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Allele Mining for Genomic Designing   
of Cereal Crops

This book deliberates on the concept, strategies, tools, and techniques of allele mining in cereal 
crops and its application potential in genome elucidation and improvement, including studying 
allele evolution, discovery of superior alleles, discerning new haplotypes, assessment of intra-  and 
interspecific similarity, and studies of gene expression and gene prediction. Available gene pools in 
global germplasm collections specifically consisting of wild allied species and local landraces for 
almost all major crops have facilitated allele mining. Development of advanced genomic techniques 
including PCR- based allele priming and Eco- TILLING- based allele mining are being widely used 
now for mining superior alleles. Allele’s discovery has become more relevant now for employing 
molecular breeding to develop designed crop varieties matching consumer needs and with genome 
plasticity to adapt the climate change scenarios. All these concepts and strategies along with precise 
success stories are presented in the chapters dedicated to the major cereal crops.
 The features of this book are as follows:

1. The first book on the novel strategy of allele mining in cereal crops for precise breeding.
2. Presents genomic strategies for mining superior alleles underlying agronomic traits from gen-

omic resources.
3. Depicts case studies of PCR- based allele priming and Eco-TILLING- based allele mining.
4. Elaborates on gene discovery and gene prediction in major cereal crops.

 This book will be useful to students and faculties in various plant science disciplines including 
genetics, genomics, molecular breeding, agronomy, and bioinformatics; the scientists in seed indus-
tries; and the policymakers and funding agencies interested in crop improvement.
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Preface
The affordability, precision, and high- throughput nature of sequencing technologies in the last 
two decades have provided an unprecedented understanding of the genomes and target plant traits 
of economic importance. Further, the advances in the third-generation sequencing technologies 
including Hi- C especially in the last decade have made it possible for developing high- quality ref-
erence genomes, pangenomes, and gene annotations, including genome- wide structural variations. 
These developments have also increased the precision in gene and superior haplotype discovery 
followed by mining allelic diversity among breeding lines and gene bank collections. The high- 
throughput and cost- effective genotyping platforms have further boosted the adoption rate of gen-
omic tools in the ongoing breeding programs across the world. Deployment of these advances in 
crops and making them well equipped to scale up the integration of genomic interventions in the 
breeding programs will facilitate development of future- ready crops.

The above advances have made gene/ allele mining more precise and cost- effective for the target 
traits preferred by farmers, consumers, and industry as well as efforts towards mitigation of climate 
change impacts and achieving nutritional security prospective. It is important to accelerate the pro-
cess of genomic designing to develop future- ready crops by bringing new allelic combination(s) 
at one or more loci underlying desired genes using modern breeding approaches, such as marker- 
assisted breeding, haplotype- based breeding, and gene/ allele pyramiding; and also now through 
gene editing.

These new alleles originate through natural or induced mutations also at one or more genomic 
regions at a time. The traditional plant breeding methods practiced in the twentieth century depended 
solely on phenotypes for the development of new genotypes primarily through selection and hybrid-
ization. The advent of DNA- based molecular markers in the 1980s facilitated indirect identification 
of the alleles by using linked molecular markers using genetic linkage mapping. Molecular breeding 
as a supplement to traditional breeding has successfully been employed in almost all major crops for 
their genetic improvement in a short time. It is worthwhile to mention that transgenic breeding has 
also contributed significantly to crop improvement at least for some major input target traits, such 
as herbicide tolerance, insect resistance, etc., however, this technology is still facing challenges in 
societal adoption in different parts of the world, especially for food crops. Nevertheless, gene editing 
has been receiving positive vibes from the policymakers of different countries making a conducive 
environment for accelerating the use of this technology on large scale.

Despite the huge loss of diversity during domestication, several national and international gene 
banks have millions of diverse germplasms to explore variability for the traits that are needed to 
breed climate- resilient and future- ready crops. Genetic diversity played a pivotal role during the 
entire period of conventional plant breeding, traditional and molecular included. However, the plant 
breeders have been using mainly the primary gene pool constituting the indigenous germplasm lines 
and local landraces as a genetic resource of new alleles. In the meantime, a drastic dearth of new 
alleles in the primary gene pool happened due to genetic erosion caused naturally or due to domes-
tication over time but aggravated because of the injudicious and irrational implementation of the 
so- called green revolution. Precisely, this highlighted the importance of allied wild crop relatives 
(WCRs) and thereby a mission of collection, conservation, characterization, and utilization of bio-
diversity. The emergence of advanced bioinformatics and the availability of cheaper and innovative 
genome sequencing technologies have empowered us to explore germplasm and identify a large 
number of donor alleles and allele mining has become a reality!

