


 “This is an excellent, hands-on, introduction to the core concepts of nonparametric 
statistics, with additional sections allowing for a gentle, in-depth study of advanced 
material. I was especially delighted when I found the nonparametric tests for factorial 
designs and repeated measurements. Widely disregarded for years, I am so happy 
to see these topics finally being covered in a textbook for psychology students, 
including cutting-edge results such as pseudorank-based methodology for unbalanced 
designs. The large number of applied examples and exercises fosters deep processing, 
comprehension of the concepts, and routine use of statistical software. It is obvious 
that Nussbaum and Brunner used their vast experience in teaching and research to 
provide a comprehensive overview on nonparametric statistics topics while keeping 
a realistic estimate with respect to academic formats and students’ skills.” 

  Matthias Gondan-Rochon ,  University of Innsbruck, Austria  

 “Highly recommended for graduate students in the social or biological sciences or 
education fields. Nussbaum clearly describes modern techniques for nonparametric 
and categorical data analysis using accessible language, numerous examples, and 
thought-provoking questions. The accompanying PowerPoint slides and newly 
added R code are invaluable.” 

  Jason E. King ,  Baylor College of Medicine, USA  

 “ Categorical and Nonparametric Data Analysis: Choosing the Best Statistical Technique  
(2nd ed.) is an exceptional book about the why and how of nonparametric data 
analysis. It gives a comprehensive overview of the most important statistical tests, 
illustrating their use with careful explanations and examples. What makes this book 
stand out to me, however, is the amount of care the authors took to help readers 
appreciate the reasoning behind the statistical tests. In particular, the book provides 
a lot of guidance that makes it easy to understand which test is appropriate in a 
given scenario and why. When there are multiple tests that could be appropriate, 
the book provides explicit algorithms that help to decide when and why which test 
to use. Summaries wrap up the key points to make sure the reader always keeps sight 
of the main points rather than getting lost in the details.” 

  Nikos Bosse ,  London School of Hygiene and Tropical Medicine, UK  

 “This is a timely, up-to-date introduction to essential social science research tools 
that makes the complex accessible, and provides budding researchers with the tools 
they need—from the simple to the state of the art—in a consistent framework.” 

  Brendan Halpin ,  University of Limerick, Ireland  

 “The book uses real examples, step-by-step explanations and straightforward 
language to help the reader not only understand the statistical methods available 
for categorical and non-parametric data analysis, but also how to implement them 
in practice. . . . Also important, the book includes comprehensive explanations 
about computational and estimation methods often neglected in other texts.” 

  Irini Moustaki ,  London School of Economics, UK  
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 When scientists perform research, they often collect data that do not come in the 
form suitable for traditional methods such as analysis of variance (ANOVA) or ordi-
nary linear regression. Categorical and nonparametric data analysis are useful for 
data that are nominal or ordinal, or for metric/continuous data when assumptions 
of traditional tests have been violated, for example when the sample is small. Finally, 
even when all the assumptions of traditional tests have been met, alternative tests 
are sometimes more statistically powerful, meaning that those tests are more likely 
to find a statistically significant result when there is a real effect to be found. There 
is nothing more frustrating than spending a year or two on a research project, only 
to have your results come in as not quite significant (e.g.,  p =  .07). 

 This book was developed both out of my efforts to advise students on disserta-
tions, as well as my own research in the fi eld of argumentation. I found that while 
much of what I was taught about statistics in graduate school was useful at times, 
it was also somewhat limited. It was as if I was only taught “half the story.” In fact, 
one of my statistics teachers at Stanford University was upset that coverage of “cat-
egorical data analysis” (CDA) was no longer required on the grounds that there was 
too much material already crammed into the statistics core. It was only later, after 
several years conducting research with actual messy data sets, that I discovered the 
immense value of categorical and nonparametric data analysis. 

 It is important to know when to use these techniques and when to use tradi-
tional parametric analysis. One major goal of the book is to provide a conceptual 
framework for choosing the most appropriate type of test in a given situation. One 
has to consider the underlying assumptions of each test and the factors that impact 
each test’s statistical power. One also has to be able to explain these assumptions 
(and how the test works) conceptually to both oneself and others, including the 
audiences of a journal article or dissertation. This allows one to make statistically 
based arguments that can serve as a rationale for using that test. Therefore another 
major goal of this book is to provide readers with a conceptual framework that 
underlies the statistical methods examined, and to some extent traditional para-
metric methods as well. 

 PREFACE 



xviii Preface

 Intended Audience 

 The primary intended audience is researchers and students in the social sciences—
particularly psychology, sociology, and political science—and in related profes-
sional domains such as education. Readers should have some prior knowledge of 
descriptive statistics,  t -tests, and ANOVA. It is preferable for readers to additionally 
have some prior knowledge of linear regression, although students can also pick up 
the basics of regression from reading  Chapter 9 . 

