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Preface



Measurements and Instrumentation for Machine Vision is the first book in a series 
from the Taylor & Francis Engineering/Measurement and Instrumentation field at 
CRC Press. This book is a reference for the scholars’ audience, it includes advanced 
students, early career and established researchers. Readers are provided with selected 
topics in the state of the art and relevant novelty content in the frontier of knowledge 
for the engineering implementation, scientific knowledge and technological 
innovation development related to machine vision. Each chapter is the result of an 
expert’s research and a collaborative work evaluated by a peer review process and 
consulted by a book editorial board. The importance of this book’s topic relies on 
the fact that machine vision is the basis of cyber-physical systems to be capable of 
interrelating with humans. 

Machine vision is considered the eyes of cybernetics systems and plays a 
fundamental role in Industry 4.0 and Society 5.0 for the joining of the virtual and 
real world to coexist in a new era in human lives that integrates the technologies into 
their daily lives with creativity, and globalization through interconnectivity. 

Industry 4.0 implies the development of cyber-physical systems capable of 
seeing, making decisions and acting; while society 5.0 searches for solutions for real 
problems to better human life conditions, based on the application of all the benefits 
and advantages that offers Industry 4.0, this is the last and is also known as the fourth 
industrial revolution. Although it is not an easy task, it requires the application of 
measurement fundamentals and methods and the development of instrumentation 
strategies and technologies for the achievement of machine vision systems for every 
specific application. 

It is a revolution that seeks to replace some of the functions that humans perform 
with optimal, efficient, automated and interconnected processes; called the Industrial 
Internet of Things (IIoT). A multidisciplinary integration of mainly electronic and 
mechatronic devices for signal emitters, sensors and cameras, artificial intelligence 
algorithms, embedded systems, instrumentation and control, actuators, robotics, 
interconnectivity, data science and cloud computing, that is the application and 
development of multiple interconnected disciplines. 

In the beginning, one of the dreams of humans has been for machines to do 
our work, while we enjoy rest and other activities that give us pleasure. This gave 
rise to the industrial revolution, which brought as a benefit an increase in the world 
population, an increase in the average rate of living, as well as new lifestyles, with 
tasks that involve less physical effort and that provide us with better quality of life. But 
now the dreams of humans are a green, healthy and intelligent life, interconnected, 
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under continuous monitoring and with accurate control for sustainability, not only 
for living on the Earth but also to be able to search and live in other places in the 
universe. 

The integration of optoelectronics devices for emitters, sensors and cameras, 
artificial intelligence algorithms, embedded systems, robust control, robotics, 
interconnectivity, big data, and cloud computing is the core of machine vision 
developments for cyber-physical systems to collaborate with humans and their real 
and virtual environments and activities. It is required to focus on the theory, methods, 
tools and techniques for the design, instrumentation and measurement methods 
applied in machine vision systems. 

Measurements are values assigned to refer to a physical quantity or phenomenon; 
they play an important role in science development. One of the most crucial points in 
the measurement of machine vision is the proper estimation of information transform 
quality: such parameters as sensitive part calibration, scene size traceability, accuracy/ 
uncertainty, receiver operating characteristic, repeatability, reproducibility, etc. 

The use of current technology requires measuring essential attributes from 
objects, health data, dimensions of a surface and weather, to mention some. These 
are necessary to do breakthrough innovations in a wide range of fields. The artificial 
intelligence (AI) field is one of them. This field is aimed at the research for imitating 
human abilities, above all, how they learn. AI can be divided into two main branches 
such as machine learning and deep learning. These components are methods and 
algorithms that are used for prediction and analysis in the case of machine perception. 
Although deep learning is also used for forecasting as well as machine learning, 
the way how the model is created is different. This sub-branch is inspired by how 
the human brain can learn. In other words, this is based on behavior’s neurons to 
make connections among others to solve a particular problem. In other contexts, 
measurements are known as data or instances and depending on the quality of them 
a problem can be solved. Convolutional neural networks (CNN) have catalyzed 
several vision recognition systems. 

Accuracy measurement for medical data is valuable information for a doctor 
because it can prevent a patient’s illness. Health monitoring is required for people 
who need to constantly check for signs of illness. Data generated by applications 
can be used by specialists or a smart health system to send an alert in real-time. For 
example, as well as blood pressure and pulse monitoring are common requirements of 
a doctor, also medical images obtained by machine vision systems are fundamental. 
These medical diagnostics can be assisted by machine learning algorithms with the 
purpose to offer better outcomes. 

With the advancements in technology, community researchers have access 
to better computers in comparison to decades ago. Smart applications aided by 
computer technology are designed to solve many problems. This progress has 
increased the interest in the development of cognitive machines, especially in 
industry. Measurements provided by machine vision systems dotted by AI technology 
help factories become more efficient and productive. The interaction of humans and 
machines is possible thanks to accurate smart sensors. Robots safely interact with 
humans by taking care of the distance between them, they are called cobots. Optical 
sensors and cameras are the main elements that regularly can be used for this purpose. 
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SPAD (Single Photon Avalanche Diode) sensors open new possibilities for the 
development of an accurate vision system by counting individual photon particles 
instead of the volume of the light by pixel (CMOS technology). Cameras RGB-D 
depict an important advancement that has recently gained attention in the design of 
vision systems. Depth information can be estimated with this type of camera to solve 
the most promising vision tasks. 

The application of measurements and instrumentation are infinitive, while 
the submissions of the present book are addressed to machine vision applications, 
where the challenge to provide the ability to see, measure, track, create models, 
interconnect, take decisions and self-adaptation of cyber-physical systems involves 
multidisciplinary and interdisciplinary requirements with always in mind the 
sustainability and human-centred resolution of local, regional, and global needs and 
problems. 

Each chapter’s contribution demonstrates a deep review of the state of the art, 
as well as reports the most recent theoretical novelty backgrounded with research 
results of novel proposals that contribute to current knowledge and development 
challenges toward futurist trends. 

Chapter 1 Machine Learning Approaches for Single Photon Direct Time 
of Flight Imaging: Reviews the state-of-art deep learning techniques based on 
processing approaches in the context of SPAD (Single-photon avalanche diodes) 
sensors. These sensors can offer advantages for operation in outdoor environments 
with satisfactory results and maintaining a high frame rate. Furthermore, a general 
description of machine vision tasks such as surface and object detection and super-
resolution depth mapping are discussed in detail. Spiking Neural Networks (SNN) 
are analyzed for Direct time-of-flight (dToF) sensors, which can better exploit 
SPAD’s discrete event-based nature. 

Chapter 2 Experimental Evaluation of Depth Measurements Accuracy in 
Indoor and Outdoor Environments: One of the main goals of this chapter is to 
integrate a TVS with a stereovision system. For the purpose of the work, a red laser 
is used to be reflected on a surface, and then a camera RGB-D can capture the scene 
under observation. Color and depth frames were collected from the depth camera. 
The main idea is to find the laser point in the color frame to get the corresponding 
depth information. Four different image processing techniques were applied for 
smoothing the color frames of the beam laser. An overview of the methods for depth 
measurements and the key concepts of machine vision is presented. 

Chapter 3 Design and Evaluation Support System for Convolutional Neural 
Network, Support Vector Machine and Convolutional Autoencoder proposes a 
design, training, and application evaluation based on convolutional neural network 
(CNN), support vector machine (SVM), convolutional autoencoder (CAE). These 
authors designed a front-end tool implemented on Matlab based on deep learning 
structures. The application shown in this work can be addressed to industry for 
material surface defects detection, such as burrs, cracks, protrusions, chippings, 
spots and fractures. 
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Chapter 4 Classification of Objects in IR Images using Wavelet Filters based on 
Lifting Scheme describes an emerging model using a small CNN and wavelet filters 
based on a lifting scheme (multi-resolution analysis (MRA) to improve the feature 
extraction process. A brief overview of infrared image processing is presented. 
Experiments are conducted with four benchmark datasets for training and testing 
the models. 

Chapter 5 Image Dataset Augmentation: A Survey and Taxonomy Highlight 
that the lack of training data can affect the performance of a machine learning 
model. This work is focused on image dataset augmentation approaches to enhance 
a computer vision system. The key concepts of deep learning and data collection 
for data augmentation are discussed. The main data image augmentation techniques 
such as color and geometric transformation, as well as a practical application of this 
technique, are discussed. 

Chapter 6 A Filter-based Feature Selection Methodology forVehicle/Non-Vehicle 
Classification presents a machine learning-based model to detect vehicles from a 
dataset having classes: vehicles and non-vehicles. The main focus of the chapter is 
to implement a Histogram of Oriented Gradients (HOG) as feature extraction. The 
method proposed is validated with two benchmark datasets, such as GTI and Kaggle. 

Chapter 7 Augmented Visual Inertial Wheel Odometry Through Slip 
Compensation: This chapter proposes a strategy for compensating wheel slip, based 
on a differential drive robot kinematics model. The mobile robot presented in this 
work is equipped with wheel encoders which measure the left and right wheel linear 
velocities. The key components of a visual-inertial wheel odometry (VIWO) scheme 
are described. Experimental results obtained through the KAIST dataset to verify the 
method proposed are presented. 

Chapter 8 Methodology for Developing Models of Image Color of Terrain 
with Landmarks for their Detection and Recognition by Autonomous Mobile 
Robots: This chapter suggests the creation of a virtual dynamic system based on 
an image that is scanned by an imaginary fan-shaped beam. A general overview of 
the construction of automobile mobile robots is presented. The authors describe a 
methodology for creating models of the color of landmarks against the background 
of arbitrary terrain. These models are addressed to use in robot navigation. 

Chapter 9 Machine Vision – A Measurement Tool for Agricultural Automation: 
Describes how machine vision applications can improve the agriculture sector. 
Activities such as fruit counting, fruit robotic harvesting and fruit yield estimation 
can be automated for attending to an important issue for food security. A modeling of 
the visual feedback control system was proposed for the navigation task of a mobile 
robot. The vision system for the agriculture approach is based on the Orchard robot 
(OrBot) that includes an RGB-D camera. A practical fruit harvesting is carried out in 
which processing time is measured. 

Chapter 10 Occlusion-Aware Disparity-based Direct Visual Servoing of Mobile 
Robots: Refers to position control of a mobile robot taking into account the camera’s 
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velocity and a disparity map computed from the stereo images. This visual servoing 
system is integrated by a stereo camera. The proposed visual servoing framework 
is verified by simulations and experiments. Physical experiments with a mobile 
robot were carried out for positioning tasks, in which occlusion information in the 
controller design was integrated. 

Chapter 11 Development of a Software and Hardware Complex for the 
Visualization of Sedimentation Inside a Vortex Chamber develops an application 
system for visualizing sedimentation inside a vortex chamber. This system works 
under difficult operating conditions and temperatures over 1000ºC. A complete 
software and hardware package for the operation of the system mentioned is 
developed for the monitoring process. Image enhancement algorithms such as 
distortion correction and background subtraction are detailed and validated with a 
practical application. 

Chapter 12 Machine Vision for Astronomical Images Using the Modern Image 
Processing Algorithms Implemented in the CoLiTec Software: Big data in 
astronomy requires high-dimensional information. As a consequence, scientific 
analysis and data mining represent a challenge for astronomers and scientists around 
the world. This chapter describes a general overview of the different modern image 
processing algorithms and their implementation of them in the Collection Light 
Technology (CoLiTec) software. CoLitec was designed to perform MV tasks for 
astronomical objects. 

Chapter 13 Gallium Oxide UV Sensing in Contemporary Applications explores 
advanced applications of UV-C photodetectors in contemporary computer machine 
vision systems. Sensing UV light has become challenging for researchers and arrays 
of a component such as Gallium oxide can be useful in imaging and machine vision 
applications. This chapter also gives an overview of photosensors based on vacuum 
and solid-state devices. 

Chapter 14 Technical Vision System for Alive Human Detection in an Optically 
Opaque Environment focuses on the technical problems of creating a highly 
sensitive vision system for detecting and identifying living people behind optically 
opaque obstacles by estimation of Doppler phase shifts in reflected signals caused by 
the process of breathing and heartbeat of the living human. This work also discusses 
the advantages and disadvantages of hardware implementations for this task. 