The strategy of association mapping, the most popular trait mapping approach in animal and 
human sciences, has received huge adoption in plant genomics studies. The availability of large 
sequenced diverse panels with multilocation phenotyping data has provided much-needed insights 
into trait genomics through genome- wide association studies (GWAS) leading to the discovery of 
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genes and superior haplotypes in many crops. This has led to the possibility of mining a large 
number of genes in the available accessions in crops. Mutations occur in the genome as single 
nucleotide polymorphisms (SNPs) or insertion/ deletions (In/ Dels) resulting in the generation of 
new alleles or changes in existing alleles and allele combinations. Using exactly this principle, the 
approach of Eco- TILLING has facilitated large- scale allele mining in several major crops. On the   
other hand, sequence- based allele mining has led to the discovery of allelic diversity both at    
the target gene and the whole genome. Recent advances in modern genomic tools and technologies, 
such as genome engineering, speed breeding, etc., facilitate the deployment of these new alleles in 
breeding programs in a relatively short time to accelerate the rate of genetic gains. Truly speaking, 
allele mining has revolutionized the strategy of utilizing genetic as well as genomic resources and 
become an important component of next- generation precision breeding and biotechnology!

Allele discovery has become more relevant now for employing molecular breeding to develop 
designed crop varieties matching consumer needs and with genome plasticity to adapt the cli-
mate change scenarios using targeted and precision breeding tools validated by both genomics and 
phenomics studies. All these concepts and strategies along with precise success stories are presented 
in over 50 chapters allocated under five volumes dedicated to the five crop groups including cereals, 
oilseeds, grain legumes, fruits, and vegetables under this book series.

This volume entitled, “Allele Mining for Genomic Designing of Cereal Crops” includes 
12 chapters dedicated to rice, wheat, maize, barley, oat, sorghum, pearl millet and finger millet 
contributed by 73 scientists from six countries including India, Italy, the Netherlands, Philippines, 
Spain, and the USA. We express our thanks for their excellent contributions and timely cooperation.

This book will hopefully be useful to students, research scholars, and teaching faculties in the aca-
demia to learn about fundamentals and applications of allele mining; the scientists practicing plant 
breeding in public and private institutes in improvising their programs; and also, the policymakers 
and funding agencies in prioritizing research fields.

Chittaranjan Kole, Kolkata, India
Sarat Kumar Pradhan, New Delhi, India

Vijay K Tiwari
College Park, USA
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1.1  INTRODUCTION

Rice is one of the most important staple crops in the world, providing food for billions of people 
globally. However, rice production is severely threatened by various abiotic and biotic factors, 
including drought, submergence, fungal, bacterial, and nematode- oriented biotic diseases, and pests 
such as brown plant hopper (BPH) and stem borer (SB). The principal biotic stresses, such as bac-
terial leaf blight (BLB), sheath blight (ShB), blast, brown spot (BS), false smut (FS), brown plant 
hopper (BPH), yellow stem borer (YSB), gall midge (GM), have a significant impact on the produc-
tion and quality of rice grains. Among the different breeding techniques and control strategies avail-
able for reducing biotic stresses, the most effective, economical, and environmentally friendly is 
the host plant resistance, mainly acquired via conventional breeding methods. Traditional breeding 
approaches have successfully developed varieties with some level of resistance to these stresses. 
Still, the continuous evolution of new pathogen races and the emergence of new pests pose ongoing 
challenges to rice breeders. The progress made through these conventional breeding approaches 
has been slow due to the complexity of abiotic and biotic stress resistance. In addition, it is a poly-
genic trait influenced by multiple genes. Therefore, there is an urgent need to develop efficient and 
effective breeding approaches to enhance rice’s tolerance to abiotic and biotic stresses. Agriculture’s 
commercial significance depends on factors, such as crop yields, disease management techniques, 
and availability of disease- resistant plant sources. Disease resistance is vital in controlling various 
pathosystems, including viruses, nematodes, and fungal diseases, such as ergot in cereals (Claviceps 
purpurea), Rhizoctonia solani in maize, powdery scab in potato, or black leg in rapeseed. The gen-
etic makeup of a plant determines its susceptibility to diseases, with homozygous and homogenous 
cultivars such as wheat, oats, barley, and peas being more prone to disease infections. Since most 
crops are homogenous, they are susceptible to disease outbreaks in different regions and countries.