 This book is fairly unique in covering both nonparametric statistics and CDA 
in one volume. With the exception of contingency tables, most textbooks address 
either one or the other. In the one-semester course that I teach on this topic, I suc-
cessfully cover both and—as noted above—provide a framework for choosing the 
best statistical technique. Using the framework requires knowledge of both CDA 
and nonparametrics. Although it is a challenging course, given students’ fi nancial 
and time constraints it is often not practical for graduate students who are not spe-
cializing in statistics to take separate courses in nonparametric statistics and CDA. 
Instructors who can provide a two-semester course can of course cover more topics 
and provide students with more extensive practice; however, a one-semester course 
can still provide students with some familiarity with the topics and a framework 
for choosing a statistical methodology for particular research projects. (Students 
can then obtain more practice and mastery of that particular technique, as the best 
way to learn a technique is to use it in the context of applied research.) This book 
could also be used for a course in only CDA or nonparametrics by just focusing on 
the applicable chapters, leaving the rest of the material for optional, supplementary 
reading. Finally, the book is also suitable for researchers and graduate students who 
are not necessarily enrolled in a course but who desire some knowledge of these 
alternative techniques and approaches for enhancing statistical power. 

 Unique Features of the Book 

 The book is closely tied to those techniques currently available in both IBM SPSS 
and R, and it includes examples of R code and reference to R-packages that were 
available when this book was written. Some of the examples and problems in the 
book also use Excel as a pedagogical tool for building conceptual understanding. 
Also available is a website for the book that contains selected data sets, a brief guide 
on using R, and, for instructors, PowerPoint slides for each chapter. 

 A distinguishing feature of the book is that three of the chapters on nonpara-
metrics (co-authored with Edgar Brunner of the University of Göttingen) present 
modern techniques related to relative effects, factorial designs, multiple contrast 
tests, and other advances in nonparametric statistics. R-packages that can conduct 
these tests are identifi ed. 



Preface xix

 An important feature of the text is its conceptual focus. Simple computer simu-
lations and the inclusion of  Exploring the Concept  boxes are used to help attach 
meaning to statistical formulas. Most homework problems were inspired by actual 
research studies; these problems therefore provide authentic and meaningful illus-
trations of the techniques presented. Mathematical derivations have been kept to 
a minimum in the main text but are available in appendices at the end of each 
chapter. 

 Content 

 The book is structured as followed.  Chapters 1–3  cover basic concepts in probability—
especially the binomial formula—that are foundational to the rest of the book. 
 Chapters 4–5  address the analysis of contingency tables (i.e., analyzing the relation-
ship between two or more nominal variables).  Chapters 6–8  address nonparametric 
tests involving at least one ordinal variable, including contemporary techniques for 
testing nonparametric interaction effects, a topic omitted from many other texts. 
The book then turns to situations that involve at least one metric variable.  Chapter 9  
reviews some concepts from linear regression, such as exponential growth and 
dummy variables, as well as the concept of generalized linear models. All of these 
concepts are foundational to CDA, which is the focus of the remaining portion 
of the book.  Chapters 10–11  cover various types of logistic, ordinal, and Poisson 
regression.  Chapter 12  overviews loglinear models, and  Chapter 13  presents the 
General Estimating Equations (GEE) methodology for measuring outcomes mea-
sured at multiple time points.  Chapter 14  covers estimation methods, such as 
Newton-Raphson and Fisher scoring, for readers desiring a deeper understanding of 
how the various CDA techniques work. The chapter provides preparation for read-
ing more advanced statistical texts and articles. Finally,  Chapter 15  summarizes the 
various factors that need to be taken into consideration when choosing the best 
statistical technique. 

 Overall, the book’s organization is intended to take the reader on a step-by-step 
journey from basic statistical concepts into more advanced terrain. 
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 Dr. Nussbaum offers a readable and informative second edition of his book on 
 Categorical and Nonparametric Data Analysis.  With the plethora of data that is avail-
able for current researchers, it is important to consider whether the data would 
meet the assumptions of traditional parametric analyses. In particular, when data 
just include nominal or named categories (e.g., country, college major, sport type), 
or ordinal-level data (e.g., birth order, Likert scale responses, contest or competition 
rank), conventional analyses (e.g., ANOVA, linear regression) may not be appropri-
ate to use. Dr. Nussbaum’s new edition is very helpful in describing and demonstrat-
ing the use of analyses that are more warranted in these commonly found scenarios. 

 A distinct plus of the new edition is that it shows examples of conducting cat-
egorical and nonparametric analyses with the open-source R program, in addition 
to IBM SPSS and Excel. The inclusion of R computing, along with specifi c input on 
using R, goes a long way in reaching an even wider audience. The book also includes 
problems, and answers to odd-numbered problems, for  Chapters 1  to  14 , making 
the book even more readable and understandable. 

 Finally, the second edition continues to cover a range of topics, including mea-
surement, estimation and hypothesis testing, random variables, chi-square test of 
independence, contingency tables in special situations; nonparametric tests for 
ordinal data, independent samples, and related samples, where these last three top-
ics are co-authored with Edgar Brunner; linear regression and generalized linear 
models, binary and multinomial logistic regression, loglinear analysis, general esti-
mating equations, estimation procedures, and an excellent summary on choosing 
the best statistical technique to use. Readers will fi nd the book accessible and illu-
minating for analyzing data that doesn’t meet restrictive assumptions. 

