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Preface

[image: image]


Over the past decade, there have been several shifts in the way compilers are built. New kinds of programming languages are being used: object-oriented languages with dynamic methods, functional languages with nested scope and first-class function closures; and many of these languages require garbage collection. New machines have large register sets and a high penalty for memory access, and can often run much faster with compiler assistance in scheduling instructions and managing instructions and data for cache locality.

This book is intended as a textbook for a one- or two-semester course in compilers. Students will see the theory behind different components of a compiler, the programming techniques used to put the theory into practice, and the interfaces used to modularize the compiler. To make the interfaces and programming examples clear and concrete, I have written them in the C programming language. Other editions of this book are available that use the Java and ML languages.

Implementation project. The “student project compiler” that I have outlined is reasonably simple, but is organized to demonstrate some important techniques that are now in common use: abstract syntax trees to avoid tangling syntax and semantics, separation of instruction selection from register allocation, copy propagation to give flexibility to earlier phases of the compiler, and containment of target-machine dependencies. Unlike many “student compilers” found in textbooks, this one has a simple but sophisticated back end, allowing good register allocation to be done after instruction selection.

Each chapter in Part I has a programming exercise corresponding to one module of a compiler. Software useful for the exercises can be found at

http://www.cs.princeton.edu/~appel/modern/c

Exercises. Each chapter has pencil-and-paper exercises; those marked with a star are more challenging, two-star problems are difficult but solvable, and the occasional three-star exercises are not known to have a solution.

Course sequence. The figure shows how the chapters depend on each other.
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	A one-semester course could cover all of Part I (Chapters 1–12), with students implementing the project compiler (perhaps working in groups); in addition, lectures could cover selected topics from Part II.

	An advanced or graduate course could cover Part II, as well as additional topics from the current literature. Many of the Part II chapters can stand independently from Part I, so that an advanced course could be taught to students who have used a different book for their first course.

	In a two-quarter sequence, the first quarter could cover Chapters 1–8, and the second quarter could cover Chapters 9–12 and some chapters from Part II.



Acknowledgments. Many people have provided constructive criticism or helped me in other ways on this book. I would like to thank Leonor Abraido-Fandino, Scott Ananian, Stephen Bailey, Max Hailperin, David Hanson, Jeffrey Hsu, David MacQueen, Torben Mogensen, Doug Morgan, Robert Netzer, Elma Lee Noah, Mikael Petterson, Todd Proebsting, Anne Rogers, Barbara Ryder, Amr Sabry, Mooly Sagiv, Zhong Shao, Mary Lou Soffa, Andrew Tolmach, Kwangkeun Yi, and Kenneth Zadeck.
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PART ONE

Fundamentals of Compilation
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1

Introduction
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A compiler was originally a program that “compiled” subroutines [a link-loader]. When in 1954 the combination “algebraic compiler” came into use, or rather into misuse, the meaning of the term had already shifted into the present one.

Bauer and Eickel [1975]

This book describes techniques, data structures, and algorithms for translating programming languages into executable code. A modern compiler is often organized into many phases, each operating on a different abstract “language.” The chapters of this book follow the organization of a compiler, each covering a successive phase.

To illustrate the issues in compiling real programming languages, I show how to compile Tiger, a simple but nontrivial language of the Algol family, with nested scope and heap-allocated records. Programming exercises in each chapter call for the implementation of the corresponding phase; a student who implements all the phases described in Part I of the book will have a working compiler. Tiger is easily modified to be functional or object-oriented(or both), and exercises in Part II show how to do this. Other chapters in Part II cover advanced techniques in program optimization. Appendix A describes the Tiger language.

The interfaces between modules of the compiler are almost as important as the algorithms inside the modules. To describe the interfaces concretely, it is useful to write them down in a real programming language. This book uses the C programming language.
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FIGURE 1.1.     Phases of a compiler, and interfaces between them.
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1.1
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MODULES AND INTERFACES


Any large software system is much easier to understand and implement if the designer takes care with the fundamental abstractions and interfaces. Figure 1.1 shows the phases in a typical compiler. Each phase is implemented as one or more software modules.

Breaking the compiler into this many pieces allows for reuse of the components. For example, to change the target-machine for which the compiler produces machine language, it suffices to replace just the Frame Layout and Instruction Selection modules. To change the source language being compiled, only the modules up through Translate need to be changed. The compiler can be attached to a language-oriented syntax editor at the Abstract Syntax interface.

The learning experience of coming to the right abstraction by several iterations of think–implement–redesign is one that should not be missed. However, the student trying to finish a compiler project in one semester does not have this luxury. Therefore, I present in this book the outline of a project where the abstractions and interfaces are carefully thought out, and are as elegant and general as I am able to make them.

Some of the interfaces, such as Abstract Syntax, IR Trees, and Assem, take the form of data structures: for example, the Parsing Actions phase builds an Abstract Syntax data structure and passes it to the Semantic Analysis phase. Other interfaces are abstract data types; the Translate interface is a set of functions that the Semantic Analysis phase can call, and the Tokens interface takes the form of a function that the Parser calls to get the next token of the input program.

DESCRIPTION OF THE PHASES

Each chapter of Part I of this book describes one compiler phase, as shown in Table 1.2

This modularization is typical of many real compilers. But some compilers combine Parse, Semantic Analysis, Translate, and Canonicalize into one phase; others put Instruction Selection much later than I have done, and combine it with Code Emission. Simple compilers omit the Control Flow Analysis, Data Flow Analysis, and Register Allocation phases.

I have designed the compiler in this book to be as simple as possible, but no simpler. In particular, in those places where corners are cut to simplify the implementation, the structure of the compiler allows for the addition of more optimization or fancier semantics without violence to the existing interfaces.
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1.2
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TOOLS AND SOFTWARE

Two of the most useful abstractions used in modern compilers are context-free grammars, for parsing, and regular expressions, for lexical analysis. To make best use of these abstractions it is helpful to have special tools, such as Yacc (which converts a grammar into a parsing program) and Lex (which converts a declarative specification into a lexical analysis program).

The programming projects in this book can be compiled using any ANSI-standard C compiler, along with Lex (or the more modern Flex) and Yacc(or the more modern Bison). Some of these tools are freely available on the Internet; for information see the World Wide Web page

http://www.cs.princeton.edu/~appel/modern/c

[image: image]
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TABLE 1.2.     Description of compiler phases.
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Source code for some modules of the Tiger compiler, skeleton source code and support code for some of the programming exercises, example Tiger programs, and other useful files are also available from the same Web address. The programming exercises in this book refer to this directory as $TIGER/when referring to specific subdirectories and files contained therein.
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GRAMMAR 1.3.   A straight-line programming language.
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1.3
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DATA STRUCTURES FOR TREE LANGUAGES

Many of the important data structures used in a compiler are intermediate representations of the program being compiled. Often these representations take the form of trees, with several node types, each of which has different attributes. Such trees can occur at many of the phase-interfaces shown in Figure 1.1.

Tree representations can be described with grammars, just like programming languages. To introduce the concepts, I will show a simple programming language with statements and expressions, but no loops or if-statements (this is called a language of straight-line programs).

The syntax for this language is given in Grammar 1.3.

The informal semantics of the language is as follows. Each Stm is a statement, each Exp is an expression. s1; s2 executes statement s1, then statement s2. i :=e evaluates the expression e, then “stores” the result in variable i. print(e1, e2, . . . , en) displays the values of all the expressions, evaluated left to right, separated by spaces, terminated by a newline.

An identifier expression, such as i, yields the current contents of the variable i. A number evaluates to the named integer. An operator expression e1 op e2 evaluates e1, then e2, then applies the given binary operator. And an expression sequence (s, e) behaves like the C-language “comma” operator, evaluating the statement s for side effects before evaluating (and returning the result of) the expression e.
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FIGURE 1.4.   Tree representation of a straight-line program.
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For example, executing this program

a := 5+3; b := (print(a, a-1), 10*a); print(b)

prints

8 7

80

How should this program be represented inside a compiler? One representation is source code, the characters that the programmer writes. But that is not so easy to manipulate. More convenient is a tree data structure, with one node for each statement (Stm) and expression (Exp). Figure 1.4 shows a tree representation of the program; the nodes are labeled by the production labels of Grammar 1.3, and each node has as many children as the corresponding grammar production has right-hand-side symbols.

We can translate the grammar directly into data structure definitions, as shown in Program 1.5. Each grammar symbol corresponds to a typedef in the data structures:

[image: image]

For each grammar rule, there is one constructor that belongs to the union for its left-hand-side symbol. The constructor names are indicated on the right-hand side of Grammar 1.3.

Each grammar rule has right-hand-side components that must be represented in the data structures. The CompoundStm has two Stm’s on the right-hand side; the AssignStm has an identifier and an expression; and so on. Each grammar symbol’s struct contains a union to carry these values, and a kind field to indicate which variant of the union is valid.

For each variant (CompoundStm, AssignStm, etc.) we make a constructor function to malloc and initialize the data structure. In Program 1.5 only the prototypes of these functions are given; the definition of A_CompoundStm would look like this:

[image: image]

For Binop we do something simpler. Although we could make a Binop struct – with union variants for Plus, Minus, Times, Div – this is overkill because none of the variants would carry any data. Instead we make an enum type A_binop.

