Designing for Zero Waste

‘In a world where more and more people are consuming more and generating more waste this book is vital reading. In a society where most of us are consciously and sub-consciously detached from the reality of our own supporting ecosystems this book is vital reading. In an economy where precious resources are produced so cheaply that we can throw so much of them away this book is vital reading. In an environment being stripped of its resources, being polluted and made toxic on an industrial scale this book provides a real chance to re-connect and re-think our relationship with the supply and waste streams we take for granted in our unsustainable lifestyles. That re-connection is essential and this book shows us ways to make it happen. Please read it.’

Professor Susan Roaf, Heriot-Watt University, Edinburgh, UK

‘Designing for Zero Waste is a timely resource and guide covering basic principles to city and regional governance. The flows of the waste created in our daily lives and building processes are largely ignored, misunderstood, or misinterpreted. This book should inspire a better understanding of material efficiency, avoidance of waste, and re-thinking material flows at a variety of scales and professions.’

Professor Alison Kwok, University of Oregon, Eugene, USA

Materials and resources are being depleted at an accelerating speed, and rising consumption trends across the globe have placed material efficiency, waste reduction and recycling at the centre of many government policy agendas, giving them an unprecedented urgency. The complex nature of the problem requires an increasing degree of interdisciplinarity. Resource recovery and the optimization of material flow can only be achieved with behaviour change to reduce the creation of material waste and wasteful consumption. Designing for Zero Waste aims to develop a more robust understanding of the links between lifestyle, consumption, technologies and urban development.

Professor Steffen Lehmann, PhD, is the Director of the Zero Waste SA Research Centre for Sustainable Design and Behaviour at the University of South Australia. Steffen is a widely published author and scholar and is Founding Director of the s_Lab Space Laboratory for Architectural Research and Design (Sydney–Berlin), as well as editor of the US-based Journal of Green Building and an advisor to Australian and German governments, city councils and industry. See www.slab.com.au.

Dr Robert Crocker is a Senior Lecturer in the School of Art, Architecture and Design at the University of South Australia, and teaches both the history and theory of design and the School’s Master of Sustainable Design. With an Oxford doctorate in modern history (1987), Robert has published one monograph and two edited books. He is currently working on the role and idea of the national past in shaping Anglo-American domestic design and consumer culture in the 1920s and 1930s, and is developing another project on the role of technology in shaping consumer behaviour and attitudes towards waste. Find Robert’s homepage at www.unisa.edu.au.
All books in this series are authored and/or edited by leading academics and practitioners in the field of sustainable design.

Although there has been an immense amount of theory- and technology-focused writing published on the topic of sustainable design, many of these books have failed to introduce readers to the wider challenge of what the rethinking of design, production, operation and recycling of all products, buildings and cities really means.

Sustainability is not a passing fashion, and people are constantly searching for more information, ideas and products in this area. This new book series will aim to develop a more coherent theoretical framework for how different theories of sustainable design might engage with the practice of architects, designers, urban planners and related professions. The knowledge gained from this book series will equip the readers with the tools for realizing the full potential of the good intentions of sustainable design.

The aim is that these books will provide a novel alignment of interdisciplinary perspectives on the problems of global consumerism, sustainable design and strategies to avoid resource waste, on the scales of products, buildings, districts and cities.

The books will become essential reading for architects, industrial designers, urban designers and researchers/students in these disciplines. Potential readers for the books will also include industry and government agencies. Global relevance and the potential for use as textbooks will be essential.

The book series has been developed in coordination with UN-Habitat and will become a highly useful addition to the literature on sustainable design, urban development and city culture, focusing on the key topics encountered by students and scholars of urban studies, pointing towards related bibliographic material.

If you have an idea for the series then please contact the series editor.

Series Editor of the Sustainable Design Book Series

Professor Steffen Lehmann, PhD, is an internationally highly respected architect, urbanist and scholar, the Professor of Sustainable Design, Director of the ZWSA Research Centre for Sustainable Design and Behaviour (sd+b), at the University of South Australia. Steffen Lehmann has also been the UNESCO Chair in Sustainable Urban Development for Asia and the Pacific since 2008, the first such chair created with a particular view towards the rapid urbanization process in Asian cities. Since 1992, he has practised as a registered and licensed architect and urban designer in Berlin, where he established his own practice, the Space Laboratory for Architectural Research and Design (s_Lab).
Designing for Zero Waste

Consumption, technologies and the built environment

Edited by
Steffen Lehmann and Robert Crocker
Contents

- List of figures viii
- List of tables xi
- List of contributors xii
- Acknowledgements xxi
- Foreword: Designing for zero waste xxiii
 VAUGHAN LEVITZKE
- Preface: Zero waste: towards a vision of a new model for humankind xxvi
 PETER BRANDON

Introduction: People, policies and persuasion: the future of waste reduction and resource recovery in households and urban settings

STEFFEN LEHMANN AND ROBERT CROCKER

1 | ‘Somebody else’s problem’: consumer culture, waste and behaviour change – the case of walking 11
| ROBERT CROCKER

2 | Twenty-first-century life: how our work, home and community lives affect our capacity to live sustainably 35
| NATALIE SKINNER, PIP WILLIAMS, BARBARA POCOCK AND JANE EDWARDS

3 | Young children and sustainable consumption: an early childhood education agenda 53
| SUE NICHOLS

4 | Reducing wasteful household behaviours: contributions from psychology and implications for intervention design 67
| SANDRA DAVISON, KIRRILLY THOMPSON, ANNE SHARP AND DREW DAWSON
PART II
Zero waste, enabling technologies and consumption: policies

6 Getting closer to zero waste in the new mobile communications paradigm: a social and cultural perspective
ROBERT CROCKER

7 Waste from electronics (e-waste) governance and systems organization
AB STEVELS, JACO HUISMAN AND FENG WANG

8 Life-cycle thinking, analysis and design
ALEXANDER WALKER

9 Green houses: problem-solving, ontology and the house
JANE DICKSON WITH VICTOR BUCHLI

10 Living in harmony with wildlife: considering the animal’s ‘point of view’ in planning and design
CARLA LITCHFIELD, KURT LUSHINGTON, SUE BIGWOOD AND WENDY FOSTER

PART III
Zero waste in sustainable architecture and design at the household and building scale

11 Sustainable building design and systems integration: combining energy efficiency with material efficiency
STEFFEN LEHMANN

12 Breathing life into the corpse: upcycling through adaptive reuse
STEPHEN WARD

13 Density, design and sustainable residential development
ALPANA SIVAM AND SADASIVAM KARUPPANAN

14 Construction management and a state of zero waste
NICHOLAS CHILESHE, JIAN ZUO, STEPHEN PULLEN AND GEORGE ZILLANTE
PART IV
Zero waste in cities, urban governance and material flows 307

15 The metabolism of the city: optimizing urban material flow through principles of zero waste and sustainable consumption 309
STEFFEN LEHMANN

16 Sustainable transport systems and behaviour change 344
MICHAEL A. P. TAYLOR AND MICHELLE PHILP

17 Planning for the sustainable consumption of urban resources 361
LOU WILSON

18 Development of multifunctional urban land uses using water sensitive urban design 374
SIMON BEECHAM

Conclusion: The culture and politics of zero waste: looking ahead 385
ROBERT CROCKER AND STEFFEN LEHMANN

Glossary of terms 394
List of zero-waste online resources 406
List of academic journals for zero-waste research 408
Index 410
Figures

2.1 Social systems model of factors influencing engagement in sustainable behaviours 38
3.1 A necklace handed down from mother to daughter 62
3.2 Mending on a grandfather’s teddy bear 63
4.1 ‘Pre-contemplation’ stage: typical domestic food waste headed to municipal waste 78
4.2 ‘Pre-contemplation’ stage: refrigerators are the source of much food waste 79
4.3 ‘Action’ stage: a convenient means of storing food waste prior to environmentally friendly disposal 81
4.4 ‘Action’ and ‘maintenance’ stages: compost bins can blend in well with the gardens that composted food helps to grow 82
4.5 ‘Action’ and ‘maintenance’ stages: a worm farm. Thousands of worms dispose of food, turning waste food into both liquid and solid garden fertilizer 83
7.1 Environmental effect of increasing collection of e-waste in the European Union by a factor of 2 138
8.1 Product life cycle 152
8.2 Product life-cycle comparisons 152
8.3 Life-cycle assessment procedure 158
8.4 Timber sports surface process tree 161
8.5 CO₂ impacts 163
8.6 Water impacts 164
10.1 Keeping wildlife away from crops or other areas is a growing problem in many parts of the world, as this photo of free-ranging zebras in Uganda shows 185
10.2 In the middle of a roundabout on a busy street, people put seed out for pigeons in Sharjah, United Arab Emirates 186
10.3 Park rangers sometimes struggle to enforce a 9m buffer distance between tourists seeking the perfect photo opportunity and endangered mountain gorillas in Uganda 187
10.4 Rubbish bins are a potential source of food for free-ranging dingoes on Fraser Island in Australia 189
10.5 Close interactions between humans and wildlife may lead to zoonotic disease transmission, as people feed or photograph animals, such as these monkeys in (a) Pakistan and (b) Borneo, Malaysia 190
10.6 The Human Zoo enclosure that one of the authors (Carla Litchfield) spent a month inside to experience an environment from the ‘animal’s point of view’ and promote awareness about human behaviours that endanger wild populations of great apes (e.g. the commercial bushmeat trade) 195

10.7 Water-efficient toilet and sink, with screen providing the user with feedback about water savings 196

11.1 An energy-efficient office building entirely lit by LED 224

11.2 An example of adaptive reuse in Berlin, Germany: the Sasha Waltz Dance Theatre is a renovated and extended factory building in Berlin Friedrichshain overlooking the river Spree 226

11.3 Energy-efficient civic building: the Training Academy in Herne, Germany 229

11.4 Energy-efficient retrofit and adaptive reuse: the Zero Energy Building in Singapore 230

11.5 Energy-efficient hotel complex: the European Southern Observatory Hotel in the Atacama Desert, Chile 232

11.6 Diagram showing the applicability of different energy-efficient building design principles depending on the climatic zone, context and project scale 239

12.1 Paddington Reservoir (Sydney, Australia) before work to transform it into a public park 254

12.2 Paddington Reservoir Gardens (Sydney, Australia): eastern chamber 254

12.3 Paddington Reservoir Gardens (Sydney, Australia) after adaptive reuse 255

12.4 School of Architecture, University of Tasmania, exterior 256

12.5 School of Architecture, University of Tasmania, after adaptive reuse 256

12.6 School of Architecture, University of Tasmania, after adaptive reuse 257

12.7 Canberra Glassworks (ACT, Australia) boiler room before construction 257

12.8 Canberra Glassworks (ACT, Australia) boiler room after adaptive reuse 258

12.9 Canberra Glassworks (ACT, Australia) exterior 259

13.1 Impact of design on the built environment 270

13.2 Residential area layout, Sheffield, UK 273

13.3 Residential area layouts in Delhi, India: (a) Dwarka and (b) Rohini 274

13.4 Residential area layout, Medindie, Adelaide, Australia 276

13.5 Residential area layout, Oakden, Adelaide, Australia 276

14.1 Stages in the building life cycle 289

14.2 Key drivers for attainment of a state of zero waste 291

15.1 Photos of collection terminals in Hammarby-Sjöestad, Stockholm, Sweden 315

15.2a Diagrams of linear and circular urban metabolisms 318

15.2b Diagrams of the input and output of conventional and sustainable cities 319

