

Build
AI-Enhanced
Audio
Plugins
with
C++

Build
AI-Enhanced
Audio
Plugins
with
C++
explains
how
to
embed
artificial
intel­
ligence
technology
inside
tools
that
can
be
used
by
audio
and
music
professionals,

through
worked
examples
using
Python,
C++
and
audio
APIs
which
demonstrate

how
to
combine
technologies
to
produce
professional,
AI-enhanced
creative
tools.

Alongside
a
freely
accessible
source
code
repository
created
by
the
author
that
ac­
companies
the
book
for
readers
to
reference,
each
chapter
is
supported
by
complete

example
applications
and
projects,
 including
an
autonomous
music
 improviser,
a

neural
 network-based
 synthesizer
 meta-programmer
 and
 a
 neural
 audio
 effects

processor.
Detailed
 instructions
on
how
to
build
each
example
are
also
provided,

including
source
code
extracts,
diagrams
and
background
theory.

This
 is
 an
 essential
 guide
 for
 software
developers
 and
programmers
 of
 all
 levels

looking
 to
 integrate
AI
 into
 their
 systems,
 as
well
 as
 educators
 and
 students
 of

audio
programming,
machine
learning
and
software
development.

Matthew
 John
 Yee-King
 is
 a
 professor
 in
 the
 department
 of
 computing
 at

Goldsmiths,
University
of
London.
He
 is
an
 experienced
 educator
as
well
as
 the

programme
director
for
the
University
of
London’s
online
BSc
Computer
Science

degree.

“This
book
is
long
overdue.
With
the
explosion
of
activity
in
the
field
of
AI-assisted

music
creation,
the
need
for
mastering
all
the
chain
of
software
from
ideas
to
actual

plugins
 is
stronger
than
ever.
Matthew
has
a
direct,
hands-on
approach
that
not

only
will
be
 of
 great
help
 to
people
wanting
 to
 contribute
 to
 the
field,
but
will

also
encourage
others
to
experiment
and
share
their
code.
Matthew’s
experience

in
teaching
shows
and
definitely
contributes
to
making
the
book
easy
to
read
and

to-the-point.”

François
Pachet,
Research
Director

Build
AI-Enhanced
Audio

Plugins
with
C++

Matthew
John
Yee-King

Designed
cover
image:
Matthew
John
Yee-King

First
published
2024

by
Routledge

4
Park
Square,
Milton
Park,
Abingdon,
Oxon
OX14
4RN

and
by
Routledge

605 Third Avenue, New York, NY 10017

Routledge
 is
an
 imprint
of
 the
Taylor
&
Francis
Group,
an
 informa
business

©
2024
Matthew
John
Yee-King

The
right
of
Matthew
John
Yee-King
to
be
 identified
as
author
of
this
work
has

been
asserted
in
accordance
with
sections
77
and
78
of
the
Copyright,
Designs
and

Patents
Act
1988.

All
rights
reserved.
No
part
of
this
book
may
be
reprinted
or
reproduced
or
utilised

in
 any
 form
 or
 by
 any
 electronic,
 mechanical,
 or
 other
 means,
 now
 known
 or

hereafter
 invented,
 including
photocopying
and
 recording,
or
 in
any
 information

storage
or
retrieval
system,
without
permission
in
writing
from
the
publishers.

Trademark
notice:
Product
or
corporate
names
may
be
trademarks
or
registered

trademarks,
and
are
used
only
 for
 identification
and
 explanation
without
 intent

to
infringe.

British
Library
Cataloguing-in-Publication
Data

A
catalogue
record
for
this
book
 is
available
from
the
British
Library

ISBN:
978-1-032-43046-1
(hbk)

ISBN:
978-1-032-43042-3
(pbk)

ISBN:
978-1-003-36549-5
(ebk)

DOI:
10.4324/9781003365495

Typeset
in
Computer
Modern
by
Matthew
John
Yee-King

Access
the
Support
Material:
www.yeeking.net/book

Publisher’s
Note

This
book
has
been
prepared
from
camera-ready
copy
provided
by
the
author.

http://www.yeeking.net
https://www.dx.doi.org/10.4324/9781003365495

For
Sakie,
Otoné,
and
my
 family.
And
of
course,
Asuka

the
beagle.

https://taylorandfrancis.com

Contents

Foreword
 x

List
of
figures
 xi

I
 Getting
started
 1

1
 Introduction
to
the
book
 2

2
 Setting
up
your
development
environment
 11

3
 Installing
JUCE
 23

4
 Installing
and
using
CMake
 32

5
 Set
up
 libtorch
 44

6
 Python
setup
 instructions
 53

7
 Common
development
environment
setup
problems
 60

8
 Basic
plugin
development
 62

9
 FM
synthesizer
plugin
 72

II
 ML-powered
plugin
control:
the
meta-controller
 80

10
Using
regression
 for
synthesizer
control
 81

11
Experiment
with
regression
and
 libtorch
 87

12
The
meta-controller
 98

vii

13
Linear
 interpolating
superknob
 103

14
Untrained
torchknob
 107

15
Training
the
torchknob
 119

16
Plugin
meta-controller
 129

17
Placing
plugins
 in
an
AudioProcessGraph
structure
 135

18
Show
a
plugin’s
user
 interface
 143

19
From
plugin
host
to
meta-controller
 151

III
 The
autonomous
music
 improviser
 157

20
Background:
all
about
sequencers
 158

21
Programming
with
Markov
models
 169

22
Starting
the
 Improviser
plugin
 174

23
Modelling
note
onset
times
 187

24
Modelling
note
duration
 194

25
Polyphonic
Markov
model
 200

IV
 Neural
audio
effects
 209

26
Welcome
to
neural
effects
 210

27
Finite
 Impulse
Responses,
signals
and
systems
 214

28
Convolution
 220

29
Infinite
 Impulse
Response
filters
 231

30
Waveshapers
 241

31
Introduction
to
neural
guitar
amplifier
emulation
 254

32
Neural
FX:
LSTM
network
 261

33
JUCE
LSTM
plugin
 274

34
Training
the
amp
emulator:
dataset
 287

35
Data
shapes,
LSTM
models
and
 loss
 functions
 296

36
The
LSTM
training
 loop
 309

37
Operationalising
 the
model
 in
a
plugin
 315

38
Faster
LSTM
using
RTNeural
 320

39
Guide
to
the
projects
 in
the
repository
 328

Bibliography
 335

Index
 340

Foreword

I
am
delighted
 to
present
my
book
on
building
AI-enhanced
audio
 software.
My

name
 is
Matthew
Yee-King,
and
 I
work
as
an
educator,
musician,
and
computer

music
 researcher
at
Goldsmiths,
University
of
London.
 I
have
written
 this
book

because
 I
 started
making
AI-powered
 audio
plugins
myself
 and
 found
 that
mu­
sicians
 were
 much
 happier
 using
 plugins
 than
 other
 forms
 of
 software
 as
 they

integrate
with
their
existing
tools.
But
there
were
no
detailed
instructions
on
how

to
 integrate
machine
 learning
with
audio
 in
C++
 for
plugin
development.
.
.
until

now!
I
hope
you
enjoy
the
book
and
find
the
techniques
helpful
for
your
work
with

AI-enhanced
audio
software.
Here’s
my
bio:

As
an
educator,
I
have
taught
undergraduate
courses
in
digital
signal
process­
ing,
creative
audio
programming,
 software
engineering,
and
artificial
 intelligence

using
 languages
such
as
Java,
JavaScript,
C++,
and
Python
on-campus
and
on­
line.
I
am
the
academic
director
for
the
first
undergrad
programme
on
the
Coursera

platform,
the
University
of
London’s
BSc
Computer
Science
programme.
In
2023,

the
course
has
seen
over
8,000
students
from
more
than
120
countries.

As
 a
 musician,
 I
 have
 released
 electronic
 music
 on
 Aphex
 Twin’s
 Rephlex

Records,
Warp
Records,
and
others.
I
have
collaborated
with
many
artists,
includ­
ing
Tom
Jenkinson
(Squarepusher),
Tom
Skinner
(Smile
Band),
Matthew
Herbert,

Finn
Peters,
Alex
McLean,
and
Max
de
Wardener.
My
main
live
instrument
is
the

drum
kit,
acoustic
or
electronic,
but
I
have
also
worked
as
a
sound
designer,
Su­
perCollider
programmer,
and
creator
of
musical
AI
systems.

As
a
computer
music
researcher,
I
have
developed
music
software
and
published

papers
on
autonomous
musical
agents,
automatic
sound
synthesiser
programming,

and
systems
supporting
music
education.
I
have
worked
on
research
projects
as
a

research
engineer,
a
post-doc,
a
co-I,
and
a
PI.
I
have
collaborated
with
individu­
als
and
research
groups
around
the
world,
 including
Mark
d’Inverno
(my
 fantas­
tic
mentor),
Andrea
Fiorucci,
Francois
Pachet,
Jon
McCormack,
Mick
Grierson,

Nick
Collins,
Rebecca
Fiebrink,
the
Sony
Computer
Science
Laboratory
Paris,
the

Artificial
Intelligence
Research
Institute,
CSIC
Barcelona,
the
Department
of
Hu­
man
Centred
Computing,
Monash
University
Australia,
and
Politecnico
di
Milano,

Italy.

