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Preface to the Third Edition

In the present edition we have made changes in Chapter 1, mainly as a result of comments by Professor A. S. Besicovitch. Some theorems are stated more explicitly, a few proofs are added, and some are shortened. We are indebted to him for an elementary proof of the theorem of bounded convergence for Riemann integrals, which appears in the notes. In Chapter 6 the proof of Poisson’s equation has been improved. In Chapter 17 we have discussed the Airy integral for complex argument in more detail, and have given conditions for uniformity of approximation for asymptotic solutions of Green’s type for complex argument. In Chapter 23 we have added some remarks on the analytic continuation of the solutions, and a note applies them to the parabolic cylinder functions.

    We should like to express our thanks to several readers for drawing our attention to errors and misprints.

HAROLD JEFFREYS
BERTHA JEFFREYS

April 1953


Preface to the Second Edition

As a second edition of this book has been called for, we have taken the opportunity of making considerable revisions. Most of the notes at the end have been incorporated in the text. Otherwise the principal changes are as follows. In Chapter 1, the Heine-Borel theorem and Goursat’s modification have been placed early, and used to derive several theorems that had been proved by separate applications of methods that could be used to prove the general theorems. In other respects, notably the theory of the Riemann integral, the theory has been given more fully. In Chapter 4 an account of block matrices has been added, and the theorem on characteristic solutions of commuting matrices has been more fully discussed. Chapter 5 (multiple integrals) has been almost completely rewritten, and now includes an account of the theory of functions of several variables, part of which was given in Chapter 11. In Chapter 9 the treatment of relaxation methods has been extended, and should now serve as an adequate introduction to the special works on the subject. Many improvements have been made in Chapters 11 and 12, including an important correction to the proof of Cauchy’s theorem, a proof of the Osgood-Vitali theorem, and a complete revision of the theory of inverse functions. In Chapter 17 the conditions for the truth of Watson’s lemma have been somewhat relaxed, so that they are now wide enough to cover almost all physical applications, and the method of stationary phase is more fully treated. In Chapter 24 the treatment of multipole radiation has been extended.

    Where possible the proofs have been either replaced by shorter ones or generalized. Some new examples have been added.

    We are indebted to numerous correspondents for pointing out errata. The two most serious corrections were given by Professor J. E. Littlewood and Dr M. L. Cartwright. We are particularly grateful for comments by Professor Littlewood (Chapters 1, 5, 11 and 12), Mr P. Hall (Chapter 4), Professor A. S. Besicovitch and Dr J. C. Burkill (Chapter 5).

HAROLD JEFFREYS
BERTHA JEFFREYS

15 November 1948


Preface to the First Edition

This book is intended to provide an account of those parts of pure mathematics that are most frequently needed in physics. The choice of subject-matter has been rather difficult. A book containing all methods used in different branches of physics would be impossibly long. We have generally included a method if it ha3 applications in at least two branches, though we do not claim to have followed the rule invariably. Abundant applications to special problems are given as illustrations. We think that many students whose interests are mainly in applications have difficulty in following abstract arguments, not on account of incapacity, but because they need to ‘see the point’ before their interest can be aroused.

    A knowledge of calculus is assumed. Some explanation of the standard of rigour and generality aimed at is desirable. We do not accept the common view that any argument is good enough if it is intended to be used by scientists. We hold that it is as necessary to science as to pure mathematics that the fundamental principles should be clearly stated and that the conclusions shall follow from them. But in science it is also necessary that the principles taken as fundamental should be as closely related to observation as possible; it matters little to pure mathematics what is taken as fundamental, but it is of primary importance to science. We maintain therefore that careful analysis is more important in science than in pure mathematics, not less. We have also found repeatedly that the easiest way to make a statement reasonably plausible is to give a rigorous proof. Some of the most important results (e.g. Cauchy’s theorem) are so surprising at first sight that nothing short of a proof can make them credible. On the other hand, a pure mathematician is usually dissatisfied with a theorem until it has been stated in its most general form. The scientific applications are often limited to a few special types. We have therefore often given proofs under what a pure mathematician will consider unnecessarily restrictive conditions, but these are satisfied in most applications. Generality is a good thing, but it can be purchased at too high a price. Sometimes, if the conditions we adopt are not satisfied in a particular problem, the method of extending the theorem will be obvious; but it is sometimes very difficult, and we have not thought it worth while to make elaborate provision against eases that are seldom met. For some extensive subjects, which are important but need long discussion and are well treated in some standard book, we have thought it sufficient to give references.

    We consider it especially important that scientists should have reasonably accessible statements of conditions for the truth of the theorems that they use. One often sees a statement that some result has been rigorously proved, unaccompanied by any verification that the conditions postulated in the proof are satisfied in the actual problem—and very-often they are not. This misuse of mathematics is to be found in most branches of science. On the other hand, many results are usually proved under conditions that are sufficient but not necessary, and scientists often hesitate to use them, under the mistaken belief that they are necessary. We have therefore often given proofs under more general conditions than are usually taught to scientists, where the usual sufficient conditions are often not satisfied in practice but less stringent ones are satisfied. Both troubles are due chiefly to the fact that the theorems are scattered through many books and papers, and the scientist does not know what to look for or where to look.

    The book can be read consecutively, but some parts are independent of much that precedes them, and it is possible, and indeed desirable, to study different chapters concurrently. In some cases we have given special cases of a theorem before the general form where the latter involves more elaborate treatment, especially where the student is likely to meet applications to several instances of the special cases before he needs the general theorem.

    We hesitated before including a chapter on the theory of functions of a real variable. This is far from a complete treatment, but fuller works are mostly longer than the theoretical physicist has time to read; and unfortunately they sometimes relegate theorems that are frequently needed to small type or unworked examples, or omit them altogether. We have aimed at giving accounts of the principal methods of the theory but not at proving every result in detail; but we think that students will benefit by filling in some of the details for themselves. If a student has difficulty in achieving the degree of abstraction needed in most of this chapter, we advise him to read as much as he can stand and then proceed to a later chapter, referring back when necessary. He will find that he has covered the whole of it before finishing Chapter 14, and that he knows both what is there and why it is there. We have not succeeded in avoiding forward references altogether, but the most serious, the proof in Chapter 12 of the theorem that an algebraic equation of degree n has n roots, used in Chapter 4, is so time-honoured that a few smaller transgressions may, we hope, be forgiven.

    The notation of special functions has grown up haphazard, and is inconvenient in several respects. Quantum theorists are making wholesale changes of definition to ensure normalization, but we consider that this replaces the old complications by new ones. We have modified the usual definitions of the Legendre functions, with the result that a more symmetrical treatment becomes possible and the relation to Bessel functions becomes free from complicated numerical factors. We have returned to Heaviside’s definition of the function Kn but denoted it by Khn. Among other advantages, this simplifies the relation to Legendre functions of the second type. We have also dropped the Γ notation for the factorial function, which seems to have no recommendations whatever.

    The immediate stimulus for the book was the announcement that the second edition of Operational Methods in Mathematical Physics by one of us was out of print. Most of this tract has been incorporated and later developments have been added. The chapter on dispersion was somewhat out of place in the tract, as it was largely independent of the operational method, but was included because the notion of group velocity had not previously been discussed in relation to the method of steepest descents. It now finds a more natural place in a chapter on asymptotic expansions, in which some methods widely used but hitherto accessible only in scattered papers are also described. Most of Cartesian Tensors has also been incorporated. The applications of thermodynamics in it to hydrodynamics and elasticity would be more suitably treated in textbooks of the latter subjects.

    We have not tried to give a detailed account of any branch of physics; that is a matter for the special text-books.

    We are deeply indebted to many friends for their encouragement during the writing of this book. Above all we must thank Dr F. Smithies, who placed his great knowledge freely at our disposal, and generously helped in the proof reading. His suggestions have been invaluable. It is only fair to him to say that in some places we have persisted in our ways in spite of his vigorous protests. Dr J. C. P. Miller gave us special help with Chapters 9 and 23, and Mr H. Bondi with Chapter 24. We have also had valuable suggestions at various points from Professors M. H. A. Newman, A. C. Offord, L. Rosenhead and H. W. Turnbull, and from Mr A. S. Besicovitch, Miss M. L. Cartwright and Mr D. P. Dalzell.

    We also thank the Universities of Cambridge, London and Manchester for permission to use examination questions as examples, and the staff of the Cambridge University Press for their care in the printing and their readiness to meet the wishes of a rather exacting pair of authors.

HAROLD JEFFREYS
BERTHA JEFFREYS

1946

    The main sections of each chapter are numbered decimally at intervals of 0·01; subsections are indicated by further decimals. When the argument of a section or subsection continues that of the previous one, the numbering of the equations also continues.

    Notes at the end are numbered according to the subsection referred to; references to them are indicated by a small index letter in heavy type in the text; for instance, the a on p. 52, in subsection 1·134, refers to note 1·134a, which will be found on p. 692.

    Sources of examples are indicated by the following abbreviations:



	M. T.
	Mathematical Tripos, Part II and Schedule A.



	M. T., Sched. B.
	Mathematical Tripos, Part III and Schedule B.



	Prelim.
	Preliminary Examination in Mathematics.



	M/c, III.
	Manchester, Final Honours in Mathematics.



	I.C.
	Imperial College, London.
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Chapter 1
THE REAL VARIABLE


‘In dem days dey wuz monstus fon’ er minners.’

JOEL CHANDLER HARRIS, Uncle Remus



1·01. The relation of mathematics to physics.

The simplest mathematical notion is that of the number of a class. This is the property common to the class and to any class that can be matched with it by pairing off the members, one from each class, so that all members of each class are paired off and none left over. In terms of the definition we can give meanings to the fundamental operations of addition and multiplication. Consider two classes with numbers a, b and no common member. The sum of a and b is the number of the class consisting of all members of the two classes taken together. The product of a and b is the number of all possible pairs taken one from each class. We cannot always give meanings to subtraction and division, because, for instance, we cannot find a class whose number is 2–3 or 7/5. But it is found to be a great convenience to extend the notion of number so as to include negative numbers, ratios of numbers irrespective of whether they are positive or negative, and even irrational numbers. When this is done we can define all the four fundamental operations of arithmetic, and the result of carrying them out will always be a number within the system. We need trouble no more about whether an operation is possible with a particular set of numbers, since we know that it is, once we have given sufficient generality to what we mean by a number. So long as we keep to the fundamental operations we can use algebra; that is, we can prove formulae that will be correct when any numbers whatever are substituted for the symbols in them, with only one exception, namely, that we must not divide by 0.

    Now the formulae may still be correct when we replace the letters in them by something other than numbers, and it is to this fact that the possibility of mathematical physics is due. It is therefore useful to know just what conditions have to be satisfied if we are to take over the rules of algebra into any subject that does not deal entirely with numbers. We may then have to find new meanings for the fundamental operations (or have them found for us) and for the sign = , but can still manipulate the symbols with their new meanings in the old way. A suitable set of conditions is as follows.1 We say that they are to hold in a field F consisting of all elements of the system considered:

     

   (1)    For any a, b of F, a + b and ab are uniquely determined elements of F.

   (2)    b + a = a + b. (Commutative law of addition.)

   (3)    (a + b) + c = a + (b + c). (Associative law of addition.)

   (4)    ba = ab. (Commutative law of multiplication.)

   (5)    a(bc) = (ab) c. (Associative law of multiplication.)

   (6)    a(b + c) = ab + ac. (Distributive law.)

   (7)    There are two elements 0 and 1 in F, such that a + 0 = a, a1 = a.

   (8)    For any element a of F there is an element x of F such that a + x = 0.

   (9)    For every element a of F, other than 0, there is an element y of F such that ay = 1.

    It is to be noticed that the first seven rules are true if F consists only of the positive integers and 0, but the last two are false of that F, since there is no positive or zero integer x that makes a + x = 0 if a = 1, and there is no positive or zero integer y that makes ay = 1 if a = 2. The eighth rule introduces negative numbers and hence subtraction. The ninth introduces reciprocals and hence division and rational fractions. The rules are true if F consists of all rational numbers, positive or negative.

    The rules mention no ordering relation: that is, they suppose a meaning attached to equality and therefore to ≠, but do not distinguish between greater and less. We could agree to arrange the numbers in any order, keeping the same correspondences between them according to (1), (7), (8), (9), and the rules would still be true. Algebra and pure geometry can get on to some extent without such a distinction, but higher mathematics cannot, nor can any kind of physics. A measurement is not a statement of exact equality but of equality within a certain range of error. We therefore need new rules concerning inequalities.

     

    (10)    For any a, b of F, either a > b, a = b, or b > a. (Law of comparability.)

    (11)    For given a, b of F, only one of a > b, a = b, b > a can be true. (Trichotomy.)

    (12)    If a > b and b > c, then a > c. (Transitive property.)

    (13)    If a > b, then a + c > b + c for any c. (Additivity of ordering.)

    (14)    If a > b, c > 0, then ac > bc. (Multiplicativity of ordering.)

    (15)    If a > b, b < a. (Definition of < .)

    The use of mathematics in science is that of a language, in which we can state relations too complicated to be described, except at inordinate length, in ordinary language. The rules satisfied by the symbols are the grammar of the language. This point of view has been developed greatly in recent years, especially by R. Carnap. But for a language to be suitable it must satisfy two conditions. It must be possible to say in it the things that we need to say; that is, it must have sufficient generality. It must also be self-consistent; that is, starting from the rules themselves it must be impossible to deduce something declared to be false by those rules. It would, for instance, be fatal to the scientific usefulness of mathematics if it was possible to prove by it that for some a and b, a is both greater and less than b. It was always taken for granted until the later nineteenth century that mathematics was consistent. But then an unexpected set of difficulties cropped up, and showed that a complete analysis of the foundations was necessary. The great Principia Mathematica of Whitehead and Russell showed that all the propositions asserted in mathematics concerning real numbers (not only ratios of integers, positive or negative) could be restated as propositions about the elementary notion of comparing classes by pairing their members, and demonstrable from the axioms of such comparison and others relating to pure logic. Later workers have modified some of the latter axioms, and the best choice of axioms is still a matter of discussion. Gödel and Carnap, more recently, have shown that the proposition that a given system of axioms for mathematics is consistent cannot be proved by methods using only the rules of the system. But it is found impossible to prove certain propositions that could be proved if the system was inconsistent. We have to come back to something like ordinary language after all when we want to talk about mathematics! This work on the boundary between logic and what we usually consider the elements of mathematics has a considerable modem literature, and it is well for physicists to know of its existence, though its detailed study is a matter for specialists.

1·02. Physical magnitudes.