15.3 The waste-hierarchy diagram illustrates how waste avoidance is preferred, above reuse and recycling 320

15.4 Urban farming in the ‘Carrot City’, designed to use as few resources as possible 321

15.5a Organics recycling process, Adelaide, South Australia 322
15.5b and c Photos of a renewable energy plant 323
15.6 Aerial photo, ‘Garbage City’, Cairo, Egypt 334
15.7 Photos of waste management in Germany 337
15.8 Waste management is an important keystone in the effort to achieve
 a holistic ‘sustainable city’, using local and recycled materials 339
17.1 Illustration of the 30-Year Plan for Greater Adelaide 369
18.1 The pavement reuse concept 377
18.2 Pavement excavation 378
18.3 Laying of the impermeable lining and base-course aggregates 378
18.4 The completed UniSA prototype facility at the University of South
 Australia, Adelaide, Australia 378
18.5 Compressive-strength testing of porous concrete 380
18.6 Flexural-strength testing of porous concrete 380
18.7 WSUD features at the Humid Tropics Centre, Kuala Lumpur, Malaysia 381
18.8 PERMPAVE computed inflow hydrograph 382
18.9 PERMPAVE program outputs 382
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>A suggested stages-of-change algorithm to measure a current food-waste behaviour</td>
<td>72</td>
</tr>
<tr>
<td>4.2</td>
<td>Processes of change</td>
<td>74</td>
</tr>
<tr>
<td>7.1</td>
<td>Environmental equivalency of recovering materials</td>
<td>135</td>
</tr>
<tr>
<td>7.2</td>
<td>Relative economic value of materials in electronic products</td>
<td>136</td>
</tr>
<tr>
<td>7.3</td>
<td>Positioning deep disassembly between high-tech recycling and informal recycling</td>
<td>140</td>
</tr>
<tr>
<td>13.1</td>
<td>Design elements required to make residential development socially, economically and environmentally sustainable</td>
<td>277</td>
</tr>
<tr>
<td>14.1</td>
<td>The cultural shift required for zero waste</td>
<td>294</td>
</tr>
<tr>
<td>16.1</td>
<td>Benefits observed from VTBC schemes</td>
<td>348</td>
</tr>
<tr>
<td>16.2</td>
<td>Objectives for evaluating the effectiveness of VTBC programmes</td>
<td>349</td>
</tr>
</tbody>
</table>
Contributors

Editors

Robert Crocker is a Senior Lecturer in the School of Art, Architecture and Design at the University of South Australia, and teaches both the history and theory of design and the School’s Master of Sustainable Design. With an Oxford doctorate in modern history (1987), Robert has published one monograph and two edited books (in The International Archives in the History of Ideas series). He is currently working on the role and idea of the national past in shaping Anglo-American domestic design and consumer culture in the 1920s and 1930s, and is developing another project on the role of technology in shaping consumer behaviour and attitudes towards waste. For a brief publication list, see Robert’s homepage: www.unisa.edu.au.

Steffen Lehmann is the Professor of Sustainable Design and Director of the Zero Waste SA Research Centre for Sustainable Design and Behaviour (sd+b), at the University of South Australia. Prior to this, he held the Chair of Architectural Design in the Architecture School at the University of Newcastle (NSW). He has held a personal Chair in Australia since December 2002. He is the General Editor of the US-based Journal of Green Building and a member of the editorial boards of five academic journals. Steffen has held the UNESCO Professorship in Sustainable Urban Development for Asia and the Pacific since 2008. In 2009–10 he was the DAAD Professor at TU-Munich and a Visiting Professor at NUS in Singapore. He was also a Visiting Professor at the TU-Berlin and at Tongji University in Shanghai (2005). He received his doctorate in architecture from the TU-Berlin, an AA Diploma degree from the Architectural Association School in London, and a Masters degree from the University of Applied Sciences in Mainz. Between 1990 and 1993, he worked as an architect with James Stirling in London and with Arata Isozaki in Tokyo. In 1993, Steffen established his own ideas-driven, research-based practice in Berlin: the Space Laboratory for Architectural Research and Design (s_Lab), to pursue a more ethically correct practice. In 2010, he wrote The Principles of Green Urbanism and, in 2009, he edited Back to the City. For more information, see: www.slab.com.au.

Contributors

Simon Beecham is Head of the School of Natural and Built Environments at the University of South Australia. He is also the former Director of the SA Water Centre for Water Management and Reuse (CWMR). Simon is a Fellow of Engineers Australia
and is also a Board Director for Water Quality Research Australia Ltd (WQRA). Simon’s research interests include water-sensitive urban design (WSUD), siphonic roof water harvesting and the effects of climate change on integrated urban water management (IUWM). Simon is also the author of the Syfon software program, which has been used to design the roof water harvesting system for Sydney’s Stadium Australia and the MCG, as well as the siphonic roof-drainage systems at the Norman Foster–designed Chek Lap Kok airport in Hong Kong and the new International Terminal Buildings at Adelaide, Sydney and Kuala Lumpur airports.

Sue Bigwood was raised on Kangaroo Island, South Australia. She discovered an innate passion for wildlife among a rural culture and strong community spirit. She graduated from Murdoch Veterinary School in 1989, and has spent her veterinary career largely at Zoos SA, in wildlife medicine and *in situ* conservation work. With developing interests in biodiversity, biosecurity, landcare and human health, her role at Zoos SA is now one of networking and coordinating the multidisciplinary, cross-agency core of wildlife health stakeholders. The benefits will be increased capabilities in the wildlife health sector through improved education, research and leadership. Her spare time is full of family and growing fine red wine, back on Kangaroo Island.

Victor Buchli is a Reader in Material Culture within the Material Culture Group at University College London and works on architecture, domesticity, the archaeology of the recent past, critical understandings of materiality and new technologies and the anthropology of sustainability and design. He has conducted fieldwork in Russia, Britain, Kazakhstan and Turkey and is currently researching new materials and rapid manufacturing, or 3D printing. He is a member of the interdisciplinary Templeton Scholars Group and is managing editor of the *Journal of Material Culture and Home Cultures*.

Nicholas Chileshe is a Senior Lecturer in Construction and Project Management in the School of Natural and Built Environments at the University of South Australia, where he is also the Research Education and Portfolio Leader. Dr Chileshe obtained his PhD in Construction Management from Sheffield Hallam University. Prior to his appointment in July 2009, he worked in the United Kingdom for ten years at Sheffield Hallam University. Nicholas is a Fellow of the Chartered Institute of Building (FCIOB), Fellow of the Australian Institute of Building (FAIB), Fellow of the Association of Building Engineers (FEBng) and Fellow of the Higher Education Academy (FHEA), Member of the Chartered Institute of Management (MICM) and Member of the Australian Institute of Project Management (MAIPM). His current research interests are in total quality management, sustainability, construction management, risk management, project management and project success.

Sandra Davison is a psychologist and a lecturer in Psychology at the University of South Australia and the South Australian Institute of Business Technology in Adelaide. She holds a Masters degree in Clinical Psychology and is currently a PhD research scholar on the mixed-methods project ‘Zeroing in on food waste: Measuring, understanding and reducing food waste’. Sandra is interested in the social and psychological drivers of behaviour change. Clinically, much of Sandra’s past work has been in health and rehabilitation areas, where she has assisted people to adapt and change health and lifestyle behaviours. With a deep concern for future world sustainability, and as a
member of a research team at the University of South Australia, Sandra is now focusing on the psychological aspects of community pro-environmental behaviour.

Drew Dawson is internationally recognized for his contributions to the scientific community and to industry in the areas of sleep and fatigue research, organizational psychology and human factors, industrial-relations negotiations, and the human implications of hours of work. He has worked extensively with the aviation, manufacturing, retail, entertainment, transportation and mining sectors in Australia and is an expert on fatigue in the workplace. He has instigated fatigue-management programmes, developed shiftwork and fatigue policy, undertaken pre-employment assessments and facilitated shiftwork education sessions. Drew also regularly presents at national and international conferences and has provided expert-witness testimony in many fatigue-related court cases.

Jane Dickson is a PhD candidate in the Material Culture department at University College London. She is researching the governance of sustainability through housing in London. She has previously undertaken research in America into contemporary crafting, anti-consumerist and local history movements and in the UK into grass-roots environmental movements.

Angelique Edmonds is an architect interested in public architecture, fostering agency, participation and engagement, and has a particular interest in social sustainability in design, fostering socially inclusive design, engaging cross-cultural and broad participation from diverse groups and design approaches that foster resilience. She completed a PhD in interdisciplinary Cross-Cultural Research at the Australian National University in 2007, which focused upon the agency of Aboriginal people in South East Arnhem Land in Australia in determining the order of their lives, as evidenced through their responses to the living practices, planning and built forms of imposed sedentary life. Prior to that, she completed a Master of Philosophy in the History and Philosophy of Architecture at Cambridge University and completed her Architecture degrees at Kingston University in London and UNSW in Sydney. She is currently a Lecturer at the University of South Australia, in the School of Art, Architecture and Design and teaches at undergraduate and Masters levels.

Jane Edwards is an adjunct Research Fellow at the Centre for Work and Life at the University of South Australia and has a background in the sociology of health, as well as public health. She has developed an interest in the notion of community in contemporary society and has investigated this in various settings. Jane is particularly committed to work–life balance and spends long periods walking on the beach and in the bush to demonstrate this commitment.

Wendy Foster is the Manager of Conservation Programs for Conservation Ark (Zoos SA). She has studied and researched across a range of disciplines, including environmental biology, psychology, reproductive biology and medical research. She is currently a member of several species-recovery teams, is involved in a range of national and international conservation projects and oversees the research activities of Conservation Ark (Zoos SA) across Adelaide Zoo, Monarto Zoo and Warrawong Wildlife Sanctuary, as well as in the field. One of her key interests is looking at the ways people in different disciplines can bring together their skill sets and perspectives to provide increased conservation benefit.
Jaco Huisman is Scientific Advisor to the United Nations University Institute for Sustainability and Peace (UNU–ISP), a position he has held since 2006, focusing on electronics recycling in a global context. He leads UNU’s Electronics Recycling Group and co-coordinates the TaskForce Capacity Building and Knowledge Management of the UNU-based StEP Initiative (Solving the e-waste Problem; see: www.step-initiative.org). In this role, he is responsible for a large project to further quantify the amounts and problems of e-waste worldwide in cooperation with research institutes and universities in Europe, China, the US and the Middle East. He is also leading various international research projects related to e-waste, including the UNU study supporting the European Commission’s 2008 Review of the EU WEEE Directive. Jaco obtained a Masters degree in Chemical Engineering at Eindhoven University of Technology in 1999 and a PhD in 2003 from Delft University of Technology. Since 2004, he has run his own consultancy company, Osevenfortytwo (see: www.osevenfortytwo.com), and, as a consultant, he has given advice to a large number of producers, governments and recyclers in Europe, the US and China to improve eco-efficient operations, waste policies, system organization and product design. Since 2003, he has been an Associate Professor at Delft University of Technology, the Netherlands.