  By Lisa L. Harlow  

 FOREWORD 
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CHAPTER  1 

 LEVELS OF MEASUREMENT, PROBABILITY, 
AND THE BINOMIAL FORMULA 

 Categorical and nonparametric data analysis is designed for use with nominal or 
ordinal data, or for metric data in some situations. This chapter reviews these dif-
ferent levels of measurement before turning to the topic of probability. 

 Levels of Measurement 

 In statistics, there are four basic types of variables: (a) nominal, (b) ordinal, (c) 
interval, and (d) ratio. 

 A  nominal  variable relates to the presence or absence of some characteristic. 
For example, an individual will be biologically either male or female. Gender is a 
dichotomous nominal variable. In contrast, with a multinomial nominal variable, 
cases are classifi ed in one of several categories. For example, ethnicity is multino-
mial: Individuals can be classifi ed as Caucasian, African American, Asian/Pacifi c 
Islander, Latinx, or Other. There is not any particular ordering to these categories. 

 With an  ordinal  variable, there is an ordering. For example, an art teacher 
might look at student drawings and rank them from the most to the least creative. 
These rankings comprise an ordinal variable. Ordinal variables often take the form 
of ordered categories, for example: “highly creative,” “somewhat creative,” and 
“uncreative.” A number of individuals may fall into these categories, so that all the 
drawings classifi ed as highly creative would technically be tied with one another 
(the same for the moderately creative and uncreative categories). With ranks, on the 
other hand, there may be few if any ties. 

 With an  interval  or  ratio  variable, a characteristic is measured on a scale with 
equal intervals. A good example is height. The scale is provided by a ruler, which 
may be marked off in inches. Each inch on the ruler represents the same distance; 
as a result, the difference between eight and ten inches is the same as between 
one and three inches. This is not the case with an ordinal variable. If Drawing A 
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is ranked as more creative than Drawing B, we do not know if Drawing A is just 
slightly more creative or signifi cantly more creative; in fact, the distances are tech-
nically undefi ned. As a result, we need to use different statistics and mathematical 
manipulations for ordinal variables than for interval/ratio variables. (Much of this 
course will be devoted to this topic.) 

 As for the difference between an interval and ratio variable, the defi ning dif-
ference is that in a ratio variable, a score of zero indicates the complete absence of 
something. Height is a ratio variable because zero height indicates that an object 
has no height and is completely fl at (existing in only two dimensions). Counts of 
objects are also ratio variables. The number of people in a classroom can range from 
zero on up, but there cannot be a negative number of people. With an interval vari-
able, on the other there can be negative values. Temperature is a good example of 
something measured by an interval scale, since 0 o  Celsius is just the freezing point 
of water, and negative temperatures are possible. However, for the tests discussed in 
this book, it will usually not be necessary to differentiate between ratio and inter-
val variables, so we will lump them together into one level of measurement. The 
distinction will only become important when we consider the analysis of count 
data with Poisson regression. For ease of exposition, in this book I will use the term 
 metric variable  to refer to those at the interval or ratio levels of measurement. 

 Metric variables are often also referred to as  continuous , but this usage fails to 
recognize that some metric variables are discrete. For example, a count cannot have 
fractional values; for example, it would be incorrect to say that there are 30.5 people 
enrolled in a class. 

  Figure 1.1  shows the three levels of measurement. The metric level is shown on 
top because it is the most informative. Metric data can always be reduced to ordinal 

Ratio/Interval (Metric)

Ordinal

Nominal

  Figure 1.1  Three levels of measurement. The figure shows that metric data can be 
reduced to ordinal data, which can in turn be reduced to nominal data. Metric data are 
the most informative because they carry information on how different the cases are on 
a variable in quantitative terms. Nominal data are the least informative because they 
contain no information regarding order or ranks. 
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data by using the numerical values to rank the data (for example, ranking people 
from the tallest to the shortest based on their heights). Likewise, ordinal data can 
be reduced to nominal data by performing a median split and classifying cases as 
“above” or “below” the median. Transforming data from a higher level to a lower 
level is known as  data reduction . Data reduction throws away information; for exam-
ple, knowing that Marie is taller than Jennifer does not tell one how much taller 
Marie is. Nevertheless, data reduction is sometimes performed if the assumptions 
of a statistical test designed for metric data are not met. Then one might reduce the 
data to ordinal and perform a statistical test that is designed for ordinal data. One 
can also reduce ordinal (or metric) data to nominal. One cannot move from a lower 
level to a higher level in the fi gure because that requires information that is missing.  

 Categorical and nonparametric statistics is concerned with statistical methods 
designed for ordinal and nominal level data. Nonparametric methods are often used 
with metric data when sample sizes are small (and therefore some of the assump-
tions of  t- tests, ANOVA, and linear regression are not met), and both categorical 
data analysis (CDA) and nonparametrics are useful when the data are skewed or 
otherwise highly abnormal. In the latter cases, standard methods may not be as 
statistically powerful as categorical and nonparametric ones. In reading this book, 
it is very important to remember the defi nition of statistical power. 

Statistical power refers to the ability to reject the null hypothesis and find a 
“result.” (To be more technically precise, it is the probability that one will reject 
the null hypothesis when the alternative hypothesis is true.)