Programming style. We will follow several conventions for representing tree data structures in C:

1.  Trees are described by a grammar.

2.  A tree is described by one or more typedefs, corresponding to a symbol in the grammar.

3.  Each typedef defines a pointer to a corresponding struct. The struct name, which ends in an underscore, is never used anywhere except in the declaration of the typedef and the definition of the struct itself.

4.  Each struct contains a kind field, which is an enum showing different variants, one for each grammar rule; and a u field, which is a union.

[image: image]
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PROGRAM 1.5.     Representation of straight-line programs.

[image: image]

5.  If there is more than one nontrivial (value-carrying) symbol in the right-hand side of a rule (example: the rule CompoundStm), the union will have a component that is itself a struct comprising these values (example: the compound element of the A_stm_ union).

6.  If there is only one nontrivial symbol in the right-hand side of a rule, the union will have a component that is the value (example: the num field of the A_exp union).

7.  Every class will have a constructor function that initializes all the fields. The malloc function shall never be called directly, except in these constructor functions.

8.  Each module (header file) shall have a prefix unique to that module (example, A_ in Program 1.5).

9.  Typedef names (after the prefix) shall start with lowercase letters; constructor functions (after the prefix) with uppercase; enumeration atoms (after the prefix) with lowercase; and union variants (which have no prefix) with lowercase.

Modularity principles for C programs. A compiler can be a big program; careful attention to modules and interfaces prevents chaos. We will use these principles in writing a compiler in C:

1.  Each phase or module of the compiler belongs in its own “.c” file, which will have a corresponding “.h” file.

2.  Each module shall have a prefix unique to that module. All global names (structure and union fields are not global names) exported by the module shall start with the prefix. Then the human reader of a file will not have to look outside that file to determine where a name comes from.

3.  All functions shall have prototypes, and the C compiler shall be told to warn about uses of functions without prototypes.

4.  We will #include "util.h" in each file:

[image: image]

The inclusion of assert.h encourages the liberal use of assertions by the C programmer.

5.  The string type means a heap-allocated string that will not be modified after its initial creation. The String function builds a heap-allocated string from a C-style character pointer (just like the standard C library function strdup). Functions that take strings as arguments assume that the contents will never change.

6.  C’s malloc function returns NULL if there is no memory left. The Tiger compiler will not have sophisticated memory management to deal with this problem. Instead, it will never call malloc directly, but call only our own function, checked_malloc, which guarantees never to return NULL:

[image: image]

7.  We will never call free. Of course, a production-quality compiler must free its unused data in order to avoid wasting memory. The best way to do this is to use an automatic garbage collector, as described in Chapter 13 (see particularly conservative collection on page 296). Without a garbage collector, the programmer must carefully free(p) when the structure p is about to become inaccessible – not too late, or the pointer p will be lost, but not too soon, or else still-useful data may be freed (and then overwritten). In order to be able to concentrate more on compiling techniques than on memory deallocation techniques, we can simply neglect to do any freeing.


[image: image]

P R O G R A M
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STRAIGHT-LINE PROGRAM INTERPRETER

Implement a simple program analyzer and interpreter for the straight-line programming language. This exercise serves as an introduction to environments (symbol tables mapping variable-names to information about the variables); to abstract syntax (data structures representing the phrase structure of programs); to recursion over tree data structures, useful in many parts of a compiler; and to a functional style of programming without assignment statements.

It also serves as a “warm-up” exercise in C programming. Programmers experienced in other languages but new to C should be able to do this exercise, but will need supplementary material (such as textbooks) on C.

Programs to be interpreted are already parsed into abstract syntax, as described by the data types in Program 1.5.

However, we do not wish to worry about parsing the language, so we write this program by applying data constructors:

[image: image]

Files with the data type declarations for the trees, and this sample program, are available in the directory $TIGER/chap1.

Writing interpreters without side effects (that is, assignment statements that update variables and data structures) is a good introduction to denotational semantics and attribute grammars, which are methods for describing what programming languages do. It’s often a useful technique in writing compilers, too; compilers are also in the business of saying what programming languages do.

Therefore, in implementing these programs, never assign a new value to any variable or structure-field except when it is initialized. For local variables, use the initializing form of declaration (for example, int i=j+3;) and for each kind of struct, make a “constructor” function that allocates it and initializes all the fields, similar to the A_CompoundStm example on page 9.

1. Write a function int maxargs(A_stm) that tells the maximum number of arguments of any print statement within any subexpression of a given statement. For example, maxargs(prog) is 2.

2. Write a function void interp(A_stm) that “interprets” a program in this language. To write in a “functional programming” style – in which you never use an assignment statement – initialize each local variable as you declare it.

For part 1, remember that print statements can contain expressions that contain other print statements.

For part 2, make two mutually recursive functions interpStm and interpExp. Represent a “table,” mapping identifiers to the integer values assigned to them, as a list of id × int pairs.

[image: image]

The empty table is represented as NULL. Then interpStm is declared as

Table_ interpStm(A_stm s, Table_ t)

taking a table t1 as argument and producing the new table t2 that’s just like t1 except that some identifiers map to different integers as a result of the statement.

For example, the table t1 that maps a to 3 and maps c to 4, which we write {a [image: image] 3, c [image: image] 4} in mathematical notation, could be represented as the linked list [image: image].

Now, let the table t2 be just like t1, except that it maps c to 7 instead of 4. Mathematically, we could write,

t2 = update(t1, c , 7)

where the update function returns a new table {a [image: image] 3, c [image: image] 7}.

On the computer, we could implement t2 by putting a new cell at the head of the linked list: [image: image] as long as we assume that the first occurrence of c in the list takes precedence over any later occurrence.

Therefore, the update function is easy to implement; and the corresponding lookup function

int lookup(Table_ t, string key)

just searches down the linked list.

Interpreting expressions is more complicated than interpreting statements, because expressions return integer values and have side effects. We wish to simulate the straight-line programming language’s assignment statements without doing any side effects in the interpreter itself. (The print statements will be accomplished by interpreter side effects, however.) The solution is to declare interpExp as

struct IntAndTable {int i; Table_ t;};

struct IntAndTable interpExp(A_exp e, Table_ t) · · ·

The result of interpreting an expression e1 with table t1 is an integer value i and a new table t2. When interpreting an expression with two subexpressions (such as an OpExp), the table t2 resulting from the first subexpression can be used in processing the second subexpression.

[image: image]

F U R T H E R

R E A D I N G

[image: image]

Hanson [1997] describes principles for writing modular software in C.

[image: image]

E X E R C I S E S
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       1.1  This simple program implements persistent functional binary search trees, so that if tree2=insert(x,tree1), then tree1 is still available for lookups even while tree2 can be used.

[image: image]

  a. Implement a member function that returns TRUE if the item is found, else FALSE.

  b. Extend the program to include not just membership, but the mapping of keys to bindings:

[image: image]

  c. These trees are not balanced; demonstrate the behavior on the following two sequences of insertions:

(a) t s p i p f b s t

(b) a b c d e f g h i

*d. Research balanced search trees in Sedgewick [1997] and recommend a balanced-tree data structure for functional symbol tables. Hint: To preserve a functional style, the algorithm should be one that rebalances on insertion but not on lookup, so a data structure such as splay trees is not appropriate.
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2

Lexical Analysis

[image: image]

lex-i-cal: of or relating to words or the vocabulary of a language as distinguished from its grammar and construction

Webster’s Dictionary

To translate a program from one language into another, a compiler must first pull it apart and understand its structure and meaning, then put it together in a different way. The front end of the compiler performs analysis; the back end does synthesis.

The analysis is usually broken up into

Lexical analysis: breaking the input into individual words or “tokens”;

Syntax analysis: parsing the phrase structure of the program; and

Semantic analysis: calculating the program’s meaning.

The lexical analyzer takes a stream of characters and produces a stream of names, keywords, and punctuation marks; it discards white space and comments between the tokens. It would unduly complicate the parser to have to account for possible white space and comments at every possible point; this is the main reason for separating lexical analysis from parsing.

Lexical analysis is not very complicated, but we will attack it with highpowered formalisms and tools, because similar formalisms will be useful in the study of parsing and similar tools have many applications in areas other than compilation.

[image: image]

2.1
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LEXICAL TOKENS

A lexical token is a sequence of characters that can be treated as a unit in the grammar of a programming language. A programming language classifies lexical tokens into a finite set of token types. For example, some of the token types of a typical programming language are:

[image: image]

Punctuation tokens such as IF, VOID, RETURN constructed from alphabetic characters are called reserved words and, in most languages, cannot be used as identifiers.

Examples of nontokens are

[image: img]

In languages weak enough to require a macro preprocessor, the preprocessor operates on the source character stream, producing another character stream that is then fed to the lexical analyzer. It is also possible to integrate macro processing with lexical analysis.

Given a program such as

float match0(char *s) /* find a zero */

{if (!strncmp(s, "0.0", 3))

return 0.;

}

the lexical analyzer will return the stream

[image: img]
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where the token-type of each token is reported; some of the tokens, such as identifiers and literals, have semantic values attached to them, giving auxiliary information in addition to the token type.

How should the lexical rules of a programming language be described? In what language should a lexical analyzer be written?

