Safety at Height

A Holistic View of Fall Management

Natarajan Krishnamurthy

Safety at Height

Everybody climbs up or down for some reason or other. Many fall and get injured or, worse, end up killed all over the world, especially in their place of work. Why does it happen? Does it have to be so? Can it be managed better and, if so, how? This book addresses these questions in layman's language, yet with sufficient technical detail to satisfy the more curious and challenge the more ambitious.

In *Safety at Height: A Holistic View of Fall Management*, veteran author Natarajan Krishnamurthy shares his long research and consultancy experience on this subject to offer an overview of falls, methods to manage them, and practical techniques to ensure better safety. This book argues that deaths and major injuries from fall accidents can be prevented by stakeholders knowing more and following guidelines. It looks at the mechanics of falls, accidents in the workplace, and safeguards that can be put in place. Featuring exercises at the end of chapters to underpin learning, this title concludes with unusual fall situations. Through its pages, the reader will develop a good understanding of how to prevent falls across a variety of different real-life scenarios.

This handy guide will be an ideal read for students, researchers, and professionals in occupational safety and health, human factors, and activities where slips, trips, and falls tend to occur.

Natarajan Krishnamurthy ('Prof Krishna') is an international consultant in safety, structures, and computer applications. Now based in Singapore, he has had significant roles in teaching and training, research and consultancy, in India, the USA, and Singapore, underpinning the breadth and depth of his experience. He has authored more than 100 papers and 18 books in his technical specialties and general fields. He has three inventions patented in Singapore.

He is Founder President of the Singapore Society of Steel Structures, Singapore Section of the American Society of Civil Engineers, and the Centre for Workplace Safety and Health at the National Institute of Engineering in Mysuru, India.

Safety at Height A Holistic View of Fall Management

Natarajan Krishnamurthy

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business Cover Design: Natarajan Krishnamurthy. Picture credit: Remix by Natarajan Krishnamurthy from a royalty-free black and white photograph by Lewis Hines, with Lunapic Art (StorytIme 75%).

First edition published 2024 by CRC Press 2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 Natarajan Krishnamurthy

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www. copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978–750–8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Krishnamurthy, Natarajan, author.

Title: Safety at height : a holistic view of fall management / Natarajan Krishnamurthy.

Description: New York, NY : Routledge, 2024. | Includes bibliographical references and index.

Identifiers: LCCN 2023053502 (print) | LCCN 2023053503 (ebook) | ISBN 9781032616971 (hardback) | ISBN 9781032648125 (paperback) | ISBN 9781032648132 (ebook)

Subjects: MESH: Accidental Falls—prevention & control | Accident Prevention—methods | Accidents, Occupational—prevention & control | Accidents, Home—prevention & control | Holistic Health

Classification: LCC HV675 (print) | LCC HV675 (ebook) | NLM WA 288 | DDC 613.6—dc23/eng/20240228

LC record available at https://lccn.loc.gov/2023053502 LC ebook record available at https://lccn.loc.gov/2023053503

ISBN: 978-1-032-61697-1 (hbk) ISBN: 978-1-032-64812-5 (pbk) ISBN: 978-1-032-64813-2 (ebk)

DOI: 10.1201/9781032648132

Typeset in Times LT Std by Apex CoVantage, LLC

Dedicated -

To those who love heights, to help them be safe or get safer; To those who fear heights, to lead them to safe management; and

To those who don't care, to woo them toward greater heights.

Contents

Preface				xv	
Acknowledg	gement	ts		xix	
Chanter 1	Intro	duction		1	
Chapter 1	11	Overvi	iew of work at height	1	
	1.1	111	Why falls are particularly dangerous	1	
		1112	Why fall regulations are so diverse	1	
	12	Why n	eople on to heights and how they fall	1 2	
	1.2	121	Why people go to heights	2	
		1.2.1	Why people fall	2 6	
	13	Factor	s affecting fall management	0 7	
	1.5	131	Necessity and familiarity	7	
		132	Resources and economics	, 7	
		133	Inherited ethnic influence	, 8	
		13.5	Cultural factors	0 0	
	14	Statist	ics of fall accidents and deaths	 10	
	1.7	141	General fall statistics	10	
		1.4.1	Workplace fatality statistics	10	
		1.1.2	Workplace fall statistics	17	
	15	Planni	ng for fall management	17	
	1.5	151	Height when fall control should be provided	18	
		1.5.1	Correlation between height of fall and injury	18	
		1.5.2	Scope of fall management	10 19	
		154	Imperatives for fall management	20	
		155	Hierarchy of fall management	20	
	Refe	rences fo	ar chanter 1	21	
	Refe			21	
	P				
Chapter 2	Pursu	Pursuit of neight			
	2.1	limeli	The for tall constructions	22	
		2.1.1	Tall religious/spiritual structures	23	
		2.1.2	Tall buildings	23	
		2.1.3	Tall bridges	25	
		2.1.4	Tall dams	25	
		2.1.5	Tall monuments and towers	25	
		2.1.6	Tall statues	25	
	2.2	Histor	ical examples of tall construction	26	
		2.2.1	Artists' visualisations of ancient construction		
			techniques	26	
		2.2.2	Records from actual constructions	29	
	2.3	Histor	y of fall regulations	31	
		2.3.1	Safety awareness	31	