I
 would
 like
 to
 thank
 all
 the
 amazingly
 talented
 musicians
 (especially
 Gaz,

Domenico,
Finn,
Alex,
and
Max)
and
researchers
I
have
worked
with
for
inspiring

me
and,
 indeed,
the
work
on
which
some
of
the
projects
 in
the
book
are
based.

x

List
of
figures

1.1

 Mountainous
 landscape
 depicting
musical
 competencies,
with
 the

water of AI rising to consume them.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 2

2.1

 Many
component
parts
are
needed
to
build
AI-enhanced
audio
soft­
ware. .
 11

2.2

 The
components
 involved
 in
AI-enhanced
audio
application
devel­
opment.
 .
 12

2.3

 Setting
 up
 your
 development
 environment
 involves
 complex
 ma­
chinery and lots of steps.
 .
 18

2.4

 Creating,
building
and
 running
a
C++
console
program
 in
Visual

Studio. .
 19

2.5

 C++-related
packages
that
you
should
 install.
.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 19

2.6

 Creating,
building
and
running
a
C++
console
program
in
Xcode.
 20

2.7

 My
 development
 setup
 showing
 an
M1
Mac
 running
macOS
 hid­

den
on
 the
 left,
a
ThinkPad
 running
Ubuntu
22.04
 in
 front
of
 the

monitor
and
a
Gigabyte
Aero
running
Windows
11
on
the
right.
 .
 22

3.1

 The
available
application
types
for
Projucer.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 24

3.2

 Projucer
project
view.
The
 exporter
panel
 is
 exposed
 on
 the
 left,

module
configuration
panel
 is
on
the
right.
Note
that
my
modules

are all set to Global.
 .
 25

3.3

 Building
the
Standalone
solution
in
Visual
Studio
Community
2022.
 27

3.4

 Enabling
console
output
for
a
JUCE
project
in
Visual
Studio/
Win­

dows.
At
the
top:
redirect
text
output
to
the
immediate
window
and

open
 the
 immediate
 window.
 At
 the
 bottom:
 a
 program
 running

with
DBG
output
showing
 in
the
immediate
window.
 .
 .
 .
 .
 .
 .
 .
 28

3.5

 Running
a
JUCE
plugin
project
 in
Xcode
–
make
 sure
you
 select

Standalone.
 .
 29

3.6

 The
 JUCE
 AudioPluginHost
 application,
 which
 comes
 with
 the

JUCE
distribution.
One
of
its
built–in
plugins,
a
sine
synth,
is
wired

to the MIDI input and the audio output. .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 30

xi

xii
List
of
figures

3.7

 The
 list
of
available
plugins
 in
 the
JUCE
AudioPluginHost
app.
 I

have
clicked
the
options
menu
which
is
showing
its
‘scan
for
new
or

updated ...’ function.
 .
 31

4.1

 CMake
running
in
the
Windows
Powershell.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 33

4.2

 A CMake project viewed in VSCode.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 36

4.3

 A
CMake
project
viewed
 in
Visual
Studio
Community
2022.
 .
 .
 .
 38

4.4

 A CMake project viewed in Xcode.

 39

6.1

 A
 Jupyter
notebook
 in
 action.
There
 are
 cells
 containing
Python

code
which
 you
 can
 execute.
 If
 you
 trigger
 a
 plot
 command,
 the

plot will be embedded in the worksheet.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 57

8.1

 dphase
depends
on
the
sample
rate
(the
space
between
the
samples)

and
the
frequency
(how
fast
you
need
to
get
through
the
sine
wave).
 64

8.2

 A
synthesizer
plugin
loads
data
 into
the
 incoming
blocks.
 .
 .
 .
 .
 .
 65

8.3

 Printing
 descriptions
 of
 MIDI
 messages
 coming
 into
 a
 plugin
 in

Standalone
mode
from
a
USB
controller
keyboard
(left)
and
MIDI

coming
 from
 an
 on-screen
 piano
 keyboard
 in
 AudioPluginHost

(right).
 .
 70

9.1

 Simple
FM
plugin
with
sliders
for
frequency,
modulation
index
and

modulation depth.
 .
 75

9.2

 Showing
plugin
parameters
for
the
Surge
XT
synthesiser
using
Au­
dioPluginHost.
 .
 76

9.3

 Showing
plugin
parameters
 for
the
FM
plugin
using
AudioPlugin-

Host.
 .
 77

9.4

 Showing
 the
 custom
 UI
 for
 the
 FM
 plugin
 (right),
 the
 auto-

generated
parameter
UI
(middle)
and
AudioPluginHost
(left).
 .
 .
 .
 78

10.1
 The
meta-controller
uses
regression
to
control
other
plugins.
 .
 .
 .
 .
 81

10.2
 Linear
 regression
 finds
 the
 straight
 line
 that
 best
 fits
 some
 data.

Important
 features
of
 the
 line
are
 the
point
at
which
 it
 intercepts

the y-axis and the slope gradient.

 82

10.3
 Linear
 regression
 with
 two

lines,
 allowing
 the
 estimation
 of
 two

parameters
 given
 a
 single
 ‘meta-controller’
 input
 control.
 The
 x-

axis
represents
the
control
 input
and
the
y-axis
shows
the
settings

for
the
two
parameters
the
control
 is
mapped
to.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 84

10.4
 A
neural
network
applies
a
function
to
 its
input.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 85

10.5
 A
neural
network
scales
by
a
weight
and
adds
a
bias.
 .
 .
 .
 .
 .
 .
 .
 86

11.1
 Simple
single
layer
network
with
one
input
and
one
output.
 .
 .
 .
 .
 91

List
of
figures

 xiii

11.2
 More
complex
single
 layer
with
more
 inputs
and
outputs.
Now
we

apply
 a
weight
 to
 each
 input
 as
 it
 goes
 to
 each
 output.
We
 then

sum
the
weighted
 inputs
and
apply
a
bias
to
each
output.
 .
 .
 .
 .
 .
 93

11.3
 The
optimiser
adjusts
the
network
weights.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 95

12.1
 The
meta-controller
uses
a
neural
network
for
new
methods
of
syn­
thesizer sound exploration.
 .
 98

12.2
 The
Wekinator
workflow:
data
 collection,
 training,
 inference
 then

back to data collection.
 .
 101

13.1
 User
 interface
 for
 the
 simple
 two-parameter
FM
 synthesizer.
The

toggle
switch
switches
between
drone
and
envelope
mode,
the
two

sliders
control
modulation
depth
and
index
and
the
piano
keyboard

allows you to play notes on the synthesizer.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 103

13.2
 Superknob
UI
on
the
 left.
On
the
right
 is
a
closer
view
of
a
range

slider.
Small
 triangles
 above
 and
below
 the
 line
 allow
 the
user
 to

constrain
the
range
of
the
main
slider
control.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 104

14.1
 The torchknob system architecture. .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 108

14.2
 Basic
architecture
where
a
linear
layer
passes
into
a
softmax
layer.

The
numbers
in
the
brackets
indicate
input
and
output
shape.
The

linear
 layer
 input
 (2,1)
goes
 from
1
value
 to
2
nodes,
 then
output

(2,2) goes from 2 nodes to 2 outputs.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 115

15.1
 Interactive

machine
 learning
 provides
 more
 intuitive
 training
 for

neural networks.
 .
 119

15.2
 User
 interface
 mockup
 for
 trainable
 superknob
 system
 (left).
 We

have
an
additional
knob
to
specify
training
input
without
triggering

the
movement
of
the
sliders.
Actual
user
interface
prototype
(right).
 120

15.3
 Example
of
an
experiment
you
can
carry
out.
First,
set
the
training

slider
 to
 its
 lowest
 value,
 the
 same
 for
 the
 modulation
 controls.

Add
a
training
point.
Then
move
to
the
middle
positions,
and
add

a
training
point.
Finally,
move
to
the
highest
positions,
and
add
a

training point.
 .
 125

15.4
 The
 learner.js/
Wekinator
 regression
 architecture
 (top).
The
 sim­
pler
architecture
we
used
previously
(bottom).
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 125

16.1
 Hosting
plugins
allows
you
to
control
more
advanced
synthesizers.
 129

17.1
 Wiring
plugins
together
with
a
processor
graph.
.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 135

17.2
 The
graph
you
will

create. .
 139

17.3
 User
interface
for
the
basic
host
with
the
load
plugin
button
added.
 141

xiv
List
of
figures

18.1
 Class
hierarchy
for
AudioProcessor
and
its
descendants.
 .
 .
 .
 .
 .
 .
 143

18.2
 User
interface
for
the
host
with
the
Surge
XT
plugin
user
interface

showing in a separate window.
 .
 144

18.3
 User
 interface
for
the
host
with
a
show
UI
button.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 145

19.1
 User
 interface
for
the
Dexed
DX-7
emulator.
It
has
155
parameters.
 151

19.2
 Time for a more complex neural network.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 153

20.1
 How
far
are
modern
sequencers
from
steam-powered
pianos?
.
 .
 .
 .
 158

20.2
 My

own
 experience
 interacting
 with
 AI
 improvisers.
 Left
 panel:

playing
with
Alex
McLean
in
Canute,
with
an
AI
improviser
adding

even
more
percussion.
Right
panel:
 livecoding
an
AI
 improviser
 in

a
performance
with
musician
Finn
Peters.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 159