Sadasivam Karuppannan is a lecturer in Urban and Regional Planning at the University of South Australia. He is a planner with experience in urban planning, in particular, housing, the provision of affordable housing, geographical information systems and land-use planning. His research interests include evaluation of housing demand, urban-growth modelling, land-use planning, development and the application of spatial information systems (including geographical information systems) in urban planning, including land-use modelling. In 2008, he and his colleagues at the University of South Australia won an Australia Research Council Linkage grant on an integrated model for the assessment of urban sustainability. He has published on sustainability, urban planning, urban development, housing and ageing.

Carla Litchfield is a scientist involved in research and community work with organizations that promote animal psychological and physical well-being (in captivity and natural environments), responsible tourism and conservation. She has a PhD in Psychology (Animal Behaviour) from the University of Adelaide. She is a lecturer at the University of South Australia, and, as an adjunct researcher on the science team of Conservation Ark (Zoos SA), is developing the area of conservation psychology, addressing human behaviour change to conserve wildlife and natural environments, and ways to minimize human–animal conflict. In 1994, Carla spent a year observing a community of wild chimpanzees in Uganda — the start of an ongoing commitment to the African great apes. The Australian Science Communicators awarded her the ‘Unsung Hero of Australian Science’ in 2000. Carla is the Vice President of Zoos SA and President of the Australasian Primate Society. She is also on the board of the United Nations’ Great Ape Survival Project (GRASP, Australasia). She has written four science and conservation books for children about animals (gorillas, chimpanzees, pandas and tigers), to inspire a love for nature, science and conservation, and with practical suggestions about sustainable human behaviour.

Kurt Lushington graduated from the Flinders University of South Australia in 1998 with a PhD in Psychology and a Masters degree in Clinical Psychology. Associate
Professor Lushington has been an academic with the University of South Australia since 1996 and is currently the Head of the Discipline of Psychology and the Associate Head of the School of Psychology, Social Work and Social Policy. In addition to his clinical and research work in sleep medicine, he has a keen interest in all issues to do with sustainability and especially the role of e-books and e-book reading devices and the paperless office. He has published numerous peer-reviewed journal articles in psychology, eight book chapters (including several specialist chapters on sleep written for senior high school students studying psychology) and three review/research papers on e-book technologies.

Sue Nichols is an education researcher at the University of South Australia whose investigations of children’s learning in social and cultural contexts often take her into family and community, as well as educational, settings. She is the first author of *Resourcing Early Learning: New players, new networks* (Routledge, forthcoming) as well as numerous book chapters and articles in journals including *Contemporary Issues in Early Childhood, Early Years* and *Early Childhood Development and Care*.

Michelle Philp is an environmental engineer and scientist working with the Barbara Hardy Institute and the Australian Climate Change Adaptation Research Network for Settlements and Infrastructure (ACCARNSI) at the University of South Australia. Her professional experience includes modelling urban water and transport systems, sustainable surface water planning, assessment and design and researching climate-change mitigation and adaptation strategies in the urban environment.

Barbara Pocock is Director of the Centre for Work + Life at the University of South Australia in Adelaide. Barbara has been researching work, employment and industrial relations for over twenty-five years. She has worked in many jobs – advising politicians, on farms, in unions, for governments and as a mother. Her main areas of research have been work, employment relations, unions, inequality and vocational education. She was initially trained as an economist. She is widely published. Her books include: *Living low paid: The Dark Side of Prosperous Australia* (with Helen Masterman-Smith) (2008); *The Labour Market Ate my Babies: Work, Children and a Sustainable Future* (2006); *The Work/Life Collision* (2003); *Strife: Sex and Politics in Labour Unions* (1997); and *Demanding Skill: Women and Technical Education in Australia* (1988).

Stephen Pullen is a building scientist with twenty years’ experience in the study of the sustainability of construction materials, buildings and the urban environment. He teaches building science, performance of buildings, energy efficiency, building surveying and sustainability in assets and facilities, and is also a PhD supervisor in this area. His research interests include life-cycle energy analysis and the embodied energy of buildings and he has published numerous papers in these areas. He commenced research into embodied energy in 1993 and participated in the Australia Research Council (ARC)-supported project, Design of Environmentally Responsible Housing for Australia, at the University of Adelaide, South Australia. In 2003–4, he was a Chief Investigator in the ARC Linkage project at the University of New South Wales on Water and Energy profiles for Sydney: Towards Sustainability. As part of his PhD studies, he developed a model of the urban environment that spatially represents embodied energy consumption. He is currently a Chief Investigator in the
ARC Linkage project on an Integrated Model for the Assessment of Urban Sustainability and has just completed a research project on affordable and sustainable housing for South Australia.

Anne Sharp is a Senior Research Fellow at the Ehrenberg-Bass Institute for Marketing Science at the University of South Australia. She heads the sustainable marketing research of the Institute and has a particular interest in evaluating government interventions encouraging behaviour change for improved environmental outcomes. She has worked collaboratively with a wide range of industry partners, including city councils, ambulance services, regulatory bodies, educational groups and, of particular interest, environmental groups. Anne’s research work has the common theme of helping to establish empirical generalizations in marketing. Anne has published numerous refereed papers, with her work appearing in top international journals such as the *European Journal of Marketing* and the *International Journal of Research in Marketing*. Dr Sharp is a member of the Australian Market and Social Research Society and teaches market research.

Alpana Sivam is a lecturer in Urban and Regional Planning at the University of South Australia. She is an architect and planner with a PhD in Housing Policy. Earlier, she worked with Housing SA and Planning SA in Adelaide, South Australia. She has extensive experience in both the public and private sectors, having held a variety of senior and executive positions in India, Australia and Singapore. She has eighteen years of professional and research experience in urban and regional planning, statutory and strategic planning, delivery of urban infrastructure, housing policies and issues in developing countries, urban design and environmental planning. She has published on housing, housing delivery models, ageing, housing the ageing population, urban development and urban design.

Natalie Skinner is a Research Fellow at the Centre for Work + Life at the University of South Australia. She is interested in health and well-being in the workplace, with a particular emphasis on psychological health (e.g. stress, burnout and job satisfaction), job quality (work intensity, flexibility and work hours) and work–life interaction. Her interest in well-being extends to the impact of paid work on individuals’ capacity to be ‘good environmental citizens’.

Albert L. N. (‘Ab’) Stevels was born in Eindhoven, The Netherlands, in 1944. He studied Chemical Engineering at the Technical University of Eindhoven and holds a PhD in Physics and Chemistry. In 1969, he started to work for Royal Philips Electronics in various capacities, in research on materials, production technology of glass, electro-optics and as a project manager for joint ventures in Asia. In 1993, he became a senior advisor at the Environmental Competence Center of Philips Consumer Electronics. In 1995, he was appointed as a part-time Professor in Environmental Design at Delft University of Technology and a Visiting Professor in the Mechanical Engineering Department of Stanford University. He was also teaching at TU Berlin and at Georgia Institute of Technology, Atlanta. In 2003, he was a Visiting Professor at the Industrial Ecology Program at NTNU in Trondheim, Norway, and in 2005 at Tsinghua University in Beijing. Ab has done trailblazing work in turning eco-design into day-to-day business and has researched in detail the setting up of take-back and recycling systems for electronics. He has developed tools and management procedures for these
purposes that have proven their strength through their practical success. Ab is the author of numerous journal articles and conference contributions. His training courses on applied eco-design have been held at various universities and at various Philips departments and divisions around the globe.

Michael A. P. Taylor is the Director of the Barbara Hardy Institute and Professor of Transport Planning at the University of South Australia in Adelaide. The institute is the university’s flagship for research on sustainable human settlements, covering the five core areas of transport and land-use, energy, water, agriculture, and the natural and built environments. He is internationally acknowledged as an expert on traffic flow theory, travel demand modelling, environmental impacts of road traffic, sustainable transport and intelligent transport systems. His current research is in four areas: future urban transport systems, fuel and emissions modelling for road traffic, transit-oriented development and transport-network vulnerability. Mike has published extensively in all of these areas. He has forty years of professional experience, as a traffic engineer, a research scientist and in academia. He gained his PhD at Monash University in Melbourne. He is a Chartered Professional Engineer and a Fellow of the Institution of Engineers, Australia, the UK Chartered Institute of Transport and Logistics and the US Institute of Transportation Engineers.

Kirrilly Thompson is a cultural anthropologist working in the Centre for Sleep Research at the University of South Australia. She has conducted qualitative and ethnographic research across a diverse range of topics, spanning mounted bullfighting, equestrian safety, crowding in the rail industry and, currently, food waste. Her theoretical interests coalesce around risk, performance, boundaries and the sociocultural role of the non-human. Kirrilly is a research associate on the Australia Research Council linkage project, Zeroing in on Food Waste: Measuring, understanding and reducing food waste, being undertaken in South Australia.

Alexander (Sandy) Walker is an industrial designer who has worked extensively in R&D and management roles in the UK, the US and Canada, as well as in China, Thailand, Singapore and Korea, with manufacturing and consulting organizations. In 2001, he began the design, development and commercialization process of the ‘Orbcourt’ range of low environmental impact, multi-sport flooring products. Orbcourt was awarded a Commendation in the 2002 Design Institute of Australia Design Awards. He has a Bachelor of Science in Industrial Design, from Napier University, Edinburgh, and an MBA, from the University of South Australia. Sandy currently coordinates the final year of the Industrial Design programme and teaches in the Masters of Sustainable Design and Bachelor of Technology (Kaplan, Singapore) at the University of South Australia. His design and management qualifications have led to membership of the Chartered Society of Designers, associate membership of the Institute of Industrial Managers and Fellowship of the Design Institute of Australia. His interest in and passion for sports equipment design and biomechanics have been the inspiration for PhD studies at RMIT’s School of Aerospace, Mechanical and Manufacturing Engineering.

Feng Wang has been undertaking PhD research into modelling and the eco-efficiency assessment of e-waste recycling systems at Delft University of Technology since 2009. Wang works in the UNU–ISP CYCLE as a Research Associate on e-waste recycling
Stephanie Rich is a Research Fellow at the Centre for Work and Life at the University of South Australia. He has a multidisciplinary background in psychology, sociology and public health. Her particular research interests focus on community, social support, work–life integration and the social and developmental needs of adolescents. In her private and professional life she is particularly interested in the rights of children and adolescents to be active citizens, to inherit a healthy planet and to have the skills to improve the well-being of themselves, their families and their environments.

Lou Wilson is a Senior Lecturer at the University of South Australia, where he teaches courses in social planning and research methods in the School of Natural and Built Environments. Lou is a Chief Investigator on two large projects funded by the Australian Research Council to investigate sustainable urban futures and green building design. He also has research interests in social policy, social inclusion and social justice. He is an active member of the Australian Sociological Association and publishes regularly on sustainability and social issues.