		2.3.2	Timeline for workplace safety regulations	31
	2.4	Histor	y of fall safety	34
	Refe	rences fo	or chapter 2	36
Chapter 3	Colle	ective fal	l prevention	37
	3.1	Fall pr	evention alternatives	37
	3.2	Fall eli	mination	37
		3.2.1	Avoidance of routine height activity	37
		3.2.2	Elimination of construction activity at height	38
		3.2.3	Prevention of access	40
	3.3	Edge p	protection, general	40
		3.3.1	Common current practice	40
		3.3.2	Height of edge protection	41
		3.3.3	Other edge protection requirements	42
		3.3.4	Case study on edge protection	43
		3.3.5	When edge protection must be raised	44
	3.4	Edge r	protection for work platforms	44
		3.4.1	Work platform	44
		3.4.2	Edge protection for supported scaffolds	
		343	Raising guardrails in workplaces	46
		344	Edge protection for suspended scaffolds	48
		345	Edge protection for mobile elevated work	10
		5.1.5	platforms	48
	3.5	Additi	onal controls with edge protection	49
		3.5.1	Need for 100% fall management	49
		3.5.2	Supplementary safeguards with edge protection	
	Refe	rences fo	or chapter 3	50
Chapter 4	Individual fall prevention			
	4.1	Aspect	s of individual fall prevention	51
		4.1.1	Situations for individual fall prevention	51
		4.1.2	Scope of individual fall prevention	51
	4.2	Genera	al fall restraint	52
		4.2.1	Fall prevention at level	52
		4.2.2	Fall prevention from heights	53
	4.3	Fall rea	straint at the workplace	53
		4.3.1	Fall restraint	53
		4.3.2	Enlarging the area covered by fall restraint	55
		4.3.3	Rope grabs for variable length fall restraint	56
	4.4	100% '	Tie-off	56
		4.4.1	Need and procedure	56
		4.4.2	Applications of 100% tie-off	57
	4.5	Rope a	ccess and work positioning	58
		4.5.1	Fall restraint in rock climbing	58
		4.5.2	Rope access	59
		=	1	

		4.5.3	Work positioning	60
	4.6	Ladder	·s	60
		4.6.1	Use of ladders	60
		4.6.2	General ladder safety	61
		4.6.3	Safety for various types of ladders	61
		4.6.4	Fall restraint for ladders	63
	Refe	rences fo	r chapter 4	63
Chapter 5	Mech	nanics of	falls and fall arrest	64
	5.1	What h	happens when people fall	64
		5.1.1	Relationships between fall height, velocity,	
			and time	64
		5.1.2	Example 5.1	64
		5.1.3	Example 5.2	65
		5.1.4	Charts for fall height and velocity versus time	65
		5.1.5	Practical significance of velocities	66
		5.1.6	Terminal velocity	69
	5.2	Impact	force at the end of a fall	69
		5.2.1	Stopping distance	69
		5.2.2	Impact force	70
		5.2.3	G-factor	72
		5.2.4	Duration of impact	73
		5.2.5	Example 5.3.	73
		5.2.6	Limiting G-Factors in practice	
		5.2.7	How to reduce impact force	
		528	Example 5.4	74
		529	Example 5.5	7 1
		5 2 10	Example 5.6	71
	53	Stress	on body at impact	75
	5.5	531	Stress the ultimate concern	75
		532	Strength of bones	75
		533	Ways to reduce stress	75 76
		534	Fxample 5.6	70 77
		535	Example 5.7	// 78
	5 /	Summ	Example 5.7	70 79
	5.4	Everei	ary of now to survive a fait	70
	5.5	5 5 1	Exercise 5.1	79
		5.5.1	Exercise 5.1	79
		5.5.2	Exercise 5.2	79
		J.J.J 5 5 1		19
		5.5.4 5.5.5	Exercise 5.4	/9
		3.3.3 5 5 6	Exercise 5.5	80
		5.5.6	Exercise 5.0	80
		5.5.7	Exercise 5./	80
		5.5.8	Exercise 5.8	80
	Refe	rences fo	r chapter 5	81