 Because conducting a study is labor intensive, one usually wants to use the most 
powerful statistical methods. (Obtaining a  p -value of .06 or .07 is not suffi cient to 
reject the null hypothesis and therefore can be very disappointing to researchers.) 
That is why, in planning a study, one should use the most valid and statistically 
powerful methods one can. 

 Probability 

 All statistical methods—including categorical/nonparametric ones—require an 
understanding of probability. In the remainder of this chapter, I review the basic 
axioms of probability and use them to derive the binomial formula, which is the 
foundation of many of the tests discussed in this book. 

 In this section, I use a canonical example of tossing coins up in the air and ask-
ing questions about the probability of a certain number coming up heads. Note that 
whether a coin comes up heads or tails is a nominal outcome (it either happens or 
it doesn’t)—which is why understanding probability is essential to CDA. 



4 Levels of Measurement, Probability, and the Binomial Formula

 The Meaning of Probability 

 If one flips a coin, what is the probability that the coin will come up heads? 
 You may reply “one-half,” but what exactly does this statement mean? 
 One defi nition of probability is given by the following equation: 

   Probability
Number of favorable possibilities

Number of tot
=

aal possibilities
,  ( Eq. 1.1 )

 assuming that all possibilities are equally likely and mutually exclusive. 
 So, a probability of one-half means that there is one favorable possibility (heads) 

out of two (heads or tails). However, this example assumes that the coin is fair and 
not biased, meaning that the possibilities are equally likely. A biased coin might 
have a little more metal on one side, so that heads result 60% of the time. Such 
coins have been created to cheat at games of chance. 

 Eq. 1.1 is often useful but because of the restrictive equal-probability assump-
tion, a more general defi nition of probability is needed. The probability of some 
event  A  occurring is the proportion of time that  A  will occur (as opposed to not- A ) 
in the limit as  n  approaches infi nity, that is: 

 Prob( A ) = lim ( n   -  ∞) 
f A

n
( ) ,   ( Eq. 1.2 ) 

 where f A( ) is the frequency of  A.  Thus, the meaning of the statement “the prob-
ability that the coin will come up heads is one-half” is that over a large number of 
fl ips, about half the time the coin will come up heads. The amount of error decreases 
as  n  (the number of fl ips) increases, so that the proportion will approach Prob( A ) as 
 n  approaches infi nity. Now to assess the probability, one might fl ip the coin 1,000 
times and gage the relative proportion that the coin comes up heads as opposed to 
tails. This procedure will only give one an estimate of the true probability, but it will 
give one a pretty good idea as to whether the coin is fair or biased. Basically, what 
we are doing is taking a random sample of all the possible fl ips that could occur. 

 The defi nition in Eq. 1.2 refl ects a  frequentist  view of probability. Technically, 
Eq. 1.2 only assigns probabilities to general statements, not particular facts or 
events. For example, the statement that 80% of Swedes are Lutherans is a meaning-
ful probability statement because it is a generalization; but the statement that “the 
probability that John is Lutheran, given that he is Swedish, is 80%” is not mean-
ingful under this defi nition of probability, because probability applies to relative 
frequencies, not to unique events. This position, however, is extreme, given that 
we apply probability to unique events all the time in ordinary discourse (maybe not 
about Lutherans, but certainly about the weather, or horse racing, etc.). In my view, 
probability statements can be meaningfully applied to particular cases if one makes 
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the appropriate background assumptions. For example, if one randomly selects one 
individual out of the population (of Swedes), then one can meaningfully say that 
there is an 80% chance that she or he is Lutheran. The background assumption here 
is that the selection process is truly random (it may or may not be). The existence 
of background assumptions means that probability values cannot be truly objec-
tive because they depend on whether one believes the background assumptions. 
Nevertheless, these assumptions are often rational to make in many situations, so 
in this book I will assign probability values to unique events. (For further discussion 
of subjectivist, Bayesian notions of probability, which view probability statements 
as measures of certainty in beliefs, see  Nussbaum, 2011 .) 

 Probability Rules 

 Probability of Joint Events 

 What is the probability that if one flips two coins, both will come up heads? Using 
Eq. 1.1, it is ¼, because there is one favorable possibility out of four, as shown below. 

  H H  
 H T 
 T H 
 T T 

 Another way of calculating the joint probability is to use the following formula: 

   Prob( A  &  B ) = Prob( A )  *  Prob( B ) [if Prob( A ) and Prob( B ) 
are statistically independent].  ( Eq. 1.3 )

 Here,  A  represents the fi rst coin coming up heads and  B  represents the second 
coin doing so; the joint probability is ½ * ½ = ¼. The formula works because  A  
represents one-half of all possibilities and of these, one-half represent favorable 
possibilities, where  B  also comes up heads. One-half of one-half is, mathematically, 
the same as ½ * ½. 