We can describe the lexical tokens of a language in English; here is a description of identifiers in C or Java:

An identifier is a sequence of letters and digits; the first character must be a letter. The underscore _ counts as a letter. Upper- and lowercase letters are different. If the input stream has been parsed into tokens up to a given character, the next token is taken to include the longest string of characters that could possibly constitute a token. Blanks, tabs, newlines, and comments are ignored except as they serve to separate tokens. Some white space is required to separate otherwise adjacent identifiers, keywords, and constants.

And any reasonable programming language serves to implement an ad hoc lexer. But we will specify lexical tokens using the formal language of regular expressions, implement lexers using deterministic finite automata, and use mathematics to connect the two. This will lead to simpler and more readable lexical analyzers.

[image: image]

2.2
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REGULAR EXPRESSIONS

Let us say that a language is a set of strings; a string is a finite sequence of symbols. The symbols themselves are taken from a finite alphabet.

The Pascal language is the set of all strings that constitute legal Pascal programs; the language of primes is the set of all decimal-digit strings that represent prime numbers; and the language of C reserved words is the set of all alphabetic strings that cannot be used as identifiers in the C programming language. The first two of these languages are infinite sets; the last is a finite set. In all of these cases, the alphabet is the ASCII character set.

When we speak of languages in this way, we will not assign any meaning to the strings; we will just be attempting to classify each string as in the language or not.

To specify some of these (possibly infinite) languages with finite descriptions, we will use the notation of regular expressions. Each regular expression stands for a set of strings.

Symbol: For each symbol a in the alphabet of the language, the regular expression a denotes the language containing just the string a.

Alternation: Given two regular expressions M and N, the alternation operator written as a vertical bar | makes a new regular expression M | N. A string is in the language of M | N if it is in the language of M or in the language of N. Thus, the language of a | b contains the two strings a and b.

Concatenation: Given two regular expressions M and N, the concatenation operator · makes a new regular expression M · N. A string is in the language of M · N if it is the concatenation of any two strings α and β such that α is in the language of M and β is in the language of N. Thus, the regular expression (a | b) · a defines the language containing the two strings aa and ba.

Epsilon: The regular expression [image: image] represents a language whose only string is the empty string. Thus, (a · b) | [image: image] represents the language {"","ab"}.

Repetition: Given a regular expression M, its Kleene closure is M∗. A string is in M∗ if it is the concatenation of zero or more strings, all of which are in M. Thus, ((a | b) · a)∗ represents the infinite set { "" , "aa", "ba", "aaaa", "baaa", "aaba", "baba", "aaaaaa", . . . }.

Using symbols, alternation, concatenation, epsilon, and Kleene closure we can specify the set of ASCII characters corresponding to the lexical tokens of a programming language. First, consider some examples:


    (0 | 1)∗ · 0               Binary numbers that are multiples of two.

    b∗(abb∗)∗(a|[image: image])         Strings of a’s and b’s with no consecutive a’s.

    (a|b)∗aa(a|b)∗         Strings of a’s and b’s containing consecutive a’s.


In writing regular expressions, we will sometimes omit the concatenation symbol or the epsilon, and we will assume that Kleene closure “binds tighter” than concatenation, and concatenation binds tighter than alternation; so that ab | c means (a · b) | c, and (a |) means (a | [image: image]).

Let us introduce some more abbreviations: [abcd] means (a | b | c | d), [b-g] means [bcdefg], [b-gM-Qkr] means [bcdefgMNOPQkr], M? means (M | [image: image]), and M+ means (M ·M∗). These extensions are convenient, but none extend the descriptive power of regular expressions: Any set of strings that can be described with these abbreviations could also be described by just the basic set of operators. All the operators are summarized in Figure 2.1.

Using this language, we can specify the lexical tokens of a programming language (Figure 2.2). For each token, we supply a fragment of C code that reports which token type has been recognized.



[image: image]

[image: image]

FIGURE 2.1.     Regular expression notation.
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FIGURE 2.2.     Regular expressions for some tokens.

[image: image]

The fifth line of the description recognizes comments or white space, but does not report back to the parser. Instead, the white space is discarded and the lexer resumed. The comments for this lexer begin with two dashes, contain only alphabetic characters, and end with newline.

Finally, a lexical specification should be complete, always matching some initial substring of the input; we can always achieve this by having a rule that matches any single character (and in this case, prints an “illegal character” error message and continues).

These rules are a bit ambiguous. For example, does if8 match as a single identifier or as the two tokens if and 8? Does the string if 89 begin with an identifier or a reserved word? There are two important disambiguation rules used by Lex and other similar lexical-analyzer generators:

Longest match: The longest initial substring of the input that can match any regular expression is taken as the next token.

Rule priority: For a particular longest initial substring, the first regular expression that can match determines its token type. This means that the order of writing down the regular-expression rules has significance.
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[image: image]

FIGURE 2.3.     Finite automata for lexical tokens. The states are indicated by circles; final states are indicated by double circles. The start state has an arrow coming in from nowhere. An edge labeled with several characters is shorthand for many parallel edges.

[image: image]


Thus, if8 matches as an identifier by the longest-match rule, and if matches as a reserved word by rule-priority.

[image: image]

2.3

[image: image]

FINITE AUTOMATA

Regular expressions are convenient for specifying lexical tokens, but we need a formalism that can be implemented as a computer program. For this we can use finite automata (N.B. the singular of automata is automaton). A finite automaton has a finite set of states; edges lead from one state to another, and each edge is labeled with a symbol. One state is the start state, and certain of the states are distinguished as final states.

Figure 2.3 shows some finite automata. We number the states just for convenience in discussion. The start state is numbered 1 in each case. An edge labeled with several characters is shorthand for many parallel edges; so in the ID machine there are really 26 edges each leading from state 1 to 2, each labeled by a different letter.
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FIGURE 2.4.     Combined finite automaton.

[image: image]

In a deterministic finite automaton (DFA), no two edges leaving from the same state are labeled with the same symbol. A DFA accepts or rejects a string as follows. Starting in the start state, for each character in the input string the automaton follows exactly one edge to get to the next state. The edge must be labeled with the input character. After making n transitions for an n-character string, if the automaton is in a final state, then it accepts the string. If it is not in a final state, or if at some point there was no appropriately labeled edge to follow, it rejects. The language recognized by an automaton is the set of strings that it accepts.

For example, it is clear that any string in the language recognized by automaton ID must begin with a letter. Any single letter leads to state 2, which is final; so a single-letter string is accepted. From state 2, any letter or digit leads back to state 2, so a letter followed by any number of letters and digits is also accepted.

In fact, the machines shown in Figure 2.3 accept the same languages as the regular expressions of Figure 2.2.

These are six separate automata; how can they be combined into a single machine that can serve as a lexical analyzer? We will study formal ways of doing this in the next section, but here we will just do it ad hoc: Figure 2.4 shows such a machine. Each final state must be labeled with the token-type that it accepts. State 2 in this machine has aspects of state 2 of the IF machine and state 2 of the ID machine; since the latter is final, then the combined state must be final. State 3 is like state 3 of the IF machine and state 2 of the ID machine; because these are both final we use rule priority to disambiguate – we label state 3 with IF because we want this token to be recognized as a reserved word, not an identifier.

We can encode this machine as a transition matrix: a two-dimensional array (a vector of vectors), subscripted by state number and input character. There will be a “dead” state (state 0) that loops to itself on all characters; we use this to encode the absence of an edge.

[image: image]

There must also be a “finality” array, mapping state numbers to actions – final state 2 maps to action ID, and so on.

RECOGNIZING THE LONGEST MATCH

It is easy to see how to use this table to recognize whether to accept or reject a string, but the job of a lexical analyzer is to find the longest match, the longest initial substring of the input that is a valid token. While interpreting transitions, the lexer must keep track of the longest match seen so far, and the position of that match.

Keeping track of the longest match just means remembering the last time the automaton was in a final state with two variables, Last-Final (the state number of the most recent final state encountered) and Input-Position-at-Last-Final. Every time a final state is entered, the lexer updates these variables; when a dead state (a nonfinal state with no output transitions) is reached, the variables tell what token was matched, and where it ended.

Figure 2.5 shows the operation of a lexical analyzer that recognizes longest matches; note that the current input position may be far beyond the most recent position at which the recognizer was in a final state.
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FIGURE 2.5.     The automaton of Figure 2.4 recognizes several tokens. The symbol | indicates the input position at each successive call to the lexical analyzer, the symbol ⊥ indicates the current position of the automaton, and [image: image] indicates the most recent position in which the recognizer was in a final state.
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2.4
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NONDETERMINISTIC FINITE AUTOMATA

A nondeterministic finite automaton (NFA) is one that has a choice of edges – labeled with the same symbol – to follow out of a state. Or it may have special edges labeled with [image: image] (the Greek letter epsilon), that can be followed without eating any symbol from the input.

Here is an example of an NFA:

[image: image]

In the start state, on input character a, the automaton can move either right or left. If left is chosen, then strings of a’s whose length is a multiple of three will be accepted. If right is chosen, then even-length strings will be accepted. Thus, the language recognized by this NFA is the set of all strings of a’s whose length is a multiple of two or three.

On the first transition, this machine must choose which way to go. It is required to accept the string if there is any choice of paths that will lead to acceptance. Thus, it must “guess,” and must always guess correctly.

Edges labeled with [image: image] may be taken without using up a symbol from the input. Here is another NFA that accepts the same language:

[image: image]

Again, the machine must choose which [image: image]-edge to take. If there is a state with some [image: image]-edges and some edges labeled by symbols, the machine can choose to eat an input symbol (and follow the corresponding symbol-labeled edge), or to follow an [image: image]-edge instead.

