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Preface

This manual presents solutions to all exercises from

Actuarial Mathematics for Life Contingent Risks, third edition (AMLCR),
by David C. M. Dickson, Mary R. Hardy, Howard R. Waters,
Cambridge University Press, 2020
ISBN 9781108478083

It should be read in conjunction with the spreadsheets posted at the website
www.cambridge.org\9781108747615 which contain details of the calculations
required. However, readers are encouraged to construct their own spreadsheets be-
fore looking at the authors’ approach. Spreadsheet solutions are provided for all the
Excel-based exercises in AMLCR.

In some cases the answers in the manual will differ from answers calculated using
tables such as those provided in Appendix D of AMLCR. The differences arise from
rounding errors. The numbers given in this manual are calculated directly, without
using rounded table values, unless otherwise indicated.

From time to time, updates to this manual may appear at
www.cambridge.org\9781108747615.
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Solutions for Chapter 1

1.1 The principle of charging in advance for life insurance is to eliminate the po-
tential for policyholders to benefit from short-term life insurance cover without
paying for it. Suppose premiums were payable at the end of the policy year.
A life could sign up for the insurance, and lapse the contract at the end of the
year. The life would have benefited from free insurance cover for that year.

In addition, life insurance involves significant acquisition expenses. The first
premium is used to meet some or all of these expenses.

Background note: The fact that the insurance for a policyholder did not result
in a claim does not make it free to the insurer. The insurer’s view is of a port-
folio of contracts. Suppose 100 people buy term life insurance for one year,
with a sum insured of $1000, at a premium of $11 each. The insurer expects
a mortality rate of 1%, which means that, on average, one life out of the 100
dies. If all the policyholders pay their first year’s premiums in advance, and
one life dies, then the insurer receives $1100 (plus some interest) and pays out
$1000. On the other hand, if premiums were due at the year end, it is possi-
ble that many of the 99 expected to survive might decide not to pay. It would
be difficult and expensive for the insurer to pursue payment. The policyhold-
ers have benefited collectively from the insurance and the insurer has not been
appropriately compensated.

1.2 The purpose of whole life insurance is to provide tax efficient benefits on the
death of the policyholder. However, the ability of the policyholder to maintain
their policies, by paying the premiums on time, may decline with age, firstly
because the policyholder’s income may decline, so that finding the funds to
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2 Solutions for Chapter 1

pay premiums becomes harder, and secondly because at older ages individuals
become less able to manage their financial affairs, due to age-related cognitive
decline. So some insurers design products that obviate the need for policyhold-
ers to actively maintain their policies in old age by removing the need to pay
premiums at older ages.

1.3 An insurance policy is lapse-supported if excess funds from lapsed contracts
are used to subsidize the remaining policies. In term insurance, when a poli-
cyholder lapses there is no cash value payable, so there may be excess funds
available from lapsing policies. However, for most common forms of term in-
surance, premiums are relatively low, and the funds released from lapsing poli-
cies are also small. Furthermore, because the premiums are low, and term in-
surance is typically bought to provide for the policyholder’s family in the event
of the policyholder’s death, we do not expect a very significant number of these
policies to lapse.

We also note that lapses in the early stages of the contract generate losses, not
profits, as the insurer needs several years of premiums (typically three to seven)
to recoup the initial expenses associated with writing the policy.

So pricing allowing for lapses may not significantly reduce the premium, and
hence, although term insurance can be written and priced as a lapse-supported
product, in practice the impact would be so small that it is typically not.

Note though that some niche term insurance policies sold for very long terms
are lapse-supported. In Canada, some insurers sold term insurance policies ter-
minating at age 100. These policies were essentially whole life policies without
cash values, and were specifically designed to be lapse-supported.

1.4 Full life care provides for level fees (other than inflationary increases) through-
out the resident’s future lifetime in a CCRC, for residents who enter into In-
dependent Living Units. The CCRC’s costs associated with the care of each
resident are expected to rise steeply as they progress through the different lev-
els of care, so the full life care fee structure involves higher fees than costs in
the early years, and lower fees than costs in later years.