20.3
 Visualisation
of
a
two-state
model
on
the
 left
and
the
state
transi­
tion probability table on the right.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 164

20.4
 Visualisation
of
a
variable
order
Markov
model
containing
first
and

second order states. .
 166

21.1
 Example
of
the
Markov
model
generated
by
some
simple
code.
 .
 .
 170

22.1
 Overview
of
the
autonomous
 improviser
plugin.
Yes,
a
keytar.
 .
 .
 .
 175

22.2
 The
user
interface
for
the
basic
JUCE
MIDI
processing
plugin.
 .
 .
 176

22.3
 The
MIDI
Markov
plugin
 running
 in
AudioPluginHost.
Note
how

it
receives
MIDI
and
then
passes
it
on
to
the
Dexed
synthesiser.
.
 .
 181

22.4
 Using
AudioPluginHost’s
MIDI
Logger
plugin
to
observe
the
MIDI

coming out of the Markov plugin.
 182

23.1
 Note
duration
 is
the
 length
the
note
plays
 for.
Inter-onset
 interval

is
the
time
that
elapses
between
the
start
of
consecutive
notes.
 .
 .
 187

23.2
 Measuring
 inter-onset-intervals.
The
IOI
 is
the
number
of
samples

between
the
start
and
end
sample.
elapsedSamples
 is
the
absolute

number
of
elapsed
samples
since
the
program
started
and
is
updated

every
 time
processBlock
 is
 called;
message.getTimestamp()
 is
 the

offset
of
the
message
 in
samples
within
the
current
block.
 .
 .
 .
 .
 .
 188

24.1
 Measuring

note
 duration
 has
 to
 cope
 with
 notes
 that
 fall
 across

multiple calls to processBlock. .
 194

24.2
 Testing
 the
 getTimestamp
 function

on
 note–on
 messages
 –
 the

timestamp
 is
always
between
zero
and
the
block
size
of
2048.
 .
 .
 .
 196

xv
List
of
figures

25.1
 If
 notes
 start
 close
 enough
 in
 time,
 they
 are
 chords.
 If
 the
 start

times
fall
outside
a
threshold,
they
are
single
notes.
This
allows
for

human
playing
where
notes
in
chords
do
not
happen
all
at
the
same

time. .
 202

26.1
 Tape
manipulation
was
an
early
form
of
audio
effect.
 .
 .
 .
 .
 .
 .
 .
 .
 210

27.1
 The
 impulse
 signal
and
 the
 impulse
 responses
of
a
one-pole,
 two­
pole and three-pole system.
 .
 216

28.1
 Original
 drum

loop
 spectrum
 on
 the
 left,
 filtered
 version
 on
 the

right.
High
 frequencies
have
been
 attenuated
 in
 the
filtered
 spec­
trum.
 .
 224

29.1
 Infinite
impulse
responses
are
powerful!
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 231

29.2
 Pole
 for
 pole,
 IIR
 filters
 generate
much
 richer
 impulse
 responses.

The
left
panel
shows
a
two-pole,
FIR.
The
right
pane
shows
a
two­
pole IIR.
 .
 232

29.3
 Comparison
of
two
pole
FIR
filter
(left)
and
IIR
filter
(right).
The

IIR filter has a more drastic response.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 233

29.4
 Two

types
 of
 IIR
 filter
 and
 their
 frequency
 responses.
 IIR
 filter

design is a compromise.

. 237

30.1
 Digital
 signal
 processing
 makes
 waveshaping
 much
 easier
 than
 it

used to be.
 .
 241

30.2
 The
effect
of
different
waveshaper
transfer
functions
on
a
sinusoidal

signal.
 Top
 row:
 transfer
 functions,
 middle
 row:
 sine
 wave
 signal

after
waveshaping,
bottom
row:
spectrum
of
waveshaped
sine
wave.
 242

30.3
 Automatically
generated
generic
UI
for
the
waveshaper
plugin.
 .
 .
 248

30.4
 A
 sine
wave
 passing
 through
 a
 series
 of
 blocks
 that
 emulate
 in
 a

simplified
way
the
processing
done
by
a
guitar
amplifier.
 .
 .
 .
 .
 .
 249

30.5
 Capture
an
impulse
response
for
the
convolutional
cabinet
simulator.
253

31.1
 Capturing
training
data
from
a
guitar
amplifier.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 256

31.2
 Four
stages
to
train
a
neural
network.
1:
send
the
test
input
through

the
 device
 (e.g.
 amp)
 you
 want
 to
 model,
 2:
 send
 the
 test
 input

through
the
neural
network,
3:
compute
the
error
between
the
out­
put
of
the
network
and
amp,
4:
update
network
parameters
to
re­
duce
error
using
back-propagation.
Back
to
stage
2.
 .
 .
 .
 .
 .
 .
 .
 .
 257

32.1
 What
does
our
simple,
random
LSTM
do
to
a
sine
wave?
It
changes

the
shape
of
the
wave
and
introduces
extra
frequencies.
 .
 .
 .
 .
 .
 .
 266

xvi
List
of
figures

32.2
 The

steps
 taken
 to
 process
 a
 WAV
 file
 with
 a
 neural
 network

through
various
shapes
and
data
formats.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 270

32.3
 Time
taken
to
process
44,100
samples.
Anything
below
the
1000ms

line
can
potentially
run
in
real-time.
Linux
seems
very
fast
with
low

hidden
units,
but
Windows
and
macOS
catch
up
at
128
units.
 .
 .
 272

33.1
 Block-based
 processing
 leads
 to
 unwanted
 artefacts
 in
 the
 audio.

The
left
panel
shows
the
output
of
the
network
if
the
complete
signal

is
processed
in
one
block.
The
right
panel
shows
what
happens
if
the

signal
is
passed
through
the
network
in
several
blocks.
The
solution

is
to
retain
the
state
of
the
LSTM
between
blocks.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 277

33.2
 Breakdown
of
the
data
type
used
to
store
LSTM
state.
 .
 .
 .
 .
 .
 .
 .
 280

33.3
 The
LSTM
plugin
running
in
the
AudioPlugHost
test
environment,

with
an
oscilloscope
showing
a
sine
wave
test
tone
before
and
after

LSTM processing.
 .
 284

34.1
 How fast can LSTMs process audio?
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 287

34.2
 Four
stages
to
train
a
neural
network.
1:
send
the
test
input
through

the
 device
 (e.g.
 amp)
 you
 want
 to
 model,
 2:
 send
 the
 test
 input

through
the
neural
network,
3:
compute
the
error
between
the
out­
put
of
the
network
and
amp,
4:
update
network
parameters
to
re­
duce
error
using
back-propagation.
Back
to
stage
2.
 .
 .
 .
 .
 .
 .
 .
 .
 288

34.3
 Tensorboard
is
a
web-based
machine
learning
dashboard.
Here,
you

can
 see
 a
 list
 of
 training
 runs
 (1)
 and
 graphs
 showing
 training

progress
 in
 terms
of
 training
 (2)
and
validation
 (3)
 errors
on
 two

separate runs.
 .
 291

34.4
 Spectrogram
of
the
Atkins
training
signal
‘v2
0
0.wav’.
You
can
see

the signal is quite varied and dynamic.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 292

34.5
 Capturing
 training
 data
 from
 a
 guitar
 amplifier
 is
 similar
 to
 ‘re­
amping’. .
 292

34.6
 Clean
signal
(top)
and
re-amped
signal
(bottom)
 in
Reaper.
 .
 .
 .
 294

35.1 Sequence length and batch size.

 298

35.2
 An
 LSTM

network
 with
 a
 four
 hidden
 unit
 LSTM
 layer
 and
 a

densely
 connected
 unit
which
 ‘mixes
 down’
 the
 signal
 to
 a
 single

channel.
 .
 303

35.3
 What
does
 loss
mean?
The
 top
 two
plots
 show
 extracts
 from
 the

target
 output.
 The
 middle
 two
 plots
 show
 the
 output
 of
 an
 un­
trained
 (left)
 and
 trained
 network
 (right).
The
 right-hand
 side
 is

much
 closer
 to
 the
 target.
The
bottom
plots
 show
 a
 simple
 error

between
each
point
in
the
two
plots
above.
The
sum
of
these
values

could be a simple loss function.
 .
 305

List
of
figures
 xvii

36.1
 The
training
loop.
Data
is
processed
in
batches
with
updates
to
the

network
parameters
between
batches.
Between
 epochs,
 checks
are

done on whether to save the model and exit.
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 .
 310

36.2
 Comparison
of
 training
 runs
with
different
 sized
LSTM
networks.

At
the
top
you
can
see
the
input
signal
and
the
target
output
signal

recorded
from
Blackstar
HT-1
valve
guitar
amplifier.
The
descend­
ing
graphs
on
 the
 left
 show
 the
validation
 loss
over
 time
 for
 three

LSTM
network
 sizes.
The
waveforms
 show
 outputs
 from
 the
net­
works before and after training.