Chapter 6	Collective fall arrest			
_	6.1	Soft la	nding	82
		6.1.1	Characteristics of soft landing	82
		6.1.2	Considerations in fall arrest	82
	6.2	Safety	nets at public facilities	83
		6.2.1	Fire rescue by net	83
		6.2.2	Circus nets	84
		6.2.3	Amusement Park nets	84
	6.3	Safety	nets at the workplace	85
		6.3.1	Safety net under the work	85
		6.3.2	Catch-nets around the periphery	85
		6.3.3	Design of safety nets	85
	6.4	Cushic	ons for soft landing	87
		6.4.1	Mats or pads	87
		6.4.2	Airbags	88
		6.4.3	Airbags in public facilities	89
		6.4.4	Airbags at the workplace	90
	6.5	Cardbo	bard boxes for soft landing	91
		6.5.1	Basic principles for fall arrest	91
		6.5.2	Validation of card box use	92
		6.5.3	Example 6.1	92
	6.6	Exerci	se for Chapter 6	93
	Refe	ences fo	or chapter 6	93
Chapter 7	Indiv	idual fal	l arrest	94
-	7.1	Aim o	f individual fall arrest	94
		7.1.1	Need for individual fall arrest	94
		7.1.2	Rope and waist belt	94
		7.1.3	Full-body safety harness	94
	7.2	Parts o	f full-body safety harness	95
		7.2.1	The safety harness	95
		7.2.2	The safety lanyard and shock absorber	95
	7.3	Susper	nsion trauma	96
	7.4	Rescue	e from suspended harness	97
		7.4.1	Rescue measures	97
		7.4.2	Precautions after rescue	97
	7.5	Corequisites for harness use		98
		7.5.1	Correct fit	98
		7.5.2	Fall clearance	98
		7.5.3	Free-fall distance	100
		7.5.4	Example 7.1	100
		7.5.5	Example 7.2	100
		7.5.6	Anchor capacity and numbers	101
		7.5.7	Check for other hazards during fall	103

	7.6	Use an	d misuse of safety harness	103
		7.6.1	When to give safety harness	103
		7.6.2	Why NOT to give safety harness indiscriminately	104
	7.7	Self-re	tracting devices	104
		7.7.1	Self-retracting lifeline	104
		7.7.2	Fall clearance for SRL	106
		7.7.3	Example 7.3	106
		7.7.4	Personal fall limiter	106
	7.8	Fall pr	otection PPE	106
		7.8.1	New safety helmet	106
		7.8.2	Wearable airbags	107
	7.9	Exerci	ses for Chapter 7	108
		7.9.1	Exercise 7.1	108
		7.9.2	Exercise 7.2	108
		7.9.3	Exercise 7.3	108
	Refer	ences fo	or chapter 7	108
Chapter 8	Lifeli	ines for t	fall devices	109
F	8.1	Lifelin	es in general	109
	8.2	Lifelin	es for fall prevention	109
		8.2.1	General considerations	109
		8.2.2	Types and applications	110
	8.3	Vertica	l lifelines	110
		8.3.1	For ladder use	111
		8.3.2	For work positioning	112
		8.3.3	For suspended scaffolds	112
	8.4	Horizo	ntal lifelines	112
		8.4.1	For work restraint	112
		8.4.2	For fall arrest from HLL	114
	8.5	Design	considerations for flexible HLL	114
		8.5.1	Initial cable sag and tension	114
		8.5.2	Example 8.1	115
		8.5.3	Example 8.2	115
		8.5.4	Fall arrest sag and tension	116
		8.5.5	Example 8.3	116
		8.5.6	Practical considerations in HLL design	118
	8.6	Rigid l	norizontal lifelines	119
	8.7	Exerci	ses for Chapter 8	119
		8.7.1	Exercise 8.1	120
		8.7.2	Exercise 8.2	120
		8.7.3	Exercise 8.3	120
		8.7.4	Exercise 8.4	120
	Refer	ences fo	or chapter 8	121