 An important background assumption, and one that we shall return to repeat-
edly, is that  A  and  B  are statistically independent. What that means is that  A  occur-
ring in no way infl uences the probability that  B  will occur. This assumption is 
typically a reasonable one, but we could imagine a scenario where it is violated. For 
example, suppose someone designs a coin with an electrical transmitter, so that if 
the fi rst coin comes up heads, this information will be transmitted to the second 
coin. There is a device in the second coin that will tilt it so that it will always come 
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up on heads if the fi rst coin does. In other words: Prob( B  |  A ) = 1. This statement 
means that the probability of  B  occurring, if  A  occurs, is certain. We will also assume 
the converse: Prob(not- B  | not- A ) = 1. There are therefore only two total possibilities: 

 H  H
T  T 

 The joint probability of two heads is therefore one-half. The more general rule for 
joint probabilities (regardless of whether or not two events are statistically inde-
pendent) is: 

   Prob( A  &  B ) = Prob( A ) * Prob( B  |  A ).  ( Eq. 1.4 )

 The joint probability in the previous example is ½ * 1 = ½. 

 EXPLORING THE CONCEPT 

 If two events ( A  and  B ) are statistically independent, then: Prob( A ) = Prob( A  |  B ) and 
Prob( B ) = Prob( B  |  A ). Can you use this fact to derive Eq. 1.3 from Eq. 1.4? 

 Note that in the rigged coin example, the joint probability has increased from 
one-fourth (under statistical independence) to one-half (under complete depen-
dence). This outcome refl ects a more general principle that the probability of more 
extreme events increases if cases are not statistically independent (and positively 
correlated). For example, if I throw ten coins up in the air, the probability that they 
will all come up heads is: 

 ½ * ½ * ½ * ½ * ½ * ½ * ½ * ½ * ½ * ½ = (1/2) 10  = 0.0001, 

 or one in ten thousand. But if the coins are programmed to all come up heads if the 
fi rst coin comes up heads, then the joint probability is again just one-half. If the fi rst 
coin coming up heads only creates a general tendency for the other coins to come 
up heads (say Prob( B  |  A ) = 0.8), then the joint probability of two coins coming up 
heads would be 0.5 * 0.8 = 0.4 (which is greater than one-fourth, the result assum-
ing independence). If ten coins are fl ipped, the probability is 0.5 * (0.8) 9  = .067. This 
probability is still far greater than the one under statistical independence. 

 Violations of statistical independence are serious, as they contravene the fi rst 
axiom of statistical theory. For example, my own area of research addresses how stu-
dents construct and critique arguments during small-group discussions. In small-
group settings, students infl uence one another, so, for example, if one student makes 
a counterargument, it becomes more likely that other students will do so as well, 
due to modeling effects and other factors. The probability that Student (A) makes 
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a counterargument is therefore not statistically independent from the probability 
that Student (B) will, if they are in the same discussion group. Analyzing whether 
some intervention, such as the use of a graphic organizer, increases the number of 
counterarguments, without adjusting for the lack of statistical independence, will 
make the occurrence of Type I errors more likely. That is because the probability of 
extreme events (i.e., many students making counterarguments) goes way up when 
there is statistical dependence, so  p -v a lues can be seriously infl ated. There are statis-
tical techniques such as multilevel modeling that address the problem but the tech-
nique’s appropriateness in argumentation research is still being debated (given that 
certain sample sizes may be required). Further discussion of multilevel modeling is 
beyond the scope of this book, but the example illustrates why an understanding 
of basic probability theory is important. 

 EXPLORING THE CONCEPT 

 (a) Suppose one randomly selects 500 households, and sends a survey on political 
attitudes towards female politicians to all the adult males in each household and 
the same survey to all the adult females (e.g., one to a husband and one to a wife). 
Would the individual responses be statistically dependent? How might this fact 
affect the results? (b) How might sampling without replacement involve a violation 
of statistical independence? For example, what is the probability that if I shuffle a 
complete deck of 52 cards, the first two cards will be spades? Use Eq. 1.4 to calcu-
late this probability. 

 Probabilities of Alternative Events 

 What is the probability that if I select one card from a full deck of 52 cards, that the 
card will be spades or clubs? This question relates to alternative events occurring 
( A or B ) rather than joint events ( A and B ). The probability of alternative events is 
given by: 

   The Prob( A  or  B ) = Prob( A ) + Prob( B ) [if Events A and B 
are mutually exclusive].  ( Eq. 1.5 )

 Applying Eq. 1.5 to our question, we fi nd that the Prob(spades  or  clubs) = 
Prob(spades) + Prob(clubs) = 1

4
1
4

1
2+ = . This result makes sense because half the 

cards will be black. The reason Eq. 1.5 works is because Event  A  (card being spades) 
represents one-fourth of the favorable possibilities, and Event  B  (card being clubs) 
represents another one-fourth of the favorable possibilities, so together, the prob-
ability that the selected card will be black is the sum of all the favorable possibili-
ties (which is why we add). The background assumption is that the card cannot be 
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both spades and clubs, that is,  A  and  B  cannot both occur—the events are mutually 
exclusive. If the events are not mutually exclusive, one should use Eq. 1.6: 

   Prob( A  or  B ) = Prob( A ) + Prob( B ) – Prob( A  &  B ).  ( Eq. 1.6 )

 For example, if one fl ips two coins, the probability that one or the other (or 
both) will come up heads is 1

2
1
2

1
4

3
4+ − = , which is the correct answer. If one were 

to erroneously use Eq. 1.5 to calculate the probability, one would double count the 
possibility where both coins come up heads. 