CONVERTING A REGULAR EXPRESSION TO AN NFA

Nondeterministic automata are a useful notion because it is easy to convert a (static, declarative) regular expression to a (simulatable, quasi-executable) NFA.

The conversion algorithm turns each regular expression into an NFA with a tail (start edge) and a head (ending state). For example, the single-symbol regular expression a converts to the NFA

[image: image]

The regular expression ab, made by combining a with b using concatenation is made by combining the two NFAs, hooking the head of a to the tail of b. The resulting machine has a tail labeled by a and a head into which the b edge flows.
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FIGURE 2.6.     Translation of regular expressions to NFAs.
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In general, any regular expression M will have some NFA with a tail and head:

[image: image]

We can define the translation of regular expressions to NFAs by induction. Either an expression is primitive (a single symbol or [image: image]) or it is made from smaller expressions. Similarly, the NFA will be primitive or made from smaller NFAs.

Figure 2.6 shows the rules for translating regular expressions to nondeterministic automata. We illustrate the algorithm on some of the expressions in Figure 2.2 – for the tokens IF, ID, NUM, and error. Each expression is translated to an NFA, the “head” state of each NFA is marked final with a different token type, and the tails of all the expressions are joined to a new start node. The result – after some merging of equivalent NFA states – is shown in Figure 2.7.
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FIGURE 2.7.     Four regular expressions translated to an NFA.
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CONVERTING AN NFA TO A DFA

As we saw in Section 2.3, implementing deterministic finite automata (DFAs) as computer programs is easy. But implementing NFAs is a bit harder, since most computers don’t have good “guessing” hardware.

We can avoid the need to guess by trying every possibility at once. Let us simulate the NFA of Figure 2.7 on the string in. We start in state 1. Now, instead of guessing which [image: image]-transition to take, we just say that at this point the NFA might take any of them, so it is in one of the states {1, 4, 9, 14}; that is, we compute the [image: image]-closure of {1}. Clearly, there are no other states reachable without eating the first character of the input.

Now, we make the transition on the character i. From state 1 we can reach 2, from 4 we reach 5, from 9 we go nowhere, and from 14 we reach 15. So we have the set {2, 5, 15}. But again we must compute [image: image]-closure: from 5 there is an [image: image]-transition to 8, and from 8 to 6. So the NFA must be in one of the states {2, 5, 6, 8, 15}.

On the character n, we get from state 6 to 7, from 2 to nowhere, from 5 to nowhere, from 8 to nowhere, and from 15 to nowhere. So we have the set {7}; its [image: image]-closure is {6, 7, 8}.

Now we are at the end of the string in; is the NFA in a final state? One of the states in our possible-states set is 8, which is final. Thus, in is an ID token.

We formally define [image: image]-closure as follows. Let edge(s, c) be the set of all NFA states reachable by following a single edge with label c from state s.

For a set of states S, closure(S) is the set of states that can be reached from a state in S without consuming any of the input, that is, by going only through [image: image] edges. Mathematically, we can express the idea of going through [image: image] edges by saying that closure(S) is smallest set T such that

[image: image]

We can calculate T by iteration:

[image: image]

Why does this algorithm work? T can only grow in each iteration, so the final T must include S. If T = T′ after an iteration step, then T must also include [image: image]s∈T′ edge(s , [image: image]). Finally, the algorithm must terminate, because there are only a finite number of distinct states in the NFA.

Now, when simulating an NFA as described above, suppose we are in a set d = {si, sk, sl} of NFA states si , sk, sl. By starting in d and eating the input symbol c, we reach a new set of NFA states; we’ll call this set DFAedge(d , c):

[image: image]

Using DFAedge, we can write the NFA simulation algorithm more formally. If the start state of the NFA is s1, and the input string is c1, . . . , ck, then the algorithm is:

[image: image]

Manipulating sets of states is expensive – too costly to want to do on every character in the source program that is being lexically analyzed. But it is possible to do all the sets-of-states calculations in advance. We make a DFA from the NFA, such that each set of NFA states corresponds to one DFA state. Since the NFA has a finite number n of states, the DFA will also have a finite number (at most 2n) of states.

DFA construction is easy once we have closure and DFAedge algorithms. The DFA start state d1 is just closure(s1), as in the NFA simulation algorithm. Abstractly, there is an edge from di to dj labeled with c if dj = DFAedge(di , c). We let Σ be the alphabet.


[image: image]

The algorithm does not visit unreachable states of the DFA. This is extremely important, because in principle the DFA has 2n states, but in practice we usually find that only about n of them are reachable from the start state. It is important to avoid an exponential blowup in the size of the DFA interpreter’s transition tables, which will form part of the working compiler.
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FIGURE 2.8.     NFA converted to DFA.
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A state d is final in the DFA if any NFA-state in states[d] is final in the NFA. Labeling a state final is not enough; we must also say what token is recognized; and perhaps several members of states[d] are final in the NFA. In this case we label d with the token-type that occurred first in the list of regular expressions that constitute the lexical specification. This is how rule priority is implemented.

After the DFA is constructed, the “states” array may be discarded, and the “trans” array is used for lexical analysis.

Applying the DFA construction algorithm to the NFA of Figure 2.7 gives the automaton in Figure 2.8.

This automaton is suboptimal. That is, it is not the smallest one that recognizes the same language. In general, we say that two states s1 and s2 are equivalent when the machine starting in s1 accepts a string σ if and only if starting in s2 it accepts σ. This is certainly true of the states labeled [image: image] and [image: image] in Figure 2.8; and of the states labeled [image: image] and [image: image]. In an automaton with two equivalent states s1 and s2, we can make all of s2’s incoming edges point to s1 instead and delete s2.

How can we find equivalent states? Certainly, s1 and s2 are equivalent if they are both final or both non-final and for any symbol c, trans[s1, c ] = trans[s2, c]; [image: image] and [image: image] satisfy this criterion. But this condition is not sufficiently general; consider the automaton

[image: image]

Here, states 2 and 4 are equivalent, but trans[2, a ] ≠ trans [4, a].

After constructing a DFA it is useful to apply an algorithm to minimize it by finding equivalent states; see Exercise 2.6.

[image: image]

2.5
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Lex: A LEXICAL ANALYZER GENERATOR

DFA construction is a mechanical task easily performed by computer, so it makes sense to have an automatic lexical analyzer generator to translate regular expressions into a DFA.

Lex is a lexical analyzer generator that produces a C program from a lexical specification. For each token type in the programming language to be lexically analyzed, the specification contains a regular expression and an action.
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PROGRAM 2.9.     Lex specification of the tokens from Figure 2.2.

[image: image]

The action communicates the token type (perhaps along with other information) to the next phase of the compiler.

The output of Lex is a program in C – a lexical analyzer that interprets a DFA using the algorithm described in Section 2.3 and executes the action fragments on each match. The action fragments are just C statements that return token values.

The tokens described in Figure 2.2 are specified in Lex as shown in Program 2.9.

The first part of the specification, between the %{· · ·%} braces, contains includes and declarations that may be used by the C code in the remainder of the file.

The second part of the specification contains regular-expression abbreviations and state declarations. For example, the declaration digits [0-9]+ in this section allows the name {digits} to stand for a nonempty sequence of digits within regular expressions.

The third part contains regular expressions and actions. The actions are fragments of ordinary C code. Each action must return a value of type int, denoting which kind of token has been found.

In the action fragments, several special variables are available. The string matched by the regular expression is yytext. The length of the matched string is yyleng.

In this particular example, we keep track of the position of each token, measured in characters since the beginning of the file, in the variable char-Pos. The EM_tokPos variable of the error message module errormsg.h is continually told this position by calls to the macro ADJ. The parser will be able to use this information in printing informative syntax error messages.

The include file tokens.h in this example defines integer constants IF, ID, NUM, and so on; these values are returned by the action fragments to tell what token-type is matched.

Some tokens have semantic values associated with them. For example, ID’s semantic value is the character string constituting the identifier; NUM’s semantic value is an integer; and IF has no semantic value (any IF is indistinguishable from any other). The values are communicated to the parser through the global variable yylval, which is a union of the different types of semantic values. The token-type returned by the lexer tells the parser which variant of the union is valid.

START STATES

Regular expressions are static and declarative; automata are dynamic and imperative. That is, you can see the components and structure of a regular expression without having to simulate an algorithm, but to understand an automaton it is often necessary to “execute” it in your mind. Thus, regular expressions are usually more convenient to specify the lexical structure of programming-language tokens.

But sometimes the step-by-step, state-transition model of automata is appropriate. Lex has a mechanism to mix states with regular expressions. One can declare a set of start states; each regular expression can be prefixed by the set of start states in which it is valid. The action fragments can explicitly change the start state. In effect, we have a finite automaton whose edges are labeled, not by single symbols, but by regular expressions. This example shows a language with simple identifiers, if tokens, and comments delimited by (* and *) brackets:
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Though it is possible to write a single regular expression that matches an entire comment, as comments get more complicated it becomes more difficult, or even impossible if nested comments are allowed.

The Lex specification corresponding to this machine is

[image: image]

where INITIAL is the “outside of any comment” state. The last rule is a hack to get Lex into this state. Any regular expression not prefixed by a <STATE> operates in all states; this feature is rarely useful.