Modified life care allows fees to increase when the resident moves between
stages, but fees are level within each stage. The increase in fees applied when
the resident moves from a lower level of care to a higher level is less than the
increase in costs, so that the increase is predictable and manageable for the
resident.
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The fee-for-service plan sets fees approximately equal to the CCRC’s costs at
each stage of care. In the early years, a life entering an Independent Living Unit
would be expected to have the lowest level of fees, and as they move through
to higher levels of care, the fees will rise substantially.

Hence, the initial fees for a life entering an Independent Living Unit will be
highest under the full life care structure, and lowest under the fee-for-service
structure, with modified life care falling in the middle.

1.5 (a) The insurer will calculate the premium for a term or whole life insurance
policy assuming that the policyholder is in relatively good health; other-
wise, if the insurer assumed that all purchasers were unhealthy, the cost of
insurance would be prohibitive to those customers who are healthy. The
assumption then is that claims will be relatively rare in the first few years
of insurance, especially since most policies are sold to lives in their 30s and
40s.

This means that the price is too low for a life who is very unwell, for
whom the risk of a claim shortly after purchase might be 10 or 100 times
greater than for a healthy life. The insurer therefore needs evidence that the
purchaser is in good health, to avoid the risk that insurance is bought too
cheaply by lives who have a much higher probability of a claim.

The objective of underwriting is to produce a relatively homogeneous in-
sured population when policies are issued. The risk that the policyholder
purchases the insurance because they are aware that their individual risk is
greater than that of the insured population used to calculate the premium
is an example of adverse selection risk. Underwriting is a way of reducing
the impact of adverse selection for life insurance.

Adverse selection for an annuity purchaser works in the other direction – a
life might buy an annuity if they considered their mortality was lighter than
the general population. But, since adverse selection is likely to affect all
lives purchasing annuities, more or less, it does not generate heterogeneity,
and the impact can be managed by assuming lower overall mortality rates
for annuitants.

In addition, the difference in the net cost to the insurer arising from adverse
selection will be smaller compared with the term insurance example.

(b) The insurer will be more rigorous with underwriting for term insurance
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than for whole life insurance because the potential financial consequence of
adverse selection is greater. Note that the insurer expects few claims to arise
from the term insurance portfolio. Premiums are small, relative to the death
benefit, because the probability of payment of the death benefit is assumed
to be small. For whole life insurance, premiums are substantially larger as
payment of the death benefit is a certain event (ignoring surrenders). The
only uncertainty is the timing of the benefit payment.

The main risk to the insurer is that a life with a very high mortality risk,
much higher than the assumed insured population, purchases life insurance.
It is likely in this case that the life will pay very few premiums, and the
policy will involve a large death benefit payout with very little premium
income. Since term insurance has much lower premiums for a given sum
insured than whole life insurance, it is likely that such a policyholder would
choose term insurance. Hence, the risk of adverse selection is greater for
term insurance than for whole life insurance, and underwriting is used to
reduce the adverse selection risk.

1.6 (a) Without term insurance, the homeowner’s dependents may struggle to meet
mortgage payments in the event of the homeowner’s death. The lending
company wishes to reduce as far as possible the risk of having to foreclose
on the loan. Foreclosure is expensive for the lender and creates hardship for
the homeowner’s family at the worst possible time. Term insurance is used
to pay off the mortgage balance in the event of the homeowner’s death,
thus avoiding the foreclosure risk for both the lender and the homeowner’s
family.

(b) If the homeowner is paying regular instalments of capital and interest to
pay off the mortgage, then the term insurance sum insured will decrease as
the loan outstanding decreases. The reduction in loan outstanding is slow
in the early years of, say, a 25-year mortgage, but speeds up later. The re-
duction in the term insurance sum insured is therefore not linear. Different
loan provisions, including interest-only loan periods, cliff-edge repayment
schedules (where the interest is very low for some period and then increases
substantially), fixed or variable interest rates, and fixed or variable repay-
ment instalments will all affect the sum insured.