George Zillante is Associate Professor and Head of Construction and Project Management at the University of South Australia. He has qualifications in Architecture, Urban and Regional Planning, Building Surveying, Business Administration and Construction and has worked (and continues to work) at the professional level in those fields. Over the years, George has done a lot of work in the field of building legislation, and this has resulted in his appointment to many government committees, including, inter alia, Chair of the South Australian Building Advisory Committee, member of the South Australian Development Policy Advisory Committee and member of several Australian Building Codes Board committees, as well as his representing the Australian Construction Industry on the International Association for the Professional...
Management of Construction. His interest in building legislation led George to establish the Centre for Building and Planning Studies at the University of South Australia in 1993, and this has resulted in several research projects dealing with the impact of legislation on development and, more recently, on bushfires and government policy responses to the impact of bushfires and organizational change. George is also a member of several professional bodies (including RICS, AIBS and ACCE) and serves on a number of their education and accreditation committees.

Jian Zuo has a PhD from the University of South Australia and a Masters degree in Engineering from Wuhan University, in the People’s Republic of China. Currently, he is a lecturer and researcher in the School of Natural and Built Environments. His main research interests relate to achieving a low-carbon built environment by means of innovation and behavioural changes.
This book is the result of a collaborative effort far greater than the sum of its two lead authors and editors. The editors are grateful to all of the authors and reviewers who made this publication possible. The interdisciplinarity and diversity of the research papers contributed has made this a special book, and we hope it will be widely used and applied. As always, when you produce a book, there are many people who deserve to be personally acknowledged.

First, we would like to thank the team at Zero Waste SA and its chief executive, Vaughan Levitzke, who enthusiastically supported the idea of this publication from the very beginning. This book has slowly emerged from this initial idea, and the research work on which it is based continues.

We wish to thank all our colleagues at the University of South Australia for their valuable support during the development of this publication. We hope you find the book a worthy reflection of your excellent contributions and your generous support in reviewing draft chapters. We are very fortunate to have colleagues who are committed to creating an intellectually engaging atmosphere and have been so supportive in providing constructive feedback. We especially appreciate the thoughtful reflections of Professor Pal Ahluwalia, Professor Andrew Parfitt and Professor Mads Gaardboe, who helped us to develop the structure and sharpen the ideas included in the book’s four parts.

The research in this book could have never been undertaken without the tireless support of many more people – too many to name them all here – in university centres, government departments and industry partner organizations, who have generously shared and supplied their information and insight.

Our particular thanks go to the publishing team at Earthscan and Routledge (an imprint of Taylor & Francis, the Informa Group) in the UK, who were very helpful in the book’s production. We especially wish to thank Michael Jones, Jonathan Wilson Sinclair, Nicki Dennis, Alice Aldous, Anna Rice and Claire Lamont for their patience and support. Our grateful thanks also to: the inspirational Professor Emeritus Peter Brandon for the enthusiastic essay he contributed as the preface and for his ongoing friendship; Cida de Aragon, who created the great design for the front cover; Pamela Hart, for her efficient and cheerful administrative support; Gilbert Roe, for his nice photo of us and the interesting chat; Katharine Thornton, whose editing and proof-reading made this a better book; and PhD student Atiq Zaman, for compiling a list of journals and relevant web pages.
We are also grateful to Joan Clos, Paul Taylor and Bernhard Barth of UN-Habitat for their support and endorsement of this book series.

Finally, we would like to thank our families for their patience and support during the intensive period of creating this book. We could not have done it without you.

We hope this publication will become a useful resource for academic teaching, further scholarly research and policy formulation in the process of transforming the way we design, produce and recycle products, buildings and cities.

Steffen Lehmann and Robert Crocker
May 2011
Foreword
Designing for zero waste

Vaughan Levitzke

This book is for policymakers, designers, engineers, architects, sociologists, psychologists, recycling and waste practitioners, economists, resource developers, students, lecturers – and everyone who cares about how we use, reuse and value our resources in a resource-constrained world. For the first time we have a book that views the ‘zero waste’ concept from the perspective of four key interrelated areas – sustainability and behavioural change, consumption and technologies, the sustainable design of our built environment, and, finally, governance and material flows. Zero waste is a concept that ultimately envisages a thriving society that exists within nature’s resource constraints and its ability to assimilate waste.

This book brings together global leading-edge research about the achievement of zero waste and a more sustainable society. This is a truly collaborative and multidisciplinary approach – the type of approach we should use if we are to reduce our ecological footprint, combat global warming and make the best use of the resources we need to sustain our societies. The authors are passionate experts in their respective fields. They have been brought together to contribute through the persuasive and motivating powers of Professor Steffen Lehmann at the University of South Australia’s Zero Waste SA Centre for Sustainable Design and Behaviour.

The concept underpinning this book is based on the idea that design and human behaviour are interlinked. Bad design results in waste throughout the life cycle of a product, from raw-materials extraction to its use and final recycling and disposal. Starting with an examination of behaviour and the psychology of our consumption and the choices we make, the book continues with articles exploring the newest waste issues facing us – electronic waste, energy consumption and life-cycle analysis. Next, the way we design our urban and household infrastructure, including green infrastructure, is discussed, and, finally, how we can bring these concepts together in our cities, where there are some extraordinary growth pressures and challenges.

The term ‘zero waste’ is believed to have first been used by chemist Paul Palmer when he created his company, Zero Waste Disposals, in California in the 1970s. Three decades later, Robin Murray’s book, Zero waste, was published by the Greenpeace Trust. The term is now being increasingly used throughout the community. It is shorthand for the better management of resources in an increasing number of corporations and governments around the world. Zero waste is a way of thinking and doing that will become even more commonplace and important as we attempt to deal with the big environmental, social and economic issues facing all of us. The concept of zero waste challenges the assumption that waste is inevitable or unavoidable. Zero waste shifts the focus from
‘end-of-pipe’ solutions and disposal practices, to promote the cyclical use of materials in the economy.

When Zero Waste SA was formed in 2003 as a government statutory authority in the state of South Australia, many commentators and waste-industry professionals thought that zero waste was impossible, and that the term was nonsensical because ‘humans will always produce waste’. Many of those deriders are still around today. However, there is an increasing global engagement around the concept of zero waste, with many large corporations adopting the principle as an aspirational goal.

Although our community effort has largely, until now, been about recycling, the reduction of waste and extending the life of goods remain the Holy Grail of the waste industry. Much of the waste we create need not be created in the first instance. While it provides benefits by extending the life of materials in our economy, recycling is of lesser value than not producing waste in the first place.

This leads us to question how we can expect to do this in such a consumer-driven, economic growth-focused society. For many years we have understood that design and behaviour are linked. The ‘throwaway society’ is a product of these forces at work. Many products are not designed for reuse, use rare materials in their construction and have a short lifespan before the next model comes on to the market; electronic gadgets are probably the best example of this carelessness.

In 1999, the world’s population reached 6 billion. Just twelve years later, during 2011, the world’s population is expected to reach 7 billion, and it continues to grow. Most of these people will, for the first time in history, be living in urban environments, and it is expected that the city-based proportion of the world’s population will rapidly increase. The prospects of new employment opportunities and improved lifestyles will continue to encourage rural people to move to cities. These issues are not just the province of the world’s megacities, as the trend is for all principal cities to grow for the foreseeable future. Urban populations are growing much faster than rural populations.

Resource scarcity, increased resource demand, growing pollution, the use of more complex materials in manufacturing and the distances goods and materials are transported in our modern economy will, in all likelihood, exert significant upward price pressures on products and materials into the future, making it even more difficult for poor communities to be released from their poverty.

Greater urbanization places increased demands on urban infrastructure and services, to the extent that governments find it difficult to cope with these demands. How do we live more sustainable lifestyles in an urban context where we must import our food, clothing, shelter and other basic materials? How do we build an urban form that is sensitive to people’s needs, without further negative impact on the natural environment or human health?

The responses to this growth have been varied, depending upon local demands and circumstances. The lessons learned by one city are not necessarily transferred to others. Given these challenges and pressures, we can ill afford to replicate the mistakes of others, as this is inevitably both expensive and time consuming. In an interconnected world, these issues should be more easily overcome. We can use social media for political revolution; can we use the same media for sharing information and concepts in a more creative way, to bring about these other changes?

Increasing volumes of waste and the increasing complexity of our waste streams have also caused concerns about public health and the environment to grow. Increasing waste
volumes closely correlate with increased affluence, and the cycle of technological advancement quickly outstrips social and legislative reform. These challenges confront all of us, as we live in an increasingly resource-constrained world.

Zero waste requires new designs for the environment: designs that influence our behaviour to reduce our generation of greenhouse gases, reduce our consumption of materials and reduce our ecological footprint. Designs may include those that allow for disassembly for reuse; better insulation properties for buildings; lighter construction and fabrication materials; and the use of materials that can be easily recycled. Given that the built environment is created by major capital investment and is expected to last at least 30, 50 and preferably 100 years or more, it is fundamentally important to identify materials, techniques and systems that will last the distance and that can be reused or recycled when the structure is no longer needed or when it needs to be upgraded.

To achieve this we need data. Data about life-cycle assessment of products and materials are sorely lacking, as are data that reflect the amount and types of waste being collected and disposed of every day. Without this information, how can we expect to identify the better products and services and reduce our waste?

Maximizing the value of our resources focuses our attention on local infrastructure, economic interventions and incentives for change. It also aims to maximize the social and economic benefits from the resources we consume. Avoiding and reducing waste require a more thoughtful approach to the way we use resources and the choices we make as governments, businesses and individuals. Committing to zero waste is about making long-term choices based on behavioural change and principled engagement.

It is my hope that reading this book will change the way you approach your work, your home life, choices you make and the way you perceive, use and reuse resources.

Vaughan Levitzke is the Chief Executive of Zero Waste SA (ZWSA), a position he has held since the South Australian government agency’s establishment in 2003 within the Environment and Conservation portfolio. The objective of Zero Waste SA is to promote waste-management practices that, as far as possible, eliminate waste or its consignment to landfill, advance the development of resource recovery and recycling and are based on an integrated strategy for the state. South Australia is staying at the forefront of waste recycling and resource management in Australia and attracting international interest. Having helped reduce waste to landfill in South Australia by 16.1 per cent in six years, Zero Waste SA continues to stimulate investment in infrastructure, foster partnerships and collaboration and drive industry resource efficiency.

Vaughan has been the ministerial representative on the board of Keep South Australia Beautiful for twelve years. He is currently on the advisory boards of two University of South Australia research centres and is a member of the management committee of the Zero Waste Centre for Sustainable Design and Behaviour. He is a former member of the national projects group established under Australia’s national packaging covenant. He is an ex officio member of Zero Waste SA and is a member of the Environmental Protection Authority board’s waste reform subcommittee. Prior to ZWSA, Vaughan spent ten years with the South Australian Environment Protection Authority. His role focused on regulation in the waste sector (recycling, tyres, composting), litter policy development and the expansion of container deposit legislation. He was also responsible for managing eco-efficiency and industry sustainability programmes and grant schemes.
Preface

Zero waste: towards a vision of a new model for humankind

Peter Brandon

This book is both timely and visionary. Human consumption is increasing ever more rapidly, and this book addresses how we might reverse the trend, particularly in the developed world. The aspiration to consume, however, is just as high among people in the developing world, and so this book is equally applicable to those countries and their populations. As consumption, and the resultant waste, requires an understanding of human behaviour, the technologies adopted and the way in which humans choose to live, it is an extremely broad canvas. It is to the credit of the editors that the assembled authors have explored so many important issues and thus improved our understanding of the topic. Good practice comes from good theory. This book provides an introduction to the underlying theory and knowledge on which the practices required to move towards the concept and vision of zero waste will be based. The way in which humans choose to accommodate their activities in buildings and cities is central to the issues raised. The United Nations’ Environment Programme’s Sustainable Buildings and Construction Initiative (2007) estimated that the built environment uses 20 per cent of the land, 20 per cent of the water, 30 per cent of the raw materials and 40 per cent of the energy in global resource usage. From this activity, it generates 20 per cent of global waste effluents, 30 per cent of solid waste and 40 per cent of human global carbon dioxide emissions. By 2040, it is estimated that two-thirds of the world’s population will be living in cities, with a consequent rise in the production of waste. This is not a trivial matter – it is at the very root of human existence and even survival.