Rice is a staple crop contributing to food and nutritional security (Fiyaz et al. 2022). Depending 
on the severity, rice disease incidences may lower yields by 20– 100%. New minor diseases such 
as false smut, Bakanae, early seedling blight, sheath, and stem rot have developed as important 
issues. Disease losses vary on growth circumstances, susceptibility, etc. (Shivappa et al. 2021). 
Over 70 fungi, bacteria, viruses, and nematodes have infected rice (Zhang et al. 2009). Stem borer, 
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gall midge, plant hopper, Gundhi bug, and leaf folder are important rice pests (Jena et al. 2018). 
By 2030, rice demand will rise 40% to fulfill the needs of roughly 5.0 billion people (Khush 2005). 
Only increased production and productivity can meet this demand. Conventional plant breeding 
approaches were previously utilized for controlling abiotic and biotic stresses. Still, the current 
focus has shifted towards molecular breeding strategies due to environmental conditions, variability 
in phenotypic traits, and the labor- intensive nature of conventional approaches. Molecular breeding 
strategies help fill gaps in our understanding of abiotic and biotic stresses in different crops and 
aid in developing integrated management programs for controlling stresses. In recent decades, 
molecular markers, microarrays, and genetic alterations have been used to examine the genetic basis 
of stress tolerance and generate agricultural cultivars with better stress tolerance. DNA marker tech-
nology has helped create quantitative trait loci (QTLs) mapping, marker- assisted selection (MAS), 
genomic selection, and genetic transformation to generate stress- tolerant plants. Fine mapping may 
help breeders transfer resistance genes from donor cultivars into new, top rice cultivars via MAS. 
Connecting knowledge about genes and gene function is needed to generate highly productive, sus-
tainable agricultural types (Ashkani et al. 2015).

This book chapter extensively covers the latest breakthroughs in enhancing rice’s resistance to both 
biotic and abiotic stresses, specifically focusing on the use of allele mining- based breeding techniques. 
The chapter provides an inclusive overview of the successful implementation of these approaches, 
highlighting their potential impact in addressing food security concerns in the future. Alongside 
discussing the challenges, the chapter also identifies further research and development opportunities. 
This resourceful chapter will benefit policymakers, breeders, and researchers who aim to develop rice 
varieties with improved resistance to biotic and abiotic stresses. The innovative approaches highlighted 
in this chapter will undoubtedly play a crucial role in meeting future food security challenges.

1.2  MOLECULAR BREEDING FOR BACTERIAL BLIGHT RESISTANCE IN RICE

Over the last several decades, rice has developed a complex relationship with pathogens and pests. 
BLB is one of the most significant diseases (Vikal et al. 2017), substantially reducing rice product-
ivity. Deployment of gene- conferred host plant resistance is an attractive technique that two critical 
approaches may enhance: marker- assisted breeding and genetic transformation for combating emer-
ging diseases and deployment of resistance genes in plant breeding programs. However, the debate 
about food safety and restrictions in certain countries hindered the adoption of genetically modified 
crops, clearing the path for plant breeders to widely employ the marker- assisted breeding program 
(Jiang et al. 2020).

