin plate, and the class
hears the clink of each bolt as it hits the plate. The sounds will
not occur at equal time intervals. Why? Will the time between
clinks increase or decrease near the end of the fall? How could
the bolts be tied so that the clinks occur at equal intervals?

18. Describe in words the motion plotted in Fig. 36 in terms of
a, etc. [Hint: First try to duplicate the motion plotted by

walking or moving your hand.]
v,

20

10

0
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t (s)

x 
(m

)

FIGURE 36 Question 18, Problems 9 and 86.

19. Describe in words the motion of the object graphed in Fig. 37.

t (s)

  
 (

m
/s

)
v

40
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0
0 10 20 30 40 50 60 70 80 90 100 110 120

FIGURE 37 Question 19, Problem 23.

Problems
[The Problems in this Section are ranked I, II, or III according to
estimated difficulty, with (I) Problems being easiest. Level (III)
Problems are meant mainly as a challenge for the best students, for
“extra credit.” The Problems are arranged by Sections, meaning that
the reader should have read up to and including that Section, but
this Chapter also has a group of General Problems that are not
arranged by Section and not ranked.]

1 to 3 Speed and Velocity
1. (I) If you are driving 110 km h along a straight road and

you look to the side for 2.0 s, how far do you travel during
this inattentive period?

2. (I) What must your car’s average speed be in order to travel
235 km in 3.25 h?

�

Describing Motion: Kinematics in One Dimension 
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8.5 km

v  =
95 km/h

v  =  
95 km/h

FIGURE 38 Problem 12.

� 95 km/h

� 75 km/h

1.10 km

v

v

FIGURE 39 Problem 18.

3. (I) A particle at is at and at 
is at What is its average velocity?

Can you calculate its average speed from these data?

4. (I) A rolling ball moves from to 
during the time from to What is its
average velocity?

5. (II) According to a rule-of-thumb, every five seconds
between a lightning flash and the following thunder gives
the distance to the flash in miles. Assuming that the flash of
light arrives in essentially no time at all, estimate the speed
of sound in m s from this rule. What would be the rule for
kilometers?

6. (II) You are driving home from school steadily at 95 km h
for 130 km. It then begins to rain and you slow to 65 km h.
You arrive home after driving 3 hours and 20 minutes.
(a) How far is your hometown from school? (b) What was
your average speed?

7. (II) A horse canters away from its trainer in a straight line,
moving 116 m away in 14.0 s. It then turns abruptly and
gallops halfway back in 4.8 s. Calculate (a) its average speed
and (b) its average velocity for the entire trip, using “away
from the trainer” as the positive direction.

8. (II) The position of a small object is given by 
where is in seconds and x in meters.

(a) Plot x as a function of from to 
(b) Find the average velocity of the object between 0 
and 3.0 s. (c) At what time between 0 and 3.0 s is the
instantaneous velocity zero?

9. (II) The position of a rabbit along a straight tunnel as a
function of time is plotted in Fig. 36. What is its instanta-
neous velocity (a) at and (b) at 
What is its average velocity (c) between and 

(d) between and and 
(e) between and 

10. (II) On an audio compact disc (CD), digital bits of informa-
tion are encoded sequentially along a spiral path. Each bit
occupies about A CD player’s readout laser scans
along the spiral’s sequence of bits at a constant speed of
about 1.2 m s as the CD spins. (a) Determine the number N
of digital bits that a CD player reads every second. (b) The
audio information is sent to each of the two loudspeakers
44,100 times per second. Each of these samplings requires
16 bits and so one would (at first glance) think the required
bit rate for a CD player is

where the 2 is for the 2 loudspeakers (the 2 stereo channels).
Note that is less than the number N of bits actually read
per second by a CD player. The excess number of bits

is needed for encoding and error-correction.
What percentage of the bits on a CD are dedicated to
encoding and error-correction?

11. (II) A car traveling 95 km h is 110 m behind a truck trav-
eling 75 km h. How long will it take the car to reach the
truck?

12. (II) Two locomotives approach each other on parallel
tracks. Each has a speed of 95 km h with respect to the
ground. If they are initially 8.5 km apart, how long will it be
before they reach each other? (See Fig. 38).

�

�

�

A   =  N - N0B
N0

N0 = 2 a44,100 
samplings

second
b a16 

bits
sampling

b = 1.4 * 106 
bits

second
,

�

0.28 mm.

t = 50.0 s?t = 40.0 s
t = 30.0 s,t = 25.0 st = 5.0 s,

t = 0
t = 30.0 s?t = 10.0 s

t = 3.0 s.t = 0t
tx = 34 + 10  t - 2  t3,

�

�

�

t2 = 5.1 s.t1 = 3.0 s
x2 = – 4.2 cmx1 = 3.4 cm

x2 = 8.5 cm.t2 = 4.5 s
x1 = 4.3 cmt1 = – 2.0 s

13. (II) Digital bits on a 12.0-cm diameter audio CD are
encoded along an outward spiraling path that starts at
radius and finishes at radius 
The distance between the centers of neighboring spiral-
windings is (a) Determine the
total length of the spiraling path. [Hint: Imagine
“unwinding” the spiral into a straight path of width 
and note that the original spiral and the straight path both
occupy the same area.] (b) To read information, a CD
player adjusts the rotation of the CD so that the player’s
readout laser moves along the spiral path at a constant
speed of 1.25 m s. Estimate the maximum playing time of
such a CD.

14. (II) An airplane travels 3100 km at a speed of 720 km h,
and then encounters a tailwind that boosts its speed to
990 km h for the next 2800 km. What was the total time for
the trip? What was the average speed of the plane for this
trip? [Hint: Does Eq. 12d apply, or not?]

�

�

�

1.6 mm,

1.6 mm A   =  1.6 * 10– 6 mB.
R2 = 5.8 cm.R1 = 2.5 cm

(12d)[a = constant] v =

v + v0

2

15. (II) Calculate the average speed and average velocity of a
complete round trip in which the outgoing 250 km is
covered at 95 km h, followed by a 1.0-h lunch break, and
the return 250 km is covered at 55 km h.

16. (II) The position of a ball rolling in a straight line is given by 
where x is in meters and in

seconds. (a) Determine the position of the ball at
2.0 s, and 3.0 s. (b) What is the average velocity over the
interval to (c) What is its instanta-
neous velocity at and at 

17. (II) A dog runs 120 m away from its master in a straight line
in 8.4 s, and then runs halfway back in one-third the time.
Calculate (a) its average speed and (b) its average velocity.

18. (III) An automobile traveling 95 km h overtakes a 1.10-km-
long train traveling in the same direction on a track parallel
to the road. If the train’s speed is 75 km h, how long does it
take the car to pass it, and how far will the car have traveled
in this time? See Fig. 39. What are the results if the car and
train are traveling in opposite directions?

�

�

t = 3.0 s?t = 2.0 s
t = 3.0 s?t = 1.0 s

t = 1.0 s,
tx = 2.0 - 3.6 t + 1.1 t2,

�

�
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19. (III) A bowling ball traveling with constant speed hits the
pins at the end of a bowling lane 16.5 m long. The bowler
hears the sound of the ball hitting the pins 2.50 s after the
ball is released from his hands. What is the speed of the ball,
assuming the speed of sound is 340 m s?

4 Acceleration
20. (I) A sports car accelerates from rest to 95 km h in 4.5 s.

What is its average acceleration in 
21. (I) At highway speeds, a particular automobile is capable of

an acceleration of about At this rate, how long
does it take to accelerate from 80 km h to 110 km h?

22. (I) A sprinter accelerates from rest to 9.00 m s in 1.28 s.
What is her acceleration in (a) (b) 

23. (I) Figure 37 shows the velocity of a train as a function of
time. (a) At what time was its velocity greatest? (b) During
what periods, if any, was the velocity constant? (c) During
what periods, if any, was the acceleration constant? 
(d) When was the magnitude of the acceleration greatest?

24. (II) A sports car moving at constant speed travels 110 m in
5.0 s. If it then brakes and comes to a stop in 4.0 s, what is
the magnitude of its acceleration in and in g’s

25. (II) A car moving in a straight line starts at at 
It passes the point with a speed of 11.0 m s at 

It passes the point with a speed of
45.0 m s at Find (a) the average velocity and 
(b) the average acceleration between and

26. (II) A particular automobile can accelerate approximately
as shown in the velocity vs. time graph of Fig. 40. (The short
flat spots in the curve represent shifting of the gears.) Esti-
mate the average acceleration of the car in (a) second gear;
and (b) fourth gear. (c) What is its average acceleration
through the first four gears?

t = 20.0 s.
t = 3.00 s

t = 20.0 s.�

x = 385 mt = 3.00 s.
�x = 25.0 m

t = 0.x = 0
Ag = 9.80 m�s2B?

m�s2,

km�h2?m�s2;
�

��

1.8 m�s2.

m�s2?
�

�

time in the following Table. Estimate (a) its velocity and 
(b) its acceleration as a function of time. Display each in a
Table and on a graph.

0 0.25 0.50 0.75 1.00 1.50 2.00 2.50
0 0.11 0.46 1.06 1.94 4.62 8.55 13.79

3.00 3.50 4.00 4.50 5.00 5.50 6.00
20.36 28.31 37.65 48.37 60.30 73.26 87.16

29. (II) The position of an object is given by 
where x is in meters and is in seconds. (a) What are the
units of A and B? (b) What is the acceleration as a function
of time? (c) What are the velocity and acceleration at 

(d) What is the velocity as a function of time if 

5 and 6 Motion at Constant Acceleration
30. (I) A car slows down from 25 m s to rest in a distance of

85 m. What was its acceleration, assumed constant?

31. (I) A car accelerates from 12 m s to 21 m s in 6.0 s. What
was its acceleration? How far did it travel in this time?
Assume constant acceleration.

32. (I) A light plane must reach a speed of 32 m s for takeoff.
How long a runway is needed if the (constant) acceleration
is 

33. (II) A baseball pitcher throws a baseball with a speed of
41 m s. Estimate the average acceleration of the ball during
the throwing motion. In throwing the baseball, the pitcher
accelerates the ball through a displacement of about 3.5 m,
from behind the body to the point where it is released 
(Fig. 41).

�

3.0 m�s2?

�

��

�

x = At + Bt– 3?
t = 5.0 s?

t
x = At + Bt2,

x(m)
t(s)

x(m)
t(s)

27. (II) A particle moves along the x axis. Its position as a func-
tion of time is given by where is in
seconds and x is in meters. What is the acceleration as a
function of time?

28. (II) The position of a racing car, which starts from rest at 
and moves in a straight line, is given as a function oft = 0

tx = 6.8 t + 8.5 t2,

34. (II) Show that (see Eq. 12d) is not valid
when the acceleration where A and B are
constants.

35. (II) A world-class sprinter can reach a top speed (of about
11.5 m s) in the first 15.0 m of a race. What is the average
acceleration of this sprinter and how long does it take her to
reach that speed?

36. (II) An inattentive driver is traveling 18.0 m s when he
notices a red light ahead. His car is capable of decelerating
at a rate of If it takes him 0.200 s to get the
brakes on and he is 20.0 m from the intersection when he
sees the light, will he be able to stop in time?

37. (II) A car slows down uniformly from a speed of 18.0 m s to
rest in 5.00 s. How far did it travel in that time?

38. (II) In coming to a stop, a car leaves skid marks 85 m long
on the highway. Assuming a deceleration of esti-
mate the speed of the car just before braking.

4.00 m�s2,

�

3.65 m�s2.

�

�

a = A + Bt,
v = Av + v0B�2
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FIGURE 40 Problem 26. The velocity of a 
high-performance automobile as a function of time,
starting from a dead stop. The flat spots in the curve
represent gear shifts.

3.5 m

FIGURE 41
Problem 33.
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39. (II) A car traveling 85 km h slows down at a constant
just by “letting up on the gas.” Calculate (a) the

distance the car coasts before it stops, (b) the time it takes
to stop, and (c) the distance it travels during the first and
fifth seconds.

40. (II) A car traveling at 105 km h strikes a tree. The front end
of the car compresses and the driver comes to rest after
traveling 0.80 m. What was the magnitude of the average
acceleration of the driver during the collision? Express the
answer in terms of “g’s,” where 

41. (II) Determine the stopping distances for an automobile
with an initial speed of 95 km h and human reaction time of
1.0 s: (a) for an acceleration (b) for

42. (II) A space vehicle accelerates uniformly from 65 m s at 
to 162 m s at How far did it move

between and
43. (II) A 75-m-long train begins uniform acceleration from rest.

The front of the train has a speed of 23 m s when it passes a
railway worker who is standing 180 m from where the front
of the train started. What will be the speed of the last car as
it passes the worker? (See Fig. 42.)

�

t = 6.0 s?t = 2.0 s
t = 10.0 s.�t = 0

�

a = – 7.0 m�s2.
a = – 5.0 m�s2;

�

1.00 g = 9.80 m�s2.

�

0.50 m�s2
�

44. (II) An unmarked police car traveling a constant 95 km h is
passed by a speeder traveling 135 km h. Precisely 1.00 s
after the speeder passes, the police officer steps on the
accelerator; if the police car’s acceleration is how
much time passes before the police car overtakes the
speeder (assumed moving at constant speed)?

45. (III) Assume in Problem 44 that the speeder’s speed is not
known. If the police car accelerates uniformly as given
above and overtakes the speeder after accelerating for
7.00 s, what was the speeder’s speed?

46. (III) A runner hopes to complete the 10,000-m run in less
than 30.0 min. After running at constant speed for exactly
27.0 min, there are still 1100 m to go. The runner must then
accelerate at for how many seconds in order to
achieve the desired time?

47. (III) Mary and Sally are in a foot race (Fig. 43). When Mary
is 22 m from the finish line, she has a speed of 4.0 m s and is
5.0 m behind Sally, who has a speed of 5.0 m s. Sally thinks
she has an easy win and so, during the remaining portion of
the race, decelerates at a constant rate of to the
finish line. What constant acceleration does Mary now need
during the remaining portion of the race, if she wishes to
cross the finish line side-by-side with Sally?

0.50 m�s2

�

�

0.20 m�s2

2.00 m�s2,

�

�

7 Freely Falling Objects
[Neglect air resistance.]

48. (I) A stone is dropped from the top of a cliff. It is seen to hit
the ground below after 3.75 s. How high is the cliff?

49. (I) If a car rolls gently off a vertical cliff, how long
does it take it to reach 55 km h?

50. (I) Estimate (a) how long it took King Kong to fall straight
down from the top of the Empire State Building (380 m
high), and (b) his velocity just before “landing.”

51. (II) A baseball is hit almost straight up into the air with a
speed of about 20 m s. (a) How high does it go? (b) How
long is it in the air?

52. (II) A ball player catches a ball 3.2 s after throwing it verti-
cally upward. With what speed did he throw it, and what
height did it reach?

53. (II) A kangaroo jumps to a vertical height of 1.65 m. How
long was it in the air before returning to Earth?

54. (II) The best rebounders in basketball have a vertical leap
(that is, the vertical movement of a fixed point on their
body) of about 120 cm. (a) What is their initial “launch”
speed off the ground? (b) How long are they in the air?

55. (II) A helicopter is ascending vertically with a speed of
5.10 m s. At a height of 105 m above the Earth, a package is
dropped from a window. How much time does it take for
the package to reach the ground? [Hint: for the package
equals the speed of the helicopter.]

56. (II) For an object falling freely from rest, show that the
distance traveled during each successive second increases in
the ratio of successive odd integers (1, 3, 5, etc.). (This was
first shown by Galileo.) See Figs. 26 and 29.

v0

�

�

�

Av0 = 0B

75 m

v  =  23 m/s

FIGURE 42 Problem 43.

Finish

5.0 m

22 m

Mary Sally

4.0 m/s 5.0 m/s

FIGURE 43 Problem 47.

FIGURE 26 Multiflash
photograph of a falling
apple, at equal time
intervals. The apple falls
farther during each
successive interval,
which means it is
accelerating.
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To travel
this
distance
took
0.33 s

2.2 m

FIGURE 44 Problem 61.

FIGURE 45
Problem 62.

57. (II) A baseball is seen to pass upward by a window 23 m
above the street with a vertical speed of 14 m s. If the ball
was thrown from the street, (a) what was its initial speed,
(b) what altitude does it reach, (c) when was it thrown, and
(d) when does it reach the street again?

58. (II) A rocket rises vertically, from rest, with an acceleration
of until it runs out of fuel at an altitude of 950 m.
After this point, its acceleration is that of gravity, down-
ward. (a) What is the velocity of the rocket when it runs out
of fuel? (b) How long does it take to reach this point? 
(c) What maximum altitude does the rocket reach? (d) How
much time (total) does it take to reach maximum altitude?
(e) With what velocity does it strike the Earth? ( f ) How
long (total) is it in the air?

59. (II) Roger sees water balloons fall past his window. He
notices that each balloon strikes the sidewalk 0.83 s after
passing his window. Roger’s room is on the third floor, 15 m
above the sidewalk. (a) How fast are the balloons traveling
when they pass Roger’s window? (b) Assuming the balloons
are being released from rest, from what floor are they being
released? Each floor of the dorm is 5.0 m high.

60. (II) A stone is thrown vertically upward with a speed of
24.0 m s. (a) How fast is it moving when it reaches a height
of 13.0 m? (b) How much time is required to reach this
height? (c) Why are there two answers to (b)?

61. (II) A falling stone takes 0.33 s to travel past a window
2.2 m tall (Fig. 44). From what height above the top of the
window did the stone fall?

�

3.2 m�s2

�

62. (II) Suppose you adjust your garden hose nozzle for a hard
stream of water. You point the nozzle vertically upward at a
height of 1.5 m above the ground (Fig. 45). When you
quickly turn off the nozzle, you
hear the water striking the 
ground next to you for another
2.0 s. What is the water speed 
as it leaves the nozzle?

(a)

(b)

Acceleration
due to
gravity

40

30

20

10

y 
(m

)

20 1 3
t (s)

y = 0

y3 = 44.1 m
(After 3.00 s)

y2 = 19.6 m
(After 2.00 s)

y1 = 4.90 m
(After 1.00 s)

+y

+y

FIGURE 29 See
Example 14 of
“Describing Motion:
Kinematics in One
Dimension.” (a) An
object dropped from a
tower falls with
progressively greater
speed and covers greater
distance with each
successive second.
(See also Fig. 26.) 
(b) Graph of y vs. .t

63. (III) A toy rocket moving vertically upward passes by a 
2.0-m-high window whose sill is 8.0 m above the ground. The
rocket takes 0.15 s to travel the 2.0 m height of the window.
What was the launch speed of the rocket, and how high will it
go? Assume the propellant is burned very quickly at blastoff.

64. (III) A ball is dropped from the top of a 50.0-m-high cliff. At
the same time, a carefully aimed stone is thrown straight up
from the bottom of the cliff with a speed of 24.0 m s. The
stone and ball collide part way up. How far above the base
of the cliff does this happen?

65. (III) A rock is dropped from a sea cliff and the sound of it
striking the ocean is heard 3.4 s later. If the speed of sound
is 340 m s, how high is the cliff?

66. (III) A rock is thrown vertically upward with a speed of
12.0 m s. Exactly 1.00 s later, a ball is thrown up vertically
along the same path with a speed of 18.0 m s. (a) At what
time will they strike each other? (b) At what height will the
collision occur? (c) Answer (a) and (b) assuming that the
order is reversed: the ball is thrown 1.00 s before the rock.

�

�

�

�
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Problem 72.
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1.0 m
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General Problems
70. A fugitive tries to hop on a freight train traveling at a

constant speed of 5.0 m s. Just as an empty box car passes
him, the fugitive starts from rest and accelerates at 

to his maximum speed of 6.0 m s. (a) How
long does it take him to catch up to the empty box car? 
(b) What is the distance traveled to reach the box car?

71. The acceleration due to gravity on the Moon is about one-
sixth what it is on Earth. If an object is thrown vertically
upward on the Moon, how many times higher will it go than
it would on Earth, assuming the same initial velocity?

72. A person jumps from a fourth-story window 15.0 m above a
firefighter’s safety net. The survivor stretches the net 1.0 m
before coming to rest, Fig. 46. (a) What was the average
deceleration experienced by the survivor when she was

slowed to rest by the net? (b) What would you do to
make it “safer” (that is, to generate a smaller

deceleration): would you stiffen or loosen
the net? Explain.

�a = 1.2 m�s2

�

committed. If it takes a fish 0.20 s to perform evasive action,
at what minimum height must it spot the pelican to escape?
Assume the fish is at the surface of the water.

75. Suppose a car manufacturer tested its cars for front-end
collisions by hauling them up on a crane and dropping them
from a certain height. (a) Show that the speed just before 
a car hits the ground, after falling from rest a vertical 
distance H, is given by What height corresponds to
a collision at (b) 50 km h? (c) 100 km h?

76. A stone is dropped from the roof of a high building. A second
stone is dropped 1.50 s later. How far apart are the stones
when the second one has reached a speed of 12.0 m s?

77. A bicyclist in the Tour de France crests a mountain pass as
he moves at 15 km h. At the bottom, 4.0 km farther, his
speed is 75 km h. What was his average acceleration
(in ) while riding down the mountain?

78. Consider the street pattern shown in Fig. 47. Each intersec-
tion has a traffic signal, and the speed limit is 50 km h.
Suppose you are driving from the west at the speed limit.
When you are 10.0 m from the first intersection, all the lights
turn green. The lights are green for 13.0 s each. (a) Calculate
the time needed to reach the third stoplight. Can you make
it through all three lights without stopping? (b) Another car
was stopped at the first light when all the lights turned
green. It can accelerate at the rate of to the speed
limit. Can the second car make it through all three lights
without stopping? By how many seconds would it make it
or not?

2.00 m�s2

�

m�s2
�

�

�

��
22gH .

79. In putting, the force with which a golfer strikes a ball is
planned so that the ball will stop within some small distance
of the cup, say 1.0 m long or short, in case the putt is missed.
Accomplishing this from an uphill lie (that is, putting the
ball downhill, see Fig. 48) is more difficult than from a
downhill lie. To see why, assume that on a particular green

West

Speed limit
50 km/h

50 m
15 m

Your
car

15 m
70 m

East

15 m

10 m

FIGURE 47 Problem 78.

8 Variable Acceleration; Calculus
67. (II) Given where is in m s and is in s,

use calculus to determine the total displacement from 
to  

68. (III) The acceleration of a particle is given by 
where At and 
(a) What is the speed as a function of time? (b) What is the
displacement as a function of time? (c) What are the accel-
eration, speed and displacement at

69. (III) Air resistance acting on a falling body can be
taken into account by the approximate relation for the
acceleration:

t = 5.0 s?

x = 0.t = 0, v = 7.5 m�sA = 2.0 m�s5�2.
a = A2t

t2 = 3.1 s.t1 = 1.5 s

t�vv(t) = 25 + 18t,
where k is a constant. (a) Derive a formula for the velocity
of the body as a function of time assuming it starts from rest
( at ). [Hint: Change variables by setting

] (b) Determine an expression for the terminal
velocity, which is the maximum value the velocity reaches.

9 Graphical Analysis and Numerical Integration
[See Problems 95–97 at the end of this Chapter.]

u = g - kv.
t = 0v = 0

a =

dv

dt
= g - kv,

* 

* 

* 

* 

*

73. A person who is properly restrained by an over-the-
shoulder seat belt has a good chance of surviving a car colli-
sion if the deceleration does not exceed 30 “g’s”

Assuming uniform deceleration of this
value, calculate the distance over which the front end of the
car must be designed to collapse if a crash brings the car to
rest from 100 km h.

74. Pelicans tuck their wings and free-fall straight down when
diving for fish. Suppose a pelican starts its dive from a
height of 16.0 m and cannot change its path once

�

A1.00 g = 9.80 m�s2B.
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7.0 m
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FIGURE 48 Problem 79.

the ball decelerates constantly at going downhill,
and constantly at going uphill. Suppose we have an
uphill lie 7.0 m from the cup. Calculate the allowable range
of initial velocities we may impart to the ball so that 
it stops in the range 1.0 m short to 1.0 m long of the 
cup. Do the same for a downhill lie 7.0 m from the cup.
What in your results suggests that the downhill putt is 
more difficult?

2.8 m�s2
1.8 m�s2

82. Figure 50 is a position versus time graph for the motion of an
object along the x axis. Consider the time interval from A to B.
(a) Is the object moving in the positive or negative direc-
tion? (b) Is the object speeding up or slowing down? (c) Is
the acceleration of the object positive or negative? Next,
consider the time interval from D to E. (d) Is the object

15 m28 m
+x

FIGURE 51 Problem 87.

moving in the positive or negative direction? (e) Is the
object speeding up or slowing down? ( f ) Is the acceleration
of the object positive or negative? (g) Finally, answer these
same three questions for the time interval from C to D.

83. In the design of a rapid transit system, it is necessary to
balance the average speed of a train against the distance
between stops. The more stops there are, the slower the
train’s average speed. To get an idea of this problem, calcu-
late the time it takes a train to make a 9.0-km trip in two
situations: (a) the stations at which the trains must stop are
1.8 km apart (a total of 6 stations, including those at the
ends); and (b) the stations are 3.0 km apart (4 stations
total). Assume that at each station the train accelerates at a
rate of until it reaches 95 km h, then stays at this
speed until its brakes are applied for arrival at the next
station, at which time it decelerates at Assume it
stops at each intermediate station for 22 s.

84. A person jumps off a diving board 4.0 m above the water’s
surface into a deep pool. The person’s downward motion
stops 2.0 m below the surface of the water. Estimate the
average deceleration of the person while under the water.

85. Bill can throw a ball vertically at a speed 1.5 times faster than
Joe can. How many times higher will Bill’s ball go than Joe’s?

86. Sketch the vs. graph for the object whose displacement
as a function of time is given by Fig. 36.

87. A person driving her car at 45 km h approaches an intersec-
tion just as the traffic light turns yellow. She knows that the
yellow light lasts only 2.0 s before turning to red, and she is
28 m away from the near side of the intersection (Fig. 51).
Should she try to stop, or should she speed up to cross the
intersection before the light turns red? The intersection is
15 m wide. Her car’s maximum deceleration is 
whereas it can accelerate from 45 km h to 65 km h in 6.0 s.
Ignore the length of her car and her reaction time.

��

– 5.8 m�s2,

�

tv

– 2.0 m�s2.

�1.1 m�s2

FIGURE 49
Problem 81.

80. A robot used in a pharmacy picks up a medicine bottle at 
It accelerates at for 5.0 s, then travels

without acceleration for 68 s and finally decelerates at
for 2.5 s to reach the counter where the pharma-

cist will take the medicine from the robot. From how far
away did the robot fetch the medicine?

81. A stone is thrown vertically upward with a speed of 12.5 m s
from the edge of a cliff
75.0 m high (Fig. 49).
(a) How much later does 
it reach the bottom of 
the cliff? (b) What is its
speed just before hitting? 
(c) What total distance did
it travel?

�

– 0.40 m�s2

0.20 m�s2t = 0.

15

20

25

30

10

5

0
10 2 3 4 5 6

x 
(m

)

A

B

C D

E

t (s)FIGURE 50
Problem 82.
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88. A car is behind a truck going 25 m s on the highway. The
driver looks for an opportunity to pass, guessing that his car
can accelerate at and he gauges that he has to
cover the 20-m length of the truck, plus 10-m clear room at
the rear of the truck and 10 m more at the front of it. In the
oncoming lane, he sees a car approaching, probably also
traveling at 25 m s. He estimates that the car is about 400 m
away. Should he attempt the pass? Give details.

89. Agent Bond is standing on a bridge, 13 m above the road
below, and his pursuers are getting too close for comfort. He
spots a flatbed truck approaching at 25 m s, which he
measures by knowing that the telephone poles the truck is
passing are 25 m apart in this country. The bed of the truck
is 1.5 m above the road, and Bond quickly calculates how
many poles away the truck should be when he jumps down
from the bridge onto the truck, making his getaway. How
many poles is it?

90. A police car at rest, passed by a speeder traveling at a
constant 130 km h, takes off in hot pursuit. The police
officer catches up to the speeder in 750 m, maintaining a
constant acceleration. (a) Qualitatively plot the position vs.
time graph for both cars from the police car’s start to the
catch-up point. Calculate (b) how long it took the police officer
to overtake the speeder, (c) the required police car accelera-
tion, and (d) the speed of the police car at the overtaking point.

91. A fast-food restaurant uses a conveyor belt to send the
burgers through a grilling machine. If the grilling machine is
1.1 m long and the burgers require 2.5 min to cook, how fast
must the conveyor belt travel? If the burgers are spaced 15 cm
apart, what is the rate of burger production (in burgers min)?

92. Two students are asked to find the height of a particular
building using a barometer. Instead of using the barometer
as an altitude-measuring device, they take it to the roof of the
building and drop it off, timing its fall. One student reports a
fall time of 2.0 s, and the other, 2.3 s. What difference does
the 0.3 s make for the estimates of the building’s height?

93. Figure 52 shows the position vs. time graph for two bicy-
cles, A and B. (a) Is there any instant at which the 
two bicycles have the same velocity? (b) Which bicycle
has the larger acceleration? (c) At which instant(s) are the
bicycles passing each other? Which bicycle is passing 
the other? (d) Which bicycle has the highest instantaneous
velocity? (e) Which bicycle has the higher average
velocity?

%

�

�

�

�

1.0 m�s2,

�

A

0

Bx

t

FIGURE 52 Problem 93.

Numerical/Computer

95. (II) The Table below gives the speed of a particular drag
racer as a function of time. (a) Calculate the average
acceleration during each time interval. (b) Using
numerical integration (see Section 9 of “Describing
Motion: Kinematics in One Dimension”) estimate the
total distance traveled (m) as a function of time. [Hint: for

in each interval sum the velocities at the beginning and
end of the interval and divide by 2; for example, in the
second interval use ] (c) Graph
each of these.

0 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00
0.0 6.0 13.2 22.3 32.2 43.0 53.5 62.6 70.6 78.4 85.1

96. (III) The acceleration of an object (in ) is measured at
1.00-s intervals starting at to be as follows: 1.25, 1.58,
1.96, 2.40, 2.66, 2.70, 2.74, 2.72, 2.60, 2.30, 2.04, 1.76, 1.41, 1.09,
0.86, 0.51, 0.28, 0.10. Use numerical integration (see Section 9
of “Describing Motion: Kinematics in One Dimension”) to
estimate (a) the velocity (assume that at ) and
(b) the displacement at 

97. (III) A lifeguard standing at the side of a swimming pool
spots a child in distress, Fig. 53. The lifeguard runs with
average speed along the pool’s edge for a distance x,
then jumps into the pool and swims with average speed 
on a straight path to the child. (a) Show that the total time 
it takes the lifeguard to get to the child is given by

(b) Assume and Use a
graphing calculator or computer to plot vs. x in part (a),
and from this plot determine the optimal distance x the life-
guard should run before jumping into the pool (that is, find
the value of x that minimizes the time to get to the child).t

t
vS = 1.5 m�s.vR = 4.0 m�s

t =

x

vR
+
3D2 + (d - x)2

vS

.

t
vS

vR

t = 17.00 s.
t = 0v = 0

t = 0
m�s2

v(km�h)

t(s)

v = (6.0 + 13.2)�2 = 9.6

v

Am�s2B

94. You are traveling at a constant speed and there is a car
in front of you traveling with a speed You notice that

so you start slowing down with a constant acceler-
ation a when the distance between you and the other car
is x. What relationship between a and x determines whether
or not you run into the car in front of you?

vM 7 vA,
vA .

vM ,

x

d � 10.0 m

D � 8.0 m

FIGURE 53 Problem 97.