Chapter 15 The Best Linear Solution for a Camera and an Inertial Measurement 
Unit Calibration is addressed for applications where one or more sources of noise 
are present in a system. In this work, a set of experiments were carried out to find 
a rotational offset between the two sensors as well as to verify the robustness of 
the solution proposed based on basic least squares. The effect of noise concerning 
multiple positioning of the camera´s rotational matrix versus IMU's rotational 
matrix was analyzed, to measure the offset between the two sensors for geometrical 
calibration between them to enhance visual perception and pattern recognition 
capabilities. 
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Chapter 16 Methods of Forming and Selecting a Reference Image to Provide 
High-Speed Navigation for Maneuvering Aircraft provides a given speed 
and accuracy of navigation of high-speed manoeuvring aircraft by reducing the 
computational complexity of processing superimposed images in combined extremal-
correlation flyers navigation systems. This work is focused on eliminating emerging 
uncertainties when using multispectral sensors as part of combined navigation 
systems of flyers. 

Chapter 17 Application of Fibre Bragg Grating Arrays for Medical Diagnosis 
and Rehabilitation Purposes: gives an overview of a human health application 
based on a semiconductor material such as Ga2o3 used on sensors for physiological 
parameters measurements. This study is based on Fibre Bragg Grating Arrays 
(FBGA) for physiological pulse detection. The work highlights the advantages 
of using FBGAs due to it being provided multiple data from a region of interest 
simultaneously. These applications minimize the effects of sensor location and 
facilitate locational referencing capabilities. 
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Machine Learning Approaches 

for Single Photon Direct Time 


of Flight Imaging


Jack Iain MacLean,1,* Brian Stewart2 and Istvan Gyongy1 

1.1
 Introduction


1.1.1
 LiDAR


LiDAR
sensors
are
becoming
increasingly
widespread
in
applications
requiring
3D

imaging
or
proximity
 sensing,
 such
as
autonomous
navigation
or
machine
vision.

These
optical
sensors
typically
use
one
of
two
types
of
time-of-flight
(ToF)
approach,

indirect
time-of-flight
(iToF)
and
direct
time-of-flight
(dToF),
which
emit
a
wave
or

light
pulse
 to
 illuminate
a
scene
of
 interest
and
 time
 the
 returning,
back-scattered

photons
 to
 estimate
 distance,
 as
 in
 Figure
 1.1.
 As
 the
 speed
 of
 light
 in
 the
 air
 is

constant,
 the
duration
for
 incident
photons
 to
return
 is
directly
proportional
 to
 the

distance
of
the
object
from
the
sensor.
A
sensor
is
made
up
of
many
pixels
which

are
able
to
independently
measure
the
ToF
of
objects
within
the
field-of-view
(FoV).

The
difference
between
iToF
and
dToF
lies
in
the
methodology
of
time
measurement.

iToF-based
sensors
do
not
directly
measure
the
time
between
emitted
and
received

pulses,
 instead,
 it
 measures
 the
 delay
 between
 signals
 by
 integrating
 the
 received

signal
during
specific
windows
of
time
synchronized
with
the
emitted
signal.


1 School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh. 
2 STMicroelecronics (R&D) Ltd. 
* Corresponding author: s2110140@ed.ac.uk 
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Figure
1.1:
The
figure
illustrates
the
two
different
methods
of
ToF
measurement
(black:
emit­
ted,
red:
reflected).
(A)
iToF.
The
two
types
of
iToF
shown
are
the
square
waved
pulsed-light

(p-iToF)
and
the
sinusoidal
continuous
wave
(cw-iToF).
(B)
dToF.


Sensors
based
on
the
dToF
principle
directly
measure
the
time
taken
between
the

laser
emission
towards
the
scene
and
the
detection
of
back-scattered
photons.
Timing

is
often
performed
using
an
electronic
stopwatch
called
a
time-to-digital
converter

(TDC).
The
distance
(d)
can
be
extracted
from
the
time
between
the
sensor
and
object

using
equation
1.1
[Shahnewaz
and
Pandey,
2020].


ctmd
=
 (1.1)
2


where
tm
 is
the
time
measured
by
the
sensor
with
a
precision
of
∆t,
and
c
is
the
speed

of
light.


Single-photon
avalanche
diodes
(SPADs)
are
photodetectors
that
are
seeing
in­
creased
use
in
3D
depth
imaging
sensors
as
they
provide
a
high
sensitivity
to
pho­
tons,
low
timing
jitter,
and
a
fast
response
time
to
detected
photons.
SPADs
operate

in
an
unstable
state
called
Geiger-mode,
where
the
SPADs
are
reverse-biased
above

their
breakdown
voltage.
While
operating
 in
Geiger
mode,
a
single
photon
hitting

the
SPAD
could
trigger
an
avalanche
of
self-sustaining
current
flow
which
can
be
de­
tected.
The
resultant
current
flow
caused
by
photon
events
activates
a
Schmitt
trigger,

as
seen
in
Figure
1.2.
The
Schmitt
trigger
outputs
a
square
wave
digital
pulse
which

can
then
be
processed
by
accompanying
electronics.
The
chance
of
a
SPAD
detect­
ing
 a
 photon
 event
 is
 measured
 by
 its
 photon
 detection
 probability
 (PDP)
 which,

depending
on
the
wavelength
of
light,
can
range
from
a
few
percent
up
to
fifty
per­
cent
[Piron
et
al.,
2021].
After
the
photon
is
detected
and
the
SPAD
avalanches,
the

bias
voltage
of
the
SPAD
must
be
reduced
to
reset
its
state.
The
time
taken
to
reset

the
SPAD
is
typically
only
a
few
nanoseconds
long
and
is
called
dead
time
due
to
the

inability
to
detect
new
photons.
Two
quenching
and
recharge
circuits
exist
in
order

to
reset
the
SPAD
back
to
its
Geiger-mode
operating
point.
Passive
quenching
can
be

seen
in
Figure
1.2(a)
and
active
quenching
in
Figure
1.2(b).
The
difference
between

these
two
methods
is
that
active
quenching
utilizes
a
MOSFET
to
connect
the
SPAD

circuit
to
a
voltage
source
below
the
SPADs
breakdown
voltage,
which
decreases
the
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time
to
quench
the
avalanche
current.
When
the
MOSFET
is
closed
the
avalanche

current
 is
quickly
quenched
as
 the
circuit
 is
biased
 to
 the
 low
voltage
source.
The

addition
of
active
recharge
can
be
seen
in
Figure
1.2(c)
and
is
achieved
by
adding
a

low-capacitance
MOSFET
in
parallel
with
the
quenching
resistor.
When
the
switch

is
closed,
due
to
a
photon
event
being
detected,
the
SPAD
circuit
voltage
quickly
re­
turns
to
its
operating
voltage
thus
further
reducing
the
dead
time
[Vilà
et
al.,
2012].


(a)


(b)


(c)


Figure
1.2:
(a)
SPAD
Circuit
utilizing
passive
quenching
and
recharging,
(b)
SPAD
Circuit

utilizing
active
quenching
and
passive
recharging,
(c)
Active
quenching
and
active
recharge.
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The
 SPAD
 is
 also
 affected
 by
 two
 main
 types
 of
 noise,
 afterpulsing
 and
 the

dark
count
rate
(DCR).
Afterpulsing
is
caused
by
carriers
being
trapped
during
an

avalanche
which
are
 then
released
after
 the
reset
process,
causing
 the
SPAD
 to
be

triggered
again.
The
DCR
is
the
rate
at
which
SPADs
avalanches
can
be
triggered

by
 thermally
generated
carriers
rather
 than
photon
events.
The
main
drawbacks
of

using
SPAD-based
sensors
is
that
the
SPAD
pixel
requires
excess
circuitry
to
operate

quenching,
counting,
timing,
and
buffering
all
of
which
reduce
the
sensor’s
fill
factor

(FF).
Typically,
this
means
that
SPAD-based
sensors
have
a
lower
FF
when
compared

to
sensors
based
on
other
photodetectors.
To
increase
the
FF,
and
reduce
the
effects

of
dead
time,
multiple
SPADs
are
combined
via
a
combination
tree,
typically
OR
or

XOR,
into
macro
pixels
which
act
as
one
pixel.


As
SPAD-based
sensors
can
generate
large
quantities
of
data,
the
bottleneck
in­
herent
in
the
data
readout
for
off-chip
processing
is
only
exacerbated,
see
Figure
1.3.

The
most
common
method
for
data
compression
is
on-chip
per-pixel
histogramming,

Figure
1.4,
which
takes
advantage
of
new
3D
stacking
technology
to
integrate
SPAD

and
 CMOS
 circuitry
 onto
 the
 same
 silicon
 die.
 The
 histograms
 are
 built
 up
 over

multiple
laser
cycles
using
a
TDC
which
is
triggered
on
each
SPAD
event
to
create

a
timestamp.
This
timestamp
is
used
to
measure
increments
in
the
photon
count
in

the
corresponding
histogram
bin
in
memory.
Photon
event
timestamps
are
allocated

to
the
appropriate
histogram
bin
in
memory,
with
the
histogram
being
built
up
over

multiple
 laser
cycles
until
 the
desired
SNR
 is
achieved.
The
histogram
memory
 is

then
read
out
from
the
sensor
and
a
peak
estimation
algorithm
is
applied
to
extract

detected
surface
depths.


Under
high
photon
fluxes,
photon
pile-up
can
occur
which
prevents
 the
detec­
tion
 of
 additional
 photons
 after
 the
 first
 due
 to
 the
 SPAD
 quenching
 circuit
 be­
ing
paralyzed
by
additional
detections
preventing
a
recharge.
Even
at
lower
photon

rates,
TDC
pile
up
may
occur
which
distorts
the
histograms
and
prevents
the
detec­
tion
of
back-scattered
photons
at
longer
ranges
[Gyongy
et
al.,
2022].
One
method

to
 prevent
 this
 is
 the
 use
 of
 multi-event
 TDCs,
 such
 as
 the
 one
 implemented
 in

[Al
Abbas
et
al.,
2018],
which
uses
a
one-hot
encoding
scheme
to
encode
the
pho­
ton
events
combined
with
a
processing
pipeline
that
allows
for
the
recording
of
time

stamps
at
a
much
higher
rate.


The
completed
histogram
is
then
read
off-chip
where
a
peak
detection
algorithm

is
used
to
extract
the
depths
of
the
surfaces
detected
in
the
pixels
FoV.
While
his­
togramming
does
achieve
a
high
degree
of
data
compression,
 it
 introduces
higher

power
consumption
and
requires
a
significant
area
of
silicon
to
implement.
The
gen­
eral
process
flow
 for
SPAD-based
LiDAR,
as
seen
 in
Figure
1.5,
 is
 that
when
 the

reflected
incident
and
ambient
photons
arrive
at
the
SPAD
pixels
of
the
sensor,
only
a

fraction
are
detected
based
on
the
SPAD
sensors
Photon
Detection
Efficiency
(PDE).

The
detected
photon
events
cause
an
avalanche
current
which
activates
the
Schmitt

triggers
to
output
a
digital
pulse,
these
pulses
are
then
buffered
and
optionally
short­
ened.
A
combination
tree,
usually
consisting
of
OR
or
XOR
gates,
are
used
to
com­
bine
multiple
SPAD
pixel
signals
into
one
macro-pixel.
A
TDC
synchronized
with
a

clock
then
generates
timestamps
based
on
the
photon
events
represented
in
the
macro

pixel
signal
and
increments
the
count
in
the
corresponding
histogram
bin
stored
in
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Figure
1.3:
Maximum
output
data
rate
of
a
320x240
SPAD
array,
assuming
each
SPAD
 is

firing
at
100
Mega
counts
per
second
(Mcps),
compared
to
current
data
transfer
solutions.


Figure
1.4:
On-chip
histogram
buildup
process.


memory.
The
histogram
is
then
read
off
the
chip
and
processed
into
a
depth
map
or

3D
point
cloud
for
further
processing.