Generality requires that, in any particular field, the language shall contain symbols for the things that we need to talk about and for the processes that we carry out. A shepherd would be severely handicapped if he had to do his best with a language containing no words for sheep and shearing; in fact he would make such words, and that is what we habitually do in science. So long as the language is consistent it is none the worse for containing a lot of words that we do not use. A pure mathematician, working entirely on the theory of numbers, can use ordinary algebra freely in spite of the fact that he may not need to use negative numbers or fractions. For him rules (8) and (9) are just an unnecessary generality. Now in physics the fundamental notion of measurement corresponds closely to that of addition, and most physical laws are statements of proportionality, which corresponds to the notions of multiplication and division. This is the ultimate reason why mathematics is useful. Thus, for instance, we can say that if two bars are placed end to end to make one straight bar, the length of the combined bar is the sum of those of the original ones. This is not a theorem or an experimental fact; it is the definition of addition for lengths. Further, it is irrelevant which is taken first; thus the commutative law of addition holds. Again, if we unite three bars, the total length is independent of the order; hence the associative law of addition also holds. These are experimental facts established by actual comparison with other bars. These rules are enough to justify the use of scales of measurement for length, by which any length is compared with a standard one by means of a scale, every interval of which has been compared with a standard object in the process of manufacture. Quantities measurable by some process of physical addition have been called fundamental magnitudes by N. R. Campbell.2 The most widely important ones are numbers (of classes), length, time, and mass, but physical processes of addition can also be stated for area and volume, for electric charge, potential, and current, and many other quantities.

    There is a divergence of practice among physicists at the next stage. A statement that a distance is 3·7 cm. contains a number and a unit. It is often thought that algebra applies only to numbers and therefore that in the mathematical treatment the symbol used for the distance refers only to the 3·7 and not to the centimetres. The unit matters, otherwise we should find ourselves saying that 10 mm. expresses a different length from 1 cm. and that 1 cm. is the same as 1 mile; and this is contrary to physics because the only justification of using measurement at all is in the direct physical comparison by superposition. We avoid this difficulty if we say that the symbol for the length refers to the length itself and not simply to the number contained in its measure. ‘1 inch = 2·54 cm.’ is a useful statement; either symbol, ‘1 inch’ or ‘2·54 cm.’, denotes the same length. In general theorems this procedure can always be followed. When a particular application to a measured system is made we naturally give the symbols their actual values in terms of the measures, which will include a statement of the units; but in the general theory the unit is irrelevant. The symbols will then be said to stand, not for numbers, but for physical magnitudes.

    The alternative method would be to let the symbols stand for the numbers, but then confusion can occur, and does, between the relations between measures of the same system in different units, which are different ways of saying the same thing, and of different systems in the same units, which say different things. If, however, the numerical values in terms of special units are used for a and b in ab, their product will be the number in the expression of ab in what is usually called the consistent unit for ab. The word germane, introduced by E. A. Guggenheim, is better because it is not inconsistent to measure distances upward in feet, horizontally in yards, and downward in fathoms; it is merely a nuisance. With adequate care this method can be used correctly, but it has several disadvantages; in particular it then leads to placing too much emphasis on the units and too little on the fundamental physical comparisons without which the units would be useless. It also suggests many comparisons that are physically meaningless, as we shall see in a moment.

    If we use the notion of magnitude and retain the processes of algebra the question will at once arise, what do we mean by a = b and a + b if a is a length and b a time or a mass ? A meaning could be attached to a + b, though it would be very artificial, but no physical process will give one to a = b. But a/b would have a meaning, being respectively a velocity or a length per unit mass.

    The group of rules (10)–(14) therefore needs modification. Those up to (9) could stand, though they bring in many additions and subtractions and possibly some multiplications and divisions that we shall never have occasion to use; but in addition to the three possibilities enumerated in (10) we must admit a fourth, that a and b may not be comparable and therefore belong to different fields, and their product and ratio may belong to other fields again. This is a further disadvantage of the use of symbols to denote only the number stated in a measure, since all numbers are comparable, and the language would not exhibit the fact that it is meaningless to say that a time is greater than a density. We can then say also that if a and b are not comparable, a + b is not a physical magnitude and addition does not arise. The whole field of physical magnitudes is thus divided into plots. Magnitudes in the same plot will be comparable, but their product will belong to a different plot unless at least one of them is a number.

    The language needed for physics is therefore not quite the same as ordinary algebra. Since the latter is self-consistent and the statement that some magnitudes are not comparable cuts out some propositions from it and adds no new ones, the language of magnitude is also self-consistent. It will be seen that the modification corresponds to the notion of dimensions. Quantities of different dimensions are not comparable; also some quantities of the same dimensions are not. For instance, according to one pair of definitions in use, electric charge and magnetic pole strength have the same dimensions, and they are both additive magnitudes, but it is meaningless to add them. The field of physical magnitudes can be taken to satisfy the laws of algebra, but is classified; comparable quantities satisfy (10), and are capable of addition at least in calculation; incomparable ones do not. It should be noticed that failure of addition by a physical process is not confined to incomparable magnitudes. For instance, there is no process of combining two substances of density 1 g./cm.3 to give one of density 2 g./cm.3 Density is not measured directly but calculated from the additive magnitudes mass and length, and is called a derived magnitude. Some quantities can be both additive and derived; thus electric current measured by its magnetic effect is an additive magnitude, but regarded as the charge passing per unit time it is derived. Many derived magnitudes are ratios of two magnitudes of the same dimensions; thus we could regard the shape of a triangle as specified by two ratios, those of two sides to the third. These ratios are pure numbers and the rules of algebra can be applied to them without change.3

1·03. Real numbers.

Most of the present chapter will be already familiar to those who have studied a good modern book on calculus, and it is not intended to compete with standard works on pure mathematics. We think, however, that some discussion here is not out of place, for several reasons. First, the latter works for the most part do not emphasize why the refined arguments that they give have any relevance to physics, and physicists therefore tend to believe that they are irrelevant. Secondly, they are liable to be so long that a physicist can hardly be blamed if he decides that he has not the time to work through them. Thirdly, the attention to very peculiar functions has led the subject to be regarded as the pathology of functions. The reply is that every function, except an absolute constant, is peculiar somewhere, and that by studying where a function is peculiar we can arrive at constructive results about it that would be very hard to obtain otherwise. But we are entitled to regard ourselves as general practitioners and to restrict ourselves to the kinds of peculiarities that occur in physics; rare diseases may be handed over for treatment to a specialist, in this case a professional pure mathematician.

    The nature of the problem was foreshadowed in a theorem of Euclid that the ratio of the hypotenuse to one side of an isosceles right-angled triangle is not equal to any rational fraction. Euclid, it must be remembered, made no use of what we should now call numerical measures of physical magnitudes. When he said that two lines were equal he meant that one could be placed on the other so that the two ends of one coincided with the two ends of the other; this is the direct physical comparison and does not require any numerical description of the lengths. When he said that the square on the hypotenuse was twice that on a side he meant that it could be cut into pieces and that the pieces could then be put together so as to make the square on the side twice over. He was working throughout with the quantities themselves, not with the numbers that we choose to associate with them in measurement with regard to any special unit. The use of numbers for this purpose is a choice of a language. What Euclid’s theorem showed was that the language of rational numbers was incapable of describing simultaneously the lengths of the side and the hypotenuse of a triangle that could easily be drawn by the rules of his geometry.

    Measurement in terms of a unit is too useful a procedure to be lightly abandoned, and it could be retained, consistently with Euclid’s theorem, in any of the following ways: (1) Since an infinite number of pairs of integers x, y can be found such that x2 + y2 = z2, where z is another integer, and so that x/y is as near 1 as we like, we could suppose that the sides of a right-angled triangle satisfy x2 + y2 = z2 exactly but that x = y is not true exactly but only within the errors of measurement, and the sides are always exact multiples of some definite length. (2) We might say that x/y can be exact but x2 + y2 = z2 is only approximate. (3) We can say that the language of rational numbers is not enough for what we need to say, and that we need a fuller language in which x = y and x2 + y2 = z2 can be both said consistently. The last alternative is the one that has been universally adopted by the admission to arithmetic of irrational numbers. It does not contradict Euclid’s axioms; the first does, since he assumes that a line can have any length, and the second contradicts one of their best-known consequences. An experimental proof that it is right is impossible because either (1) or (2) could be true within the errors of measurement even if x, y, z were restricted to be integers. But they would be intolerably complicated, and the adoption of either would require the existence of an unknown and indeterminable standard of length such that all actual lengths are exact multiples of it, besides abandoning the simplicity of Euclid’s rules without experimental reason. The universal practice in physics is to adopt alternative (3) and create a language of sufficient generality. We introduce real numbers and assume that the operations of addition, subtraction, multiplication and division can be applied to them in such a way that the same fundamental rules as for rational numbers are satisfied, and that an ordering relation satisfying rules (10)–(15) can be defined. They differ from the rationals in possessing a certain property of completeness, which ensures, for instance, that there is a real number [image: images] whose square is 2. It is not obvious that this can be done without inconsistency (and it was certainly believed for 2000 years that real numbers were meaningless4), but the 19th century investigations of Dedekind, Cantor, and others have established their workability for all practical purposes. That is enough justification for our purposes. But the logical justification involves the consideration of infinite collections. It is indeed obvious that the evaluation of [image: images] by root extraction or by successive approximation to a continued fraction, if taken to a finite number of steps, can never yield anything but a rational number; to give any exact meaning to [image: images] in numerical terms requires an infinite number. Euclid’s procedure does lead in a finite number of steps to a ratio that can be identified with [image: images], but does not describe it in a numerical way, and the proof that his axioms are themselves consistent has so far been completed only by way of the numerical approach. The notion of [image: images] is accepted at school largely because we believe that a consistent system of measurement of physical objects is possible and Euclid’s axioms look plausible; but we forget that the Euclidean triangle is not the real triangle, or, if we remember, we think that the real triangle is an imperfect representation of the Euclidean one. Physically the Euclidean triangle is an idealized approximation to the real one, and we cannot take it for granted that the idealization does not introduce new troubles of its own.

1·031. Nests of intervals: Dedekind section.

The fundamental property of real numbers is that they can be approximated to as closely as we please by rational numbers. When we say that

[image: image]

we assert the following set of propositions: (1) 2 is between 12 and 22; (2) 2 is between 1·42 and 1·52; (3) 2 is between 1·412 and 1·422; (4) 2 is between 1·4142 and 1·4152; and so on to any desired accuracy. At each stage this process can be regarded as separating the decimals, to a given number of places, into two classes, those whose squares are respectively greater or less than 2. At stage 3, for instance, the squares of 1·414, 1·413, 1·412 are less than 2, those of 1·415, 1·416, 1·417 greater than 2. We say nothing at this stage about the fractions 1·4141, 1·4142, …, 1·4149; but at the next stage we say that 2 lies between the squares of 1·4142 and 1·4143. By taking a sufficient number of decimals we can make the unconsidered interval as small as we like, since we divide it by 10 at each step. Thus any decimal with a finite number of places will ultimately be classified according as its square is less or greater than 2. Now this process determines a unique infinite decimal, which we can take to be [image: images], and it can be regarded as the limit approached by the successive approximations from either side.

    This process, which is capable of great extension, is an example of the definition of a real number by a nest of rationale. We take a succession of rationals {an} and another succession {bn}, satisfying the following conditions:

      (i)    an+1 ≥ an,

     (ii)    bn+1 ≤ bn,

    (iii)    an ≤ bn,

for all n, and

    (iv)    Given any positive rational number ∈, a number N can be found such that

[image: image]

Such a nest {an|bn} can be used as a definition of a real number. A member an, bn of the nest consists of the set of rationals greater than or equal to an and less than or equal to bn. The real number defined by the nest lies between the end-points of all its members.

    A nest may turn out to define a rational number. For instance, if we consider decimals whose squares are respectively just less and just greater than 2·25 we get the nest 1, 2; 1·4, 1·6; 1·49, 1·51; 1·409, 1·501; …. The only decimal lying between the end-points of all members of the nest is 1·5, whose square is in fact 2·25. For every rational we can construct such a nest, so that the rationals themselves are real numbers.

    A single real number can be defined by many different nests. For instance, instead of dividing the interval by 10 at each stage we could divide by 2, in this way generating a binary fraction or ‘decimal to base 2’. It would take more than three times as many steps to get as good an approximation, but the process defines the same real number as before. Two nests {an | bn} and {αn | βn} define the same real number if and only if an, bn contains αm, βm for sufficiently large m, and αn, βn contains am, bm for sufficiently large m; in fact only one of these conditions need be known to hold—the other follows as a consequence.

    We now come to the most important property of the real number system. We abandon the condition that an, bn shall be rational and consider a nest {an | bn} where an and bn are now real numbers. An interval of such a nest consists of the set of real numbers greater than or equal to an and less than or equal to bn. In condition (iv) ∈ is now any positive real number. It can be proved that there is one and only one real number lying in every interval of the nest. In other words, if we apply to the real numbers the process that we have applied to the rationals, we get nothing new, but remain within the system that we have already defined. This is the property of completeness mentioned in 1·03.

    Another important way of defining real numbers is by a Dedekind section or cut. If the rational numbers are divided into two classes L and R such that every member of L is less than every member of R, there is only one real number greater than or equal to every member of L and at the same time less than or equal to every member of R. If this real number is rational, then it will be either the greatest member of L or the smallest member of R. For instance, L might consist of the negative rationals together with 0 and the positive rationals whose squares are less than 2, and R of the positive rationals whose squares are greater than 2. This cut defines the real number [image: images].

    Dedekind section arises most naturally when the numbers are classified according as they possess or do not possess a certain property. For instance, ‘x has a square not greater than 2·25’ defines an L class, the largest member of which is 1·5; ‘x has a square less than 2·25’ defines an L class with no largest member, and 1·5 is the smallest member of the R class. ‘x is rational and has a square less than 2’ defines L and R classes of rationals with no largest and no smallest member respectively. ‘x is real and has a square less than 2’ defines an L class with no largest member and an R class with smallest member [image: images].

    In terms of the Dedekind section, the completeness property of the real number system is equivalent to the statement that any cut in the real numbers defines a real number. Thus many problems that have no answer in the rational number system can be solved in terms of real numbers. We have so far considered only [image: images], but we are also ready for π and e when they turn up, and shall not need to search for a statement of each problem in such a form that it can be solved in rational numbers. The use of the real number system therefore avoids a lot of complications with no relevance to physics.

    The methods of nested intervals and of Dedekind section are equivalent. If L and R classes exist we can form a nest of intervals, taking a1, a2, … from L and b1, b2, … from R, in such a way that the conditions required for a nest of intervals are satisfied. Conversely, if a nest exists, some rationals r will be exceeded by am for some m, others will not be exceeded by any am. These inequalities define an L and an R class and the conditions for a cut are satisfied.