* 

* 

* 

* 
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Answers to Odd-Numbered Problems
1. 61 m.
3. no.
5. 1 km every 3 sec.
7. (a)

(b)
9. (a)

(b)
(c)
(d)
(e)

11.

13. (a)
(b) 72 min.

15. (a)
(b) 0.

17. (a)
(b)

19.

21. 5 s.
23. (a) 48 s;

(b) 90 s to 108 s;
(c) 0 to 42 s, 65 s to 83 s, 90 s to 108 s;
(d) 65 s to 83 s.

25. (a)
(b)

27.

29. (a)
(b)
(c)
(d)

31. 99 m.
33.

35. 2.61 s.
37. 45.0 m.
39. (a) 560 m;

(b) 47 s;
(c) 23 m, 21 m.

4.41 m�s2,
240 m�s2.
1.5 m�s2,

A - 3Bt–4.
(A + 10B) m�s, 2B m�s2;
2B m�s2;

m�s2;m�s,
17.0 m�s2.

2.00 m�s2.
21.2 m�s;

6.73 m�s.
±5 m�s.
16 m�s;

61 km�h;

5.4 * 103 m;
2.0 * 101 s.

–0.95 m�s.
1.4 m�s;
0.30 m�s;
1.2 m�s;
0.3 m�s;
3.1 m�s.
9.26 m�s;

300 m�s,
0.65 cm�s,

41. (a) 96 m;
(b) 76 m.

43.

45.

47.

49. 1.6 s.
51. (a) 20 m;

(b) 4 s.
53. 1.16 s.
55. 5.18 s.
57. (a)

(b) 33 m;
(c) 1.2 s;
(d) 5.2 s.

59. (a)
(b) fifth floor.

61. 1.3 m.
63. 18.1 m.
65. 52 m.
67. 106 m.

69. (a)

(b)

71. 6.
73. 1.3 m.
75. (b) 10 m;

(c) 40 m.
77.

79. to to
smaller range of velocities.

81. (a) 5.39 s;
(b)
(c) 90.9 m.

83. (a) 8.7 min;
(b) 7.3 min.

85. 2.3.

40.3 m�s;

6.7 m�s,
5.4 m�s, 5.8 m�s4.6 m�s

5.2 * 10–2 m�s2.

g

k
.

g

k
 A1 - e–ktB;

18.8 m�s,

14 m�s;

25 m�s;

0.49 m�s2.
117 km�h.
27 m�s.

87. Stop.
89. 1.5 poles.
91.

93. (a) Where the slopes are the same;
(b) bicycle A;
(c) when the two graphs cross; first

crossing, B passing A; second
crossing, A passing B;

(d) B until the slopes are equal, A
after that;

(e) same.
95. (c)

97. (b) 6.8 m.
T
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gB

This snowboarder flying through the
air shows an example of motion in
two dimensions. In the absence of 
air resistance, the path would be a
perfect parabola. The gold arrow
represents the downward acceleration
of gravity, Galileo analyzed the
motion of objects in 2 dimensions
under the action of gravity near the
Earth’s surface (now called “projectile
motion”) into its horizontal and
vertical components.

We will discuss how to manipulate
vectors and how to add them. Besides
analyzing projectile motion, we will
also see how to work with relative
velocity.

gB.

Kinematics in Two or 
Three Dimensions; Vectors

CHAPTER-OPENING QUESTION—Guess now!
[Don’t worry about getting the right answer now—the idea is to get your preconceived

notions out on the table.]
A small heavy box of emergency supplies is dropped from a moving helicopter at
point A as it flies along in a horizontal direction.Which path in the drawing below best
describes the path of the box (neglecting air resistance) as seen by a person
standing on the ground? CONTENTS

1 Vectors and Scalars

2 Addition of Vectors—
Graphical Methods

3 Subtraction of Vectors, and
Multiplication of a Vector
by a Scalar

4 Adding Vectors by
Components

5 Unit Vectors

6 Vector Kinematics

7 Projectile Motion

8 Solving Problems Involving
Projectile Motion

9 Relative Velocity

(b)(a)

A B

(c) (d) (e)

W
e now consider the description of the motion of objects that move in
paths in two (or three) dimensions. To do so, we first need to discuss
vectors and how they are added. We will examine the description of
motion in general, followed by an interesting special case, the motion

of projectiles near the Earth’s surface. We also discuss how to determine the
relative velocity of an object as measured in different reference frames.

L
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From Chapter Physics for Scientists & Engineers with Modern Physics, Fourth Edition, Douglas C. Giancoli.
Copyright © 2009 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.
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Scale for velocity:
1 cm = 90 km/h

Resultant  = 14 km (east) 

Resultant  = 2 km (east) 

6 km

8 km

8 km

6 km
x (km)
East

x (km)
East

(a)

(b)

0

0

FIGURE 2 Combining vectors in
one dimension.

FIGURE 1 Car traveling on a road,
slowing down to round the curve.
The green arrows represent the
velocity vector at each position.

1 Vectors and Scalars
The term velocity refers not only to how fast an object is moving but also to its
direction. A quantity such as velocity, which has direction as well as magnitude, is a
vector quantity. Other quantities that are also vectors are displacement, force, and
momentum. However, many quantities have no direction associated with them,
such as mass, time, and temperature. They are specified completely by a number
and units. Such quantities are called scalar quantities.

Drawing a diagram of a particular physical situation is always helpful in
physics, and this is especially true when dealing with vectors. On a diagram, each
vector is represented by an arrow. The arrow is always drawn so that it points in
the direction of the vector quantity it represents. The length of the arrow is drawn
proportional to the magnitude of the vector quantity. For example, in Fig. 1, green
arrows have been drawn representing the velocity of a car at various places as it
rounds a curve. The magnitude of the velocity at each point can be read off Fig. 1
by measuring the length of the corresponding arrow and using the scale shown

When we write the symbol for a vector, we will always use boldface type, with
a tiny arrow over the symbol. Thus for velocity we write If we are concerned
only with the magnitude of the vector, we will write simply in italics, as we do
for other symbols.

2 Addition of Vectors—Graphical
Methods

Because vectors are quantities that have direction as well as magnitude, they must
be added in a special way. In this Chapter, we will deal mainly with displacement
vectors, for which we now use the symbol and velocity vectors, But the results
will apply for other vectors we encounter later.

We use simple arithmetic for adding scalars. Simple arithmetic can also be
used for adding vectors if they are in the same direction. For example, if a
person walks 8 km east one day, and 6 km east the next day, the person will 
be east of the point of origin. We say that the net or
resultant displacement is 14 km to the east (Fig. 2a). If, on the other hand, the
person walks 8 km east on the first day, and 6 km west (in the reverse
direction) on the second day, then the person will end up 2 km from the origin
(Fig. 2b), so the resultant displacement is 2 km to the east. In this case, the
resultant displacement is obtained by subtraction:

But simple arithmetic cannot be used if the two vectors are not along the same
line. For example, suppose a person walks 10.0 km east and then walks 5.0 km
north. These displacements can be represented on a graph in which the positive
y axis points north and the positive x axis points east, Fig. 3. On this graph, we
draw an arrow, labeled to represent the 10.0-km displacement to the east.
Then we draw a second arrow, to represent the 5.0-km displacement to the
north. Both vectors are drawn to scale, as in Fig. 3.

D
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2 ,
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1 ,

8 km - 6 km = 2 km.

8 km + 6 km = 14 km

v
B.D
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v
B.

(1 cm = 90 km�h).
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FIGURE 3 A person walks 10.0 km east and then 5.0 km north. These
two displacements are represented by the vectors and which are
shown as arrows. The resultant displacement vector, which is the
vector sum of and is also shown. Measurement on the graph
with ruler and protractor shows that has a magnitude of 11.2 km
and points at an angle  north of east.u = 27°
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After taking this walk, the person is now 10.0 km east and 5.0 km north of the
point of origin. The resultant displacement is represented by the arrow labeled 
in Fig. 3. Using a ruler and a protractor, you can measure on this diagram that the
person is 11.2 km from the origin at an angle north of east. In other
words, the resultant displacement vector has a magnitude of 11.2 km and makes an
angle with the positive x axis. The magnitude (length) of can also be
obtained using the theorem of Pythagoras in this case, since and form a
right triangle with as the hypotenuse. Thus

You can use the Pythagorean theorem, of course, only when the vectors are
perpendicular to each other.

The resultant displacement vector, is the sum of the vectors and 
That is,

This is a vector equation. An important feature of adding two vectors that are not
along the same line is that the magnitude of the resultant vector is not equal to the
sum of the magnitudes of the two separate vectors, but is smaller than their sum.
That is,

where the equals sign applies only if the two vectors point in the same direction.
In our example (Fig. 3), whereas equals 15 km,
which is the total distance traveled. Note also that we cannot set equal 
to 11.2 km, because we have a vector equation and 11.2 km is only a part of 
the resultant vector, its magnitude. We could write something like this, though:

EXERCISE A Under what conditions can the magnitude of the resultant vector above be 

Figure 3 illustrates the general rules for graphically adding two vectors
together, no matter what angles they make, to get their sum. The rules are as
follows:

1. On a diagram, draw one of the vectors—call it —to scale.
2. Next draw the second vector, to scale, placing its tail at the tip of the first

vector and being sure its direction is correct.
3. The arrow drawn from the tail of the first vector to the tip of the second

vector represents the sum, or resultant, of the two vectors.

The length of the resultant vector represents its magnitude. Note that vectors can
be translated parallel to themselves (maintaining the same length and angle) to
accomplish these manipulations. The length of the resultant can be measured with
a ruler and compared to the scale. Angles can be measured with a protractor. This
method is known as the tail-to-tip method of adding vectors.

The resultant is not affected by the order in which the vectors are added. For
example, a displacement of 5.0 km north, to which is added a displacement of
10.0 km east, yields a resultant of 11.2 km and angle (see Fig. 4), the same
as when they were added in reverse order (Fig. 3). That is, now using to repre-
sent any type of vector,

[commutative property] (1a)

which is known as the commutative property of vector addition.
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FIGURE 4 If the vectors are added
in reverse order, the resultant is the
same. (Compare to Fig. 3.)
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Be sure to use the correct diagonal
on parallelogram to get the resultant
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FIGURE 5 The resultant of three vectors:
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FIGURE 6 Vector addition by
two different methods, (a) and (b).
Part (c) is incorrect.

It is a common error to draw the sum vector as the diagonal running between
the tips of the two vectors, as in Fig. 6c. This is incorrect: it does not represent the
sum of the two vectors. (In fact, it represents their difference, as we will
see in the next Section.)
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B

1 ,

–V
B

V
B

FIGURE 7 The negative of a vector
is a vector having the same length
but opposite direction.

The tail-to-tip method of adding vectors can be extended to three or more
vectors. The resultant is drawn from the tail of the first vector to the tip of the
last one added. An example is shown in Fig. 5; the three vectors could represent
displacements (northeast, south, west) or perhaps three forces. Check for your-
self that you get the same resultant no matter in which order you add the three
vectors; that is,

[associative property] (1b)

which is known as the associative property of vector addition.
A second way to add two vectors is the parallelogram method. It is fully equiv-

alent to the tail-to-tip method. In this method, the two vectors are drawn starting
from a common origin, and a parallelogram is constructed using these two vectors
as adjacent sides as shown in Fig. 6b. The resultant is the diagonal drawn from the
common origin. In Fig. 6a, the tail-to-tip method is shown, and it is clear that both
methods yield the same result.

AVB 1 + V
B

2B + V
B

3 = V
B

1 + AVB 2 + V
B

3B,

EXERCISE B If the two vectors of Example 1 are perpendicular to each other, what is the
resultant vector length?

3 Subtraction of Vectors, and
Multiplication of a Vector by a Scalar

Given a vector we define the negative of this vector to be a vector with
the same magnitude as but opposite in direction, Fig. 7. Note, however, that no
vector is ever negative in the sense of its magnitude: the magnitude of every vector
is positive. Rather, a minus sign tells us about its direction.

V
B

A–V
B BV

B

,

CONCEPTUAL EXAMPLE 1 Range of vector lengths. Suppose two vectors
each have length 3.0 units.What is the range of possible lengths for the vector repre-
senting the sum of the two?
RESPONSE The sum can take on any value from where the
vectors point in the same direction, to when the vectors are
antiparallel.

0 (  = 3.0 - 3.0)
6.0 (  = 3.0 + 3.0)
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= 1.52

= −2.03

V
B

V
B

V
B

V
B

V
B

FIGURE 9 Multiplying a vector 
by a scalar c gives a vector whose
magnitude is c times greater and in
the same direction as (or opposite
direction if c is negative).

V
B

V
B

We can now define the subtraction of one vector from another: the difference
between two vectors is defined as

That is, the difference between two vectors is equal to the sum of the first plus the
negative of the second. Thus our rules for addition of vectors can be applied as
shown in Fig. 8 using the tail-to-tip method.

A vector can be multiplied by a scalar c. We define their product so that 
has the same direction as and has magnitude cV. That is, multiplication of a vector
by a positive scalar c changes the magnitude of the vector by a factor c but doesn’t
alter the direction. If c is a negative scalar, the magnitude of the product is
still (where means the magnitude of c), but the direction is precisely opposite
to that of See Fig. 9.

EXERCISE C What does the “incorrect” vector in Fig. 6c represent? (a) 
(b) (c) something else (specify).

4 Adding Vectors by Components
Adding vectors graphically using a ruler and protractor is often not sufficiently
accurate and is not useful for vectors in three dimensions. We discuss now a more
powerful and precise method for adding vectors. But do not forget graphical
methods—they are useful for visualizing, for checking your math, and thus for
getting the correct result.

Consider first a vector that lies in a particular plane. It can be expressed as the
sum of two other vectors, called the components of the original vector. The compo-
nents are usually chosen to be along two perpendicular directions, such as 
the x and y axes. The process of finding the components is known as 
resolving the vector into its components. An example is shown in Fig. 10;
the vector could be a displacement vector that points at an angle 
north of east, where we have chosen the positive x axis to be to the east 
and the positive y axis north. This vector is resolved into its x and y components
by drawing dashed lines out from the tip (A) of the vector (lines AB and AC) making
them perpendicular to the x and y axes. Then the lines OB and OC represent 
the x and y components of respectively, as shown in Fig. 10b. These vector

components are written and We generally show vector components as arrows,
like vectors, but dashed. The scalar components, and are the magnitudes of the
vector components, with units, accompanied by a positive or negative sign depending
on whether they point along the positive or negative x or y axis. As can be seen 
in Fig. 10, by the parallelogram method of adding vectors.V

B

x + V
B

y = V
B

Vy ,Vx

V
B

y .V
B

x

V
B

,

V
B

u = 30°V
B

V
B

V
B

1 - V
B

2 ,
V
B

2 - V
B

1 ,

V
B

.
∑c∑∑c∑V

cV
B

V
B

cV
B

V
B

V
B

2 - V
B

1 = V
B

2 + A–V
B

1B.
V
B

2 - V
B

1

– += =
– 1

– 1

1

2
– 12

22V
B

V
B

V
B

V
B

V
B

V
B

V
B

V
B

FIGURE 8 Subtracting two vectors:
V
B

2 - V
B

1 .

θ

C

North

East

North

East

y

x
B

A

(a)

y

x

(b)

0 0

(= 30°) (= 30°)θ

x

y

V
B

V
B

V
B

V
B

FIGURE 10 Resolving a vector into its components
along an arbitrarily chosen set of x and y axes. The
components, once found, themselves represent the vector.
That is, the components contain as much information as the
vector itself.

V
B
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Vy

V
sin     =

Vx

V
cos     =

Vy

Vx

tan     =

V2 = V2 + V2

θ

θ

θ

θ 90°

yx

x

y

0
x

y

V
B

V
B

V
B

FIGURE 11 Finding the
components of a vector using
trigonometric functions.

†In three dimensions, the theorem of Pythagoras becomes where is the
component along the third, or z, axis.

VzV = 3Vx
2 + Vy

2 + Vz
2 ,

Space is made up of three dimensions, and sometimes it is necessary to resolve a
vector into components along three mutually perpendicular directions. In rectangular
coordinates the components are and Resolution of a vector in three
dimensions is merely an extension of the above technique.

The use of trigonometric functions for finding the components of a vector is
illustrated in Fig. 11, where a vector and its two components are thought of as
making up a right triangle. We then see that the sine, cosine, and tangent are as
given in Fig. 11. If we multiply the definition of by V on both sides,
we get

(2a)

Similarly, from the definition of we obtain

(2b)

Note that is chosen (by convention) to be the angle that the vector makes with
the positive x axis, measured positive counterclockwise.

The components of a given vector will be different for different choices of
coordinate axes. It is therefore crucial to specify the choice of coordinate system
when giving the components.

There are two ways to specify a vector in a given coordinate system:

1. We can give its components, and 
2. We can give its magnitude V and the angle it makes with the positive x axis.

We can shift from one description to the other using Eqs. 2, and, for the reverse, by
using the theorem of Pythagoras† and the definition of tangent:

(3a)

(3b)

as can be seen in Fig. 11.
We can now discuss how to add vectors using components. The first step is to

resolve each vector into its components. Next we can see, using Fig. 12, that the addi-
tion of any two vectors and to give a resultant, implies that

(4)

That is, the sum of the x components equals the x component of the resultant, and
the sum of the y components equals the y component of the resultant, as can be
verified by a careful examination of Fig. 12. Note that we do not add x components to
y components.

 Vy = V1y + V2y .

 Vx = V1x + V2x

V
B

= V
B

1 + V
B

2 ,V
B

2V
B

1

 tan u =

Vy

Vx

 V = 3Vx
2 + Vy

2

u

Vy .Vx

u

Vx = V cos u.

cos u,

Vy = V sin u.

sin u = Vy�V

V
B

z .V
B

y ,V
B

x ,

y

x

Vx

Vy

V1x

V2x

V1y

V2y

0

1

=
+

1

2
2

V
B

V
B

V
B

V
B

V
B

FIGURE 12 The components 
of  are

 Vy = V1y + V2y .

 Vx = V1x + V2x

V
B

= V
B

1 + V
B

2
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FIGURE 13 Example 2.
(a) The two displacement vectors,

and (b) is resolved into 
its components. (c) and are
added graphically to obtain the
resultant The component method
of adding the vectors is explained in
the Example.

D
B

.

D
B

2D
B

1

D
B

2D
B

2 .D
B

1

If the magnitude and direction of the resultant vector are desired, they can be
obtained using Eqs. 3.

The components of a given vector depend on the choice of coordinate axes.
You can often reduce the work involved in adding vectors by a good choice of
axes—for example, by choosing one of the axes to be in the same direction as one
of the vectors. Then that vector will have only one nonzero component.

EXAMPLE 2 Mail carrier’s displacement. A rural mail carrier leaves the
post office and drives 22.0 km in a northerly direction. She then drives in a direc-
tion 60.0° south of east for 47.0 km (Fig. 13a). What is her displacement from the
post office?

APPROACH We choose the positive x axis to be east and the positive y axis to
be north, since those are the compass directions used on most maps. The origin
of the xy coordinate system is at the post office. We resolve each vector into its
x and y components. We add the x components together, and then the y components
together, giving us the x and y components of the resultant.
SOLUTION Resolve each displacement vector into its components, as shown
in Fig. 13b. Since has magnitude 22.0 km and points north, it has only a y
component:

has both x and y components:

Notice that is negative because this vector component points along the nega-
tive y axis. The resultant vector, has components:

This specifies the resultant vector completely:

We can also specify the resultant vector by giving its magnitude and angle using
Eqs. 3:

A calculator with an INV TAN, an ARC TAN, or a TAN−1 key gives 
The negative sign means below the x axis, Fig. 13c. So, the

resultant displacement is 30.0 km directed at 38.5° in a southeasterly direction.
NOTE Always be attentive about the quadrant in which the resultant vector
lies. An electronic calculator does not fully give this information, but a good
diagram does.

The signs of trigonometric functions depend on which “quadrant” the angle
falls in: for example, the tangent is positive in the first and third quadrants (from 0°
to 90°, and 180° to 270°), but negative in the second and fourth quadrants. The best
way to keep track of angles, and to check any vector result, is always to draw a
vector diagram. A vector diagram gives you something tangible to look at when
analyzing a problem, and provides a check on the results.

The following Problem Solving Strategy should not be considered a prescription.
Rather it is a summary of things to do to get you thinking and involved in the
problem at hand.

u = 38.5°–38.5°.
=u = tan–1 (–0.796)

 tan u  =   

Dy

Dx
  =   

–18.7 km
23.5 km

  =   –0.796.

 D  =   3Dx
2 + Dy

2
  =   3(23.5 km)2 + (–18.7 km)2

  =   30.0 km

Dx = 23.5 km,  Dy = –18.7 km.

 Dy  =   D1y + D2y   =   22.0 km + (–40.7 km)   =   –18.7 km.

 Dx  =   D1x + D2x   =   0 km  + 23.5 km  =   ±23.5 km

D
B

,
D2y

 D2y  =   –(47.0 km)(sin 60°)   =   –(47.0 km)(0.866)   =   –40.7 km.

 D2x  =   ±(47.0 km)(cos 60°)   =   ±(47.0 km)(0.500)   =   ±23.5 km

D
B

2

D1x = 0,  D1y = 22.0 km.

D
B

1

P R O B L E M  S O L V I N G

Identify the correct quadrant by
drawing a careful diagram
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EXAMPLE 3 Three short trips. An airplane trip involves three legs, with two
stopovers, as shown in Fig. 14a. The first leg is due east for 620 km; the second leg
is southeast (45°) for 440 km; and the third leg is at 53° south of west, for 550 km,
as shown. What is the plane’s total displacement?

APPROACH We follow the steps in the Problem Solving Strategy above.
SOLUTION
1. Draw a diagram such as Fig. 14a, where and represent the three

legs of the trip, and is the plane’s total displacement.
2. Choose axes: Axes are also shown in Fig. 14a: x is east, y north.
3. Resolve components: It is imperative to draw a good diagram. The components

are drawn in Fig. 14b. Instead of drawing all the vectors starting from a
common origin, as we did in Fig. 13b, here we draw them “tail-to-tip” style,
which is just as valid and may make it easier to see.

4. Calculate the components:

We have given a minus sign to each component that in Fig. 14b points in the
or direction. The components are shown in the Table in the margin.–y–x

 D3y  =   –D3 sin 53°   =   –(550 km)(0.799)   =   –439 km.
 D
B

3 : D3x  =   –D3 cos 53°   =   –(550 km)(0.602)   =   –331 km

 D2y  =   –D2 sin 45°   =   –(440 km)(0.707)   =   –311 km
 D
B

2 : D2x  =   ±D2 cos 45°   =   ±(440 km)(0.707)   =   ±311 km

 D1y  =   ±D1 sin 0°   =   0 km   
 D
B

1 : D1x  =   ±D1 cos 0°   =   D1 = 620 km

D
B

R

D
B

3D
B

1 , D
B

2 ,

Pay careful attention to signs: any component that
points along the negative x or y axis gets a minus
sign.

5. Add the x components together to get the x compo-
nent of the resultant. Ditto for y:

This is the answer: the components of the resultant
vector. Check signs to see if they fit the quadrant
shown in your diagram (point 1 above).

6. If you want to know the magnitude and direction of
the resultant vector, use Eqs. 3:

The vector diagram you already drew helps to obtain
the correct position (quadrant) of the angle q.

V = 3Vx
2 + Vy

2 ,  tan u =

Vy

Vx
.

 Vy = V1y + V2y + any others.

 Vx = V1x + V2x + any others

P
R

O
B

L
E

M
S O L V I N

G

Adding Vectors

Here is a brief summary of how to add two or more
vectors using components:
1. Draw a diagram, adding the vectors graphically by

either the parallelogram or tail-to-tip method.
2. Choose x and y axes. Choose them in a way, if possible,

that will make your work easier. (For example, choose
one axis along the direction of one of the vectors so
that vector will have only one component.)

3. Resolve each vector into its x and y components,
showing each component along its appropriate (x or y)
axis as a (dashed) arrow.

4. Calculate each component (when not given) using
sines and cosines. If is the angle that vector 
makes with the positive x axis, then:

V1x = V1 cos u1 ,  V1y = V1 sin u1 .

V
B

1u1

Vector Components
x (km) y (km)

620 0
311

600 –750D
B

R

–439–331D
B

3

–311D
B

2

D
B

1

5. Add the components: We add the x components together, and we add the 
y components together to obtain the x and y components of the resultant:

The x and y components are 600 km and and point respectively to
the east and south. This is one way to give the answer.

6. Magnitude and direction: We can also give the answer as

Thus, the total displacement has magnitude 960 km and points 51° below the
x axis (south of east), as was shown in our original sketch, Fig. 14a.

so u = –51°. tan u  =   

Dy

Dx
  =   

–750 km
600 km

  =   –1.25,

 DR  =   3Dx
2 + Dy

2
  =   3(600)2 + (–750)2 km  =   960 km

–750 km,
 Dy = D1y + D2y + D3y  =   0 km - 311 km - 439 km = –750 km.
 Dx = D1x + D2x + D3x = 620 km + 311 km - 331 km = 600 km

= ?θ 45°
–x

0

53°

+x

+y

–y

(a)

D2y

D3y

D3x

–x
0

+x

+y

–y

(b)

45°

D2x

53°

North

East

East

North

1D
B

2D
B

3D
B

RD
B

1D
B

3D
B

2D
B

FIGURE 14 Example 3.
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5 Unit Vectors
Vectors can be conveniently written in terms of unit vectors. A unit vector is defined
to have a magnitude exactly equal to one (1). It is useful to define unit vectors that
point along coordinate axes, and in an x, y, z rectangular coordinate system these
unit vectors are called and They point, respectively, along the positive x, y,
and z axes as shown in Fig. 15. Like other vectors, and do not have to be
placed at the origin, but can be placed elsewhere as long as the direction and unit
length remain unchanged. It is common to write unit vectors with a “hat”:
(and we will do so in this text) as a reminder that each is a unit vector.

Because of the definition of multiplication of a vector by a scalar (Section 3), the
components of a vector can be written and 
Hence any vector can be written in terms of its components as

(5)

Unit vectors are helpful when adding vectors analytically by components. For
example, Eq. 4 can be seen to be true by using unit vector notation for each vector
(which we write for the two-dimensional case, with the extension to three dimen-
sions being straightforward):

Comparing the first line to the third line, we get Eq. 4.

EXAMPLE 4 Using unit vectors. Write the vectors of Example 2 in unit
vector notation, and perform the addition.

APPROACH We use the components we found in Example 2,

and we now write them in the form of Eq. 5.

SOLUTION We have

Then

The components of the resultant displacement, are and 
The magnitude of is 

just as in Example 2.

6 Vector Kinematics
We can now extend our definitions of velocity and acceleration in a formal way to
two- and three-dimensional motion. Suppose a particle follows a path in the xy plane
as shown in Fig. 16. At time the particle is at point and at time it is at point

The vector is the position vector of the particle at time (it represents the
displacement of the particle from the origin of the coordinate system). And is
the position vector at time 

In one dimension, we defined displacement as the change in position of the
particle. In the more general case of two or three dimensions, the displacement
vector is defined as the vector representing change in position. We call it †

where

This represents the displacement during the time interval ¢t = t2 - t1 .

¢r
B

= rB2 - rB1 .

¢r
B,

t2 .
r
B

2

t1r
B

1P2 .
t2 ,P1 ,t1 ,

D = 1(23.5 km)2 + (18.7 km)2 = 30.0 km,D
B

–18.7 km.
=DyDx = 23.5 kmD

B

,

 = 23.5 km î - 18.7 km ĵ.

 D
B

= D
B

1 + D
B

2 = (0 + 23.5) km î + (22.0 - 40.7) km ĵ

 D
B

2 = 23.5 km î - 40.7 km ĵ.

 D
B

1 = 0 î + 22.0 km ĵ

D1x = 0,  D1y = 22.0 km,  and  D2x = 23.5 km,  D2y = –40.7 km,

 = AV1x + V2xB  î + AV1y + V2yB  ĵ.
 = AV1x î + V1y ĵB + AV2x î + V2y ĵB

 V
B

= AVxB  î + AVyB  ĵ = V
B

1 + V
B

2

V
B

= Vx î + Vy ĵ + Vz k̂.

V
B

V
B

z = Vz k̂.V
B

y = Vy ĵ,V
B

x = Vx î,V
B

k̂ĵ,î,

k̂î, ĵ,
k̂.î, ĵ,

†We used for the displacement vector earlier in the Chapter for illustrating vector addition. The new
notation here, emphasizes that it is the difference between two position vectors.¢r

B,
D
B

0

y

P1

P2

2

1

∆

∆l
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r
B

r
B

r
B

FIGURE 16 Path of a particle in the
xy plane. At time the particle is at
point given by the position vector

at the particle is at point 
given by the position vector The
displacement vector for the time
interval is  ¢rB = rB2 - rB1 .t2 - t1

r
B

2 .
P2t2r

B

1 ;
P1
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ˆ ˆ

ˆ

FIGURE 15 Unit vectors and 
along the x, y, and z axes.

k̂ĵ,î,
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In unit vector notation, we can write

(6a)

where and are the coordinates of point Similarly,

Hence
(6b)

If the motion is along the x axis only, then and the
magnitude of the displacement is which is consistent with a one-
dimensional equation. Even in one dimension, displacement is a vector, as are
velocity and acceleration.

The average velocity vector over the time interval is defined as

(7)

Now let us consider shorter and shorter time intervals—that is, we let approach
zero so that the distance between points and also approaches zero, Fig. 17. We
define the instantaneous velocity vector as the limit of the average velocity as 
approaches zero:

(8)

The direction of at any moment is along the line tangent to the path at that
moment (Fig. 17).

Note that the magnitude of the average velocity in Fig. 16 is not equal to the
average speed, which is the actual distance traveled along the path, divided by

In some special cases, the average speed and average velocity are equal (such
as motion along a straight line in one direction), but in general they are not.
However, in the limit always approaches so the instantaneous
speed always equals the magnitude of the instantaneous velocity at any time.

The instantaneous velocity (Eq. 8) is equal to the derivative of the position
vector with respect to time. Equation 8 can be written in terms of components
starting with Eq. 6a as:

(9)

where are the x, y, and z components of the
velocity. Note that since these unit vectors are
constant in both magnitude and direction.

Acceleration in two or three dimensions is treated in a similar way. The
average acceleration vector, over a time interval is defined as

(10)

where is the change in the instantaneous velocity vector during that time
interval: Note that in many cases, such as in Fig. 18a, may not be
in the same direction as Hence the average acceleration vector may be in a
different direction from either or (Fig. 18b). Furthermore, and may have the
same magnitude but different directions, and the difference of two such vectors will
not be zero. Hence acceleration can result from either a change in the magnitude of
the velocity, or from a change in direction of the velocity, or from a change in both.