However,
 in
 recent
years
 some
of
 these
 steps
have
begun
 to
be
 replaced
with

neural
network
implementations.
As
will
be
demonstrated
in
this
chapter,
the
depth

estimation
algorithms
and
point
cloud
generation
steps
which
were
integral
to
ma­
chine
vision
can
be
replaced
with
deep
neural
network
implementations,
improving

latency
and
 reducing
power
consumption.
Even
histogramming
could
be
 replaced

with
an
appropriate
neural
network
architecture.
Such
 implementations
which
by­
pass
point
cloud
generation
and
output
a
form
of
metadata
using
neural
networks
can

be
seen
in
sensors
such
as
the
Sony
IMX500
[imx,
].
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Figure
1.5:
Typical
SPAD-based
dToF
processing
pipeline.


1.1.2
 Deep
neural
and
neuromorphic
networks


Artificial
Neural
Networks
 (ANNs)
are
 seeing
 increased
use
 in
3D
LiDAR
appli­
cations
 to
perform
 tasks
such
as
object
detection,
autonomous
navigation,
and
up-
sampling.
Recently
it
can
be
seen
that
deep
learning
approaches
are
outperforming

classical
machine
learning
methods.
A
prime
example
is
in
object
detection
where

Convolutional
Neural
Networks
(CNNs)
exceed
the
accuracy
of
methods
such
as
k-
nearest
neighbors
or
gradient
boosting
trees.
The
concept
of
deep
learning
networks

has
 been
 around
 for
 decades
 but
 has
 only
 recently
 become
 the
 predominant
 ma­
chine
learning
method.
The
main
causes
for
the
growing
use
of
deep
neural
networks

are
the
increase
in
cheap
and
powerful
computational
resources,
larger
datasets,
and

more
refined
training
methods
for
the
models
[Goodfellow
et
al.,
2016].
Previous
is­
sues
which
plagued
deep
networks
such
as
vanishing
and
exploding
gradients
have

effectively
been
solved
with
the
improvement
of
the
gradient
descent
optimization

algorithm.


As
 the
 improvement
of
 training
 techniques
and
 resources
 for
deep
neural
net­
works
have
grown,
and
so
too
has
the
use
of
Spiking
Neural
Networks
(SNNs).
These

neuromorphic
networks
are
predisposed
to
take
advantage
of
event-based
nature
of

the
SPAD.
SNNs
operate
asynchronously
and
encode
information
as
spikes
allow­
ing
for
better
integration
of
time,
frequency,
and
phase
information.
Other
appealing

qualities
offered
are
the
greater
data
sparsity
and
relatively
lower
power
consump­
tion
when
compared
 to
 traditional
synchronous
networks.
The
difference
 in
SNNs

architecture
when
compared
to
analogue
networks
can
be
seen
in
Figure
1.6,
where

a
Leaky
Integrate-and-Fire
(LIF)
neuron
[Koch
and
Segev,
1998]
is
compared
with

traditional
artificial
neurons.
Traditional
artificial
neurons
operate
with
fixed
update

periods
with
constant
activation
levels.
These
inputs
are
then
summed
with
each
other

and
a
bias
term,
with
the
result
being
passed
through
an
activation
function
(typically

a
ReLU).
Spiking
neurons
operate
asynchronously,
with
each
neuron
maintaining
its

own
membrane
potential.
The
membrane
potential
is
increased
by
the
arrival
of
an
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(a)


(b)


Figure
1.6:
Difference
between
traditional
(a)
and
spiking
neuron
(b)
architecture.


input
spike
and,
in
the
case
of
an
LIF
neuron,
decreases
over
time
in
the
absence
of

input
spikes.
When
the
membrane
potential
reaches
a
set
threshold
an
output
spike
is

produced
and
the
membrane
potential
is
reset.


While
 the
 advantages
 of
 spiking
 architecture
 are
 clear,
 the
 main
 problem

preventing
 their
 widespread
 use
 is
 the
 lack
 of
 a
 developed
 training
 method

[Taherkhani
et
al.,
2020]
which
also
 limits
 their
 size
 to
a
 few
 layers.
One
method

to
 circumvent
 this
 is
 to
 convert
 a
 traditionally
 trained
 ANN
 network
 into
 a
 spik­
ing
 equivalent
 [Rueckauer
et
al.,
2016].
 However,
 the
process
 for
 conversion
 does

put
limitations
on
the
layer
and
activation
types
that
can
be
used
in
the
architecture

design.
As
 the
activations
of
 the
original
network
are
approximated
using
spiking

equivalents,
the
overall
accuracy
deteriorates
for
every
layer
in
the
network.
Despite

these
drawbacks,
SNNs
have
still
seen
some
tentative
use
in
dToF
based
object
de­
tection.
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1.2
 Surface
detection

Surface
detection
 is
 the
process
of
extracting
 the
depth
of
objects
encoded
 in
 the

timing
 information
output
by
 the
dToF
SPAD
sensors,
 typically
 in
histogram
 for­
mat.
Peak
Detection
(PD),
as
in
Figure
1.7,
locates
the
detected
surfaces
based
on

the
reflected
photon
rates,
which
is
the
superposition
of
the
background
photons
and

incident
photons.
Various
algorithms
have
been
developed
 to
perform
PD
such
as

Gaussian
curve
fitting
and
Continuous
wavelet
transform
[Nguyen
et
al.,
2013].
Dig­
ital
filters
have
also
been
previously
applied
to
perform
PD,
such
as
a
Center-of-Mass

filter
[Tsai
et
al.,
2018],
but
demand
a
higher
computational
cost
to
process
the
en­
tire
histogram
using
small
sliding
steps
to
maintain
high
precision.
Neural
network

approaches
have
seen
increased
use
in
this
field
over
the
last
few
years,
with
some

approaches
outlined
below.


Figure
1.7:
Peak
detection
using
a
histogram
with
a
Gaussian
pulse
shape.
Light
blue
repre­
sents
the
ambient
photon
bed,
and
dark
blue
is
the
incident
back-scattered
photons
detected
by

a
SPAD
sensor.
The
solid
black
line
represents
the
beam
shape,
in
this
case,
a
Gaussian,
and

the
dashed
black
line
is
the
estimated
peak.


1.2.1
 Artificial
Neural
Networks


The
work
of
[Chen
et
al.,
2022]
explores
a
method
to
perform
feature
extraction
on

SPAD
histogram
data
using
a
neural
network-based
multi-peak
analysis
(NNMPA)

to
improve
the
robustness
of
the
distance
measurement
under
harsh
environmental

conditions
with
 the
goal
 to
predict
 the
 target
distance’s
coarse
position
 in
a
noisy

histogram.
The
datasets
used
to
train
the
system
can
be
seen
in
Table
1.1,
the
first

being
a
synthetic
dataset
based
on
the
Montecarlo
principle
and
the
second
being
real

data
captured
using
the
“OWL”
flash
LiDAR
sensor
by
Fraunhofer
IMS
[owl,
].
The

first
stage
of
the
system
is
to
extract
features
from
the
histogram,
this
is
done
by
first

convolving
over
 the
raw
histogram
and
 then
splitting
 it
 into
multiple
regions
with

a
feature
extracted
from
each,
12
being
shown
as
 the
optimum
number.
The
 local

maximum
Mn
 and
the
corresponding
bin
number
bn
 from
each
region
are
extracted

and
the
background
is
estimated
and
subtracted
from
this
value.
The
features
are
then

normalized,
 fn,
and
combined
into
a
feature
group
Fn
=
{ fn,bn}.
These
features
are

then
processed
by
the
NN
which
uses
the
softmax
function
to
assign
soft
decisions
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to
each
feature
where
the
highest
scoring
feature
is
chosen
as
the
final
prediction.
As

the
resolution
of
the
classification
is
lower
than
the
histogram
resolution,
a
distance

recovery
process
is
used
to
reduce
loss
from
the
low
precision
in
the
final
distance
es­
timation.
The
paper
provides
a
detailed
comparison
between
the
proposed
NNMPA

network
and
the
chosen
classical
method,
showing
that
the
former
outperforms
the

latter
on
both
datasets.
However,
under
certain
conditions,
 i.e.,
short
distance
and

low
ambient,
in
the
synthetic
dataset
the
classical
method
outperforms
the
NNMPA

network.
The
classical
comparison
method
is
an
average
filter
with
background
esti­
mation
and
subtraction
with
a
final
global
maximum
detection
applied.
For
instance,

in
the
synthetic
dataset
at
a
distance
of
50–60
m
and
ambient
rates
of
4Mcps,
the
NN­
MPA
has
an
accuracy
of
57.17%
compared
with
18.33%
for
the
classical.
However,

at
a
distance
of
0–10m
at
the
same
ambient,
the
NNMPA
method
has
an
accuracy

of
83.17%
compared
with
89.00%
for
the
classical.
The
overall
performance
of
the

NNMPA
exceeds
that
of
the
classical
method
in
most
situations
where
either
the
am­
bient
is
>3Mcps
and
the
distance
is
<30m.
No
detailed
analysis
was
provided
as
to

why
 the
CDP
outperforms
NNMPA
at
shorter
distances
and
 lower
ambient
 levels,

so
it
remains
an
open
question.
When
tested
on
the
real
dataset
the
NNMPA
reaches

accuracies
 approaching
 100%,
 exceeding
 the
 CDP
 across
 all
 measured
 distances.

The
NNMPA
method
also
outperforms
the
classical
in
computation
time,
0.26ms
vs

0.32ms
when
simulated
using
LabView
[ni,
]
on
a
PC
(not
specified
whether
CPU

or
GPU
utilized),
with
the
largest
contribution
of
0.23s
from
the
initial
convolution

over
the
histogram.


An
FPGA
implementation
of
this
system
is
also
outlined
by
[Chen
et
al.,
2021]

which
is
compared
to
the
performance
of
the
PC
implementation.
To
increase
the
ef­
ficiency
of
the
networks
FPGA
implementation,
fixed
point
arithmetic
replaces
float­
ing
point
to
reduce
the
computational
demands.
Approximated
values
in
a
Look-Up-
Table
(LUT)
replaces
the
background
light
estimation
for
increased
computational

efficiency,
however,
this
caused
a
large
quantization
error
in
low
ambient
levels
with

the
 maximum
 error
 for
 ambient
 estimation
 being
 39.28%
 at
 1–1.5
 Mcps
 ambient

photon
rate.
The
conversion
to
an
FPGA
implementation
caused
a
maximum
accu­
racy
loss
of
2.76%
with
a
negligible
accuracy
reduction
at
low
ambient
levels
despite

the
high
quantization
error,
as
can
be
seen
 in
Figure
1.8.
The
FPGA
used,
an
En­
clustra
Mas
ZX3,
cannot
stabily
use
the
full
384
pixels
of
the
SPAD
sensor
due
to

timing
violations,
instead
only
96
pixels
are
used
resulting
in
the
resource
occupation

in
Table
1.2.
The
end
result
for
the
FPGA
implementation
was
a
marked
reduction

in
computation
time
by
0.17
ms
per
histogram
in
each
pixel
while
having
an
overall

accuracy
drop
of
1.21%
(maximum
of
2.76%).


The
 work
 outlined
 in
 [Aßmann
et
al.,
2021]
 first
 presents
 an
 approach
 to
 per­
form
super-resolution
on
LiDAR
waveforms
using
a
CNN.
It
is
trained
using
25,000

synthetic
histograms
where
one
reflector
is
separated
from
another
with
random
sep­
aration
distance,
amplitude,
and
noise
within
experiment
parameters.
This
dataset
is

designed
to
replicate
the
experiment
first
presented
in
[Hern´ ın
et
al.,
2008]
andez-Mar´
which
proposes
the
statistical
Reverse
Jump
Markov
Chain
Monte
Carlo
(RJMCMC)

method.
The
proposed
CNN
details
can
be
seen
in
Table
1.3.
The
goal
of
the
network

is
to
process
the
synthetic
histograms
to
extract
the
principal
peak
location
compo­
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Table
1.1:
Details
of
datasets
used
in
[Chen
et
al.,
2022].


Synthetic
dataset
 Real
dataset

Dataset
size
 96,000
 7,000

Histogram
size
 1310
bins
 1310
bins

TDC
resolution
 312.5ps
 312.5ps

Max
ranges
 60m
 25m

Incident
rate
 10
Mcps

Background
Rate
 1-8
Mcps
 7-9
Mcps

Sensor
array
size
 2x192

Pulse
width
 5ns
 18.75ns

Peak
power
 75W


Figure
1.8:
Accuracy
comparison
of
PC
and
FPGA
implementation
on
2360
bin
histograms

where
the
PC
configuration
is
a
simulation
run
using
the
software
LabView
[Chen
et
al.,
2021].