Life context

Perhaps the greatest question we can ask ourselves is ‘Why are we here?’. Is there a meaning to life, or are we just the result of chance processes? Don’t worry; this essay is not attempting to answer these intriguing questions. There is, however, an observation that we can make and that does not seem especially contentious. If we look at life in general, and the human race in particular, all species want to survive. It appears that we are hardwired to procreate and to sustain our existence for as long as circumstances allow. When the context is benign, then all species will thrive and produce more offspring. This was brought home to me by the trailer for a new natural history documentary narrated by the veteran broadcaster David Attenborough. He started his narration by explaining that, during his working life (some six decades), the population of the world had trebled. This is extraordinary exponential growth, which has lead to some of the greatest challenges we face today.
In the spectrum of universal time, the last sixty years form a very short span indeed, and we can see that those decades have provided favourable circumstances for humans to flourish. The human ability to flourish, however, has not meant that other species have also found the environment conducive to expansion. In fact, the rise of human beings and their technologies has often resulted in the devastation of other species’ habitats and, consequentially, the demise of many, at a speed that this world has not experienced before, except in times of natural disaster. Much of this is related to humans’ consumption and the subsequent waste and pollution created. The loss of other species has already had an impact on the ability of human beings to provide our food and shelter.

Survival

In his 2003 book, *Our final century*, Martin Rees, a recent Astronomer Royal, posed the question as to whether the human race can survive for another 100 years. It is not so long ago that such a question would have been considered ridiculous, because the world was considered to be a stable entity, and the interdependence within nature was not considered to be a major problem.

Rees identifies disease, war, famine and, above all, technology as the major reasons for concern. Virtually all technologies have an upside and a downside. They provide a solution to one problem but at the same time create a problem elsewhere. In the hands of those perceived to be ‘good’, the technology can be a force for improvement, but, in the hands of those who are thought to be ‘bad’, the technology can create a monster that we find difficult to control. Nuclear fission, the internal combustion engine, genetic engineering, the Internet, global alliances or antibiotics can all be seen as either good or bad, depending on the lens through which we view them. If human beings are in charge of them, and human circumstances are such that they find a use to suit their own ends, then it is likely that both the good and the bad aspects of any technology will be found in our societies. Sometimes, human motivation is openly malevolent (as in war), but in most cases a new technology is adopted with the best of intentions, only to result in a by-product of its use having a detrimental effect on something else.

To take one example, the Aswan Dam in Egypt was built for two main reasons. First, to provide a substantial proportion of Egypt’s electricity by damming the River Nile and providing hydroelectric power. Second, to avoid the frequent flooding of the Nile and the inconvenience that event caused to communities along its length. The Aswan Dam did indeed provide electricity and it did reduce the river’s propensity to flood. Unfortunately, the lack of flood waters simultaneously prevented the rich silt associated with the floods from being spread across the land, and thus the land became less fertile. To counteract this, it was necessary to produce artificial fertilizer (requiring energy-demanding processes and transport), which eventually seeped into the river and polluted it. Consequently, the natural systems became unbalanced, and new problems arose. It has yet to be seen what trade-off was sensible in a complex ecosystem such as this, but the example does reveal the need to consider environmental problems in a holistic manner.

Consumption, waste and values

The urgent issue of human consumption is one of this book’s major themes. How do we avoid increased consumption, which leads to more waste being generated and more
pollution affecting the planet? Human population growth, and the increase in consumption that follows it, is the root cause. It is the countries that industrialized first and that gained wealth accordingly which have created the problems being observed today. The aspirations of others to do likewise are beginning to cause similar concerns. The most populated nations of earth, namely China and India, have the potential to consume and waste more than any others. They, like those in the developed world, have been seduced by the desire to accumulate wealth, and the technology they are using to do so has been adopted from countries that now face major environmental problems.

To address such large questions, which engage nearly every aspect of human life and include our relationship to the planet on which we live, it is time to revisit some of the values upon which we have built our culture and which influence our behaviour. This requires a fundamental rethink, and some would say a ‘new world view’, to establish what we are trying to achieve and what we need to do to change our behaviour. Albert Einstein observed that we tend to look for solutions using the tools that caused the problem in the first place. We need new thinking and we need to adopt everything at our disposal that might lead to a reduction in the harm created by our own existence and behaviour.

The solutions could be in the technologies we employ, the behaviour we adopt, the policies we implement and/or the investments we make in research in order to improve our understanding. A good practical starting point is often thought to be to set targets that we can use to focus our efforts. However, the adoption of targets can often lead to a reductionist view of the world and also to sub–optimization of the kind that leads to the dilemma suggested by the Aswan Dam example. To avoid this, we need to espouse a philosophy that allows us to look at our cosmos as a whole. We also need to describe our values and make them transparent, to identify interrelationships and to provide direction for our thoughts. We need a common framework within which we can think, communicate and act, so that we can share experience and build knowledge. This, of course, is not an easy thing to achieve, but, if we could provide such a framework, share a common vocabulary and have a shared understanding of the values on which we can build, then just maybe we might be able to make a major advance in uniting our efforts for mutual advantage.

A common holistic framework

Such a common and holistic framework could be based on the writings of the Dutch philosopher Herman Dooyeweerd (Brandon and Lombardi, 2010). He argued for a ‘cosmonic idea of reality’. Dooyeweerd’s arguments are complex and in some cases difficult to penetrate, but in outline consist of a hierarchy of fifteen modalities (irreducible areas of the functioning of a system or entity) that are nested within each other (thus creating a platform for interdependence) and that express the strength of the dependence by the distance of the relationship of one modality from another. The hierarchy encompassed not only physical measurements and relationships, such as counting and scientific measurement, but also the human aspects that influence performance. The latter are central to the introduction of any policy or strategy for sustainable development. At the pinnacle of the hierarchy is the modality related to commitment and vision, without which no policy for change could be implemented. The vision would be based on the second modality, that of ethics, which is related to the perceived morality of the decision (and based on agreed values). This would be followed by the judicial or regulatory
framework that a society had chosen to express the parameters within which the values would be implemented. Following this would be the aesthetic considerations, the economic framework, the social framework and the manner of communication, all separate modalities but related to the others. Creativity, analysis and formal knowledge, plus the perceptions of people and their required health, biodiversity and ecology, followed before consideration of the physical aspects that can be measured using conventional methods. These last modalities relate to the physical environment, mass and energy, followed by transportation, space, shape and extension and finally numerical accounting.

This list can only give a flavour of Dooyeweerd’s thought and, at its simplest, offers a checklist for consideration of sustainability matters. It is, however, much richer and can be experienced at a number of different levels, which enable it to be intuitively accepted by all those engaged in making decisions about sustainable development. For understanding the movement and vision towards zero waste, it provides a framework that is much more comprehensive than traditional assessment and implementation measures and it prompts new thinking. All the matters raised in this book could be found within such a framework, and the likelihood of items being overlooked or not considered is reduced. Such a framework provides a useful basis for dialogue and debate, but much still needs to be done to make it an effective tool for evaluation.

The point is that the challenge of zero waste is not just one of measurement and reduction, but a much more fundamental understanding of the vision and its implementation within a holistic framework. This is bound to include the values and commitment to zero waste found within our culture.

Complexity and rich knowledge

Searching relevant websites, including those that list government initiatives on waste in developing countries, reveals an extraordinary number of activities attempting to make the issue of reducing waste part of the culture of many industries (particularly construction) and communities. These activities are creating a pool of rich knowledge that deserves collation, recording and analysis to provide information for current and future generations.

This book plays its part in revealing the diversity of these activities. It deals with behaviour change and the consumption culture, and also with the technologies that may help to reduce waste. In so doing, it does not claim that using technology is the only way to achieve zero waste. It also addresses the part designers can play in achieving the goal of zero waste, and the fact that every citizen, not just those formally employed to deal with it, shares responsibility for the management of waste. Finally, it engages with the politics of waste at individual, regional and urban levels to find the commitment that enables zero-waste policies to be developed and adopted.

Part of the problem is the complexity of a subject that has so many facets and that demands so many different skills and so much knowledge across so many conventional boundaries. Zero waste is not always prescribed by national or other physical boundaries. It is not dealt with by one profession’s repository of knowledge. It should engage both user and provider in an understanding of mutual benefit. It requires governments to be ahead of public opinion and not to respond reactively. It involves highly specialized research and yet also requires those who can bring these specializations together in a holistic way (and these ‘bridge builders’ are hard to find). It requires an understanding of values and a communication system that allows for democratic processes. In fact,
it needs a full and thorough understanding of human behaviour that is not yet available in any readily accessible form.

It is this complexity that makes it difficult for zero waste to become part of the thinking of every person and every institution involved in decision-making. However, its successful solution depends on a holistic view that all humankind can endorse, at least in principle. The past three decades have seen great progress in making the world sensitive to these issues, and it is to the credit of many governments that they are taking it seriously.

For designers, there is a need to have a simple creed that spells out their belief in sustainability and that includes waste management. In the 1960s, a simple saying was being promoted that, if followed, would have had far reaching consequences for the way designers think and behave towards the environment. The maxim was called the ‘three Ls concept’, and the Ls stood for long life, loose fit and low energy (Gordon, 1974). Even now, such a simple check in thinking as a design develops would have a profound impact on the eventual physical product. Long life would ensure better materials and more recycling, and would probably involve less waste. Loose fit would ensure flexibility in, and more resilience to, the building over time. Low energy would encompass the desire for zero carbon and a reduction in many of the pollutants we see today. All three would help to reduce waste. Of course, much more knowledge is required as to how to implement such a concept, but it would set the scene for a cultural change that should engage every designer. Many designers have already embraced this change, but many more could do so. What is encouraging is that the markets are at last seeing the need for the three Ls (McGraw Hill Construction, 2008), and this is likely to have greater impact than any other impetus to move towards zero waste.

Whether you are a designer, researcher, policymaker, businessperson or a concerned global citizen, please enjoy, digest and implement the knowledge within this book! Good luck!

Professor Emeritus Peter Brandon is the Director of the Salford Think Lab, researching sustainable development in construction management, with a focus on knowledge-based systems for sustainable development. Peter is the former Pro-Vice Chancellor for Research of the University of Salford in Manchester and has published more than twenty books. His latest book, co-authored with Dr Patrizia Lombardi, Evaluation of the built environment for sustainability (2010), offers a new structure for sustainable development based on the ‘Philosophy of the Cosmos’ by Herman Dooyeweerd, encouraging a holistic and integrated systems approach.