Chapter 9	Plann	ing fall	management	122
_	9.1	Catego	risation of falls	122
	9.2	Accide	ntal falls	122
	9.3	Hierard	chy of fall management	123
	9.4	Plannir	ng for work at height and rescue	124
		9.4.1	Work at height plan	124
		9.4.2	Fall rescue plan	125
	9.5	Freak s	survivals from falls	126
		9.5.1	Survivals from accidental falls	126
		9.5.2	Survivals from suicide falls	127
	9.6	Intentio	onal jumps from height	128
		9.6.1	Why fall intentionally	128
		9.6.2	Intentional falls on cardboard boxes	129
		9.6.3	Aikins' intentional fall on a net	131
	9.7	Bungee	e jumping	132
		9.7.1	Evolution of bungee jumping	132
		9.7.2	Bungee jump operations and regulations	133
		9.7.3	Physics of bungee jumping	133
		9.7.4	Bungee stretch for known fall	134
		9.7.5	Example 9.1	135
		9.7.6	Example 9.2.	135
		9.7.7	Cable parameters to suit practical	
			considerations	136
		9.7.8	Example 9.3	136
		9.7.9	Bungee application to fall control	137
	9.8	Risk as	sessment for work at height	138
		9.8.1	Likelihood of fall	138
		9.8.2	Severity of fall injury	139
		9.8.3	Risk of fall injury	139
	9.9	Exercis	ses for Chapter 9	140
	,,,	9.9.1	Exercise 9.1	140
		992	Exercise 9.2	140
		993	Exercise 9.3	140
	Refer	ences fo	r chapter 9	140
	110101	0110003 10		110
CI (10	0.1	C 11 1	. 1	1.40
Chapter 10	Other	fall-rela	ited topics	142
	10.1	Consid	erations other than fails from height	142
	10.2	Slips, t	rips, and fails	142
		10.2.1		142
		10.2.2	Statistics of slips, trips, and falls	143
	10.2	10.2.3	Control of slips, trips, and falls	145
	10.3	Falling	object hazards	146
		10.3.1	The problem with falling objects	146
		10.3.2	Hierarchy of falling object control	146
		10.3.3	Challenges faced by industry	148

Contents

	10.3.4	Dropped objects best practices and solutions	148
	10.3.5	Requirements for tools	149
	10.4 Recent	developments in fall management	149
	10.4.1	Radio frequency identification	150
	10.4.2	Building information management	150
	10.4.3	Geographical information system	151
	10.4.4	Global positioning system	152
	10.4.5	Drones	152
	10.4.6	Exo-skeletons	152
	10.4.7	Internet of things	153
	10.4.8	Virtual reality	153
	References fo	r chapter 10	155
Chapter 11	Conclusion		156
Index			157

Preface

Any human activity at height has fascinated me throughout my adult life for three reasons.

-1-

As an engineering student in India in the 1950s, while on a technical education tour to an iron-ore mining facility, my group was trudging wearily up the hill to the control station of the ropeway for the ore buckets transporting the mined ore from the top of the hill to the bottom, arguing how it would be like to ride to the top in one of the empty buckets. Before I knew it, I had accepted the dare to show it could be done!

I climbed the nearly 15 m (50 ft) high tower, lowered myself into one of the slow-moving buckets, squatted within it, and started enjoying the panoramic view around me, trading jokes with my foot-sore classmates.

At high noon, the ropeway stopped for the workers' lunch break, with my bucket hanging midway between two towers!

When guards on their rounds saw me high up in the air, they got into a frenzy and mobilised my rescue. I discovered the reason for their panic as soon as they shouted that I must hold tight to the bucket sides, as otherwise, if I accidentally tripped the latch (yes, I saw it right then!) that held the bucket upright and automatically flipped it upside down to empty it when it reached the bottom, I would have fallen to my death, literally kicking the bucket!

Well, after my slow journey to the top, a tongue-lashing and a formal complaint there, all of us returned home. I was given a verbal thrashing by the college principal and my family elders. The only reason I was not dismissed from college was that I was a top scorer.