This example can be easily augmented to handle nested comments, via a global variable that is incremented and decremented in the semantic actions.
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P R O G R A M

[image: image]

LEXICAL ANALYSIS

Use Lex to implement a lexical analyzer for the Tiger language. Appendix A describes, among other things, the lexical tokens of Tiger.

This chapter has left out some of the specifics of how the lexical analyzer should be initialized and how it should communicate with the rest of the compiler. You can learn this from the Lex manual, but the “skeleton” files in the $TIGER/chap2 directory will also help get you started.

Along with the tiger.lex file you should turn in documentation for the following points:


	how you handle comments;

	how you handle strings;

	error handling;

	end-of-file handling;

	other interesting features of your lexer.



Supporting files are available in $TIGER/chap2 as follows:

tokens.h Definition of lexical-token constants, and yylval.

errormsg.h, errormsg.c The error message module, useful for producing error messages with file names and line numbers.

driver.c A test scaffold to run your lexer on an input file.

tiger.lex The beginnings of a real tiger.lex file.

makefile A “makefile” to compile everything.

When reading the Tiger Language Reference Manual (Appendix A), pay particular attention to the paragraphs with the headings Identifiers, Comments, Integer literal, and String literal.

The reserved words of the language are: while, for, to, break, let, in, end, function, var, type, array, if, then, else, do, of, nil.

The punctuation symbols used in the language are:

, : ; () [ ] { }. + - * / = <> < <= > >= & | :=

The string value that you return for a string literal should have all the escape sequences translated into their meanings.

There are no negative integer literals; return two separate tokens for -32.

Detect unclosed comments (at end of file) and unclosed strings.

The directory $TIGER/testcases contains a few sample Tiger programs.

To get started: Make a directory and copy the contents of $TIGER/chap2 into it. Make a file test.tig containing a short program in the Tiger language. Then type make; Lex will run on tiger.lex, producing lex.yy.c, and then the appropriate C files will be compiled.

Finally, lextest test.tig will lexically analyze the file using a test scaffold.
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F U R T H E R

R E A D I N G
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Lex was the first lexical-analyzer generator based on regular expressions [Lesk 1975]; it is still widely used.

Computing [image: image]-closure can be done more efficiently by keeping a queue or stack of states whose edges have not yet been checked for [image: image]-transitions [Aho et al. 1986]. Regular expressions can be converted directly to DFAs without going through NFAs [McNaughton and Yamada 1960; Aho et al. 1986].

DFA transition tables can be very large and sparse. If represented as a simple two-dimensional matrix (states × symbols) they take far too much memory. In practice, tables are compressed; this reduces the amount of memory required, but increases the time required to look up the next state [Aho et al. 1986].

Lexical analyzers, whether automatically generated or handwritten, must manage their input efficiently. Of course, input is buffered, so that a large batch of characters is obtained at once; then the lexer can process one character at a time in the buffer. The lexer must check, for each character, whether the end of the buffer is reached. By putting a sentinel – a character that cannot be part of any token – at the end of the buffer, it is possible for the lexer to check for end-of-buffer only once per token, instead of once per character [Aho et al. 1986]. Gray [1988] uses a scheme that requires only one check per line, rather than one per token, but cannot cope with tokens that contain end-of-line characters. Bumbulis and Cowan [1993] check only once around each cycle in the DFA; this reduces the number of checks (from once per character) when there are long paths in the DFA.

Automatically generated lexical analyzers are often criticized for being slow. In principle, the operation of a finite automaton is very simple and should be efficient, but interpreting from transition tables adds overhead. Gray [1988] shows that DFAs translated directly into executable code (implementing states as case statements) can run as fast as hand-coded lexers. The Flex “fast lexical analyzer generator” [Paxson 1995] is significantly faster than Lex.
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E X E R C I S E S

[image: image]

       2.1  Write regular expressions for each of the following.

a.   Strings over the alphabet {a, b, c} where the first a precedes the first b.

b.   Strings over the alphabet {a, b, c} with an even number of a’s.

c.   Binary numbers that are multiples of four.

d.   Binary numbers that are greater than 101001.

e.   Strings over the alphabet {a, b, c} that don’t contain the contiguous substring baa.

f.   The language of nonnegative integer constants in C, where numbers beginning with 0 are octal constants and other numbers are decimal constants.

g.   Binary numbers n such that there exists an integer solution of an+bn = cn.

       2.2  For each of the following, explain why you’re not surprised that there is no regular expression defining it.

a.   Strings of a’s and b’s where there are more a’s than b’s.

b.   Strings of a’s and b’s that are palindromes (the same forward as backward).

c.   Syntactically correct C programs.

       2.3  Explain in informal English what each of these finite state automata recognizes.
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       2.4  Convert these regular expressions to nondeterministic finite automata.

a.   (if|then|else)

b.   a((b|a∗c)x)∗|x∗a

       2.5  Convert these NFAs to deterministic finite automata.
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       2.6  Find two equivalent states in the following automaton, and merge them to produce a smaller automaton that recognizes the same language. Repeat until there are no longer equivalent states.

[image: image]

Actually, the general algorithm for minimizing finite automata works in reverse. First, find all pairs of inequivalent states. States X, Y are inequivalent if X is final and Y is not or (by iteration) if X [image: image] X′ and Y [image: image] Y′ and X′, Y′ are inequivalent. After this iteration ceases to find new pairs of inequivalent states, then X, Y are equivalent if they are not inequivalent. See Hopcroft and Ullman [1979], Theorem 3.10.

     *2.7  Any DFA that accepts at least one string can be converted to a regular expression. Convert the DFA of Exercise 2.3c to a regular expression. Hint: First, pretend state 1 is the start state. Then write a regular expression for excursions to state 2 and back, and a similar one for excursions to state 0 and back. Or look in Hopcroft and Ullman [1979], Theorem 2.4, for the algorithm.

     *2.8  Suppose this DFA were used by Lex to find tokens in an input file.
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a.   How many characters past the end of a token might Lex have to examine before matching the token?

b.   Given your answer k to part (a), show an input file containing at least two tokens such that the first call to Lex will examine k characters past the end of the first token before returning the first token. If the answer to part (a) is zero, then show an input file containing at least two tokens, and indicate the endpoint of each token.

       2.9  An interpreted DFA-based lexical analyzer uses two tables,

edges indexed by state and input symbol, yielding a state number, and final indexed by state, returning 0 or an action-number.

Starting with this lexical specification,
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generate the edges and final tables for a lexical analyzer.

Then show each step of the lexer on the string abaabbaba. Be sure to show the values of the important internal variables of the recognizer. There will be repeated calls to the lexer to get successive tokens.

 **2.10  Lex has a lookahead operator [ so that the regular expression [bc/def matches [bc only when followed by def (but def is not part of the matched string, and will be part of the next token(s)). Aho et al. [1986] describe, and Lex [Lesk 1975] uses, an incorrect algorithm for implementing lookahead (it fails on (a|ab)/ba with input [ba, matching [b where it should match [). Flex [Paxson 1995] uses a better mechanism that works correctly for (a|ab)/ba but fails (with a warning message) on zx*/xy*.

Design a better lookahead mechanism.
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3

Parsing

[image: image]

syn-tax: the way in which words are put together to form phrases, clauses, or sentences.

Webster’s Dictionary

The abbreviation mechanism in Lex, whereby a symbol stands for some regular expression, is convenient enough that it is tempting to use it in interesting ways:
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These regular expressions define sums of the form 28+301+9.

But now consider

[image: image]

This is meant to define expressions of the form:

(109+23)

61

(1+(250+3))

in which all the parentheses are balanced. But it is impossible for a finite automaton to recognize balanced parentheses (because a machine with N states cannot remember a parenthesis-nesting depth greater than N), so clearly sum and expr cannot be regular expressions.

So how does Lex manage to implement regular-expression abbreviations such as digits? The answer is that the right-hand-side ([0-9]+) is simply substituted for digits wherever it appears in regular expressions, before translation to a finite automaton.

This is not possible for the sum-and-expr language; we can first substitute sum into expr, yielding

expr = “(” expr “+” expr “)” | digits

but now an attempt to substitute expr into itself leads to

expr = “(” (“(” expr “+” expr “)” | digits) “+” expr “)” | digits

and the right-hand side now has just as many occurrences of expr as it did before – in fact, it has more!

Thus, the notion of abbreviation does not add expressive power to the language of regular expressions – there are no additional languages that can be defined – unless the abbreviations are recursive (or mutually recursive, as are sum and expr).

The additional expressive power gained by recursion is just what we need for parsing. Also, once we have abbreviations with recursion, we do not need alternation except at the top level of expressions, because the definition

expr = ab (c | d)e

can always be rewritten using an auxiliary definition as

aux  = c | d

expr = a b aux e

In fact, instead of using the alternation mark at all, we can just write several allowable expansions for the same symbol:

aux  = c

aux  = d

expr = a b aux e

The Kleene closure is not necessary, since we can rewrite it so that

expr = (a b c)∗

becomes

expr = (a b c) expr

expr = [image: image]
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GRAMMAR 3.1. A syntax for straight-line programs.

[image: image]

What we have left is a very simple notation, called context-free grammars. Just as regular expressions can be used to define lexical structure in a static, declarative way, grammars define syntactic structure declaratively. But we will need something more powerful than finite automata to parse languages described by grammars.