 314

38.1
 A
sinusoidal
test
signal
passing
through
an
RTNeural
LSTM
distor­
tion
effect
 in
AudioPluginHost.
The
sinusoidal
wave
 is
the
original

signal,
the
clipped
out
wave
is
the
LSTM-processed
signal.
 .
 .
 .
 .
 325

https://taylorandfrancis.com

Part
 I

Getting
started

1

Introduction
to
the
book

Welcome
to
‘Build
AI-Enhanced
Audio
Plugins
with
C++’!
You
are
about

to
 embark
 on
 a
 journey
 into
 a
world
 of
 advanced
 technology,
which
will
 be
 an

essential
 part
 of
 the
 next
 generation
 of
 audio
 software.
 In
 this
 chapter,
 I
 will

introduce
 the
 general
 area
 of
AI-music
 technology
 and
 then
 set
 out
 the
 book’s

main
 aims.
 I
 will
 identify
 different
 types
 of
 people:
 audio
 developers,
 student

programmers,
machine
 learning
engineers,
educators
and
 so
on
and
explain
how

each
group
can
get
the
best
out
of
the
book.
I
will
explain
that
you
can
use
any

of
the
 large
amounts
of
code
I
have
written
 for
the
book
however
you
 like.
I
will

also
explain
the
dual
licensing
model
used
by
the
JUCE
library.
I
will
finish
with

a
straightforward,
working
definition
of
artificial
intelligence.

1.1
 Exciting
times
 for
artificial
 intelligence

FIGURE
1.1

Mountainous
 land­
scape
depicting
mu­
sical
 competencies,

with
 the
 water
 of

AI
rising
to
consume

them.

As
 I
 write
 this
 book,
 we
 are
 in
 exciting
 times
 for
 the

progress
 of
 artificial
 intelligence
 (AI).
 AI
 theorist
 Hans

Moravec
 presents
 a
 compelling
 view
 of
 the
 progress
 of

AI
 wherein
 he
 places
 human
 competencies
 such
 as
 pick­
ing
up
a
 cup,
 composing
a
 symphony
and
 so
 forth
within

a
mountainous
 landscape
he
 calls
 a
 “landscape
 of
human

competencies”[29].
Complex
or
highly
valued
competencies

are
situated
on
higher
peaks,
although
people
may
disagree

on
what
should
go
where.

In
Moravec’s
 landscape
of
human
 competencies,
artifi­
cial
 intelligence
 is
a
sea
washing
around
and
rising
up
 the

peaks.
 If
 the
 water
 rises
 above
 the
 position
 of
 a
 human

competency,
AI
has
 that
 competency.
Right
now,
 there
 is

no
doubt
that
the
sea
 is
rising,
especially
given
recent
ad­
vances
in
deep
neural
networks.
Game
playing
is
a
popular

area
for
AI
researchers,
and
it
can
provide
some
perspective

on
the
position
of
the
water
level.
Chess
is
underwater[20],

2

3
Introduction
 to
 the
book

Go
 is
 underwater[38],
 and
 so
 is
Heads-up
 no-limit
Texas
 hold’em
Poker[5].
But

picking
up
cups
 is
 still
hard
at
 the
 time
of
writing.
This
 leads
us
 to
another
 in­
sight
 from
Moravec
known
as
Moravec’s
Paradox.
Things
 that
people
find
hard

are
often
easy
for
AI,
and
things
that
people
find
easy
can
be
very
hard
for
AI.

What
about
music
and
sound
engineering
competencies?
Well-known
baroque

composer
Bach
 is
 swimming
 in
 the
 sea
of
AI
after
Hadjeres’s
DeepBach
 created

Bach
chorales
that
could
fool
experts[14].
AI
can
learn
how
to
program
the
noto­
riously
difficult
to
program
Yamaha
DX-7
synthesizer
to
make
a
given
sound[49],

and
AI
can
automatically
mix
multi-track
audio
recordings[28].
AI
has
even
gained

competencies
which
humans
do
not
have.
Timbre
transfer
allows
us
to
use
the
pitch

and
dynamics
of
one
 instrumental
performance
to
play
using
the
tone
of
another

instrument[12],
and
sound
separation
allows
us
to
un-mix
a
track
back
to
its
sepa­
rate
stems[41].
Recent
advancements
 in
voice
processing
technology
have
allowed

‘deep
 fakes’
wherein
 the
 voices
 of
dead
musicians
 can
be
 re-animated
 as
 if
 in
 a

kind
of
Lovecraftian
fantasy
and
made
to
sing
cover
versions1
.

Many
 of
 those
 examples
 are
 from
 the
 research
 literature
 about
AI
 and
mu­
sic
but
 commercial
music
 software
 companies
 are
 increasingly
using
AI
 in
 their

products.
 A
 notable
 example
 is
 Waves
 and
 their
 neural
 network-powered
 noise

reduction
technology
Clarity
Vx.
Another
example
is
Steinberg’s
GANDrum
sys­
tem,
which
uses
generative
adversarial
neural
networks
to
synthesize
unique
drum

sounds.
There
are
also
an
emerging
range
of
neural
network
powered
guitar
effects

such
as
Neural
DSP’s
Quad
Cortex
guitar
amplifier
emulator.

So
right
now
is
an
exciting
time
to
be
working
as
a
music
technology
developer

because
a
revolution
 is
underway
which
 is
 likely
to
be
at
 least
as
transformative

as
the
desktop
Digital
Audio
Workstation
revolution
from
the
late
90s,
which
put

advanced
recording
and
audio
processing
capabilities
in
the
hands
of
anyone
who

owned
a
desktop
computer.
In
fact,
AI
is
even
more
exciting
than
DAW
technology

because
it
is
transforming
the
way
we
produce
and
create
music
in
ways
that
were

previously
unimaginable.
The
possibilities
are
profound,
and
 I
am
excited
to
see

what
the
future
holds.

1.2
 The
aims
 for
this
book

The
first
aim
of
this
book
is
to
show
you
how
to
build
AI-enhanced
music
software.

But
I
will
take
a
different
approach
to
many
other
AI
and
signal
processing
books.

I
have
carefully
developed
this
approach
to
solve
specific
problems
and
to
address

particular
challenges
you
will
 face
as
a
developer
of
AI-enhanced
music
software.

1https://github.com/svc-develop-team/so-vits-svc

https://www.github.com

4
Introduction
 to
 the
book

One
problem
with
many
AI-music
systems
I
mentioned
 is
that
they
only
exist
as

descriptions
in
research
papers.
The
research
papers
aim
to
describe
systems
and

their
performance
to
other
AI-music
experts
using
a
very
limited
number
of
pages.

They
are
not
 tutorials
and
do
not
necessarily
explain
 the
nuts
and
bolts
needed

to
build
a
complete
working
system.

Sometimes
the
researchers
who
write
these
research
papers
provide
source
code

repositories
but
my
experience
has
been
that
it
can
be
challenging
to
operationalise

the
 software
 from
 these
 source
 code
 repositories.
Making
 the
 code
 run
 likely
 in­
volves
having
a
particular
combination
of
particular
versions
of
other
components

installed
 and
 often
 a
 particular
 operating
 system.
 The
 challenge
 is
 even
 more

significant
if
there
is
no
source
code
repository.
I
have
watched
excellent
PhD
stu­
dents
labour
for
weeks
to
re-implement
systems
described
in
research
papers,
only

to
discover
there
are
vital
details
that
should
have
been
 included
 in
the
paper
or

other
technical
issues.

These
problems
mean
that
AI-enhanced
music
systems
are
not
easily
accessible

to
musicians
wishing
 to
use
 them
and
probably
not
 to
programmers
wanting
 to

integrate
them
 into
 innovative
music
software.
This
 is
where
this
book
comes
 in.

This
book
will
show
you
several
examples
of
how
to
build
complete
working
AI-
music
 systems.
All
 source
code
written
by
me
 is
provided
 in
a
 repository
and
 is

covered
with
a
permissive
open-source
license,
allowing
you
to
re-use
it
how
you
see

fit.
The
book
also
uses
a
consistent
technical
setup,
allowing
you
to
easily
access

and
 “wrench
 on”
 the
 examples.
 So
my
 first
 aim
 is
 really
 to
make
AI-enhanced

music
technology
available
and
transparent
for
you.

My
 second
 aim
 is
 to
 show
 you
 how
 to
 construct
 the
 technology
 in
 a
 way

that
makes
 it
 accessible
 to
musicians
 and
 audio
 professionals.
Knowing
 how
 to

build
and
run
AI-enhanced
music
systems
on
your
machine
is
one
thing.
A
quirky

Python
 script
hacked
 together
 to
work
 on
 your
 setup
 is
 acceptable
 for
 research

and
experimentation
but
you
will
have
trouble
getting
musicians
to
use
 it.
What

is
the
ideal
method
for
sharing
software
in
a
form
that
musicians
and
other
audio

professionals
 can
 use
 it?
The
 next
 aim
 of
 this
 book
 is
 to
 answer
 that
 question

and
 to
 apply
 the
 answer
 to
 the
 design
 of
 the
 examples
 in
 the
 book.
For
many

years
 I
have
worked
 as
 a
 researcher/engineer
 on
 research
projects
where
 one
 of

the
aims
has
been
to
get
new
technology
into
the
hands
of
users
so
we
can
evaluate

and
 improve
 that
 technology.
There
are
many
approaches
 to
achieving
 this
aim:

running
workshops
with
pre-configured
equipment,
making
the
technology
run
in

the
 web
 browser
 and
 so
 on.
 All
 of
 these
 approaches
 have
 their
 merits
 and
 are

appropriate
in
different
circumstances.
But
none
of
them
is
quite
suitable
for
our

purposes
here.
Here
we
are
aiming
to
write
software
that
can
be
used
by
musicians,

producers
and
sound
engineers
with
minimal
effort
on
their
part.