Table
1.2:
NNMPA
FPGA
resource
occupation
[Chen
et
al.,
2021].


Resources
 384
Pixels
 96
Pixels

LUT
as
Logic
 6594
(12.39%)


LUT
as
memory
 496
(2.85%)

Slice
registers
as
flip-flop
 9549
(8.97%)


Slice
registers
as
latch
 0
(0%)

BRAM
 101.5
(72.50%)


DSP
blocks
 15
(6.82%)


6373
(11.98%)

496
(2.85%)

9416
(8.85%)


0
(0%)

29.50
(21.07%)


15
(6.82%)


nents
present
and
attach
a
confidence
value
to
each
peak
detected.
The
histograms

consist
of
4096
bins
 representing
a
max
distance
of
65m.
The
 trained
network
 is

tested
on
the
same
real
data
used
in
[Hernández-Marı́n
et
al.,
2008]
and
compared
to

its
proposed
method
RJMCMC,
with
 the
results
presented
 in
Table
1.4.
While
Li-
DARNet
has
an
overall
worse
performance
than
the
classical
method,
LiDARNet
is

better
able
to
detect
multiple
surfaces
in
the
input
waveform
while
RJMCMC
either

mislocates
or
fails
to
identify
the
secondary
surfaces.


[Aßmann
et
al.,
2021]
also
presented
an
automotive
LiDAR
model
which
uses
a

similar
CNN
as
the
super-resolution,
with
the
same
application
to
extract
the
depths
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Table
1.3:
Super
resolution
and
automotive
LiDAR
networks
parameters
EB
stands
for
En­
code
Block
which
consists
of
a
1D
convolutional
layer,
a
dropout
layer,
and
a
max-pooling

layer
[Aßmann
et
al.,
2021].


EB1


Super

L,
W

64,
64


Resolution

#Params


4,160


Automotive

L,
W
 #Params

96,
48
 4704


Activation


ReLU

EB2
 64,
32
 131,136
 96,
48
 442,464
 ReLU

EB3
 - - 64,
24
 147,520
 ReLU


Conv1D
 32,
32
 65,568
 32,
24
 49,184
 ReLU

Conv1D


Dense


16,
32

C


128


16,400

#Params


2,097,280


16,
24
 12,304

C
 #Params


256
 3,842,304


ReLU


ReLU

Dense

Total


4096
 528,384

2,842,928


7500
 1,927,500

6,425,980


SoftMax


Table
1.4:
Evaluation
of
a
real
Super-Resolution
Benchmark
using
the
synthetically
trained

LiDARNet
[Aßmann
et
al.,
2021]
[Hernandez-Mar´ ı́n
et
al.,
2008].


Ground
Truth
(cm)

RJMCMC
 LiDARNet

Mean
(cm)
 Error
(cm)
 Mean
(cm)
 Error
(cm)


1.7
 1.462
 0.238
 1.281
 0.419

3.2
 3.281
 0.081
 3.843
 0.643

5.2
 5.086
 0.114
 5.489
 0.289

7.2
 7.053
 0.147
 7.136
 0.064

9.2
 9.108
 0.092
 9.332
 0.132

11.2
 11.092
 0.108
 11.345
 0.145

13.2
 13.155
 0.045
 13.357
 0.157


of
all
surfaces
present
in
the
histogram
data.
This
model
is
also
trained
using
syn­
thetic
data,
which
was
proven
 to
be
viable
 in
 the
super-resolution
model.
The
au­
tomotive
synthetic
datasets
utilize
existing
 labeled
scenes
 in
[Ros
et
al.,
2016]
and

[Gaidon
et
al.,
2016]
to
provide
detailed
ground
truth
data
that
acts
as
a
base
scene

for
a
SPAD
sensors
FoV
to
be
projected.
Beam
expansion
is
simulated
by
employing

a
spatial
down-sampling
routine
to
emulate
each
SPAD
pixel
detecting
multiple
re­
turns,
while
this
results
in
the
loss
of
objects
spatial
location
their
depth
is
retained.

The
paper
sets
 the
maximum
number
of
separate
surfaces
present
 in
each
pixel
as

9
with
 the
surface
reflectivity
determined
using
generic
values
for
each
 label
 type

scaled
by
 their
brightness
 in
 the
RGB
 image.
14,000
Synthetic
waveforms
of
dis­
tances
up
to
300m
are
represented
with
7500
bin
histograms.
The
parameters
of
the

trained
network
can
also
be
seen
in
Table
1.3.
The
final
network
is
then
compared

to
RJMCMC
on
1000
test
waveforms,
with
the
results
being
presented
in
Table
1.5.

The
main
advantage
 that
can
be
seen
 is
 the
 total
 time
required
 to
process
a
single

waveform,
with
LiDARNet
having
total
run
times
order
lower
than
that
of
RJMCMC

while
also
providing
a
slightly
better
Peak
Signal-to-Noise
Ratio
(PSNR).


The
 work
 presented
 by
 [Sun
et
al.,
2020]
 presents
 a
 network
 that
 fuses
 SPAD

histogram
data
and
monocular
(RGB)
data
for
robust
depth
estimation
to
overcome

noisy
or
corrupted
data.
The
final
depth
 is
estimated
by
using
a
CNN
 to
combine




12
 ■ Measurements
and
Instrumentation
for
Machine
Vision


Table
1.5:
Evaluation
of
LiDARNet
in
automotive
configuration
for
1,000
simulated
wave­
forms
compared
to
ideal
waveforms
[Aßmann
et
al.,
2021]
[Hernández-Marı́n
et
al.,
2008].


Signal
 JMCMC
 LiDARNet

PSNR
(dB)
 8.25
 40.43
 43.50

MSE
 0.2935
 0.0008
 0.0006

time
(ms)
 >5000
 3.4


the
noisy
output
of
the
SPAD
sensor
with
the
depth
information
extracted
from
an

RGB
image
using
a
pre-trained
monocular
depth
estimation
neural
network.
The
net­
work
is
trained
on
synthetic
data
generated
using
the
NYUv2
[Silberman
et
al.,
2012]

with
depths
of
under
10m
where
the
SPAD
histograms
consist
of
1,024
bins
with
a

temporal
 resolution
 of
 80ps,
 and
 a
 total
 input
 resolution
 of
 512x512x1,024
 (pro­
cessed
in
smaller
patches
and
recombined
at
the
output
due
to
memory
constraints).

Pre-processing
 is
 used
 to
 convert
 the
 histogram
 bins
 from
 a
 linear
 to
 a
 logarith­
mic
 scale,
 reducing
 the
 bin
 count
 from
 1,024
 to
 128
 in
 order
 to
 reduce
 the
 run­
time
and
memory
consumption
by
a
 factor
of
7.
 In
 total,
 there
are
7,600
 training

scenes
 and
 766
 testing
 scenes.
 Real-depth
 data
 is
 captured
 using
 the
 LinoSPAD

[Burri
et
al.,
2017]
sensor
with
an
array
size
of
256x256
SPADs
and
1,536
bin
his­
tograms
with
a
temporal
resolution
of
26ps.
Monocular
data
is
captured
at
5Hz
using

a
PointGrey
camera.
The
network
structure
can
be
seen
in
Figure
1.9.
The
monoc­
ular
 depth
 estimator
 used
 in
 SPADnet
 is
 pre-trained
 (DORN
 [Fu
et
al.,
2018]
 and

DenseDepth
 [Alhashim
and
Wonka,
2018])
with
 the
 resultant
depth
estimation
be­
ing
converted
into
the
z
axis
index
for
each
x,y
spatial
coordinate
where
the
corre­
sponding
 indice
 is
set
 to
1
and
all
other
 locations
set
 to
0.
The
process
 is
referred

to
as
“2D
to
3D
up-projection”.
The
results
of
the
trained
SPADnet
network
com­
pared
 to
 other
 solutions
 can
 be
 seen
 in
 Table
 1.6.
 It
 can
 be
 seen
 that
 the
 SPAD-
net
model
using
 the
 log-scaled
bins
produces
 the
best
 results,
with
under
half
 the

RMSE
of
 the
 linear
 implementation.
 It
also
produces
 the
highest
accuracy
within

1.25%
of
the
ground
truth,
with
99.6%
of
results
falling
within
the
accuracy
metric.

When
tested
on
the
captured
data
with
cases
where
areas
of
the
scene
has
low
reflec­
tivity,
optical
misalignment,
and
multipath
interference,
the
proposed
log
SPADnet

has
 a
 greater
 ability
 to
 reconstruct
 the
 depth
 maps
 than
 the
 other
 approaches.
 In

examples
with
extremely
weak
returns,
SPADnet
produces
an
RMSE
of
7.15cm
ver­
sus
the
24.01cm
and
11.68cm
of
[Rapp
and
Goyal,
2017]
and
[Lindell
et
al.,
2018]

(log)
respectively.
The
main
issue
with
the
log
scale
re-binned
histogram
architec­
ture
 is
 that
 the
 resolution
decreases
with
distance,
 so
 further
depths
will
be
com­
bined
 into
 the
 larger
 time
 bins
 increasing
 the
 quantization
 error.
 The
 monocular

depth
estimator
also
has
a
tendency
to
fail
when
used
on
previously
unseen
datasets

or
when
objects
are
too
close,
causing
SPADnet
to
not
benefit
from
the
monocular

depth
 in
 these
cases.
The
benefits
of
utilising
ToF
data
with
 the
monocular
depth

data
is
demonstrated
when
the
DORN
network
[Fu
et
al.,
2018]
is
swapped
for
the

DenseDepth
[Alhashim
and
Wonka,
2018]
monocular
network.
When
trained
on
the

NYUv2
dataset
DORN
and
DenseDepth
have
a
RMSE
(cm)
error
of
53.7
and
71.2

respectively,
however,
when
combined
into
SPADnet
this
RMSE
reduces
to
14.4
and
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Figure
1.9:
Network
diagram
of
proposed
network
SPADnet
[Sun
et
al.,
2020].


13.3
respectively.
The
addition
of
SPAD
ToF
data
is
able
to
compensate
for
monoc­
ular
depths
shortcomings
 in
prediction
when
objects
are
 too
close
or
 there
 is
 low

texture
 data
 available
 [Ali
and
Pandey,
2022].
 While
 the
 monocular
 data
 provides

accurate
of
relative
depth
which
can
be
used
to
de-noise
SPAD
LIDAR’s
high
accu­
racy
but
low
resolution
depth
data.
These
results
demonstrate
that
the
combination

of
monocular
RGB
data
and
SPAD
histograms
provide
a
more
robust
solution
than

either
in
isolation.


The
work
presented
by
[Zang
et
al.,
2021]
proposes
a
3D
CNN
to
process
ToF

data
utilizing
multi-dimensional
spatial
and
temporal
features
into
depth
maps
under

low
photon
flux
and
SNR
conditions.
The
architecture
is
also
compressed
using
low-
bit
parametric
quantization
to
allow
for
implementation
on
FPGA
while
maintaining

high
reconstruction
quality.
The
network
is
trained
on
synthetic
data
generated
us­
ing
the
NYUv2
[Silberman
et
al.,
2012]
and
Middlebury
[Scharstein
and
Pal,
2007]

datasets.
The
synthetic
dataset
consists
of
13,000
and
1,300
ToF
tensors
for
training

and
validation
respectively,
with
 input
data
being
64x64x1,024
bins.
Real
data
for

testing
 is
collected
using
 the
LinoSPAD
 [Burri
et
al.,
2017]
which
provides
SPAD

data
at
a
resolution
of
256x256x1,536
with
a
bin
width
of
26ps.
The
network
uses
a

3D
version
of
U-net++
[Zhou
et
al.,
2019]
as
the
core,
with
the
main
network
being
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Table
 1.6:
 Results
 of
 proposed
 and
 existing
 methods
 on
 synthetic
 data.
 Note
 that
 the
 dif­
ferent
image
sizes
depended
on
whether
the
bins
were
in
linear
or
log
scale
due
to
memory



 
constraints
during
 training.
∗1 [Fu
et
al.,
2018]
(Pre-trained
Monocular
depth
estimator),
∗2

[Rapp
and
Goyal,
2017],
∗3[Lindell
et
al.,
2018].
[Sun
et
al.,
2020].