References
Introduction
People, policies and persuasion: the future of waste reduction and resource recovery in households and urban settings

Steffen Lehmann and Robert Crocker

Designing for Zero Waste is a timely, topical and necessary book. Materials and resources are being depleted at an accelerating speed, and rising consumption trends across the globe have placed material efficiency, waste reduction and recycling at the centre of many government policy agendas, giving them an unprecedented urgency. Although there is a considerable body of scholarly literature addressing consumption and waste reduction from different disciplinary perspectives, the complex nature of the problem demands interdisciplinary exploration. Resource recovery and the optimization of material flow can only be achieved alongside and through behaviour change to reduce both the creation of material waste and wasteful consumption.

Rethinking the way we deal with material flows and changing behaviour in regard to waste streams, we believe, can deliver significant improvements, curbing the threat of environmental degradation and global warming. We have borrowed from the planet for a long time, exceeding the planet’s carrying capacity, and if our societies and the global economy are not transformed we risk descent into unhealthy urban conditions and further depletion of virgin materials. Our current model of economic and urban growth is driving this unhealthy system, and, as a consequence, we have now passed the limits of our planet’s capacity to support us. Over the last twenty years, for example, the amount of waste Australians produced has more than doubled, and it is likely that this amount will double again between 2011 and 2020, because the amount of waste generated in Australia grows by 6 to 7 per cent per person, per year. In addition to this, 40 per cent of all food in Australia is not eaten; it is thrown out instead of being composted as organic kitchen waste to return nutrients as fertilizer to the soil, or recycled in a biogas plant to generate energy. Discarded television sets and outdated computers (known as e-waste) are another hazardous time bomb. For instance, around 32 million new television and computer products were sold in Australia in 2008, with an estimated 16.8 million units reaching end of life in the same year. However, only 10 per cent were recycled, well below the average rate of recycling for all waste in Australia of 52 per cent (2009 data, National Waste Report, 2010). Too much e-waste still ends up in our soil and rivers, polluting our drinking water.

Overall, things do not look good. In fact, endless consumption and growth are impossible. Everybody understands that, if you cut down more trees than you plant, at some point you run out of trees. In 1996, the German philosopher and urban planner Karl Ganser came up with the idea of ‘change and prosperity without growth’, something still unimaginable for most politicians and economists (Hannemann, 2000, p99). Passing the limits must have consequences, as we see in increasing global warming, changing
weather patterns and a change in the way the whole system of ‘Spaceship Earth’ (Buckminster-Fuller, 1973) behaves. Topics such as food security (possible solution: urban farming?), water scarcity (solution: storm-water harvesting?), rising energy costs (solution: decentralized energy production on roofs and facades?), depletion of virgin materials (solution: closing the loop of material cycles?) and increasing traffic congestion (solution: increased investment in public transport?) have emerged as major concerns, and researchers at universities worldwide are now looking into better ways for us to live together in more liveable and sustainable cities in the future.

It is clear that things are going to change, and we must make every effort to future-proof the built environment by designing and building more resilience into urban systems. By doing so, we will increasingly learn from nature’s complex ecosystems and natural ordering principles, in redefining our industrial ecology to change the way we produce, manufacture, package, transport and reuse products. We are embarking on nothing less than a silent green revolution, which has already started to transform our society, economy, energy and transport systems, waste-management systems and the way we design, build, operate, renew and reuse/recycle cities and buildings. New strategies for the reorganization of the urban landscape are emerging. It makes sense that the next step is to rethink industrial and urban systems and production methods. In 2009, sustainability activist Paul Gilding stated that we ‘have entered a period of global ecological crisis and economic stagnation that will lead to an economic and social transformation of significance in the history of humanity’. According to Gilding, this crisis is inevitable, because the fundamental causes are not public opinion or politics, but the established momentum of changes in the ecosystem. As a result, he suggests our current model of economic growth is finished, and a new one must be forged based on the principles of sustainability and with human relationships at its core. Gilding has an optimistic vision of our shared future: he believes that ‘we will break our addiction to growth, accept that more stuff is not making our lives better and focus instead on what does’ (Gilding, 2009, np).

At the same time, new research agendas are emerging as open platforms for collaboration and interdisciplinary exploration. Demonstration projects accompanied by relevant research are essential in this change process, as these have the potential to deliver more and better solutions to curb global warming. Universities are at the forefront of a meaningful, relevant search for such solutions. Advances in knowledge, together with an awareness of the complexity of today’s world, have led scholars to pursue multifaceted problems that cannot be resolved from the vantage point of a single academic discipline. Therefore, universities are increasingly engaged with industry, governments, community groups and other institutions worldwide to support multidisciplinary and integrated approaches to research in urban-systems thinking. Now is the time to scale up our scholarship in low-carbon urban solutions to match the size of the challenges we are facing and to support the development of appropriate policies. Collaboration across sectors is critical, because, in addition to influencing policy and legislation, collaborative research into low-carbon and zero-waste futures will help to develop a responsive plan for the transformation of existing cities as an important part of the solution. It is therefore critical that our efforts support long-term planning and research in line with agreed national priorities, for holistic, whole-of-life-cycle approaches. This book is the result of such interdisciplinary and cross-sector investigations.
We have arranged the following chapters in four parts. Part I is titled ‘Zero waste, sustainability and behaviour change: principles’, and Part II is titled ‘Zero waste, enabling technologies and consumption: policies’.

An important aspect of the discussion of zero waste is the analysis of consumerism, behaviour change, particularly at the household and building scale. Parts I and II of the book deal with these issues. These chapters explore the complexity of consumption and lifestyle, people’s motivations and attitudes, shifts of values and behaviours – and the dynamics of social change. Such an analysis requires the involvement of a series of disciplines, including sociologists, psychologists and researchers in cultural studies. It is obvious that sustainable consumption is still a controversial concept politically, economically, socially and culturally. Part I outlines the principles of behaviour change. It opens with Robert Crocker’s assessment of the connections between consumerism, zero waste and mobility behaviour. In Chapter 2, Natalie Skinner, Barbara Pocock, Pip Williams and Jane Edwards describe the difficulties of changing behaviour while balancing work, home and community. Sue Nichols looks at the relationship between early-childhood education and sustainable consumption in Chapter 3. Sandra Davison, Kirrilly Thompson, Drew Dawson and Anne Sharp examine the psychology of consumption in regard to food waste in Chapter 4. Angelique Edmonds explores collaborative consumption and local resilience in Chapter 5. Part II introduces a debate on enabling technologies that will help us to live more sustainably: Robert Crocker explores the new mobile communications paradigm in Chapter 6, followed by Ab Stevels, Jaco Huisman and Feng Wang’s discussion of the issue of e-waste in Chapter 7. Alexander Walker contributes an important chapter on life-cycle thinking and analysis from the viewpoint of the designer in Chapter 8, and Jane Dickson and Victor Buchli discuss the ontology of the house (or household) in Chapter 9. In Chapter 10, Carla Litchfield, Kurt Lushington, Sue Bigwood and Wendy Foster present a different view by looking at wildlife habitat and its relationship to sustainable living.

Sustainability theorist Tim Jackson noted that ‘Consumption drives our economies and defines our lives; making it sustainable is an enormous and essential challenge’, and he observes that ‘the problem of changing consumer behaviour and making our lives more sustainable continues to challenge opinion-formers and policy-makers alike’ (2006, pp132–6). Household behaviour in everyday life is increasingly seen as the essential starting point for change. There is a complex interplay between policy initiatives and individual behaviour (for instance, the difficulty of mobilizing shifts in attitudes, lifestyle values and consumption patterns). Our behaviour in our own homes – our recycling habits, consumer choices and transport preferences – has a huge impact on the environment locally and globally. This is clearly visible in household behaviour in regard to waste and recycling, food consumption and food waste, and transportation patterns and mobility choices. Among the researchers who have explored these links is Patrik Söderholm, who explains that, ‘We need to gain a better understanding of how environmental policy enters the private, domestic sphere, and how it influences household behaviour, to generate behaviour change at the household level and the move towards sustainable societies’ (2010, p28). Designers Tom Fisher and Janet Shipton offer the view that ‘the home is a system in which objects are processed’ (2009, p127).

Part III of this book is titled ‘Zero waste in sustainable architecture and design at the household and building scale’, and Part IV is titled ‘Zero waste in cities, urban
governance and material flows’. The chapters in these parts explore the complex problem of sustainable materials and their embodied energy, the enabling of low-carbon technologies and the principles of sustainable design. The chapters in Part III explore this multifaceted topic at the micro level of individual households and buildings, and those in Part IV examine zero waste at the macro scale of integration: the city.

The urbanized environment of the city is increasingly the place where solutions for waste reduction must and will be found. In this effort, every city will have to find its ideal set of particular solutions, or ‘localized responses’, to resolve questions of material flows and the management of waste streams (Lehmann, 2010, pp261ff.). However, local responses to globalizing forces depend partly on the nature of the interlinkages in governance from international structures, through multilateral organizations to nation-states, regions and localities, as these are mediated through social–local identity. This complex includes the transformation of production processes, green infrastructures and systems, as well as concepts of resource efficiency (especially material efficiency), decoupling concepts (decoupling the raise of consumption from the use of materials), clean technologies, and design for sustainability, industrial ecology and life-cycle analysis. Industrial production as a whole has to be transformed. In their book *Natural capitalism: the next industrial revolution*, Paul Hawken et al (2000) clearly set out the path that we must take to ensure the future prosperity of our civilization and our planet. A decade ago, *Natural capitalism* rocked the world of business and manufacturing with its authors’ innovative approach – an approach that fused ecological integrity with business acumen via the radical concept of natural capitalism.

Part III of this book analyses the opportunities for zero waste in building and the construction sector. In Chapter 11, Steffen Lehmann explores sustainable building design and material efficiency, and Stephen Ward describes the many advantages of adaptive reuse of entire building structures in Chapter 12. In Chapter 13, Alapana Sivam and Sadasivam Karuppannan look at the densities and design of residential development, and Nicholas Chileshe, Jian Zuo, Stephen Pullen and George Zillante evaluate the potential for zero waste in construction management in Chapter 14. In Part IV, zero-waste concepts are related to urban planning and governance. Steffen Lehmann explores material flows and the metabolism of the city in Chapter 15, and Michael Taylor and Michelle Philp look at sustainable transport systems in regard to behaviour change in Chapter 16. In Chapter 17, Lou Wilson uses the city of Adelaide as a case study in urban planning for the sustainable consumption of urban resources. Simon Beecham presents concepts of multifunctional urban land uses and water-sensitive urban design in Chapter 18.