(c) In Section 1.5.2 it is noted that around 2%–3% of applicants for insurance
are considered to be too high risk. If these lives are, in consequence, unable
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to purchase property, then that is a social cost for these lives that may not
be acceptable.

1.7 In with-profit whole life insurance, the insurer invests the premiums, and excess
investment returns over the minimum required to fund the original benefits are
shared between the policyholders and the insurer.

With a cash bonus, the policyholder’s share of profits can be paid out in cash,
similar to a dividend on shares. In this case, the investments need to be realized
(i.e. assets sold for cash). The payout is immediate.

With a reversionary bonus, the policyholder’s share of profits is used to increase
the sum insured. The assets can remain in the capital markets until the sum
insured is due.

Cash Bonus System – Insurer Perspective
Advantages

• Bonuses are transparent and easy to explain to policyholders.

• It does not involve maintenance of records of payouts and does not impact
schedules for surrender values.

• The prospect of cash bonuses may persuade policyholders to continue with
their policies rather than surrender.

Disadvantages

• It creates a liquidity risk – that assets need to be sold to meet bonus expecta-
tions, possibly at unfavourable times.

• Investment proceeds are volatile; volatility in cash bonuses may be difficult
to explain to policyholders. There may be a temptation to over-distribute in
an attempt to smooth, that could cause long-term losses.

• There may be problems determining equitable payouts, resulting in possible
policyholder grievances.

Cash Bonus System – Policyholder Perspective
Advantages

• Cash is immediate and it is easy to understand the distribution.
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Disadvantages

• May not be tax efficient.

• The risks to the insurer may lead to under-distribution to avoid risk.

• Possible volatility of bonuses.

Reversionary Bonus System – Insurer Perspective
Advantages

• Assets remain invested as long as a policy is in force, reducing liquidity risk.

• Bonuses appear larger as they are generally delayed many years.

• Bonuses may not be paid in full if a policy is surrendered subsequently,
allowing higher rates of bonus to be declared for remaining policyholders.

• Over-distribution can be mitigated with lower bonuses between the declara-
tion year and the claim event.

Disadvantages

• More complex to value, to keep records.

• Policyholders may not understand the approach, and there may be resent-
ment (e.g. on surrender).

• Difficult to determine an equitable distribution.

• Easy to over-declare, as profits are based on asset values which may subse-
quently decrease.

• It is difficult to reduce bonus rates, even when justified. This may lead to loss
of new and existing business.

Reversionary Bonus System – Policyholder Perspective
Advantages

• It may be tax efficient to receive profit share with sum insured.

• The system allows more investment freedom for the insurer, with higher
upside potential for the policyholder.

Disadvantages

• Difficult to understand, especially ‘super-compound’ systems.
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• Possible loss of profit share on surrender.

• Opaque system of distribution. It is difficult to compare how different com-
panies perform.

1.8 Under a simple reversionary bonus of 5% per year, the sum insured in year t,
for t = 1, 2, . . . , 5, is

50 000 (1 + 0.05(t − 1)).

Under a compound reversionary bonus of 5% per year, the sum insured in year
t, for t = 1, 2, . . . , 5, is

50 000 (1.05t−1).

Consider now the super-compound reversionary bonus and let St denote the
total sum insured in the tth year for t = 1, 2, . . . , 5, with S1 = 50 000. The sum
insured in year t + 1 will consist of the sum insured in year t (St), the bonus on
the original sum insured (0.05S1) and the bonus on previously declared bonus
(0.1(St − S1)). Thus

St+1 = St + 0.05S1 + 0.1(St − S1) = 1.1St − 0.05S1 ,

and so we can calculate the total sum insured recursively in this case. The table
below shows rounded values of the different sums insured.