The instantaneous acceleration vector is defined as the limit of the average
acceleration vector as the time interval is allowed to approach zero:

(11)

and is thus the derivative of with respect to .tvB

a
B

  =   lim
¢ S 0

 
¢vB

¢t
  =   

dvB

dt
,

¢t

vB1vB2vB2vB1

vB1 .
v
B

2¢v
B

= v
B

2 - v
B

1 .
¢v

B

average acceleration  =   
¢v

B

¢t
  =   

v
B

2 - vB1

t2 - t1

,

¢t = t2 - t1

d î�dt = d ĵ�dt = d k̂�dt = 0
vz = dz�dtvy = dy�dt,vx = dx�dt,

  =   vx î + vy ĵ + vz k̂, v
B

  =   
d rB

dt
  =   

dx

dt
 î +

dy

dt
 ĵ +

dz

dt
 k̂

¢l,¢t S 0, ¢r

¢t.
¢l,

vB

vB  =   lim
¢t S 0

 
¢rB

¢t
  =   

d rB

dt
.

¢t
P1P2

¢t

average velocity =

¢rB

¢t
.

¢t = t2 - t1

¢r = x2 - x1 ,
z2 - z1 = 0,y2 - y1 = 0,

¢rB = Ax2 - x1B  î + Ay2 - y1B  ĵ + Az2 - z1B  k̂.

r
B

2 = x2 î + y2 ĵ + z2 k̂.

P1 .z1x1 , y1 ,

r
B

1 = x1 î + y1 ĵ + z1 k̂,
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∆
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FIGURE 17 (a) As we take and
smaller and smaller [compare to

Fig. 16] we see that the direction of
and of the instantaneous velocity

( where ) is (b)
tangent to the curve at P1 .
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FIGURE 18 (a) Velocity vectors 
and at instants and for a particle
at points and as in Fig. 16.
(b) The direction of the average
acceleration is in the direction of
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We can write using components:

(12)

where etc. Because then .
Thus we can also write the acceleration as 

(12c)

The instantaneous acceleration will be nonzero not only when the magnitude of
the velocity changes but also if its direction changes. For example, a person riding
in a car traveling at constant speed around a curve, or a child riding on a merry-
go-round, will both experience an acceleration because of a change in the direction
of the velocity, even though the speed may be constant.

In general, we will use the terms “velocity” and “acceleration” to mean the instan-
taneous values. If we want to discuss average values, we will use the word “average.”

EXAMPLE 5 Position given as a function of time. The position of a particle
as a function of time is given by

where r is in meters and is in seconds. (a) What is the particle’s displacement
between and (b) Determine the particle’s instantaneous
velocity and acceleration as a function of time. (c) Evaluate and at 

APPROACH For (a), we find inserting for finding 
and for For (b), we take derivatives (Eqs. 9 and 11), and for (c) we
substitute into our results in (b).
SOLUTION (a) At 

Similarly, at 

Thus

That is, and 
(b) To find velocity, we take the derivative of the given with respect to time,
noting that and :

The acceleration is (keeping only two significant figures):

Thus is constant; but depends linearly on 
time, increasing in magnitude with time in the negative y direction.
(c) We substitute into the equations we just derived for and 

Their magnitudes at are and 

a = 2A12 m�s2B2 + A54 m�s2B2 = 55 m�s2.

v = 3(41 m�s)2 + (81 m�s)2 = 91 m�s,t = 3.0 s

 aB  =   A12 m�s2B  î - A54 m�s2B  ĵ.
 vB  =   (5.0 m�s + 36 m�s) î - (81 m�s) ĵ  =   (41 m�s) î - (81 m�s) ĵ

aB:vBt = 3.0 s

ay = – A18 m�s3B     tax = 12 m�s2

a
B

  =   
dvB

dt 
  =   A12 m�s2B  î - A18 m�s3B  t ĵ.

v
B

  =   
d rB

dt 
  =   C5.0 m�s + A12 m�s2B     t D  î + C0 - A9.0 m�s3B     t2 D  ĵ.

d At3B�dt = 3t2d At2B�dt = 2t,
rB

¢y = –57 m.¢x = 35 m,

¢rB  =   r
B

2 - r
B

1  =   (69 m - 34 m) î + (–74 m + 17 m) ĵ  =   (35 m) î - (57 m) ĵ.

r
B

2  =   (15 m + 54 m) î + (7.0 m - 81 m) ĵ  =   (69 m) î - (74 m) ĵ.

t2 = 3.0 s,

 = (34 m) î - (17 m) ĵ.

 rB1 = C(5.0 m�s)(2.0 s) + A6.0 m�s2B(2.0 s)2 D  î + C(7.0 m) - A3.0 m�s3B(2.0 s)3 D  ĵt1 = 2.0 s,
t = 3.0 s

rB2 .t2 = 3.0 s
rB1 ,t1 = 2.0 s¢rB = rB2 - rB1 ,

t = 3.0 s.aBvB
t2 = 3.0 s?t1 = 2.0 s
t

r
B

= C(5.0 m�s)  t + A6.0 m�s2B     t2 D  î + C(7.0 m) - A3.0 m�s3B     t3 D  ĵ,

a
B

=

d2x

dt2 
 î +

d2y

dt2 
 ĵ +

d2z

dt2 
 k̂.

ax = dvx�dt = d2x�dt2vx = dx�dt,ax = dvx�dt,

 =   ax î + ay ĵ + az k̂, 

 aB  =   
dvB

dt 
  =   

dvx

dt   
 î +

dvy

dt   
 ĵ +

dvz

dt  
 k̂

a
B
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Constant Acceleration

In two or three dimensions, if the acceleration vector, is constant in magnitude and
direction, then The average accelera-
tion in this case is equal to the instantaneous acceleration at any moment. In two
dimensions we let be the initial velocity, and we apply Eqs. 6a, 9,
and 12b for the position vector, velocity, and acceleration, a

B.v
B,r

B,
v
B

0 = vx 0 î + vy 0 ĵ

az = constant.ay = constant,ax = constant,
aB,

The first two of the equations in Table 1 can be written more formally in
vector notation.

(13a)

(13b)

Here, is the position vector at any time, and is the position vector at 
These equations are the vector equivalent of. In practical situations, we usually use
the component form given in Table 1.

7 Projectile Motion
Recall one-dimensional motion of an object in terms of displacement, velocity, and
acceleration, including purely vertical motion of a falling object undergoing accel-
eration due to gravity. Now we examine the more general translational motion of
objects moving through the air in two dimensions near the Earth’s surface, such as
a golf ball, a thrown or batted baseball, kicked footballs, and speeding bullets.
These are all examples of projectile motion (see Fig. 19), which we can describe as
taking place in two dimensions.

Although air resistance is often important, in many cases its effect can be
ignored, and we will ignore it in the following analysis. We will not be concerned now
with the process by which the object is thrown or projected. We consider only its
motion after it has been projected, and before it lands or is caught—that is, we
analyze our projected object only when it is moving freely through the air under the
action of gravity alone. Then the acceleration of the object is that due to gravity,
which acts downward with magnitude and we assume it is constant.†

Galileo was the first to describe projectile motion accurately. He showed that
it could be understood by analyzing the horizontal and vertical components of the
motion separately. For convenience, we assume that the motion begins at time 

at the origin of an xy coordinate system (so ).
Let us look at a (tiny) ball rolling off the end of a horizontal table with an

initial velocity in the horizontal (x) direction, See Fig. 20, where an object
falling vertically is also shown for comparison. The velocity vector at each instant
points in the direction of the ball’s motion at that instant and is always tangent to
the path. Following Galileo’s ideas, we treat the horizontal and vertical compo-
nents of the velocity, and separately, and we can apply the kinematic
equations to the x and y components of the motion.

First we examine the vertical component of the motion. At the instant the
ball leaves the table’s top it has only an x component of velocity. Once the(t = 0),

(y)

vy ,vx

v
B

vx 0 .

x0 = y0 = 0t = 0

g = 9.80 m�s2,

t = 0.rB0rB
[aB = constant] rB = r

B

0 + v
B

0 t + 1
2 a

Bt2.
[aB = constant] vB = vB0 + aBt

TABLE 1 Kinematic Equations for Constant Acceleration in 2 Dimensions

x component (horizontal) y component (vertical)

 vy
2 = vy 0

2 + 2ay Ay - y0B vx
2 = vx 0

2 + 2ax Ax - x0B
 y = y0 + vy 0 t + 1

2 ay t2 x = x0 + vx 0 t + 1
2 ax t2

 vy = vy 0 + ay t vx = vx 0 + ax t

FIGURE 19 This strobe photograph
of a ball making a series of bounces
shows the characteristic “parabolic”
path of projectile motion.

†This restricts us to objects whose distance traveled and maximum height above the Earth are small
compared to the Earth’s radius (6400 km).
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FIGURE 21 Multiple-exposure
photograph showing positions of
two balls at equal time intervals.
One ball was dropped from rest at
the same time the other was
projected horizontally outward. The
vertical position of each ball is seen
to be the same at each instant.

y

x

Vertical
fall

Projectile
motion

=

x0

x

x

y

y

v
B

v
B

v
B

v
B

v
B

v
B v

B

a
B

g
B

FIGURE 20 Projectile motion of a small ball projected
horizontally. The dashed black line represents the path of the
object. The velocity vector at each point is in the direction of
motion and thus is tangent to the path. The velocity vectors are
green arrows, and velocity components are dashed. (A vertically
falling object starting at the same point is shown at the left for
comparison; is the same for the falling object and the projectile.)vy

vB

ball leaves the table (at ), it experiences a vertically downward acceleration g,
the acceleration due to gravity. Thus is initially zero but increases
continually in the downward direction (until the ball hits the ground). Let us take y
to be positive upward. Then and we can write since we set

The vertical displacement is given by 
In the horizontal direction, on the other hand, the acceleration is zero (we are

ignoring air resistance). With the horizontal component of velocity, remains
constant, equal to its initial value, and thus has the same magnitude at each
point on the path. The horizontal displacement is then given by The two
vector components, and can be added vectorially at any instant to obtain the
velocity at that time (that is, for each point on the path), as shown in Fig. 20.

One result of this analysis, which Galileo himself predicted, is that an object

projected horizontally will reach the ground in the same time as an object dropped

vertically. This is because the vertical motions are the same in both cases, as
shown in Fig. 20. Figure 21 is a multiple-exposure photograph of an experiment
that confirms this.

EXERCISE D Return to the Chapter-Opening Question and answer it again now. Try to
explain why you may have answered differently the first time.

If an object is projected at an upward angle, as in Fig. 22, the analysis is
similar, except that now there is an initial vertical component of velocity,
Because of the downward acceleration of gravity, the upward component of
velocity gradually decreases with time until the object reaches the highest point
on its path, at which point Subsequently the object moves downward 
(Fig. 22) and increases in the downward direction, as shown (that is, becoming
more negative). As before, remains constant.vx

vy

vy = 0.
vy

vy 0 .

v
B

v
B

y ,v
B

x

x = vx 0 t.
vx 0 ,

vx ,ax = 0,

y = –  
1
2 gt2.vy 0 = 0.

vy = –gtay = –g,

Avy 0 = 0Bvy

t = 0

x

y

θ

0

= 0 at this point

0

0

y

y

y0
xv

S y

x

y

x

x0

v
S

v
B

v
B

v
B

v
B

v
B

v
B

v
B

v
B

v
B

v
B

v
B

v
B

v
B

v
B

= = �gĵg
B

a
B

FIGURE 22 Path of a projectile fired with initial
velocity at angle to the horizontal. Path is
shown dashed in black, the velocity vectors are
green arrows, and velocity components are
dashed. The acceleration  is downward.
That is, where is the unit vector in
the positive y direction.
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8 Solving Problems Involving
Projectile Motion

We now work through several Examples of projectile motion quantitatively.
We have simplified Equations (Table 1) for the case of projectile motion

because we can set See Table 2, which assumes y is positive upward, so
Note that if is chosen relative to the axis, as in Fig.

22, then

In doing Problems involving projectile motion, we must consider a time interval
for which our chosen object is in the air, influenced only by gravity. We do not
consider the throwing (or projecting) process, nor the time after the object lands
or is caught, because then other influences act on the object, and we can no
longer set aB = gB.

vy 0 = v0 sin u0 .

vx 0 = v0 cos u0 ,

±xuay = –g = –9.80 m�s2.
ax = 0.

TABLE 2 Kinematic Equations for Projectile Motion 
(y positive upward; )

Horizontal Motion Vertical Motion

If y is taken positive downward, the minus signs in front of g become plus signs.(±)(–)†

 vy
2 = vy 0

2 - 2g(y - y0)

 y = y0 + vy 0 t - 1
2 gt2 x = x0 + vx 0 t

 vy = vy 0 - gt vx = vx 0

Aay � �g � constantBAax � 0, £x � constantB
†

ax � 0,  ay � �g � �9.80 m�s
2

P R O B L E M  S O L V I N G

Choice of time interval

Projectile Motion

Solving problems involving projectile motion can
require creativity, and cannot be done just by
following some rules. Certainly you must avoid just
plugging numbers into equations that seem to
“work.”

1. As always, read carefully; choose the object (or
objects) you are going to analyze.

2. Draw a careful diagram showing what is happening
to the object.

3. Choose an origin and an xy coordinate system.
4. Decide on the time interval, which for projectile

motion can only include motion under the effect of
gravity alone, not throwing or landing. The time
interval must be the same for the x and y analyses.

The x and y motions are connected by the common
time.

5. Examine the horizontal (x) and vertical (y) motions
separately. If you are given the initial velocity, you
may want to resolve it into its x and y components.

6. List the known and unknown quantities, choosing
and or where 

and using the or sign, depending on whether
you choose y positive down or up. Remember that 
never changes throughout the trajectory, and that 

at the highest point of any trajectory that
returns downward. The velocity just before landing is
generally not zero.

7. Think for a minute before jumping into the equations.
A little planning goes a long way. Apply the relevant
equations (Table 2), combining equations if necessary.
You may need to combine components of a vector to
get magnitude and direction (Eqs. 3).

vy = 0

vx

–±
g = 9.80 m�s2,±g,ay = –gax = 0

P
R

O
B

L
E

M
S O L V I N

G
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EXAMPLE 6 Driving off a cliff. A movie stunt driver on a motorcycle speeds
horizontally off a 50.0-m-high cliff. How fast must the motorcycle leave the cliff
top to land on level ground below, 90.0 m from the base of the cliff where the
cameras are? Ignore air resistance.

APPROACH We explicitly follow the steps of the Problem Solving Strategy above.

SOLUTION

1. and 2. Read, choose the object, and draw a diagram. Our object is the
motorcycle and driver, taken as a single unit. The diagram is shown in Fig. 23.

3. Choose a coordinate system. We choose the y direction to be positive upward,
with the top of the cliff as The x direction is horizontal with 
at the point where the motorcycle leaves the cliff.

4. Choose a time interval. We choose our time interval to begin just as
the motorcycle leaves the cliff top at position our time
interval ends just before the motorcycle hits the ground below.

5. Examine x and y motions. In the horizontal (x) direction, the acceleration 
so the velocity is constant. The value of x when the motorcycle

reaches the ground is In the vertical direction, the accelera-
tion is the acceleration due to gravity, The value of
y when the motorcycle reaches the ground is The initial
velocity is horizontal and is our unknown, the initial vertical velocity is
zero,

6. List knowns and unknowns. See the Table in the margin. Note that in addition
to not knowing the initial horizontal velocity (which stays constant until
landing), we also do not know the time when the motorcycle reaches the
ground.

t
vx 0

vy 0 = 0.
vx 0 ;

y = –50.0 m.
ay = –g = –9.80 m�s2.

x = ±90.0 m.
ax = 0,

x0 = 0, y0 = 0;
(t = 0)

x0 = 0y0 = 0.

y = −50.0 m

50.0 m

= g
B

a
B

90.0 m

+ x

+ y

FIGURE 23 Example 6.

Known Unknown

 vy 0 = 0
 ay = –g = –9.80 m�s2
 ax = 0
 y = –50.0 m

t x = 90.0 m
vx 0 x0 = y0 = 0

7. Apply relevant equations. The motorcycle maintains constant as long as it is
in the air. The time it stays in the air is determined by the y motion—when it
hits the ground. So we first find the time using the y motion, and then use this
time value in the x equations. To find out how long it takes the motorcycle to
reach the ground below, we use Equation (Table 2) for the vertical (y) direc-
tion with and 

or

We solve for and set 

To calculate the initial velocity, we again use Equation, but this time for
the horizontal (x) direction, with and 

or

Then

which is about 100 km h (roughly 60 mi h).
NOTE In the time interval of the projectile motion, the only acceleration is g in
the negative y direction. The acceleration in the x direction is zero.

��

vx 0 =

x

t
=

90.0 m
3.19 s

= 28.2 m�s,

 x = vx 0 t.

 = 0  + vx 0 t + 0
 x = x0 + vx 0 t + 1

2 ax t2

x0 = 0:ax = 0
vx 0 ,

t = B 2y

–g
= B2(–50.0 m)

–9.80 m�s2
= 3.19 s.

y = –50.0 m:t

 y = –  
1
2 gt2.

 =  0  +     0   +  

1
2 (–g)  t2

 y = y0  +  vy 0 t  +  

1
2 ay t2

vy 0 = 0:y0 = 0

vx
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EXAMPLE 7 A kicked football. A football is kicked at an angle 
with a velocity of 20.0 m s, as shown in Fig. 24. Calculate (a) the maximum
height, (b) the time of travel before the football hits the ground, (c) how far away
it hits the ground, (d) the velocity vector at the maximum height, and (e) the
acceleration vector at maximum height. Assume the ball leaves the foot at
ground level, and ignore air resistance and rotation of the ball.

APPROACH This may seem difficult at first because there are so many questions.
But we can deal with them one at a time. We take the y direction as positive
upward, and treat the x and y motions separately. The total time in the air is again
determined by the y motion. The x motion occurs at constant velocity. The y

component of velocity varies, being positive (upward) initially, decreasing to zero
at the highest point, and then becoming negative as the football falls.
SOLUTION We resolve the initial velocity into its components (Fig. 24):

(a) We consider a time interval that begins just after the football loses contact
with the foot until it reaches its maximum height. During this time interval, the
acceleration is g downward. At the maximum height, the velocity is horizontal
(Fig. 24), so and this occurs at a time given by with 

(see Table 2). Thus

With we have

Alternatively, we could have solved for y, and found

The maximum height is 7.35 m.
(b) To find the time it takes for the ball to return to the ground, we consider a
different time interval, starting at the moment the ball leaves the foot 

and ending just before the ball touches the ground (
again). With and also set (ground level):

This equation can be easily factored:

There are two solutions, (which corresponds to the initial point, ), and

which is the total travel time of the football.

t =

2vy 0

g
=

2(12.0 m�s)

A9.80 m�s2B = 2.45 s,

y0t = 0

t  A12 gt - vy 0B = 0.

 0 = 0 + vy 0 t - 1
2 gt2.

 y = y0 + vy 0 t - 1
2 gt2

y = 0y0 = 0
y = 0At = 0,  y0 = 0B

y =

vy 0
2

 -  vy
2

2g
=

(12.0 m�s)2
 -  (0 m�s)2

2A9.80 m�s2B = 7.35 m.

 = (12.0 m�s)(1.224 s) -  

1
2 A9.80 m�s2B(1.224 s)2

= 7.35 m.

 y = vy 0 t -  

1
2 gt2

y0 = 0,

t =

vy 0

g
=

(12.0 m�s)

(9.80 m�s2)
= 1.224 s  L   1.22 s.

vy = 0
vy = vy 0 - gtvy = 0;

 vy 0 = v0 sin 37.0°  = (20.0 m�s)(0.602) = 12.0 m�s.

 vx 0 = v0 cos 37.0° = (20.0 m�s)(0.799) = 16.0 m�s

�

u0 = 37.0°

37.0°

y = 0 at this point

0

yv
B

v
B

v
B

x0v
B

y0v
B

0v
B

v
B

v
B

= = �gĵg
B

a
B

x

FIGURE 24 Example 7.
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y = 0
v0

y

d

FIGURE 26 Example 9.

y

x

(b) Ground reference frame

(a) Wagon reference frame

0

0x

y0v
B

y0v
B

v
B

v
B

v 0xv
B

FIGURE 25 Example 8.

NOTE The time needed for the whole trip, is double the
time to reach the highest point, calculated in (a). That is, the time to go up equals
the time to come back down to the same level (ignoring air resistance).
(c) The total distance traveled in the x direction is found (see Table 2) with

(d) At the highest point, there is no vertical component to the velocity. There is
only the horizontal component (which remains constant throughout the flight),
so 
(e) The acceleration vector is the same at the highest point as it is throughout the
flight, which is downward.
NOTE We treated the football as if it were a particle, ignoring its rotation. We
also ignored air resistance. Because air resistance is significant on a football, our
results are only estimates.

EXERCISE E Two balls are thrown in the air at different angles, but each reaches the same
height. Which ball remains in the air longer: the one thrown at the steeper angle or the
one thrown at a shallower angle?

CONCEPTUAL EXAMPLE 8 Where does the apple land? A child sits upright in
a wagon which is moving to the right at constant speed as shown in 
Fig. 25. The child extends her hand and throws an apple straight upward (from 
her own point of view, Fig. 25a), while the wagon continues to travel forward 
at constant speed. If air resistance is neglected, will the apple land (a) behind 
the wagon, (b) in the wagon, or (c) in front of the wagon?
RESPONSE The child throws the apple straight up from her own reference frame
with initial velocity (Fig. 25a). But when viewed by someone on the ground,
the apple also has an initial horizontal component of velocity equal to the speed
of the wagon, Thus, to a person on the ground, the apple will follow the path
of a projectile as shown in Fig. 25b. The apple experiences no horizontal acceler-
ation, so will stay constant and equal to the speed of the wagon. As the apple
follows its arc, the wagon will be directly under the apple at all times because
they have the same horizontal velocity. When the apple comes down, it will drop
right into the outstretched hand of the child. The answer is (b).

CONCEPTUAL EXAMPLE 9 The wrong strategy. A boy on a small hill aims his
water-balloon slingshot horizontally, straight at a second boy hanging from a tree
branch a distance d away, Fig. 26. At the instant the water balloon is released, the
second boy lets go and falls from the tree, hoping to avoid being hit. Show that he
made the wrong move. (He hadn’t studied physics yet.) Ignore air resistance.
RESPONSE Both the water balloon and the boy in the tree start falling at the
same instant, and in a time they each fall the same vertical distance 
much like Fig. 21. In the time it takes the water balloon to travel the horizontal
distance d, the balloon will have the same y position as the falling boy. Splat. If
the boy had stayed in the tree, he would have avoided the humiliation.

y = 1
2 gt2,t

vBx 0

v
B

x 0 .

v
B

y 0

9.80 m�s2

v = vx 0 = v0 cos 37.0° = 16.0 m�s.

x = vx 0 t = (16.0 m�s)(2.45 s) = 39.2 m.

x0 = 0,  ax = 0,  vx 0 = 16.0 m�s:

t = 2vy 0 �g = 2.45 s,
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y = 0 again here
(where x = R)

y

x

x0 = 0
y0 = 0

0

(b)

60°

30°

y

x

(a)
R

45°

θ

FIGURE 27 Example 10.
(a) The range R of a projectile;
(b) there are generally two angles 
that will give the same range. Can
you show that if one angle is 
the other is u02 = 90° - u01 ?

u01 ,

u0

EXAMPLE 10 Level horizontal range. (a) Derive a formula for the hori-
zontal range R of a projectile in terms of its initial speed and angle The
horizontal range is defined as the horizontal distance the projectile travels
before returning to its original height (which is typically the ground); that is,

See Fig. 27a. (b) Suppose one of Napoleon’s cannons had a
muzzle speed, of 60.0 m s. At what angle should it have been aimed (ignore
air resistance) to strike a target 320 m away?

APPROACH The situation is the same as in Example 7, except we are now not
given numbers in (a). We will algebraically manipulate equations to obtain our
result.
SOLUTION (a) We set and at After the projectile travels
a horizontal distance R, it returns to the same level, the final point. We
choose our time interval to start just after the projectile is fired and to
end when it returns to the same vertical height. To find a general expression for R,
we set both and (see Table 2) for the vertical motion, and obtain

so

We solve for , which gives two solutions: and The first solu-
tion corresponds to the initial instant of projection and the second is the time
when the projectile returns to Then the range, R, will be equal to x at the
moment has this value, (see Table 2) for the horizontal motion ( with

). Thus we have:

where we have written and This is the result we
sought. It can be rewritten, using the trigonometric identity :

[only if ]

We see that the maximum range, for a given initial velocity is obtained when
takes on its maximum value of 1.0, which occurs for so

[When air resistance is important, the range is less for a given and the
maximum range is obtained at an angle smaller than 45°.]
NOTE The maximum range increases by the square of so doubling the muzzle
velocity of a cannon increases its maximum range by a factor of 4.

(b) We put into the equation we just derived, and (assuming, unreal-
istically, no air resistance) we solve it to find

We want to solve for an angle that is between 0° and 90°, which means 
in this equation can be as large as 180°. Thus, is a solution, but 

is also a solution. In general we will have two solu-
tions (see Fig. 27b), which in the present case are given by

Either angle gives the same range. Only when (so ) is there
a single solution (that is, both solutions are the same).

u0 = 45°sin 2u0 = 1

u0 = 30.3° or 59.7°.

2u0 = 180° - 60.6° = 119.4°
2u0 = 60.6°

2u0u0

sin 2u0 =

Rg

v0
2

=

(320 m)A9.80 m�s2B
(60.0 m�s)2

= 0.871.

R = 320 m

v0 ,

v0 ,

u0 = 45°  for maximum range, and  Rmax = v0
2�g.

2u0 = 90°;sin 2u
v0 ,

y (final) = y0R =

v0
2 sin 2u0

g
.

2 sin u cos u = sin 2u
vy 0 = v0 sin u0 .vx 0 = v0 cos u0

Cy = y0 DR = vx 0 t = vx 0 ¢ 2vy 0

g
≤ =

2vx 0 vy 0

g
=

2v0
2 sin u0 cos u0

g
,

x0 = 0
x = vx 0 t,t

y = 0.

t = 2vy 0�g.t = 0t

 0 = 0 + vy 0 t - 1
2 gt2.

 y = y0 + vy 0 t + 1
2 ay t2

y0 = 0y = 0

(t = 0)
y = 0,

t = 0.y0 = 0x0 = 0

�v0 ,
y (final) = y0 .

u0 .v0
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Do not use any formula unless you
are sure its range of validity fits the
problem; the range formula does 
not apply here because y Z y0

EXERCISE F The maximum range of a projectile is found to be 100 m. If the projectile
strikes the ground a distance of 82 m away, what was the angle of launch? (a) 35° or 55°;
(b) 30° or 60°; (c) 27.5° or 62.5°; (d) 13.75° or 76.25°.

The level range formula derived in Example 10 applies only if takeoff and
landing are at the same height Example 11 below considers a case
where they are not equal heights

EXAMPLE 11 A punt. Suppose the football in Example 7 was punted and left
the punter’s foot at a height of 1.00 m above the ground. How far did the football
travel before hitting the ground? Set 

APPROACH The x and y motions are again treated separately. But we cannot use
the range formula from Example 10 because it is valid only if 
which is not the case here. Now we have and the football hits the ground
where (see Fig. 28). We choose our time interval to start when the
ball leaves his foot and end just before the ball hits the
ground We can get x (see Table 3) where, since we
know that from Example 7. But first we must find , the time at
which the ball hits the ground, which we obtain from the y motion.

tvx 0 = 16.0 m�s
x = vx 0 t,(y = –1.00 m).

At = 0, y0 = 0, x0 = 0B
y = –1.00 m

y0 = 0,
y (final) = y0 ,

x0 = 0, y0 = 0.

Ay Z y0B.
Ay = y0B.

FIGURE 28 Example 11: the football leaves
the punter’s foot at and reaches the
ground where y = –1.00 m.

y = 0,

SOLUTION With and (see Example 7), we use
the equation

and obtain

We rearrange this equation into standard form so we can
use the quadratic formula:

The quadratic formula gives

The second solution would correspond to a time prior to our chosen time interval
that begins at the kick, so it doesn’t apply. With for the time at which
the ball touches the ground, the horizontal distance the ball traveled is (using 

from Example 7):

Our assumption in Example 7 that the ball leaves the foot at ground level would
result in an underestimate of about 1.3 m in the distance our punt traveled.

x = vx 0 t = (16.0 m�s)(2.53 s) = 40.5 m.

vx 0 = 16.0 m�s

t = 2.53 s

 = 2.53 s or –0.081 s.

 t =

12.0 m�s63(–12.0 m�s)2 - 4A4.90 m�s2B(–1.00 m)

2A4.90 m�s2B

A4.90 m�s2B     t2 - (12.0 m�s)  t - (1.00 m) = 0.

Aax2 + bx + c = 0B
–1.00 m = 0 + (12.0 m�s)  t - A4.90 m�s2B     t2.

y = y0 + vy 0 t - 1
2 gt2,

vy 0 = 12.0 m�sy = –1.00 m
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“Dropped”
( y0 = 0)

200 m 200 m

(a)

x

y

x0 Thrown upward?
( y0 > 0)

400 m

(b)

Thrown downward?
( y0 < 0)v

v

v

v

FIGURE 29 Example 12.

P H Y S I C S  A P P L I E D

Reaching a target 
from a moving helicopter

EXAMPLE 12 Rescue helicopter drops supplies. A rescue helicopter wants
to drop a package of supplies to isolated mountain climbers on a rocky ridge
200 m below. If the helicopter is traveling horizontally with a speed of 70 m s
(250 km h), (a) how far in advance of the recipients (horizontal distance) must
the package be dropped (Fig. 29a)? (b) Suppose, instead, that the helicopter
releases the package a horizontal distance of 400 m in advance of the mountain
climbers. What vertical velocity should the package be given (up or down) 
so that it arrives precisely at the climbers’ position (Fig. 29b)? (c) With what
speed does the package land in the latter case?

APPROACH We choose the origin of our xy coordinate system at the initial position
of the helicopter, taking upward, and use the kinematic equations (Table 2).
SOLUTION (a) We can find the time to reach the climbers using the vertical distance of
200 m. The package is “dropped” so initially it has the velocity of the helicopter,

Then, since we have

The horizontal motion of the falling package is at constant speed of 70 m s. So

assuming the given numbers were good to two significant figures.
(b) We are given and we want to find 
(see Fig. 29b). Like most problems, this one can be approached in various ways.
Instead of searching for a formula or two, let’s try to reason it out in a simple way,
based on what we did in part (a). If we know , perhaps we can get Since the
horizontal motion of the package is at constant speed (once it is released we don’t
care what the helicopter does), we have so

Now let’s try to use the vertical motion to get Since 
and we can solve for 

Thus, in order to arrive at precisely the mountain climbers’ position, the package
must be thrown downward from the helicopter with a speed of 7.0 m s.
(c) We want to know of the package at The components are:

So (Better not to release the package
from such an altitude, or use a parachute.)

v = 3(70 m�s)2 + (–63 m�s)2 = 94 m�s.

 vy = vy 0 -  gt = –7.0 m�s -  A9.80 m�s2B(5.71 s) = –63 m�s.

 vx = vx 0 = 70 m�s

t = 5.71 s.v

�

vy 0 =

y +  

1
2 gt2

t
=

–200 m +  

1
2 A9.80 m�s2B(5.71 s)2

5.71 s
= –7.0 m�s.

vy 0 :y = –200 m,y0 = 0
vy 0 : y = y0 + vy 0 t - 1

2 gt2.

t =

x

vx 0
=

400 m
70 m�s

= 5.71 s.

x = vx 0 t,

vy 0 .t

vy 0x = 400 m,  vx 0 = 70 m�s,  y = –200 m,

x = vx 0 t = (70 m�s)(6.39 s) = 447 m  L   450 m,

�

t = B –2y

g
= B –2(–200 m)

9.80 m�s2
= 6.39 s.

y = –  
1
2 gt2,vx 0 = 70 m�s,  vy 0 = 0.