In fact, grammars can also be used to describe the structure of lexical tokens, although regular expressions are adequate – and more concise – for that purpose.

[image: image]

3.1

[image: image]

CONTEXT-FREE GRAMMARS

As before, we say that a language is a set of strings; each string is a finite sequence of symbols taken from a finite alphabet. For parsing, the strings are source programs, the symbols are lexical tokens, and the alphabet is the set of token types returned by the lexical analyzer.

A context-free grammar describes a language. A grammar has a set of productions of the form

symbol → symbol symbol · · · symbol

where there are zero or more symbols on the right-hand side. Each symbol is either terminal, meaning that it is a token from the alphabet of strings in the language, or nonterminal, meaning that it appears on the left-hand side of some production. No token can ever appear on the left-hand side of a production. Finally, one of the nonterminals is distinguished as the start symbol of the grammar.

Grammar 3.1 is an example of a grammar for straight-line programs. The start symbol is S (when the start symbol is not written explicitly it is conventional to assume that the left-hand nonterminal in the first production is the start symbol). The terminal symbols are

id print num , + ( ) := ;


[image: image]
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DERIVATION 3.2.

[image: image]

and the nonterminals are S, E, and L. One sentence in the language of this grammar is

id := num; id := id + (id := num + num, id)

where the source text (before lexical analysis) might have been

a := 7;

b := c + (d := 5 + 6, d)

The token-types (terminal symbols) are id, num, :=, and so on; the names (a,b,c,d) and numbers (7, 5, 6) are semantic values associated with some of the tokens.

DERIVATIONS

To show that this sentence is in the language of the grammar, we can perform a derivation: start with the start symbol, then repeatedly replace any nonterminal by one of its right-hand sides, as shown in Derivation 3.2.

There are many different derivations of the same sentence. A leftmost derivation is one in which the leftmost nonterminal symbol is always the one expanded; in a rightmost derivation, the rightmost nonterminal is always next to be expanded.

[image: image]

[image: image]

FIGURE 3.3.     Parse tree.

[image: image]

 

Derivation 3.2 is neither leftmost nor rightmost; a leftmost derivation for this sentence would begin,

[image: image]

PARSE TREES

A parse tree is made by connecting each symbol in a derivation to the one from which it was derived, as shown in Figure 3.3. Two different derivations can have the same parse tree.

AMBIGUOUS GRAMMARS

A grammar is ambiguous if it can derive a sentence with two different parse trees. Grammar 3.1 is ambiguous, since the sentence id := id+id+id has two parse trees (Figure 3.4).

[image: image]

[image: image]

FIGURE 3.4.     Two parse trees for the same sentence using Grammar 3.1.
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GRAMMAR 3.5.
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FIGURE 3.6.     Two parse trees for the sentence 1-2-3 in Grammar 3.5.
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FIGURE 3.7.     Two parse trees for the sentence 1+2*3 in Grammar 3.5.
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GRAMMAR 3.8.
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FIGURE 3.9.     Parse trees that Grammar 3.8 will never produce.

[image: image]

Grammar 3.5 is also ambiguous; Figure 3.6 shows two parse trees for the sentence 1-2-3, and Figure 3.7 shows two trees for 1+2*3. Clearly, if we use parse trees to interpret the meaning of the expressions, the two parse trees for 1-2-3 mean different things: (1 − 2) − 3 = −4 versus 1 − (2 − 3) = 2. Similarly, (1 + 2) × 3 is not the same as 1 + (2 × 3). And indeed, compilers do use parse trees to derive meaning.

Therefore, ambiguous grammars are problematic for compiling: in general we would prefer to have unambiguous grammars. Fortunately, we can often transform ambiguous grammars to unambiguous grammars.

Let us find an unambigous grammar that accepts the same language as Grammar 3.5. First, we would like to say that * binds tighter than +, or has higher precedence. Second, we want to say that each operator associates to the left, so that we get (1 − 2) − 3 instead of 1 − (2 − 3). We do this by introducing new nonterminal symbols to get Grammar 3.8.

The symbols E, T , and F stand for expression, term, and factor; conventionally, factors are things you multiply and terms are things you add.

This grammar accepts the same set of sentences as the ambiguous grammar, but now each sentence has exactly one parse tree. Grammar 3.8 can never produce parse trees of the form shown in Figure 3.9 (see Exercise 3.17).

Had we wanted to make * associate to the right, we could have written its production as T → F ∗ T .

We can usually eliminate ambiguity by transforming the grammar. Though there are some languages (sets of strings) that have ambiguous grammars but no unambiguous grammar, such languages may be problematic as programming languages because the syntactic ambiguity may lead to problems in writing and understanding programs.
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GRAMMAR 3.10.
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GRAMMAR 3.11.

[image: image]

END-OF-FILE MARKER

Parsers must read not only terminal symbols such as +, -, num, and so on, but also the end-of-file marker. We will use $ to represent end of file.

Suppose S is the start symbol of a grammar. To indicate that $ must come after a complete S-phrase, we augment the grammar with a new start symbol S$ and a new production S′→ S$.

In Grammar 3.8, E is the start symbol, so an augmented grammar is Grammar 3.10.

[image: image]

3.2

[image: image]

PREDICTIVE PARSING

Some grammars are easy to parse using a simple algorithm known as recursive descent. In essence, each grammar production turns into one clause of a recursive function. We illustrate this by writing a recursive-descent parser for Grammar 3.11.

A recursive-descent parser for this language has one function for each nonterminal and one clause for each production.

[image: image]

With suitable definitions of error and getToken, this program will parse very nicely.

Emboldened by success with this simple method, let us try it with Grammar 3.10:

[image: image]

There is a conflict here: the E function has no way to know which clause to use. Consider the strings (1*2-3)+4 and (1*2-3). In the former case, the initial call to E should use the E → E + T production, but the latter case should use E → T .

Recursive-descent, or predictive, parsing works only on grammars where the first terminal symbol of each subexpression provides enough information
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GRAMMAR 3.12.

[image: image]

to choose which production to use. To understand this better, we will formalize the notion of FIRST sets, and then derive conflict-free recursive-descent parsers using a simple algorithm.

Just as lexical analyzers can be constructed from regular expressions, there are parser-generator tools that build predictive parsers. But if we are going to use a tool, then we might as well use one based on the more powerful LR(1) parsing algorithm, which will be described in Section 3.3.

Sometimes it’s inconvenient or impossible to use a parser-generator tool. The advantage of predictive parsing is that the algorithm is simple enough that we can use it to construct parsers by hand – we don’t need automatic tools.

FIRST AND FOLLOW SETS

Given a string γ of terminal and nonterminal symbols, FIRST(γ) is the set of all terminal symbols that can begin any string derived from γ. For example, let γ = T ∗ F. Any string of terminal symbols derived from γ must start with id, num, or (. Thus,

FIRST(T ∗ F) = {id, num, (}.

If two different productions X → γ1 and X → γ2 have the same left-hand-side symbol (X) and their right-hand sides have overlapping FIRST sets, then the grammar cannot be parsed using predictive parsing. If some terminal symbol I is in FIRST(γ1) and also in FIRST(γ2), then the X function in a recursive-descent parser will not know what to do if the input token is I .

The computation of FIRST sets looks very simple: if γ = X Y Z, it seems as if Y and Z can be ignored, and FIRST(X) is the only thing that matters. But consider Grammar 3.12. Because Y can produce the empty string – and therefore X can produce the empty string – we find that FIRST(X Y Z) must include FIRST(Z). Therefore, in computing FIRST sets, we must keep track of which symbols can produce the empty string; we say such symbols are nullable. And we must keep track of what might follow a nullable symbol.

With respect to a particular grammar, given a string γ of terminals and nonterminals,


	 nullable (X) is true if X can derive the empty string.

	FIRST(γ) is the set of terminals that can begin strings derived from γ .

	FOLLOW(X) is the set of terminals that can immediately follow X. That is, t ∈ FOLLOW(X) if there is any derivation containing Xt. This can occur if the derivation contains X Y Zt where Y and Z both derive [image: image].



A precise definition of FIRST, FOLLOW, and nullable is that they are the smallest sets for which these properties hold:

For each terminal symbol Z, FIRST[Z ] = {Z }.

[image: image]

Algorithm 3.13 for computing FIRST, FOLLOW, and nullable just follows from these facts; we simply replace each equation with an assignment statement, and iterate.

Of course, to make this algorithm efficient it helps to examine the productions in the right order; see Section 17.4. Also, the three relations need not be computed simultaneously; nullable can be computed by itself, then FIRST, then FOLLOW.

This is not the first time that a group of equations on sets has become the algorithm for calculating those sets; recall the algorithm on page 28 for computing [image: image]-closure. Nor will it be the last time; the technique of iteration to a fixed point is applicable in dataflow analysis for optimization, in the back end of a compiler.

We can apply this algorithm to Grammar 3.12. Initially, we have:

[image: image]

In the first iteration, we find that a ∈ FIRST[X], Y is nullable, c ∈ FIRST[Y], d ∈ FIRST[Z], d ∈ FOLLOW[X], c ∈ FOLLOW[X],

[image: image]

[image: image]

ALGORITHM 3.13.     Iterative computation of FIRST, FOLLOW, and nullable.