 In summary, remember that if joint events are involved (involving  and’s ), one 
should multiply (assuming statistical independence) and where alternative events 
are involved (involving  or’  s), one should add (assuming the events are mutually 
exclusive). 

 Conditional Probabilities 

 The last type of probability to be considered is conditional probability. These take 
an IF . . . THEN form, for example, if a student is male, then what is the probability 
that they will complete high school? Conditional probabilities will be discussed in 
 Chapter 4 . 

 Some Probability Thought Experiments 

 We shall now progressively consider cases of increasing complexity. 

 Probability Distribution of the Two-Coin Example 

 In tossing two coins there are four possible outcomes. 

    Number of Heads (H) 
 1. H H 2 
 2. H T 1 
 3. T H 1 
 4. T T 0 

 Each of the four outcomes is called a  permutation.  If one counts the number of hits 
(i.e., heads), outcomes numbers two and three both refl ect one head. Although 
these two outcomes refl ect different permutations, they refl ect the same  combina-
tion,  that is, a combination of one head and one tail. Combinations refl ect the 
number of heads, but whether the head comes up on the fi rst trial or the second 
doesn’t matter. The order does matter with permutations. 
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  Figure 1.2  is a frequency graph of the different combinations.  
 This fi gure is shaped like an inverted U, except that it is not smooth. Many prob-

ability distributions—like the normal curve—have this upward concave characteris-
tic. This is because there are more permutations corresponding to combinations in 
the middle than at the extremes, making the more central possibilities “more likely.” 

 One Hundred-Coin Example 

 Let us take a more extreme case. Suppose one throws up in the air 100 coins. This 
resulting histogram is shown in  Figure 1.3 . (We have not yet covered the formula 
that was used in making this figure.)  

 The most extreme positive case is that all the coins come up heads. This situation 
corresponds to just one permutation. The probability of each head is one-half, and 
these are independent events, so the probability of their joint occurrence, given by 
the multiplication rule, is 0.5 100 . Not surprisingly, this number is extremely small: 

 0.000000000000000000000000000788861. 

 On the other hand, the probability of obtaining 50 heads out of 100 is much larger 
(8%), because there are many ways of obtaining a combination of 50 coins out of 
100 (i.e., there are a lot of corresponding permutations). The fi rst 50 coins could 
come up heads and the second 50 could come up tails, the fi rst 50 coins could come 
up tails and the second 50 could come up heads, every other coin could come up 
heads, etc. There are also a lot more “random looking” permutations, such as: 

 H H H T T T H T T H . . ., 
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  Figure 1.2  Probability histogram for the two-coin problem. 
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 which is a random sequence that I generated in Excel. In fact, the number of 
permutations comes out to be 1.00891 * 10 29 . How this number is derived will 
be explained later in the chapter. Notice that in comparing  Figures 1.2  and  1.3 , 
the one with 100 coins is skinnier, if one thinks of the extremes in percentage 
terms (100 heads is 100% hits, tails is 0% hits). This result occurs because the 
more extreme outcomes become less likely as the number of trials increases. For 
example, the probability of 100% hits in the two-coin case is 25%, not 0.5 100  (as 
calculated   above). Later we will see that this is the reason why larger samples pro-
vide more precise estimates. 

 The Binomial Formula 

 The binomial formula is used to measure the probability of a certain number of 
hits in a series of yes/no trials. It is a complicated formula, so I will introduce the 
formula bit by bit. In my example, I will use a biased rather than a fair coin to make 
the mathematics easier to follow. The Greek letter pi (π) denotes the probability of 
a hit. (Notice that the words “pi” and “probability” both start with the letter “p.” 
Statisticians often choose Greek letter for concepts that, in English, start with the 
same letter.) Let us suppose that the probability of this particular biased coin com-
ing up heads is 70% (π = 70%), and ask: 

 What is the probability of tossing ten coins (with π = 0.7) and obtaining eight 
heads? 

 This question can be broken down into two subparts: 

 1. What is the probability of a  permutation  involving eight heads out of ten 
coins? 
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  Figure 1.3  Probability histogram for the 100-coin problem. 
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 2. How many permutations make up a  combination  of eight heads out of ten 
coins? 

 Subquestion 1: What Is the Probability of One “Permutation”? 

 Let us consider one permutation, where the first eight coins come up heads: H H H 
H H H H H T T. Assuming the tosses are independent, the joint probability is 70% * 
70% * 70% * 70% * 70% * 70% * 70% * 70% * 30% * 30% = 0.7 8  * 0.3 2  = π 8  * (1–π) 2 . 
If we define  k  as the number of hits (in this case  k  = 8), and  n  as the number of trials 
(in this case  n  = 10), then the calculation becomes: 

   π πk n k* 1 −( ) −   ( Eq. 1.7 )

 For the permutation considered above, the probability is 0.7 8  * 0.3 2  = 0.5%. 
Note that all the permutations associated with eight coins out of ten coming up 
heads are equally likely. For example, the permutation “H H H T H H H H H T” 
has the probability 70% * 70% * 70% * 30% * 70% * 70% * 70% * 70% * 30% = 
0.7 8  * 0.3 2  = 0.5%. The only thing that has changed is the order in which the coins 
come up heads or tails. 