1.2.1  Disease symptoms anD pathogenesis

BLB in rice is caused by the gram- negative bacterium Xanthomonas oryzae pv. oryzae (Xoo), depending 
on the development stage and climatic circumstances, may cause yield losses of up to 50 % (Liu et al. 
2014). It is a vascular disease that may manifest throughout seedling, vegetative, and reproductive 
development. The symptoms are characterized by leaf dryness and yellowing that begins at the leaf tips 
and progresses downward. The disease generally prefers conducive temperatures between 25 to 34°C 
and relative humidity exceeding 70%. The presence of tiny droplets of bacterial ooze (pale amber in 
color) on the afflicted areas helps to visualize the disease. The most devastating phase of disease in the 
tropics is the “kresek” or wilt phase, which results from seed infection or early systemic infection in 
the nursery (Kumar and Rao 2014). In 1884, farmers first recognized the disease in the Fukuoka region 
of Kyushu prefecture, Japan (Mizukami and Wakimoto 1969). In India, the first report of bacterial 
blight disease on rice was made in Maharashtra (Srinivasan et al. 1959). Before its 1963 outbreak of 
the disease in the Shahabad area of Bihar, in India it was considered relatively mild (Srivastava 1967). 
However, damage caused by this disease was considerably exacerbated by the growth of semi- dwarf 
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and hybrid rice types and extensive fertilizer use. It was prevalent in Asia, including India, Philippines, 
Nepal, Indonesia, Sri Lanka, Australia, and West Africa. In recent years, it has been reported in almost 
all rice- growing nations worldwide (Naqvi 2019).

1.2.2  Bacterial Blight r- genes anD Quantitative trait loci

According to reports, several wild species of cultivated rice, including O. longistaminata, 
O. rufipogon, O. minuta, O. barthii, O. brachyantha, O. granulate, O. ridleyi, and O. nivara, are 
resistant to BLB (Brar et al. 1997). In the last two decades, much genetic research has been under-
taken on BLB resistance. So far, 47 resistance (R) genes giving resistance to distinct Xoo strains 
have been mapped from diverse sources on 10 of the 12 chromosomes (Rao et al. 2017, Kim et al. 
2018; 2019, Neelam et al. 2020, Xing et al. 2021). Among the resistant genes, 17 are recessive (xa5, 
xa8, xa13, xa15, xa19, xa20, xa24, xa25, xa26, xa28, xa31, xa32, xa33, xa34, xa41, xa42, and xa44), 
while remaining 30 are dominant (Xa1, Xa2, Xa3, Xa4, Xa6, Xa7, Xa9, Xa10, Xa12, Xa14, Xa16, 
Xa17, Xa18, Xa21, Xa23, Xa24, Xa27, Xa29, Xa30, Xa35, Xa36, Xa37, Xa38, Xa39, Xa40, Xa43, 
Xa45, Xa46, and Xa47) (Biswas et al. 2021, Xing et al. 2021, Chen et al. 2020). Out of the 47 resist-
ance genes, nine (Xa1, Xa3/ xa26, xa5, Xa10, xa13, Xa21, Xa23, xa25, and Xa27) have been cloned, 
and twelve (Xa2, Xa4, Xa7, Xa22, Xa30, xa31, xa33, xa34, Xa38, Xa39, Xa40, and Xa42) have been 
physically mapped (Kim et al. 2015, Bhasin et al. 2012, Kumar et al. 2012, Song et al. 1995, Sun 
et al. 2003, Gu et al. 2005, Niño et al. 2005, Cheema et al. 2008, Zhang et al. 2015).

Xa23, a dominant resistant gene effective at all growth stages, was identified in the wild rice 
species O. rufipogon (Zhang et al. 1998; 2001) and was discovered to be highly resistant to ten 
Philippine races (P1– P10), seven Chinese pathotypes (C1– C7), and three Japanese races (TI– T3) at 
maximum tillering stage (Zhou et al. 2011) Jin et al. (2007) isolated the BB resistance gene Xa30 
from the wild rice species O. rufipogon and transferred it to cultivated rice to generate near- isogenic 
lines. Tan et al. (2004) identified the Xa29 gene in O. officinalis and localized it inside a 1.3 cM 
area on Chromosome 1 bordered by RFLP (restriction fragment length polymorphism) markers. 
Similarly, the O. australiensis Xa32(t) gene is resistant to Xoo strains. P1, P4, P5, P6, P7, P8, P9, 
KXO85, but resistant to P2 and P3; mapped using two SSR markers on the long arm of chromosome 
11 (Zheng et al. 2009). Guo et al. (2010) introduced Xa35(t), a unique source of BB resistance gene 
from O. minuta (Acc. No. 101133), into the O. sativa L. cultivar IR24. The discovered genes for 
bacterial blight resistance are listed in (Table 1.1). Zhang et al. (2021) carried out an elaborate 1D/ 
2D GWAS strategy to investigate the genetic systems underlying the reciprocal adaptation of rice 
(Oryza sativa) and its bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo) using the whole- 
genome sequencing and large- scale phenotyping data of 701 rice accessions and 23 diverse Xoo 
strains. Zhang et al. (2021) discovered 47 Xoo virulence- related genes and 318 rice quantitative 
resistance genes (QR- genes) located in 41 genomic regions. Genome- wide interactions between the 
detected virulence- related genes and QR genes were identified. This study helped understand the 
relationship between rice and Xoo, which was characterized by strong differentiation among Xoo 
races corresponding to the subspecific differentiation of rice. Further, genome- wide interactions 
between many rice QR genes and Xoo virulence genes, in a multiple- to- multiple manner, are likely 
to result from direct protein– protein interactions or genetic epistasis. Zhang et al. (2021) observed 
a complex genetic interaction system between rice and Xoo and in other crop– pathogen systems 
that would maintain high levels of diversity at their QR- loci/ virulence- loci, resulting in dynamic 
coevolutionary consequences during their reciprocal adaptation.