To identify holistic approaches of the kind discussed in these chapters requires the involvement of scholars in a range of disciplines, including economics, design and materials, working together to enable the systemic environmental restructuring of consumption and provision in energy, water and waste systems. In the context of this change process, designers – architects, urban planners, industrial, interior or product designers – axiomatically play a major part. In short, to advance the subject of design one has to engage in the activity of designing. In his book *Sustainable by design*, Stuart Walker (2006) offers a design-centred approach and a new understanding of the complexity and potential of sustainable design, extolling the contribution of design to the creation of a more meaningful material culture. As Peter Stasinopoulos and his colleagues point out, it is possible to apply a ‘whole system design’ approach alongside a more integrated
approach to engineering. They argue that ‘Whole System Design is increasingly being seen as one of the most cost-effective ways to both increase the productivity and reduce the negative environmental impacts of an engineered system’ (Stasinopoulos et al, 2008, pp2–10). Consequently, the focus on design is critical, as the output from the design stage of the project locks in most of the economic and environmental performance of the designed system throughout its life cycle, which can span from a few years to many decades. Indeed, it is now widely acknowledged that all designers – particularly engineers, architects and industrial designers – need to be able to understand and implement a whole system design approach, because, as Stasinopoulos and his colleagues explain:

Advances in energy, materials and water productivity can be achieved through applying an integrated approach to sustainable engineering, to enhance the established systems engineering framework, from passenger vehicles and computer systems, to the temperature control of buildings and domestic water systems.

(2008, p10)

Designing with an eye to resource or energy efficiency, however, is not a straightforward solution. In *The myth of resource efficiency*, John Polimeni et al (2009) describe what is known as the ‘Jevons paradox’, which was first identified in 1865 by Australian engineer William Stanley Jevons in relation to the use of coal. The paradox Jevons observed is that an increase in the efficiency of using a resource frequently leads to an increased use of that resource rather than to the desired reduction. This effect is also called the ‘rebound effect’, where previous gains in efficiency are absorbed and lost. The paradox has subsequently been proved to apply not just to fossil fuels, but also to other resource-use scenarios, including material and water usage. Polimeni and his co-authors point out that, for example, doubling the efficiency of food production per hectare over the last fifty years (owing to the green agricultural revolution) did not solve the problem of hunger. Instead, this increase in efficiency increased production and, paradoxically, worsened hunger because of the resulting increase in population. This has substantial implications for today’s world. Many scientists and policymakers argue that future technological innovations will reduce consumption of resources; the Jevons paradox, however, explains why we have to examine such an assumption carefully, as it may be a false hope.

But how do you engage with those who cannot or do not want to imagine a different future? What are the main drivers towards sustainable consumption? What are the determinants of consumer behaviour? Behaviour change has frequently been listed as the number one hurdle to a more energy- and material-efficient, low-carbon future. If we could only plan better cities and design better buildings and products that needed less energy, water, materials and other resources, thus generating less waste, and facilitating positive behaviour change simply through their design; for instance, enabling people to be less dependent on air conditioning and car driving, by offering attractive new housing typologies in the city centre based on passive design principles. The most successful research projects related to sustainability and behaviour change are probably those in which the community is involved and those that enable participants to identify with the outcomes of their activities. However, changing the behaviour of a community or building occupant is not easy; it usually starts with greater awareness (e.g. through
visualization of carbon emissions or energy use based on smart metering systems) and involves incentives. Education to raise awareness is essential. Equally important is that the rules and benefits of waste separation, resource recovery and recycling are well explained. This suggests that the real problem is not technology, but social acceptance and behaviour change.

Understanding reuse is increasingly important, but designing for reuse in the domestic (household) context is still under-researched and little understood. We can reuse and recycle products, packaging and even buildings (through adaptive reuse). The common slogan is: every reused item is another item not purchased. A good example of the problem is the proposed legislation to reduce packaging and introduce extended producer responsibilities recently introduced by the Australian government. Packaging is seen as ephemeral; its purpose is to be ‘wasted’ once the product it contains has been removed. Alternatively, Fisher and Shipton have explained that ‘the reuse of packaging has a significant effect on the quantity of material that enters the waste stream and the energy and consequently carbon that is expended in its production’ (2009, p127). Most of the factors influencing the potential for reuse relate to the specifics of the design, including the types of material used, the flexibility and adaptability of a building’s plan and section or the symbolism of the product’s branding. Other factors are more social: for instance, the effects of reuse on the perception of different consumer orientations. Fisher and Shipton point out that ‘understanding consumers’ behaviour is significant for moving towards sustainability through design’ (2009, p127ff.). Although research into consumption patterns and behaviour change is still in its infancy, no doubt it will continue to grow in importance.

Short-term and long-term strategies capable of implementation in the developed and developing world are required to bring about the desired change towards zero waste. How can it be achieved? In their report *State of the world 2010: transforming cultures from consumerism to sustainability*, the Worldwatch Institute (2010) lists many of the environmental and social problems we face today as symptoms of a deeper systemic failing, a dominant cultural paradigm that encourages living in ways that are often directly counter to the realities of a finite planet with finite resources. Consumerism has already spread to cultures around the world, and ‘hyper-consumerism’ has led to consumption levels that are vastly unsustainable. If this pattern spreads further, to rapidly developing and rapidly urbanizing societies in China and India, there will be little possibility of solving climate change or any of the other environmental problems that are poised to disrupt human civilization. The Worldwatch Institute’s programme director, Eric Assadourian, notes soberly ‘It will take a sustained, long-term effort to redirect the traditions, social movements and institutions that shape consumer cultures towards becoming cultures of sustainability’ (Worldwatch Institute, 2010, p20ff.). If we can bring about a cultural shift to make living sustainably as ‘natural’ as today’s consumer lifestyle, we will not only address urgent environmental crises, we will also contribute solutions to other problems, such as extreme income inequity, obesity and social isolation, that are not usually seen as environmental issues. To this end, *Designing for Zero Waste* aims to develop a more robust understanding of the links between lifestyle, consumption, technologies and urban development. It’s not too late to change.
References

Part I

Zero waste, sustainability and behaviour change

Principles
Chapter 1

‘Somebody else’s problem’

Consumer culture, waste and behaviour change – the case of walking

Robert Crocker

Summary

Most efforts at improving the sustainability of our products, systems and environments are currently focused on their role in consumption and use. This ‘consumption’ focus, broadly defined here to include the consumption and use of raw materials and services, necessarily distances us from the natural environment or ‘commons’ from which various desired materials are extracted and into which – once processed and used – these are later discarded as ‘waste’. It also tends to silence our pre-existing relationship to, and dependence on, each other and our local environments, as these too are reduced to producing some economic value conceived of in relation to consumption. What remains outside this ‘consumption frame’ becomes ‘somebody else’s problem’, but increasingly our environmental crisis is forcing us to question the effects of this narrow focus.

Using the sporadic but ongoing example of government attempts to get more people out of their cars and walking, this chapter argues that progress towards greater sustainability in this and many other instances can only occur when a ‘socialization’ of behaviour change can occur, that is when the social normalization of a desired behaviour becomes habitual, and any barriers, either structural or behavioural, to this desired change are minimized or removed. In the case of walking, this requires a substantial revision of the traditional methods and concerns of the traffic engineer, and a return to the local scale of ‘walkable’ environments and short journeys envisaged by the urban designer. Recalling ten years’ personal involvement in pedestrian safety advocacy, this chapter reflects upon the experiences of local communities confronted with the dominant system’s barriers to walkable local environments and considers the successful ‘socialized’ strategies that have been developed to get people out of their cars and into these environments as walkers.

Introduction: consumption, ‘distance’ and responsibility

In Douglas Adams’s sci-fi novel, *Life, the universe and everything* (1982), space engineers, faced with the expensive challenge of making a spaceship invisible for defensive purposes, decide to go for a new, cheaper option, a technology wryly named ‘somebody else’s problem’. This makes the spaceship in question not really invisible, but ‘almost’ so, through the device of the observer’s inattention. Instead of seeing a ship clearly or not seeing it at all, Adams’s ship can only be seen with great difficulty out of the corner of one’s eye (Adams, 1982, pp28–9). Like many of the background systems
we take for granted, such as the supply of water, electricity and gas to our homes and
the weekly rubbish collection, along with the roadways that enable our car-based
commute to and from work, we seem to be able to focus only on the ‘consumption phase’
in the life cycle of any particular domain. Everything else outside the parameters of what
we now take for granted becomes ‘somebody else’s problem’, something perhaps ‘they’
should do something about, sooner or later.

Indeed, most of our more serious environmental problems now seem to be ‘somebody
else’s problem’. A conceptual distancing or ‘distantiation’ is apparent in our aware-
ness of, not only the origins and ordinary functioning of the things and services we use
on a daily basis, but also what happens to them when they fail to function or when we
no longer need them. The ‘stuff’ we use and enjoy appears in our lives almost magically,
often having been transported thousands of kilometres in trucks, trains and planes, from
processing, manufacturing and distribution locations hidden from us behind barcodes,
brochures, branded labels and the ‘fine print’ on packages or delivery notes (Princen,
2002b). While even as children we can identify the logos and brands of well-known
products, and retell the simple myths they recount, the real origins, life cycle, technical
function in use and ‘end-of-life’ destination of these same products and services have
been skilfully airbrushed out of the picture. This is not a product of corporate conspiracy
but the result of long-term historical processes that have transformed our relationship
to the world of goods: from being a much smaller population of face-to-face ‘customers’,
of small shop, workshop and farm-based providers, over about 150 years we have become
a ‘side-to-side’ army of consumers, dependent on vast, often global, mass-production
and mass-distribution systems, whose complexity and lengthy supply chains render them
opaque to us (Strasser, 2003). This means that, even if we wanted as individuals to do
something about many of the downsides of our vastly distanced global production and
distribution system, there is usually insufficient information available to us to act with
any certainty or clarity of purpose (Princen, 2002a; 2002b; 2005).

For example, in New York or London, the delicious fresh tuna on our plate in a
restaurant may have come from the other side of the world, pulled out of the sea perhaps
only three days ago, and flown thousands of kilometres to us on ice to retain its fresh-
ness (de Botton, 2009, pp53ff.). The modern miracle of the logistics responsible for
bringing the tuna to our plate remains concealed, but its extraordinary costs, in fuel,
emissions and energy, not to mention its impact on the tuna’s population and the distant
habitat in which it lived, are unknowable to us and remain silenced by this conceptual
distance (Paché, 2007). Worse, there is no visible global oversight of the shared natural
environment or ‘commons’ from which this tuna has been extracted, just as there are
no effective global limits to our profligate use of other increasingly limited natural
resources (Conca, 2008). As we eat our tuna, we can have no certainty that the fish
was farmed or caught responsibly, and it remains a possibility that it was taken by ‘illegal’
fishermen and then somehow ‘legalized’ on paper during its journey to the restaurant
(Bestor, 2003). Extraction and distribution, whether of tuna, oil, timber or diamonds,
occurs on a ‘first come, first served’ basis, with the richest, most technologically
sophisticated or most powerful getting in first, staking a ‘claim’ and taking a ‘share’
that may create serious problems for the rest of us in the future (Princen, 2003; 2005).
It is perhaps no wonder that there has been a substantial decline in public trust
closely coinciding with this self-evident triumph of globalization (Putnam, 2000; Hardin,
2006).
Waste products, like the resources and by-products from which our food, clothing and other ‘stuff’ are made, are largely hidden from us, and we have developed efficient disposal systems and corresponding metaphors to ensure that what is discarded is taken away and disposed of, ‘out of sight, and so out of mind’ (Clapp, 2002; Princen, 2010). The environmental costs of over-extraction, over-consumption and excessive pollution and waste, like the real costs of our road toll, for example, are never made transparent to us, but can only be made visible with considerable effort, against a prevailing culture of ‘use and enjoy, dispose and forget’. Part of the problem is economic ‘externalization’, where costs are shifted so that environmental ‘debts’ can pile up and be passed on, back to the population living on the ‘frontier’ from whence the ‘resource’ was first extracted, or where the items in question were manufactured (Princen, 2002b; Smart, 2010, pp110ff.). Just as transport departments around the world do not have to pay for the costs of road accidents, such as emergency medical staff, ambulances, surgery, insurance, or deal with the many personal tragedies, grief and suffering caused by most serious accidents, so miners, manufacturers and other producers, shippers and retailers, and the many consumers at the end of our lengthy and complex supply chains, usually do not have to pay for the environmental costs embedded in the ‘stuff’ they are using, or the waste it will eventually become (Frascura, 1996).