Signal
photons
=
2,
background
photons
=
50,
SBR
=
0.04


Patch
size
 δ
<
1.25
 δ
<
1.252 RMSE
(cm)
 Abs
rel


∗1
 0.881
 0.976
 53.7
 0.117

∗2
 0.965
 0.986
 43.9
 0.032


∗3
 (linear)
 64x64
 0.935
 0.952
 72.1
 0.058

∗3
 (log)
 128x128
 0.993
 0.998
 18.2
 0.011


SPADnet
(linear)
 64x64
 0.970
 0.993
 34.7
 0.031

SPADnet
(log)
 128x128
 0.996
 0.999
 14.4
 0.010


split
into
a
feature
extraction
module
and
a
refinement
module.
The
network
learns

to
filter
 the
noise
during
 the
 training
 to
output
a
2D
depth
map
without
using
any

guiding
images
such
as
monocular
or
intensity
data.
As
the
main
obstacle
to
embed­
ding
the
network
on
FPGA
is
the
large
quantity
of
memory
used
for
data
transfer
and

the
low
on-chip
memory
available
for
parameters,
a
2D
low-bit
quantization
method

outlined
 in
 [Zhou
et
al.,
2016]
 was
 utilized
 to
 quantize
 the
 3D
 data
 parameters
 to

compress
the
model,
with
the
floating
point
parameters
converted
into
a
fixed
point

format.
In
order
to
reduce
the
loss
from
quantization,
the
weight
parameters
of
the

first
and
last
layers
were
not
changed.
The
bit
widths
for
the
weights
of
other
hidden

layers
are
reduced
to
2
bits
while
the
bit
widths
of
outputs
from
activation
functions

are
reduced
to
4
bits.
The
result
is
an
impressive
reduction
in
network
size
compared

to
the
original
floating
point
model,
allowing
for
implementation
on
FPGA.
The
com­
pressed
version
of
the
network
is
referred
to
as
W2A4,
and
relative
compression
to

other
existing
networks
can
be
seen
in
Table
1.7.
The
proposed
and
existing
networks

were
tested
on
7
indoor
scenes
of
the
Middlebury
dataset
using
three
different
SNRs,

with
the
results
shown
in
Table
1.8.
These
results
demonstrate
that
despite
the
small

size
of
the
network,
it
produces
high
accuracy
with
a
low
error
rate.
The
Absolute
rel­
ative
difference
(ABS
rel)
shows
a
difference
of
2.94
× 10−5
 between
the
proposed

method
and
[Sun
et
al.,
2020]
and
16.2
×10−3
 with
[Peng
et
al.,
2020].


Table
1.7:
Comparison
of
different
existing
and
proposed
networks
 in
 terms
of
No.
of
pa­
rameters,
training
time,
and
the
relative
compression
compared
to
W2A4.
∗1
without
utilizing

intensity
data.
∗2
 utilizing
intensity
data
[Zang
et
al.,
2021].


No.
parameters
 Training
time
 Compression
rate

[Lindell
et
al.,
2018]
∗1
 3.95M
 24h
 21.99x

[Lindell
et
al.,
2018]
∗2
 3.93M
 24h
 21.83x


[Sun
et
al.,
2020]
 3.95M
 24h
 21.99x

[Peng
et
al.,
2020]
 1.01M
 36h
 5.61x


32-bit
floating
point
 2.19M
 17h
 12.17x

W2A4
 0.18M
 16h
 ­
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Table
 1.8:
 Results
 of
 proposed
 and
 existing
 algorithms
 over
 three
 different
 SNR
 levels

[Zang
et
al.,
2021].


Signal
photons
=
2,
background
photons
=
10,
SBR
=
0.2

Accuracy
 Error



δ
<
1.25
 δ
<
1.252 RMSE
(m)
 ABS
rel

[Lindell
et
al.,
2018]
 0.9962
 0.9982
 0.066
 0.0110


[Sun
et
al.,
2020]
 0.9966
 0.9981
 0.062
 0.0070

[Peng
et
al.,
2020]
 0.9966
 0.9987
 0.064
 0.0087


32-bit
floating
point
 0.9968
 0.9983
 0.059
 0.0069

W2A4
 0.9967
 0.9980
 0.061
 0.0056

Signal
photons
=
2,
background
photons
=
50,
SBR
=
0.04


[Lindell
et
al.,
2018]
 0.9827
 0.9951
 0.149
 0.0260

[Sun
et
al.,
2020]
 0.9948
 0.9971
 0.073
 0.0082

[Peng
et
al.,
2020]
 0.9961
 0.9980
 0.064
 0.0087


32-bit
floating
point
 0.9961
 0.9980
 0.063
 0.0067

W2A4
 0.9962
 0.9980
 0.064
 0.0060


Signal
photons
=
2,
background
photons
=
100,
SBR
=
0.02

[Lindell
et
al.,
2018]
 0.9357
 0.9729
 0.321
 0.0580


[Sun
et
al.,
2020]
 0.9952
 0.9978
 0.069
 0.0081

[Peng
et
al.,
2020]
 0.9961
 0.9981
 0.065
 0.0087


32-bit
floating
point
 0.9963
 0.9980
 0.064
 0.0060

W2A4
 0.9963
 0.9981
 0.065
 0.0060


1.2.2
 Comparison


[Chen
et
al.,
2022]
demonstrated
a
system
 that
can
operate
well
 in
adverse
condi­
tions,
though
its
accuracy
deteriorates
in
ideal
conditions
when
compared
to
classical

methods.
It
has
the
lowest
computation
time
at
only
0.26ms
per
histogram
vs
LiDAR­
NET’s
3.4ms.
Its
FPGA
implementation
only
has
a
minor
drop
in
depth
prediction

despite
the
high
quantization
error
in
the
ambient
estimation.
Sadly
it
doesn’t
have

any
detailed
 information
on
 the
exact
number
of
parameters
used
 in
 the
NNMPA

fully
connected
structure,
but
as
the
FPGA
BRAM
utilization
is
high
so
to
will
be

the
network
size.
[Aßmann
et
al.,
2021]
demonstrates
a
very
low
error
when
detect­
ing
multiple
close
surfaces
at
distances
of
up
to
300m
using
a
convolutional
structure

without
any
 feature
extraction
being
performed
on
 the
histograms.
While
 the
net­
work
has
relatively
few
parameters
due
to
its
convolutional
architecture,
making
it

easier
 to
 implement
 on
 a
 chip,
 it
 is
 still
 a
 larger
 network
 than
 [Zang
et
al.,
2021]

which
uses
180,000
parameters.
[Zang
et
al.,
2021]
presented
a
small
network
that

is
able
to
outperform
multiple
state-of-the-art
schemes
under
various
conditions,
as

seen
in
Table
1.8.
One
of
the
key
results
is
the
minimal
effect
quantization
had
on
the

performance
of
the
network
compared
to
its
32-bit
floating-point
equivalent.
While

[Sun
et
al.,
2020]
presented
good
results
utilizing
both
depth
and
RGB,
it
was
out­
performed
by
[Zang
et
al.,
2021]
 in
accuracy
prediction
on
similar
datasets.
A
key

takeaway
 from
 this
 is
 that
while
additional
guiding
 information,
such
as
monocu­
lar,
is
useful
in
detecting
the
surfaces
present
in
a
scene,
it
is
not
a
necessary
step

as
proven
by
the
presented
systems.
Quantisation
has
also
been
shown
to
reduce
the

size
of
a
network
dramatically,
Table
1.7,
to
allow
for
easier
implementation
on
hard­
ware
with
minimal
increase
in
error.
The
main
advantage
that
[Chen
et
al.,
2022]
and
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Table

[Chen



1.9:
 Comparison
 table
 of
 surface
 detection
 schemes.
 ∗1 also

et
al.,
2022],
2:
[Aßmann
et
al.,
2021],
3:
[Sun
et
al.,
2020],
and
4:


uses
 RGB

[Zang
et
al.,


data
 1:

2021].


1 2
 3
 4

Implementation
level
 FPGA
 Simulation
 Simulation
 Simulation


Accuracy
metric
 Accuracy
 MSE
 δ
<
1.25
 δ
<
1.25

Reported
result
 83.54%
 0.0006
 0.9960
 0.9962

No.
parameters
 6,425,980
 180,000



Input
data
type
 Histograms
 Histograms
 Histograms∗1 Histograms

Data
resolution
 1x1,310
 1x7,500
 1x128
 1x1,024

SPAD
array
size
 2x192
 256x256
 64x64


Max
range
 61.26m
 300m
 10m

Peak
laser
power
 75W


Pulse
width
 18.75ns

Repetition
rate
 10KHz


Temporal
resolution
 312.5ps

Frame
rate
 20


Computation
time
 0.26ms
 3.4ms

Power
Consumption


[Aßmann
et
al.,
2021]
have
over
the
other
schemes
presented
is
the
ability
to
output

multiple
detected
surfaces
from
the
same
pixel.
The
more
detailed
output
of
these
net­
works
make
them
ideal
for
use
in
combination
with
spatial
super-resolution
schemes

and
algorithms
such
as
that
presented
in
[Gyongy
et
al.,
2020].


1.3
 Super-resolution
depth
mapping

Super-resolution
imaging
is
a
series
of
techniques
used
to
increase
the
resolution
of

an
 imaging
system,
such
as
 in
1.10.
Traditional
approaches
such
as
 linear
and
bi­
cubic
interpolation
[Keys,
1981]
can
be
fast
but
yield
results
that
have
been
overly

smoothed.
Recently
deep
learning
approaches,
such
as
SR-GAN
[Ledig
et
al.,
2016],

are
achieving
state-of-the-art
performances
driving
them
into
becoming
more
com­
mon
 in
super-resolution
 tasks
[Yang
et
al.,
2019].
These
 techniques
have
also
seen

increased
use
in
the
upsampling
of
low
spatial
resolution
depth
maps
captured
using

SPAD
LiDAR
for
use
in
applications
such
as
automotive
vehicles.


Figure
1.10:
Diagram
of
basic
super-resolution
output.
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1.3.1
 Artificial
Neural
Networks


The
 work
 presented
 by
 [Ruget
et
al.,
2021a]
 proposes
 a
 deep
 neural
 network
 that

de-noises
 and
 up-samples
 a
 depth
 map
 from
 64x32
 to
 256x128
 using
 multi-
scale
 photon
 count
 histogram
 information
 and
 exploiting
 high-resolution
 inten­
sity
 images
 for
 guided
 up-sampling.
 The
 network
 is
 modeled
 on
 use
 with
 the

Quantic
 4x4
 [Hutchings
et
al.,
2019]
 sensor
 which
 provides
 both
 the
 intensity

and
 depth
 information
 at
 resolutions
 of
 256x128
 and
 64x32
 respectively.
 The

training
 and
 testing
 of
 the
 neural
 network
 uses
 synthetic
 histogram
 and
 in­
tensity
 data
 generated
 using
 the
 MPI
 Sintel
 Depth
 dataset
 [Butler
et
al.,
2012],

[Wulff
et
al.,
2012]
 (training)
 and
 Middlebury
 dataset
 [Scharstein
and
Pal,
2007],

[Hirschmuller
and
Scharstein,
2007]
(test)
as
the
ground
truth.
The
designed
network

utilizes
U-net
architecture
[Ronneberger
et
al.,
2015]
and
incorporates
guidance
in­
formation
as
in
[Guo
et
al.,
2019].
The
network
uses
as
an
input
the
concatenation

of
two
depth
maps
(up-sampled
from
64x32
to
256x128
using
the
nearest
neighbor

algorithm),
with
the
first
depth
map
being
comprised
of
the
surfaces
with
the
highest

photon
counts.
The
second
depth
map
consists
of
any
pixels
which
contain
secondary

surfaces
where
the
photon
counts
exceed
a
certain
threshold,
 if
not
then
 that
pixel

entry
remains
0.
Multi-scale
information
is
also
utilized
to
de-noise
the
data
and
is

included
in
both
the
decoder
and
encoder
using
guiding
branches,
with
depth
features

being
incorporated
in
the
encoder
and
intensity
in
the
decoder.
The
four
multiscale

depth
features
connected
to
the
encoder
consist
of
D1,
D2,
D3,
and
D4.
D1
is
the

first
depth
map
down
sampled
using
nearest-neighbor
interpolation
from
256x128
to