Year Simple Compound Super-compound

1 50 000 50 000 50 000
2 52 500 52 500 52 500
3 55 000 55 125 55 250
4 57 500 57 881 58 275
5 60 000 60 775 61 603

Note that in each case the sum insured is 52 500 in year 2 as the bonus at the end
of year 1 is 5% of the sum insured in year 1 under each bonus structure, but after
that the different bonus structures yield different results, with the simple bonus
giving the lowest sums insured, and the super-compound giving the highest.

1.9 The first period of sickness is from time 1.00 to time 1.25, and the second is
from time 2.00 to time 3.50. These are separate periods of sickness because the
off period is six months, and the time between these periods of sickness is nine
months.
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Because of the one-year waiting period, no sickness benefit is payable for the
period of sickness from time 1.00 to time 1.25.

The third period of sickness commences 0.25 years (three months) after the end
of the second period of sickness, so the third period of sickness is treated as a
continuation of the second. So, allowing for the one-year waiting period which
applies from time 2.00 to time 3.00, sickness benefit is payable from time 3.00
to time 3.50, and this benefit payment continues throughout the entire third
period of sickness (for a total of 0.50+ 4.25 = 4.75 years, so the five-year term
is not attained).

As the final period of sickness commences 0.75 years after the third period of
sickness ended, this is treated as a new period of sickness (due to the six-month
off period) to which the one-year waiting period applies, meaning that benefit
is payable from time 9.75 to time 10.

The following table summarises the payments.

Time from inception Benefit payments

3.00–3.50 6 months at $2000 per month
3.75–8.00 51 months at $2000 per month
9.75–10.00 3 months at $2000 per month

1.10 For a comprehensive answer, we need to understand Andrew’s age, health and
family responsibilities and support. The answers for an average 65-year-old
retiree in good health would be different from those for a 50-year-old retiree
in poor health. Also, we should consider the impact of governmental benefits
(old age pension, social security, health costs), and any potential support from
family in the event that he faces financial ruin.

In the absence of more detailed information, we assume that Andrew is a person
in average health at an average retirement age of, say, 65. We also assume
that the $500 000 represents the capital on which he wishes to live reasonably
comfortably for the remainder of his life. We also ignore tax issues, though
these are likely to be very significant in this kind of decision in practice.

Consider the risks Andrew faces at retirement.

(1) Outliving his assets – this is the risk that at some point the funds are all
spent and Andrew must live on whatever government benefit or family sup-
port that might be available.
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(2) Inflation risk – that is, that his standard of living is gradually eroded by
increases in the cost of living that are not matched by increases in his in-
come.

(3) Catastrophe costs – this is the risk that a large liability arises and Andrew
does not have the assets (or cannot access the assets) to meet the costs.
Examples might include the cost of health care for Andrew or a dependent
(where health care is not freely available); catastrophic uninsured liability;
cost of long-term care in older age.

Andrew may also have some ‘wants’ – for example

(1) Bequest – Andrew may want to leave some assets to dependents if possible.

(2) Flexible spending – Andrew may want the freedom of full access to all his
capital at all times.

We now consider the options listed in the question in light of the risks and
potential ‘wants’ listed.

(a) With a level life annuity, Andrew is assured of income for his whole life,
and eliminates the risk of outliving his assets. However, he retains the in-
flation risk, and he may not have sufficient assets to meet catastrophe costs.
If he uses all his capital for an annuity, there will be no bequest funds avail-
able on his death, and no flexibility in spending during his lifetime.

(b) As in (a), Andrew will not outlive his assets, and this option also covers
inflation risk to some extent. There may be some residual inflation risk, as
the cost of living increases that Andrew is exposed to may differ from the
inflation adjustments applied to his annuity. In order to purchase the cost
of living cover, Andrew will receive a significantly lower starting annual
payment than under option (a). All other issues are similar to those under
option (a).