    If the nest (am, bm) defines a positive real number x, (1/bm, 1/am) will define 1/x. Then if nests (am, bm) [image: images] define x, x′, [image: images] will define xx′. (–bm, –am) will define –x, and whether x, x′ are positive or negative, if (am, bm) defines x and [image: images] defines x′, then [image: images] will define x + x′. Thus all the operations of addition, subtraction, multiplication and division are defined for the real numbers and can be shown to satisfy the fundamental rules. Full details are given by Knopp.5

    Neither method proves the existence of irrational numbers, but both show that they can be used consistently and that any proposition proved by using them can be interpreted as a true proposition about rational numbers (usually, of course, much more complicated to state). In Principia Mathematica the aim is somewhat more ambitious: a real number is interpreted as a class of rationals (essentially the Dedekind L class) and meanings are given to the laws of algebra in terms of certain operations on these classes; and the laws so stated are proved to be true. In this sense there is an actual proof of the existence of irrationals satisfying the laws of algebra.

1·032. ∈; indirect proofs.

A peculiarity of the basic theorems about real numbers is that many of them seem incapable of direct proof. They are proved by the process known as reductio ad absurdum. We have to state the contradictory of the theorem and show that this itself leads to a contradiction; and then we argue that the theorem cannot be false and therefore must be true. But since most of the theorems have conclusions of the form x = y, their contradictories are inequalities of the form ‘x < y or x > y’. Most beginners find it much more difficult to handle inequalities correctly than equalities, and of all the difficulties found in mathematical physics the greatest found by many students is in learning to approximate. That is why lower marks are obtained in problems of small oscillations in dynamics and of potentials of nearly spherical bodies than in any other part of the Mathematical Tripos. Nature does not consist entirely, or even largely, of problems designed by a Grand Examiner to come out neatly in finite terms, and whatever subject we tackle the first need is to overcome timidity about approximating. A difference between the theory of the real variable and dynamics is that in the former we are willing to consider arbitrarily close approximations carried to any number of stages, whereas in the latter we only want an approximation close enough for the practical end in view. But experience in the one will tend to produce confidence in the other.

    The simplest type of argument of this form is: if x ≥ 0, and x < ∈, where ∈ is positive but can be chosen as small as we like, then x = 0. For no value of x greater than 0 can be less than every positive ∈. An immediate extension is obtained by considering the modulus or absolute value of x, denoted by | x | and read ‘mod x’. This is equal to x when x is positive or zero, and to –x if x is negative. It is therefore always ≥ 0. Then | x | < ∈ for all positive ∈, | x | = 0 and therefore x = 0. Note that | x| + | y | ≥ | x + y |, | x | – | y | ≥ | x | – | y |.

    It is necessary for this argument to use a symbol for the small quantity. If we said ‘∈ = 0·001’, and proved that | x | < 0·001 by calculation, an objector might say ‘you have not proved that x = 0; it might be 0·0001’. The symbol ∈, to denote an arbitrarily small quantity, prepares us for such an objection, since by proving that | x | is less than any ∈ we are ready to disprove any value of x, other than 0, that an objector might suggest.

    The essential point is that we are concerned with processes that in the most general case could be completed only in an infinite number of steps, e.g. showing that two nests of intervals determine the same real number. We overcome this and obtain a finite proof by saying that if a ≠ b, | a – b | has a definite value M, which is not zero. If, then, we can show that M < ∈ for every positive ∈, it follows that M = 0, contradicting the hypothesis, so that a and b must be equal.

1·033. Sets.

A limit-point of a set of numbers is a number x such that for any ∈ > 0 there is a member of the set, y, different from x, such that | y – x | < ∈. It follows that there are infinitely many values of y satisfying this condition. For by definition there is one; call this y1 and take a new ∈, say ∈1 less than | y1 – x |. Then there must be another y of the set, say y2, such that 0 < | y2 – x | < ∈1. The process can evidently be continued indefinitely.6

    Clearly no finite set can have a limit-point. But an infinite set also may have none; consider the set of all integers. No member has another within distance 1 of it, and no number not an integer can have more than one within distance [image: images]. In the set of rational numbers every member is a limit-point since there is a rational number as near as we like to any other. The same applies to the real numbers. A set may have only one limit-point; consider for instance the numbers n–1, where n can be any integer. There are infinitely many within any finite distance from 0, which is therefore a limit-point; but around any other number, rational or not, we can take an interval that contains no member of the set, other than the number itself if it is a member. A limit-point of a set is not necessarily itself a member of the set. We can, for instance, make a set of rational numbers whose limit-point is [image: images] by taking the successive approximations to [image: images] by decimals, but [image: images] itself is not a rational number.

    If all the limit-points of a set are themselves members of the set, the set is said to be closed. An interval a ≤ x ≤ b as defined in 1·031 is a closed set and is called a closed interval. The corresponding open interval is a < x < b. We shall return to this distinction in 1·061.

1·034.

If a set has infinitely many members within a finite range a ≤ x ≤ b, then it has at least one limit-point x such that a ≤ x ≤ b. For if we bisect the range, one half at least must contain an infinite number of points of the set; bisect that half. One half again contains an infinite number, and we see that by repeating the process we can find an interval as small as we like containing an infinite number of points of the set. But this corresponds to the method of specifying a real number by a nest of intervals and therefore identifies a real number such that any small interval about it contains an infinite number of points of the set. It is therefore a limit-point of the set. This is known as the Bolzano-Weierstrass theorem.

1·035.

An infinite set is enumerable if its members can be paired with the positive integers in such a way that to each member corresponds one and only one positive integer, and vice versa. Thus the squares 12, 22, …, n2, … form an enumerable set, since to each n corresponds one n2 and to each n2 one n. The rational fractions between 0 and 1 form another, for they can be arranged [image: images] …, and the one that occurs in the nth place can be paired with n. The whole of the positive rationals form another, since they can be arranged [image: images] …. Here the numbers are arranged in groups, the sum of the numerator and denominator being the same for all in each group and greater by 1 than in the previous group, while those in each group are arranged in order of increasing numerator. In these two cases the comparison with the positive integers requires complete rearrangement from the natural order.

    Not all infinite sets are enumerable. Far the most important exceptions are the set of all real numbers and the set of all real numbers within a given finite interval. Cantor proved that however we may try to put them into a one-one correspondence with the positive integers there will always be some omitted.

1·036. Necessary: sufficient.

If two statements denoted by I and II are so related that if I is true, then II is true, we say that I is a sufficient condition for II and II is a necessary condition for I; that is, I cannot be true unless II is true. If II is true if and only if I is true, then I is a necessary and sufficient condition for II, and vice versa. In this case we may also say that I and II are equivalent.

    In general if a necessary and sufficient condition can be stated for the truth of a given proposition several can. For instance, a necessary and sufficient condition that x, a real quantity, shall be 0 is | x | < ∈ for any assignable positive ∈; but others are x2 = 0 and x3 = 0. A necessary and sufficient condition that ax2 – 2bx + c > 0 for all x is that a > 0, ac – b2 > 0; but another is that c > 0, ac – b2 > 0.

    A necessary and sufficient condition may contain superfluous information. For instance, if ax2 – 2bx + c > 0 for all x, we must have a > 0, c > 0, ac – b2 > 0, and conversely. Hence a > 0, c > 0, ac > b2 is a necessary and sufficient condition. But if ac > b2, either a > 0 or c > 0 implies the other and one of them is superfluous in the sense that it follows from the other information given. On the other hand either a > 0, c > 0, or ac > b2 by itself would not guarantee that ax2 – 2bx + c > 0 for all x: none of these conditions alone is sufficient. A set of necessary and sufficient conditions for the truth of a proposition is called minimal if the conditions left when any part of them is removed are not sufficient.

1·04. Sequences.7

In considering the properties of a set we are not restricted to taking the members in any particular order. In the argument of 1·034, for instance, the points actually in any range are determined by the specification of the set, just as, if we put some balls into a box, what balls are in the box has nothing to do with their rearrangement by shaking or sorting.

    When we come to study properties essentially connected with a particular order we are dealing with sequences. The numbers 1, 2, 3, … in ascending order constitute a sequence; if they were rearranged, but in such a way that we always knew where to find a particular one, they would form a different sequence but the same set. If we write sn for the nth in a given arrangement, the property sn+1 – sn = 1 is true for all n for the original order but for no other. In general if sn is completely specified when n is given, sn may be described as a function of the positive integral variable n, and the values s1, s2, …, sn, …, for successive values of n, form a sequence, (Those who have some knowledge of series often suppose at first that the terms of a sequence are to be summed, but this is not so.) Both

[image: image]

and

[image: image]

are sequences. In the first the members are the members of an infinite set arranged in a certain order. In the second they are the members of a finite set repeated over and over again.

    A sequence whose general term is sn can be denoted by {sn}.

1·041. Bounded, unbounded, convergent, oscillatory.

Let M be an arbitrary positive number; it is possible that whatever M we take there is at least one value of sn such that | sn | > M. Such a sequence is called unbounded. sn = n is an obvious example, for we need only take n to be any integer greater than M. By an argument similar to that for limit-points, an unbounded sequence must have an infinite number of terms such that | sn | is greater than any assigned M.

    If we can choose an M such that all | sn | are less than M, the sequence is called bounded. Both the sequences given at the end of 1·04 are bounded; the condition holds for both if M = 3.

    If there is a number s such that, given any positive number ∈, we can choose m so that for every n > m
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the sequence is said to be convergent, and to have limit s. We then write8
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or

[image: image]

The arrow is read ‘tends to’. We can write simply

[image: image]

if no ambiguity is possible. Of the above examples 1·04(1) is convergent with limit 0; we need only take m > 1/∈. 1·04(2) is not, because whatever s and m we take, if ∈ < [image: images], there will be terms with n > m such that | sn – s | ≥ [image: images] > ∈.

    The most important property of a convergent sequence is that if we have a rule for calculating each term, then we can calculate the limit to any accuracy we like. Some methods of approximation (cf. Chapters 9, 17) will prove that a quantity lies within a given range, but this range is not arbitrarily small; the accuracy may be enough for the application in view but is not capable of being improved indefinitely.

    A sequence that is bounded but not convergent is said to oscillate finitely, or simply to oscillate. An example is 1·04(2); another is

[image: image]

Unlike 1·04 (2), all sn are different. The sequence is bounded, because | sn | < 2 for every n; but it does not converge since for large n the members are alternately near to 1 and – 1, and (1) cannot be satisfied if ∈ < [image: images].

    If for any M there is an m such that sn > M for all n > m, we write

[image: image]

sn = n and sn = n2 are examples.

    If for any M there is an m such that sn < – M for all n > m, we write

[image: image]

sn = – n and sn = – n2 are examples.

    Other types of unbounded sequences are represented by

[image: image]

These cannot be said to tend to anything particular, not even infinity, and are sometimes called infinitely oscillating. Unbounded sequences can be called divergent; but different writers use this term in different senses, some (e.g. Bromwich and Hardy) excluding infinitely oscillating sequences and some (e.g. Knopp) including finitely oscillating ones. A useful device is to classify sequences according as they have or have not the properties

     

   (1)    for any m, and any positive M, there is an n > m such that sn > M,

   (2)    for any m, and any positive M, there is an n > m such that sn < – M.

Sequences with neither property are bounded. If a sequence possesses (1) but not (2), it is bounded below, unbounded above, and similarly for the other two cases.

    Note that no definite meaning is attached to infinity as such. What we do is to give meanings to all the expressions that contain the word infinity or the symbol ∞. sn → ∞ is a shorthand statement of the property of {sn} stated in the definition of ‘sn → ∞’, and does not imply the existence of any real quantity denoted by ∞.

    Infinity is excluded from the rules of algebra, not because there is any inconsistency in the notion of infinite numbers, but because they follow different rules. In fact the notion of an infinite set is implicit in most of our theory, since there are infinitely many values of x in any interval of x. A consistent algebra of positive infinite numbers was set up by Cantor, and has been extended by many later writers. But it is different from ordinary algebra. If a and b are positive infinite numbers we can define a + b and ab uniquely; but a + b need not be greater than a—in fact it is in general equal to a or to b. It is not possible to define a – b and a/b uniquely. Consequently an algebra that includes both finite and infinite numbers must still distinguish between them in its rules.

1·042.

If an infinite set has a limit-point, s, then we can form a sequence from its members whose limit is s; if it has more than one limit-point we can form sequences tending to any of them.

    We have shown (beginning of 1·033) that there is an infinite number of members of the set within a given distance of a limit-point; if we take specimens in the order indicated we have a sequence with the property required.

1·043.

Any sequence formed of different members of a bounded infinite set with only one limit-point s will converge to the limit s. It is clear that in forming a sequence from the set we have a choice at every stage; hence the number of different sequences that can be formed from the set is infinite. We have to show that they all have the same limit. For any m, the number of terms sn of a sequence with n > m is infinite. But since the set is bounded and has only one limit-point, any interval not including the limit-point can contain only a finite number of members. Hence for any ∈ only a finite number of members lie outside the range s ± [image: images]∈, say sα, sβ, …, sμ. Let m be the greatest of α, β, …, μ. Then for all n greater than m, | sn – s | ≤ [image: images]∈ < ∈, and therefore the sequence converges to s.

    The result does not follow if the members of the sequence are not required to be different and some can recur infinitely often. For instance, if the set is that of the reciprocals of the integers, its only limit-point is 0; but if repetitions are allowed we can form from it the sequence

[image: image]

which is oscillatory. If no member recurs more than a fixed number k times, however, the result still follows by a simple extension of the argument.

1·044. Upper and lower bounds.

A set (or sequence) bounded above has an upper bound; and one bounded below has a lower bound. The upper bound of a set is a quantity M such that no member of the set exceeds M, but if e is any positive quantity, however small, there is a member that exceeds M – ∈. The lower bound is a quantity m such that no member is less than m, but there is always one less than m + ∈.

    We use the method of Dedekind section. There are quantities a such that a is exceeded by some member of the set; for we might take an a less than a known member of the set. Since the set is bounded above, there are quantities b that are not exceeded by any member of the set. Every b is greater than any a, and every quantity of the same dimensions is either an a or a b. Hence the quantities a form an L and b an R class, and determine a cut, say at M. M is a member of the R class. For if it was a member of the L class it would be exceeded by some member of the set, say K, and there would be no quantities b between M and K; hence M would not be the quantity given by the cut. Hence no member of the set exceeds M. Also M – ∈ is in the L class and therefore is exceeded by some member of the set. The corresponding result for lower bounds follows similarly.

    The argument does not suppose the set infinite; but for a finite set the greatest of the set is the upper bound. For an infinite set all members may be less than the upper bound; for the set 1·04(1) the upper bound is 1 and is equal to the first term, but the lower bound is 0 and no actual member is 0.

    What we call the upper bound is often called the least upper bound; and any quantity such that no member of the set exceeds it is then called an upper bound.