±y

�

�
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Projectile Motion Is Parabolic

We now show that the path followed by any projectile is a parabola, if we can
ignore air resistance and can assume that is constant. To do so, we need to find y
as a function of x by eliminating between the two equations for horizontal and
vertical motion (Table 2), and for simplicity we set 

From the first equation, we have and we substitute this into the second
one to obtain

(14)

We see that y as a function of x has the form

where A and B are constants for any specific projectile motion.This is the well-known
equation for a parabola. See Figs. 19 and 30.

The idea that projectile motion is parabolic was, in Galileo’s day, at the forefront
of physics research. Today we discuss it in this Chapter of introductory physics!

y = Ax - Bx2,

y = ¢ vy 0

vx 0
≤x - ¢ g

2vx 0
2
≤x2.

t = x�vx 0 ,

 y = vy 0 t - 1
2 gt2

 x = vx 0 t

x0 = y0 = 0 :
t

gB

FIGURE 30 Examples of projectile motion—sparks (small hot glowing pieces of metal), water, and fireworks. The
parabolic path characteristic of projectile motion is affected by air resistance.

9 Relative Velocity
We now consider how observations made in different frames of reference are
related to each other. For example, consider two trains approaching one another,
each with a speed of 80 km h with respect to the Earth. Observers on the Earth
beside the train tracks will measure 80 km hr for the speed of each of the trains.
Observers on either one of the trains (a different frame of reference) will measure
a speed of 160 km h for the train approaching them.

Similarly, when one car traveling 90 km h passes a second car traveling in the
same direction at 75 km h, the first car has a speed relative to the second car of 

When the velocities are along the same line, simple addition or subtraction is
sufficient to obtain the relative velocity. But if they are not along the same line, we
must make use of vector addition. We emphasize that when specifying a velocity, it
is important to specify what the reference frame is.

90 km�h - 75 km�h = 15 km�h.
�

�

�

�

�

Don Farrall/PhotoDisc/Getty Images Richard Megna/Fundamental Photographs, NYC
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†We thus would know by inspection that (for example) the equation  is wrong.V
B

BW = V
B

BS + V
B

WS

When determining relative velocity, it is easy to make a mistake by adding or
subtracting the wrong velocities. It is important, therefore, to draw a diagram and
use a careful labeling process. Each velocity is labeled by two subscripts: the first

refers to the object, the second to the reference frame in which it has this velocity.
For example, suppose a boat is to cross a river to the opposite side, as shown in
Fig. 31. We let be the velocity of the Boat with respect to the Water. (This is
also what the boat’s velocity would be relative to the shore if the water were still.)
Similarly, is the velocity of the Boat with respect to the Shore, and is the
velocity of the Water with respect to the Shore (this is the river current). Note that

is what the boat’s motor produces (against the water), whereas is equal to
plus the effect of the current, Therefore, the velocity of the boat relative

to the shore is (see vector diagram, Fig. 31)

(15)

By writing the subscripts using this convention, we see that the inner subscripts
(the two W’s) on the right-hand side of Eq. 15 are the same, whereas the outer
subscripts on the right of Eq. 15 (the B and the S) are the same as the two
subscripts for the sum vector on the left, By following this convention (first
subscript for the object, second for the reference frame), you can write down the
correct equation relating velocities in different reference frames.† Figure 32 gives a
derivation of Eq. 15.

Equation 15 is valid in general and can be extended to three or more veloci-
ties. For example, if a fisherman on the boat walks with a velocity relative to
the boat, his velocity relative to the shore is The equations
involving relative velocity will be correct when adjacent inner subscripts are
identical and when the outermost ones correspond exactly to the two on the velocity
on the left of the equation. But this works only with plus signs (on the right), not
minus signs.

It is often useful to remember that for any two objects or reference frames,
A and B, the velocity of A relative to B has the same magnitude, but opposite
direction, as the velocity of B relative to A:

(16)

For example, if a train is traveling 100 km h relative to the Earth in a certain direc-
tion, objects on the Earth (such as trees) appear to an observer on the train to be
traveling 100 km h in the opposite direction.�

�

vBBA = –v
B

AB .

v
B

FS = v
B

FB + v
B

BW + v
B

WS .
v
B

FB

v
B

BS .

v
B

BS = v
B

BW + v
B

WS .

v
B

WS .vBBW

v
B

BSv
B

BW

vBWSv
B

BS

vBBW

PT

TE

PE

y

x
0

y′

x ′
0′

r
B r

B

TEr
B

v
B

FIGURE 32 Derivation of relative velocity equation (Eq. 15), in this case for a
person walking along the corridor in a train. We are looking down on the train and
two reference frames are shown: xy on the Earth and fixed on the train. We
have:

From the diagram we see that

We take the derivative with respect to time to obtain

or, since 

This is the equivalent of Eq. 15 for the present situation (check the subscripts!).

vBPE = vBPT + vBTE .

drB�dt = vB,

d

dt
 ArBPEB =

d

dt
 ArBPTB +

d

dt
 ArBTEB .

r
B

PE = rBPT + rBTE .

 rBTE = position vector of train’s coordinate system (T) relative to Earth (E).

 rBPE = position vector of person (P) relative to Earth (E),

 rBPT = position vector of person (P) relative to train (T),

x¿y¿

FIGURE 31 To move directly
across the river, the boat must head
upstream at an angle . Velocity
vectors are shown as green arrows:

velocity of Boat with
respect to the Shore,

velocity of Boat with
respect to the Water,

velocity of the Water with
respect to the Shore (river
current).

 vBWS =

 vBBW =

 vBBS =

u
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FIGURE 33 Examples 13 
and 14.

BS
BW

WSv
B

v
B

v
B

θ

River current

FIGURE 34 Example 15.
A boat heading directly across a
river whose current moves at
1.20 m s.�

CONCEPTUAL EXAMPLE 13 Crossing a river. A woman in a small motor boat
is trying to cross a river that flows due west with a strong current.The woman starts
on the south bank and is trying to reach the north bank directly north from her
starting point. Should she (a) head due north, (b) head due west, (c) head in a north-
westerly direction, (d) head in a northeasterly direction?

RESPONSE If the woman heads straight across the river, the current will drag the
boat downstream (westward). To overcome the river’s westward current, the boat
must acquire an eastward component of velocity as well as a northward compo-
nent. Thus the boat must (d) head in a northeasterly direction (see Fig. 33). The
actual angle depends on the strength of the current and how fast the boat moves
relative to the water. If the current is weak and the motor is strong, then the boat
can head almost, but not quite, due north.

EXAMPLE 14 Heading upstream. A boat’s speed in still water is 
If the boat is to travel directly across a river whose current has

speed at what upstream angle must the boat head? (See Fig. 33.)

APPROACH We reason as in Example 13, and use subscripts as in Eq. 15. Figure
33 has been drawn with the velocity of the Boat relative to the Shore,
pointing directly across the river because this is how the boat is supposed to
move. (Note that ) To accomplish this, the boat needs to head
upstream to offset the current pulling it downstream.
SOLUTION Vector points upstream at an angle as shown. From the diagram,

Thus so the boat must head upstream at a 40.4° angle.

EXAMPLE 15 Heading across the river. The same boat 
now heads directly across the river whose current is still 1.20 m s. (a) What is the
velocity (magnitude and direction) of the boat relative to the shore? (b) If the
river is 110 m wide, how long will it take to cross and how far downstream will
the boat be then?

APPROACH The boat now heads directly across the river and is pulled down-
stream by the current, as shown in Fig. 34. The boat’s velocity with respect to the
shore, is the sum of its velocity with respect to the water, plus the
velocity of the water with respect to the shore,

just as before.
SOLUTION (a) Since is perpendicular to we can get using the
theorem of Pythagoras:

We can obtain the angle (note how is defined in the diagram) from:

Thus Note that this angle is not equal to the angle
calculated in Example 14.
(b) The travel time for the boat is determined by the time it takes to cross the river.
Given the river’s width we can use the velocity component in the
direction of D, Solving for , we get 
The boat will have been carried downstream, in this time, a distance

NOTE There is no acceleration in this Example, so the motion involves only
constant velocities (of the boat or of the river).

d = vWS t = (1.20 m�s)(59.5 s) = 71.4 m  L   71 m.

t = 110 m�1.85 m�s = 59.5 s.tvBW = D�t.
D = 110 m,

u = tan–1 (0.6486) = 33.0°.

tan u = vWS�vBW = (1.20 m�s)�(1.85 m�s) = 0.6486.

u

vBS = 3vBW
2

 +  vWS
2

= 3(1.85 m�s)2
 +  (1.20 m�s)2

= 2.21 m�s.

vBSvBWS ,vBBW

vBBS = vBBW + vBWS ,

v
B

WS :
v
B

BW ,v
B

BS ,

�

AvBW = 1.85 m�sB
u = 40.4°,

sin u =

vWS

vBW

=

1.20 m�s
1.85 m�s

= 0.6486.

uvBBW

vBBS = vBBW + vBWS .

v
B

BS ,

vWS = 1.20 m�s,
vBW = 1.85 m�s.
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FIGURE 35 Example 16.

A quantity that has both a magnitude and a direction is called a
vector. A quantity that has only a magnitude is called a scalar.

Addition of vectors can be done graphically by placing the
tail of each successive arrow (representing each vector) at the
tip of the previous one. The sum, or resultant vector, is the arrow
drawn from the tail of the first to the tip of the last. Two vectors
can also be added using the parallelogram method.

Vectors can be added more accurately using the analytical
method of adding their components along chosen axes with the
aid of trigonometric functions. A vector of magnitude V making
an angle with the x axis has components

(2)

Given the components, we can find the magnitude and direction from

(3)

It is often helpful to express a vector in terms of its components
along chosen axes using unit vectors, which are vectors of unit

V = 3Vx
2 + Vy

2 ,  tan u =

Vy

Vx
.

Vx = V cos u    Vy = V sin u.

u

length along the chosen coordinate axes; for Cartesian coordinates
the unit vectors along the x, y, and z axes are called and 

The general definitions for the instantaneous velocity,
and acceleration, of a particle (in one, two, or three dimen-
sions) are

(8)

(11)

where is the position vector of the particle. The kinematic
equations for motion with constant acceleration can be written
for each of the x, y, and z components of the motion and have
the same form as for one-dimensional motion. Or they can be
written in the more general vector form:

(13)

Projectile motion of an object moving in the air near the
Earth’s surface can be analyzed as two separate motions if air

 rB = r
B

0 + v
B

0 t + 1
2 a

Bt2
 vB = v

B

0 + a
Bt

r
B

 aB =

d v
B

dt  

,

 vB =

d r
B

dt  

a
B,

v
B,

k̂.ĵ,î,

EXAMPLE 16 Car velocities at 90°. Two automobiles approach a street corner at
right angles to each other with the same speed of as
shown in Fig. 35a. What is the relative velocity of one car with respect to the other?
That is, determine the velocity of car 1 as seen by car 2.

APPROACH Figure 35a shows the situation in a reference frame fixed to the
Earth. But we want to view the situation from a reference frame in which car 2 is
at rest, and this is shown in Fig. 35b. In this reference frame (the world as seen by
the driver of car 2), the Earth moves toward car 2 with velocity (speed of
40.0 km h), which is of course equal and opposite to the velocity of car 2
with respect to the Earth (Eq. 16):

Then the velocity of car 1 as seen by car 2 is (see Eq. 15)

SOLUTION Because  then

That is, the velocity of car 1 as seen by car 2 is the difference of their velocities,
both measured relative to the Earth (see Fig. 35c). Since the magni-

tudes of and are equal , we see (Fig. 35b)
that points at a 45° angle toward car 2; the speed is

v1 2 = 3(11.11 m�s)2 + (11.11 m�s)2
= 15.7 m�s (  = 56.6 km�h).

vB1 2

(40.0 km�h = 11.11 m�s)vBE 2vB1 E ,  v
B

2 E ,
v
B

1 E - v
B

2 E ,

v
B

1 2 = v
B

1 E - v
B

2 E .

v
B

E 2 = –vB2 E ,

vB1 2 = vB1 E + vBE 2

vB2 E = –v
B

E 2 .

v
B

2 E ,�

vBE 2

40.0 km�h (  = 11.11 m�s),
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resistance can be ignored. The horizontal component of the
motion is at constant velocity, whereas the vertical component is
at constant acceleration, g, just as for an object falling vertically
under the action of gravity.

The velocity of an object relative to one frame of reference
can be found by vector addition if its velocity relative to a
second frame of reference, and the relative velocity of the two
reference frames, are known.

Kinematics in Two or Three Dimensions; Vectors

A: When the two vectors and point in the same direction.

B:

C: (a).

322 = 4.24.

D2D1 D: (d).
E: Both balls reach the same height, so are in the air for the

same length of time.
F: (c).

Answers to Exercises
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Questions
1. One car travels due east at 40 km h, and a second car travels

north at 40 km h. Are their velocities equal? Explain.
2. Can you conclude that a car is not accelerating if its

speedometer indicates a steady 60 km h?
3. Can you give several examples of an object’s motion in

which a great distance is traveled but the displacement is
zero?

4. Can the displacement vector for a particle moving in two
dimensions ever be longer than the length of path traveled
by the particle over the same time interval? Can it ever be
less? Discuss.

5. During baseball practice, a batter hits a very high fly ball
and then runs in a straight line and catches it. Which had the
greater displacement, the player or the ball?

6. If is V necessarily greater than and/or
Discuss.

7. Two vectors have length and 
What are the maximum and minimum magnitudes of their
vector sum?

8. Can two vectors, of unequal magnitude, add up to give the zero
vector? Can three unequal vectors? Under what conditions?

9. Can the magnitude of a vector ever (a) equal, or (b) be less
than, one of its components?

10. Can a particle with constant speed be accelerating? What if
it has constant velocity?

11. Does the odometer of a car measure a scalar or a vector
quantity? What about the speedometer?

12. A child wishes to determine the speed a slingshot imparts to
a rock. How can this be done using only a meter stick, a
rock, and the slingshot?

13. In archery, should the arrow be aimed directly at the target?
How should your angle of aim depend on the distance to
the target?

V2 = 4.0 km.V1 = 3.5 km
V2 ?

V1V
B

= V
B

1 + V
B

2 ,

�

�

� 14. A projectile is launched at an upward angle of 30° to the
horizontal with a speed of 30 m s. How does the horizontal
component of its velocity 1.0 s after launch compare with its
horizontal component of velocity 2.0 s after launch, ignoring
air resistance?

15. A projectile has the least speed at what point in its path?
16. It was reported in World War I that a pilot flying at an

altitude of 2 km caught in his bare hands a bullet fired at 
the plane! Using the fact that a bullet slows down consid-
erably due to air resistance, explain how this incident
occurred.

17. Two cannonballs, A and B, are fired from the ground with
identical initial speeds, but with larger than (a) Which
cannonball reaches a higher elevation? (b) Which stays longer
in the air? (c) Which travels farther?

18. A person sitting in an enclosed train car, moving at constant
velocity, throws a ball straight up into the air in her refer-
ence frame. (a) Where does the ball land? What is your
answer if the car (b) accelerates, (c) decelerates, (d) rounds
a curve, (e) moves with constant velocity but is open to
the air?

19. If you are riding on a train that speeds past another train
moving in the same direction on an adjacent track, it
appears that the other train is moving backward. Why?

20. Two rowers, who can row at the same speed in still water,
set off across a river at the same time. One heads straight
across and is pulled downstream somewhat by the current.
The other one heads upstream at an angle so as to arrive at
a point opposite the starting point. Which rower reaches the
opposite side first?

21. If you stand motionless under an umbrella in a rainstorm
where the drops fall vertically you remain relatively dry.
However, if you start running, the rain begins to hit your
legs even if they remain under the umbrella. Why?

uB .uA

�

Problems

2 to 5 Vector Addition; Unit Vectors
1. (I) A car is driven 225 km west and then 78 km southwest (45°).

What is the displacement of the car from the point of origin
(magnitude and direction)? Draw a diagram.

2. (I) A delivery truck travels 28 blocks north, 16 blocks east,
and 26 blocks south. What is its final displacement from the
origin? Assume the blocks are equal length.

Kinematics in Two or Three Dimensions; Vectors
Problem Set

[The Problems in this Section are ranked I, II, or III according to
estimated difficulty, with (I) Problems being easiest. Level (III)
Problems are meant mainly as a challenge for the best students, for
“extra credit.” The Problems are arranged by Sections, meaning that
the reader should have read up to and including that Section, but
this Chapter also has a group of General Problems that are not
arranged by Section and not ranked.]

3. (I) If and determine the
magnitude and direction of 

4. (II) Graphically determine the resultant of the following three
vector displacements: (1) 24 m, 36° north of east; (2) 18 m,
37° east of north; and (3) 26 m, 33° west of south.

5. (II) is a vector 24.8 units in magnitude and points at an
angle of 23.4° above the negative x axis. (a) Sketch this vector.
(b) Calculate and (c) Use and to obtain (again) the
magnitude and direction of [Note: Part (c) is a good way
to check if you’ve resolved your vector correctly.]

6. (II) Figure 36 shows two vectors, and whose magni-
tudes are and Determine if
(a) (b) (c) Give the
magnitude and direction for each.

C
B

= B
B

- A
B

.C
B

= A
B

- B
B

,C
B

= A
B

+ B
B

,
C
B

B = 5.5 units.A = 6.8 units
B
B

,A
B

V
B

.
VyVxVy .Vx

V
B

V
B

.
Vy = –6.40 units,Vx = 7.80 units

From Chapter Physics for Scientists & Engineers with Modern Physics, Fourth Edition, Douglas C. Giancoli.
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Kinematics in Two or Three Dimensions; Vectors: Problem Set

(C = 31.0)C
B

(B
 = 26.5)

(A =  44.0)

B B

A
B

x

y

56.0° 28.0°

camp in a direction 32.4° west of north. What are the
components of the displacement vector from camp to
summit? What is its magnitude? Choose the x axis east,
y axis north, and z axis up.

16. (III) You are given a vector in the xy plane that has a
magnitude of 90.0 units and a y component of 
(a) What are the two possibilities for its x component? 
(b) Assuming the x component is known to be positive,
specify the vector which, if you add it to the original one,
would give a resultant vector that is 80.0 units long and
points entirely in the direction.

6 Vector Kinematics
17. (I) The position of a particular particle as a function of time

is given by Determine
the particle’s velocity and acceleration as a function of time.

18. (I) What was the average velocity of the particle in Problem 17
between and What is the magnitude
of the instantaneous velocity at 

19. (II) What is the shape of the path of the particle of
Problem 17?

20. (II) A car is moving with speed 18.0 m s due south at one
moment and 27.5 m s due east 8.00 s later. Over this time
interval, determine the magnitude and direction of (a) its
average velocity, (b) its average acceleration. (c) What is its
average speed. [Hint: Can you determine all these from the
information given?]

21. (II) At a particle starts from rest at 
and moves in the xy plane with an acceleration 

Determine (a) the x and y compo-
nents of velocity, (b) the speed of the particle, and (c) the
position of the particle, all as a function of time. (d) Eval-
uate all the above at 

22. (II) (a) A skier is accelerating down a 30.0° hill at 
(Fig. 39). What is the vertical component of her accelera-
tion? (b) How long will it take her to reach the bottom of
the hill, assuming she starts from rest and accelerates
uniformly, if the elevation change is 325 m?

1.80 m�s2
t = 2.0 s.

aB = A4.0  î + 3.0  ĵB m�s2.

x = 0,  y = 0,t = 0,

�

�

t = 2.00 s?
t = 3.00 s?t = 1.00 s

rB = A9.60 t   î + 8.85  ĵ - 1.00 t2
 k̂B m.

–x

–55.0 units.

7. (II) An airplane is traveling 835 km h in a direction 41.5° west
of north (Fig. 37). (a) Find 
the components of the
velocity vector in
the northerly and
westerly directions.
(b) How far north
and how far west
has the plane trav-
eled after 2.50 h?

�

8. (II) Let and Deter-
mine the magnitude and direction of (a) (b) 
(c) and (d) 

9. (II) (a) Determine the magnitude and direction of the
sum of the three vectors and

(b) Determine
10. (II) Three vectors are shown in Fig. 38. Their magnitudes

are given in arbitrary units. Determine the sum of the
three vectors. Give the resultant in terms of (a) components,
(b) magnitude and angle with x axis.

V
B

1 - V
B

2 + V
B

3 .V
B

3 = –2.0  î + 4.0  ĵ.
V
B

1 = 4.0  î - 8.0  ĵ, V
B

2 = î + ĵ,

V
B

2 - V
B

1 .V
B

1 + V
B

2

V
B

2 ,V
B

1 ,
V
B

2 = 4.5  î - 5.0  ĵ.V
B

1 = –6.0  î + 8.0  ĵ

11. (II) (a) Given the vectors and shown in Fig. 38, deter-
mine (b) Determine without using your
answer in (a). Then compare your results and see if they are
opposite.

12. (II) Determine the vector given the vectors and 
in Fig. 38.

13. (II) For the vectors shown in Fig. 38, determine (a) 
(b) 

14. (II) For the vectors given in Fig. 38, determine 
(a) (b) and (c) 

15. (II) The summit of a mountain, 2450 m above base camp, is
measured on a map to be 4580 m horizontally from the
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B

- B
B
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B

+ B
B
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B
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B

- B
B
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B
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A
B
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B

,
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B
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B
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B
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B

.
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B
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B

30.0°

a = 1.80 m/s2

FIGURE 39 Problem 22.
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(835 km/h)
41.5°v
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FIGURE 37
Problem 7.

FIGURE 38
Problems 10, 11, 12, 13, and 14.
Vector magnitudes are given 
in arbitrary units.

x

y

A
B

B
B

FIGURE 36 Problem 6.

23. (II) An ant walks on a piece of graph paper straight along the
x axis a distance of 10.0 cm in 2.00 s. It then turns left 30.0°
and walks in a straight line another 10.0 cm in 1.80 s. Finally,
it turns another 70.0° to the left and walks another 10.0 cm
in 1.55 s. Determine (a) the x and y components of the ant’s
average velocity, and (b) its magnitude and direction.
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37. (II) You buy a plastic dart gun, and being a clever physics
student you decide to do a quick calculation to find 
its maximum horizontal range. You shoot the gun straight
up, and it takes 4.0 s for the dart to land back at the barrel.
What is the maximum horizontal range of your gun?

38. (II) A baseball is hit with a speed of 27.0 m s at an angle of
45.0°. It lands on the flat roof of a 13.0-m-tall nearby
building. If the ball was hit when it was 1.0 m above the
ground, what horizontal distance does it travel before it
lands on the building?

39. (II) In Example 11 of “Kinematics in Two or Three Dimen-
sions; Vectors” we chose the x axis to the right and y axis
up. Redo this problem by defining the x axis to the left and
y axis down, and show that the conclusion remains the
same—the football lands on the ground 40.5 m to the right
of where it departed the punter’s foot.

40. (II) A grasshopper hops down a level road. On each hop,
the grasshopper launches itself at angle and
achieves a range What is the average hori-
zontal speed of the grasshopper as it progresses down the
road? Assume that the time spent on the ground between
hops is negligible.

41. (II) Extreme-sports enthusiasts have been known to jump
off the top of El Capitan, a sheer granite cliff of height
910 m in Yosemite National Park. Assume a jumper runs
horizontally off the top of El Capitan with speed 5.0 m s
and enjoys a freefall until she is 150 m above the valley
floor, at which time she opens her parachute (Fig. 41).
(a) How long is the jumper in freefall? Ignore air resis-
tance. (b) It is important to be as far away from the cliff as
possible before opening the parachute. How far from the cliff
is this jumper when she
opens her chute?

�

R = 1.0 m.
u0 = 45°

�

32. (II) A ball is thrown horizontally from the roof of a building
9.0 m tall and lands 9.5 m from the base. What was the ball’s
initial speed?

33. (II) A football is kicked at ground level with a speed of
18.0 m s at an angle of 38.0° to the horizontal. How much
later does it hit the ground?

34. (II) A ball thrown horizontally at 23.7 m s from the roof of
a building lands 31.0 m from the base of the building. How
high is the building?

35. (II) A shot-putter throws the shot with an
initial speed of 14.4 m s at a 34.0° angle to the horizontal.
Calculate the horizontal distance traveled by the shot if it leaves
the athlete’s hand at a height of 2.10 m above the ground.

36. (II) Show that the time required for a projectile to reach its
highest point is equal to the time for it to return to its orig-
inal height if air resistance is neglible.

�

(mass = 7.3 kg)

�

�

2.5 m

u
  0

FIGURE 41
Problem 41.

FIGURE 40
Problem 31.

24. (II) A particle starts from the origin at with an initial
velocity of 5.0 m s along the positive x axis. If the accelera-
tion is determine the velocity and posi-
tion of the particle at the moment it reaches its maximum
x coordinate.

25. (II) Suppose the position of an object is given by
(a) Determine its velocity and

acceleration as a function of time. (b) Determine and 
at time 

26. (II) An object, which is at the origin at time has
initial velocity and constant
acceleration Find the position 
where the object comes to rest (momentarily).

27. (II) A particle’s position as a function of time is given 
by At 
find the magnitude and direction of the particle’s displace-
ment vector relative to the point 

7 and 8 Projectile Motion (neglect air resistance)
28. (I) A tiger leaps horizontally from a 7.5-m-high rock with a

speed of 3.2 m s. How far from the base of the rock will she
land?

29. (I) A diver running 2.3 m s dives out horizontally from the
edge of a vertical cliff and 3.0 s later reaches the water
below. How high was the cliff and how far from its base did
the diver hit the water?

30. (II) Estimate how much farther a person can jump on the
Moon as compared to the Earth if the takeoff speed and
angle are the same. The acceleration due to gravity on the
Moon is one-sixth what it is on Earth.

31. (II) A fire hose held near the ground shoots water at a 
speed of 6.5 m s. At what angle(s) should the nozzle point 
in order that the water land
2.5 m away (Fig. 40)? 
Why are there two
different angles? Sketch
the two trajectories.

�

�

�

rB0 = A0.0  î + 7.0  ĵB m.¢r
B

t = 5.0 s,r
B

= A5.0 t + 6.0 t2B m  î + A7.0 - 3.0 t3B m  ĵ.
t

r
B

a
B

= A6.0  î + 3.0  ĵB m�s2.
v
B

0 = A–14.0  î - 7.0  ĵB m�s
t = 0,

t = 2.5 s.
v
B

r
B

a
B,

v
B

r
B

= A3.0 t2
 î - 6.0 t3

 ĵB m.

A–3.0  î + 4.5  ĵB m�s2,
�

t = 0

42. (II) Here is something to try at a sporting event. Show that
the maximum height h attained by an object projected into
the air, such as a baseball, football, or soccer ball, is approx-
imately given by

where is the total time of flight for the object in seconds.
Assume that the object returns to the same level as that from
which it was launched, as in Fig. 42. For example, if you
count to find that a baseball was in the air for the
maximum height attained was 
The beauty of this relation is that h can be determined
without knowledge of the launch speed or launch 
angle u0 .

v0

h = 1.2 * (5.0)2 = 30 m.
t = 5.0 s,

t

h L 1.2 t2 m,
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v0

45°

2.5 m

10.0 m

FIGURE 43 Problem 44.

43. (II) The pilot of an airplane traveling 170 km h wants to
drop supplies to flood victims isolated on a patch of land
150 m below. The supplies should be dropped how many
seconds before the plane is directly overhead?

44. (II) (a) A long jumper leaves the ground at 45° above the
horizontal and lands 8.0 m away. What is her “takeoff”
speed (b) Now she is out on a hike and comes to the left
bank of a river. There is no bridge and the right bank is
10.0 m away horizontally and 2.5 m, vertically below. If she
long jumps from the edge of the left bank at 45° with the
speed calculated in (a), how long, or short, of the opposite
bank will she land (Fig. 43)?

v0 ?

�

45. (II) A high diver leaves the end of a 5.0-m-high diving
board and strikes the water 1.3 s later, 3.0 m beyond the end
of the board. Considering the diver as a particle, determine
(a) her initial velocity, (b) the maximum height reached;
and (c) the velocity with which she enters the water.

46. (II) A projectile is shot from the edge of a cliff 115 m above
ground level with an initial speed of 65.0 m s at an angle of
35.0° with the horizontal, as shown in Fig. 44. (a) Determine
the time taken by the projectile to hit point P at ground level. (b)
Determine the distance X of point P from the base of the
vertical cliff. At the instant just before the projectile hits point P,
find (c) the horizontal and the vertical components of its
velocity, (d) the magnitude of the velocity, and (e) the angle
made by the velocity vector with the horizontal. Find the
maximum height above the cliff top reached by the projectile.

47. (II) Suppose the kick in Example 7 of “Kinematics in Two or
Three Dimensions; Vectors” is attempted 36.0 m from the
goalposts, whose crossbar is 3.00 m above the ground. If the
football is directed perfectly between the goalposts, will it
pass over the bar and be a field goal? Show why or why not.
If not, from what horizontal distance must this kick be made
if it is to score?

48. (II) Exactly 3.0 s after a projectile is fired into the air from the
ground, it is observed to have a velocity 
where the x axis is horizontal and the y axis is positive

vB = A8.6   î + 4.8   ĵ B m�s,

(f)

�

vBf

vB0 ;

35.0°

P

h = 115 m

X

  0 = 65.0 m/sv

FIGURE 44 Problem 46.

upward. Determine (a) the horizontal range of the projectile,
(b) its maximum height above the ground, and (c) its speed
and angle of motion just before it strikes the ground.

49. (II) Revisit Example 9 of “Kinematics in Two or Three
Dimensions; Vectors,” and assume that the boy with the sling-
shot is below the boy in the tree (Fig. 45) and so aims
upward, directly at the boy in the tree. Show that again the
boy in the tree makes the wrong move by letting go at the
moment the water balloon is shot.

   u0

v0

FIGURE 45 Problem 49.

22 m

Must clear
this point!

1.5 m

FIGURE 46 Problem 50.

θ

v0

0

h

FIGURE 42 Problem 42.

50. (II) A stunt driver wants to make his car jump over 8 cars
parked side by side below a horizontal ramp (Fig. 46).
(a) With what minimum speed must he drive off the hori-
zontal ramp? The vertical height of the ramp is 1.5 m above
the cars and the horizontal distance he must clear is 22 m. (b) If
the ramp is now tilted upward, so that “takeoff angle” is 7.0°
above the horizontal, what is the new minimum speed?

51. (II) A ball is thrown horizontally from the top of a cliff 
with initial speed (at  ). At any moment, its direction
of motion makes an angle to the horizontal (Fig. 47).
Derive a formula for as a function of time, , as the ball
follows a projectile’s path.

52. (II) At what projection angle will the range of a projectile
equal its maximum height?

tu

u

t = 0v0
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53. (II) A projectile is fired with an initial speed of 46.6 m s at
an angle of 42.2° above the horizontal on a long flat firing
range. Determine (a) the maximum height reached by the
projectile, (b) the total time in the air, (c) the total hori-
zontal distance covered (that is, the range), and (d) the
velocity of the projectile 1.50 s after firing.