1.2.3  BlB genes cloneD

Categorizing nine cloned genes into four classes of resistance genes, including LRR- RLKs (leucine- 
rich repeat receptor- like kinases), NB- LRR, a wall- associated kinase, executor R proteins, SWEET 
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TABLE 1.1
List of Bacterial Blight Resistance Genes Identified, Origin, Source, and Linked Markers

R Gene Chr Position (bp) Donor Source Inheritance Cloned
Resistance to 
Xoo Race

Linked 
Markers

Marker 
Type Reference

Xa1 4 31,638,099– 
31,644,795

Kogyoku, Java 14 Japan Dominant Yes Japanese race- I Npb235 RFLP Sakaguchi, 1967; Yoshimura et al. 
1998

Xa2 4 – RantaiEmas II, Tetep Vietnam Dominant No Japanese race- II HZR950- 5 SSR Sakaguchi, 1967; He et al. 2006; 
Kurata and Yamazaki (2006)

Xa3/ 
Xa26

11 28,399,360– 
28,402,773

Wase Aikoku 3 Japan Dominant Yes Chinese,
Philippine, and
Japanese races

C481S RFLP Ezuka et al. 1975; Yoshimura et al. 
1992; Xiang et al. (2006); Gao 
et al. 2013

Xa4 11 – TKM6, IR20, IR22, IR72 India Dominant Yes Philippine race- I Npb181 and 
RM224

RFLP and 
SSR

Petpisit et al. 1977; Wang et al. 2001

xa5 5 437,010– 
443,270

DZ192, IR1545- 339 Bangladesh Recessive Yes Philippine races I, 
II, and III

RG556 and 
RM122

CAPS and 
SSR

Petpisit et al. 1977; Blair et al. 2003

Xa6/ xa3 11 – MalagkitSungsong Zenith
USA

Dominant No Philippine race- I Y68SSRA RFLP Sidhu et al. 1978

Xa7 6 – DZ78, DV85 Bangladesh Dominant No Philippine races G1091, 
RM205S2

RFLP, SSR Sidhu et al. 1978; Chen et al. 2008

xa8 7 – PI231129 USA Recessive No Philippine races RM500, 
RM533

SSR Singh et al. 2002; Vikal et al. 2014

Xa9 11 – KhaolayNhay Laos Dominant No Philippine races C4S1S RFLP Singh et al. 1983; Ogawa et al. 1988

Xa10 11 22,203,734– 
22,204,676

Cas 209 Philippines Dominant Yes Philippine and 
Japanese races

M491/ M419 RFLP, 
CAPS

Yoshimura et al. 1983; Kurata and 
Yamazaki (2006)

Xa11 3 – RP9- 3 Philippines Dominant No Japanese races IB, 
II, IIIA, and V

– – Ogawa and Yamamoto, 1986; Goto 
et al. 2009; Kurata and Yamazaki 
(2006)

Xa12 4 – Kogyoku, Java 14 Japan Dominant No Indonesian race V – – Ogawa et al. 1978
xa13 8 – BJ1, ChinsurahEoro II India Recessive Yes Philippine race- 6 RG136, 

xal3p
STS and 

SSR
Yoshimura et al. 1995; Zhang 

et al. 1996; Kurata and Yamazaki 
(2006)