    Note that if sn < tn for all n, and sn → s, tn → t, then s ≤ t, not s < t. Consider sn = 1 – 2–n, tn = 1 – 3–n. Here s = t. We may regard (sn, tn) as an interval whose length tends to zero, but these intervals do not constitute a nest because each is not part of its predecessor, and, in fact, the whole of each interval is on the same side of the limit.

1·0441.

If sn ≥ sn–1 for all n, and the sequence is bounded, then the sequence converges. Let the upper bound of sn be s. Then for all n, sn ≤ s. But also for any ∈ there is an m such that sm > s – ∈; and then for every n > m
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and therefore the sequence converges with limit s.

1·045. The general principle of convergence.

A necessary and sufficient condition for convergence of a sequence {sn} is that for any positive quantity ∈ there is an m such that for all n ≥ m,
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    We show first that the condition is necessary. Suppose that sn → s. We have to show that m exists such that (1) is true. For any positive ω we can take m so that | sn – s | < ω for all n ≥ m. Then | sn – sm | < 2ω for all n ≥ m. Take ω = [image: images]∈; then (1) follows.

    To prove that the condition is sufficient, we notice first that the sequence is bounded, for, given any positive ω, there is an m such that | sn – sm | < ω for all n ≥ m, and s1, s2), …, sm are all finite. We define an and bn as the lower and upper bounds respectively of sp for p ≥ n. Clearly
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Also since | sp – sq | < 2ω for p and q greater than m, we have that for n ≥ m, bn – an ≤ 2ω since bn – an is the upper bound of sp – sq for p, q ≥ n. Since ω is arbitrarily small, bn – an → 0. The intervals (an, bn) therefore form a nest, defining the real number s, say. Since

and

[image: image]

we have

[image: image]

that is, sn → s as n → ∞.

    The device of introducing a subsidiary arbitrarily small positive quantity, usually denoted by ω, δ, or η, which is later defined as a fraction of ∈, will be met frequently in theorems where the quantity to be proved less than ∈ is expressible as the sum of several parts.

1·05. Series.

If the nth term of an infinite series is un, the sums
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constitute a sequence. If this sequence is convergent we say that the series
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where n is now made indefinitely great, is convergent; and we call the limit of sn the sum of the series.9 If {sn} is not convergent but finitely oscillating we shall speak of the series as finitely oscillating.

    To every theorem about sequences corresponds one about series; for if {sn} is a sequence, and we take u1 = s1, un = sn – sn–1 for n > 1, [image: images]

    The geometric series is
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Here, if x ≠ 1,
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and | xn+1 | becomes indefinitely large with increasing n if | x | > 1. If | x | < 1, xn+1 tends to 0.10 Hence the series is convergent if | x | < 1, but not if | x | > 1. If x = 1, the sum of n terms is n, and the series is not convergent. If x = – 1 the sum of any odd number of terms is 1, but that of any even number of terms is 0. The series therefore oscillates finitely. A necessary and sufficient condition for the series to converge is therefore | x | < 1.

    The Riemann ζ series is
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First take x > 1. We can take the terms in batches:
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and the sums in brackets after the first are respectively less than
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Then, if m = 2r–1, and n ≥ m,

[image: image]

which can be made < ∈ by taking r large enough. Hence the ζ series converges if x > 1.

    If x = 1, we write
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and all the sums in brackets exceed [image: images]. Hence the series is not convergent; sn → ∞. All the terms after the first are increased if 0 < x < 1; hence again sn → ∞.

    The related series for log 2 is
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    Here
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and the sum in brackets is > 0 whether n – m is even or odd. But also

[image: image]

and every expression in brackets ( ) is positive. Hence
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and this is less than ∈ for all n > m if (m + 1) > 1/∈. Hence the series is convergent.

    The argument can be adapted at once to show that if un > 0, un > un+1 for all n, and un → 0, then the series

[image: image]

is convergent.

1·051. Absolute convergence.

If the series ∑ | un | converges, ∑ un converges; for the sum of any batch of terms um to un cannot have a modulus greater than the sum of the corresponding terms | um | to | un |. In this case ∑ un is said to be absolutely convergent; if ∑ un is convergent but ∑ | un | is not, ∑ un is said to be conditionally convergent. (The word semiconvergent is sometimes used, but the prefix is misused, and the same word is also used for asymptotic series, which are best not regarded as infinite series at all. This word is therefore best avoided.)

    We have seen that the series obtained from that for log 2 by taking all the signs positive is not convergent. Hence the series for log 2 is conditionally convergent. The geometric series, if convergent at all, is absolutely convergent.

1·052. Rearrangement of series.

The sum of an absolutely convergent series is unaltered by taking the terms in any order. Let ∑ un be absolutely convergent, with sum s, and ∑ vn′ the same series, but with the terms differently arranged. It is understood that every term of either series appears in the other, but not in general in the same place. Take an arbitrary positive quantity ω and choose m so that [image: images] then the sum of the moduli of any batch of terms after the mth formed from the first series is less than ω. Take m′ so that all the terms un up to um appear in the second series for values of n′ less than m′. Write

[image: image]

Then [image: images] is the sum of a set of terms of the first series after the mth and its modulus is < ω. Also if we take n′ ≥ m′, [image: images] is the sum of another set of terms of the first series after the mth and therefore its modulus also is < ω. Hence the second series is convergent. Let its sum be s′. Then

[image: image]

and can therefore be proved less than any arbitrary ∈ by taking ω = [image: images]∈. Hence the two series have the same sum.

    The theorem is not true of conditionally convergent series. It can be shown that if ∑um is conditionally convergent we can rearrange it so as to make the sum anything we like. They have a precise meaning when the order of the terms is given, but not otherwise. They usually converge too slowly to be of much use for computation, but they can be used in theoretical work.

    Tests for convergence based on the use of ‘comparison series’ are so closely related to tests for uniform convergence that we shall postpone them till we discuss the latter property (1·115, 1·117).

1·053. Double series.

Similar remarks apply to double series, in which the general term is um, n. The condition of convergence is now that we can choose m, n so that for all p greater than m and all q greater than n, the sums [image: images] differ by a quantity with modulus less than ∈. Absolute and conditional convergence can be defined similarly, and it is again true that an absolutely convergent double series has the same sum however the terms are arranged. The proofs differ only in complexity from those for simple series.

1·06. Limits of functions: Continuity.

In the most general sense, when we say that f(x) is a function of x in some range of values of x we mean that for every value of x in the range one or more values of f(x) exist. We can, for instance, speak of a function of x that is equal to 1 if x is rational but to 0 if x is irrational. Such a function would be fairly regarded by a physicist as pathological, and he is interested in a much narrower class of functions, roughly speaking such as can be represented by graphs.11 It will usually also be required that the function shall be single-valued, but not necessarily. Thus for the circle
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we have

[image: image]

and y is a function of x; but we get its values over the whole circle only by taking both signs for the root. A single-valued function of x in a range is one that has precisely one value for each value of x. We shall in the first place consider single-valued functions only.

    The essential idea of a limit of a function is similar to that of the convergence of a sequence; for the terms of a sequence {sn} are the values of a function of the positive integral variable n, which is permitted to take arbitrarily large values. The new feature is that for a function f(x) the variable x is not restricted to be integral; it may be permitted to take any value over an interval or even any value however large.

    When the values of x form an interval we can define a limit of f(ξ) as ξ → x as follows: if there is a quantity c such that given any positive ∈ there is a positive δ such that whenever 0 < | ξ – x | < δ, then | f(ξ) – c | < ∈, we say that c is the limit of f(ξ) as ξ → x. (We may further restrict the admissible values of ξ and, for instance, speak of the limit of f(ξ) as ξ – x → 0 through positive or negative values.) If also c = f(x), we say that f(ξ) is continuous at ξ = x. Then the definition of continuity may be stated as follows: if for any positive ∈ we can choose a positive δ such that whenever | h | < δ
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then f(x) is said to be continuous at x = a. If this condition is satisfied and we take any sequence {hn} tending to 0, then for any δ there will be an m such that | hn | < δ for all n ≥ m, and then | f(a + hn) – f(a) | < ∈. Hence for all such sequences f(a + hn) → f(a).

    Most functions met in practice are continuous, with at most a finite number of points of discontinuity. A common type of discontinuity is where f(x + h), for some value of x, has one definite limit as h → 0 through any set of positive values, and a different one as h → 0 through any set of negative values. Such a case is called an ordinary or simple discontinuity. For instance, if

[image: image]

the limit of f(h) as h → 0 through any set of positive values is 1, and that as h → 0 through any set of negative values is 0. This is a very common function in physical applications, since it represents, for instance, a force that begins to act on a system at a definite instant and thereafter is constant. It is usually known as the Heaviside unit function. The postage on a letter, considered as a function of weight, has simple discontinuities. The value at x = 0 usually does not need to be specified in experimental applications, because for an object to be visible it must have some size, and therefore if x is a position coordinate we cannot observe a quantity at an exact value of x, but only a mean value over a range. Similarly, if x is a time we cannot observe a quantity at a single moment but only over a non-zero interval. The usual tendency in pure mathematics is to insist that the function shall be specified for all values of the independent variable, but in physics it is usually enough that its integral shall be determinate. As the value of the function at a single point, provided it is finite, does not affect the integral, it is usually irrelevant to physical applications, and if a special value is assigned it is for the sake of convenience.
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        Simple discontinuity: the Heaviside unit function.



    The notations, for h > 0,
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are often used. Then the case we have been considering is one where
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    It may happen that f(a + ) = f(a – ) but is not equal to f(a). Such a function is said to have a removable discontinuity, but as f(a) does not affect the integral such discontinuities are not of much importance. It is, of course, impossible to illustrate by a graph.

    A limit will not exist at all if the function is unbounded in the neighbourhood of a value of x, as for f(x) = 1/x near x = 0. For any sequence of values of x tending to 0, f(x) will be unbounded. Again, if f(x) = sin(1/x), and x tends to 0 through the values 1/nπ, where n is an integer, the limit is 0. But if it tends to zero through the values 1/(n + [image: images]) π it tends to + 1 if n is restricted to be even and to – 1 if n is restricted to be odd. This kind of misbehaviour is the most troublesome to detect when the definition of the function is at all complicated, and also it is the kind that is most easily forgotten.

    The behaviour of f(x) as x → ∞ is even more closely analogous to that of a sequence, since in general f(∞) is not defined directly and we are concerned entirely with the limit itself, if it exists. We note only the definition and the principal criterion. If there is a c such that for any ∈ > 0 there is an X such that for all x ≥ X we have | f(x) – c | < ∈, then f(x) is said to tend to c as x → ∞. Analogously to the general principle of convergence for series, we can show that a necessary and sufficient condition that f(x) may tend to a limit as x → ∞ is that for any positive ∈ there is an X such that for all x ≥ X, | f(x) – f(X) | < ∈.

1·061. Continuity in an interval.

f(x) is said to be continuous in an interval if it is continuous at every point of the interval. f(x) is continuous in the open interval a < x < b if it is continuous for every value of x such that a < x < b. It is continuous in the closed interval a ≤ x ≤ b if this condition is satisfied and also
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    Note that to say that f(x) is continuous at x = c implies that f(c) is finite; for otherwise we could attach no meaning to f(c + h) – f(c) at all. Similarly, if f(x) is continuous in an interval it is finite at all points of the interval. We shall prove that in the latter condition it is bounded in the interval if this is closed, but not necessarily if it is open.

    We denote any interval with end-points a, b by (a, b). When necessary we shall state explicitly whether a < x < b, a ≤ x ≤ b, a < x ≤ b or a ≤ x < b is to be understood.12

    Note that every point x of an open interval is an interior point; that is, there are points y, z of the interval such that a < y < x < z < b. This is not true for a closed interval since x may then be equal to a or to b. But if a, b are finite they are limit-points of the set in a < x < b. Another way of expressing the distinction between closed and open intervals is to say that all limit-points of sets in a closed interval are members of the interval; those of sets in an open interval may not be, since those of some sets are the end-points. When we say that x is within an interval (or in later chapters within a region) we mean that it is an interior point; if we say that it is of a closed interval or region it may be an end or boundary point.

    Functions that are continuous except at a finite number of points, where they have simple discontinuities, are called sectionally continuous.

    A function is continuous if it is differentiable; the converse is not true, as we see from the example of [image: images] in 0 ≤ x ≤ 1. This is continuous in the interval, including the end-points, but is not differentiable at 0.13 Functions have actually been constructed that are continuous everywhere in an interval but differentiable nowhere. As a rule we shall be concerned with functions that are differentiable except possibly at isolated points, but such points are very numerous in crystal physics. There is a theorem of Weierstrass that any continuous function can be represented as closely as we like by a polynomial throughout any finite range, or by a sum of sines and cosines with suitable coefficients (cf. 14·08). Consequently, though a continuous function is not necessarily differentiable, it can be replaced with as much accuracy as we like by a function that is differentiable.

1·062. Covering theorems.

We see that the property of continuity asserts that every point x of the interval (a, b) is in an interval (x – δ, x + η) (where δ and η may depend on x) such that (1) x is an interior point of the interval (except where x = a or b, when it may be an end-point), (2) the length of the interval is not zero, (3) for every point ξ of the interval a certain property holds, in this case
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We can show that in such circumstances it is possible to choose a finite number of intervals such that every interval satisfies such conditions and every point of (a, b) belongs to at least one of them. For different purposes we need to make the choice in somewhat different ways, and two theorems are therefore needed to show that it is possible.

1·0621. The Heine-Borel theorem.

If every point of a closed interval (a, b) is within some interval I of a family F, then there is a finite subfamily of F such that every point of (a, b) is within at least one interval of the subfamily. We say that I covers (c, d) if every point of (c, d) is an interior point of I (i.e. not an end-point).

    There may be an interval I belonging to F that covers the whole of (a, b). If so there is nothing to prove. If not, bisect (a, b). There may be a pair of intervals I1, I2 such that every point of (a, [image: images]a + [image: images]b) is interior to I1 and every point of ([image: images]a + [image: images]b, b) to I2. If either half is not included in an interval I, bisect that half. We say that in a finite number of steps we shall arrive at a stage where every portion of (a, b) lies within at least one interval I. For if not, the successive bisection of intervals will give a sequence of intervals, each part of the preceding one, and each half the length of the preceding one, and none of them included in an I. Such a sequence forms a nest of intervals and identifies a number x0 common to all its members. But by hypothesis x0 is interior to an I, say I0, and hence there is a positive δ such that all points of (x0 – δ, x0 + δ) are in I0. Therefore all intervals of the nest whose lengths are less than δ are included in I0, and we have a contradiction. Hence the process of bisection leads in a finite number of steps to a set of subdivisions such that every division of (a, b) is wholly interior to some I. Taking for each division an I that includes it we have the theorem.