54. (II) An athlete executing a long jump leaves the ground at a
27.0° angle and lands 7.80 m away. (a) What was the takeoff
speed? (b) If this speed were increased by just 5.0%, how
much longer would the jump be?

55. (III) A person stands at the base of a hill that is a straight
incline making an angle with the horizontal (Fig. 48). For
a given initial speed at what angle (to the horizontal)
should objects be thrown so that the distance d they land up
the hill is as large as possible?

uv0 ,
f

�

56. (III) Derive a formula for the horizontal range R, of a
projectile when it lands at a height h above its initial point.
(For it lands a distance below the starting point.)
Assume it is projected at an angle with initial speed 

9 Relative Velocity

57. (I) A person going for a morning jog on the deck of a cruise
ship is running toward the bow (front) of the ship at 2.0 m s
while the ship is moving ahead at 8.5 m s. What is the velocity
of the jogger relative to the water? Later, the jogger is
moving toward the stern (rear) of the ship. What is the
jogger’s velocity relative to the water now?

58. (I) Huck Finn walks at a
speed of 0.70 m s across
his raft (that is, he walks
perpendicular to the
raft’s motion relative to
the shore). The raft is
traveling down the
Mississippi River at a
speed of 1.50 m s rela-
tive to the river bank
(Fig. 49). What is Huck’s
velocity (speed and
direction) relative to the
river bank?

�

�

�

�

v0 .u0

–hh 6 0,
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FIGURE 47 Problem 51.
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FIGURE 48 Problem 55.
Given and determine 
to make d maximum.

uv0 ,f

River
current

0.70 m/s

FIGURE 49
Problem 58.

59. (II) Determine the speed of the boat with respect to the
shore in Example 14 of “Kinematics in Two or Three Dimen-
sions; Vectors.”

60. (II) Two planes approach each other head-on. Each has a
speed of 780 km h, and they spot each other when they are
initially 12.0 km apart. How much time do the pilots have to
take evasive action?

61. (II) A child, who is 45 m from the bank of a river, is being
carried helplessly downstream by the river’s swift current of
1.0 m s. As the child passes a lifeguard on the river’s bank,
the lifeguard starts swimming in a straight line until she
reaches the child at a point downstream (Fig. 50). If 
the lifeguard can swim at a speed of 2.0 m s relative to the
water, how long does it take her to reach the child? How far
downstream does the lifeguard intercept the child?

�

�

�

45 m

2.0 m/s

1.0 m/s

FIGURE 50 Problem 61.

0.60 m/s
= 1.70 m/s

45
x

y v

FIGURE 51 Problem 62.

62. (II) A passenger on a boat moving at 1.70 m s on a still lake
walks up a flight of stairs at a speed of 0.60 m s, Fig. 51. The
stairs are angled at 45° pointing in the direction of motion
as shown. Write the vector velocity of the passenger relative
to the water.

�

�

63. (II) A person in the passenger basket of a hot-air balloon
throws a ball horizontally outward from the basket with
speed 10.0 m s (Fig. 52). What initial velocity (magnitude
and direction) does the ball have relative to a person
standing on the ground (a) if the hot-air balloon is rising at
5.0 m s relative to the ground during this throw,
(b) if the hot-air balloon is descending at 5.0 m s relative to
the ground.

64. (II) An airplane is heading due south at a speed of 580 km h.
If a wind begins blowing from the southwest at a speed of
90.0 km h (average), calculate (a) the velocity (magnitude
and direction) of the plane, relative to the ground, and 

�

�

�

�

�
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(b) how far from its
intended position it
will be after 11.0 min
if the pilot takes no
corrective action.
[Hint: First draw a
diagram.]

65. (II) In what direction should the pilot aim the plane in
Problem 64 so that it will fly due south?

66. (II) Two cars approach a street corner at right angles to
each other (see Fig. 35). Car 1 travels at 35 km h and 
car 2 at 45 km h. What is the relative velocity of car 1 
as seen by car 2? What is the velocity of car 2 relative to 
car 1?

�

�
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45°

FIGURE 53
Problem 70.

General Problems
72. Two vectors, and add to a resultant 

Describe and if (a) (b) 
(c) 

73. A plumber steps out of his truck, walks 66 m east and 35 m
south, and then takes an elevator 12 m into the subbasement
of a building where a bad leak is occurring. What is the
displacement of the plumber relative to his truck? Give
your answer in components; also give the magnitude and
angles, with respect to the x axis, in the vertical and horizontal
plane. Assume x is east, y is north, and z is up.

74. On mountainous downhill roads, escape routes are sometimes
placed to the side of the road for trucks whose brakes might
fail. Assuming a constant upward slope of 26°, calculate the
horizontal and vertical components of the acceleration of a
truck that slowed from 110 km h to rest in 7.0 s. See Fig. 54.�

V1 + V2 = V1 - V2 .
V2 = V1

2 + V2
2 ,V = V1 + V2 ,V

B

2V
B

1

V
B

= V
B

1 + V
B

2 .V
B

2 ,V
B

1

Main road
downhill

Escape
route

FIGURE 54
Problem 74.

75. A light plane is headed due south with a speed relative to
still air of 185 km h. After 1.00 h, the pilot notices that 
they have covered only 135 km and their direction is not
south but southeast (45.0°). What is the wind velocity?

�

10.0 m/s

FIGURE 52
Problem 63.
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FIGURE 35 Example 16.

67. (II) A swimmer is capable of swimming 0.60 m s in still
water. (a) If she aims her body directly across a 55-m-wide
river whose current is 0.50 m s, how far downstream (from a
point opposite her starting point) will she land? (b) How
long will it take her to reach the other side?

68. (II) (a) At what upstream angle must the swimmer in
Problem 67 aim, if she is to arrive at a point directly across
the stream? (b) How long will it take her?

69. (II) A motorboat whose speed in still water is 3.40 m s must
aim upstream at an angle of 19.5° (with respect to a line

�

�

�

FIGURE 31 To move
directly across the river,
the boat must head
upstream at an angle .
Velocity vectors are shown
as green arrows:

velocity of Boat
with respect to
the Shore,

velocity of Boat
with respect to
the Water,

velocity of the
Water with
respect to the
Shore (river
current).

 vBWS =

 vBBW =

 vBBS =

u

perpendicular to the shore) in order to travel directly across
the stream. (a) What is the speed of the current? (b) What is
the resultant speed of the boat with respect to the shore?
(See Fig. 31.)

θ

River current
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BS BW

WSv
B

v
B

v
B

71. (III) An airplane, whose air speed is 580 km h, is supposed
to fly in a straight path 38.0° N of E. But a steady 72 km h
wind is blowing from the north. In what direction should the
plane head?

�
�

70. (II) A boat, whose speed in still water is 2.70 m s, must cross
a 280-m-wide river and arrive at a point 120 m upstream
from where it starts (Fig. 53). To do so, the pilot must head
the boat at a 45.0° upstream angle. What is the speed of the
river’s current?

�
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76. An Olympic long jumper is capable of jumping 8.0 m.
Assuming his horizontal speed is 9.1 m s as he leaves the
ground, how long is he in the air and how high does he go?
Assume that he lands standing upright—that is, the same
way he left the ground.

77. Romeo is chucking pebbles gently up to Juliet’s window,
and he wants the pebbles
to hit the window with
only a horizontal compo-
nent of velocity. He is
standing at the edge of a
rose garden 8.0 m below
her window and 9.0 m
from the base of the wall
(Fig. 55). How fast are
the pebbles going when
they hit her window?

�

78. Raindrops make an angle with the vertical when viewed
through a moving train window (Fig. 56). If the speed of the
train is what is the
speed of the raindrops
in the reference frame
of the Earth in which
they are assumed to
fall vertically?

vT ,

u

9.0 m

8.0 m

FIGURE 55
Problem 77.

15.0 m 7.0 m

2.50 m

FIGURE 58 Problem 84.

u
FIGURE 56
Problem 78.

83. The speed of a boat in still water is The boat is to make a
round trip in a river whose current travels at speed u. Derive
a formula for the time needed to make a round trip of total
distance D if the boat makes the round trip by moving
(a) upstream and back downstream, and (b) directly across
the river and back. We must assume why?

84. At serve, a tennis player aims to hit the ball horizontally.
What minimum speed is required for the ball to clear the
0.90-m-high net about 15.0 m from the server if the ball is
“launched” from a height of 2.50 m? Where will the ball
land if it just clears the net (and will it be “good” in the
sense that it lands within 7.0 m of the net)? How long will it
be in the air? See Fig. 58.

u 6 v;

v.

156 km/h

78.0 m

208 km/h

θ

85. Spymaster Chris, flying a constant 208 km h horizontally in
a low-flying helicopter, wants to drop secret documents into
her contact’s open car which is traveling 156 km h on a
level highway 78.0 m below. At what angle (with the hori-
zontal) should the car be in her sights when the packet is
released (Fig. 59)?

�

�

FIGURE 60
Problem 88.

86. A basketball leaves a player’s hands at a height of 2.10 m
above the floor. The basket is 3.05 m above the floor. The
player likes to shoot the ball at a 38.0° angle. If the shot is
made from a horizontal distance of 11.00 m and must be
accurate to (horizontally), what is the range of
initial speeds allowed to make the basket?

87. A particle has a velocity of The
particle starts at at Give the
position and acceleration as a function of time. What is
the shape of the resulting path?

88. A projectile is
launched from
ground level
to the top of a
cliff which is
195 m away
and 135 m
high (see Fig.
60). If the
projectile lands
on top of the

t = 0.r
B

= A1.5  î - 3.1  ĵ  B     m
v
B

= A–2.0  î + 3.5t  ĵ B     m�s.

&0.22 m

FIGURE 59
Problem 85.

79. Apollo astronauts took a “nine iron” to the Moon and hit a
golf ball about 180 m. Assuming that the swing, launch
angle, and so on, were the same as on Earth where the same
astronaut could hit it only 32 m, estimate the acceleration
due to gravity on the surface of the Moon. (We neglect air
resistance in both cases, but on the Moon there is none.)

80. A hunter aims directly at a target (on the same level) 68.0 m
away. (a) If the bullet leaves the gun at a speed of 175 m s,
by how much will it miss the target? (b) At what angle
should the gun be aimed so the target will be hit?

81. The cliff divers of Acapulco
push off horizontally from rock
platforms about 35 m above
the water, but they must clear
rocky outcrops at water level
that extend out into the water
5.0 m from the base of the cliff
directly under their launch point.
See Fig. 57. What minimum
pushoff speed is necessary to
clear the rocks? How long are
they in the air?

82. When Babe Ruth hit a homer over the 8.0-m-high right-
field fence 98 m from home plate, roughly what was the
minimum speed of the ball when it left the bat? Assume the
ball was hit 1.0 m above the ground and its path initially
made a 36° angle with the ground.

�

5.0 m

35 m

FIGURE 57
Problem 81.

135 m

195 m

Landing point

v0

u

97



Kinematics in Two or Three Dimensions; Vectors: Problem Set
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FIGURE 63
Problem 95.

Numerical/Computer

99. (II) Students shoot a plastic ball horizontally from a
projectile launcher. They measure the distance x the ball
travels horizontally, the distance y the ball falls vertically,
and the total time the ball is in the air for six different
heights of the projectile launcher. Here is their data.

Time, Horizontal distance, Vertical distance,
t (s) x (m) y (m)

0.217 0.642 0.260
0.376 1.115 0.685
0.398 1.140 0.800
0.431 1.300 0.915
0.478 1.420 1.150
0.491 1.480 1.200

(a) Determine the best-fit straight line that represents x as
a function of . What is the initial speed of the ball
obtained from the best-fit straight line? (b) Determine the

t

t

cliff 6.6 s after it is fired, find the initial velocity of the
projectile (magnitude and direction). Neglect air resistance.

89. In hot pursuit, Agent Logan of the FBI must get directly
across a 1200-m-wide river in minimum time. The river’s
current is 0.80 m s, he can row a boat at 1.60 m s, and he
can run 3.00 m s. Describe the path he should take (rowing
plus running along the shore) for the minimum crossing
time, and determine the minimum time.

90. A boat can travel 2.20 m s in still water. (a) If the boat
points its prow directly across a stream whose current is
1.30 m s, what is the velocity (magnitude and direction) of
the boat relative to the shore? (b) What will be the position
of the boat, relative to its point of origin, after 3.00 s?

91. A boat is traveling where there is a current of 0.20 m s east
(Fig. 61). To avoid some offshore rocks, the boat must clear
a buoy that is NNE (22.5°) and 3.0 km away. The boat’s
speed through still water is 2.1 m s. If the boat wants to pass
the buoy 0.15 km on its right, at what angle should the boat
head?

�

�

�

�

�

��

* 

92. A child runs down a 12° hill and then suddenly jumps upward
at a 15° angle above horizontal and lands 1.4 m down the hill
as measured along the hill. What was the child’s initial speed?

93. A basketball is shot from an initial height of 2.4 m 
(Fig. 62) with an initial speed directed at an
angle above the horizontal. (a) How far from the
basket was the player if he made a basket? (b) At what
angle to the horizontal did the ball enter the basket?

u0 = 35°
v0 = 12 m�s

15 m/s

45�

FIGURE 62
Problem 93.

* 

Buoy

22.5�
N

0.20 m/s
Current

FIGURE 61
Problem 91.

94. You are driving south on a highway at 25 m s (approxi-
mately 55 mi h) in a snowstorm. When you last stopped, you
noticed that the snow was coming down vertically, but it is
passing the windows of the moving car at an angle of 37° to
the horizontal. Estimate the speed of the snowflakes rela-
tive to the car and relative to the ground.

95. A rock is kicked horizontally at 15 m s from a hill with a
45° slope (Fig. 63). How long does it take for the rock to hit
the ground?

�

�

�

96. A batter hits a fly ball which leaves the bat 0.90 m above the
ground at an angle of 61° with an initial speed of 28 m s head-
ing toward centerfield. Ignore air resistance. (a) How far from
home plate would the ball land if not caught? (b) The ball is
caught by the centerfielder who, starting at a distance of 105 m
from home plate, runs straight toward home plate at a constant
speed and makes the catch at ground level. Find his speed.

97. A ball is shot from the top of a building with an initial
velocity of 18 m s at an angle above the horizontal.
(a) What are the horizontal and vertical components of the
initial velocity? (b) If a nearby building is the same height
and 55 m away, how far below the top of the building will
the ball strike the nearby building?

98. At a batter hits a baseball with an initial speed of 28 m s
at a 55° angle to the horizontal. An outfielder is 85 m from
the batter at and, as seen from home plate, the line of
sight to the outfielder makes a horizontal angle of 22° with
the plane in which the ball moves (see Fig. 64). What speed
and direction must the fielder take to catch the ball at the same
height from which it was struck? Give the angle with respect to
the outfielder’s line of sight to home plate.

t = 0

�t = 0

u = 42°�

�

22°

Fielder runs
to here from here

55°

85 m

FIGURE 64
Problem 98.
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v0 �13.5 m/s

θ0

2.1 m

d

FIGURE 65 Problem 100.

best-fit quadratic equation that represents y as a function
of . What is the acceleration of the ball in the vertical
direction?

100. (III) A shot-putter throws from a height above
the ground as shown in Fig. 65, with an initial speed of 

(a) Derive a relation that describes how the
distance traveled d depends on the release angle 
(b) Using the given values for and h, use a graphing
calculator or computer to plot d vs. According to your
plot, what value for maximizes d?u0

u0 .
v0

u0 .
v0 = 13.5 m�s.

h = 2.1 m

t

Answers to Odd-Numbered Problems
1. 286 km, 11° south of west.

3.

5. (a)

(b)
(c) 24.8, 23.4° above the axis.

7. (a)
(b) 1560 km, 1380 km.

9. (a) 4.2 at 315°;
(b) or 5.1 at 280°.

11. (a) or 53.7 at 1.4°
above axis;

(b) or 53.7 at 1.4°
below axis, they are 
opposite.

13. (a) or 94.5 at 11.8°
below axis;

(b) or 150 at 35.3°
below axis.

15.
5190 m.

17.

19. Parabola.
21. (a)

(b)
(c)
(d)

23. (a)
(b) at 41.3°.4.21 cm�s

(3.16 î + 2.78 ĵ) cm�s;
r
B

= (8.0 î + 6.0 ĵ) m.
v = 10.0 m�s,
vx = 8.0 m�s, vy = 6.0 m�s,
A2.0t2 î + 1.5t2 ĵB m;
5.0t m�s;
4.0t m�s, 3.0t m�s;

(–2.00 k̂) m�s2.
(9.60 î - 2.00t k̂) m�s,

+ (2450 m) k̂,
(–2450 m) î + (3870 m) ĵ

±x
122 î - 86.6 ĵ

–x
–92.5 î - 19.4 ĵ

±x
53.7 î - 1.31 ĵ

–x
–53.7 î + 1.31 ĵ
1.0 î - 5.0 ĵ

625 km�h, 553 km�h;
–x

–22.8, 9.85;

23.4°

xV
B

yV
B

V
B

10.1, –39.4°.

u
west

south-
west R

D
B

D
B

D
B

65. 6.3°, west of south.

67. (a) 46 m;

(b) 92 s.

69. (a)

(b)

71. 43.6° north of east.

73.

76 m, 28° south of east, 9° below the

horizontal.

75. 43.1° north of east.

77.

79.

81. 2.7 s.

83. (a)

(b)

85. 54°.

87.

parabolic.

89. Row at an angle of 24.9° upstream

and run 104 m along the bank in a

total time of 862 seconds.

91. 69.9° north of east.

93. (a) 13 m;

(b) 31° below the horizontal.

95. 5.1 s.

97. (a)

(b) 33 m.

99. (a)

(b)

12.2 m�s2.

y = A0.158 - 0.855t + 6.09t2B m,

3.03 m�s;

x = (3.03t - 0.0265) m,

13 m�s, 12 m�s;

A3.5 m�s2B        ĵ,

±  C(–3.1 m)  ĵ + A1.75t2 mB     ĵ,

C(1.5 m)  î - (2.0t m)  î D

D3v2 - u2
.

Dv

Av2 - u2B ;
1.9 m�s,

1.8 m�s2.

7.0 m�s.

131 km�h,

(66 m) î - (35 m) ĵ - (12 m) k̂,

3.20 m�s.

1.13 m�s;

25. (a)

(b)

27. 414 m at 

29. 44 m, 6.9 m.

31. 18°, 72°.

33. 2.26 s.

35. 22.3 m.

37. 39 m.

41. (a) 12 s;

(b) 62 m.

43. 5.5 s.

45. (a)

(b) 5.3 m;

(c)

47. No, 0.76 m too low; 4.5 m to 
34.7 m.

51.

53. (a) 50.0 m;

(b) 6.39 s;

(c) 221 m;

(d) at 25.7°.

55.

57.

59.

61. 23 s, 23 m.

63. (a) 27° above the 
horizontal;

(b) 27° below the 
horizontal.
11.2 m�s,

11.2 m�s,

1.41 m�s.

(10.5 m�s) î, (6.5 m�s) î.

1
2

 tan–1 a –  
1

tan f
b =

f

2
+
p

4
.

38.3 m�s

tan–1 gt�v0 .

(2.3 î - 10.2 ĵ) m�s.

(2.3 î + 2.5 ĵ) m�s;

V
er

ti
ca

l 
di

st
an

ce
 (

m
)

Horizontal distance (m)

2

1.5

1

0.5

0

0 0.5 1 1.5 2.52

–65.0°.

(19 î - 94 ĵ) m, (15 î - 110 ĵ) m�s.

(6.0 î - 36.0t ĵ) m�s2;
A6.0t î - 18.0t2 ĵB m�s,

* 
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The space shuttle Discovery is
carried out into space by powerful
rockets. They are accelerating,
increasing in speed rapidly. To do so,
a force must be exerted on them
according to Newton’s second law,

What exerts this force?
The rocket engines exert a force on
the gases they push out (expel) from
the rear of the rockets (labeled ).
According to Newton’s third law,
these ejected gases exert an equal
and opposite force on the rockets 
in the forward direction. It is this
“reaction” force exerted on the
rockets by the gases, labeled 
that accelerates the rockets forward.

F
B

RG ,

F
B

GR

©F
B

= ma
B.

Dynamics: 
Newton’s Laws of Motion
CHAPTER-OPENING QUESTIONS—Guess now!

[Don’t worry about getting the right answer now—the idea is to get your preconceived notions out on

the table.]
A 150-kg football player collides head-on with a 75-kg running back. During the
collision, the heavier player exerts a force of magnitude on the smaller player.
If the smaller player exerts a force back on the heavier player, which response
is most accurate?

(a)
(b)
(c)
(d)
(e) We need more information.

Second Question:

A line by the poet T. S. Eliot (from Murder in the Cathedral) has the women of
Canterbury say “the earth presses up against our feet.” What force is this?

(a) Gravity.
(b) The normal force.
(c) A friction force.
(d) Centrifugal force.
(e) No force—they are being poetic.

FB = 0.
FB 7 FA.
FB 6 FA.
FB = FA.

FB

FA

CONTENTS

1 Force

2 Newton’s First Law of 
Motion

3 Mass

4 Newton’s Second Law of 
Motion

5 Newton’s Third Law of 
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6 Weight—the Force of Gravity;
and the Normal Force

7 Solving Problems with Newton’s
Laws: Free-Body Diagrams
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Dynamics: Newton’s Laws of Motion

†We treat everyday objects in motion here; the treatment of the submicroscopic world of atoms 
and molecules, and when velocities are extremely high, close to the speed of light are 
treated using quantum theory and the theory of relativity.

A3.0 * 108 m�sB,

R
ecall how motion is described in terms of velocity and acceleration. Now
we deal with the question of why objects move as they do: What makes an
object at rest begin to move? What causes an object to accelerate or
decelerate? What is involved when an object moves in a curved path? We

can answer in each case that a force is required. In this Chapter†, we will investigate
the connection between force and motion, which is the subject called dynamics.

1 Force
Intuitively, we experience force as any kind of a push or a pull on an object. When
you push a stalled car or a grocery cart (Fig. 1), you are exerting a force on it.
When a motor lifts an elevator, or a hammer hits a nail, or the wind blows the
leaves of a tree, a force is being exerted. We often call these contact forces because
the force is exerted when one object comes in contact with another object. On the
other hand, we say that an object falls because of the force of gravity.

If an object is at rest, to start it moving requires force—that is, a force is
needed to accelerate an object from zero velocity to a nonzero velocity. For an
object already moving, if you want to change its velocity—either in direction or in
magnitude—a force is required. In other words, to accelerate an object, a force is
always required. In Section 4 we discuss the precise relation between acceleration
and net force, which is Newton’s second law.

One way to measure the magnitude (or strength) of a force is to use a spring
scale (Fig. 2). Normally, such a spring scale is used to find the weight of an object;
by weight we mean the force of gravity acting on the object (Section 6). The spring
scale, once calibrated, can be used to measure other kinds of forces as well, such as
the pulling force shown in Fig. 2.

A force exerted in a different direction has a different effect. Force has 
direction as well as magnitude, and is indeed a vector that follows the rules of
vector addition. We can represent any force on a diagram by an arrow, just as we do
with velocity. The direction of the arrow is the direction of the push or pull, and its
length is drawn proportional to the magnitude of the force.

0 1 2 3 4 5 6 7 8 9 10

FIGURE 2 A spring scale used to
measure a force.

2 Newton’s First Law of Motion
What is the relationship between force and motion? Aristotle (384–322 B.C.)
believed that a force was required to keep an object moving along a horizontal
plane. To Aristotle, the natural state of an object was at rest, and a force was
believed necessary to keep an object in motion. Furthermore, Aristotle argued, the
greater the force on the object, the greater its speed.

Some 2000 years later, Galileo disagreed: he maintained that it is just as natural
for an object to be in motion with a constant velocity as it is for it to be at rest.

To understand Galileo’s idea, consider the following observations involving
motion along a horizontal plane. To push an object with a rough surface along a

FIGURE 1 A force exerted on a
grocery cart—in this case exerted by
a person.

Daly & Newton/Getty Images
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Dynamics: Newton’s Laws of Motion

tabletop at constant speed requires a certain amount of force. To push an equally
heavy object with a very smooth surface across the table at the same speed will
require less force. If a layer of oil or other lubricant is placed between the surface of
the object and the table, then almost no force is required to keep the object moving.
Notice that in each successive step, less force is required. As the next step, we imagine
that the object does not rub against the table at all—or there is a perfect lubricant
between the object and the table—and theorize that once started, the object would
move across the table at constant speed with no force applied. A steel ball bearing
rolling on a hard horizontal surface approaches this situation. So does a puck on an
air table, in which a thin layer of air reduces friction almost to zero.

It was Galileo’s genius to imagine such an idealized world—in this case, one
where there is no friction—and to see that it could lead to a more accurate and
richer understanding of the real world. This idealization led him to his remarkable
conclusion that if no force is applied to a moving object, it will continue to move
with constant speed in a straight line. An object slows down only if a force is exerted
on it. Galileo thus interpreted friction as a force akin to ordinary pushes and pulls.

To push an object across a table at constant speed requires a force from your
hand that can balance out the force of friction (Fig. 3). When the object moves at
constant speed, your pushing force is equal in magnitude to the friction force, but
these two forces are in opposite directions, so the net force on the object (the
vector sum of the two forces) is zero. This is consistent with Galileo’s viewpoint,
for the object moves with constant speed when no net force is exerted on it.

Upon this foundation laid by Galileo, Isaac Newton (Fig. 4) built his great
theory of motion. Newton’s analysis of motion is summarized in his famous “three
laws of motion.” In his great work, the Principia (published in 1687), Newton
readily acknowledged his debt to Galileo. In fact, Newton’s first law of motion is
close to Galileo’s conclusions. It states that

Every object continues in its state of rest, or of uniform velocity in a straight
line, as long as no net force acts on it.

The tendency of an object to maintain its state of rest or of uniform velocity in a straight line
is called inertia.As a result, Newton’s first law is often called the law of inertia.

CONCEPTUAL EXAMPLE 1 Newton’s first law. A school bus comes to a
sudden stop, and all of the backpacks on the floor start to slide forward.What force
causes them to do that?
RESPONSE It isn’t “force” that does it. By Newton’s first law, the backpacks
continue their state of motion, maintaining their velocity. The backpacks slow
down if a force is applied, such as friction with the floor.

Inertial Reference Frames

Newton’s first law does not hold in every reference frame. For example, if your
reference frame is fixed in an accelerating car, an object such as a cup resting on the
dashboard may begin to move toward you (it stayed at rest as long as the car’s
velocity remained constant). The cup accelerated toward you, but neither you nor
anything else exerted a force on it in that direction. Similarly, in the reference frame
of the decelerating bus in Example 1, there was no force pushing the backpacks
forward. In accelerating reference frames, Newton’s first law does not hold. Refer-
ence frames in which Newton’s first law does hold are called inertial reference
frames (the law of inertia is valid in them). For most purposes, we usually make the
approximation that a reference frame fixed on the Earth is an inertial frame. This is
not precisely true, due to the Earth’s rotation, but usually it is close enough.

Any reference frame that moves with constant velocity (say, a car or an
airplane) relative to an inertial frame is also an inertial reference frame. Reference
frames where the law of inertia does not hold, such as the accelerating reference
frames discussed above, are called noninertial reference frames. How can we be
sure a reference frame is inertial or not? By checking to see if Newton’s first law
holds. Thus Newton’s first law serves as the definition of inertial reference frames.

FIGURE 4
Isaac Newton (1642–1727).
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FIGURE 3 represents the force
applied by the person and 
represents the force of friction.
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NEWTON’S FIRST LAW
OF MOTION

Bettmann/Corbis 
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Dynamics: Newton’s Laws of Motion

3 Mass
Newton’s second law, which we come to in the next Section, makes use of the
concept of mass. Newton used the term mass as a synonym for quantity of matter.
This intuitive notion of the mass of an object is not very precise because the
concept “quantity of matter” is not very well defined. More precisely, we can say
that mass is a measure of the inertia of an object. The more mass an object has, the
greater the force needed to give it a particular acceleration. It is harder to start it
moving from rest, or to stop it when it is moving, or to change its velocity sideways
out of a straight-line path. A truck has much more inertia than a baseball moving
at the same speed, and a much greater force is needed to change the truck’s
velocity at the same rate as the ball’s. The truck therefore has much more mass.

To quantify the concept of mass, we must define a standard. In SI units, the
unit of mass is the kilogram (kg).

The terms mass and weight are often confused with one another, but it is
important to distinguish between them. Mass is a property of an object itself 
(a measure of an object’s inertia, or its “quantity of matter”). Weight, on the other
hand, is a force, the pull of gravity acting on an object. To see the difference,
suppose we take an object to the Moon. The object will weigh only about one-sixth
as much as it did on Earth, since the force of gravity is weaker. But its mass will be
the same. It will have the same amount of matter as on Earth, and will have just as
much inertia—for in the absence of friction, it will be just as hard to start it
moving on the Moon as on Earth, or to stop it once it is moving. (More on weight
in Section 6.)

4 Newton’s Second Law of Motion
Newton’s first law states that if no net force is acting on an object at rest, the
object remains at rest; or if the object is moving, it continues moving with constant
speed in a straight line. But what happens if a net force is exerted on an object?
Newton perceived that the object’s velocity will change (Fig. 5). A net force
exerted on an object may make its velocity increase. Or, if the net force is in a
direction opposite to the motion, the force will reduce the object’s velocity. If the
net force acts sideways on a moving object, the direction of the object’s velocity
changes (and the magnitude may as well). Since a change in velocity is an accelera-
tion, we can say that a net force causes acceleration.

What precisely is the relationship between acceleration and force? Everyday
experience can suggest an answer. Consider the force required to push a cart when
friction is small enough to ignore. (If there is friction, consider the net force, which
is the force you exert minus the force of friction.) If you push the cart with a gentle
but constant force for a certain period of time, you will make the cart accelerate
from rest up to some speed, say If you push with twice the force, the cart
will reach in half the time. The acceleration will be twice as great. If you
triple the force, the acceleration is tripled, and so on. Thus, the acceleration of an
object is directly proportional to the net applied force. But the acceleration
depends on the mass of the object as well. If you push an empty grocery cart with
the same force as you push one that is filled with groceries, you will find that the
full cart accelerates more slowly. The greater the mass, the less the acceleration for
the same net force. The mathematical relation, as Newton argued, is that the
acceleration of an object is inversely proportional to its mass. These relationships
are found to hold in general and can be summarized as follows:

The acceleration of an object is directly proportional to the net force acting 
on it, and is inversely proportional to the object’s mass. The direction of the
acceleration is in the direction of the net force acting on the object.

This is Newton’s second law of motion.

3 km�h
3 km�h.

C A U T I O N

Distinguish mass from weight

FIGURE 5 The bobsled accelerates
because the team exerts a force.

NEWTON’S SECOND LAW
OF MOTION

Gerard Vandystadt/Agence Vandystadt/Photo
Researchers, Inc.
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Dynamics: Newton’s Laws of Motion

Newton’s second law can be written as an equation:

where stands for acceleration, m for the mass, and for the net force on the object.
The symbol (Greek “sigma”) stands for “sum of”; stands for force, so means
the vector sum of all forces acting on the object, which we define as the net force.