How
can
you
achieve
this
aim
of
having
as
many
audio
professionals
as
possible

to
be
able
to
use
your
software,
and
how
can
this
book
help
you?
Firstly,
making

software
so
 it
 integrates
with
existing
creative
workflows
 is
crucial.
The
simplest

5
Introduction
 to
 the
book

way
 to
 do
 that
 in
music
 technology
 is
 via
 standard
 plugin
 frameworks
 such
 as

VST
and
Audio
Units
or
standalone,
native
applications
that
work
with
standard

protocols
such
as
MIDI
and
OSC.
In
this
book,
we
will
do
precisely
this
by
building

software
that
integrates
effectively
with
existing
workflows
and
technology.

1.3
 What
 is
 in
the
book?

I
have
organised
the
book
 into
four
parts:

1:

 Getting
started.
You
will
set
up
your
system
for
the
development
work

in
the
book
and
build
some
example
plugins
and
other
test
programs.

2:

 ML-powered
plugin
control:
the
meta-controller.
You
will
build
the
first

large
 example
 in
 the
 book,
 a
 plugin
 that
 hosts
 and
 controls
 another

plugin
using
a
neural
network.

3:

 The
autonomous
music
improviser.
The
second
large
example
is
a
plugin

that
can
learn
in
real-time
from
incoming
MIDI
data
and
improvise
its

own
 interpretation
of
what
 it
has
learned.

4:

 Neural
audio
 effects.
The
 third
 large
 example
 is
a
plugin
 that
models

the
non-linear
 signal
processing
of
guitar
amplifiers
and
 effects
pedals

using
neural
networks.

Each
part
of
the
book
contains
detailed
 instructions
on
how
to
build
each
ex­
ample,
 including
 source
 code
 extracts,
diagrams
 and
background
 theory.
 I
have

also
included
some
brief
historical
and
other
context
for
the
examples.
The
exam­
ples
 in
parts
2,
3,
and
4
are
 independent,
so
you
can
 jump
to
any
of
those
parts

once
you
have
completed
part
1.

I
have
created
a
freely
accessible
source
code
repository,
currently
on
Github,

which
provides
each
of
the
examples
above
in
various
states
of
development.
As
you

work
 through
each
stage
of
developing
each
example,
you
can
pull
up
a
working

version
 for
 that
 stage
 from
 the
 repository,
 in
case
you
get
 stuck.
The
 repository

contains
releases
of
each
final
product
with
compiled
binaries
and
installers.

1.4
 How
to
use
this
book

There
are
different
ways
to
use
the
book.
The
most
straightforward
approach
is
to

download
the
releases
of
the
examples
and
experiment
with
them
 in
your
DAW.

6
Introduction
 to
 the
book

But
 you
will
miss
 out
 on
 a
 lot
 of
 learning
 if
 you
 only
 do
 that!
To
 fully
 exploit

the
content
 in
the
book,
you
will
need
to
start
by
working
through
part
1,
which

explains
 how
 to
 set
 up
 your
 system
 for
 the
 development
work
 described
 in
 the

book.
You
will
 find
 ‘Progress
 check’
 sections
 at
 the
 end
 of
 each
 chapter,
which

clarify
what
you
should
have
achieved
before
continuing
to
the
next
chapter.

After
 part
 1,
 there
 are
 three
 detailed
 example
 projects,
 each
 providing
 very

different
 functionality.
These
 three
projects
 are
 independent,
 so
 you
 can
 choose

which
order
you
study
them
in
or
only
study
some
and
not
others.

As
you
work
through
the
parts
of
the
book,
each
program
you
are
developing

will
increase
in
complexity
until
it
is
completely
functional
at
the
end
of
the
book

part.
To
work
through
the
examples,
you
can
type
 in
all
the
code
you
see
 in
the

book
 and
 build
 the
 complete
 example
 by
 hand,
 or
 you
 can
 read
 the
 code
 and

download
the
step-by-step
versions
of
the
projects
from
the
repository.
I
find
that

people
 sometimes
 get
 really
 stuck
working
 through
 these
 larger
projects,
where

they
cannot
make
it
compile
or
work
properly.
So,
I
have
provided
staged
versions

of
 the
 programs
 in
 the
 code
 repository.
 If
 you
 reach
 the
 end
 of
 a
 chapter
 and

cannot
figure
out
why
your
program
does
not
work,
you
can
 just
pick
up
 from
a

working
stage
in
the
code
repository
and
continue.
Of
course,
there
is
much
to
be

gained
by
 spending
hours
 looking
 for
 that
missing
bracket,
 so
do
 try
and
debug

your
problems
before
grabbing
the
working
version
from
the
repo.

At
 the
end
of
 some
chapters
and
at
 the
end
of
all
parts,
 I
 suggest
challenges

and
extensions.
These
are
extra
features
you
can
add
to
the
plugins,
allowing
you

to
 reinforce
and
 increase
your
understanding
of
 the
principles
and
 techniques.
 If

you
 are
using
 the
book
 for
 teaching,
 these
 challenges
 and
 extensions
 are
 things

you
could
set
students
for
coursework.

1.5
 Who
might
use
this
book?

In
the
following
sections
I
will
mention
a
few
different
types
of
people
who
would

be
interested
 in
the
book
and
how
they
can
get
the
best
out
of
 it.

1.5.1
 Student
programmer

If
you
are
a
student
programmer
at
the
undergraduate
or
postgraduate
level,
you

will
find
new
knowledge
in
all
areas
of
the
book.
You
might
be
assigned
all
or
part
of

this
book
as
a
textbook
for
a
course
you
are
studying,
or
you
might
have
discovered

the
book
 independently.
The
book
will
teach
you
some
C++
programming
along

the
way,
as
well
as
helping
you
to
understand
how
to
use
an
IDE
and
associated

tools
 to
 develop
 software.
You
will
 probably
 find
 the
 setup
 section
 of
 the
 book

7
Introduction
 to
 the
book

very
helpful
as,
 in
my
experience,
 students
 spend
a
 lot
of
 time
 struggling
 to
get

their
software
development
environment
set
up
and
working
correctly.
The
book

also
provides
information
about
general
audio
processing
techniques
and
how
they

can
be
adapted
using
AI
technology.

1.5.2
 Audio
programmer

You
will
find
the
book
helpful
if
you
are
an
audio
programmer
wishing
to
integrate

AI
 technology
 into
your
 software.
The
book
will
 show
 several
detailed
 examples

of
how
you
can
employ
different
AI
techniques
in
music
software.
The
code
repos­
itory
 contains
 permissively
 licensed
 code
 which
 you
 can
 use
 how
 you
 see
 fit
 in

your
projects.
The
book
considers
cross-platform
development
and
 is
 focused
on

developing
software
that
integrates
with
existing
music
production
workflows
and

technology.
You
will
probably
be
familiar
with
the
audio
side
of
the
development

and
 theory
work
 in
 this
 book,
 and
 I
will
 try
 to
make
 connections
 between
 this

knowledge
 and
 the
AI
 domain.
For
 example,
 you
will
 discover
 how
 neural
 net­
works
are
just
big
fancy
signal
processors.

1.5.3
 Machine
 learning
engineer

If
you
are
a
machine
learning
engineer
or
AI
scientist
wishing
to
apply
your
skills

in
the
music
software
domain,
the
book
will
help
you
do
that.
You
will
be
familiar

with
the
concepts
of
machine
learning
models,
training
and
inference,
but
you
will

likely
need
to
become
more
familiar
with
digital
signal
processing
techniques.
You

may
be
unfamiliar
with
common
music
technology
such
as
plugins,
MIDI
data,
etc.

The
book
will
explain
exactly
how
to
work
with
those
technologies.
As
a
machine

learning
engineer,
you
 likely
work
primarily
 in
Python
or
a
specialised
 language.

The
book
covers
some
Python
but
 is
mainly
focused
on
C++
programming.
You

should
find
the
information
about
setting
up
a
C++
development
toolchain
useful.

1.5.4
 Educator

If
you
are
an
educator
planning
to
use
this
book
as
part
of
your
teaching,
that
is
an

excellent
idea!
The
most
obvious
way
to
use
the
book
in
your
teaching
is
to
split
the

content
between
lectures
and
lab
classes.
In
the
lectures,
you
can
introduce
the
AI

theory.
You
can
go
as
far
as
you
like
with
the
AI
theory,
depending
on
the
level
and

focus
of
your
course.
I
cover
enough
in
the
book
to
enable
the
reader
to
carry
out

training
and
inference
and
to
integrate
the
AI
system
into
a
working
application.