    A slight modification is often made where an end-point, say a, is an end-point of an interval of the family, say Ia, closed at a; Ia is still supposed of non-zero length δa. Then a is interior to the interval Ja [image: images] and the argument applies to the set of intervals J, where J is the same as I except that Ia is replaced by Ja; every point of (a, b) is an interior point of at least one J. But then the theorem follows with the modification that a may be an end-point of Ia or b of Ib provided that Ia has a as a member and Ib has b.

    The theorem gives the Bolzano-Weierstrass theorem (1·034) as a special case. If possible, let (a, b) contain no limit-point of the set. Then every point of (a, b) is in an interval I containing not more than one member of the set. Hence (a, b) can be covered by a finite set of such intervals I and therefore contains only a finite number of members of the set of points considered, contrary to hypothesis.

    In the argument as we have stated it the only intervals bisected at each stage are those not already covered by an I. We could, however, equally well bisect all the intervals. For if I covers (c, d) it covers both halves of it. Hence (a, b) in the conditions stated can be divided into a finite set of equal intervals each covered by an I.

1·0622. The modified Heine-Borel theorem.

In the Heine-Borel theorem the intervals I may be specified by any rule so long as each is of non-zero length and every point of (a, b) is an interior point of at least one of them (except that a and b may be end-points). Sometimes, however, a further restriction is made, according to which each point x of (a, b) specifies an Ix, of which x is an interior point. Then the following theorem holds. Suppose that every point x of a ≤ x ≤ b is within an interval Ix (x – δx, x + ηx), where δx > 0, ηx > 0, except that Ia may be a ≤ x < a + ηa and Ib may be b – δb < x ≤ b; then (a, b) may be divided into a finite set of intervals such that each interval is part of the Ix defined for some point of that interval. The proof is by successive bisection as before. Assuming the theorem false, we establish the existence of a nest of intervals converging to some x0, such that none is part of Ix for any x within that interval; but all of them less than a certain length are parts of Ix0, and contain x0, and we have a contradiction. In this case, however, it does not follow that (a, b) can be divided into equal intervals with the required property. If (c, d) is covered by Ix where x is in (c, d), x can be interior to only one half of (c, d); then the other half is not necessarily covered by an Iy, when y is now restricted to be in that half.

    An important application is to differentiable functions. Let f(x) be differentiable at all points of a ≤ x ≤ b; this says that for any ω, for any x in (a, b), there is a positive δ (ω, x) such that for | h | < δ
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Then (a, b) can be divided into a finite set of intervals (xr, xr+1) such that for all x of (xr, xr+1)

[image: image]

ξr itself being a point of (xr, xr+1).

    For any fixed η (1) remains true if all δ(ω, x) are restricted to be ≤ η. Then all xr+1 – xr will be ≤ 2η.

    Heine14 proved that a continuous function is uniformly continuous (1·071) by what was essentially a method of Dedekind section, capable of being used to prove the general Heine-Borel theorem and so used in Lebesgue’s proof. The specific use of overlapping intervals is due to Borel15, the form of the Heine-Borel theorem given here to W. H. Young.16 The bisection method was used by Bolzano; Goursat (see 11·043) used it in an important simplification of the conditions for Cauchy’s theorem, in which he recognized the effect of the restriction when each section is required to contain a point x with which the Ix covering that section is associated. He did not, however, give the general form of the modified theorem or comment on the possibility of proving the main theorem by the same method. This was first done by H. F. Baker in a note reported in title only.17

1·063.

A function continuous in a ≤ x ≤ b is bounded in a ≤ x ≤ b. Take an arbitrary positive ∈. For every x of (a, b) there is an interval Ix = (x – δx, x + ηx) such that for every ξ of this interval
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Here δa = 0, ηb = 0, otherwise δx, ηx > 0. Therefore for every ξ1 ξ2 of this interval
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Then we can divide (a, b) into a finite number, say n, of intervals (xr, xr+1) such that for all ξr1, ξr2 of each interval, including the end-points,

[image: image]

Hence for any x of (a, b)
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and therefore f(x) is bounded (above and below) in a ≤ x ≤ b.

    It follows that f(x) has upper and lower bounds in (a ≤ x ≤ b). If f(x) has upper bound M and lower bound m in an interval (irrespective of whether f(x) is continuous) we call M – m the leap of f(x) in the interval.18

1·064.

A function continuous in a closed interval (a, b) attains in that interval its upper and lower bounds in (a, b) and every value between them.

    Let m, M be the lower and upper bounds of f(x) in (a, b). Let c be any value not taken by f(x) in (a, b). Then for any x of (a, b) there is an interval Ix = (x – δx, x + δx), such that for all ξ common to (a, b) and Ix
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since f(x) is continuous and | f(x) – c | positive. Hence at points common to (a, b) and Ix

[image: image]

and f(ξ) – c has the sign of f(x) – c. Therefore, by the Heine-Borel theorem, (a, b) can be covered by a finite set of overlapping intervals Ix, say Ix1, …, Ixm. Therefore (1) the lower bound of | f(ξ) – c | in (a, b) is ≥ [image: images] | f(xr) – c for some r; none of these is zero and therefore c is not the upper or the lower bound of f(x) in (a, b); (2) f(ξ) – c preserves the same sign throughout (a, b) and therefore c is not between m and M.

    The need for the restriction to continuous functions is made clearer by considering the function f(x) = x (0 ≤ x < [image: images]), f(x) = 0 ([image: images] ≤ x ≤ 1). This has upper bound [image: images], but f(x) is never equal to [image: images].

    In 1·063 and 1·064 the interval must be closed. Take f(x) = 1/x in 0 < x < 1; this is continuous at every point of the interval but is unbounded. If f(x) = x for 0 ≤ x < 1, the upper bound is 1, since for any η < 1 there is an x < 1 such that f(x) > η, but f(x) is not equal to 1 for any x < 1.

1·065. Increasing and decreasing functions.

A function is called increasing in an interval a < x < b if for any x1, x2 such that a < x1 < x2 < b, f(x1) < f(x2). It is called decreasing if, when a < x1 < x2 < b, f(x1) > f(x2). A non-decreasing function is one such that f(x1) ≤ f(x2); similarly for a non-increasing function. Such functions may be constant for some parts of the interval; increasing and decreasing functions are nowhere constant. Increasing and decreasing functions are together called monotonic.19

1·066. Inverse functions.

If y = f(x) is continuous and monotonic in a closed interval (a, b) it takes once, and only once, every value between its upper and lower bounds. Hence there is a single-valued inverse function x = g(y), which is also monotonic. (The condition that f(x) is monotonic is necessary, for if f(x) was constant in an interval, or if it was decreasing in part of the interval and increasing in another part, it could take the same value more than once, and g(y) would not be single-valued.)

    The inverse function g(y) is continuous. This says that, for any y and a given ∈ there is a δ such that if | η – y | < δ then | g(η) – g(y) | < ∈; that is, for any x and given ∈ there is a δ such that if | f(ξ) –f(x) | < δ then | ξ – x | < ∈. To prove this we take for definiteness f(x) to be increasing. Whenever ξ1 ≤ x ≤ – ∈ and ξ2 ≥ x + ∈ we have
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Then if | f(ξ) –f(x) | is less than the smaller of | f(x) –f(x – ∈) | and | f(x) –f(x + ∈) | it follows that
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    A many-valued function can often be regarded as a set of single-valued ones. Thus for any x > 0 there are two admissible values of [image: images]. But if we agree to take always the positive root or always the negative one we get in either case a single-valued continuous function of x. The theorems for continuous functions will then apply to either of these separately, but having decided which to take we must not change our minds.

1·07. Uniformity of continuity.

In general if we choose δ so that
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for some particular value of x, it will be found that for some other values of x and the same ∈ the inequality will not be satisfied for the same value of δ. For instance, let
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If x = 0, (1) will be true if δ = [image: images]. But if x = 1
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which will not be less than ∈ if h is, say, [image: images] and ∈ is small enough. But if we take δ = [image: images]∈, (1) will be true for all x in the range.

    This brings us to the idea of uniformity, which we shall meet again and again. (1) specifies an inequality that is satisfied for some δ for every ∈ and x, but δ for given ∈ may depend on x, and can be written δ(∈, x). A proposition (here | f(x + h) –f(x) | < ∈) is said to hold uniformly with regard to a variable (here x) if a condition for its truth can be stated so as not to depend on x; thus here | h | < δ(∈), where δ(∈) may depend on ∈ but not on x.

1·071.

A continuous function is uniformly continuous in any closed interval. In the argument of 1·063, which applies to any value of ∈, replace ∈ by ω and let [image: images]δ be the length of the shortest interval (xr, xr+1). Then any two points ξ1, ξ2 of (a, b) such that | ξ2 – ξ1 | < δ must belong to the same or adjacent intervals, and therefore
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Take [image: images] then there is a δ such that whenever ξ1 ξ2 are points of (a, b) satisfying |ξ2 – ξ1 | < δ

[image: image]

1·08. Orders of magnitude.

If as x tends to a limit ϕ(x) tends to 0 or ∞, and f(x)/ϕ(x) is bounded, we say that f(x) = O{ϕ(x)}, or that f(x) is of the same order of magnitude as ϕ(x). If f(x)/ϕ(x) → 0 as ϕ(x) → 0 we write f(x) = o{ϕ(x)}. If f(x) is bounded we can write f(x) = O(1). This notation must be distinguished from the common usage in physics, where we may say that the masses of Jupiter and Saturn are of the same order of magnitude, meaning roughly that they differ by not more than a factor 10 without there being any question of a limit. In the physical sense the quantities compared must have the same dimensions. This is not necessary in the mathematical sense. x may, for instance, be a time-interval and f(x) the distance travelled by a sound wave. Then f(x) = O(x) because f(x)/x is the velocity of sound and is supposed finite.

    Note that
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1·09. Functions of bounded variation.

If the function f(x) is defined in the closed interval (a, b), and there is a number M such that
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for every subdivision a = x0 < x1 < x2 < … < xn–1 < xn = b, f(x) is said to be of bounded variation in the interval (a, b); and the upper bound of the sums v for all possible selections of the subdivisions is called the total variation of f(x) in the interval.20 The total variation is of interest since it is related to the condition for existence of a Stieltjes integral (1·102), and to the existence of the length of a curve, and it is useful in the theory of Fourier series and Fourier integrals.

    We assume repeatedly that the sum and product of two continuous functions (and therefore of any finite number) are continuous, and that those of two functions of bounded variation are of bounded variation. The proofs are simple: for the last, notice that
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and it follows that if M, N are the upper bounds of | f(x) |, | g(x) |, and U, V the total variations of f(x), g(x) in the interval, the total variation of f(x) g(x) is not greater than MV + NU.


    Note that it is not satisfactory to define the total variation as the limit of the sum given, for there may be no limit for some ways of making the subdivision, or different ways may give different limits. Take for instance
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But the limit, if it exists, does give the total variation if the function is continuous or monotonic.



1·091.

If a function has bounded variation it need not be continuous, or conversely. For if f(x) = 0 for x ≤ 0 and = 1 for x > 0, the variation does not exceed 1 in any interval; but f(x) is discontinuous. Conversely, if f(x) = x cos 1/x for x ≥ 0, and f(0) = 0,
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The variation between [image: images] and [image: images] is therefore at least [image: images] and that between x = 1/π and x = 1/nπ
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which tends to infinity with n. Hence f(x) has not bounded variation. But f(x) is seen to be continuous even at x = 0, since | f(x) | ≤ x, f(0) = 0.

1·092.

Any function of bounded variation in (a, b) is the difference of two bounded non-decreasing functions.

    For any closed interval (a, x) we consider the sum
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where
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taken over all terms f(xr) – f(xr–1) that are positive, and
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taken over all negative terms. The upper bound of p over all possible subdivisions is the positive variation P(a, x) in (a, x) and the upper bound of n is the negative variation N(a, x). Let v = p + n; then the values of v are a bounded set since they are all ≤ V(a, b). Their upper bound V(a, x) is the total variation of f(x) in (a, x). Also by taking upper bounds
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V(a, x) = P(a, x) + N(a, x).

Evidently P(a, x), N(a, x), V(a, x) are all non-decreasing functions of x and are bounded in (a, b).

    For any subdivision and for any fixed x
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Hence
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Take upper bounds over all possible subdivisions; then
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Hence
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so that f(x) is expressed as the difference of two bounded non-decreasing functions.

1·093.

All discontinuities of a function of bounded variation are simple or removable. The characteristic feature of a simple discontinuity at x = a is that f(a – ) and f(a + ) exist and are different. That of a removable discontinuity is that they exist and are equal, but not equal to f(a). Suppose if possible that one of them does not exist; that is, there are two quantities M, m (M > m) such that in any interval, however short, on one side of a there are points where f(x) > M and points where f(x) < m. Let ξ1 be a point where f(x) > M. Then there is a point between a and ξ1, say ξ2, where f(x) < m; then there is a ξ3 between a and ξ2 where f(x) > M, and so on. It follows that the total variation in the interval (a, ξ1) is unbounded, and therefore f(x) is not of bounded variation.

    Alternatively, let f(x) be of bounded variation in (a, b) and consider the positive variation P(x) in (a, x). This is a bounded non-decreasing function of x and therefore has limits (not necessarily equal) as x → c (in (a, b)) through larger or smaller values. The same holds for the negative variation. Hence by subtraction f(x) has limits as x → c through larger or smaller values, and therefore c is either a point of continuity or a simple or removable discontinuity.

    If f(c + ) exists we may speak of the variation in a half-closed interval (c, d) on the right of c, meaning the variation of g(x) in (c, d), where g(c) = f(c + ) and otherwise g(x) = f(x). Then this variation tends to zero as d → c. Similarly, we can define a variation in an interval on the left of c, with the same property.

1·094. Leap at a discontinuity.

Let f(x) be discontinuous at a but bounded in an interval including a as an interior point. Then for some positive δ, f(x) has upper and lower bounds M, m in (a – δ, a + δ). If δ′ < δ, the upper bound in (a – δ′, a + δ′) cannot be greater, or the lower less, than in (a – δ, a + δ). Hence the leap in (a – δ, a + δ) has a non-negative limit as δ → 0. If this limit is zero the function is continuous at a; if positive, we call the limit the leap of the function at a.

    If f(x) = 0 (x < 0), f(x) = 1 (x ≥ 0), the leap at 0 is 1. If f(x) = 0 (x ≠ 0), f(x) = 1 (x = 0) the leap at 0 is again 1. If f(x) = sin 1/x, the leap at x = 0 is 2, since values arbitrarily near 1 and – 1 occur in any interval about 0.

1·10. Integration: Riemann, Stieltjes.

Two different definitions of an integral will be used in this book.