(c) A 20-year annuity-certain will offer a similar or slightly higher benefit to
a life annuity for a 65-year-old man in average health. Andrew’s life ex-
pectancy might be around 18 years, so on average the annuity will be suffi-
cient to give Andrew a life income and allow a small bequest. An annuity-
certain can be reasonably easily converted to cash in the event of a catas-
trophe or a change in circumstances. However, there is a significant risk
that Andrew will live more than 20 years, and it will be difficult to manage
the dramatic change in income at such an advanced age.
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(d) Investing the capital and living off the interest would involve much risk.
The interest income will be highly variable, and will be insufficient to live
on in some years. If Andrew invests the capital in safe, stable long-term
bonds, he might make only 2%–3% after expenses (or less, this figure has
been highly variable over the last 20 years) which would be insufficient
if it is his only income. There is also reinvestment risk, as he could live
longer than the longest income he could lock-in in the market, and there
will be counterparty risk (that is, the risk that the borrower will default on
the interest and capital) if his investment is not in solid risk-free assets.

If Andrew needs a higher income, he will have to take more risk. For exam-
ple, he might invest in corporate bonds with counterparty risk, or he might
put some of his capital in stocks, which have upside potential but downside
risk. Using riskier investments would increase the volatility of his income
and threaten his capital. If he invests heavily in shares, he may see negative
returns in some years. This strategy just might not be sustainable.

Income would also not be inflation hedged, in general.

On the other hand, the capital would be accessible in the event of a catastro-
phe or for flexible spending (although that would raise the risk of outliving
assets). This system would allow for a significant bequest, assuming that
Andrew managed to live on the investment, but at the expense of income
level and stability for Andrew. Also, Andrew would have the added com-
plication of managing a portfolio of assets, or paying someone to manage
them for him. On the other hand, purchasing an annuity involves substantial
hidden expenses that would not be incurred under this option.

(e) $40 000 is 8% of the capital. If this rate is higher than the interest rate
achievable on capital, then Andrew will be drawing down the capital and
risks outliving his assets. The income is not inflation hedged, but the system
does allow spending flexibility. Other issues are as for option (d).
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2.1 (a) px+3 = 1 − qx+3 = 0.98.

(b) 2 px = px px+1 = 0.99 × 0.985 = 0.97515.

(c) As 3 px+1 = 2 px+1 px+3, we have 2 px+1 = 0.95/0.98 = 0.96939.

(d) 3 px = px 3 px+1 /px+3 = 0.95969.

(e) 1|2qx = px (1 − 2 px+1) = 0.03031.

2.2 We have

ex =

∞∑
t=1

t px = px +

∞∑
t=2

t px

= px + px

∞∑
t=2

t−1 px+1

= px

⎛⎜⎜⎜⎜⎜⎝1 + ∞∑
t=1

t px+1

⎞⎟⎟⎟⎟⎟⎠
= px (1 + ex+1).

So px = ex/(1 + ex+1) and hence

3 p60 = p60 p61 p62 =
e60

1 + e61

e61

1 + e62

e62

1 + e63
= 0.93834.

2.3 (a) From Example 2.3,

10 p40 = exp
{ −B

log c
c40

(
c10 − 1

)}
= 0.995078.
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(b) Noting that t p40 = 1 − F40(t), we have

d
dt t p40 = − f40(t) = −t p40 μ40+t .

Evaluating this at t = 10 gives −0.000567.

2.4 The one-year survival probability is

px = exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩−
1∫

0

(0.002 + 0.001t) dt

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= exp{−0.002 − 0.0005}
= 0.99750,

giving qx = 0.00250.

2.5 We have

ex:n = E[min(Kx, n)]

=

n−1∑
k=0

k Pr[Kx = k] +
∞∑

k=n

n Pr[Kx = k]

=

n−1∑
k=0

k ( k |qx) + n Pr[Kx ≥ n]

=

n−1∑
k=0

k ( k px − k+1 px) + n n px

= ( 1 px − 2 px) + 2( 2 px − 3 px) + · · · + (n − 1)( n−1 px − n px) + n n px

= 1 px + 2 px + · · · + n px

=

n∑
k=1

k px .

2.6 (a) G(x) can be written as

G(x) =
(90 − x)(x + 200)

18 000
.