We rearrange this equation to obtain the familiar statement of Newton’s
second law:

(1a)

Newton’s second law relates the description of motion (acceleration) to the cause
of motion (force). It is one of the most fundamental relationships in physics. From
Newton’s second law we can make a more precise definition of force as an action

capable of accelerating an object.
Every force is a vector, with magnitude and direction. Equation 1a is a

vector equation valid in any inertial reference frame. It can be written in component
form in rectangular coordinates as

(1b)
where

The component of acceleration in each direction is affected only by the component
of the net force in that direction.

In SI units, with the mass in kilograms, the unit of force is called the newton (N).
One newton, then, is the force required to impart an acceleration of to a
mass of 1 kg. Thus 

In cgs units, the unit of mass is the gram (g) as mentioned earlier.† The unit of force is the
dyne, which is defined as the net force needed to impart an acceleration of to a mass
of 1g.Thus It is easy to show that 

In the British system, the unit of force is the pound (abbreviated lb), where 
The unit of mass is the slug, which is defined as that

mass which will undergo an acceleration of when a force of 1 lb is applied to
it. Thus  Table 1 summarizes the units in the different systems.

It is very important that only one set of units be used in a given calculation or problem,
with the SI being preferred. If the force is given in, say, newtons, and the mass in grams, then
before attempting to solve for the acceleration in SI units, we must change the mass to kilo-
grams. For example, if the force is given as 2.0N along the x axis and the mass is 500g, we
change the latter to 0.50kg, and the acceleration will then automatically come out in 
when Newton’s second law is used:

EXAMPLE 2 ESTIMATE Force to accelerate a fast car. Estimate the net force
needed to accelerate (a) a 1000-kg car at (b) a 200-g apple at the same rate.

APPROACH We use Newton’s second law to find the net force needed for 
each object. This is an estimate (the is not said to be precise) so we round off to
one significant figure.
SOLUTION (a) The car’s acceleration is We use
Newton’s second law to get the net force needed to achieve this acceleration:

(If you are used to British units, to get an idea of what a 5000-N force is, you can
divide by and get a force of about 1000 lb.)
(b) For the apple, so

©F = ma  L   (0.2 kg)A5 m�s2B = 1 N.

m = 200 g = 0.2 kg,
4.45 N�lb

©F = ma  L   (1000 kg)A5 m�s2B = 5000 N.

a = 1
2 g = 1

2 A9.8 m�s2B L 5 m�s2.

1
2

1
2 g;

ax =

©Fx
m

=

2.0 N
0.50 kg

=

2.0 kg �m�s2

0.50 kg
= 4.0 m�s2.

m�s2

1 lb = 1 slug � ft�s2.
1 ft�s2

1 lb = 4.448222 N L 4.45 N.

1 dyne = 10–5 N.1 dyne = 1 g �cm�s2 .
1 cm�s2

1 N = 1 kg �m�s2.
1 m�s2

F
B

= Fx î + Fy ĵ + Fz k̂.

©Fx = max ,  ©Fy = may ,  ©Fz = maz ,

F
B

©F
B

= maB.

©F
B

F
B

©
©F

B

aB

a
B

=

©F
B

m
,

†Be careful not to confuse g for gram with g for the acceleration due to gravity. The latter is always
italicized (or boldface when a vector).

NEWTON’S SECOND LAW
OF MOTION

P R O B L E M  S O L V I N G

Use a consistent set of units

TABLE 1
Units for Mass and Force

System Mass Force

SI kilogram newton (N) 
(kg)

cgs gram (g) dyne 

British slug pound (lb)

Conversion factors:
 1 lb L 4.45 N.

 1 dyne = 10–5 N;

A= g �cm�s2B
A= kg �m�s2B
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EXAMPLE 3 Force to stop a car. What average net force is required to
bring a 1500-kg car to rest from a speed of within a distance of 55 m?

APPROACH We use Newton’s second law, to determine the force,
but first we need to calculate the acceleration a. We assume the acceleration is
constant, so we can use the kinematic equation, to calculate it.

©F = ma,

100 km�h

Dynamics: Newton’s Laws of Motion

v = 0v0 = 100 km/h

x = 0 x = 55m

x (m)
FIGURE 6
Example 3.

SOLUTION We assume the motion is along the axis (Fig. 6). We are given the
initial velocity , the final velocity and the
distance traveled  We have

so

The net force required is then

The force must be exerted in the direction opposite to the initial velocity, which is
what the negative sign means.

NOTE If the acceleration is not precisely constant, then we are determining an
“average” acceleration and we obtain an “average” net force.

Newton’s second law, like the first law, is valid only in inertial reference frames
(Section 2). In the noninertial reference frame of an accelerating car, for example,
a cup on the dashboard starts sliding—it accelerates—even though the net force
on it is zero; thus doesn’t work in such an accelerating reference frame
( but in this noninertial frame).

EXERCISE A Suppose you watch a cup slide on the (smooth) dashboard of an accelerating car
as we just discussed, but this time from an inertial reference frame outside the car, on the
street. From your inertial frame, Newton’s laws are valid. What force pushes the cup off
the dashboard?

Precise Definition of Mass

As mentioned in Section 3, we can quantify the concept of mass using its definition
as a measure of inertia. How to do this is evident from Eq. 1a, where we see that
the acceleration of an object is inversely proportional to its mass. If the same net
force acts to accelerate each of two masses, and then the ratio of their
masses can be defined as the inverse ratio of their accelerations:

If one of the masses is known (it could be the standard kilogram) and the two
accelerations are precisely measured, then the unknown mass is obtained from this
definition. For example, if and for a particular force 
and then m2 = 1.50 kg.a2 = 2.00 m�s2,

a1 = 3.00 m�s2m1 = 1.00 kg,

m2

m1
=

a1

a2

.

m2 ,m1©F

a
B

Z 0©F
B

= 0,
©F

B

= ma
B

©F = ma = (1500 kg)A–7.0 m�s2B = –1.1 * 104 N.

a =

v2 - v0
2

2Ax - x0B =

0 - A27.8 m�sB2
2(55 m)

= –7.0 m�s2.

v2
= v0

2 + 2aAx - x0B,
x - x0 = 55 m.

v = 0,v0 = 100 km�h = 27.8 m�s
±x
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Dynamics: Newton’s Laws of Motion

Force exerted
on hand
by desk

Force exerted
on desk by hand

FIGURE 8 If your hand pushes
against the edge of a desk (the
force vector is shown in red), the
desk pushes back against your
hand (this force vector is shown
in a different color, violet,
to remind us that this force 
acts on a different object).

5 Newton’s Third Law of Motion
Newton’s second law of motion describes quantitatively how forces affect motion. But
where, we may ask, do forces come from? Observations suggest that a force exerted on
any object is always exerted by another object. A horse pulls a wagon, a person pushes
a grocery cart, a hammer pushes on a nail, a magnet attracts a paper clip. In each of
these examples, a force is exerted on one object, and that force is exerted by another
object. For example, the force exerted on the nail is exerted by the hammer.

But Newton realized that things are not so one-sided. True, the hammer exerts
a force on the nail (Fig. 7). But the nail evidently exerts a force back on the
hammer as well, for the hammer’s speed is rapidly reduced to zero upon contact.
Only a strong force could cause such a rapid deceleration of the hammer. Thus,
said Newton, the two objects must be treated on an equal basis. The hammer
exerts a force on the nail, and the nail exerts a force back on the hammer. This is
the essence of Newton’s third law of motion:

Whenever one object exerts a force on a second object, the second exerts an
equal force in the opposite direction on the first.

This law is sometimes paraphrased as “to every action there is an equal and
opposite reaction.” This is perfectly valid. But to avoid confusion, it is very
important to remember that the “action” force and the “reaction” force are
acting on different objects.

As evidence for the validity of Newton’s third law, look at your hand when
you push against the edge of a desk, Fig. 8. Your hand’s shape is distorted, clear
evidence that a force is being exerted on it. You can see the edge of the desk
pressing into your hand. You can even feel the desk exerting a force on your hand;
it hurts! The harder you push against the desk, the harder the desk pushes back on
your hand. (You only feel forces exerted on you; when you exert a force on
another object, what you feel is that object pushing back on you.)

The force the desk exerts on your hand has the same magnitude as the force
your hand exerts on the desk. This is true not only if the desk is at rest but is true
even if the desk is accelerating due to the force your hand exerts.

As another demonstration of Newton’s third law, consider the ice skater in
Fig. 9. There is very little friction between her skates and the ice, so she will move
freely if a force is exerted on her. She pushes against the wall; and then she starts
moving backward. The force she exerts on the wall cannot make her start moving,
for that force acts on the wall. Something had to exert a force on her to start her
moving, and that force could only have been exerted by the wall. The force with
which the wall pushes on her is, by Newton’s third law, equal and opposite to the
force she exerts on the wall.

When a person throws a package out of a small boat (initially at rest), the boat
starts moving in the opposite direction. The person exerts a force on the package. The
package exerts an equal and opposite force back on the person, and this force
propels the person (and the boat) backward slightly.

FIGURE 7 A hammer striking a nail.
The hammer exerts a force on the nail
and the nail exerts a force back on the
hammer.The latter force decelerates the
hammer and brings it to rest.

C A U T I O N

Action and reaction forces act 
on different objects

Force
on

skater

Force
on

wall

FIGURE 9 An example of
Newton’s third law: when an ice
skater pushes against the wall, the
wall pushes back and this force
causes her to accelerate away.
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Dynamics: Newton’s Laws of Motion

Rocket propulsion also is explained using Newton’s third law (Fig. 10). A
common misconception is that rockets accelerate because the gases rushing out
the back of the engine push against the ground or the atmosphere. Not true. What
happens, instead, is that a rocket exerts a strong force on the gases, expelling them;
and the gases exert an equal and opposite force on the rocket. It is this latter force
that propels the rocket forward—the force exerted on the rocket by the gases (see
Chapter-Opening photo). Thus, a space vehicle is maneuvered in empty space by firing its
rockets in the direction opposite to that in which it needs to accelerate. When the rocket
pushes on the gases in one direction, the gases push back on the rocket in the opposite direc-
tion. Jet aircraft too accelerate because the gases they thrust out backwards exert a forward
force on the engines (Newton’s third law).

Consider how we walk. A person begins walking by pushing with the foot
backward against the ground. The ground then exerts an equal and opposite force
forward on the person (Fig. 11), and it is this force, on the person, that moves the
person forward. (If you doubt this, try walking normally where there is no friction,
such as on very smooth slippery ice.) In a similar way, a bird flies forward by
exerting a backward force on the air, but it is the air pushing forward (Newton’s
third law) on the bird’s wings that propels the bird forward.

CONCEPTUAL EXAMPLE 4 What exerts the force to move a car? What
makes a car go forward?

RESPONSE A common answer is that the engine makes the car move forward.
But it is not so simple. The engine makes the wheels go around. But if the tires
are on slick ice or deep mud, they just spin. Friction is needed. On firm ground,
the tires push backward against the ground because of friction. By Newton’s third
law, the ground pushes on the tires in the opposite direction, accelerating the car
forward.

We tend to associate forces with active objects such as humans, animals, engines,
or a moving object like a hammer. It is often difficult to see how an inanimate object
at rest, such as a wall or a desk, or the wall of an ice rink (Fig. 9), can exert a force.
The explanation is that every material, no matter how hard, is elastic (springy) at
least to some degree. A stretched rubber band can exert a force on a wad of paper
and accelerate it to fly across the room. Other materials may not stretch as readily
as rubber, but they do stretch or compress when a force is applied to them. And
just as a stretched rubber band exerts a force, so does a stretched (or compressed)
wall, desk, or car fender.

From the examples discussed above, we can see how important it is to
remember on what object a given force is exerted and by what object that force is
exerted. A force influences the motion of an object only when it is applied on that
object. A force exerted by an object does not influence that same object; it only
influences the other object on which it is exerted. Thus, to avoid confusion, the two
prepositions on and by must always be used—and used with care.

One way to keep clear which force acts on which object is to use double
subscripts. For example, the force exerted on the Person by the Ground as the
person walks in Fig. 11 can be labeled And the force exerted on the ground
by the person is By Newton’s third law

(2)

and have the same magnitude (Newton’s third law), and the minus sign
reminds us that these two forces are in opposite directions.

Note carefully that the two forces shown in Fig. 11 act on different objects—
hence we used slightly different colors for the vector arrows representing these
forces. These two forces would never appear together in a sum of forces in
Newton’s second law, Why not? Because they act on different objects:

is the acceleration of one particular object, and must include only the forces
on that one object.

©F
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a
B

©F
B

= maB.
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F
B

GP = –F
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PG .
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B

GP .
F
B

PG .

FIGURE 10 Another example of
Newton’s third law: the launch of a
rocket.The rocket engine pushes the
gases downward, and the gases exert
an equal and opposite force upward
on the rocket, accelerating it upward.
(A rocket does not accelerate as a
result of its propelling gases pushing
against the ground.)

Horizontal
force exerted
on the ground
by person’s
foot

Horizontal
force exerted
on the
person’s foot
by the ground

GP PGF
B

F
B

FIGURE 11 We can walk forward
because, when one foot pushes
backward against the ground, the
ground pushes forward on that foot
(Newton’s third law). The two forces
shown act on different objects.
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Dynamics: Newton’s Laws of Motion

CONCEPTUAL EXAMPLE 5 Third law clarification. Michelangelo’s assistant has
been assigned the task of moving a block of marble using a sled (Fig. 12).
He says to his boss, “When I exert a forward force on the sled, the sled exerts 
an equal and opposite force backward. So how can I ever start it moving? No
matter how hard I pull, the backward reaction force always equals my 
forward force, so the net force must be zero. I’ll never be able to move this load.”
Is he correct?

RESPONSE No. Although it is true that the action and reaction forces are
equal in magnitude, the assistant has forgotten that they are exerted on
different objects. The forward (“action”) force is exerted by the assistant on
the sled (Fig. 12), whereas the backward “reaction” force is exerted by the sled
on the assistant. To determine if the assistant moves or not, we must consider
only the forces on the assistant and then apply where is the net
force on the assistant, is the acceleration of the assistant, and m is the assis-
tant’s mass. There are two forces on the assistant that affect his forward
motion; they are shown as bright red (magenta) arrows in Figs. 12 and 13: they
are (1) the horizontal force exerted on the assistant by the ground (the
harder he pushes backward against the ground, the harder the ground pushes
forward on him—Newton’s third law), and (2) the force exerted on the
assistant by the sled, pulling backward on him; see Fig. 13. If he pushes hard
enough on the ground, the force on him exerted by the ground, will be
larger than the sled pulling back, and the assistant accelerates
forward (Newton’s second law). The sled, on the other hand, accelerates
forward when the force on it exerted by the assistant is greater than the fric-
tional force exerted backward on it by the ground (that is, when has
greater magnitude than in Fig. 12).

Using double subscripts to clarify Newton’s third law can become cumbersome,
and we won’t usually use them in this way. We will usually use a single subscript
referring to what exerts the force on the object being discussed. Nevertheless, if
there is any confusion in your mind about a given force, go ahead and use two
subscripts to identify on what object and by what object the force is exerted.

EXERCISE B Return to the first Chapter-Opening Question, and answer it again now. Try
to explain why you may have answered differently the first time.

EXERCISE C A massive truck collides head-on with a small sports car. (a) Which vehicle
experiences the greater force of impact? (b) Which experiences the greater acceleration
during the impact? (c) Which of Newton’s laws are useful to obtain the correct answers?

EXERCISE D If you push on a heavy desk, does it always push back on you? (a) Not unless
someone else also pushes on it. (b) Yes, if it is out in space. (c) A desk never pushes to
start with. (d) No. (e) Yes.
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A study of Newton’s second and
third laws

Force on sled
exerted by
assistant

Force on
assistant
exerted
by sled

Friction
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sled exerted 
by ground
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assistant 
exerted 
by ground
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FIGURE 12 Example 5, showing
only horizontal forces. Michelangelo
has selected a fine block of marble
for his next sculpture. Shown here is
his assistant pulling it on a sled away
from the quarry. Forces on the
assistant are shown as red (magenta)
arrows. Forces on the sled are purple
arrows. Forces acting on the ground
are orange arrows. Action–reaction
forces that are equal and opposite
are labeled by the same subscripts
but reversed (such as and )
and are of different colors because
they act on different objects.
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FIGURE 13 Example 5. The
horizontal forces on the assistant.
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Dynamics: Newton’s Laws of Motion

6 Weight—the Force of Gravity; and
the Normal Force

Galileo claimed that all objects dropped near the surface of the Earth would fall
with the same acceleration, if air resistance was negligible. The force that causes
this acceleration is called the force of gravity or gravitational force. What exerts the
gravitational force on an object? It is the Earth, and the force acts vertically† down-
ward, toward the center of the Earth. Let us apply Newton’s second law to an object
of mass m falling freely due to gravity. For the acceleration, we use the downward
acceleration due to gravity, Thus, the gravitational force on an object, can be
written as

(3)

The direction of this force is down toward the center of the Earth. The magnitude
of the force of gravity on an object, mg, is commonly called the object’s weight.

In SI units, ‡ so the weight of a 1.00-kg mass on
Earth is We will mainly be concerned with the
weight of objects on Earth, but we note that on the Moon, on other planets, or in
space, the weight of a given mass will be different than it is on Earth. For example,
on the Moon the acceleration due to gravity is about one-sixth what it is on Earth,
and a 1.0-kg mass weighs only 1.6 N. Although we will not use British units, we
note that for practical purposes on the Earth, a mass of 1 kg weighs about 2.2 lb.
(On the Moon, 1 kg weighs only about 0.4 lb.)

The force of gravity acts on an object when it is falling. When an object is at
rest on the Earth, the gravitational force on it does not disappear, as we know if
we weigh it on a spring scale. The same force, given by Eq. 3, continues to act. Why,
then, doesn’t the object move? From Newton’s second law, the net force on an
object that remains at rest is zero. There must be another force on the object to
balance the gravitational force. For an object resting on a table, the table exerts
this upward force; see Fig. 14a. The table is compressed slightly beneath the object,
and due to its elasticity, it pushes up on the object as shown. The force exerted by
the table is often called a contact force, since it occurs when two objects are in
contact. (The force of your hand pushing on a cart is also a contact force.) When a
contact force acts perpendicular to the common surface of contact, it is referred
to as the normal force (“normal” means perpendicular); hence it is labeled in
Fig. 14a.

The two forces shown in Fig. 14a are both acting on the statue, which 
remains at rest, so the vector sum of these two forces must be zero (Newton’s
second law). Hence and must be of equal magnitude and in opposite direc-
tions. But they are not the equal and opposite forces spoken of in Newton’s third
law. The action and reaction forces of Newton’s third law act on different objects,
whereas the two forces shown in Fig. 14a act on the same object. For each of the
forces shown in Fig. 14a, we can ask, “What is the reaction force?” The upward
force, on the statue is exerted by the table. The reaction to this force is a force
exerted by the statue downward on the table. It is shown in Fig. 14b, where it is
labeled This force, exerted on the table by the statue, is the reaction force
to in accord with Newton’s third law. What about the other force on the statue,
the force of gravity exerted by the Earth? Can you guess what the reaction is to
this force? The reaction force is also a gravitational force, exerted on the Earth by
the statue.

EXERCISE E Return to the second Chapter-Opening Question, and answer it again now.
Try to explain why you may have answered differently the first time.
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†The concept of “vertical” is tied to gravity. The best definition of vertical is that it is the direction in
which objects fall. A surface that is “horizontal,” on the other hand, is a surface on which a round object
won’t start rolling: gravity has no effect. Horizontal is perpendicular to vertical.
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FIGURE 14 (a) The net force on an
object at rest is zero according to
Newton’s second law. Therefore the
downward force of gravity on
an object at rest must be balanced
by an upward force (the normal
force ) exerted by the table in this
case. (b) is the force exerted on
the table by the statue and is the
reaction force to by Newton’s
third law. ( is shown in a different
color to remind us it acts on a
different object.) The reaction force
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Dynamics: Newton’s Laws of Motion

EXAMPLE 6 Weight, normal force, and a box. A friend has given you 
a special gift, a box of mass 10.0 kg with a mystery surprise inside. The box 
is resting on the smooth (frictionless) horizontal surface of a table (Fig. 15a).
(a) Determine the weight of the box and the normal force exerted on it by the
table. (b) Now your friend pushes down on the box with a force of 40.0 N, as in
Fig. 15b. Again determine the normal force exerted on the box by the table. (c)
If your friend pulls upward on the box with a force of 40.0 N (Fig. 15c), what now
is the normal force exerted on the box by the table?

APPROACH The box is at rest on the table, so the net force on the box in each
case is zero (Newton’s second law). The weight of the box has magnitude mg in
all three cases.
SOLUTION (a) The weight of the box is 
and this force acts downward. The only other force on the box is the normal force
exerted upward on it by the table, as shown in Fig. 15a. We chose the upward
direction as the positive y direction; then the net force on the box is

the minus sign means mg acts in the negative y direction 
(m and g are magnitudes). The box is at rest, so the net force on it must be zero
(Newton’s second law, and ). Thus

so we have

The normal force on the box, exerted by the table, is 98.0 N upward, and has
magnitude equal to the box’s weight.
(b) Your friend is pushing down on the box with a force of 40.0 N. So instead of
only two forces acting on the box, now there are three forces acting on the box,
as shown in Fig. 15b. The weight of the box is still The net force is

and is equal to zero because the box remains at rest
Newton’s second law gives

We solve this equation for the normal force:

which is greater than in (a). The table pushes back with more force when a person
pushes down on the box. The normal force is not always equal to the weight!
(c) The box’s weight is still 98.0 N and acts downward. The force exerted by your
friend and the normal force both act upward (positive direction), as shown in 
Fig. 15c. The box doesn’t move since your friend’s upward force is less than the
weight. The net force, again set to zero in Newton’s second law because is

so

The table does not push against the full weight of the box because of the upward
pull exerted by your friend.
NOTE The weight of the box does not change as a result of your friend’s
push or pull. Only the normal force is affected.

Recall that the normal force is elastic in origin (the table in Fig. 15 sags
slightly under the weight of the box). The normal force in Example 6 is vertical,
perpendicular to the horizontal table. The normal force is not always vertical,
however. When you push against a wall, for example, the normal force with 
which the wall pushes back on you is horizontal (Fig. 9). For an object on a plane
inclined at an angle to the horizontal, such as a skier or car on a hill, the normal
force acts perpendicular to the plane and so is not vertical.

(=  mg)

FN = mg - 40.0 N = 98.0 N - 40.0 N = 58.0 N.

©Fy = FN - mg + 40.0 N = 0,

a = 0,

FN = mg + 40.0 N = 98.0 N + 40.0 N = 138.0 N,

©Fy = FN - mg - 40.0 N = 0.

(a = 0).
©Fy = FN - mg - 40.0 N,

mg = 98.0 N.

FN = mg.

 FN - mg = 0,
 ©Fy = may

ay = 0©Fy = may ,

©Fy = FN - mg;
©Fy

mg = (10.0 kg)A9.80 m�s2B = 98.0 N,

40.0 N0.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0
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�FyFF � FNFF � mg � 40.0 N � 0

�FyFF � FNFF � mg � 40.0 N � 0

�FyFF � FNFF � mg � 0

FIGURE 15 Example 6.
(a) A 10-kg gift box is at rest on a
table. (b) A person pushes down on
the box with a force of 40.0 N.
(c) A person pulls upward on the
box with a force of 40.0 N. The forces
are all assumed to act along a line;
they are shown slightly displaced in
order to be distinguishable. Only
forces acting on the box are shown.
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Dynamics: Newton’s Laws of Motion

EXAMPLE 7 Accelerating the box. What happens when a person pulls
upward on the box in Example 6c with a force equal to, or greater than, the box’s
weight? For example, let (Fig. 16) rather than the 40.0 N shown in
Fig. 15c.

APPROACH We can start just as in Example 6, but be ready for a surprise.
SOLUTION The net force on the box is

and if we set this equal to zero (thinking the acceleration might be zero), we
would get This is nonsense, since the negative sign implies 
points downward, and the table surely cannot pull down on the box (unless
there’s glue on the table). The least can be is zero, which it will be in this case.
What really happens here is that the box accelerates upward because the net
force is not zero. The net force (setting the normal force ) is

upward. See Fig. 16. We apply Newton’s second law and see that the box moves
upward with an acceleration

EXAMPLE 8 Apparent weight loss. A 65-kg woman descends in an elevator
that briefly accelerates at 0.20g downward. She stands on a scale that reads in kg.
(a) During this acceleration, what is her weight and what does the scale read? (b)
What does the scale read when the elevator descends at a constant speed of
2.0 m s?

APPROACH Figure 17 shows all the forces that act on the woman (and only

those that act on her). The direction of the acceleration is downward, so we
choose the positive direction as down (this is the opposite choice from Examples
6 and 7).
SOLUTION (a) From Newton’s second law,

We solve for 

and it acts upward. The normal force is the force the scale exerts on the
person, and is equal and opposite to the force she exerts on the scale:

downward. Her weight (force of gravity on her) is still 
But the scale, needing to exert a force of only

0.80mg, will give a reading of 
(b) Now there is no acceleration, so by Newton’s second law,

and The scale reads her true mass of 65 kg.

NOTE The scale in (a) may give a reading of 52 kg (as an “apparent mass”), but
her mass doesn’t change as a result of the acceleration: it stays at 65 kg.

FN = mg.mg - FN = 0
a = 0,

0.80m = 52 kg.
mg = (65 kg)A9.8 m�s2B = 640 N.
FN

œ = 0.80mg

F
B

N

FN = mg - 0.20mg = 0.80mg,

FN :

 mg - FN = m(0.20g).

 ©F = ma

�

 = 0.20 m�s2 .

 ay =

©Fy

m
=

2.0 N
10.0 kg

 = 2.0 N

 ©Fy = FP - mg = 100.0 N - 98.0 N

FN = 0

FN

FNFN = –2.0 N.

 = FN - 98.0 N + 100.0 N, 

 ©Fy = FN - mg + FP

FP = 100.0 N

(100.0 N)

(98.0 N)m
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FIGURE 16 Example 7.
The box accelerates upward because
FP 7 mg.
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B

a
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B

FIGURE 17 Example 8. The
acceleration vector is shown in gold
to distinguish it from the red force
vectors.
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7 Solving Problems with Newton’s Laws:
Free-Body Diagrams

Newton’s second law tells us that the acceleration of an object is proportional to
the net force acting on the object. The net force, as mentioned earlier, is the
vector sum of all forces acting on the object. Indeed, extensive experiments have
shown that forces do add together as vectors. For example, in Fig. 18, two forces
of equal magnitude (100 N each) are shown acting on an object at right angles
to each other. Intuitively, we can see that the object will start moving at a 45°
angle and thus the net force acts at a 45° angle. This is just what the rules of
vector addition give. From the theorem of Pythagoras, the magnitude of the
resultant force is 

EXAMPLE 9 Adding force vectors. Calculate the sum of the two forces
exerted on the boat by workers A and B in Fig. 19a.

APPROACH We add force vectors like any other vectors. The first step is to 
choose an xy coordinate system (see Fig. 19a), and then resolve vectors into their
components.
SOLUTION The two force vectors are shown resolved into components in Fig. 19b.
We add the forces using the method of components. The components of are

The components of are

is negative because it points along the negative y axis. The components of the
resultant force are (see Fig. 19c)

To find the magnitude of the resultant force, we use the Pythagorean theorem

The only remaining question is the angle that the net force makes with the x axis.
We use:

and The net force on the boat has magnitude 53.3 N and
acts at an 11.0° angle to the x axis.

When solving problems involving Newton’s laws and force, it is very important
to draw a diagram showing all the forces acting on each object involved. Such a
diagram is called a free-body diagram, or force diagram: choose one object, and
draw an arrow to represent each force acting on it. Include every force acting on
that object. Do not show forces that the chosen object exerts on other objects. To
help you identify each and every force that is exerted on your chosen object, ask
yourself what other objects could exert a force on it. If your problem involves
more than one object, a separate free-body diagram is needed for each object. For
now, the likely forces that could be acting are gravity and contact forces (one
object pushing or pulling another, normal force, friction). Later we will consider air
resistance, drag, buoyancy, pressure, as well as electric and magnetic forces.

tan–1(0.195) = 11.0°.

tan u =

FRy

FRx
=

10.2 N
52.3 N

= 0.195,

F
B

Ru

FR = 3FRx
2 + FRy

2
= 3(52.3)2 + (10.2)2 N = 53.3 N.

 FRy = FAy + FBy = 28.3 N - 18.1 N = 10.2 N.

 FRx = FAx + FBx = 28.3 N + 24.0 N = 52.3 N,

FBy

 FBy = –FB sin 37.0° = –(30.0 N)(0.602) = –18.1 N.

 FBx = ±FB cos 37.0° = ±(30.0 N)(0.799) = ±24.0 N,

F
B

B

 FAy = FA sin 45.0° = (40.0 N)(0.707) = 28.3 N.

 FAx = FA cos 45.0° = (40.0 N)(0.707) = 28.3 N, 

F
B

A

FR = 3(100 N)2 + (100 N)2 = 141 N.

FB = 100 N 

FA = 100 N 

(a) (b)
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R
=

+
B
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FIGURE 18 (a) Two forces, and
exerted by workers A and B, act

on a crate. (b) The sum, or resultant,
of and is F
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FIGURE 19 Example 9: Two force
vectors act on a boat.
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Free-body diagram
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CONCEPTUAL EXAMPLE 10 The hockey puck. A hockey puck is sliding at
constant velocity across a flat horizontal ice surface that is assumed to be frictionless.
Which of the sketches in Fig. 20 is the correct free-body diagram for this puck? What
would your answer be if the puck slowed down?

RESPONSE Did you choose (a)? If so, can you answer the question: what exerts
the horizontal force labeled on the puck? If you say that it is the force needed to
maintain the motion, ask yourself: what exerts this force? Remember that another
object must exert any force—and there simply isn’t any possibility here. Therefore,
(a) is wrong. Besides, the force in Fig. 20a would give rise to an acceleration by
Newton’s second law. It is (b) that is correct. No net force acts on the puck, and the
puck slides at constant velocity across the ice.

In the real world, where even smooth ice exerts at least a tiny friction force,
then (c) is the correct answer. The tiny friction force is in the direction opposite
to the motion, and the puck’s velocity decreases, even if very slowly.

Here now is a brief summary of how to approach solving problems involving
Newton’s laws.

F
B

F
B

(b) (c)(a)

MotionMotion Motion

N N

G G

N

G

F
B

F
B

F
B

F
B

F
B

F
B

F
B

F
B

FIGURE 20 Example 10. Which is
the correct free-body diagram for a
hockey puck sliding across
frictionless ice?

object). For each (and every) force, you must be clear
about: on what object that force acts, and by what object
that force is exerted. Only forces acting on a given
object can be included in for that object.
3. Newton’s second law involves vectors, and it is us
important to resolve vectors into components. Choose x

and y axes in a way that simplifies the calculation. For
example, it often saves work if you choose one coordinate
axis to be in the direction of the acceleration.

4. For each object, apply Newton’s second law to the
x and y components separately. That is, the x compo-
nent of the net force on that object is related to the 
x component of that object’s acceleration:
and similarly for the y direction.