The problem is not only one of distantiation and the inevitable concealment from view that comes with lengthy supply chains, but also the way that our present economic system focuses attention and attributes value only at the ‘owned’ consumption or ‘in-use’ phase of any life cycle, and then only on the specific owner and the ‘job’ in question. This leads to a crisis of oversight and responsibility: we are accustomed to efficiently managing and focusing upon only what is ‘owned’ by some identifiable person, corporation or nation in its use phase. However, we seem unable to deal with what is there before this ‘resource’ is ‘claimed’ and then ‘owned’ at the beginning of this cycle, or what happens to the consumed material at its end, when it is turned again into what is ‘unowned’ or unwanted. For no one wants to ‘own’ garbage, unless it has some special material value, and when this is not identified it returns again to the commons, to what technically has not yet been given value or ‘owned’ (Strasser, 2000; Linebaugh, 2010). As Princen points out, much of this depends on widely accepted and unquestioned metaphors taken directly from economics and misapplied in the ‘real world’ of human and environmental relationships (Princen, 2010).

Witness the ‘great Pacific garbage patch’ made up of plastics and other industrial products floating in the northern Pacific gyre, which has become a hazard to shipping and wildlife and is now so large it can be seen from space (Moore, 2003; Coulter, 2009–10; Wikipedia, 2011). It lies beyond the responsibility of any government, ship owner or industrial producer and remains, mysteriously, without a determining or responsible cause, very much ‘somebody else’s problem’. But, as Moore and others have pointed out, while this continent-sized patch of floating garbage might damage many distant fish and birds directly, its toxins affect us too, entering the food chain and becoming a part of what we eat, perhaps thousands of miles distant, its tell-tale toxins now being identifiable in many commercially caught and consumed fish (Moore, 2003).

Distantiation and externalization have also become serious problems when it comes to more ‘normal’ waste and pollution issues, because, while what might be associated with the interests of a government or a corporation can be represented and dealt with
fairly efficiently, what lies in the interests of everyone beyond this consumption or use phase seems to elude most systems of governance and consumption-focused economic thinking, just as it eludes our ability to focus on them in our daily lives. Like many ‘undiscovered’ resources and much waste, what lies in our metaphorically distanced biosphere or commons becomes obscure and tenuous, a global ‘frontier’ (Princen, 2002b; Linebaugh, 2010). Typically, this then becomes open to a free-for-all competition between corporate actors whose interests might include mining or exploiting an identified ‘resource’ within an area of the commons. These often operate under ‘flags of convenience’ or some similar ‘legal’ fiction to limit responsibility for the environmental damage caused by their exploration or extraction, as was the case in the recent disaster in the Gulf of Mexico (Princen, 2005; Courselle, 2010). As Maniates, Princen and others have argued, it is vital that we come to grips collectively with the lack of social and environmental responsibility embedded in the now global political, economic and legal infrastructures that foster and support this ‘frontier mentality’, rather than simply treating it as an abstract theoretical problem, involving only the ‘pricing’ of untapped natural resources, as though they can be magically reconstituted by some future technological wizardry (Maniates, 2002; Princen, 2002b; Conca, 2008).

The central metaphor for this distantiation and externalization I want to return to later in this chapter is that of walking in relation to the automobile: through the perceptual window provided by consumption we have been led to assume there is more economic and social value in driving than in walking, that, without the ‘flexibility’ and ‘freedom’ the car provides, many economic benefits will be lost or closed to us. We also assume that driving (or being driven) is socially as well as technologically more ‘advanced’ and therefore more important, and more worthy of investment than ‘just’ walking, something suggested by the metaphorical meaning often applied to the word ‘pedestrian’. At present, the social and environmental costs of driving or being driven are nearly all externalized to the larger community and natural environment, to the commons from which the oil used to power cars is extracted, to the polluted air, water and environment created by our car dependence, and the ‘sprawl’ this dependence locks in place.

In aiming for zero waste, the car is an extremely problematic object of consumption: however ‘advanced’ we might be able to make it in the future, reducing its emissions to zero, and cleverly engineering its shell and guidance system until it is ‘perfectly safe’ (for those others, presumably, in their cars), it is still one of the world’s most economically expensive and environmentally and socially destructive products, with one of its most significant and least considered costs being its direct restriction of walking. For, when we can drive we usually do, and this discourages us from walking (thus creating the grounds for many health problems in those driving or being driven, including obesity, diabetes and other, stress-related disorders), especially when we live or work in urban environments where other cars dominate, travel distances are great, public transport is limited and walking is a socially stigmatized, dangerous and unpleasant option (Hass-Klau, 1990; Freund and Martin, 1993; Litman, 2011).

The everyday domain of personal transport and the car’s hold on it provides a particularly useful lens through which to examine the problem of behaviour change, partly because it has been so thoroughly documented and discussed in a very large literature involving many different disciplines (Paterson, 2000; Davison and Yelland, 2004), but also because it directly impacts on the problem of our waste stream: cars and other
road-based vehicles are large objects producing tonnes of environmental waste, including around 20 per cent of the world’s greenhouse-gas emissions, with much of it extremely toxic and contributing directly to climate change (for a summary of 2007 global figures, see CAIT, 2011). Cars are also deadly weapons, killing each year, in both America and Australia, proportionally as many people as were killed during our ten-year involvement in the Vietnam War, and maiming a similar proportion too (Sharma, 2008; Australian Government, 2009). Recent figures suggest that the annual road toll worldwide is approaching 1.5 million people, with around 50 million people maimed, a population the size of a significant country. The World Health Organization (WHO) estimates that the cost of this destruction (which does not include animals and birds killed on the road) totals a staggering US$52 billion per year (Australian Government, 2009; WHO, 2009, 2011).

As with the negative consequences of other ‘unsustainable’ systems and their infrastructures that we have developed and normalized over long periods of time, the car does not bear the costs of its destructive consequences, as these are routinely and invisibly externalized (Freund and Martin, 2009). It is sold to us through the promise of the freedom and flexible mobility it can provide, but, as its use begins to dominate our urban spaces, alternative means of transport, unless vigorously defended, tend to wither and die. Whereas the fact that it employs so many people, providing jobs, essential services and transport, and much work for large sections of the economy is well known, the true costs of the pollution of the atmosphere, land and waterways that our present transport system causes, its use of up to 50 per cent of land in many cities, and the death and destruction it causes, are rarely accounted for or even mentioned in public, because it seems so ‘essential’ to our lives (Davison and Yelland, 2004). Again, this cost is substantially externalized back to the community through government, with car manufacturers, retailers and others involved in the industry paying the same taxes other, much less destructive industries must pay, and often enjoying generous subsidies from governments afraid of the consequences any downturn in the industry might have on the national economy (Paterson, 2000).

Driving, however much we can improve it technically, is invariably a resource- and energy-intensive activity, and, as the above suggests, socially and environmentally destructive, with many negative side effects, including social isolation, obesity and other conditions that follow such sedentary activity. These well-known economic, social and environmental costs can be contrasted with the invariably low infrastructure costs and otherwise positive social balance-sheet for walking: improved health and fitness, improved oversight of local paths that are walked, so that quite often petty crime diminishes, and increased economic activity associated with pedestrian movements in commercial areas (Litman, 2011). Why then is walking so routinely dismissed as ‘ordinary’, ‘pedestrian’ and unworthy of attention or funding as a ‘transport’ mode, even as a ‘link’ between other (public) transport modes? Why do we insist on spending so much money on the automobile and its infrastructure, and on heavily subsidizing the manufacturers of this most deadly of everyday weapons? Questions such as these need to be asked, not just of our car dependency, but of many other domains of everyday life, where long-term sociotechnical development, government funding and established commercial interest, and often massive investment, combine to encourage and ‘lock in’ similarly destructive sociotechnical routines and behaviours. Improving them, and making them
qualitatively ‘greener’, may not result in the desired solution of lower emissions, as, with the rapid development occurring in India and China, massive sales in new cars are making the gradualist solutions popular in the industry ineffective in both the short and long terms. We have to stop pretending that we can continue depending on the automobile as we did in the 1950s: the game plan has changed irrevocably. ‘Sustainable transport’ has to be reimagined as much more than simply ‘smarter’, greener cars.

Sustainability and consumer desire

Behind our car dependence, as well as our present preference for many other unsustainable practices, sits the ‘elephant in the room’, the engine of our economies and of the profitability that justified the kinds of risk BP recently took in the Gulf with such catastrophic results. This is consumer desire. Given the money and the opportunity, most of us seem to want ‘more’, and many of us also seem oblivious to the fact that the objects or systems we desire may cause some form of environmental damage in the process of their extraction, making, distribution, use or disposal. This, after all, is ‘somebody else’s problem’, and it seems it cannot be seen clearly from where we stand before the shop’s windows, saturated as we are with ‘infotainment’ and advertising that routinely misinforms us about the social and environmental consequences of our purchasing habits (Smart, 2010, pp60ff.).

But the question remains, what is it precisely that we want, and why? Although scholars have identified four typical motives towards consumption, in practice these can be seen to act together as they entangle us in unsustainable behaviours. We do not necessarily choose these behaviours consciously, but often find ourselves inheriting practices or ways of living from systems or product domains that have developed in each domain of our lives over time, and many of these have given birth to monumental self-replicating infrastructures, such as that which currently supports the automobile (Shove, 2003a; Quitzau and Ropke, 2008).

To understand our motives to consumption, a good starting point, which is often rather neglected in the vast literature on consumption, is our desire to improve ourselves and to extend or enhance our knowledge through expanding our experience of the world, of others and ourselves. Educational services, media, music and many other ‘invisible’ forms of consumption are tied up in this impulse, and it is a fundamental force in the great ‘churn’ of material flows and other ‘grosser’, more noticeable forms of consumption (Lees-Maffei, 2001; Miller, 2010). For, when we explore the world or try to understand something, we also consume: we buy newspapers and books, we go to university and do courses and degrees, we produce and read information on websites, through computers and other devices, and use up many services associated with expanding our knowledge or understanding each other and the world (McCracken, 2008). This impulse to consume through understanding, often resulting in some form of self-transformation, affects everyone, including those who cannot read well and have little education and no aspiration to get a degree or improve their prospects through training. Evidence of this can be seen in the daily horoscope in the newspaper, or in the huge array of ‘lifestyle’ magazines: we all want a ‘better’ future and a more enriching experience of ourselves, of others and of the world around us, and our consumer culture promises to deliver this ‘better’ future of ‘more’, where this year’s novelty will soon be eclipsed by next. Travel,