Xa14 4 – TN1 China Dominant No Philippine race 5 VAZ190B/  
RG163

RFLP Taura et al. 1987; Kurata and 
Yamazaki (2006)

xa15 – – M41 Mutant Japan Recessive No Japanese races – - Nakai et al. 1998; Ogawa 2008
Xa16 – – Tetep Vietnam Dominant No Japanese races – - Sanchez et al. 1999; Kurata and 

Yamazaki (2006)
Xa17 – – Asominori Japan Dominant No Japanese races – – Ogawa et al. 1989; Kurata and 

Yamazaki (2006)
Xa18 – – Toyonishiki, Miyang 23, 

IR24
Japan Dominant No Burmese races – – Ogawa et al. 1986;    

Kurata and Yamazaki (2006)
xa19 3 – XM5 (Mutant of IR24) Philippines Recessive No Japanese races – – Taura et al. 1992; Kurata and 

Yamazaki (2006)
xa20 – – XM6 (Mutant of IR24) Philippines Recessive No Japanese races – – Taura et al. 1992; Kurata and 

Yamazaki (2006)
Xa21 11 20,802,924– 

20,806,518
O. longistaminata, IRBB 

21
Africa, Mali Dominant Yes Philippine and 

Japanese races
pTA248 STS Khush et al. 1990; Song et al.1995

Xa22(t) 11 – Zhachanglong China Dominant No Chinese races L363B/ P143 RFLP Lin et al. 1996; Kurata and Yamazaki 
(2006)

Xa23 11 22,203,734– 
22,204,676

O. rufipogon(CBB 23) China Dominant Yes Indonesian races – – Zhang et al. 1998; Zhang et al. 2001

xa24 2 – DV86, DV85, Aus 295 Bangladesh Recessive No Philippine and 
Chinese races

– – Mir and Khush, 1990; Khush and 
Angeles,1999

xa25(t) 12 17,302,073– 
17,305,326

HX- 3, Minghui 63 
(Somaclonal mutant of 
Minghui 63)

China Recessive Yes Chinese and 
Philippine races

– – Lee et al. 2003; Liu et al. 2011

xa26(t) 11 – Minghui 63, Nep Bha 
Bong

China Recessive No Philippine races C4S1S/  
Y6855R

RFLP Lee et al. 2003

Xa27(t) 6 – O. minuta IRGC101141, 
IRBB27

Philippines Dominant Yes Chinese strains 
and Philippine 
races 2– 6

M10S1, 
M1095

RFLP Amante- Bordeos et al. 1992; Lee 
et al. 2003; Gu et al. 2004

xa28(t) 11 – Lota Sail Bangladesh Recessive No Philippine race 2 – – Lee et al. 2003
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R Gene Chr Position (bp) Donor Source Inheritance Cloned
Resistance to 
Xoo Race

Linked 
Markers

Marker 
Type Reference

Xa1 4 31,638,099– 
31,644,795

Kogyoku, Java 14 Japan Dominant Yes Japanese race- I Npb235 RFLP Sakaguchi, 1967; Yoshimura et al. 
1998

Xa2 4 – RantaiEmas II, Tetep Vietnam Dominant No Japanese race- II HZR950- 5 SSR Sakaguchi, 1967; He et al. 2006; 
Kurata and Yamazaki (2006)

Xa3/ 
Xa26

11 28,399,360– 
28,402,773

Wase Aikoku 3 Japan Dominant Yes Chinese,
Philippine, and
Japanese races

C481S RFLP Ezuka et al. 1975; Yoshimura et al. 
1992; Xiang et al. (2006); Gao 
et al. 2013

Xa4 11 – TKM6, IR20, IR22, IR72 India Dominant Yes Philippine race- I Npb181 and 
RM224