5. Solve the equation or equations for the unknown(s).

©Fx = max ,

©F
B

= ma
BP

R
O

B
L

E

M
S O L V I N

G

Newton’s Laws; Free-Body Diagrams

1. Draw a sketch of the situation.
2. Consider only one object (at a time), and draw a

free-body diagram for that object, showing all the
forces acting on that object. Include any unknown
forces that you have to solve for. Do not show any
forces that the chosen object exerts on other objects.

Draw the arrow for each force vector reasonably
accurately for direction and magnitude. Label each force
acting on the object, including forces you must solve for,
as to its source (gravity, person, friction, and so on).

If several objects are involved, draw a free-body
diagram for each object separately, showing all the forces
acting on that object (and only forces acting on that

This Problem Solving Strategy should not be considered a prescription. Rather it is
a summary of things to do that will start you thinking and getting involved in the
problem at hand.

When we are concerned only about translational motion, all the forces on a given
object can be drawn as acting at the center of the object, thus treating the object as
a point particle. However, for problems involving rotation or statics, the place where

each force acts is also important.
In the Examples that follow, we assume that all surfaces are very smooth so that

friction can be ignored.

C A U T I O N

Treating an object as a particle
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EXAMPLE 11 Pulling the mystery box. Suppose a friend asks to examine the
10.0-kg box you were given (Example 6, Fig. 15), hoping to guess what is inside;
and you respond, “Sure, pull the box over to you.” She then pulls the box by the
attached cord, as shown in Fig. 21a, along the smooth surface of the table. The
magnitude of the force exerted by the person is and it is exerted at
a 30.0° angle as shown. Calculate (a) the acceleration of the box, and (b) the
magnitude of the upward force exerted by the table on the box. Assume that
friction can be neglected.
APPROACH We follow the Problem Solving Strategy on the previous page.
SOLUTION
1. Draw a sketch: The situation is shown in Fig. 21a; it shows the box and the

force applied by the person,
2. Free-body diagram: Figure 21b shows the free-body diagram of the box. To draw it

correctly, we show all the forces acting on the box and only the forces acting on
the box. They are: the force of gravity the normal force exerted by the 
table and the force exerted by the person We are interested only in
translational motion, so we can show the three forces acting at a point, Fig. 21c.

3. Choose axes and resolve vectors: We expect the motion to be horizontal, so we
choose the x axis horizontal and the y axis vertical. The pull of 40.0 N has
components

In the horizontal (x) direction, and have zero components. Thus the
horizontal component of the net force is 

4. (a) Apply Newton’s second law to determine the x component of the acceleration:

5. (a) Solve:

The acceleration of the box is to the right.
(b) Next we want to find 
4¿. (b) Apply Newton’s second law to the vertical (y) direction, with upward as positive:

5¿. (b) Solve: We have and, from point 3
above, Furthermore, since the box does not move
vertically, so Thus

so

NOTE is less than mg: the table does not push against the full weight of the
box because part of the pull exerted by the person is in the upward direction.

EXERCISE F A 10.0-kg box is dragged on a horizontal frictionless surface by a horizontal
force of 10.0 N. If the applied force is doubled, the normal force on the box will 
(a) increase; (b) remain the same; (c) decrease.

Tension in a Flexible Cord

When a flexible cord pulls on an object, the cord is said to be under tension, and
the force it exerts on the object is the tension If the cord has negligible mass,
the force exerted at one end is transmitted undiminished to each adjacent piece of
cord along the entire length to the other end. Why? Because for
the cord if the cord’s mass m is zero (or negligible) no matter what is. Hence the
forces pulling on the cord at its two ends must add up to zero ( and ). Note
that flexible cords and strings can only pull. They can’t push because they bend.

–FTFT

aB
©F

B

= ma
B

= 0

FT .

FN

FN = 78.0 N.

FN - 98.0 N + 20.0 N = 0,
ay = 0.

FPy 6 mg,FPy = 20.0 N.
mg = (10.0 kg)A9.80 m�s2B = 98.0 N

 FN - mg + FPy = may .
 ©Fy = may

FN .
3.46 m�s2

ax =

FPx

m
=

(34.6 N)
(10.0 kg)

= 3.46 m�s2 .

FPx = max .

FPx .
mg

BF
B

N

 FPy = (40.0 N)(sin 30.0°) = (40.0 N)(0.500) = 20.0 N.
 FPx = (40.0 N)(cos 30.0°) = (40.0 N)(0.866) = 34.6 N,

F
B

P .F
B

N ;
mg

B;

FP .
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FP = 40.0 N,

30.0°
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FP = 40.0 N
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x

(a)

P

N

N

P

m

m

F
B

F
B

F
B

F
B

g
B

g
B

FIGURE 21 (a) Pulling the box,
Example 11; (b) is the free-body
diagram for the box, and (c) is the
free-body diagram considering all
the forces to act at a point (transla-
tional motion only, which is what we
have here).

P R O B L E M  S O L V I N G

Cords can pull but can’t push;
tension exists throughout a cord
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Dynamics: Newton’s Laws of Motion

Our next Example involves two boxes connected by a cord. We can refer to
this group of objects as a system. A system is any group of one or more objects we
choose to consider and study.

EXAMPLE 12 Two boxes connected by a cord. Two boxes, A and B, are
connected by a lightweight cord and are resting on a smooth (frictionless) table.
The boxes have masses of 12.0 kg and 10.0 kg. A horizontal force of 40.0 N is
applied to the 10.0-kg box, as shown in Fig. 22a. Find (a) the acceleration of each
box, and (b) the tension in the cord connecting the boxes.

APPROACH We streamline our approach by not listing each step. We have two boxes
so we draw a free-body diagram for each. To draw them correctly, we must consider
the forces on each box by itself, so that Newton’s second law can be applied to each.
The person exerts a force on box A. Box A exerts a force on the connecting
cord, and the cord exerts an opposite but equal magnitude force back on box A
(Newton’s third law). These two horizontal forces on box A are shown in Fig. 22b,
along with the force of gravity downward and the normal force exerted
upward by the table. The cord is light, so we neglect its mass. The tension at each end
of the cord is thus the same. Hence the cord exerts a force on the second box.
Figure 22c shows the forces on box B, which are and the normal 
force There will be only horizontal motion.We take the positive x axis to the right.
SOLUTION (a) We apply to box A:

[box A]

For box B, the only horizontal force is so

[box B]

The boxes are connected, and if the cord remains taut and doesn’t stretch, then
the two boxes will have the same acceleration a. Thus We are
given and We can add the two equations above to

eliminate an unknown and obtain

or

This is what we sought.

Alternate Solution We would have obtained the same result had we considered
a single system, of mass acted on by a net horizontal force equal to 
(The tension forces would then be considered internal to the system as a
whole, and summed together would make zero contribution to the net force on
the whole system.)
(b) From the equation above for box B the tension in the cord is

Thus, is less than as we expect, since acts to accelerate only 
NOTE It might be tempting to say that the force the person exerts, acts not
only on box A but also on box B. It doesn’t. acts only on box A. It affects 
box B via the tension in the cord, which acts on box B and accelerates it.FT ,

FP

FP ,
mB .FTFP (  = 40.0 N),FT

FT = mB a = (12.0 kg)A1.82 m�s2B = 21.8 N.

AFT = mB aBB,

FT

FP .mA + mB ,

a =

FP

mA + mB

=

40.0 N
22.0 kg

= 1.82 m�s2.

AmA + mBBa = FP - FT + FT = FP

AFTB
mB = 12.0 kg.mA = 10.0 kg

aA = aB = a.

©Fx = FT = mB aB .

FT ,

©Fx = FP - FT = mA aA .

©Fx = max

F
B

BN .
F
B

T , mB g
B,

FT

F
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ANmA g
B

FT

FTFP

FP

FIGURE 22 Example 12. (a) Two boxes, A and B, are
connected by a cord. A person pulls horizontally on box
A with force (b) Free-body diagram for
box A. (c) Free-body diagram for box B.

FP = 40.0 N.

C A U T I O N

For any object, use only 
the forces on that object in 

calculating ©F = ma
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EXAMPLE 13 Elevator and counterweight (Atwood’s machine). A system of
two objects suspended over a pulley by a flexible cable, as shown in Fig. 23a, is
sometimes referred to as an Atwood’s machine. Consider the real-life application of
an elevator and its counterweight To minimize the work done by the
motor to raise and lower the elevator safely, and are made similar in mass.We
leave the motor out of the system for this calculation, and assume that the cable’s
mass is negligible and that the mass of the pulley, as well as any friction, is small
and ignorable. These assumptions ensure that the tension in the cable has the
same magnitude on both sides of the pulley. Let the mass of the counterweight be 

Assume the mass of the empty elevator is 850 kg, and its mass when
carrying four passengers is For the latter case AmE = 1150 kgB,mE = 1150 kg.
mC = 1000 kg.

FT

mCmE

AmCB.AmEB

y

x

(b) (c)

(a)

Elevator
car

mE =
1150 kg

Counterweight
mC = 1000 kg

mE mC

E

C

T
TF

B F
B

g
B

g
B

a
B

a
B

FIGURE 23 Example 13.
(a) Atwood’s machine in the form of
an elevator–counterweight system.
(b) and (c) Free-body diagrams for
the two objects.

P H Y S I C S  A P P L I E D

Elevator (as Atwood’s machine)

P R O B L E M  S O L V I N G

Check your result by seeing if it
works in situations where the
answer is easily guessed

calculate (a) the acceleration of the elevator and (b) the tension in the cable.

APPROACH Again we have two objects, and we will need to apply Newton’s
second law to each of them separately. Each mass has two forces acting on it:
gravity downward and the cable tension pulling upward, Figures 23b and
c show the free-body diagrams for the elevator and for the counter-
weight The elevator, being the heavier, will accelerate downward,
whereas the counterweight will accelerate upward. The magnitudes of their
accelerations will be equal (we assume the cable doesn’t stretch). For the
counterweight, so must be greater
than 9800 N (in order that will accelerate upward). For the elevator,

which must have greater magnitude
than so that accelerates downward. Thus our calculation must give 
between 9800 N and 11,300 N.
SOLUTION (a) To find as well as the acceleration a, we apply Newton’s
second law, to each object. We take upward as the positive y direc-
tion for both objects. With this choice of axes, because accelerates
upward, and because accelerates downward. Thus

We can subtract the first equation from the second to get

where a is now the only unknown. We solve this for a:

The elevator accelerates downward (and the counterweight upward) at 

(b) The tension in the cable can be obtained from either of the two 
equations, setting 

or

which are consistent. As predicted, our result lies between 9800 N and 11,300 N.
NOTE We can check our equation for the acceleration a in this Example by
noting that if the masses were equal then our equation above for a
would give as we should expect. Also, if one of the masses is zero (say,

), then the other mass would be predicted by our equation to
accelerate at again as expected.a = g,

AmE Z 0BmC = 0
a = 0,

AmE = mCB,

 = 1000 kg A9.80 m�s2 + 0.68 m�s2B = 10,500 N,

 FT = mC g + mC a = mC(g + a)

 = 1150 kg A9.80 m�s2 - 0.68 m�s2B = 10,500 N, 

 FT = mE g - mE a = mE(g - a)

a = 0.070g = 0.68 m�s2:
©F = maFT

a = 0.070g = 0.68 m�s2.
mCAmEB

a =

mE - mC

mE + mC

 g =

1150 kg - 1000 kg
1150 kg + 1000 kg

 g = 0.070g = 0.68 m�s2.

AmE - mCBg = AmE + mCBa,

 FT - mC g = mC aC = ±mC a.

 FT - mE g = mE aE = –mE a

mEaE = –a
mCaC = a

©F = ma,
FT

FTmEFT

m E g = (1150 kg)A9.80 m�s2B = 11,300 N,
mC

FTmC g = (1000 kg)A9.80 m�s2B = 9800 N,

AmCB.
AmEB

F
B

T .
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(b)

(a)

u
TF

B

mg
B

a
B

FIGURE 25 Example 15.

P H Y S I C S  A P P L I E D

Accelerometer

CONCEPTUAL EXAMPLE 14 The advantage of a pulley. A mover is trying to
lift a piano (slowly) up to a second-story apartment (Fig. 24). He is using a rope
looped over two pulleys as shown. What force must he exert on the rope to slowly
lift the piano’s 2000-N weight?

RESPONSE The magnitude of the tension force within the rope is the same at any
point along the rope if we assume we can ignore its mass. First notice the forces acting
on the lower pulley at the piano. The weight of the piano pulls down on the pulley via
a short cable. The tension in the rope, looped through this pulley, pulls up twice, once
on each side of the pulley. Let us apply Newton’s second law to the pulley–piano
combination (of mass m), choosing the upward direction as positive:

To move the piano with constant speed (set in this equation) thus
requires a tension in the rope, and hence a pull on the rope, of The
mover can exert a force equal to half the piano’s weight. We say the pulley has
given a mechanical advantage of 2, since without the pulley the mover would
have to exert twice the force.

EXAMPLE 15 Accelerometer. A small mass m hangs from a thin string and
can swing like a pendulum. You attach it above the window of your car as shown
in Fig. 25a. When the car is at rest, the string hangs vertically. What angle does
the string make (a) when the car accelerates at a constant and
(b) when the car moves at constant velocity,

APPROACH The free-body diagram of Fig. 25b shows the pendulum at some
angle and the forces on it: downward, and the tension in the cord.
These forces do not add up to zero if and since we have an accelera-
tion a, we therefore expect Note that is the angle relative to the
vertical.

SOLUTION (a) The acceleration is horizontal, so from Newton’s
second law,

for the horizontal component, whereas the vertical component gives

Dividing these two equations, we obtain

or

so

(b) The velocity is constant, so and Hence the pendulum
hangs vertically 
NOTE This simple device is an accelerometer—it can be used to measure
acceleration.

Au = 0°B. tan u = 0.a = 0

u = 7.0°.

 = 0.122,

 tan u =

1.20 m�s2

9.80 m�s2

tan u =

FT sin u

FT cos u
=

ma

mg
=

a

g

 0 = FT cos u - mg.

 ma = FT sin u

a = 1.20 m�s2

uu Z 0.
u Z 0,
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u
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FIGURE 24 Example 14.

118



Dynamics: Newton’s Laws of Motion

Inclines

Now we consider what happens when an object slides down an incline, such as a
hill or ramp. Such problems are interesting because gravity is the accelerating
force, yet the acceleration is not vertical. Solving such problems is usually easier if
we choose the xy coordinate system so that one axis points in the direction of the
acceleration. Thus we often take the x axis to point along the incline and the y axis
perpendicular to the incline, as shown in Fig. 26a. Note also that the normal force
is not vertical, but is perpendicular to the plane, Fig. 26b.

EXAMPLE 16 Box slides down an incline. A box of mass m is placed on a
smooth (frictionless) incline that makes an angle with the horizontal, as
shown in Fig. 26a. (a) Determine the normal force on the box. (b) Determine
the box’s acceleration. (c) Evaluate for a mass and an incline 
of 

APPROACH We expect the motion to be along the incline, so we choose the 
x axis along the slope, positive down the slope (the direction of motion). The 
y axis is perpendicular to the incline, upward. The free-body diagram is shown in 
Fig. 26b. The forces on the box are its weight mg vertically downward, which is
shown resolved into its components parallel and perpendicular to the incline, and
the normal force The incline acts as a constraint, allowing motion along its
surface. The “constraining” force is the normal force.

SOLUTION (a) There is no motion in the y direction, so Applying
Newton’s second law we have

where and the y component of gravity are all the forces acting on
the box in the y direction. Thus the normal force is given by

Note carefully that unless has magnitude less than the weight mg.
(b) In the x direction the only force acting is the x component of which we
see from the diagram is The acceleration a is in the x direction so

and we see that the acceleration down the plane is

Thus the acceleration along an incline is always less than g, except at 
for which and This makes sense since is pure vertical
fall. For which makes sense because means the plane is
horizontal so gravity causes no acceleration. Note too that the acceleration does
not depend on the mass m.
(c) For and  so

and
a = 0.500g = 4.9 m�s2.

FN = 0.866mg = 85 N,

sin u = 0.500,u = 30°, cos u = 0.866

u = 0°a = 0,u = 0°,
u = 90°a = g. sin u = 1

u = 90°,

a = g sin u.

 mg sin u = ma,

 Fx = max

mg sin u.
mg

B,
u = 0°,  FN

FN = mg cos u.

(mg cos u)FN

 FN - mg cos u = 0,

 Fy = may

ay = 0.

FN .

u = 30°.
m = 10 kg

u

FIGURE 26 Example 16.
(a) Box sliding on inclined plane.
(b) Free-body diagram of box.
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Good choice of coordinate system
simplifies the calculation
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But be sure each relationship is applicable in the
given case. It is very important to know the limita-
tions of each formula or relationship—when it is
valid and when not. In this text, the more general
equations have been given numbers, but even these
can have a limited range of validity (often stated in
brackets to the right of the equation).

6. Try to solve the problem approximately, to see if it is
doable (to check if enough information has been
given) and reasonable. Use your intuition, and make
rough calculations. A rough calculation, or a reason-
able guess about what the range of final answers
might be, is very useful. And a rough calculation can
be checked against the final answer to catch errors
in calculation, such as in a decimal point or the
powers of 10.

7. Solve the problem, which may include algebraic
manipulation of equations and or numerical calcula-
tions. Recall the mathematical rule that you need as
many independent equations as you have unknowns;
if you have three unknowns, for example, then you
need three independent equations. It is usually best
to work out the algebra symbolically before putting
in the numbers. Why? Because (a) you can then
solve a whole class of similar problems with different
numerical values; (b) you can check your result for
cases already understood (say, or 90°); (c)
there may be cancellations or other simplifications;
(d) there is usually less chance for numerical error;
and (e) you may gain better insight into the problem.

8. Be sure to keep track of units, for they can serve as
a check (they must balance on both sides of any
equation).

9. Again consider if your answer is reasonable. The use
of dimensional analysis can also serve as a check for
many problems.

u = 0°
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In General

1. Read and reread written problems carefully. A
common error is to skip a word or two when reading,
which can completely change the meaning of a
problem.

2. Draw an accurate picture or diagram of the situa-
tion. (This is probably the most overlooked, yet
most crucial, part of solving a problem.) Use arrows
to represent vectors such as velocity or force, and
label the vectors with appropriate symbols. When
dealing with forces and applying Newton’s laws,
make sure to include all forces on a given object,
including unknown ones, and make clear what
forces act on what object (otherwise you may make
an error in determining the net force on a particular
object).

3. A separate free-body diagram needs to be drawn for
each object involved, and it must show all the forces
acting on a given object (and only on that object).
Do not show forces that act on other objects.

4. Choose a convenient xy coordinate system (one that
makes your calculations easier, such as one axis in the
direction of the acceleration). Vectors are to be
resolved into components along the coordinate axes.
When using Newton’s second law, apply 
separately to x and y components, remembering that
x direction forces are related to and similarly for y.
If more than one object is involved, you can choose
different (convenient) coordinate systems for each.

5. List the knowns and the unknowns (what you are
trying to determine), and decide what you need in
order to find the unknowns. For problems in the
present Chapter, we use Newton’s laws. More gener-
ally, it may help to see if one or more relationships
(or equations) relate the unknowns to the knowns.

ax ,

©F
B

= maB

8 ProblemSolving—AGeneral Approach
A basic part of a physics course is solving problems effectively. The approach
discussed here, though emphasizing Newton’s laws, can be applied generally for
other topics in physics study.

Summary
Newton’s three laws of motion are the basic classical laws
describing motion.

Newton’s first law (the law of inertia) states that if the net
force on an object is zero, an object originally at rest remains at
rest, and an object in motion remains in motion in a straight line
with constant velocity.

Newton’s second law states that the acceleration of an
object is directly proportional to the net force acting on it, and
inversely proportional to its mass:

(1a)
Newton’s second law is one of the most important and funda-
mental laws in classical physics.

©F
B

= ma
B.
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Dynamics: Newton’s Laws of Motion

Newton’s third law states that whenever one object exerts a
force on a second object, the second object always exerts a force
on the first object which is equal in magnitude but opposite in
direction:

(2)

where is the force on object B exerted by object A. This is
true even if objects are moving and accelerating, and or have
different masses.

The tendency of an object to resist a change in its motion is
called inertia. Mass is a measure of the inertia of an object.

Weight refers to the gravitational force on an object, and is

�

F
B

BA

F
B

AB = –F
B

BA ,

equal to the product of the object’s mass m and the acceleration
of gravity :

(3)

Force, which is a vector, can be considered as a push or pull;
or, from Newton’s second law, force can be defined as an action
capable of giving rise to acceleration. The net force on an object
is the vector sum of all forces acting on that object.

For solving problems involving the forces on one or more
objects, it is essential to draw a free-body diagram for each object,
showing all the forces acting on only that object. Newton’s second
law can be applied to the vector components for each object.

F
B

G = mg
B.

gB

Answers to Exercises
A: No force is needed. The car accelerates out from under the

cup. Think of Newton’s first law (see Example 1).

B: (a).

C: (a) The same; (b) the sports car; (c) third law for part (a),
second law for part (b).

D: (e).

E: (b).

F: (b).
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FIGURE 28
Question 13.

Questions
1. Why does a child in a wagon seem to fall backward when

you give the wagon a sharp pull forward?

2. A box rests on the (frictionless) bed of a truck. The truck
driver starts the truck and accelerates forward. The box
immediately starts to slide toward the rear of the truck bed.
Discuss the motion of the box, in terms of Newton’s laws, as
seen (a) by Andrea standing on the ground beside the truck,
and (b) by Jim who is riding on the truck (Fig. 27).

Box

a
B

FIGURE 27 Question 2.

3. If the acceleration of an object is zero, are no forces acting
on it? Explain.

4. If an object is moving, is it possible for the net force acting
on it to be zero?

5. Only one force acts on an object. Can the object have zero
acceleration? Can it have zero velocity? Explain.

6. When a golf ball is dropped to the pavement, it bounces
back up. (a) Is a force needed to make it bounce back up?
(b) If so, what exerts the force?

7. If you walk along a log floating on a lake, why does the log
move in the opposite direction?

8. Why might your foot hurt if you kick a heavy desk or a wall?
9. When you are running and want to stop quickly, you must

decelerate quickly. (a) What is the origin of the force that
causes you to stop? (b) Estimate (using your own experi-
ence) the maximum rate of deceleration of a person running
at top speed to come to rest.

10. (a) Why do you push down harder on the pedals of a bicycle
when first starting out than when moving at constant speed?
(b) Why do you need to pedal at all when cycling at
constant speed?

11. A father and his young daughter are ice skating. They face
each other at rest and push each other, moving in opposite
directions. Which one has the greater final speed?

12. Suppose that you are standing on a cardboard carton that
just barely supports you. What would happen to it if you
jumped up into the air? It would (a) collapse; (b) be unaf-
fected; (c) spring upward a bit; (d) move sideways.

13. A stone hangs by a fine thread from the ceiling, and a
section of the same thread dangles from the bottom of the
stone (Fig. 28). If a person gives a sharp pull on the dangling
thread, where is the thread likely to break: below the stone
or above it? What if the person gives a slow and steady
pull? Explain your answers.

Dynamics: Newton’s Laws of Motion 
Problem Set

14. The force of gravity on a 2-kg rock is twice as great as that
on a 1-kg rock. Why then doesn’t the heavier rock fall
faster?

15. Would a spring scale carried to the Moon give accurate
results if the scale had been calibrated on Earth, (a) in
pounds, or (b) in kilograms?

16. You pull a box with a constant force across a frictionless
table using an attached rope held horizontally. If you now
pull the rope with the same force at an angle to the hori-
zontal (with the box remaining flat on the table), does the
acceleration of the box (a) remain the same, (b) increase, or
(c) decrease? Explain.

17. When an object falls freely under the influence of gravity
there is a net force mg exerted on it by the Earth. Yet by
Newton’s third law the object exerts an equal and opposite
force on the Earth. Does the Earth move?

18. Compare the effort (or force) needed to lift a 10-kg object
when you are on the Moon with the force needed to lift 
it on Earth. Compare the force needed to throw a 
2-kg object horizontally with a given speed on the Moon
and on Earth.

19. Which of the following objects weighs about 1 N: (a) an apple,
(b) a mosquito, (c) a 1200-page textbook, (d) you?

From Chapter 4 of Physics for Scientists & Engineers with Modern Physics, Fourth Edition, Douglas C. Giancoli.
Copyright © 2009 by Pearson Education, Inc. Published by Pearson Prentice Hall. All rights reserved.
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20. According to Newton’s third law, each team in a tug of war
(Fig. 29) pulls with equal force on the other team. What,
then, determines which team will win?

23. Mary exerts an upward force of 40 N to hold a bag of
groceries. Describe the “reaction” force (Newton’s third
law) by stating (a) its magnitude, (b) its direction, (c) on

what object it is exerted, and (d) by what object it is exerted.
24. A bear sling, Fig. 30, is used in some national parks for

placing backpackers’ food out of the reach of bears. Explain
why the force needed to pull the backpack up increases as
the backpack gets higher and higher. Is it possible to pull
the rope hard enough so that it doesn’t sag at all?

Problems

4 to 6 Newton’s Laws, Gravitational Force, 
Normal Force

1. (I) What force is needed to accelerate a child on a sled
(total )  at 

2. (I) A net force of 265 N accelerates a bike and rider at
What is the mass of the bike and rider together?

3. (I) What is the weight of a 68-kg astronaut (a) on Earth,
(b) on the Moon  , (c) on Mars  
(d) in outer space traveling with constant velocity?

4. (I) How much tension must a rope withstand if it is used
to accelerate a 1210-kg car horizontally along a frictionless
surface at 

5. (II) Superman must stop a 120-km h train in 150 m to keep
it from hitting a stalled car on the tracks. If the train’s mass
is how much force must he exert? Compare to
the weight of the train (give as ). How much force does the
train exert on Superman?

6. (II) What average force is required to stop a 950-kg car in
8.0 s if the car is traveling at 95 km h?

7. (II) Estimate the average force exerted by a shot-putter on
a 7.0-kg shot if the shot is moved through a distance of 2.8 m
and is released with a speed of 13 m s.

8. (II) A 0.140-kg baseball traveling 35.0 m/s strikes the catcher’s
mitt, which, in bringing the ball to rest, recoils backward 11.0 cm.
What was the average force applied by the ball on the glove?

�

�

%
3.6 * 105 kg,

�

1.20 m�s2?

Ag = 3.7 m�s2B,Ag = 1.7 m�s2B
2.30 m�s2.

1.4 m�s2?mass = 55 kg

F
B

FIGURE 30 Question 24.

20.0 kg

10.0 kg

FIGURE 31
Problem 10.

Dynamics: Newton’s Laws of Motion: Problem Set

[The Problems in this Section are ranked I, II, or III according to
estimated difficulty, with (I) Problems being easiest. Level (III)
Problems are meant mainly as a challenge for the best students, for
“extra credit.” The Problems are arranged by Sections, meaning that
the reader should have read up to and including that Section, but
this Chapter also has a group of General Problems that are not
arranged by Section and not ranked.]

9. (II) A fisherman yanks a fish vertically out of the water with
an acceleration of using very light fishing line that
has a breaking strength of . The fisherman
unfortunately loses the fish as the line snaps. What can you
say about the mass of the fish?

10. (II) A 20.0-kg box rests on a table. (a) What is the weight of the
box and the normal force acting on it? (b) A 10.0-kg box is
placed on top of the 20.0-kg box, as shown in Fig. 31. Determine
the normal force that the table exerts on the 20.0-kg box and
the normal force that the 20.0-kg box exerts on the 10.0-kg box.

18 N(L  4 lb)
2.5 m�s2

FIGURE 29 Question 20. A tug of war. Describe
the forces on each of the teams and on the rope.
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21. When you stand still on the ground, how large a force does
the ground exert on you? Why doesn’t this force make you
rise up into the air?

22. Whiplash sometimes results from an automobile accident
when the victim’s car is struck violently from the rear.
Explain why the head of the victim seems to be thrown
backward in this situation. Is it really?

11. (II) What average force is needed to accelerate a 9.20-gram
pellet from rest to 125 m s over a distance of 0.800 m along
the barrel of a rifle?

12. (II) How much tension must a cable withstand if it is used
to accelerate a 1200-kg car vertically upward at 

13. (II) A 14.0-kg bucket is lowered vertically by a rope in
which there is 163 N of tension at a given instant. What is
the acceleration of the bucket? Is it up or down?

14. (II) A particular race car can cover a quarter-mile track
(402 m) in 6.40 s starting from a standstill. Assuming the

0.70 m�s2?

�
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acceleration is constant, how many “g’s” does the driver
experience? If the combined mass of the driver and race car is
535 kg, what horizontal force must the road exert on the tires?

15. (II) A 75-kg petty thief wants to escape from a third-story jail
window. Unfortunately, a makeshift rope made of sheets tied
together can support a mass of only 58 kg. How might the
thief use this “rope” to escape? Give a quantitative answer.

16. (II) An elevator (mass 4850 kg) is to be designed so that the
maximum acceleration is 0.0680 g. What are the maximum
and minimum forces the motor should exert on the
supporting cable?

17. (II) Can cars “stop on a dime”? Calculate the acceleration
of a 1400-kg car if it can stop from 35 km h on a dime
( ) How many g’s is this? What is the
force felt by the 68-kg occupant of the car?

18. (II) A person stands on a bathroom scale in a motionless
elevator. When the elevator begins to move, the scale
briefly reads only 0.75 of the person’s regular weight.
Calculate the acceleration of the elevator, and find the
direction of acceleration.

19. (II) High-speed elevators function under two limitations: (1)
the maximum magnitude of vertical acceleration that a
typical human body can experience without discomfort is
about and (2) the typical maximum speed
attainable is about 9.0 m s. You board an elevator on a
skyscraper’s ground floor and are transported 180 m above
the ground level in three steps: acceleration of magnitude

from rest to 9.0 m s, followed by constant upward
velocity of 9.0 m s, then deceleration of magnitude 
from 9.0 m s to rest. (a) Determine the elapsed time for each
of these 3 stages. (b) Determine the change in the magnitude
of the normal force, expressed as a of your normal weight
during each stage. (c) What fraction of the total transport
time does the normal force not equal the person’s weight?

20. (II) Using focused laser light, optical tweezers can apply a
force of about 10 pN to a diameter polystyrene
bead, which has a density about equal to that of water: a
volume of has a mass of about 1.0 g. Estimate the
bead’s acceleration in ’s.

21. (II) A rocket with a mass of exerts a vertical
force of on the gases it expels. Determine (a)
the acceleration of the rocket, (b) its velocity after 8.0 s, and
(c) how long it takes to reach an altitude of 9500 m. Assume
g remains constant, and ignore the mass of gas expelled (not
realistic).

22. (II) (a) What is the acceleration of two falling sky divers
( including parachute) when the upward force
of air resistance is equal to one-fourth of their weight? (b)
After popping open the parachute, the divers descend leisurely
to the ground at constant speed. What now is the force of air
resistance on the sky divers and their parachute? See Fig. 32.

mass = 132 kg

3.55 * 107 N
2.75 * 106 kg

g
1.0 cm3

1.0-mm

%

�

1.2 m�s2�

�1.2 m�s2

�

1.2 m�s2 ,

diameter = 1.7 cm.
�

FIGURE 32 Problem 22.

23. (II) An exceptional standing jump would raise a person 0.80 m
off the ground. To do this, what force must a 68-kg person
exert against the ground? Assume the person crouches a
distance of 0.20 m prior to jumping, and thus the upward force
has this distance to act over before he leaves the ground.