At the limiting age, ω , we have G(ω) = 0, and since x ≥ 0, the limiting age
is ω = 90.
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A more complete statement of the resulting survival function S0(x) then is

S0(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
18 000 − 110x − x2

18 000
for 0 ≤ x < 90,

0 for x ≥ 90.

(b) First, we have S0(0) = 1. Next, we see that S0(x) = 0 for all x ≥ 90. Third,
the derivative of S0(x) is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−110 − 2x
18 000

for 0 < x < 90,

0 for x > 90,

which is negative for 0 < x < ω , indicating that the survival function
decreases from age 0 to the limiting age of 90.

Hence all three conditions for a survival function are satisfied.

(c) S0(20)/S0(0) = 0.8556.

(d) The survival function for t < 70 is

S20(t) =
S0(20 + t)

S0(20)

=
18 000 − 110 (20 + t) − (20 + t)2

18 000 − 110 (20) − 202

=
15 400 − 150 t − t2

15 400

= 1 − 3t
308
− t2

15 400
.

(e) (S0(30) − S0(40))/S0(20) = 0.1169.

(f) μx = −S′0(x)/S0(x). Using part (b), for x < 90 we obtain

μx =

(
110 + 2x
18 000

) (
18 000

18 000 − 110x − x2

)

=
110 + 2x

18 000 − 110x − x2

so that μ50 = 0.021.
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2.7 (a) The survival function Sx is given by

Sx(t) =
S0(x + t)

S0(x)

=
e−λ (x+t)

e−λx

= e−λ t .

(b) μx = − d
dx

log S0(x) = − d
dx

log e−λx =
d
dx

λx = λ .

(c) As t px = e−λ t , which is independent of x, we have

ex =

∞∑
t=1

t px =

∞∑
t=1

e−λ t

= e−λ + e−2λ + e−3λ + · · ·

=
e−λ

1 − eλ

=
1

eλ − 1
.

(d) This lifetime distribution is unsuitable for human mortality as survival
probabilities, and therefore expected future lifetimes, are independent of
attained age. The force of mortality for this lifetime distribution is con-
stant. The force of mortality for humans increases significantly with age.

2.8 (a) f0(x) = −S′0(x) = 0.002 x e−0.001x2
.

(b) μx = f0(x)/S0(x) = 0.002 x.

(c) 5|15q65 =
S0(70) − S0(85)

S0(65)
= 0.45937.

2.9 Write

t px = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
t∫

0

μx+s ds

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
x+t∫
x

μs ds

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
In this case, we are treating t as fixed and x as variable. Let

h(x) = −
x+t∫
x

μs ds .
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Then

t px = e−h(x) ⇒ d
dx t px = −h′(x) e−h(x) = −h′(x) t px .

Now

h′(x) =
d
dx

x+t∫
x

μs ds =
d
dx

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
x+t∫
0

μs ds −
x∫

0

μs ds

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = μx+t − μx ,

giving the required result that

d
dx t px = t px

(
μx − μx+t

)
.

2.10 Writing t px = st gcx(ct−1), we have

log 10 p50 = log 0.974054 = 10 log s + c50 (c10 − 1) log g ,

log 10 p60 = log 0.935938 = 10 log s + c60 (c10 − 1) log g ,

log 10 p70 = log 0.839838 = 10 log s + c70 (c10 − 1) log g .

Then

log 10 p70 − log 10 p60

log 10 p60 − log 10 p50
=

(c70 − c60)(c10 − 1) log g
(c60 − c50)(c10 − 1) log g

= c10

= 2.7141.

Hence c = 1.105.

2.11 (a) We have

◦
ex =

∞∫
0

t px dt =

1∫
0

t px dt +

∞∫
1

t px dt .

For the first term, we use the fact that t px ≤ 1 for all t ≥ 0, so that

1∫
0

t px dt ≤ 1.
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For the second term, by changing the limits of integration we have

∞∫
1

t px dt =

∞∫
0

r+1 px dr =

∞∫
0

px r px+1 dr

= px
◦
ex+1 ≤ ◦ex+1 .