 Remember that the overall goal is to fi nd the probability of a  combination  of 
eight hits out of ten. We shall see that this combination is associated with 45 dif-
ferent permutations, including the two shown above. The probability of one or 
another of these 45 different permutations occurring can be calculated by add-
ing the individual probabilities together. Because the permutations are mutually 
exclusive, we can use the addition formula (Eq. 1.5). Because the permutations are 
equally likely, the calculation reduces to: 

   45 *   ( Eq. 1.8 )

 The underlined portion is the probability of one of the  permutations  occurring (from 
Eq. 1.7). What I have yet to address is how the 45 is calculated. 

 Subquestion 2: How Many Permutations Make Up a Combination? 

 How many possible permutations are associated with a combination of eight hits out 
of ten? The applicable formula, which is derived conceptually in  Appendix 1.1 , is: 

   n

k
n

k n k








 =

−( )
!

! !
.  ( Eq. 1.9 )

π πk n k* 1 −( ) −
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 Here, (nk) is the notation for  k  hits out of  n  trials. On the right-hand side of the 
equation, the exclamation mark signifi es a factorial product (e.g., 4! = 4 * 3 * 2 *1). 

 Substituting the values from our example yields: 

 
10

8 10 8
!

! !−( )
 = 

40 320
3 628 800 2

,
, , *

 = 45. 

 Putting Eqs. 1.9 and 1.7 together yields the  binomial formula,  which gives the prob-
ability of  k  hits out of  n  trials: 

   !
! !

P k n
n

k n k
k n khits out of trials( ) =

−( )
−( ) −* *π π1   ( Eq. 1.10 )

 In the example, the terms are 45 * 0.5% = 23%. The fi rst term represents the number 
of permutations associated with a combination of eight heads out of ten coin tosses, 
and the second term refl ects the probability of each permutation. 

 The calculation can also be performed in Excel with the following command: 

 = BINOMDIST( k, n , π, 0), 

 with the 0 indicating a noncumulative calculation (explained below). So 
=BINOMDIST(8, 10, 0.7, 0)  -  23%. There is almost a one-quarter chance of obtain-
ing exactly eight heads with this particular biased coin. 

 EXPLORING THE CONCEPT 

 Concepts can often be better understood when applied to very simple examples. 
Use the binomial formula to find the probability of obtaining exactly one head in a 
toss of two fair coins. 

 Cumulative vs. Noncumulative Probabilities 

 Now suppose we wanted to calculate the chance of obtaining, out a toss of ten coins, 
eight heads  or less.  This probability could be derived by calculating the chance of 
obtaining  exactly  eight heads or seven heads or six heads or . . . one heads or zero 
heads. These are mutually exclusive outcomes, so according to Eq. 1.5 we can just add 
the probabilities: % % % % % % % % % %.23 27 20 10 4 1 0 0 0 85+ + + + + + + + =  (The 
0% values are not perfectly equal to zero but are so small that these round to zero.) 
I calculated the individual probabilities using the Excel command “=BINOMDIST( k, 
n,  π, 0),” but an easier way is to calculate the cumulative probability by changing 
the zero in this expression to one. (A one in the last place of the Excel command 
tells Excel to use the cumulative probabilities.) So, we have: 
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 =BINOMDIST(8, 10, 0.7, 1)  -  85%. 

 Now I am going to change the problem a little. The question is “What is the prob-
ability of obtaining nine heads or more?” (again, out of a toss of ten coins, with π = 
70%). This is calculated by subtracting the 85% from 100% (= 15%). Note that the 
probabilities of obtaining (a) eight coins or less and (b) nine coins or more must 
sum to 100%. This is because the two possibilities are exhaustive of all possibilities 
and mutually exclusive; one or the other must happen. 

 Now, instead of asking, “What is the probability of obtaining nine hits or more?” 
we ask “What is the probability of obtaining eight hits or more?” This value is 100% 
minus the probability of obtaining seven hits or less. The Excel syntax is: 

 1–BINOMDIST(7, 10, 0.7, 1)  -  38%. 

 Some students err by putting an eight rather than a seven in the formula, because 
the question asks about the probability of getting eight heads or more, yielding 
an incorrect answer of 15%. This approach is incorrect because it is tantamount 
to calculating the probability of eight heads or more plus eight heads or less. 
These are not mutually exclusive possibilities because if one obtains exactly eight 
heads, both scenarios occur. According to the formula for alternative probabili-
ties, one has to subtract out the probability of getting exactly eight heads so as 
to not double count it (see Eq. 1.6). We previously calculated the probability of 
obtaining eight heads or less at 85% and that for eight heads or more at 38%. The 
two possibilities sum to 123%, which is not a legal probability. We have double 
counted the probability of obtaining exactly eight heads (which we calculated 
previously at 23%). 

 This fact is so important that one should spend a minute now making a 
mental rule to remember that when you are asked cumulative probability prob-
lems that involve  X or more  (rather than  X or less),  you need to use  X  −1 in the 
Excel formula. Excel will only give you cumulative probabilities for  X or less  
problems. 