    Let x1, x2, … xn be a set of increasing values of x between a and b, subject to all xr+1 – xr < δ (we take when convenient x0 = a, xn+1 = b). Take in each interval a ξr, so that xr ≤ ξr ≤ xr+1; and form the sum

[image: image]

This sum will depend both on the values chosen for the xr and on those for ξr, unless f(x) is constant; but if we take a sequence of values of δ tending to zero, taking at every stage xr and ξr in accordance with the inequalities, and form the sum Sn for each, these sums may tend to a limit, and this limit may be independent of the choice of the xr and ξr at each stage. If so, this limit is called the Riemann integral and denoted by

[image: image]

    It is also possible to integrate with respect to a function. If f(x) and g(x) are both bounded functions of x, we form the sum

[image: image]

the ξn being chosen as in (1). If this sum tends to a unique limit when the greatest interval of x tends to zero, the limit is called a Stieltjes integral21 and denoted by

[image: image]

The method of writing the termini needs attention because g(x) may not be monotonic. It might return to its original value, but we must not write the range of integration as g(a) to g(a), which would apparently make the integral zero. It is x, not g(x), that is required to increase steadily throughout the range.

1·101.

The Riemann integral [image: images] f(x) dx exists if and only if f(x) is bounded in (a, b) and, for any positive values of ω and η, (a, b) can be divided into a finite set of intervals such that those where the leap of f(x) is ≥ ω have a total length < η.

    First, it is clearly necessary to the existence of the integral that f(x) shall be bounded. For if f(x) is unbounded in (a, b) there is always at least one interval (xr, xr+1) where it is unbounded; and therefore the possible values of Sn formed with different choices of ξr in that interval are unbounded. Hence, however we choose the intervals, Sn cannot tend to a unique limit irrespective of the choice of ξr at each stage.

    Suppose then that the upper and lower bounds of f(x) in (a, b) are M, m. Suppose also that the upper and lower bounds in (xr, xr+1) are Mr, mr, so that for any choice of ξr we have mr ≤ f(ξr) ≤ Mr. Form the sums

[image: image]

These will be called the lower and upper sums for the subdivision specified by the points xr and are the lower and upper bounds of Sn for that subdivision.

    Now in any interval (xr, xr+1) there will be a value of x where [image: images] and a value where [image: images] Hence if Mr – mr ≥ ω it will be possible to make such choices of ξr that the corresponding values of f(ξr) (xr+1 – xr) differ by at least [image: images]ω(xr+1 – xr). Then, since the choices of ξr in all intervals are made independently, if the intervals where Mr – mr ≥ ω have total length ≥ η, where η is positive, we can make two sets of choices of the ξr in each interval such that the corresponding values of Sn differ by at least [image: images]ωη. If then there are ω > 0, η > 0 such that for any subdivision of (a, b) the total length of intervals where the leap of f(x) is ≥ ω is always at least η, Sn cannot have a unique limit. Hence the condition is necessary.

    Since mr ≤ M, Mr ≥ m, we have always

[image: image]

Hence the values of hn given by all possible subdivisions have an upper bound, say h; and the values of Hn have a lower bound, say H. We show first that h ≤ H.

    If in any interval (xr, xr+1) we insert a further point of subdivision, say xr1, and again form the lower and upper sums, the upper bound of f(x) in either part may be less than Mr but cannot exceed it. Hence insertion of new points of subdivision may decrease the upper sum but cannot increase it; and similarly may increase the lower sum but cannot decrease it.

    Now consider two different modes of subdivision specified by points xr, [image: images] Let the respective sums be Hn, hn, [image: images] Consider the subdivision formed by taking all the points of both subdivisions together. Let the sums for it be [image: images] It may be regarded as a subdivision of either the xr or the [image: images] set. Hence, by the last paragraph,

[image: image]

Thus it is impossible for any lower sum to exceed an upper sum, and therefore for all n, Hn ≥ and therefore H ≥ h.

    Again, if we can find a method of subdivision such that Hn – hn < ∈, it will follow that H – h < ∈; for Hn – hn = (H – h) + (Hn – H) + (h – hn), and Hn – H ≥ 0, h – hn ≥ 0. Now suppose that the intervals are classified into A intervals, where Mr – mr ≤ < ω, and B intervals, where Mr – mr ≥ ω. In the B intervals we still have Mr – mr ≤ M – m. If α is the total length of the B intervals, we have

[image: image]

Assume now that for any ω the total length of the B intervals can be taken arbitrarily small. Then for any positive ∈ we can take ω, α so that

[image: image]

It follows that 0 ≤ H – h < ∈, and therefore, since H, h are independent of ∈, that

[image: image]

    We have still to show that if we take methods of subdivision such that the length of the longest interval is δ, and we make δ → 0, then Hn → H, hn → h = H. Let xr give a set of points of subdivision satisfying (5), so that Hn – hn < ∈. In this subdivision let the shortest interval be δ, and consider another subdivision by points [image: images] such that the longest interval is less than δ. Let this give upper and lower sums [image: images] Then any consecutive points [image: images] either belong to the same interval of the xr set or to two adjacent ones. If the latter are both A intervals the leap is less than 2ω; if both B intervals, or if one is an A and one a B interval, it cannot exceed M – m. But if a B interval is of length μ ≥ δ, the length of the [image: images] intervals that have common points with it cannot exceed μ + 2δ ≤ 3μ. Hence the leaps of f(x) in the [image: images] intervals are < 2ω except possibly in a set of total length ≤ 3∑μ = 3α. Thus

[image: image]

Also [image: images] hence

[image: image]

Since this is true for all subdivisions such that the longest interval is less than δ, the result follows.

    Finally, since hn ≤ Sn ≤ Hn, Sn also tends to H.

1·1011.

The condition is due to du Bois-Reymond. It can be stated in an alternative form, which is sometimes more convenient. A necessary and sufficient condition for the existence of [image: images] f(x) dx is that f(x) is bounded and that for any positive ω, η the discontinuities where the leap is ≥ ω can be enclosed in a finite set of intervals of total length < η. Du Bois-Reymond’s condition clearly implies this. Conversely, if the condition just stated is satisfied, there are no discontinuities where the leap is ≥ ω in the remaining intervals. Then about any point in the remaining intervals there is an interval where the leap is < ω. Hence, by the modified Heine-Borel theorem, the remaining intervals can be divided into a finite set such that the leap is < ω in each.

1·1012.

An immediate consequence is that any continuous function has a Riemann integral; for it is bounded and has no discontinuities at all. Also any function with a finite number of finite discontinuities has a Riemann integral. The same applies to any function of bounded variation. For if, for some ω, there were an infinite number of discontinuities where the leap is greater than ω, it would not be of bounded variation.

    Note that the condition does not require the number of discontinuities to be finite. Take f(x) = 1 when x = 1/n, where n is any positive integer, and otherwise zero. This is discontinuous whenever x = 1/n, and also at x = 0. But for any η the interval [image: images] contains an infinite number of discontinuities, and the remainder, with [image: images]η ≤ x ≤ 1, are finite in number and can be enclosed in intervals of total length [image: images]η. Thus an infinite set of discontinuities can sometimes be enclosed in a finite set of intervals of arbitrarily small total length.

    If f(x) = 0 for x irrational and f(x) = 1/n for x = m/n, where m/n is a proper fraction in its lowest terms, f(x) is discontinuous at all rational values of x in (0, 1), but continuous at all irrational values. For any irrational x0 can be enclosed in an interval of length 1/n! containing no rational fraction with a denominator less than n, and therefore the values of f(x) in a sufficiently small interval about x0 will be arbitrarily small. In this case there is a discontinuity of f(x) in every interval, however short. Nevertheless, it has a Riemann integral; for the number of the discontinuities where the leap of f(x) exceeds ∈ is not more than the sum of the integers less than 1/∈, and is finite. The integral is, in fact, zero.

    If f(x) = 1 for x rational and = 0 for x irrational, then for every x0, rational or not, there are values of x arbitrarily near x0 where f(x) = 1 and others where f(x) = 0. Hence every value of x is a discontinuity where the leap is 1, and those in (0, 1) cannot be enclosed in any set of intervals of length < 1. In this case Hn = 1, hn = 0, however we subdivide the interval.

    Such types of irregularity are of little direct practical importance, but they have an indirect importance, since we are aiming at a considerable degree of generality and therefore need danger signals. There are other definitions of an integral, especially that of Lebesgue, which give definite values to some integrals that do not exist in Riemann’s sense (including the one just mentioned); they contemplate an infinite set of subdivisions from the start. They simplify the statements and extend the generality of some later theorems appreciably. The reader is referred to the accounts given by Burkill22 and Titchmarsh.23 But it appears that cases where these methods are applicable and Riemann’s is not are too rare in physics to repay the extra difficulty.

    If f(x) has a Riemann integral, {f(x)}n (n > 0) and | f(x) | have Riemann integrals over the same interval. For if f(x) is bounded and the discontinuities where the leap exceeds ω can be enclosed in intervals of arbitrarily small total length, the same applies to {f(x)}n and | f(x) |. The converse is not true. Consider f(x) = 1 at rational values of x, f(x) = – 1 at irrational values; {f(x)}2 and | f(x) | are integrable, f(x) is not.

1·1013. ‘Measure zero’: ‘Almost everywhere’.

A set of points capable of being enclosed in intervals whose total length is arbitrarily small is said to have measure zero, and a proposition true except at such a set is said to be true almost everywhere. Any finite set of points has measure zero; so also have the integers, since we can enclose each integer n in an interval 2–| n |α, where α is arbitrarily small, and ∑ 2–| n | converges. So have the rational numbers in (0, 1). For if p and q are integers with p < q we can enclose p/q in a range of length α/q3, where α is positive. There are q – 1 fractions with denominator q, excluding 0 and 1. But 0 and 1 can be enclosed in ranges α, and the other fractions in a range less than α/q2. Summing now with regard to q we see that all rational fractions can be enclosed in ranges of total length less than [image: images] the series converges and therefore the total length can be made as small as we like by a suitable choice of α. The same holds for any enumerable set.

    Consider a decreasing sequence of positive quantities ω1, ω2, … tending to zero. If f(x) has a Riemann integral the points (if any) where the leap is ≥ ω can be enclosed in a finite set of intervals of arbitrarily small length; hence the discontinuities where the leap is < ωn–1 but ≥ ωn can be enclosed in a finite set of length 2–nη, and all discontinuities in a set of length η. This set of intervals is enumerable, since each can be reached in a finite number of steps from the start; hence the discontinuities of an integrable function can be enclosed in an enumerable set of intervals of arbitrarily small total length. These intervals may overlap.

1·102. Existence of Stieltjes integral.

The definition in 1·10 of this type of integral allows the function g(x) to be discontinuous. If g(x) is non-decreasing and bounded for a ≤ x ≤ b and if f(x) is also bounded, a necessary and sufficient condition that [image: images] shall exist is that for any ω, δ the interval can be divided into a finite number of sub-intervals, such that in the intervals where the leap of f(x) is greater than ω the total variation of g(x) is less than δ. The proof is substantially as for the Riemann integral. If g(x) has bounded variation the same result follows by expressing g(x) as the difference of two non-decreasing functions ϕ(x) – ψ(x) and considering ∫ f(x) dϕ(x) and ∫ f(x) dψ(x) separately.

    In particular the Stieltjes integral exists in any finite interval if g(x) has bounded variation and f(x) is continuous. It does not exist if f(x) and g(x) have a discontinuity at the same value of x, for in any interval including the discontinuity neither the leap of f(x) nor the total variation of g(x) is arbitrarily small. It follows that it is not sufficient for the existence of the Stieltjes integral that f(x) and g(x) shall both be of bounded variation.

    We shall not give general conditions for the existence of the Stieltjes integral when g(x) is not of bounded variation; we shall show that it is sufficient that g(x) shall be continuous and f(x) of bounded variation, but it is not sufficient that both shall be continuous.

    If a < b < c, and we write [image: images] then if I(a, c) exists both I(a, b) and I(b, c) exist, and their sum is I(a, c). The converse is not always true. If

[image: image]

[image: images] and [image: images] both exist and are zero, but [image: images] does not exist. The converse is true with a slightly different definition of the Stieltjes integral given by Pollard.

1·103. Differentiation.

(a) If f(x) is continuous and
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then

[image: image]

and F(x) is a continuous function of x.

    This is almost obvious.

    (b) If

[image: image]

and f(x) is integrable, then

[image: image]

    Since F(x) is differentiable in (a, b), we know from 1·0622 that for any positive ω, δ we can divide (a, b) into a finite set of intervals (xr, xr+1), all of lengths ≤ δ, each containing a point ξr such that for every point of (xr, xr+1)

[image: image]

and therefore

[image: image]

By addition

[image: image]

    Since f(x) is integrable we can, given any positive ∈, choose δ so that the sum in (3) differs from the integral by less than ∈. Hence

[image: image]

and therefore is zero, since ∈ and ω are arbitrarily small.

    Note that it is possible for F(x) to be differentiable and for its derivative not to be integrable; for example,

[image: image]

The derivative exists even at x = 0, but is unbounded in any neighbourhood of 0.

    (c) If f(x) has a Riemann integral [image: images] f(x) dx, then [image: images] exists and is continuous for all x such that a ≤ x ≤ b; and its derivative is equal to f(x) except possibly at a set of measure zero, namely, the points of discontinuity of f(x).

    Let x be a point of continuity of f(x). Then in an interval (x – h, x + h) the leap of f(ξ) is ω, where ω → 0 with h. Also

[image: image]

Making h → 0 we have

[image: image]

at all points where f(x) is continuous.

    It follows that if

[image: image]

then f(x) = g(x) almost everywhere in a ≤ x ≤ b, the exceptional points, if any, being at points of discontinuity of f(x) or g(x).

    The exception in (c) is of some importance. If, for instance, f(x) = 0 for x ≤ 0, and = 1 for x > 0,

[image: image]

and [image: images] does not exist at x = 0. Again, if f(x) = 0 for x ≠ 0 and = 1 for x = 0, [image: images] over any interval and has derivative 0 everywhere; but this derivative is not equal to f(x) when x = 0.

1·1031. Integration by parts for Stieltjes integrals.

We define

[image: image]

With.

[image: image]

Then

[image: image]

where

[image: image]

We assume that [image: images] exists; that is, for any ∈ > 0 we can choose δ so that for all subdivisions such that the greatest subinterval is < δ

[image: image]

Then for any set a, ξ1, ξ2, …, b, such that ξ1 – a, …, ξr+1 – ξr, …, b – ξn are < [image: images]δ, xr satisfying the inequalities (2) will also satisfy xr – xr–1 < δ for all r. Hence for such a set

[image: image]

and therefore ∑n tends to a limit as δ → 0, and this limit is by definition ∫ g df. Hence ∫ g df exists and

[image: image]

    In particular, since ∫ f dg exists when f is continuous and g is of bounded variation, it also exists when f is of bounded variation and g continuous. If g(x) is a Riemann integral it is both continuous and of bounded variation; hence ∫ f dg exists if f has either property.