RFLP and 
SSR

Petpisit et al. 1977; Wang et al. 2001

xa5 5 437,010– 
443,270

DZ192, IR1545- 339 Bangladesh Recessive Yes Philippine races I, 
II, and III

RG556 and 
RM122

CAPS and 
SSR

Petpisit et al. 1977; Blair et al. 2003

Xa6/ xa3 11 – MalagkitSungsong Zenith
USA

Dominant No Philippine race- I Y68SSRA RFLP Sidhu et al. 1978

Xa7 6 – DZ78, DV85 Bangladesh Dominant No Philippine races G1091, 
RM205S2

RFLP, SSR Sidhu et al. 1978; Chen et al. 2008

xa8 7 – PI231129 USA Recessive No Philippine races RM500, 
RM533

SSR Singh et al. 2002; Vikal et al. 2014

Xa9 11 – KhaolayNhay Laos Dominant No Philippine races C4S1S RFLP Singh et al. 1983; Ogawa et al. 1988

Xa10 11 22,203,734– 
22,204,676

Cas 209 Philippines Dominant Yes Philippine and 
Japanese races

M491/ M419 RFLP, 
CAPS

Yoshimura et al. 1983; Kurata and 
Yamazaki (2006)

Xa11 3 – RP9- 3 Philippines Dominant No Japanese races IB, 
II, IIIA, and V

– – Ogawa and Yamamoto, 1986; Goto 
et al. 2009; Kurata and Yamazaki 
(2006)

Xa12 4 – Kogyoku, Java 14 Japan Dominant No Indonesian race V – – Ogawa et al. 1978
xa13 8 – BJ1, ChinsurahEoro II India Recessive Yes Philippine race- 6 RG136, 

xal3p
STS and 

SSR
Yoshimura et al. 1995; Zhang 

et al. 1996; Kurata and Yamazaki 
(2006)

Xa14 4 – TN1 China Dominant No Philippine race 5 VAZ190B/  
RG163

RFLP Taura et al. 1987; Kurata and 
Yamazaki (2006)

xa15 – – M41 Mutant Japan Recessive No Japanese races – - Nakai et al. 1998; Ogawa 2008
Xa16 – – Tetep Vietnam Dominant No Japanese races – - Sanchez et al. 1999; Kurata and 

Yamazaki (2006)
Xa17 – – Asominori Japan Dominant No Japanese races – – Ogawa et al. 1989; Kurata and 

Yamazaki (2006)
Xa18 – – Toyonishiki, Miyang 23, 

IR24
Japan Dominant No Burmese races – – Ogawa et al. 1986;    

Kurata and Yamazaki (2006)
xa19 3 – XM5 (Mutant of IR24) Philippines Recessive No Japanese races – – Taura et al. 1992; Kurata and 

Yamazaki (2006)
xa20 – – XM6 (Mutant of IR24) Philippines Recessive No Japanese races – – Taura et al. 1992; Kurata and 

Yamazaki (2006)
Xa21 11 20,802,924– 

20,806,518
O. longistaminata, IRBB 

21
Africa, Mali Dominant Yes Philippine and 

Japanese races
pTA248 STS Khush et al. 1990; Song et al.1995

Xa22(t) 11 – Zhachanglong China Dominant No Chinese races L363B/ P143 RFLP Lin et al. 1996; Kurata and Yamazaki 
(2006)

Xa23 11 22,203,734– 
22,204,676

O. rufipogon(CBB 23) China Dominant Yes Indonesian races – – Zhang et al. 1998; Zhang et al. 2001

xa24 2 – DV86, DV85, Aus 295 Bangladesh Recessive No Philippine and 
Chinese races

– – Mir and Khush, 1990; Khush and 
Angeles,1999

xa25(t) 12 17,302,073– 
17,305,326

HX- 3, Minghui 63 
(Somaclonal mutant of 
Minghui 63)

China Recessive Yes Chinese and 
Philippine races

– – Lee et al. 2003; Liu et al. 2011

xa26(t) 11 – Minghui 63, Nep Bha 
Bong

China Recessive No Philippine races C4S1S/  
Y6855R

RFLP Lee et al. 2003

Xa27(t) 6 – O. minuta IRGC101141, 
IRBB27

Philippines Dominant Yes Chinese strains 
and Philippine 
races 2– 6

M10S1, 
M1095

RFLP Amante- Bordeos et al. 1992; Lee 
et al. 2003; Gu et al. 2004

xa28(t) 11 – Lota Sail Bangladesh Recessive No Philippine race 2 – – Lee et al. 2003