24. (II) The cable supporting a 2125-kg elevator has a maximum
strength of 21,750 N. What maximum upward acceleration
can it give the elevator without breaking?

25. (III) The 100-m dash can be run by the best sprinters in
10.0 s. A 66-kg sprinter accelerates uniformly for the first
45 m to reach top speed, which he maintains for the
remaining 55 m. (a) What is the average horizontal compo-
nent of force exerted on his feet by the ground during accel-
eration? (b) What is the speed of the sprinter over the last
55 m of the race (i.e., his top speed)?

26. (III) A person jumps from the roof of a house 3.9-m high.When
he strikes the ground below, he bends his knees so that his torso
decelerates over an approximate distance of 0.70 m. If the mass
of his torso (excluding legs) is 42 kg, find (a) his velocity just
before his feet strike the ground, and (b) the average force
exerted on his torso by his legs during deceleration.

7 Using Newton’s Laws
27. (I) A box weighing 77.0 N rests on a table. A rope tied to the

box runs vertically upward over a pulley and a weight is hung
from the other end (Fig. 33).
Determine the force that the
table exerts on the box if the
weight hanging on the other side
of the pulley weighs (a) 30.0 N,
(b) 60.0 N, and (c) 90.0 N.

FIGURE 33
Problem 27.

28. (I) Draw the free-body diagram for a basketball player 
(a) just before leaving the
ground on a jump, and (b)
while in the air. See Fig. 34.

FIGURE 34
Problem 28.
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29. (I) Sketch the free-body diagram of a baseball (a) at the
moment it is hit by the bat, and again (b) after it has left the
bat and is flying toward the outfield.
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32. (II) A window washer pulls herself upward using the
bucket–pulley apparatus shown in Fig. 36. (a) How hard must
she pull downward to raise herself slowly at
constant speed? (b) If she increases this force by
15%, what will her acceleration be? The mass of
the person plus the bucket is 72 kg.

30. (I) A 650-N force acts in a northwesterly direction. A
second 650-N force must be exerted in what direction so
that the resultant of the two forces points westward? Illus-
trate your answer with a vector diagram.

31. (II) Christian is making a Tyrolean traverse as shown in Fig.
35. That is, he traverses a chasm by stringing a rope between
a tree on one side of the chasm and a tree on the opposite
side, 25 m away. The rope must sag sufficiently so it won’t
break. Assume the rope can provide a tension force of up to
29 kN before breaking, and use a “safety factor” of 10 (that is,
the rope should only be required to undergo a tension force
of 2.9 kN) at the center of the Tyrolean traverse. (a) Deter-
mine the distance x that the rope must sag if it is to be within
its recommended safety range and Christian’s mass is 72.0 kg.
(b) If the Tyrolean traverse is incorrectly set up so that the
rope sags by only one-fourth the distance found in (a), deter-
mine the tension force in the rope. Will the rope break?

x

FIGURE 35 Problem 31.
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FIGURE 40 Problem 37.

33. (II) One 3.2-kg paint bucket is hanging by a massless cord
from another 3.2-kg paint bucket, also hanging by a mass-
less cord, as shown in Fig. 37. (a) If the buckets
are at rest, what is the tension in each cord? (b)
If the two buckets are pulled upward with an
acceleration of by the upper cord,
calculate the tension in each cord.

1.25 m�s2

FIGURE 37
Problems 33 and 34.

32°48°
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Top view
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FIGURE 38
Problem 35.

and exerted on the unit by the horizontal cables is parallel
to the line L, and Determine and the
magnitude of F

B

A + F
B

B .
FBFA = 4500 N.

F
B

B

T2F
B

T1F
BCar 2 Car 1

36. (II) A train locomotive is pulling two cars of the same mass
behind it, Fig. 39. Determine the ratio of the tension in the
coupling (think of it as a cord) between the locomotive and
the first car to that between the first car and the
second car for any nonzero acceleration of the train.AFT2B,

AFT1B,

FIGURE 36
Problem 32.

37. (II) The two forces and shown in Fig. 40a and b (looking
down) act on a 18.5-kg object on a frictionless tabletop. If

and find the net force on the
object and its acceleration for (a) and (b).

F2 = 16.0 N,F1 = 10.2 N

F
B

2F
B

1

34. (II) The cords accelerating the buckets in Problem 33b,
Fig. 37, each has a weight of 2.0 N. Determine the tension in
each cord at the three points of attachment.

35. (II) Two snowcats in Antarctica are towing a housing unit to
a new location, as shown in Fig. 38. The sum of the forces F

B

A

FIGURE 39 Problem 36.

Dynamics: Newton’s Laws of Motion: Problem Set

38. (II) At the instant a race began, a 65-kg sprinter exerted a
force of 720 N on the starting block at a 22° angle with
respect to the ground. (a) What was the horizontal accelera-
tion of the sprinter? (b) If the force was exerted for 0.32 s,
with what speed did the sprinter leave the starting block?

39. (II) A mass m is at rest on a horizontal frictionless surface at
Then a constant force acts on it for a time

Suddenly the force doubles to and remains constant until
Determine the total distance traveled from 

to t = 2 t0 .
t = 0t = 2 t0 .

2F0

t0 .F0t = 0.
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40. (II) A 3.0-kg object has the following two forces acting on it:

If the object is initially at rest, determine its velocity at 

41. (II) Uphill escape ramps are sometimes provided to the 
side of steep downhill highways for trucks with overheated
brakes. For a simple 11° upward ramp, what length would be
needed for a runaway truck traveling 140 km h? Note the
large size of your calculated length. (If sand is used for the bed
of the ramp, its length can be reduced by a factor of about 2.)

42. (II) A child on a sled reaches the bottom of a hill with a
velocity of 10.0 m s and travels 25.0 m along a horizontal
straightaway to a stop. If the child and sled together have a
mass of 60.0 kg, what is the average retarding force on the
sled on the horizontal straightaway?

43. (II) A skateboarder, with an initial speed of 2.0 m s, rolls virtu-
ally friction free down a straight incline of length 18 m in 3.3 s.
At what angle is the incline oriented above the horizontal?

44. (II) As shown in Fig. 41, five balls (masses 2.00, 2.05, 2.10,
2.15, 2.20 kg) hang from a crossbar. Each mass is supported
by “5-lb test” fishing line which will break when its tension
force exceeds When this device is placed
in an elevator, which accelerates
upward, only the lines
attached to the 2.05 and
2.00 kg masses do not
break. Within what
range is the elevator’s
acceleration?

22.2 N (=  5 lb).

u

�

�

�

t = 3.0 s.
v
B

 F
B

2 = A–10  î + 22  ĵB N
 F
B

1 = A16  î + 12  ĵB N

a
B

2.20 2.15 2.10 2.05 2.00 kg

FIGURE 41
Problem 44.

mA mCmBF
B

FIGURE 42 Problem 46.
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FIGURE 43
Block on inclined 
plane. Problems 48 
and 49.

47. (II) Redo Example 13 of “Dynamics: Newton’s Laws of
Motion” but (a) set up the equations so that the direction 
of the acceleration of each object is in the direction of
motion of that object. (In Example 13, we took as positive
upward for both masses.) (b) Solve the equations to obtain
the same answers as in Example 13.

48. (II) The block shown in Fig. 43 has mass and
lies on a fixed smooth frictionless plane tilted at an angle

to the horizontal. (a) Determine the acceleration
of the block as it slides down the plane. (b) If the block starts
from rest 12.0 m up the plane from its base, what will be the
block’s speed when it
reaches the bottom of
the incline?

u = 22.0°

m = 7.0 kg

a
B

a
B

45. (II) A 27-kg chandelier hangs from a ceiling on a vertical
4.0-m-long wire. (a) What horizontal force would be neces-
sary to displace its position 0.15 m to one side? (b) What
will be the tension in the wire?

46. (II) Three blocks on a frictionless horizontal surface are in
contact with each other as shown in Fig. 42. A force is
applied to block A (mass ). (a) Draw a free-body
diagram for each block. Determine (b) the acceleration of
the system (in terms of and ), (c) the net force
on each block, and (d) the force of contact that each block
exerts on its neighbor. (e) If  and

give numerical answers to (b), (c), and (d).
Explain how your answers make sense intuitively.
F = 96.0 N,

mA = mB = mC = 10.0 kg

mCmB ,mA ,

mA

F
B

49. (II) A block is given an initial speed of 4.5 m/s up the 
22° plane shown in Fig. 43. (a) How far up the plane will it
go? (b) How much time elapses before it returns to its
starting point? Ignore friction.

50. (II) An object is hanging by a string from your rearview
mirror. While you are accelerating at a constant rate from
rest to 28 m s in 6.0 s,
what angle does the 
string make with the
vertical? See Fig. 44.

u

�

51. (II) Figure 45 shows a block (mass ) on a smooth hori-
zontal surface, connected by a thin cord that passes over a
pulley to a second block which hangs vertically. (a) Draw
a free-body diagram for each block, showing the force of
gravity on each, the force (tension) exerted by the cord, and any
normal force. (b) Apply Newton’s second law to find formulas
for the acceleration of the system and for the tension in the
cord. Ignore friction and
the masses of the pulley
and cord.

AmBB,
mA

mB

mA

FIGURE 45
Problems 51, 52,
and 53. Mass rests 
on a smooth horizontal 
surface, hangs 
vertically.

mB

mA
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FIGURE 44
Problem 50.

52. (II) (a) If  and  in Fig. 45, deter-
mine the acceleration of each block. (b) If initially is at rest
1.250 m from the edge of the table, how long does it take to
reach the edge of the table if the system is allowed to move
freely? (c) If how large must be if the accel-
eration of the system is to be kept at 

53. (III) Determine a formula for the acceleration of the system
shown in Fig. 45 (see Problem 51) if the cord has a 

1
100 g?

mAmB = 1.0 kg,

mA

mB = 5.0 kgmA = 13.0 kg
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non-negligible mass Specify in terms of and the
lengths of cord from the respective masses to the pulley.
(The total cord length is )

54. (III) Suppose the pulley in Fig. 46 is suspended by a cord C.
Determine the tension in
this cord after the masses
are released and before one
hits the ground. Ignore the
mass of the pulley and cords.

l = lA + lB .

lB ,lAmC .

3.2 kg

C

1.2 kg

FIGURE 46
Problem 54.

55. (III) A small block of mass m rests on the sloping side of a
triangular block of mass M which itself rests on a hori-
zontal table as shown in Fig. 47. Assuming all surfaces are
frictionless, determine the magnitude of the force that
must be applied to M so that m remains in a fixed position
relative to M (that is, m doesn’t move on the incline).
[Hint: Take x and y

axes horizontal and
vertical.]

F
B

θ

m

M
F
B

FIGURE 47
Problem 55.

57. (III) Suppose two boxes on a frictionless table are
connected by a heavy cord of mass 1.0 kg. Calculate 
the acceleration of each box and the tension at each end of

58. (III) The two masses shown in Fig. 50 are each initially
1.8 m above the ground, and the massless frictionless
pulley is 4.8 m above the ground. What maximum height
does the lighter object reach after the system is released?
[Hint: First determine
the acceleration of the
lighter mass and 
then its velocity at the
moment the heavier
one hits the ground.
This is its “launch”
speed. Assume the
mass doesn’t hit the
pulley. Ignore the
mass of the cord.]

3.6 kg2.2 kg

1.8 m

4.8 m

FIGURE 50 Problem 58.

56. (III) The double Atwood machine shown in Fig. 48 has fric-
tionless, massless pulleys and cords. Determine (a) the accel-
eration of masses 
and and (b) the
tensions and in
the cords.

FTCFTA

mC ,
mB ,mA ,

mC

mA mB

FTA

FTC

FIGURE 48
Problem 56.

mB
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xmA

mB =
12.0 kg

mA =
10.0 kg

FIGURE 22 Example 12. (a) Two boxes, A and B, are connected
by a cord. A person pulls horizontally on box A with force

(b) Free-body diagram for box A. (c) Free-body
diagram for box B.
FP = 40.0 N.
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x
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mC = 1.0 kg

(c)(b)(a)
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F
B

F
B

F
B
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B

mB =

12.0 kg

mA =

10.0 kg

FIGURE 4–49 Problem 57. Free-body diagrams for each of the objects of the system shown in
Fig. 4–22a. Vertical forces, and are not shown.F

B

G ,F
B

N

the cord, using the free-body diagrams shown in Fig. 49.
Assume and ignore sagging of the cord.
Compare your results to Example 12 of “Dynamics:
Newton’s Laws of Motion” and Fig. 22.

FP = 35.0 N,
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conditions apply to masses and for the acceleration
to be in one direction (say, down the plane), or in the
opposite direction? Ignore the mass of the cord and pulley.

mA

mBmA

θ

mB

mA

FIGURE 54
Problems 67 
and 68.

F
B

mB
mC

mA

60. (III) A particle of mass m, initially at rest at is
accelerated by a force that increases in time as 
Determine its velocity and position x as a function of time.

61. (III) A heavy steel cable of length and mass M passes over a
small massless, frictionless pulley. (a) If a length y hangs on one
side of the pulley (so hangs on the other side), calculate
the acceleration of the cable as a function of y. (b) Assuming
the cable starts from rest with length on one side of the
pulley, determine the velocity at the moment the whole cable
has fallen from the pulley. (c) Evaluate for [Hint:
Use the chain rule, and integrate.]dv�dt = (dv�dy)(dy�dt),

y0 = 2
3 l.vf

vf

y0

l - y

l

v
F = Ct2 .
x = 0,59. (III) Determine a formula for the magnitude of the force 

exerted on the large block in Fig. 51 so that the mass
does not move relative to Ignore all friction.

Assume does not make contact with mC .mB

mC .mA

AmCB
F
B

FIGURE 51
Problem 59.

General Problems
62. A person has a reasonable chance of surviving an automobile

crash if the deceleration is no more than 30 g’s. Calculate the
force on a 65-kg person accelerating at this rate.What distance
is traveled if brought to rest at this rate from 95 km h?

63. A 2.0-kg purse is dropped 58 m from the top of the Leaning
Tower of Pisa and falls 55 m before reaching the ground
with a speed of 27 m s. What was the average force of air
resistance?

64. Tom’s hang glider supports his weight using the six ropes
shown in Fig. 52. Each rope is designed to support an equal
fraction of Tom’s weight. Tom’s mass is 74.0 kg. What is the
tension in each of the support ropes?

�

�

30°

30° 30°

30°

30°

c b a a b c

30°

FIGURE 52 Problem 64.

65. A wet bar of soap slides freely down a ramp
3.0 m long inclined at 8.5°. How long does it take to reach the
bottom? How would this change if the soap’s mass were 300 g?

66. A crane’s trolley at point P in Fig. 53 moves for a few
seconds to the right with constant acceleration, and the 
870-kg load hangs at a 5.0° angle to the vertical as shown.
What is the acceleration of the trolley and load?

(m = 150 g)

5.0°

P

FIGURE 53 Problem 66.

67. A block (mass ) lying on a fixed frictionless inclined plane is
connected to a mass by a cord passing over a pulley, as
shown in Fig. 54. (a) Determine a formula for the accelera-
tion of the system in terms of and g. (b) Whatu,mB ,mA ,

mB

mA

θ

mBmA

B
θA

FIGURE 55
Problem 69.
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68. (a) In Fig. 54, if  and what
will be the acceleration of the system? (b) If 
and the system remains at rest, what must the mass be?
(c) Calculate the tension in the cord for (a) and (b).

69. The masses and slide on the smooth (frictionless)
inclines fixed as shown in Fig. 55. (a) Determine a formula for
the acceleration of the system in terms of 
and g. (b) If  and  what
value of would keep the system at rest? What would be the
tension in the cord (negligible mass) in this case? (c) What
ratio, would allow the masses to move at constant
speed along their ramps in either direction?

mA�mB ,

mB

mA = 5.0 kg,uA = 32°,  uB = 23°,
mA , mB , uA , uB ,

mBmA

mB

mA = 1.00 kg
u = 33.0°,mA = mB = 1.00 kg

70. A 75.0-kg person stands on a scale in an elevator. What does
the scale read (in N and in kg) when (a) the elevator is at
rest, (b) the elevator is climbing at a constant speed of
3.0 m s, (c) the elevator is descending at 3.0 m s, (d) the
elevator is accelerating upward at (e) the elevator
is accelerating downward at 

71. A city planner is working on the redesign of a hilly portion
of a city. An important consideration is how steep the roads
can be so that even low-powered cars can get up the hills

3.0 m�s2?
3.0 m�s2 ,

��
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79. A super high-speed 14-car Italian train has a mass of 
640 metric tons (640,000 kg). It can exert a maximum force of
400 kN horizontally against the tracks, whereas at maximum
constant velocity (300 km h), it exerts a force of about 150 kN.
Calculate (a) its maximum acceleration, and (b) estimate the
force of friction and air resistance at top speed.

80. A fisherman in a boat is using a “10-lb test” fishing line. This
means that the line can exert a force of 45 N without
breaking (a) How heavy a fish can the fish-
erman land if he pulls the fish up vertically at constant
speed? (b) If he accelerates the fish upward at 
what maximum weight fish can he land? (c) Is it possible to
land a 15-lb trout on 10-lb test line? Why or why not?

81. An elevator in a tall building is allowed to reach a maximum
speed of 3.5 m s going down. What must the tension be in
the cable to stop this elevator over a distance of 2.6 m if the
elevator has a mass of 1450 kg including occupants?

82. Two rock climbers, Bill and Karen, use safety ropes of
similar length. Karen’s rope is more elastic, called a dynamic

rope by climbers. Bill has a static rope, not recommended for
safety purposes in pro climbing. (a) Karen falls freely about
2.0 m and then the rope stops her over a distance of 1.0 m (Fig.
60). Estimate how large a force (assume constant) she will feel
from the rope. (Express the result in multiples of her weight.)
(b) In a similar fall, Bill’s rope stretches by only 30 cm. How
many times his weight will the rope pull on him? Which
climber is more likely to be hurt?

�

2.0 m�s2 ,

(1 lb = 4.45 N).

�

FIGURE 60
Problem 82.
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75. (a) What minimum force F is needed to lift
the piano (mass M) using the pulley
apparatus shown in Fig. 57? (b) Deter-
mine the tension in each section of rope:

and FT4 .FT1 , FT2 , FT3 ,

76. In the design of a supermarket, there are to be several
ramps connecting different parts of the store. Customers
will have to push grocery carts up the ramps and it is obvi-
ously desirable that this not be too difficult. The engineer
has done a survey and found that almost no one complains
if the force required is no more than 18 N. Ignoring friction,
at what maximum angle should the ramps be built,
assuming a full 25-kg grocery cart?

77. A jet aircraft is accelerating at as it climbs at an
angle of 18° above the horizontal (Fig. 58). What is the total
force that the cockpit seat exerts on the 75-kg pilot?

3.8 m�s2

u

FT1FT2

FT4

F

FT3

FIGURE 57
Problem 75.

18�FIGURE 58
Problem 77.

78. A 7650-kg helicopter accelerates upward at while
lifting a 1250-kg frame at a construction site, Fig. 59.
(a) What is the lift force
exerted by the air on 
the helicopter rotors? 
(b) What is the tension in
the cable (ignore its mass)
that connects the frame to
the helicopter? (c) What
force does the cable exert
on the helicopter?

0.80 m�s2

T

m

F
B

g
B

a
B

FIGURE 59
Problem 78.

without slowing down. A particular small car, with a mass of
920 kg, can accelerate on a level road from rest to 21 m s
(75 km h) in 12.5 s. Using these data, calculate the maximum
steepness of a hill.

72. If a bicyclist of mass 65 kg (including the bicycle) can coast
down a 6.5° hill at a steady speed of 6.0 km h because of air
resistance, how much force must be applied to climb the hill
at the same speed (and the same air resistance)?

73. A bicyclist can coast down a 5.0° hill at a constant speed of
6.0 km h. If the force of air resistance is proportional to the
speed v so that calculate (a) the value of the
constant c, and (b) the average force that must be applied in
order to descend the hill at 18.0 km h. The mass of the
cyclist plus bicycle is 80.0 kg.

74. Francesca dangles her watch from a thin
piece of string while the jetliner she is in
accelerates for takeoff, which takes about
16 s. Estimate the takeoff speed of the
aircraft if the string makes an angle of
25° with respect to the vertical, Fig. 56.

�

Fair = cv,
�

�

�

�

25°

T

m

F
B

g
B

a
B

FIGURE 56
Problem 74.
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A � 59��

�B � 32�

mB

FIGURE 62
Problem 86.

85. A 450-kg piano is being unloaded from a truck by rolling it
down a ramp inclined at 22°. There is negligible friction and
the ramp is 11.5 m long. Two workers slow the rate at which
the piano moves by pushing with a combined force of
1420 N parallel to the ramp. If the piano starts from rest,
how fast is it moving at the bottom?

86. Consider the system shown in Fig. 62 with 
and The angles and 
(a) In the absence of friction, what force would be
required to pull the masses at a
constant velocity up the fixed
inclines? (b) The force is
now removed. What is the
magnitude and direction
of the acceleration 
of the two blocks?
(c) In the absence
of what is the
tension in the
string?

F
B

,

F
B

F
B

uB = 32°.uA = 59°mB = 11.5 kg.
mA = 9.5 kg

83. Three mountain climbers who are roped together in a line
are ascending an icefield inclined at 31.0° to the horizontal
(Fig. 61). The last climber slips, pulling the second climber
off his feet. The first climber is able to hold them both. If
each climber has a mass of 75 kg, calculate the tension in
each of the two sections of rope between the three climbers.
Ignore friction between the ice and the fallen climbers.

31.0�

FIGURE 61 Problem 83.

84. A “doomsday” asteroid with a mass of is
hurtling through space. Unless the asteroid’s speed is
changed by about 0.20 cm s, it will collide with Earth and
cause tremendous damage. Researchers suggest that a small
“space tug” sent to the asteroid’s surface could exert a gentle
constant force of 2.5 N. For how long must this force act?

�

1.0 * 1010 kg

87. A 1.5-kg block rests on top of a 7.5-kg block (Fig. 63). The
cord and pulley have negligible mass, and there is no signif-
icant friction anywhere. (a) What force F must be applied to
the bottom block so the top block accelerates to the right at

(b) What is the tension in the connecting cord?2.5 m�s2?

7.5 kg

1.5 kg

B

F

FIGURE 63
Problem 87.

88. You are driving home in your 750-kg car at 15 m s. At a point
45 m from the beginning of an intersection, you see a green
traffic light change to yellow, which you expect will last 4.0 s,
and the distance to the far side of the intersection is 65 m
(Fig. 64). (a) If you choose to accelerate, your car’s engine will
furnish a forward force of 1200 N. Will you make it completely
through the intersection before the light turns red? (b) If you
decide to panic stop, your brakes will provide a force of
1800 N. Will you stop before entering the intersection?

�

65 m

45 m

FIGURE 64 Problem 88.

Numerical/Computer

89. (II) A large crate of mass 1500 kg starts sliding from rest
along a frictionless ramp, whose length is and whose incli-
nation with the horizontal is . (a) Determine as a function
of : (i) the acceleration a of the crate as it goes downhill,
(ii) the time to reach the bottom of the incline, (iii) the
final velocity of the crate when it reaches the bottom of
the ramp, and (iv) the normal force on the crate. (b) Now
assume Use a spreadsheet to calculate and
graph a, , and as functions of from to in

steps. Are your results consistent with the known result
for the limiting cases and u = 90°?u = 0°
1°

90°u = 0°uFNv,t
l = 100 m.

FN

v
t

u

u

l

* 

* 
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Answers to Odd-Numbered Problems
1. 77 N.
3. (a)

(b)
(c)
(d) 0.

5. 1.3 * 106 N, 39%, 1.3 * 106 N.

2.5 * 102 N;
1.2 * 102 N;
6.7 * 102 N;

7.

9.

11. 89.8 N.
13. up.
15. Descend with 
17. 280 g’s, 1.9 * 105 N.–2800 m�s2,

a � 2.2 m�s2.
1.8 m�s2,

m 7 1.5 kg.
2.1 * 102 N. 19. (a) 7.5 s, 13 s, 7.5 s;

(b) 12%, 0%,
(c) 55%.

21. (a)
(b)
(c) 78 s.

25 m�s;
3.1 m�s2;

–12%;
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(b)

53.

55.

57. 18.3 N, 19.8 N.

59.

61. (a)

(b)

(c)

63. 6.3 N.
65. 2.0 s, no change.

67. (a)

(b)

69. (a)

(b) 6.8 kg, 26 N;
(c) 0.74.

71. 9.9°.

73. (a)

(b)
75. (a)

(b)
77.

72° above the horizontal.
79. (a)

(b)
81. 1.76 * 104 N.

1.5 * 105 N.
0.6 m�s2;

8.7 * 102 N,
Mg�2, Mg�2, 3Mg�2, Mg.
Mg�2;
1.4 * 102 N.

41 
N

m�s
;

mB sin uB - mA sin uA

mA + mB
 g;

AmA up the planeB.
mA sin u 6 mB

AmA down the planeB,
mA sin u 7 mB

g 
AmA sin u - mBB
AmA + mBB ;

2
3

 2gl .

D2gy0 ¢ 1 -
y0

l
≤ ;

a 2y

l
- 1 bg;

AmA + mB + mCBmB3AmA
2 - mB

2 B  g.

1.52 m�s2,

(m + M)g tan u.

g 
mB +

lB

lA + lB
 mC

mA + mB + mC
.

g 
mB

mA + mB
, g 

mA mB

mA + mB
.
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83.

85.

87. (a) 23 N;
(b) 3.8 N.

89. (a)

(b)

The graphs are all consistent with
the results of the limiting cases.
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, 

3.4 m�s.
3.8 * 102 N, 7.6 * 102 N.23.

25. (a) 150 N;
(b)

27. (a) 47.0 N;
(b) 17.0 N;
(c) 0.

29. (a) (b)

31. (a) 1.5 m;
(b) 11.5 kN, no.

33. (a) 31 N, 63 N;

(b) 35 N, 71 N.

35.

37. (a) 19.0 N at 237.5°, at
237.5°;

(b) 14.0 N at 51.0°, at
51.0°.

39.

41.

43. 12°.

45. (a) 9.9 N;
(b) 260 N.

47. (a)

(b) 10, 500 N.

49. (a) 2.8 m;
(b) 2.5 s.

51. (a)

F
B F

B

F
B

g
B

g
BmA mB

NA
T

T

0.68 m�s2,
FT - mC g = mC a;
mE g - FT = mE a;

4.0 * 102 m.

5
2

 
F0

m
 t0

2 .

0.758 m�s2

1.03 m�s2

6.3 * 103 N, 8.4 * 103 N.

bat

m

F
B

g
B

mg
B

14.5 m�s.

3.3 * 103 N.
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Using Newton’s Laws: Friction,
Circular Motion, Drag Forces

CHAPTER-OPENING QUESTION—Guess now!
[Don’t worry about getting the right answer now—the idea is to 

get your preconceived notions out on the table.]

You revolve a ball around you in a horizontal circle
at constant speed on a string, as shown here from
above. Which path will the ball follow if you 
let go of the string at point P?

CONTENTS

1 Applications of Newton’s
Laws Involving Friction

2 Uniform Circular
Motion—Kinematics

3 Dynamics of Uniform
Circular Motion

4 Highway Curves: Banked
and Unbanked

5 Nonuniform Circular
Motion

6 Velocity-Dependent
Forces: Drag and Terminal
Velocity

* 

* 

T
his chapter considers aspects of Newton’s laws and emphasizes their
fundamental importance in physics. We cover some important applications
of Newton’s laws, including friction and circular motion.

Newton’s laws are fundamental in physics.
These photos show two situations of using
Newton’s laws. The downhill skier illustrates
friction on an incline, although at this moment
she is not touching the snow, and so is retarded
only by air resistance which is a velocity-
dependent force. The people on the rotating
amusement park ride below illustrate the
dynamics of circular motion.

Agence Zoom/Getty Images Grant Faint/Getty Images

Note: Sections marked with an asterisk (*) may be considered optional by the instructor.
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FIGURE 2 When an object is
pulled along a surface by an 
applied force the force of 
friction opposes the motion.
The magnitude of is proportional
to the magnitude of the normal 
force AFNB.
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AFBAB,
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FIGURE 1 An object moving to 
the right on a table or floor.
The two surfaces in contact are
rough, at least on a microscopic
scale.

1 Applications of Newton’s Laws
Involving Friction

Friction must be taken into account in most practical situations. Friction exists
between two solid surfaces because even the smoothest looking surface is quite
rough on a microscopic scale, Fig. 1. When we try to slide an object across another
surface, these microscopic bumps impede the motion. Exactly what is happening at
the microscopic level is not yet fully understood. It is thought that the atoms on a
bump of one surface may come so close to the atoms of the other surface that
attractive electric forces between the atoms could “bond” as a tiny weld between
the two surfaces. Sliding an object across a surface is often jerky, perhaps due to
the making and breaking of these bonds. Even when a round object rolls across a
surface, there is still some friction, called rolling friction, although it is generally
much less than when objects slide across a surface. We focus our attention now on
sliding friction, which is usually called kinetic friction (kinetic is from the Greek for
“moving”).

When an object slides along a rough surface, the force of kinetic friction acts
opposite to the direction of the object’s velocity. The magnitude of the force of
kinetic friction depends on the nature of the two sliding surfaces. For given surfaces,
experiment shows that the friction force is approximately proportional to the
normal force between the two surfaces, which is the force that either object exerts
on the other and is perpendicular to their common surface of contact (see Fig. 2).
The force of friction between hard surfaces in many cases depends very little on the
total surface area of contact; that is, the friction force on this book is roughly the
same whether it is being slid on its wide face or on its spine, assuming the surfaces
have the same smoothness. We consider a simple model of friction in which we
make this assumption that the friction force is independent of area. Then we write
the proportionality between the magnitudes of the friction force and the normal
force as an equation by inserting a constant of proportionality,

[kinetic friction]

This relation is not a fundamental law; it is an experimental relation between
the magnitude of the friction force which acts parallel to the two surfaces,
and the magnitude of the normal force which acts perpendicular to the surfaces.
It is not a vector equation since the two forces have directions perpendicular to
one another. The term is called the coefficient of kinetic friction, and its value
depends on the nature of the two surfaces. Measured values for a variety of
surfaces are given in Table 1. These are only approximate, however, since 
depends on whether the surfaces are wet or dry, on how much they have been
sanded or rubbed, if any burrs remain, and other such factors. But is roughly
independent of the sliding speed, as well as the area in contact.

mk

m

mk

FN ,
Ffr ,

Ffr = mk FN .

mk :FN

Ffr

TABLE 1 Coefficients of Friction

Coefficient of Coefficient of
Surfaces Static Friction, Kinetic Friction,

Wood on wood 0.4 0.2

Ice on ice 0.1 0.03

Metal on metal (lubricated) 0.15 0.07

Steel on steel (unlubricated) 0.7 0.6

Rubber on dry concrete 1.0 0.8

Rubber on wet concrete 0.7 0.5

Rubber on other solid surfaces 1–4 1

Teflon® on Teflon in air 0.04 0.04

Teflon on steel in air 0.04 0.04

Lubricated ball bearings 0.01 0.01

Synovial joints (in human limbs) 0.01 0.01

Values are approximate and intended only as a guide.†
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