128x64.
D2
 is
computes
 the
depths
using
center
of
mass
on
 the
source
64x32x16

histograms.
D3
and
D4
are
the
source
histograms
down-sampled
by
a
factor
of
2
and

4
respectively
by
summing
adjacent
pixels.
The
 intensity
 image
used
 to
guide
 the

upsampling
process
has
a
resolution
of
256x128.
The
size
of
each
component
of
the

network
can
be
seen
in
Table
1.10.
The
results
of
the
trained
network
are
compared

to
four
other
methods,
first
the
nearest-neighbor
interpolation,
Guided
Image
Filter­
ing
[He
et
al.,
2013],
DepthSR-Net
(retrained
on
the
same
dataset)
[Guo
et
al.,
2019],

and
an
algorithm
presented
in
[Gyongy
et
al.,
2020].
Each
system
was
tested
under

three
different
conditions,
High
SNR
of
2
and
signal
photon
counts
per
pixel
(ppp)
of

1200
with
secondary
surfaces
present,
medium
SNR
of
0.02
and
ppp
of
4
with
no
sec­
ondary
surfaces,
and
low
SNR
of
0.006
and
ppp
of
4
with
no
secondary
surfaces.
The

results
can
be
seen
in
Table
1.11
where
Absolute
Depth
Error
(ADE)
is
calculated
as

ADE
=
|R+d
−dre
f
|,
with
R
being
the
residual
map
predicted
by
Histnet,
d
being
an

up-scaled
low-resolution
depth
map,
dre
f
 being
ground
truth.
Additional
results
can

also
be
found
in
[Ruget
et
al.,
2021b].
The
results
show
that
guided
upsampling
using

intensity
images
and
multi-scale
depth
features
significantly
improves
the
accuracy

of
the
final
HR
image.
The
main
drawback,
however,
is
that
even
when
implemented

on
a
NVidia
RTX
6000
GPU
the
processing
time
for
one
frame
is
significant.
With

the
total
processing
time
reaching
7
seconds,
Histnet
would
be
unlikely
to
be
usable

in
any
live
scenarios.


Another
super-resolution
and
denoising
scheme
by
[Martı́n
et
al.,
2022]
devises
a

method
to
upscale
and
denoise
dToF
video
sequences
using
past,
present,
and
future
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Table
1.10:
No.
of
parameters
per
network
component
of
Histnet
[Ruget
et
al.,
2021a].


Network
section
 No.
of
parameters

Encoder
 25,108,992

Decoder
 31,058,368

Depth
guidance
 9,600

Intensity
guidance
 1,549,824

Total
 57,726,784


Table
1.11:
Quantitive
comparison
of
the
different
methods
of
reconstruction
for
the
4x
up-
sampling
of
the
MPI
Sintel
dataset
[Ruget
et
al.,
2021a].
ADE
stands
for
Absolute
Depth
Er­
ror.
∗1
 is
Nearest
neighbour
interpolation,
∗2
 is
[He
et
al.,
2013],
∗3
 is
[Guo
et
al.,
2019],
∗4


is
[Gyongy
et
al.,
2020],
and
∗5
 is
Histnet.


∗1
 ∗2
 ∗3
 ∗4
 ∗5


Time
per
frame
 1ms
 0.4s
 7s
(on
GPU)
 4s
 7s
(on
GPU)


Training
on
high
SNR
with
secondary
surface



Scene
 ADE
 ADE
 ADE
 ADE
 ADE

Art
 0.038
 0.039
 0.008
 0.0076
 0.0027


Reindeer
 0.035
 0.035
 0.0051
 0.004
 0.0018

Training
on
medium
SNR
without
secondary
surface


Art
 0.22
 0.17
 0.023
 0.05
 0.019

Reindeer
 0.21
 0.16
 0.024
 0.06
 0.019


Training
on
low
SNR
without
secondary
surface

Art
 0.276
 0.22
 0.064
 0.187
 0.055


Reindeer
 0.272
 0.206
 0.053
 0.168
 0.05


depth
 frames
 based
 on
 the
 network
 presented
 in
 [Li
et
al.,
2022].
 It
 is
 trained
 us­
ing
15,500
images
using
synthetic
depth
data
generated
from
high-resolution
depth

maps
(256x128)
and
RGB
data
(256x128
converted
to
grayscale)
recorded
in
Airsim

[Shah
et
al.,
2017].
As
these
depth
maps
don’t
contain
the
Poisson
noise
inherent
in

photonics,
histograms
are
created
from
the
Airsim
data
using
a
Poisson
distribution

to
generate
incident
and
background
photon
counts
which
form
a
16-bin
histogram.

The
FoV
of
the
scenes
is
30°with
different
frame
rates
simulated
to
vary
the
object

movement
per
frame,
the
SNR
is
also
varied
between
video
sequences,
and
finally,

the
depth
is
varied
between
0
and
35m.
From
these
generated
histograms,
new
depth

maps
are
created
using
center
of
mass
peak
extraction
 [Gyongy
et
al.,
2020].
The

depth
maps
are
normalized
and
consecutive
frames
with
a
set
temporal
radius
TR
 are

concatenated,
i.e.,
in
groups
of
2TR
+1
frames
such
that
the
input
to
the
network
is
of

the
shape
64x32x(2TR+1).
When
the
temporal
radius
is
0,
only
a
single
depth
frame
is

used
as
input
as
opposed
to
if
the
radius
is
set
to
one,
where
it
uses
one
frame
from
the

past
and
one
from
the
future.
If
the
frame
is
at
the
start
or
end
of
the
video
sequence,

then
 the
system
 replicates
 the
current
 frame
 to
 fulfill
 the
 required
 input
size.
The

network
output
is
a
super-solved
depth
frame
of
the
size
256x128
and
is
compared

with
 the
normalised
ground
 truth
depth
map
 from
Airsim
and
evaluated
using
 the

metrics
Peak
Signal-to-Noise
Ratio
(PSNR)
[Fardo
et
al.,
2016]
and
Structure
Sim­
ilarity
Index
(SSIM)
[Nilsson
and
Akenine-Möller,
2020].
The
network
architecture
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Figure
 1.11:
 Diagram
 of
 3D
 convolutional
 blocks
 used
 in
 super-resolution
 scheme

[Martı́n
et
al.,
2022].


itself
 is
based
on
blocks
of
3D
convolutions
and
dynamic
upsampling
filters.
The

structure
of
the
3D
blocks
can
be
seen
in
Figure
1.11,
with
the
full
network
shown
in

Figure
1.12.
The
number
of
convolutional
blocks
varies
with
the
size
of
the
temporal

resolution
such
that
there
are
3
+
TR
 blocks
per
network.
Initial
testing
to
investigate

the
impact
of
different
temporal
resolutions
was
completed
using
a
dataset
of
1500

frames
(3
 recordings
of
500
 frames).
The
 results
show
 that
while
a
higher
TR
 im­
proves
PSNR
and
SSIM,
the
trade-off
is
a
large
decrease
in
FPS
from
43.4
FPS
at

TR
=
1
to
30.8
FPS
at
TR
=
4.
An
investigation
was
also
made
into
an
object’s
speed

and
the
network’s
ability
to
exploit
the
temporal
information,
and
was
found
that
as

long
as
an
object
didn’t
move
more
 than
2-3
pixels
 in
between
 frames
 then
 there

would
be
no
degradation
in
accuracy.
The
proposed
system
is
also
compared
to
other

contemporary
methods
such
as
Bicubic
[Keys,
1981],
Histnet
[Ruget
et
al.,
2021a],

and
iSeeBetter
[Chadha
et
al.,
2020]
using
the
same
1,500
frame
dataset.
It
can
be

seen
in
Table
1.12
that
the
proposed
approach
has
a
greater
accuracy
at
upsampling

the
depth
maps
with
only
a
slightly
lower
frame
rate
than
other
approaches
presented.

The
images
produced
from
this
scheme
are
better
able
to
replicate
the
flat
surfaces
of

an
object,
but
have
a
tendency
to
blur
the
edges
of
an
object
with
the
background.


Table
1.12:
Comparison
of
work
presented
in
[Martı́n
et
al.,
2022]
at
different
temporal
reso­
lutions
with
other
contemporary
methods.
Scenes
1
and
2
have
an
SNR
of
1.3
and
scene
3
has

a
SNR
of
3,
with
different
SNR
values
used
to
demonstrate
the
robustness
of
the
network.


Scene
1
 Scene
2
 Scene
3

Method
 PSNR
 SSIM
 PSNR
 SSIM
 PSNR
 SSIM
 FPS

Bicubic
 15.82
 0.538
 17.60
 0.607
 26.80
 0.841
 185


iSeeBetter
 20.47
 0.784
 21.96
 0.837
 28.74
 0.843
 33

Histnet
 19.14
 0.812
 20.14
 0.858
 27.18
 0.881
 0.25

TR
=
1
 21.20
 0.890
 22.72
 0.910
 31.17
 0.901
 43.4

TR
=
4
 22.05
 0.909
 23.00
 0.916
 31.31
 0.906
 30.8
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Figure
 1.12:
 Diagram
 of
 the
 full
 network
 used
 in
 the
 super-resolution
 scheme

[Martı́n
et
al.,
2022].
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1.3.2
 Spiking
Neural
Networks


The
work
presented
by
[Kirkland
et
al.,
2020]
presents
a
single
pixel
SPAD
sensor

that
 utilizes
 a
 spiking
 neural
 network
 to
 upscale
 the
 output
 1x8,000
 bin
 ToF
 his­
togram
into
a
64x64
resolution
depth
map.
A
fully
spiking
convolutional
architec­
ture
is
used
where
the
depth
histogram
is
encoded
using
1D
convolutions,
then
de­
coded
 into
a
2D
depth
map
using
2D
convolutional
 layers.
The
network
 is
 trained

on
synthetic
data
created
by
simulating
a
flood
illuminated
single
point
SPAD
sen­
sor
with
depths
ranging
from
2
to
4m.
4
different
experiments
comprised
the
11,600

sample
dataset,
with
the
variance
of
photon
count
and
IRF
from
1,000
to
9,500
pho­
ton
counts
and
20
to
100
ps
time
windows
and
histogram
bin
widths
of
2.3ps.
The

synthetic
scenes
are
generated
using
object
silhouettes,
with
the
background
objects

being
static
throughout
all
images
and
the
foreground
object
moving
between
200
lo­
cations
which
only
vary
along
the
x
and
z
axis.
In
total,
29
different
object
silhouettes

are
used.


The
structure
of
the
devised
Spiking
Convolutional
Neural
Network
(SCNN)
and

the
 network
 it
 is
 compared
 to
 can
 be
 seen
 in
 Table
 1.13.
 The
 SCNN
 is
 trained

as
 a
 synchronous
 CNN
 but
 is
 converted
 into
 its
 spiking
 equivalent
 using
 Nengo

[Bekolay
et
al.,
2014].
The
results
of
the
conversion
versus
the
traditional
ANN
ap­
proach
can
be
seen
in
Table
1.14.
It
can
be
seen
that
Spike-SPI
performs
better
on

all
reported
metrics
except
SNR
and
RMSE.
Spike-SPI
spatial
reconstruction
of
the

scene
is
superior
to
the
ANN
as
seen
in
the
Intersection
over
Union
(IoU)
and
ac­
curacy
metrics.
While
87%
of
all
depth
estimates
made
by
Spike-SPI
are
accurate,

the
predictions
for
 the
background
are
considerably
noisy
which
 is
 the
root
of
 the

low
SNR
and
RMSE.
Spike-SPI
also
benefits
from
lower
processing
power
over
the

ANN
implementation.
While
the
average
firing
rate
of
the
neurons
is
around
1Hz,

with
a
max
of
150Hz,
only
around
11%
of
 the
neurons
are
active
as
 low
connec­
tion
weights
inherited
from
the
CNN
version
don’t
significantly
increase
the
spiking

neurons’
membrane
potentials
to
their
threshold
essentially
filtering
them
out.
This

reduction
in
information
propagation
can
reduce
the
accuracy
of
the
reconstruction,

but
also
reduces
the
power
consumption.
The
paper
reports
however
that
there
was

no
tangible
difference
between
the
results
of
the
CNN
and
SCNN
implementations.