[image: image]

d ∈ FOLLOW[Y]. Thus:

[image: image]

In the second iteration, we find that X is nullable, c ∈ FIRST[X], {a , c } ⊆ FIRST[Z], {a , c , d } ⊆ FOLLOW[X], {a , c , d } ⊆ FOLLOW[Y]. Thus:

[image: image]

The third iteration finds no new information, and the algorithm terminates.

It is useful to generalize the FIRST relation to strings of symbols:

[image: image]
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FIGURE 3.14.     Predictive parsing table for Grammar 3.12.

[image: image]

and similarly, we say that a string γ is nullable if each symbol in γ is nullable.

CONSTRUCTING A PREDICTIVE PARSER

Consider a recursive-descent parser. The parsing function for some nonterminal X has a clause for each X-production; it must choose one of these clauses based on the next token T of the input. If we can choose the right production for each (X , T), then we can write the recursive-descent parser. All the information we need can be encoded as a two-dimensional table of productions, indexed by nonterminals X and terminals T. This is called a predictive parsing table.

To construct this table, enter production X → γ in row X, column T of the table for each T ∈ FIRST(γ). Also, if γ is nullable, enter the production in row X, column T for each T ∈ FOLLOW[X].

Figure 3.14 shows the predictive parser for Grammar 3.12. But some of the entries contain more than one production! The presence of duplicate entries means that predictive parsing will not work on Grammar 3.12.

If we examine the grammar more closely, we find that it is ambiguous. The sentence d has many parse trees, including:

[image: image]

An ambiguous grammar will always lead to duplicate entries in a predictive parsing table. If we need to use the language of Grammar 3.12 as a programming language, we will need to find an unambiguous grammar.

Grammars whose predictive parsing tables contain no duplicate entries are called LL(1). This stands for Left-to-right parse, Leftmost-derivation, 1-symbol lookahead. Clearly a recursive-descent (predictive) parser examines the input left-to-right in one pass (some parsing algorithms do not, but these are generally not useful for compilers). The order in which a predictive parser expands nonterminals into right-hand sides (that is, the recursive-descent parser calls functions corresponding to nonterminals) is just the order in which a leftmost derivation expands nonterminals. And a recursive-descent parser does its job just by looking at the next token of the input, never looking more than one token ahead.

We can generalize the notion of FIRST sets to describe the first k tokens of a string, and to make an LL(k) parsing table whose rows are the nonterminals and columns are every sequence of k terminals. This is rarely done (because the tables are so large), but sometimes when you write a recursive-descent parser by hand you a need to look more than one token ahead.

Grammars parsable with LL(2) parsing tables are called LL(2) grammars, and similarly for LL(3), etc. Every LL(1) grammar is an LL(2) grammar, and so on. No ambiguous grammar is LL(k) for any k.

ELIMINATING LEFT RECURSION

Suppose we want to build a predictive parser for Grammar 3.10. The two productions

E → E + T

E → T

are certain to cause duplicate entries in the LL(1) parsing table, since any token in FIRST(T) will also be in FIRST(E + T). The problem is that E appears as the first right-hand-side symbol in an E-production; this is called left recursion. Grammars with left recursion cannot be LL(1).

To eliminate left recursion, we will rewrite using right recursion. We introduce a new nonterminal E′, and write

E → T E′

E′ → + T E′

E′ →

This derives the same set of strings (on T and +) as the original two productions, but now there is no left recursion.
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GRAMMAR 3.15.
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TABLE 3.16. Nullable, FIRST, and FOLLOW for Grammar 3.8.

[image: image]

In general, whenever we have productions X → X γ and X → α, where α does not start with X, we know that this derives strings of the form αγ ∗, an α followed by zero or more γ. So we can rewrite the regular expression using right recursion:

[image: image]

Applying this transformation to Grammar 3.10, we obtain Grammar 3.15.

To build a predictive parser, first we compute nullable, FIRST, and FOLLOW (Table 3.16). The predictive parser for Grammar 3.15 is shown in Table 3.17.

LEFT FACTORING

We have seen that left recursion interferes with predictive parsing, and that it can be eliminated. A similar problem occurs when two productions for the
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TABLE 3.17.    Predictive parsing table for Grammar 3.15. We omit the columns for num, /, and -, as they are similar to others in the table.

[image: image]

same nonterminal start with the same symbols. For example:

S → if E then S else S

S → if E then S

In such a case, we can left factor the grammar – that is, take the allowable endings (“else S” and [image: image]) and make a new nonterminal X to stand for them:

S → if E then S X

X →

X → else S

The resulting productions will not pose a problem for a predictive parser.

ERROR RECOVERY

Armed with a predictive parsing table, it is easy to write a recursive-descent parser. Here is a representative fragment of a parser for Grammar 3.15:

[image: image]


A blank entry in row T , column x of the LL(1) parsing table indicates that the parsing function T() does not expect to see token x – this will be a syntax error. How should error be handled? It is safe just to raise an exception and quit parsing, but this is not very friendly to the user. It is better to print an error message and recover from the error, so that other syntax errors can be found in the same compilation.

A syntax error occurs when the string of input tokens is not a sentence in the language. Error recovery is a way of finding some sentence similar to that string of tokens. This can proceed by deleting, replacing, or inserting tokens.

For example, error recovery for T could proceed by inserting a num token. It’s not necessary to adjust the actual input; it suffices to pretend that the num was there, print a message, and return normally.

[image: image]

It’s a bit dangerous to do error recovery by insertion, because if the error cascades to produce another error, the process might loop infinitely. Error recovery by deletion is safer, because the loop must eventually terminate when end-of-file is reached.

Simple recovery by deletion works by skipping tokens until a token in the FOLLOW set is reached. For example, error recovery for T′ could work like this:

[image: image]

A recursive-descent parser’s error-recovery mechanisms must be adjusted (sometimes by trial and error) to avoid a long cascade of error-repair messages resulting from a single token out of place.
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3.3

[image: image]

LR PARSING

The weakness of LL(k) parsing techniques is that they must predict which production to use, having seen only the first k tokens of the right-hand side. A more powerful technique, LR(k) parsing, is able to postpone the decision until it has seen input tokens corresponding to the entire right-hand side of the production in question (and k more input tokens beyond).

LR(k) stands for Left-to-right parse, Rightmost-derivation, k-token lookahead. The use of a rightmost derivation seems odd; how is that compatible with a left-to-right parse? Figure 3.18 illustrates an LR parse of the program

a := 7;

b := c + (d := 5 + 6, d)

using Grammar 3.1, augmented with a new start production S′ → S$.

The parser has a stack and an input. The first k tokens of the input are the lookahead. Based on the contents of the stack and the lookahead, the parser performs two kinds of actions:

Shift: move the first input token to the top of the stack.

Reduce: Choose a grammar rule X → A B C; pop C , B , A from the top of the stack; push X onto the stack.

Initially, the stack is empty and the parser is at the beginning of the input. The action of shifting the end-of-file marker $ is called accepting and causes the parser to stop successfully.

In Figure 3.18, the stack and input are shown after every step, along with an indication of which action has just been performed. The concatenation of stack and input is always one line of a rightmost derivation; in fact, Figure 3.18 shows the rightmost derivation of the input string, upside-down.

LR PARSING ENGINE

How does the LR parser know when to shift and when to reduce? By using a deterministic finite automaton! The DFA is not applied to the input – finite automata are too weak to parse context-free grammars – but to the stack. The edges of the DFA are labeled by the symbols (terminals and nonterminals) that can appear on the stack. Table 3.19 is the transition table for Grammar 3.1.


[image: image]
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FIGURE 3.18.     Shift-reduce parse of a sentence. Numeric subscripts in the Stack are DFA state numbers; see Table 3.19

[image: image]

The elements in the transition table are labeled with four kinds of actions:



	sn		Shift into state n;

	gn		Goto state n;

	rk		Reduce by rule k;

	a		Accept;

			Error (denoted by a blank entry in the table).


To use this table in parsing, treat the shift and goto actions as edges of a DFA, and scan the stack. For example, if the stack is id := E, then the DFA goes from state 1 to 4 to 6 to 11. If the next input token is a semicolon, then the “;” column in state 11 says to reduce by rule 2. The second rule of the
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TABLE 3.19.     LR parsing table for Grammar 3.1.
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GRAMMAR 3.20.

[image: image]

grammar is S → id:=E, so the top three tokens are popped from the stack and S is pushed.

The action for “+” in state 11 is to shift; so if the next token had been + instead, it would have been eaten from the input and pushed on the stack.

Rather than rescan the stack for each token, the parser can remember instead the state reached for each stack element. Then the parsing algorithm is:

Look up top stack state, and input symbol, to get action;

If action is


	
Shift(n):	Advance input one token; push n on stack.

	Reduce(k):	Pop stack as many times as the number of symbols on the right-hand side of rule k;

		Let X be the left-hand-side symbol of rule k;

		In the state now on top of stack, look up X to get “goto n”;

		Push n on top of stack.

	Accept:	Stop parsing, report success.

	Error:	Stop parsing, report failure.



LR(0) PARSER GENERATION

An LR(k) parser uses the contents of its stack and the next k tokens of the input to decide which action to take. Table 3.19 shows the use of one symbol of lookahead. For k = 2, the table has columns for every two-token sequence and so on; in practice, k > 1 is not used for compilation. This is partly because the tables would be huge, but more because most reasonable programming languages can be described by L R (1) grammars.