So
◦
ex ≤ 1 +

◦
ex+1 as required.

(b) We have

◦
ex =

∞∫
0

t px dt =

1∫
0

t px dt +

2∫
1

t px dt +

3∫
2

t px dt + · · · .

Since t px is a decreasing function of t,

s∫
s−1

t px dt ≥ s px , for s = 1, 2, . . . ,

so

◦
ex ≥ px + 2 px + 3 px + · · · = ex.

Alternatively, let � 	 denote the floor function. Then

Kx = �Tx	 ⇒ Kx ≤ Tx

⇒ E[Kx] ≤ E[Tx]

⇒ ex ≤ ◦ex .

(c) We know that
◦
ex is the expected value of the future lifetime of (x), i.e. E[Tx],

and ex is the expected number of complete years of future life of (x), i.e.
E[Kx]. If we assume that the difference between Tx and Kx is 0.5 years, on
average (on the principle that it is roughly equally likely to be any number
of years between 0 and 1), then we have

◦
ex ≈ 1

2
+ ex .

For a more mathematical explanation, we can use the repeated trapezium
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rule for numerical integration as follows:

◦
ex =

∞∫
0

t px dt

≈ 1
2

(1 + 1 px + 1 px + 2 px + 2 px + · · · )

≈ 1
2
+ ex .

(d) It is almost always the case in practice that
◦
ex is a decreasing function of x,

but, in principle, it need not be. Consider a hypothetical population where
people die only at ages 1 or 50. Of all those born, precisely one half die at
age 1 and the remainder all die at age 50. Then

◦
e0 =

1
2

(1 + 50) = 25.5 and
◦
e2 = 48.

2.12 (a) We have

◦
ex =

∞∫
0

r px dr

=

∞∫
0

S0(x + r)
S0(x)

dr

=
1

S0(x)

∞∫
x

S0(t) dt.

(b) Use the product rule to differentiate the answer to part (a):

d
dx
◦
ex =

−S′0(x)
S0(x)2

∞∫
x

S0(t) dt +
1

S0(x)
(−S0(x))

=

(−S′0(x)
S0(x)

) ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ 1
S0(x)

∞∫
x

S0(t) dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ − 1

= μx
◦
ex − 1

since μx = −S′0(x)/S0(x).
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(c) We have

d
dx

(
x +

◦
ex

)
= 1 +

d
dx
◦
ex = μx

◦
ex > 0,

so that x +
◦
ex increases with x.

Note that x +
◦
ex is the expected age at death of a life, given that the life has

survived to age x. This is clearly an increasing function of x.

2.13 (a) For fixed n > 0, note that T ≤ t if Tx ≤ n + t for t ≥ 0. Hence for t ≥ 0,

Pr[T ≤ t] = Pr[Tx ≤ n + t] = Fx(n + t).

For t < 0, Pr[T ≤ t] = 0. Note that T has a mixed distribution with mass
of probability Fx(n) at t = 0; if (x) does not survive to age x + n then (x)
does not live for any period after age x + n.

(b) The probability density function of T at t > 0 is fx(n + t). Thus,

E[T ] =

∞∫
0

t fx(n + t) dt

=

∞∫
n

(r − n) fx(r) dr

=

∞∫
n

r r px μx+r dr − n Sx(n)

= −
∞∫

n

r
(

d
dr r px

)
dr − n Sx(n)

= −
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝r r px

∣∣∣∣∣∞
n
−
∞∫

n

r px dr

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ − n Sx(n)

=

∞∫
n

r px dr

=
◦
ex − ◦ex:n

where we have used Assumption 2.2 from Chapter 2 of AMLCR and the
fact that Sx(n) = n px.
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2.14 (a) We start by finding Sx(t) for 0 < t ≤ ω − x as

Sx(t) = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
x+t∫
x

μr dr

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
x+t∫
x

dr
ω − r

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x+t∫
x

d
dr

log(ω − r) dr

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= exp

{
log(ω − x − t) − log(ω − x)

}
= exp

{
log

ω − x − t
ω − x

}

=
ω − x − t

ω − x
.