I
also
explain
 some
characteristics
of
 the
particular
machine
 learning
 techniques

used.
You
 can
go
much
 further
 than
 that,
depending
on
your
 requirements.
For

your
lab
classes,
your
students
can
work
through
the
practical
implementation
of

the
applications.
The
book
contains
detailed
instructions
on
how
to
build
each
of

8
Introduction
 to
 the
book

the
example
applications.
I
have
battle
tested
and
iterated
these
instructions
with

my
students.

1.5.5
 Sound
engineer/
sound
designer/
musician

You
might
be
a
sound
designer
or
musician
who
wants
deeper
control
and
knowl­
edge
of
AI-enhanced
music
 systems.
 In
 that
 case,
you
probably
need
 to
become

more
familiar
with
the
world
of
software
development
or
machine
learning
and
AI,

and
the
book
will
help
you
to
achieve
that.
You
will
have
strong
domain
knowledge

covering
 the
musical
 aspects
 of
 the
 systems
developed
 in
 the
 book.
You
 should

start
by
checking
out
the
example
software
available
 in
the
repository.
If
you
are

intrigued
by
those
examples,
you
can
use
the
book
to
learn
more
about
how
they

work.
That
 can
 lead
 you
 to
 customise
 the
 software
 to
 suit
 your
 needs
 or
 ideas

better.

1.6
 The
source
code
repository

The
book
comes
with
a
source
code
repository
on
GitHub.
The
source
code
repos­
itory
 contains
 all
 the
 code
 for
 the
 projects
 described
 in
 the
 book
 and
 various

instructional
materials.
You
should
go
ahead
and
install
the
git
tool
and
clone
the

repository
 to
your
machine
 right
now.
Chapter
39
describes
each
of
 the
projects

you
 will
 find
 in
 the
 source
 code
 repository.
 I
 refer
 to
 this
 chapter
 when
 I
 am

working
 through
example
projects
 to
ensure
you
can
access
 the
correct
code
 for

that
project
directly.
This
is
a
book,
and
books
cannot
easily
be
updated,
but
the

software
libraries
we
are
working
with
are
regularly
updated.
This
causes
tension

between
 the
desire
 to
provide
 the
most
 correct
 and
up-to-date
 instructions
 and

code
 in
 the
book
 and
wanting
 to
 ensure
 the
 instructions
 remain
 correct.
 If
 you

find
any
bugs
in
the
example
code
in
the
repository
or
in
the
book,
please
report

them
as
issues
on
the
GitHub
page.
I
cannot
do
much
about
updating
the
code
in

the
book
(pending
a
new
edition),
but
 I
will
ensure
the
repository
 is
as
bug-free

as
possible.

1.6.1
 About
source
code
 licensing

In
this
section,
I
will
explain
the
licensing
model
used
for
code
in
this
book.
When

I
 read
 these
 kind
 of
 legal
 details
 of
 source
 code
 licensing,
 my
 eyes
 glaze
 over,

and
I
start
wishing
for
the
paragraph
to
end.
But
please
read
this
section,
as
it
is

important
to
understand
how
to
use
the
code
here.
Here
is
the
executive
summary:

you
can
use
any
of
the
code
I
have
written
for
this
book
freely
in
your
commercial

9
Introduction
 to
 the
book

projects
but
 if
you
want
to
use
the
complete
examples
 in
a
closed-source
manner

you
should
ensure
you
understand
the
JUCE
library’s
dual
licensing
model.

Open-source
has
various
definitions.
For
our
purposes,
open-source
means
that

the
 source
 code
 for
 a
 piece
 of
 software
 is
 available.
Open-source
 code
 generally

comes
with
a
 license
 that
dictates
what
 the
code’s
author
wants
you
 to
do
with

that
code.
Permissive
 licenses,
 such
as
 the
MIT
 license,
place
 few
 limitations
on

the
 use
 of
 that
 code.
 Users
 are
 free
 to
 use
 that
 code
 as
 they
 see
 fit.
 Users
 of

MIT-licensed
code
can
adapt
the
code
and
even
include
it
in
commercial
projects

without
needing
to
release
their
adapted
code.
All
the
code
written
by
me
for
this

book
 is
MIT
 licensed.

The
GPL
 licenses
 take
 a
 stronger
philosophical
position
 concerning
 freedom

and
are
designed
to
encourage
further
sharing
of
source
code.
You
can
adapt
and

use
GPL’d
code
 in
your
project,
even
 if
 it
 is
a
commercial
project,
but
you
will

be
 required
 to
 release
your
code.
You
are
also
obliged
 to
make
your
 source
code

open-source
with
a
GPL
license
 if
your
code
 links
to
GPL
libraries.

Releasing
source
code
with
multiple
licenses
is
possible
if
they
are
compatible.

The
 code
 in
 this
book
 that
 I
have
written
 is
 released
under
a
dual
MIT
/
GPL

license.
 I
will
 explain
why
 below.
 If
 you
 use
my
 code
 in
 your
 project,
 the
MIT

license
applies.
The
GPL
 license
applies
 if
you
use
my
complete
examples,
which

also
link
to
GPL’d
code.

The
reason
I
have
dual-licensed
the
code
 is
because
of
the
JUCE
 library.
The

JUCE
 library
 carries
 a
dual
 license.
 If
you
build
 against
 the
JUCE
 library,
you

can
either
GPL
your
whole
project
or
apply
for
a
JUCE
license,
and
then,
you
do

not
need
to
GPL
your
code.

1.6.2
 Example
code-use
scenarios

Here
are
 some
examples
 to
 illustrate
 typical
ways
you
might
want
 to
work
with

the
source
code
from
this
book.

1.

 I
want
to
experiment
with
the
examples
in
this
book.
I
am
not
planning

to
release
anything
commercially.
Great
–
you
can
do
that,
no
problem.

2.

 I
want
 to
use
 the
 code
written
by
 the
author
of
 this
book
 in
my
own

plugin
projects,
where
I
am
using
my
own
framework
instead
of
JUCE.

So
I
am
not
going
to
build
against
the
JUCE
library.
Great
–
the
MIT

license
applies
to
my
code
 in
that
scenario,
and
you
are
 free
to
release

projects
which
use
that
MIT
code
commercially.

3.

 I
have
adapted
an
example
in
the
book
into
a
really
cool
plugin
I
want

to
release
commercially.
I
do
not
want
to
release
my
complete
code
with

a
GPL.
It
uses
the
JUCE
 library.
Do
not
worry;
you
can
do
that.
You

need
to
get
yourself
an
appropriate
license
from
the
JUCE
web
page.

10
Introduction
 to
 the
book

1.7
 User-readiness

I
 will
 show
 you
 how
 to
 get
 the
 software
 to
 a
 point
 where
 it
 will
 run
 on
 your

machine
and,
with
some
fiddling,
on
other
people’s
machines.
 I
do
not
cover
the

creation
of
 installers
or
 the
process
of
 signing
/
notarising
 software.
Some
great

resources
online
tell
you
what
to
do
with
installers,
signing
etc.,
once
your
amazing

AI-powered
plugin
is
ready
for
the
world.

1.8
 A
working
definition
of
artificial
 intelligence

To
 complete
 the
pre-amble
here,
 I
would
 like
 to
provide
 a
working
definition
of

what
I
mean
when
I
refer
to
artificial
intelligence
and
how
that
differs
from
machine

learning
and
other
software
development
techniques.
Here
goes:

An
 artificially
 intelligent
 system
 is
 an
 automated
 system
 that
 can
 carry
 out

a
 task
generally
considered
 to
 require
 intelligence
were
 it
 to
be
carried
out
by
a

human.
Machine
 learning
 refers
 to
a
 set
of
 techniques
 that
can
be
used
 to
build

artificially
 intelligent
systems
amongst
other
things.
Machine
 learning
techniques

involve
learning
in
the
sense
that
the
program
changes
itself
or
its
parameters
in
a

manner
that
allows
it
to
perform
a
task
more
and
more
effectively.
Often
machine

learning
involves
 learning
patterns
 in
data.

2

Setting
up
your
development
environment

In
 the
 next
 few
 chapters,
 I
 will
 explain
 how
 you
 can
 set
 up
 your
 development

environment
for
audio
software
development.
You
need
this
setup
to
work
on
and

run
the
example
programs
in
the
book.
After
working
through
these
chapters,
you

should
be
able
to
build
and
run
a
simple
C++
program
linked
to
the
JUCE
audio

library
and
the
libtorch
machine
learning
library
using
an
integrated
development

environment
(IDE).
The
chapters
should
also
familiarise
you
with
the
CMake
tool

which
will
allow
you
to
create
cross-platform
projects
with
which
you
can
create

native
applications
and
plugins
for
Windows,
macOS
and
Linux
systems.
You
can

use
 these
 setup
 chapters
how
you
 like
–
 read
 them,
 scribble
on
 them,
 etc.
but
 I

recommend
working
 through
 the
material
with
a
 computer
available.
Expect
 to

install
software
on
the
computer,
run
commands
in
its
command
shell
and
execute

programs.

2.1
 Component
parts

FIGURE
2.1

Many
 component

parts
 are
 needed
 to

build
 AI-enhanced

audio
software.