There
is
also
a
marked
reduction
in
processing
time
for
each
frame
due
to
the
asyn­
chronous
nature
of
the
network.
By
varying
the
firing
rates
of
the
neurons,
the
time

taken
to
converge
on
a
result
reduces
with
the
trade-off
of
more
neural
activity.
The

main
flaw
of
this
reconstruction
scheme
is
its
reliance
on
a
the
background
remaining

static,
with
only
the
foreground
changing.


1.3.3
 Comparison


The
largest
difference
between
the
presented
schemes
is
the
input
data
that
they
use,

shown
in
Table
1.15.
Histnet
utilizes
the
most
data
inputs
but
does
not
achieve
greater

SSIM
over
 the
method
of
 [Martı́n
et
al.,
2022],
as
 seen
 in
Table
1.12,
which
uses

multiple
depth
frames.
Histnet
also
presents
a
far
slower
computation
time
than
the

scheme
 presented
 in
 [Martı́n
et
al.,
2022]
 of
 7s
 vs
 32ms
 respectively.
 This
 shows

that
 there
does
not
appear
 to
be
an
added
advantage
 in
utilizing
Depth,
 intensity,
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Table
1.13:
Details
of
Spike-SPI
and
its
comparison
network
[Kirkland
et
al.,
2020].


Spike-SPI

Layer
 Ce1
 Ce2-3
 Ce4-10
 Cd8-5
 Cd4-3
 Cd2
 Cd1
 Up


Kernel
size
 7
 7
 7
 5
 5
 5
 5
 2

Feature
no.
 64
 128
 256
 256
 128
 64
 1


ANN

Layer
 FC1
 FC2
 FC3


Kernel
size

Feature
no.
 1024
 512
 256


Table
1.14:
Results
of
the
Spike-SPI
vs
the
ANN
solution
[Kirkland
et
al.,
2020]
where
δ
 re­
lates
to
the
accuracy
of
the
predictions
within
1.25%
of
the
ground
truth.
IoU
results
performed

on
a
mask
of
the
Spike-SPI
depth
map
outputs
where
the
data
is
converted
into
a
binary
value

to
represent
the
presence
of
an
object
in
the
scene.


Photon
count
 IRF
 IoU
 SNR
 RMSE
 δ
<
1.25

ANN
 0.650
 14.844dB
 0.189100psSpike-SPI
 0.783
 14.284dB
 0.2011,000ANN
 0.650
 14.708dB
 0.19220psSpike-SPI
 0.760
 14.155dB
 0.202

ANN
 0.637
 15.076dB
 0.187100psSpike-SPI
 0.780
 14.391dB
 0.1989,500ANN
 0.631
 15.070dB
 0.18820psSpike-SPI
 0.778
 14.424dB
 0.198


0.853

0.871

0.853

0.868

0.856

0.871

0.856

0.870


and
histogram
data
over
just
depth.
Histograms
however
are
shown
in
the
Spike-SPI

to
provide
a
wealth
of
 information,
providing
 the
most
 impressive
performance
 in

super-resolution.
[Kirkland
et
al.,
2020]
up-scales
the
input
histogram
into
a
64x64

depth
map.
The
catch
is
that
it
relies
on
a
known
static
background,
so
has
limited

applications
 in
 the
real
world.
Its
spiking
nature
compounded
with
 the
 low
neural

activity
 does
 imply
 it
 would
 have
 the
 lowest
 power
 consumption
 out
 of
 the
 pre­
sented
methods.
A
comparison
in
computation
time
was
not
investigated
in
Spike-
SPI,
but
it
would
be
interesting
to
see
the
time
taken
to
process
the
histogram
using

the
ANN
vs
the
SNN.
An
interesting
network
would
seem
to
be
a
structure
similar
to

[Martı́n
et
al.,
2022]
using
the
raw
histograms
instead
of
the
depth
maps,
which
could

then
be
converted
into
a
spiking
equivalent
for
the
reduction
in
power
consumption

and
potential
computation
time.


1.4
 Object
detection

Object
detection
is
the
image
processing
task
that
detects
and
extracts
semantic
ob­
jects
of
a
predefined
class
(such
as
boat,
airplane,
human,
etc.)
in
digital
images
or

videos,
such
as
in
Figure
1.13.
Every
object
class
defined
has
its
own
set
of
features

that
is
used
to
identify
it,
for
instance,
a
square
class
would
be
identified
b
perpendic­
ular
corners.
However,
while
in
algorithms
such
as
Scale-invariant
feature
transform

(SIFT)
[Lowe,
2004]
where
each
class
is
predefined
using
reference
images,
in
neural

network
approaches
based
on
convolutional
layers
the
features
of
a
class
are
learned




Machine
Learning
Approaches
for
Single
Photon
Direct
Time
of
Flight
Imaging
 ■ 23


Table
1.15:
Comparison
 table
of
reviewed
super
resolution
depth
mapping
solutions
∗!also

utilises
intensity
(256x128)
and
histogram
(64x32x16)
data.
∗2
 approximated
from
paper.
1:

[Ruget
et
al.,
2021a],
2:
[Martı́n
et
al.,
2022],
and
3:
[Kirkland
et
al.,
2020].


1
 2 3

Implementation
level
 Simulation
 Simulation
 Simulation


Accuracy
metric
 ADE
 SSIM
 RMSE

Reported
result
 0.00225
 0.91
 ≈ 0.20

No.
parameters
 57,726,784
 n/a

Input
data
type
 Depth
maps∗1
 Depth
maps
 Histograms

Input
resolution
 64x32x2
 64x32
 1x8000

Output
data
type
 Depth
maps
 Depth
maps
 Depth
maps

Output
resolution
 256x128
 256x128
 64x64

SPAD
array
size
 256x128/64x32
 64x32
 1x1


Computation
time
 7s
 32ms∗2
 54ms∗2


Figure
1.13:
Diagram
of
basic
object
detection.


and
not
defined.
Object
detection
applications
include
face
recognition,
object
track­
ing,
and
image
annotation.
Over
time
CNN
implementations
of
object
detection
have

seen
increased
use
and
has
now
become
state
of
the
art.


1.4.1
 Artificial
Neural
Networks


The
first
system
[Ruvalcaba-Cardenas
et
al.,
2018]
is
a
flash
LiDAR
which
compares

a
modified
version
of
 the
VGG-16
[Simonyan
and
Zisserman,
2014]
2D
CNN
and

compares
 it
 to
a
3D
CNN
at
 identifying
 three
classes
(airplane,
chair,
and
drone).

These
two
systems
are
trained
using
a
limited
dataset
of
only
1,983
and
1,900
images
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Table
1.16:
Details
of
datasets
used
in
[Ruvalcaba-Cardenas
et
al.,
2018].


Indoor
 Outdoor

Range
 25m
 400m,
600m,
and
700m


Ambient
 <1
lux


SPAD
array
 64x64


Pulse
width
 7ns


Pulse
energy
 18mj



Repetition
rate
 100Hz

Depth
resolution
 0.5m


captured
on
a
SPAD
LiDAR
setup
for
the
2D
and
3D
network
respectively,
with
an

example
shown
in
Table
1.16.
For
the
indoor
images,
a
16mm
to
160mm
zoom
lens

was
used
with
different
zooms
for
each
object.
The
outdoor
data
also
used
a
meade

telescope
with
the
SPAD
sensor
while
the
laser
was
mounted
using
a
telescopic
sight

and
a
beam
expander
which
was
set
 to
give
a
3m
diameter
beam
at
each
of
 the
3

ranges.
The
sensor
outputs
histograms
which
are
processed
 into
depth
maps,
with

distance
thresholding,
and
then
median
and
spatial
filters
are
applied
to
remove
any

background
data
or
noise
until
finally,
the
image
is
binarised.
A
nearest-neighbor
in­
terpolation
algorithm
is
used
to
upsample
the
binarised
images
to
320x320,
with
the

data
for
the
2D
network
being
resized
again
down
to
224x224
while
the
3D
network

converts
the
images
into
a
16x16x16
voxel
grid
where
the
binary
image
is
projected

along
the
z-axis.
The
2D
modified
VGG-16
network
is
retrained
using
transfer
learn­
ing
[Yosinski
et
al.,
2014],
where
the
first
14
layers
of
VGG-16
are
frozen
while
the

last
4
are
 replaced
with
4
unfrozen
 layers
 for
a
 total
of
18
 layers
where
 the
final

two
are
a
dense
and
a
classification
layer.
The
new
network
is
then
trained
on
1,923

images
(641
per
class)
and
60
images
for
testing.
The
3D
network
structure
can
be

seen
in
Figure
1.14
(using
ReLU
activation
functions)
and
was
trained
on
a
dataset
of

1,900
voxel
grids
with
1,615
training,
285
validation,
and
60
testing
voxel
grids.
The

results
of
these
networks
are
given
in
F1
score
over
the
60
test
images,
not
accuracy

or
any
other
metric.
The
results
show
that
the
modified
VGG-16
network
provides

an
average
F1
score
of
0.95
while
the
3D
network
provides
an
F1
score
of
0.97,
indi­
cating
that
there
are
clear
advantages
utilizing
the
3D
information
even
when
using

a
smaller
network.
While
 the
 results
are
 impressive,
 the
source
dToF
data
applies

significant
pre-processing
and
the
depth
information
is
lost
before
being
used
with

the
NN.


Figure
 1.14:
 Proposed
 3D
 Convolutional
 Network
 Architecture

[Ruvalcaba-Cardenas
et
al.,
2018].
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The
work
performed
by
[Nash
and
Devrelis,
2020]
presents
a
flash
LiDAR
sys­
tem
that
is
used
to
classify
6
different
vehicles
as
if
mounted
to
a
drone
using
a
CNN

which
 is
 contrasted
 with
 other
 traditional
 methods
 such
 as
 Gaussian
 naive
 Bayes

Classifier
 and
 a
 nearest
 neighbor
 classifier
 [Goldberger
et
al.,
2004].
 The
 training

data
consists
of
116
vehicle
datasets
varying
from
a
few
to
several
thousand
frames

captured
using
the
a
32x32
SPAD
array
outdoors
during
twilight.
The
sensor
itself

is
mounted
on
a
tower
16m
above
the
ground
to
simulate
a
drone’s
elevation
with

a
DJI
gimbal
used
to
provide
movement
and
stability,
while
the
target
vehicles
are

placed
30m
from
the
base.
The
SPAD
array
is
illuminated
by
a
35mj,
5ns
laser
with
a

repetition
rate
of
20Hz
and
a
beam
divergence
of
115°providing
a
depth
resolution
of

0.75m.
The
SPAD
array
uses
a
first
photon
TDC,
so
to
reduce
the
effect
of
noise
his­
togram
averaging
of
15-50
frames
is
used
to
filter
out
ambient
photon
detections.
The

depth
images
are
pre-processed
to
remove
the
ground
plane,
convert
the
depth
into

meters,
and
reorient
the
vehicle.
The
structure
of
the
CNN
used
to
process
the
final

depth
images
can
be
seen
in
Figure
1.15,
unfortunately,
no
detailed
information
on

the
parameters
was
given.
The
CNN
is
compared
to
two
traditional
approaches,
prin­
ciple
component
analysis
(PCA)
with
a
Gaussian
Classifier
and
PCA
with
a
Nearest

Neighbour
classifier.
The
results
of
the
work
can
be
seen
in
Table
1.17.
The
CNN-
based
approach
is
shown
to
outperform
the
traditional
methods
but
only
by
a
small

margin.
The
performance
of
the
system
overall
is
impressive
given
the
low
spatial

and
depth
resolution.
The
low
resolution
reduces
the
data
throughput
making
it
more

applicable
for
embedding
on
a
drone,
however,
the
network
has
only
been
tested
us­
ing
the
CPU
of
an
NVIDIA
Jetson
TX2
board
and
took
multiple
seconds
to
process

and
single
frame.
The
work
did
express
its
desire
to
implement
the
system
on
a
GPU

which
would
improve
the
computation
time.