    For Riemann integration the result is usually stated in the form

[image: image]

thus apparently requiring both f and g to be differentiable for all a ≥ x ≥ b. If the derivatives exist and are integrable this follows immediately from (7) and 1·1032. But (7) is true under much wider conditions. Incidentally the easiest way of using (8) is to integrate g′ first and rewrite (8) in the form (7).

1·1032. Change of variable in an integral.

If x = h(y) = [image: images] g(u) du, and if

[image: image]

both exist, then I = J. Since both integrals exist by hypothesis, it is enough to prove that the partial sums tend to the same limit for some way of forming them. Take xr = h(yr), ξr = h(ηr),

[image: image]

Since g(y) is integrable, the intervals of y can be chosen so that those where the leap of g(y) is greater than ω have total length ≥ δ, where ω, δ are arbitrarily small. Also | g(y) | is bounded, say < G; hence if the greatest interval yr+1 – yr is less than λ, the greatest | xr+1 – xr | is less than Gλ. Hence In → I, Jn → J. Now if Gr, gr are the upper and lower bounds of g(y) for yr ≤ y ≤ yr+1,

[image: image]

[image: image]

and therefore
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[image: image]

Let the leap of g(y) in the whole interval be N; and let Gr – gr be ≤ ω except in a set of intervals of total length δ. Then

[image: image]

where F is the upper bound of | f(x) |. This is arbitrarily small; hence

[image: image]

    The usual form

[image: image]

is somewhat less general because it assumes dx/dy to exist everywhere. If this condition is satisfied the theorem is proved very easily by an application of Rolle’s theorem (1·13). But the more general form is needed for transformation of integrals along curves, which may have comers where there is no definite tangent. (8) can be made valid if at any point c where dx/dy does not exist, we understand it to be replaced by any value between the limits, as δ → 0, of the upper and lower bounds of dx/dy in (c – δ, c + δ).

1·104. Infinite and improper integrals.

The proof of the existence of an integral breaks down if either the interval b – a is infinite or the function to be integrated is unbounded in the interval. In the former case, b – a is infinite and we cannot make ω > 0, (b – a) ω < ∈ by any choice of ω. In the latter the approximating sum may vary to any extent according to the point chosen to sample f(x) in the subinterval where f(x) is unbounded. A special device is needed in either case to give a meaning to the integral. The method used for integrals with an infinite upper limit is to use first an integral with a finite upper limit; if the integral tends to a definite limit when the upper limit tends to infinity this limit is taken as the value of the infinite integral. The need for such a device may be illustrated by the integral
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According to our rule this must be interpreted as

[image: image]

The integral up to X exists for all X since the integrand is everywhere continuous. If we take Y > X, m to be the integer next greater than X/π, n to be the greatest integer less than Y/π,

[image: image]

The first of these integrals, since | sin x | ≤ 1 and mπ – X ≤ π, is numerically ≤ π/X. Similarly, the second is numerically ≤ 1/n. The sum consists of alternately positive and negative terms, each less in magnitude than the preceding; and we have the theorem that if u0 > u1 > … > un > 0
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Hence the sum is less numerically than its first term, and

[image: image]

Thus

[image: image]

which can be made arbitrarily small for all Y > X by taking X large enough. Hence for any positive quantity ∈, however small, we can choose X so that no matter how much we increase the upper limit beyond X we cannot change the integral by more than ∈. Thus the integral up to X has a definite limiting value as X tends to infinity, and the infinite integral exists in the sense defined.

1·1041.

Since an integral is a function of its upper terminus, we can adapt the tests for convergence of a sequence given in 1·0441 and 1·045 on the lines already mentioned in the theory of continuity (1·06). The proofs are straightforward.

    If f(x) ≥ 0 and [image: images] f(x) dx is bounded for all X > a, then [image: images] f(x) dx tends to a limit as X → ∞.

    A necessary and sufficient condition that [image: images] f(x) dx shall tend to a limit as X → ∞ is that for any positive ∈, however small, there is an A such that [image: images] for all X > A.

1·1042.

The relation between infinite integrals and series is so close that the same words are convenient to express the properties:

    [image: images] is convergent if [image: images] exists.

    [image: images] is unbounded if [image: images] is unbounded as X → ∞.

    [image: images] = ∞ if [image: images] as x → ∞.

    [image: images] is finitely oscillatory if there are positive quantities ω,M such that for any X we can choose Y1 > X so that [image: images] but cannot choose Y2 so that [image: images]

    Examples of convergent integrals are

[image: image]

    Unbounded integrals are

[image: image]

    The last of these would usually be called ‘infinitely oscillating’ but we have no occasion to make this distinction.

    Finitely oscillatory integrals are

[image: image]

    Unbounded and finitely oscillatory integrals have no definite values.

    The integral [image: images] is called absolutely convergent if [image: images] is convergent. If the former integral is convergent but the latter is not, the former is called conditionally convergent. Of the above examples of convergent integrals, the first three are absolutely convergent, the last conditionally convergent.

1·1043.

If f(x) is positive and non-increasing for x > x0, the integral [image: images] converges if and only if the series [image: images] f(n) converges; where n0 is the integer next greater than x0. For clearly neither the series nor the integral can converge unless f(x) → 0; take an integer m > x0 and such that f(m) < ∈. Then
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where n is the integer next greater than X. Hence

[image: image]

and ∈ is arbitrarily small. Hence if either the integral or the sum tends to a definite limit the other does.

    In particular [image: images] and [image: images] both converge if and only if p > 1.

1·1044.

Similarly, if f(x) tends to infinity at some point of the range we can define an improper integral by first modifying the range so as to cut out an arbitrarily short interval about the infinity and then making the length of this interval tend to zero. Thus

[image: image]

This process is taken as the definition of [image: images] which is not directly intelligible as it stands in terms of the definition of an integral as the limit of a sum.

    The analogy between infinite and improper integrals in respect of convergence is so close that the nomenclature can be taken over unchanged.

1·1045.

Change of variable may convert an ordinary integral into an infinite or improper one, but will not change its value. For instance, if for all y, x = h(y) as in 1·032,

[image: image]

when y and h(y) are finite, g(y) ≥ 0, then they have the same limit if either y or h(y) or both tend to infinity. If h(y) → b as y → ∞, and [image: images] f(x) dx exists, it is the limit of the left side of (1); hence the limit is equal to the Riemann integral when this exists.

1·11. Functions of two variables.

So far we have been considering sequences, which may be regarded as functions of one variable capable of taking only integral values, and functions of a continuous variable. In what follows we shall be concerned with what are essentially functions of two variables, which may be either integral or continuous. This introduces new complications when limiting processes are used, since it is not always obvious, or even true, that the same result will be obtained when the order of the limiting processes is changed. The simplest sufficient condition for the reversibility of limiting processes is provided by the following theorem on absolute convergence.

1·111.

If f(x, y) is a non-decreasing function of both x and y (either or both of which may take only integral values), and
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then
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in the sense that if either of the limits in (2) exists the other exists and the two are equal.

    Note first that g(y) is a non-decreasing function of y. For if y2 > y1
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Similarly, if
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    Let g(y) have a limit M. For any ∈ there is a Y such that for all y ≥ Y
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For all x, y, M ≥ g(y) ≥ f(x, y). Also X exists such that for all x > X
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and therefore for all y > Y, x > X
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Hence, if y → ∞, x > X

[image: image]

and therefore, since ∈ is arbitrary, h(x) also has limit M as x → ∞.

    We have three immediate applications. If
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where ur, s is not negative, f(m, n) is a non-decreasing function of m and n. Hence for a double series of non-negative terms
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If some of the ur, s are negative, we can write

[image: image]

and all vr, s, wr, s are non-negative. If then ∑∑ | ur, s | exists for one order of summation we see easily that vr, s and wr, s satisfy the condition for inversion of the order of summation, and by subtraction ur, s does so. Hence for any absolutely convergent double series the order of summation can be inverted. As a corollary, if ∑ ar and ∑ bs are absolutely convergent, [image: images] where the terms may be taken in any order in the sum on the right.

    If um(x) is never negative and if [image: images] um(x) dx exists for all p, q and has limits as each of p, q tends to infinity with the other fixed, then
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    If um(x) is not always of the same sign, but [image: images] exists and satisfies the same conditions, and if one of

[image: image]

exists, then both the limits in (12) exist and the two are equal.

    If ϕ(x, y) is non-negative, subject to similar conditions on the existence of the single limits,

[image: image]

where we take f(x, y) to be the assumed common value for the two integrals for upper termini x, y. As before, if ϕ(x, y) is not always of the same sign, a sufficient condition for existence and equality of the double limits is that one of them shall exist for | ϕ(x, y) |.

1·112. Uniform convergence of sequences and series.

The terms of a sequence {fn(x)} may be functions of a variable x. Then if the sequence converges for all values of x in an interval, its limit is a function of x, say f(x). If we choose an arbitrarily small positive ∈ we shall for any x be able to choose n(x) so that | fp(x) – f(x) | < ∈ for all p ≥ n(x) because the sequence converges. In general the least value of n(x) such that this is true will depend on x. But it may be possible to choose an n independent of x such that | fp(x) – f(x) | < ∈ for all p > n and for all x in the interval. If this is possible for every ∈, fn(x) is said to be uniformly convergent to f(x) in the interval. It can fail to be uniformly convergent if there is an x, say c, within or at the end of the interval such that if we take a succession of values of x, tending to c, the corresponding values of n(x) for given ∈ tend to infinity.

    As fn(x) may be the sum of the first n terms of a series, all these statements have immediate analogues for series ∑un(x) over an interval of x. Thus the series ∑xn converges for all x such that 0 ≤ x < 1, but it is not uniformly convergent for all such x. For if we fix ∈ and then choose n so as to make
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less than ∈ for all p ≥ 1 we must make
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and therefore

[image: image]

which tends to infinity as x tends to 1. This series is therefore uniformly convergent in a range a ≤ x ≤ b, where a and b are fixed quantities between 0 and +1, since we can choose n greater than the greater of the quantities

[image: image]

and the same value of n will then do for any intermediate value of x. It is convergent for any x such that – 1 < x < 1. But it is not uniformly convergent in the range – 1 < x < 1 because, even though the signs < exclude the possibilities that x may be actually – 1 or + 1, they permit any intermediate value, however close to 1, and however we choose n we shall always be able to find values of x such that (3) is false.

    If fn(x) → f(x) uniformly in each of a finite set of intervals (ar, br) (r = 1 to k), then it does so uniformly in the whole set. For each interval, nr exists such that | fp(x) – f(x) | < ∈ for p ≥ nr and x in (ar, br). Take m equal to the greatest of the nr; then for p > m, | fp(x) – f(x) | < ∈ for x in any of the intervals.

    If fn(x) → f(x) in a ≤ x ≤ b, and fn(x) → f(x) uniformly in a < x < b, then convergence is uniform in a ≤ x ≤ b. We need only apply the argument of the last paragraph to the open interval a < x < b and the special points a, b, and take m equal to the largest value of n for the three. This seems to be the basis of a common statement that a sequence cannot converge uniformly in an open interval. It can, but then it also converges uniformly in the closed interval if it converges at the end-points. But if

[image: image]

{fn(x)} is uniformly convergent in the open interval but not in the closed interval.

1·113. Continuity and integrability of uniformly convergent series.

The sum of a series of continuous functions of x, uniformly convergent in a range, is itself a continuous function of x in the range.

    The integral with regard to x of the sum of a series, uniformly convergent in a finite range of x, is the sum of the integrals of its terms, provided that the termini of the integral are in the range.

    To prove the first statement, let S(x) be the sum of the series. Then since the series is uniformly convergent, if ω is a positive quantity we can choose n independent of x so that if Sn(x) is the sum up to un(x)

[image: image]

for all x, y in the range. But Sn(x) is the sum of a finite number of continuous functions and therefore is continuous. Hence for any x we can choose δ positive but so small that

[image: image]

for all | y – x | < δ. Therefore for such y

[image: image]

and by taking [image: images] and then choosing δ in accordance with (2) we can make

[image: image]

for all h satisfying 0 ≤ h < δ. Hence S(x) is continuous (and therefore integrable).

    To prove the second statement, we have, if

[image: image]

and | Rn(x) | < ω for all x such that a ≤ x ≤ b,

[image: image]

and

[image: image]

which is arbitrarily small. Hence by taking n large enough we can make

[image: image]

as near as we like to [image: images] S(x) dx. The theorem is often expressed by saying that a uniformly convergent aeries of continuous functions can be integrated term by term in any finite range.

    A uniformly convergent series can also be integrated term by term if the terms are integrable but not necessarily continuous. If S(x) is integrable the argument from (5) still holds. Take n so that | Rn(x) | < ω. The leap of Rn(x) exceeds 2ω) in no interval. Sn(x) is integrable. Divide (a, b) into a finite set of intervals so that the total length of those where the leap of Sn(x) exceeds ω is less than δ. Then the total length of those where the leap of S(x) exceeds 3ω is less than δ. ω and δ are arbitrary; hence S(x) is integrable.

    If fn(x) → f(x) uniformly in (a, b), [image: images] tends uniformly to [image: images] For if

[image: image]

1·114. Discontinuity associated with non-uniform convergence.

The geometric series does not converge at either x = 1 or x = – 1 and therefore does not define a value of the function at the limits; thus the question of continuity does not arise. But it is possible for a series to converge at certain values of x and yet not to be uniformly convergent in a range approaching them. The example given by Stokes, who first discussed this property, was

[image: image]

∑ un(x) converges for all x, since

[image: image]

Take x > 0. Then

[image: image]

and we can make this less than ∈ by taking n large enough. If x = 0, the last bracket in (2) is 0 and the sum is < < 1/n. The series is therefore convergent for x ≥ 0. But it is not uniformly convergent. For if the quantity on the right of (3) is greater than ∈ the quantity on the left can be made greater than ∈ by taking p large enough; and 1/n is always positive. If, then,

[image: image]

that is,

[image: image]

the left of (3) will exceed ∈ for p large enough; and to make the left of (3) less than ∈ for all p we must take [image: images] Hence, if we fix ∈ at the start, the appropriate values of n increase without limit as x is made smaller, and the series is not uniformly convergent. Stokes described such series as converging with infinite slowness near x = 0.

    Now consider the sum of the series. We have for all x

[image: image]

and the sum of the series, if x is not zero, is 3, since the terms on the right containing n tend to zero with increasing n. Hence the limit of the sum as x tends to 0 is 3. But if we put x zero first the terms in the second bracket cancel for all n, and the sum is 1.