I have frequently wondered how I never felt any fear or anxiety while doing it. Certainly, it was because I had not known about the latch that would have meant my death by one false move. Also, climbing trees and boarding running buses were part of every normal youngster's repertoire in my time. But basically, I seemed to have no fear of heights.

Now that I have spent decades learning and teaching risk management, I have realised how stupid of me it was to have accepted the challenge without considering the risk of falling from that height. I shudder every time I think how close I had come to killing myself and ruining the futures of my dependents.

I have been so embarrassed, even ashamed, about this escapade that I have avoided mentioning it or responding to queries about it.

But I confess it now, to explain my inborn fascination with heights, to share my learning first-hand the dangers of moving to and at heights, and to warn wannabe superheroes to think twice before they take any such risk, about whether they or their loved ones, or their employers, can afford the consequences if something goes wrong!

-2-

The second reason is more professional.

In the USA in the 1970s and 1980s, when I worked on structural failure investigations, some of the actions involved climbing heights on ladders and scaffolds. I would follow the lead of my American colleagues in the climbing, as of course they were more experienced in that work.

Even then, I did not think twice about what the risks were, because at the back of my mind was the faith that if my colleagues could do it, it should be safe enough for me to do it too!

But I gradually saw the logic of the safety measures my companions used during these inspections, such as the 'three-point' rule for climbing ladders. The Occupational Safety and Health Administration (OSHA) too had just started prescribing safety rules, and so my learning curve was fast and smooth.

Moreover, the years I spent in the USA also demonstrated to me how much Westerners loved rock climbing and other sports involving heights, and how seriously they planned and trained for them.

Those were my apprenticing years at workplace heights.

-3-

The third reason is the clincher, you may say, my main motivation!

When I got into workplace safety and risk management in Singapore more than two decades ago, mostly focusing on the construction industry, I had the opportunity to climb scaffolds and formwork fully conforming to safety regulations and to offer training courses for supervisors and other safety personnel on the hazards of working at height and their control.

In due course, I was invited to investigate accidents of falling from height and I also carried out personal study and sponsored research into working safely at height.

Soon, the problems of working at height and the many errors of omission and commission that led to accidents, the many human factors contributing to the root causes for falls, and the feasible solutions to these problems fascinated me to the extent that the topic became a passion, a crusade, and a mission for the rest of my life.

These three experiences have goaded me into studying more and sharing more of what I learnt from and with fellow engineers. I have conducted hundreds of short courses, made numerous seminar presentations, and published many papers on the subject since 2000 in Singapore, the USA, and India.

I have also patented an invention of a wheelchair modification that would eliminate the falling risk of old or sick or physically challenged users if they chose to get up and walk on their own.

This book is thus a logical outcome of my intent to share my knowledge and opinions on this vital subject.

All over the world, people keep falling all the time from heights, and even at level, for various reasons; many even die or get seriously injured from these falls.

While some of these mishaps may be attributed to unavoidable causes like slipping unexpectedly on a wet surface or ignorantly traversing an unguarded walkway, most of the 'accidents' could have been avoided by proactive planning and proper follow through.

In the following pages, I plan to discuss what happens when someone falls from height or at level and present my views on how to control or manage them. A la

Newton, I certainly stand on the shoulders of giants in offering such information and comment.

I shall refrain from the following:

- Invoke Government or Industry Regulations or Codes of Practice as my recommendation;
- Refer to any specific group or organisation as fully endorsed by me or being contrary to my thinking; or
- Include data or mention specific findings from any of my sponsored research not in the public domain, to support my recommendations.

I do this not only to keep this book above controversy or even any appearance of bias, but also because I intend to approach the entire problem of working safely at height holistically, in the sense of addressing the overall and entire ('whole') situation, rather than proffer specific recommendations based on rules.

My aim will be fulfilled if the book is useful to the reader in understanding the complicated subject and putting the knowledge gained to some practical use, or at least if the casual reader enjoys the general and descriptive portions if not the technical and the prescriptive!

N. Krishnamurthy January 2024

At the very last minute, just before the book went into press, I decided to take the bold step of going public with the only proof extant of my fateful escapade, on Monday, 17 December 1957 (more than sixty-six years ago!), namely the photograph taken around 11 am, by my close friend and classmate Mr. B.V. Seenivasa Murthy, of me sitting in the bucket, calmly waving to him, while the other four in the group nervously stand by, worried about their part in provoking my rash and irresponsible act. Little did I know then that if I had jiggled around a little more in my perch, I would have fallen, to my death!