Before
 we
 set
 up
 the
 development
 environment,
 I
 would

like
to
describe
some
key
components
you
will
encounter
in

this
environment.
You
are
probably
familiar
with
several
of

these
components,
but
I
am
describing
them
here
to
clarify

what
 I
plan
 to
use
 them
 for.
Several
of
 these
 components

are
shown
in
relation
to
each
other
 in
figure
2.2.

2.1.1
 Purpose
of
different
components

Build
 tool

A
 build
 tool
 helps
 developers
 specify
 how
 their
 software

should
be
built.
For
example,
what
are
the
software
libraries

they
 are
using?
Where
 are
 the
 source
 code
files?
What
 is

the
target
platform?
Build
tools
are
handy
when
you
want

11

12
Setting
up
your
development
environment

FIGURE
2.2

The
components
 involved
 in
AI-enhanced
audio
application
development.

13
Setting
up
your
development
environment

to
be
able
to
build
your
software
for
multiple
platforms
using
different
Integrated

Development
Environments
 (IDEs).
We
will
use
 the
CMake1
 build
 tool
 to
help

us
 generate
 projects
 for
 various
 IDEs.
This
will
make
 building
 the
 software
 for

different
hardware
and
OS
platforms
possible.

CMake

CMake
is
the
build
tool
we
will
use
in
this
book.
With
CMake,
you
write
a
single

configuration
file
 then
you
 can
use
 it
 to
generate
projects
 for
different
 IDEs.
 In

the
configuration
file,
you
can
specify
different
targets
for
the
build,
such
as
a
test

program
and
a
main
program.
You
can
specify
associations
between
your
project

and
external
 libraries.
You
can
specify
actions
to
be
taken,
such
as
copying
files.

This
makes
it
a
valuable
tool
for
audio
application
developers
wishing
to
support

various
operating
systems,
as
you
can
maintain
a
single
CMake
configuration
and

codebase
and
use
it
to
build
for
multiple
platforms.

Integrated
Development
Environment
(IDE)

An
 IDE
 is
a
 set
of
 tools
 that
enable
a
developer
 to
write,
build
and
debug
 soft­
ware.
The
 IDE
will
be
 the
hub
of
your
 software
development
activity.
Using
 the

CMake
 build
 tool,
 you
 can
 generate
 projects
 for
 different
 IDEs
 from
 the
 same

codebase.
Many
IDEs
are
available,
but
I
will
cover
Xcode
for
Apple
device
devel­
opment,
Visual
Studio
for
Windows
and
Visual
Studio
Code
or
a
custom
setup
for

GNU/Linux
 in
this
book.
 In
 fact,
you
can
also
use
Visual
Studio
Code
 for
Win­
dows,
Apple
and
Linux
development,
which
allows
 for
a
 consistent
 environment

across
platforms.

Codebase

The
codebase
is
the
set
of
source
code
files
in
a
project.
The
build
tool
and
some

handy
macros
will
allow
us
to
have
a
single
codebase
for
all
platforms.

Native
program

Some
of
the
programs
you
encounter
in
the
book
will
be
compiled
into
native
pro­
grams
in
machine
code
that
run
on
particular
CPU
hardware.
We
will
write
these

programs
using
the
C++
 language.
Native
programs
are
most
appropriate
when

developers
wish
to
 integrate
directly
with
plugin
and
Digital
Audio
Workstation

(DAW)
technology.
For
example,
VST3
plugins
are
native
programs.
Native
pro­
grams
generally
 run
 faster
 than
 interpreted
programs,
and
 that
 is
 important
 for

realtime
audio
applications.

1https://CMake.org/

https://www.CMake.org

14
Setting
up
your
development
environment

Interpreted
program

Some
 of
 the
programs
we
write
will
be
 interpreted
 as
 opposed
 to
 compiled.
 In­
terpreted
 programs
 are
 converted
 to
 machine
 code
 on
 the
 fly
 instead
 of
 being

converted
 into
machine
code
before
running.
We
will
write
 interpreted
programs

in
the
Python
 language.
Interpreted
programs
are
more
suited
to
the
kind
of
ex­
perimentation
 one
 needs
 to
 do
when
 developing
machine
 learning
models.
 It
 is

common
 for
AI
researchers
to
provide
Python
code
along
with
their
research
pa­
pers
 to
 allow
 other
people
 to
 explore
 their
work
more
 easily.
 It
 is
 less
 common

for
researchers
to
provide
C++
code,
but
there
has
been
a
trend
towards
this
 in

AI-music
research
 in
the
last
few
years.

Machine
 learning
model

Machine
learning
models
carry
out
the
smart
processing
associated
with
artificial

intelligence
systems.
A
neural
network
is
an
example
of
a
machine
learning
model.

You
can
think
of
a
machine
learning
model
as
a
kind
of
data
processing
black
box

that
can
 learn
to
process
data
 in
a
way
that
 is
useful
to
us.
The
structure
of
the

model
(inside
the
black
box)
and
its
parameters
dictate
what
kind
of
processing
it

does.
Depending
on
the
application,
we
will
sometimes
develop
the
models
using

Python
 and
 sometimes
 C++.
 Experimenting
 with
 model
 designs
 and
 training

data
 in
Python
 is
generally
more
 straightforward.
C++
allows
 the
models
 to
be

integrated
into
native
applications
and
plugins
so
they
can
be
accessed
by
regular

users.

Trained
model

A
trained
model
is
a
machine
learning
model
that
has
learnt
something
valuable.

The
 model
 defines
 the
 structure
 of
 the
 machine
 learning
 component.
 Training

teaches
 that
 component
 to
process
data
 in
a
particular
way.
The
ability
 to
 self-
configure
 through
 learning
 is
 the
 essence
 of
 machine
 learning.
 Trained
 models

provided
by
 a
 third
party
 are
often
 called
pre-trained
models.
 In
 case
you
have

heard
of
openAI’s
 infamous
GPT
model,
the
 ‘P’
stands
for
pre-trained.

Inference

Inference
is
the
process
of
using
a
trained
model
to
generate
an
output.
Inference

does
not
change
the
 internal
configuration
of
the
machine
 learning
model;
 it
 just

passes
data
through
it.
Once
a
model
is
trained,
you
will
use
it
for
inference.

15
Setting
up
your
development
environment

Generative
model

A
 generative
 model
 is
 a
 machine
 learning
 model
 that
 can
 generate
 something

interesting.
For
 example,
 instead
 of
 detecting
 cats
 in
 images,
 it
might
 generate

images
of
cats.
The
 ‘G’
in
GPT
stands
for
generative,
as
GPT
generates
text.

Machine
 learning
 library

A
machine
learning
library
is
a
set
of
components
that
makes
it
easier
to
carry
out

machine
 learning
tasks.
Typical
components
 include
different
algorithms
such
as

clustering
and
neural
networks,
routines
to
train
the
models,
and
data
importers.

Examples
 are
 sci-kit
 learn,
TensorFlow
 and
PyTorch.
We
will
 use
 the
PyTorch

library
along
with
its
C++-compatible
library
libtorch.
This
will
allow
us
to
work

in
 both
Python
 and
C++,
 taking
 advantage
 of
 the
 strengths
 of
 each
 language.

libtorch
is
also
compatible
with
the
CMake
build
tool.

Audio
 library

An
audio
 library
 is
a
 set
of
 components
 that
makes
 it
 easier
 to
 construct
audio

applications.
Typical
components
are
audio
file
readers
and
writers,
audio
device

management
and
 sound
 synthesis
 routines.
We
will
use
 the
JUCE
audio
 library

as
 it
allows
us
to
construct
cross-platform
audio
applications
and
plugins.
 If
you

are
not
keen
on
using
JUCE,
you
 should
be
able
 to
 convert
 the
applications
we

make
 to
work
 in
other
audio
 libraries.
For
example,
 it
 is
possible
 to
create
VST

plugins
directly
using
Steinberg’s
library,
or
you
could
use
IPlug2.
There
are
a
few

reasons
 I
have
 chosen
 to
use
 JUCE:
 it
provides
 a
very
 consistent
 experience
 on

different
platforms,
 it
 includes
a
set
of
cross-platform
user
 interface
components;

it
 is
compatible
with
 the
CMake
build
 tool,
and
 it
can
export
plugins
 in
 several

formats
such
as
VST3,
AudioUnit
and
so
on.
JUCE
also
provides
components
to

build
 applications
 and
plugins
 that
 can
host
 other
plugins,
 a
 capability
we
will

make
use
of
 in
some
of
the
examples
in
the
book.

Application
Programming
Interface
(API)

An
API
 is
a
 set
of
 ready-made
components
which
you
can
use
 to
develop
appli­
cations.
APIs
 come
 in
different
 forms
but
 the
JUCE
API
 contains
C++
 classes

representing
user
 interface
 components,
audio
file
 readers
and
 so
 forth.
See
also

the
comments
about
 libraries
below.

Dynamic
and
static
 linking

When
you
build
native
applications,
part
of
the
process
 involves
connecting
your

application
somehow
 to
 the
 libraries
you
have
used.
There
are
 two
options
here:

dynamic
linking
and
static
linking.
Static
linking
means
the
library
(for
example,

16
Setting
up
your
development
environment

the
audio
library)
is
included
inside
your
program’s
binary.
Dynamic
linking
means

the
 library
exists
as
a
separate
file,
and
your
application
stores
a
reference
to
 it.