The
work
presented
by
[Ito
et
al.,
2017]
is
a
small
SPAD
LiDAR
system
that
uti­
lizes
depth,
monocular,
and
intensity
data
to
perform
localization
in
an
environment

using
a
Deep
Convolutional
Neural
Network
(DCNN).
The
LiDAR
system,
named

SPAD
LiDAR,
 is
 targeted
as
a
 low-cost
and
compact
sensor
and
 is
used
with
 two

CNN
schemes:
SPAD
DCNN
and
Fast
SPAD
DCNN.
The
SPAD
LiDAR
sensor
has

a
 range
of
up
 to
80m
using
 two
SPAD
arrays
on
 the
same
chip,
with
one
used
 to

detect
backscattered
photons
and
the
other
to
measure
the
ambient
light.
The
main

specifications
can
be
seen
in
Table
1.18.
The
SPAD
DCNN
network
uses
all
three

data
inputs
to
determine
if
there
is
a
target
and
then
resolve
its
3D
coordinates.
The

network
is
small,
consisting
of
only
three
convolutional
layers,
three
pooling
layers,

and
two
fully
connected
layers.
Fast
SPAD
DCNN
is
a
version
with
improved
run­
time
performance
over
the
original
and
integrates
peak
intensity
data
with
the
depth

data
so
that
results
with
low
certainty
are
filtered
out.
This
is
done
pixel-wise
by
bi­
narising
the
peak
intensity
data
and
multiplying
the
result
with
the
depth
data.
The

data
and
ground
 truth
data
were
collected
 indoors
with
 trajectories
being
captured

using
a
vicon
motion
capture
system
 [vic,
2022]
and
 later
 resized
 from
 the
native

202x96
 into
112x112.
The
networks
are
compared
 to
 the
same
network
structure,

but
as
if
only
depth
data
was
used
instead
of
all
3
inputs.
The
datasets
used
to
train

consist
of
 three
 recordings
of
 the
sensor
slowly
moving
 towards
a
wooden
pallet,

with
two
used
for
training
and
one
for
testing.
Three
experiments
were
carried
out
to
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Table
1.17:
Classification
accuracy
of
Algorithms
[Nash
and
Devrelis,
2020].


Classification
Algorithm
 Accuracy
(%)

PCA
with
Gaussian
 63.0


PCA
with
Nearest
Neighbour
 85.2

CNN
 86.3


Figure
1.15:
Proposed
3D
Convolutional
Network
Architecture
[Nash
and
Devrelis,
2020].


test
SPAD
DCNN
and
Fast
SPAD
DCNN.
The
first
experiment
compared
the
abil­
ity
of
 the
conventional
method
vs
 the
SPAD
DCNN
at
 localising
 the
 target
 in
 the

scene,
with
the
conventional
achieving
an
error
of
6.7cm
and
SPAD
DCNN
achiev­
ing
an
error
of
4.4cm.
As
 the
depth
 resolution
of
 the
SPAD
LiDAR
 is
3.5cm,
 the

result
is
not
only
an
improvement
over
the
conventional
method
but
close
to
the
res­
olution
limitation.
The
2nd
experiment
compares
the
runtime
of
SPAD
DCNN
and

Fast
SPAD
DCNN.
It
reuses
the
dataset
from
the
first
experiment
and
measures
the

computational
demands
and
 runtime
 to
process
one
 frame
when
 the
networks
are

implemented
on
a
CPU
(core
i7)
and
a
GPU
(GTX
Titan
X),
with
the
results
shown

in
Table
1.19.
The
third
test
examines
the
increase
in
localization
error
as
the
guided

vehicle
moves
off
course
from
the
training
data.
Five
trajectories
with
5
variations

are
used
to
test
the
system’s
ability
to
cope
with
variance
in
sensor
movement.
The

results
are
that
for
a
deviation
of
50cm
off
the
path
of
the
training
set,
the
average

localization
error
increases
to
0.15m.
Overall,
it
can
be
seen
that
by
providing
the

neural
network
multiple
sources
of
data
to
leverage,
it
was
able
to
reduce
the
error

by
2.3cm
when
compared
to
depth
data
alone.


Table
1.18:
SPAD
LiDAR
sensor
specifications
[Ito
et
al.,
2017].


Pixel
resolution
 202×96
pixels

Field
of
view
 55°×9°

Frame
rate
 10fps

Size
 W
0.067
× H
0.073
× D
0.177
m

Range
 80m
(reflectivity
9%)

Laser
 Class
1
laser

Distance
resolution
 0.035m


The
work
of
[Scholes
et
al.,
2022]
presents
a
SPAD
LiDAR
system
called
Drone-
sense
 which
 is
 capable
 of
 determining
 the
 type,
 orientation,
 and
 segmentation
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Table
1.19:
Runtime
Results
of
Fast
SPAD
DCNN
and
SPAD
DCNN
[Ito
et
al.,
2017].


SPAD
DCNN
 Fast
SPAD
DCNN

CPU
runtime
 36.03ms
 25.5ms


GPU
runtime
 4.1ms
 2.9ms



(body,
 engines,
 camera)
 of
 drones
 in
 flight
 using
 a
 CNN
 that
 utilizes
 a
 decision

tree
and
an
ensemble
structure.
The
system
utilizes
 the
SPAD
sensor
Quantic
4x4

[Hutchings
et
al.,
2019]
which
is
256x256
SPAD
pixel
array
able
to
provide
both
in­
tensity
data
and
depth
histograms
(64x64
resolution).
The
sensor
outputs
16
bin
his­
tograms
with
500ps
temporal
resolution.
In
this
work,
the
sensor
resolution
was
set

differently
from
the
default
at
80x240
pixels
for
intensity
and
depth
at
20x60
pixels.

The
network
is
trained
on
a
synthetic
dataset
of
72,000
images
generated
by
placing

two
drones
in
an
Unreal
Engine
environment
at
random
positions,
orientations,
and

distances
within
the
camera
FoV.
The
simulated
intensity
images
are
created
using

a
Poisson
filter
and
are
resized
to
80x240,
while
the
depth
maps
are
downsampled

to
20x60
and
converted
into
15
bin
histograms.
The
proposed
large
network
struc­
ture
can
be
 found
 in
 the
original
paper.
The
core
of
 the
network
 is
 referred
 to
as

the
Drone
Feature
Encoder
(DFE),
and
it
extracts
features
from
depth
and
intensity

data
into
a
space
of
1x3x32
filters.
The
remainder
consists
of
either
the
segmentation

or
the
decision
trees
for
orientation
and
identification
predictions.
The
testing
uses

two
angular
regimes,
“full
angle”
and
“reduced
angle”
as
seen
in
Table
1.20,
with

the
reduced
angle
having
the
drone
constrained
to
the
specifications
of
the
manufac­
turer.
The
trained
network
was
then
tested
using
real
data
captured
by
the
Quantic

4x4
camera
of
a
drone
in
flight,
with
an
example
of
the
results
shown
in
Table
1.21.

The
network
was
able
to
correctly
distinguish
between
the
two
drone
types
with
av­
erage
accuracies
of
over
90%.
The
training
and
testing
data
seem
to
not
contain
any

background
noise,
so
either
some
pre-processing
is
performed
or
the
synthetic
data

does
not
take
into
account
any
ambient
light
and
background
objects.
The
work
also

experiments
with
the
network’s
ability
to
perform
using
only
the
depth
histograms

or
only
 the
 intensity
data.
When
using
only
 the
histograms,
 the
average
reduction

in
accuracy
for
orientation
prediction
was
less
than
0.5%
while
the
reduction
when

using
only
 intensity
data
was
 just
under
2%.
The
small
 loss
when
only
using
his­
tograms
suggests
the
benefit
is
minimal
with
the
intensity
included.
The
impact
of

a
reduction
in
resolution
was
also
investigated,
with
the
resolution
being
halved
and

quartered.
The
main
result
was
an
overall
reduction
 in
 the
segmentation
accuracy,

with
 the
 largest
reduction
being
 the
segmentation
of
engines
resulting
 in
a
 loss
of

accuracy
of
7%
and
23%
for
the
half
and
quarter
resolution
respectively.
The
ability

to
detect
the
camera
was
not
greatly
impacted,
however,
with
only
a
reduction
of
2%

and
3%
for
half
and
quarter
resolution
respectively.
The
resolution
also
impacted
the

orientation
prediction
with
the
yaw
predictions
accuracy
reducing
by
1.7%
and
7.6%

for
the
half
and
quarter
resolution
respectively.


The
 work
 by
 [Mora-Martı́n
et
al.,
2021]
 presents
 a
 short-range
 3D
 depth
 im­
ager
 that
 uses
 CNNs
 to
 investigate
 the
 accuracy
 of
 gesture
 recognition
 using
 3D

depth
 data
 with
 low
 lateral
 resolution
 at
 high
 speeds.
 It
 uses
 the
 Quantic
 4x4
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Table
1.20:
Full
angle
and
reduced
angle
regimes
for
drone
orientation
[Scholes
et
al.,
2022].


Full
angle
 Reduced
angle

Yaw
range
 0°,
360°
 0°,
360°

Roll
range
 0°,
360°
 140°,
220°

Pitch
range
 0°,
180°
 140°,
220°


Table
1.21:
Dronesense
predictions
on
real
data
example
[Scholes
et
al.,
2022].


Metric
 Ground
truth
 Prediction,
accuracy
%

Classification
 Mavic2
 Mavic2,
100

Orientation

Yaw
 31
 19,
93

Roll
 180
 177,
96

Pitch
 90
 92,
96


[Hutchings
et
al.,
2019]
 sensor
 to
 capture
 both
 depth
 and
 intensity
 data
 at
 resolu­
tions
of
64x32
and
256x128
respectively.
The
laser
is
a
2W
max
power
flood
illu­
mination
source
with
a
FoV
of
20°.
It
has
a
pulse
 length
of
10ns
and
a
repetition

rate
of
6MHz.
The
sensor
itself
is
set
with
a
temporal
resolution
of
4ns
per
bin
and

captured
data
at
approximately
200FPS.
4
different
combinations
of
input
data
was

tested,
specifically
depth
(64x32),
intensity
(256x128),
histogram
(64x32x16),
and

intensity
and
depth
(I+D)
(256x128x2).
I+D
stacks
depth
data
up-scaled
to
256x128

using
nearest
neighbor
 interpolation
onto
 the
 third
axis
of
 the
 intensity
data
 for
a

final
 resolution
 of
 256x128x2.
 The
 system
 comprises
 two
 networks,
 the
 first
 is
 a

U-net
[Ronneberger
et
al.,
2015]
network
version
that
was
modified
to
handle
the
4

different
data
schemes,
which
outputs
a
binary
mask
with
0
being
the
background

and
1
being
an
object
of
interest
in
the
pixel.
The
second
is
a
simpler
classification

network
that
predicts
the
gesture.
The
network
was
trained
using
a
RTX2070
GPU

using
 three
datasets,
 the
first
dataset
being
a
hand
 in
 front
of
a
plain
background

without
ambient
light,
the
second
introducing
objects
into
the
background,
and
the

third
introducing
objects
and
ambient
light.
1,000
frames
for
each
of
the
3
gestures

are
captured
for
each
dataset,
resulting
in
a
9,000
frame
dataset.
The
network
training

results
can
be
seen
in
Table
1.22.
The
Histogram
and
I+D
network
proved
to
get
the

best
results,
though
the
histogram-based
network
has
the
added
advantage
of
faster

processing
 time.
The
 faster
processing
 time
can
be
attributed
 to
only
needing
one

data
frame
from
the
sensor
which
halves
the
data
acquisition
time
and
requires
no

additional
pre-processing
to
upscale
and
combine
the
data.
It
also
shows
that
while

the
histogram
data
has
a
lower
spatial
resolution,
it
benefits
from
information
such
as

object
reflectivity,
ambient
level,
object
edges,
and
the
depth
that
the
histogram
con­
tains
resulting
in
similar
or
better
performance
than
that
of
higher
resolution
data.


1.4.2
 Spiking
Neural
Networks


The
work
[Ara
Shawkat
et
al.,
2020]
presents
a
SPAD-based
vision
system
that
uti­
lizes
on-chip
memristive
spiking
neural
networks
for
object
detection.
It
is
currently