    This example is artificial, but the functions used are quite simple, and it serves to illustrate the fact that the results of carrying out two limiting processes may be quite different according to which we do first. We have to make x tend to 0 and n to infinity. If we make x tend to 0 first and then n to infinity we get 1; if we make n tend to infinity first and then x to 0 we get 3.

1·115. Tests for uniform convergence.

A necessary and sufficient condition that {un(x} shall be uniformly convergent in an interval (a, b) is that for any ∈ we can choose m so that for all n ≥ m, | un(x) – um(x) | < ∈ for every x of (a, b). The proof given for simple sequences needs little alteration. (See 1·045.)

1·1151. M test.

If for all x in the interval considered | un(x) | ≤ vn, where vn is independent of x, and the series ∑ vn converges, then ∑ un(x) is uniformly convergent in the interval. For we can choose n to make for all p ≥ 0

[image: image]

since ∑ vn converges; and then for any x

[image: image]

This test is known as Weierstrass’s M test.

    The use of comparison series for testing ordinary convergence rests on the same principle, and we need only state the theorem. If as n → ∞, | un | ≤ vn, and ∑ vn converges, then ∑ un converges.

    The M test is very simple to apply and we shall have numerous applications of it.

1·1152. Extension of the M test.

A modification of the M test is sometimes useful even for conditionally convergent series where we cannot find a convergent series of positive terms vn numerically greater than un(x). Suppose that as n → ∞, un(x) tends uniformly to 0 (see below) ; that the terms of ∑ un(x) can be taken in batches of m without deranging the order, giving a series ∑ Uv(x); and that | Uv(x) | < Vv, where ∑ Vv is convergent. Then ∑ Uv(x) is uniformly convergent by the M test. It remains to show that in the conditions stated ∑ un(x) exists and is equal to ∑ Uv(x).

    Since un(x) tends uniformly to 0, for any ∈ we can choose n so that | up(x)| < ∈ for all p ≥ n and for all x in the range. Then if we take v for given n so that

[image: image]

Take v so that [image: images] and so that all | up(x) | < [image: images] for p > mv. Then

[image: image]

for all x, and all n > mv, and ∑ un(x) is uniformly convergent.

    This can be applied to the series

[image: image]

For by taking the terms in pairs we get a series whose terms are ≤ those of [image: images] and which therefore satisfies the M test. Also the general term is numerically ≤ 1/n for all x, and therefore tends uniformly to zero. Hence the series is uniformly convergent.

1·1153. Abel’s lemma.

Though the M test is the commonest in actual applications, series may be uniformly convergent and not satisfy it. Two more sensitive tests are based on Abel’s lemma. All these tests have analogues for integrals.

    If {vr} is a non-increasing sequence of non-negative quantities, and if the sums

[image: image]

satisfy the inequalities h ≤ sp ≤ H for all p, then [image: images] for all n. We have

[image: image]

Since all vp – vp+1 ≥ 0 and vn ≥ 0, the last sum will not be decreased if all the sp are replaced by H; and therefore Sn ≤ Hv1. Similarly the sum will not be increased if all the sp are replaced by h; hence Sn ≥ hv1.

1·1154. Abel’s test.

If the series ∑ ar is convergent (not necessarily absolutely) and if for all x in an interval {vr(x)} is a sequence of positive quantities, bounded with respect to x and r and non-increasing for given x as r increases, then ∑ ar vr(x) is uniformly convergent in the interval. In Abel’s lemma take

[image: image]

and take m so that | sn | < ω for all n. Then by Abel’s lemma, with

[image: image]

for all x of the interval and all n ≥ 1. Since ω is arbitrarily small and independent of x, uniform convergence follows.24

    The most important application of this theorem is to power series ∑ anxn. If the series converges for x = 1, the powers xn, for 0 ≤ x ≤ 1, satisfy the conditions imposed on vn(x); hence the series ∑ anxn converges uniformly up to x = 1 and the limit of its sum is ∑ an. This is Abel’s theorem. It saves a great deal of trouble; for we often get a result in the form of a power series and want to know whether the sum of the series for x < 1 tends in the limit to the sum for x = 1 when x is made to approach 1. The theorem gives us a simple answer: it does so provided the series for x = 1 converges.

    The theorem is still true if an = an(x) and ∑ an(x) is uniformly convergent. The proof needs no change.

1·1155. Dirichlet-Hardy test.25

If in an interval of x, [image: images] is uniformly bounded with respect to n and x, and {vr} is a sequence of positive non-increasing quantities tending to zero, then ∑ ar(x) vr is uniformly convergent in the interval. We can extend this to the case where vr = vr(x) provided that vr(x) → 0 uniformly.

    Take [image: images] where m is such that vm(x) < ω. Then if, for all n,

[image: image]

we have by Abel’s lemma

[image: image]

Uniform convergence follows.

    A remarkable feature of this test is that it establishes uniform convergence without requiring any comparison series to converge. The most important applications are to series of the forms ∑ vn cos nθ, ∑ vn sin nθ. Here

[image: image]

If sin [image: images]δ, with [image: images]π > δ > 0, is the smallest value of | sin [image: images]θ | in a range, the modulus of neither sum exceeds cosec [image: images]δ, whatever n and θ may be. If then v1 ≥ v2 ≥ … ≥ vn → 0, it follows that ∑ vn cos nθ and ∑ vn sin nθ are uniformly convergent in any closed interval a ≤ θ ≤ b that contains no zero of sin [image: images]θ; that is, excluding θ = 0, 2π, 4π, ….

    In particular, the series

[image: image]

are uniformly convergent in any range a ≥ θ ≥ b that excludes 0, 2π, …. Actually the first diverges at θ = 0, the second converges everywhere, but not uniformly in any interval containing θ = 0. We shall see later (ch. 14, ex. 4) that it jumps from – [image: images]π to [image: images]π as θ increases through 0, so that non-uniform convergence is associated with a discontinuity as in 1·114.

1·116. Theorem of bounded convergence.

Uniformity of convergence is a sufficient condition for continuity or integrability of the sum, provided the separate terms are continuous or integrable. It is far from a necessary condition. In practice it is usually easier to test directly whether the limit function is integrable than to test for uniform convergence, and there are so many cases where the passage to the limit under the integral sign is valid without convergence being uniform that a more general rule is needed. Such a rule is as follows. It is known as the theorem of bounded convergencea. If for all a ≤ x ≤ b, | fn(x) | ≤ M for all n and x, if all fn(x) are integrable and if fn(x) → f(x), where f(x) is integrable, then [image: images] The proof is not easy, but the result should be known.

    The behaviour of fn(x) and

[image: image]

should be studied for the cases

[image: image]

1·117. Useful comparison series.

By far the most important comparison series are ∑ xn (0 ≤ x < 1), ∑ n–s (s > 1), which we have already studied, and ∑ nsan (0 ≤ a < 1). The convergence of the latter follows at once from the M test if s < 0. If s ≥ 0, we have

[image: image]

As n increases this tends to a. Hence, since a < 1, we can take m large enough for this ratio to be less than b for all n > m, where a < b < 1. Then for n > m,

[image: image]

and ∑ bn–m is a convergent series of positive terms. Hence ∑ nsan converges for 0 ≥ a < 1.

    Comparison with the series ∑ n–s can often be simplified. If vn = n–s (1 < s),

[image: image]

If un is positive for all n, and

[image: image]

we can take s = [image: images](t + 1), and then we can choose m so that for all n > m

[image: image]

and then

[image: image]

and ∑ un converges. Similarly, if t exists and is less than 1, ∑ un diverges. If t = 1 a more sensitive test is needed, but we shall find no such case in this book.

    To summarize, if un > 0, ∑ un converges if either

[image: image]

or if

[image: image]

1·12. Uniform convergence of infinite integrals.

If the integrand depends on x and also on another parameter y, the notion of uniform convergence arises as for series. We shall suppose in all cases that [image: images] exists however large X may be. This remark is needed because no meaning can be attached to the convergence of an integral, that is, to the proposition that a set of integrals with finite upper termini tend to a limit when the upper terminus tends to infinity, unless these integrals all exist. It is with the convergence of the infinite integral, assuming the existence of the finite integrals, that we are concerned in what follows. In particular, if [image: images] exists and [image: images] for all Y > X, [image: images] converges; but the existence of [image: images] does not guarantee that of [image: images]. If for any ∈ we can choose X so that for all Y greater than X and for all y in the range b0 to b1

[image: image]

the integral [image: images] is said to be uniformly convergent in the range b0 ≤ y ≤ b1. This property permits the reversal of the order of integration in a repeated integral even when one of the limits is infinite. By a repeated integral we mean one of the form

[image: image]

where f(x, y) is to be integrated with regard to x between a0 and a1 and the result with regard to y from b0 to b1 Let us consider the integral, where f(x, y) is supposed continuous with regard to both x and y,

[image: image]

Now since all limits are finite

[image: image]

(The proof is simple.26) X is at our disposal; choose it so that for all Y > X

[image: image]

Then the second part of (1) is numerically not greater than (b1 – b0)ω; and

[image: image]

But ω is arbitrarily small and we can always choose X so that (3) will be satisfied. Hence

[image: image]

which establishes the theorem.

    This theorem can be stated in the form: a uniformly convergent integral can be integrated under the integral sign. It follows that an infinite integral [image: images] can be differentiated under the integral sign with regard to y provided that ∂f/∂y exists and that its integral with regard to x is uniformly convergent in the neighbourhood of the value of y under consideration. This follows immediately by putting ∂f/∂y for f(x, y) in the last theorem.

    An extension to uniformly convergent integrals, where f(x, y) is not necessarily continuous, can be made on the lines of the argument at the end of 1·113.

1·121. M test.

The commonest test for uniform convergence is the analogue of the M test for series. If for all y such that b0 ≤ y ≤ b1

[image: image]

where [image: images] converges, [image: images] is uniformly and absolutely convergent in b0 ≤ y ≤ b1.

1·122. Abel’s lemma for integrals.

If v(x) is non-negative, bounded in a ≤ x ≤ b and non-increasing with x, and if h, H are the lower and upper bounds of

[image: image]

for a ≤ ξ ≤ b, then

[image: image]

Put

[image: image]

This is valid because F(x) is an integral and therefore continuous, and v(x) is of bounded variation. Then, since v(x) is nowhere increasing, I will not be decreased if F(x) is replaced everywhere by its upper bound, or increased if it is replaced by its lower bound; then

[image: image]

that is,

[image: image]

It is necessary for integrals to specify that v(x) is bounded; being non-negative it must have a lower bound, but it might be unbounded near x = a if this is not stated separately.

1·123. Abel’s test for infinite integrals.

If [image: images] converges (not necessarily absolutely) and if for every value of y in b0 ≤ y ≤ b1 the function v(x, y) is non-negative, bounded for all x, y and never increasing with x, then [image: images] is uniformly convergent with respect to y in b0 ≤ y ≤ b1.

    We have 0 ≤ v(x, y) ≤ M; take X so that

[image: image]

then by Abel’s lemma, for b0 ≤ y ≤ b1

[image: image]

whence uniform convergence follows since ω can be taken arbitrarily small.

    For instance, [image: images] converges; and e–xy is positive, bounded and not increasing with x for 0 ≤ y < ∞. Hence [image: images] is uniformly convergent for y ≥ 0.

1·124. Dirichlet-Hardy test for infinite integrals.

If [image: images] is bounded for all X > a and for b0 ≤ y ≤ b1 and if v(x) is bounded, positive, non-increasing, and tends to zero as x → ∞, then [image: images] is uniformly convergent for b0 ≤ y ≤ b1. Here we can take X so that v(X) < ω and for all X′ > X there is M such that

[image: image]

Then for b0 ≤ y ≤ b1 and all X′ > X

[image: image]

Uniform convergence follows as before.

    Note that [image: images] is not required to tend to a limit as X → ∞; it may oscillate finitely.

    For instance,

[image: image]

and if | y | > δ > 0 this is numerically less than 2/δ. Also 1/x is positive and tends to zero with increasing x. Hence [image: images] where a > 0, is uniformly convergent in any range such that | y | > δ > 0. It is not uniformly convergent in any range that includes y = 0. Actually it is equal to + [image: images]π for y > 0, – [image: images]π for y < 0, and 0 for y = 0; so that, as for series, non-uniform convergence of an integral can be associated with discontinuity of its value.

    Uniform convergence of an integral of a continuous function is a very useful sufficient condition for continuity of the integral and for the legitimacy of integration under the integral sign. We have had one case where non-uniform convergence is associated with discontinuity of the integral. The following example, given by Courant,27 shows that it can be associated with the impossibility of reversing the order of integration. If

[image: image]

we find

[image: image]

We have

[image: image]

For any x ≠ 0 this tends to 0 as y → ∞; and for x = 0, f(x, y) = 0 for all y. Thus [image: images] is convergent, but it is not uniformly convergent near x = 0, since if η is the larger value of y that makes xy2e–xy = ∈, xy2e–xy < ∈ for all y > η; but η tends to infinity as x → 0. In fact [image: images] is unbounded with regard to y as x → 0.

    The extension of the results for integrals with respect to two variables to integrals with respect to three and more variables involves no new principles.

    The following application of Dirichlet’s test is sometimes useful. Let

[image: image]

where f′(x) is a positive increasing function for x ≥ a, and f′(x) → ∞ as x → ∞. Put f(x) = y, f′(x) = 1/g(y), f(a) = b. Then y is an increasing function of x, and

[image: image]

But g(y) > 0, and is a decreasing function with limit 0. Hence a sufficient condition for [image: images] cos {f(x)} dx, [image: images] sin {f(x)} dx to converge is that f′(x) is an increasing function tending to ∞. For instance

[image: image]

converge. (For the latter, if m > 0, take a > [image: images]

1·125. Integrals with upper limit tending to infinity.

If f(x, n) → g(x), and λn → ∞ when n → ∞, we sometimes need a condition that

[image: image]

The question is clearly related to that of uniform convergence; in fact we can define a function

[image: image]

and then

[image: image]

Consequently a sufficient condition for (1) is that h(x, n) shall satisfy any of the tests of 1·121, 1·123, and 1·124.

    Detailed proofs of the required forms of 1·123 and 1·124, and of the analogues for series, are given by Bromwich28 under the name of Tannery’s theorem.

1·126. Inversion of infinite double series and repeated integrals.

The theorem (due to E. H. Moore) for uniform convergence corresponding to 1·111 is as follows.

    If as y → ∞, f(x, y) → h(x), and if as x → ∞, f(x, y) → g(y) uniformly, then

[image: image]

both exist and are equal. Take X so that | f(x, y) – g(y) | < ω for x ≥ X and all y. Then take Y so that | f(X, y) – h(X) | < ω for y ≥ Y. Then for x > X and y ≥ Y

[image: image]

and therefore if y1 > Y,
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