LR(0) grammars are those that can be parsed looking only at the stack, making shift/reduce decisions without any lookahead. Though this class of grammars is too weak to be very useful, the algorithm for constructing LR(0) parsing tables is a good introduction to the LR(1) parser construction algorithm.

We will use Grammar 3.20 to illustrate LR(0) parser generation. Consider what the parser for this grammar will be doing. Initially, it will have an empty stack, and the input will be a complete S-sentence followed by $; that is, the right-hand side of the S′ rule will be on the input. We indicate this as S′ → .S$ where the dot indicates the current position of the parser.

In this state, where the input begins with S, that means that it begins with any possible right-hand side of an S-production; we indicate that by

[image: image]

Call this state 1. A grammar rule, combined with the dot that indicates a position in its right-hand side, is called an item (specifically, an LR(0) item). A state is just a set of items.

Shift actions.
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for each terminal symbol Z
FIRST[Z] < {Z}
repeat
for each production X — YiY,---Yx
for each i from 1 to k, each j fromi + 1 to k,
if all the Y; are nullable
then nullable[ X ] « true
if Yy .- - Y;_; are all nullable
then FIRST[X] <« FIRST[X] U FIRST[Y;]
if Yiy - - - Yi are all nullable
then FOLLOW[Y;] < FOLLOW[Y;] U FOLLOW[X]
if Yiy1 - - Y;_; are all nullable
then FOLLOW([Y;] <~ FOLLOW[Y;] U FIRST[Y;]
until FIRST, FOLLOW, and nullable did not change in this iteration.
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A_stm A_CompoundStm(A_stm stml, A_stm stm2) {
A_stm s = checked_malloc(sizeof (*s));
s->kind = A_compoundStm;
s->u.compound. stml=stml; s->U.compound.stm2=stm2;
return s;
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void S(void) { E(); eat(EOF); j

void E(void) {switch (tok) {
case ?: E(); eat(PLUS); T(); break;
case ?: E(); eat (MINUS); T(); break;
case ?: T(); break;
default: error();

1

void T(void) {switch (tok) {
case ?: T(); eat(TIMES); F(); break;
case ?: T(); eat(DIV); F(); break;
case ?: F(); break;

default: error();

11
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for each production X — Y,Y,--- ¥,
for each i from 1 to k, each j from i + 1 to k,
if all the Y; are nullable
then nullable[X] = true
if Yy --- Y;_; are all nullable
then FIRST[X] = FIRST[X] U FIRST[Y;]
if Yiyy - - - Yy are all nullable
then FOLLOW[Y;] = FOLLOW[Y;] U FOLLOW[X]
if Yiyy .-+ Y;_; are all nullable
then FOLLOW[Y;] = FOLLOW[Y;] UFIRST[Y;]
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typedel struct table *Table_ ;

struct table {string id; int value; Table_ tail};

Table_ Table(string id, int value, struct table *tail) {
Table_ t = malloc(sizeof (*t));
t->id=id; t->value=value; t->tail=tail;
return t;

}
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T _tree 1nsert (string key, void *binding, T_tree t);
void * lookup(string key, T tree t);
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typedel struct tree *T_tree;
struct tree {T_tree left; String key; T tree right;};
T_tree Tree(T_tree 1, String k, T tree r) {

T_tree t = checked malloc(sizeof (*t));

t->left=1; t->key=k; t->right=r;

return t;

T_tree insert (String key, T tree t) {
if (t==NULL) return Tree (NULL, key, NULL)
else if (strcmp(key,t->key) < 0)
return Tree (insert (key, t->left),t->key, t->right) ;
else if (strcmp(key,t->key) > 0)
return Tree (t->left,t->key,insert (key, t->right));
else return Tree(t->left, key,t->right);
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fori < 1tok
d < DFAedge(d, c;)
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the usual preamble ...
*Start INITIAL COMMENT

13

<INITIAL>if {ADJ; return IF;}

<INITIAL>[a-z]+ {ADJ; yylval.sval=String(yytext); return ID;}
<INITIAL>" (*" {ADJ; BEGIN COMMENT; }

<INITIAL>. {ADJ; EM_error("illegal character");}
<COMMENT>"*) " {ADJ; BEGIN INITIAL;}

<COMMENT> . {apgJ;}

{BEGIN INITIAL; yyless(1);}
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/Futil.h ¥/
#include <assert.h>

typedef char *string;
string String(char *);

typedef char bool;
#define TRUE 1
#define FALSE 0

void *checked malloc (int);
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void *checked _malloc(int len) {
void *p = malloc(len);

assert (p) ;

return p;

}
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A_BStm prog =
A_CompoundStm(A_AssignStm("a",
A_OpExp (A_NumExp (5) , A_plus, A NumExp(3))),
A_CompoundStm(A_AssignStm("b",
A_EseqExp (A_PrintStm(A_PairExpList (A_IdExp("a"),
A_LastExpList (A_OpExp (A_IdExp("a"), A_minus,
A_NumExp(1))))),
A_OpEXp (A_NumExp (10), A _times, A_IdExp("a")))),
A PrintStm(A LastExpList (A IAExp("b")))));
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0 1 JEf --not-a-com
2 2 i --not-a-com
3 3 |if] --not-a-com
3 0 |ifl |- -not-a-com  return IF
0 1 iff --not-a-com
12 12 if| T -not-a-com
12 0 if|T-not-a-com  found white space; resume
0 1 if J-not-a-com
9 9 if |-not-a-com
9 10 if [Fpot-a-com
9 10 if [Fnot-a-com
9 10 if [Tnot-a-com
9 10 if [Tnot-a-com
9 0 if [Tnot-m-com error, illegal token ‘-’; resume
0 1 if -[-not-a-com
9 9 if -[not-a-com
9 0 if -['hpot-a-com error; illegal token ‘-’; resume






OEBPS/images/img34_2.jpg
a

-
oo o e B





OEBPS/images/img35_1.jpg
oigj\@“(“\d(\@éao





OEBPS/images/img35_2.jpg





OEBPS/images/img65_2.jpg
int Tprime_follow [] = {PLUS, TIMES, RPAREN, EOF, -1};

void Tprime (void) { switch (tok) {

case PLUS: break;
case TIMES: eat(TIMES); F(); Tprime(); break;
case RPAREN: break;
case EOF: break;
default: printf("expected +, *, right-paren,

or end-of-file");
skipto (Tprime_follow) ;

1}
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reduce E — num
shift

shift

reduce E — num
reduce E — E + E
reduce S — id: =E
shift
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reduce E — id
shift

reduce E — (S, E)
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reduce S — id: =E
reduce S — S; 8
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{return IF;
{return ID;}
{return NUM;}
{return REAL;}
{ /*do nothing %}
{error();}
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void T(void) {switch (tok) {
case ID:
case NUM:
case LPAREN: F(); Tprime(); break;
default: error!

1}
void Tprime (void) {switch (tok) {
case PLUS: break;
case TIMES: eat (TIMES) ; F(); Tprime(); break;
case EOF: break;

case RPAREN: break;
default: error!
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void T(void) {switch (tok) {
case ID:
case NUM:
case LPAREN: F(); Tprime(); break;

default: printf("expected id, num, or left-paren");
1}
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typedef char *string;

typedef struct A_stm_ *A_stm;

typedef struct A_exp_ *A_exp;

typedef struct A_expList_ *A_expList;

typedef enum {A plus,A minus,A times,A div} A_binop;

struct A stm_ {enum {A compoundStm, A assignStm, A_printstm} kind;
union {struct {A_stm stml, stm2;} compound;
struct {string id; A _exp exp;} assign;
struct {A_expList exps;} print;
}ous
Yi
A_stm A_CompoundStm(A_stm stml, A_stm stm2);
A_stm A_AssignStm(string id, A_exp exp);
A_stm A_PrintStm(A_expList exps);

struct A exp {enum {A idExp, A_numExp, A_opEXp, A_eseqExp} kind;
union {string id;
int num;
struct {A exp left; A binop oper; A_exp right;} op;
struct {A stm stm; A_exp exp;} eseq;
}oui
Yi
A_exp A_IdExp(string id);
A_exp A_NumExp(int num);
A_exp A_OpExp (A_exp left, A binop oper, A_exp right);
A_exp A_EseqExp (A_stm stm, A_exp exp);

struct A expList_ {enum {A_pairExpList, A_lastExpList} kind;
union {struct {A_exp head; A_expList tail;} pair;
A_exp last;
}ous
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51
/* C Declarations: */

#include "tokens.h" /*definitions of IF, ID, NUM, ... %/
#include "errormsg.h"

union {int ival; string sval; double fval;} yylval;
int charPos=1;

#define ADJ (EM_tokPos=charPos, charPos+=yyleng)
%)

/* Lex Definitions: */

digits [0-9]+

3%

/* Regular Expressions and Actions: %

£ {ADJ; return IF;}

[a-2] [a-20-9]* {ADJ; yylval.sval=String(yytext);
return ID;}

{digits} {ADJ; yylval.ival=atoi (yytext);
return NUM;}

({digits}".n[0-9]*) | ([0-9]*"."{digits}) {aDJ;

yylval.fval=atof (yytext) ;
return REAL;}
("--n{a-z]*#"\n") | (" "] m\nv[m\E") + {aDg; }
. {ADJ; EM error("illegal character");}
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