So

Fx(t) = 1 − Sx(t) =
t

ω − x
,

which is the distribution function for the U(0,ω − x) distribution.

(b) As Tx ∼ U(0,ω − x), we have e̊x = E[Tx] = (ω − x)/2. We find ex as

ex =

ω−x∑
t=1

t px =

ω−x∑
t=1

(
1 − t

ω − x

)

= ω − x − 1
ω − x

ω−x∑
t=1

t .

As the sum of the first n integers is n (n + 1)/2,

ex = ω − x − (ω − x)(ω − x + 1)
2 (ω − x)

=
1
2

(ω − x) − 1
2
.

Hence e̊x − ex =
1
2 . (Remark: we could have obtained the same result by

setting the upper limit of summation in our expression for ex as ω − x − 1
since ω−x px = 0.)

Alternatively, note that

Pr[Kx = k] =
1

ω − x
for k = 0, 1, 2, . . . ,ω − x − 1

and so

ex =

ω−x−1∑
k=0

k Pr[Kx = k] =
1

ω − x

ω−x−1∑
k=0

k.
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2.15 (a) For 0 < t ≤ 10, the survival function is

S(t) = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
t∫

0

μr dr

⎫⎪⎪⎪⎬⎪⎪⎪⎭ = exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩−
t∫

0

dr
4 (10 − r)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩1
4

t∫
0

d
dr

log(10 − r) dr

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= exp

{
1
4

(
log(10 − t) − log 10

)}

= exp
{

1
4

log
10 − t

10

}

=

(
1 − t

10

)1/4
.

(b) First,

E[T ] =

10∫
0

S(t) dt =

10∫
0

(
1 − t

10

)1/4
dt.

Making the substitution y = 1 − t/10 gives

E[T ] = 10

1∫
0

y1/4 dy = 10 × 4
5

y5/4
∣∣∣∣∣1
0
= 8.

Next, following Example 2.6,

E[T 2] = 2

10∫
0

t S(t) dt = 2

10∫
0

t
(
1 − t

10

)1/4
dt,

and the same substitution gives

E[T 2] = 20

1∫
0

10 (1 − y) y1/4 dy

= 200

1∫
0

(y1/4 − y5/4) dy

= 200
(

4
5

y5/4 − 4
9

y9/4
) ∣∣∣∣∣1

0

= 640/9.
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Hence

V[T ] =
640
9
− 82 =

64
9
,

giving SD[T ] = 2 2
3 .

2.16 (a) We can check that S0 is a survival function as follows:

S0(0) = exp{0} = 1,

lim
x→∞ S0(x) = exp{−∞} = 0,

and the derivative is

d
dx

S0(x) = −(A + Bx +CDx) exp
{
−

(
Ax +

1
2

Bx2 +
C

log D
Dx − C

log D

)}
< 0 for x > 0, as A,B,C,D > 0 .

Here we have used the result that
d
dx

Dx =
d
dx

exp{x log D} = (log D) exp{x log D} = (log D) Dx.

(b) The survival function Sx is given by

Sx(t) =
S0(x + t)

S0(x)

= exp
{
−A(x + t) − 1

2
B(x + t)2 − C

log D
Dx+t +

C
log D

D

+Ax +
1
2

Bx2 +
C

log D
Dx − C

log D

}

= exp
{
−At − 1

2
B(2xt + t2) − C

log D
Dx(Dt − 1)

}
.

(c) The force of mortality at age x is

μx = − 1
S0(x)

d
dx

S0(x) = − d
dx

log S0(x)

=
d
dx

(
Ax +

1
2

Bx2 +
C

log D
Dx − C

log D

)
= A + Bx +CDx.

(d) The results below are obtained by numerical integration:

(i) 20|10q30 = 0.1082.

(ii) e70 = 13.046.