Depending
 on
 your
platform,
dynamically
 linked
 libraries
 are
 also
 called
DLLs,

shared
objects
and
dylibs.
When
you
run
an
application
with
dynamic
links,
those

libraries
must
be
located
on
the
computer
running
the
application.
Depending
on

the
operating
system,
the
process
of
locating
linked
libraries
varies.
I
will
explain

in
more
detail
how
to
deal
with
this
when
you
encounter
 it
in
the
book.

Digital
Audio
Workstation
(DAW)

A
DAW
is
like
an
IDE
for
musicians.
It
is
a
collection
of
tools
that
work
together

to
 allow
 for
 the
 recording
 and
 production
 of
 music.
 DAWs
 support
 plugins
 –

external
 software
 components
 that
 can
be
 loaded
 and
used
 for
 sound
 synthesis,

effects
processing
and
MIDI
processing.

Plugin

A
 plugin
 is
 a
 software
 component
 that
works
 inside
 a
 larger
 program.
 We
 will

create
plugins
that
work
inside
DAWs.
The
plugins
we
create
will
include
machine

learning
capabilities.

Plugin
host

A
plugin
host
 is
any
software
that
can
 load
and
use
external
plugins.
DAWs
are

plugin
hosts,
but
we
will
also
use
a
simpler
plugin
host
 in
some
of
our
examples

to
help
test
our
software
and
to
allow
our
software
to
host
and
control
plugins.

2.1.2
 Computer
hardware

Now
you
have
learned
about
the
development
environment’s
main
components,
it

is
time
for
a
brief
discussion
of
computer
hardware.
I
have
used
several
computer

systems
 to
 write
 this
 book
 and
 develop
 the
 cross-platform
 software
 within
 it.

These
include
a
Windows
10
Intel
i7
machine
with
a
discrete
Nvidia
Geforce
2070

graphics
processor
(GPU),
an
‘Apple
Silicon’
Mac
with
an
M1
chip,
an
Intel
Mac

with
an
Intel
 i5
CPU,
both
running
macOS
and
an
Ubuntu
Linux
Intel
machine

with
 integrated
 Intel
GPU.
Do
not
worry
 if
you
cannot
access
as
many
different

machines.
You
only
need
one
machine
to
work
through
the
book.
But
you
will
need

access
to
those
systems
if
you
want
to
build
versions
of
the
programs
for
Windows,

macOS
and/
or
Linux.
You
will
also
need
administrative
rights
to
install
software

on
your
development
machine(s)
unless
 it
has
already
been
 installed
for
you.

17
Setting
up
your
development
environment

GPUs,
 training
and
 inference

If
 you
 have
 attempted
 to
 use
 a
 machine
 learning
 model
 before,
 you
 may
 have

thought
about
 the
 role
of
 the
GPU.
For
 example,
 it
 is
 common
 for
artificial
 in­
telligence
researchers
to
publish
executable
Python
notebooks
with
their
research

papers,
and
you
may
have
experimented
with
one
of
 these.
Often
notebooks
are

set
up
to
run
on
cloud
computing
services
such
as
Google
colab2.
When
you
run

the
notebook
in
the
cloud,
you
will
find
various
GPU
options
available
in
the
user

interface.

So
why
do
machine
 learning
 systems
use
GPUs?
This
 is
an
 interesting
ques­
tion
because
using
GPUs
for
machine
learning
was
one
of
the
breakthrough
ideas

that
enabled
the
deep
learning
revolution
to
begin
in
the
late
noughties.
Geoffrey

Hinton,
sometimes
called
the
 ‘AI
Godfather’,
presumably
 in
the
spiritual
mentor

as
 opposed
 to
 crime-boss
 sense
was
 one
 of
 the
pioneers
 in
 the
use
 of
GPUs
 for

deep
 learning.
As
deep
 learning
pioneer
LeCun
puts
 it,
GPUs
 ”were
 convenient

to
program
and
allowed
 researchers
 to
 train
networks
10
or
20
 times
 faster”[23].

In
 the
 same
 paper,
 the
 researchers
mention
 that
 speech
 recognition
was
 one
 of

the
first
applications.
So
audio
 signal
processing
was
a
core
application
 for
deep

learning
from
 its
inception.

So
machine
 learning,
 particularly
 deep
 learning,
 runs
 faster
 on
GPUs.
Why

is
that,
given
that
GPUs
are
actually
designed
to
process
graphics?
The
original

purpose
of
a
GPU
is
to
compute
parts
of
the
graphics
pipeline.
There
are
several

parts
of
the
graphics
pipeline
requiring
the
multiplication
of
matrices.
For
example,

computing
lighting
effects,
applying
textures
and
updating
the
positions
of
moving

objects.
 GPUs
 have
 been
 designed
 to
 compute
 many
 matrix
 multiplications
 in

parallel.
Unlike
CPUs,
GPUs
have
many
 cores
–
 the
Geforce
2070
 in
my
 laptop

has
 2,304
 cores,
 whereas
 the
 CPU
 has
 eight.
 GPU
 cores
 are
 simpler
 and
 more

specialised
than
CPU
cores.
Essential
parts
of
machine
learning
algorithms
can
be

boiled
down
to
many
matrix
multiplications,
and
GPUs
excel
at
these.

At
this
point,
you
may
worry
that
you
need
a
powerful
GPU
to
work
through

the
practical
activities
 in
 the
book,
but
 that
 is
not
necessarily
 the
 case.
Firstly,

not
all
machine
 learning
 algorithms
 in
 the
book
 require
heavy
 computation.
As

well
as
 that,
 the
machine
 learning
algorithms
 in
 the
book
 that
do
 require
heavy

computation
only
need
 it
 in
their
training
phase.
Training
 is
when
the
algorithm

learns.
 Inference
 is
when
we
use
 the
model
 to
 carry
out
a
 task.
Remember
 that

one
 aim
of
 the
book
 is
 to
build
applications
 that
music
and
audio
professionals

can
access
–
well
 that
means
we
need
 to
make
 sure
 the
 inference
part
 runs
 fast

enough
on
a
CPU.
Still,
it
will
be
useful
to
have
access
to
a
GPU
sometimes
–
so

check
out
the
 information
 later
about
Google
Colabs
for
cloud-based
GPU
use.
I

will
also
provide
pre-trained
models
where
appropriate.

2https://colab.google.com/

https://www.colab.google.com

18
Setting
up
your
development
environment

2.2
 Setting
up
 for
C++
development

At
this
point,
you
should
be
 familiar
with
the
purposes
of

the
 critical
 components
 you
will
 encounter
 in
 your
devel­
opment
environment.
Now
it
is
time
to
put
that
knowledge

into
 practice
 by
 setting
 up
 the
 components
 on
 your
 ma­
chine(s)
and
attempting
to
build
and
run
some
programs.

I
 have
 taught
 programming
 for
many
 years
 in
 several

languages.
My
 experience
has
been
 that
getting
 that
first

program
 compiled
and
 running
 can
be
quite
a
 frustrating

first
step.
The
reason
 is
that
the
programmer
needs
to
en-

FIGURE
2.3

gage
with
many
complex
 tools
and
concepts,
even
 though

Setting
 up
 your
 de-
they
have
not
written
 a
 line
 of
 code
yet.
This
problem
 is

velopment
 environ­
especially
 true
when
working
 in
C++
with
an
 IDE.
Even

ment
 involves
 com­
worse,
we
 are
working
with
 two
 different
 libraries,
 JUCE

plex
 machinery
 and

and
libtorch
and
potentially,
cross-platform!

lots
of
steps.

So,
 I
want
you,
 the
 reader,
 to
know
 that
 the
next
 few

steps
can
go
wrong
and
be
quite
frustrating,
but
stick
with

it
and
be
prepared
to
search
online
for
any
error
messages
you
encounter.
Eventu­
ally,
you
will
have
all
the
tools
humming
away
nicely.
At
the
end
of
this
section,

I
 have
 created
 a
 list
 of
 common
 issues
 people
 encounter
 with
 the
 development

environment
setup
process
along
with
possible
solutions.

If
you
already
have
an
IDE
installed
and
can
compile
and
run
C++
programs,

it
is
still
worth
reading
through
this
section,
as
a
few
special
steps
are
required
for

the
projects
 in
this
book.
For
example,
you
might
need
to
become
more
 familiar

with
JUCE,
CMake
or
 libtorch
and
how
they
work
together.

As
 for
 all
 software
 setup
 and
 configuration
 instructions
 in
 the
 book,
 minor

variations
between
operating
systems
and
software
versions
might
cause
glitches,

and
things
might
break
when
new
software
versions
are
released.
If
you
encounter

any
glitches,
the
best
thing
to
do
 is
to
post
an
 issue
on
the
GitHub
page
 for
the

course
materials.

We
will
start
with
the
essential
tools
that
allow
us
to
build
software:
an
IDE

and
the
tools
for
C++
development.
What
you
do
here
depends
on
the
operating

system(s)
 and
hardware
 you
 have
 available
 to
 you.
 Instructions
 are
here
 for
 all

three
operating
systems
supported
by
the
book.
You
can
skip
the
sections
for
the

operating
systems
you
are
not
using.