 The Bernoulli and Binomial Distributions 

 A probability distribution gives the probability of each and every mutually exclu-
sive outcome of an event. The simplest probability distribution is the Bernoulli 
distribution, named after the eighteenth-century mathematician, Daniel Bernoulli. 
It is the probability distribution associated with a single, discrete event occurring. 
 Table 1.1  presents the Bernoulli distribution for the situation where the probability 
of a biased coin coming up heads is 70%.  

 Probability distributions always sum to 100%. Because the different outcomes 
listed are exhaustive, one of them must happen, so the probability that one or 
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another will happen is found by just adding all the probabilities up (the possibilities 
are mutually exclusive). 

 Charting the above Bernoulli distribution yields  Figure 1.4 .  
 With a Bernoulli distribution, we just toss one coin. With the binomial distribu-

tion, we toss more than one coin. So, my previous examples using two, ten, or 100 
coins are all associated with binomial distributions. With the binomial distribution, 
the tosses of the coins must be independent. The formal defi nition of the binomial 
distribution is “the distribution resulting from an independent series of Bernoulli 
trials.” We shall refer back to this defi nition in later chapters but for now, it is just a 
fancy way of saying that there is more than one nominal event (e.g., we toss more 
than one coin). 

 The shape of a binomial distribution will depend on the value of π (probability 
of a hit). A binomial distribution can be generated in Excel using the binomial for-
mula, with the Excel syntax =BINOMDIST( k, n,  π, 0). 

  Figure 1.5  (Panel A) shows a binomial distribution when using a fair coin (π = 
50%) for different values of  k  with  n  = 10 (in other words, when we toss ten fair 
coins up in the air). The distribution is symmetric. However, with our biased coin 
(π = 70%), the distribution is skewed.   

 Now we are going to make something important happen. As the number of 
trials increase, the distribution becomes more symmetric.  Figure 1.6  shows that with 
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  Figure 1.4  Bernoulli distribution for π = 0.7. 

  Table 1.1  A Bernoulli Distribution 

   Heads or Tails      Probability   

 Heads ( X  = 1)  70% 

 Tails ( X  = 0)  30% 

 Sum  100% 
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 n  = 100 (Panel B), the distribution is extremely symmetric. (The distribution is in 
fact normal except for the fact that the variable, “number of hits,” is discrete rather 
than continuous.) Even at  n  = 20 (Panel A) the distribution is somewhat symmetric. 
Remember that as  n  increases, the probability of extreme outcomes decrease. So does 
the probability of somewhat extreme values, although not at the same rate. So in 
 Figure 1.6  (with  n  = 20), consider the probability of moderately extreme values (such 
as  k  = 8, that is 40% heads), a value which contributes to the skew in  Figure 1.5  (spe-
cifi cally, see Panel B at Prob( k  = 4) = 40%). The probability of obtaining 40% hits is 
becoming less likely with the larger sample, making the distribution more symmetric. 
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  Figure 1.5  Binomial distribution (n = 10) for different probabilities of a hit. (A) π = 50%. 
(B) π = 70%. 
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 The Normal Approximation of the Binomial Distribution 

 Normal Distribution 

 A normal distribution is also known as a Gaussian distribution, and when stan-
dardized a  z -distribution. The normal distribution has the property that about two-
thirds of the distribution falls within one standard deviation (SD) of the mean, 
and most of the distribution falls within two SDs of the mean. 

 To  standardize  a score means to express the score in terms of the number of SDs 
from the mean. When a variable is normally distributed, use the following formula 
to compute  z -scores: 

  z
X mean

SD
=

−
 .  ( Eq. 1.11 )
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  Figure 1.6  Binomial distribution for π = 70% for different values of n. (A) n = 20. (B) 
n = 100. 
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 We shall use this equation repeatedly in this book. 
 One can compute the cumulative probability of different  z- scores using the 

Excel command: =NORMSDIST( z ). So, for example, if a variable is normally dis-
tributed, the cumulative probability of obtaining a value of, say, 0.23, is 59%. With 
Excel syntax, =NORMSDIST(0.23)  -  59%. 

 It is frequently the case in statistics that we need to build a 95% confi dence 
interval with 2.5% of the  z -distribution in each of the tails of the distribution. A 
95% confi dence interval around the mean can be built if we fi nd the points that are 
about two SDs from the mean (1.96 SDs to be precise). These would correspond to 
 z -scores of 1.96 and −1.96. Using Excel, one can verify that: =NORMSDIST(−1.96) 
 -  0.025, and =NORMSDIST(+1.96)  -  0.975. 

 EXPLORING THE CONCEPT 

 Some students wrongly expect that there should be a 95% chance of obtaining 
a  z -score of +1.96 because we are building a 95% confidence interval. Why is the 
probability of obtaining a  z -score of +1.96 or less 97.5% rather than 95%? 

 Suppose that  X  is normally distributed, has a mean of three and a SD of two. 
What is the probability of obtaining a raw score of six? One could fi rst compute the 
 z- score (1.5) and then consult Excel for the probability: =NORMSDIST(1.5)  - 93.3%. 
One could also use the unstandardized normal distribution and just enter the mean 
and SD into Excel using the command =NORMDIST (this one does not have an “S” 
after “NORM”). Specifi cally enter “=NORMDIST( X , mean, SD, 1); the one requests a 
cumulative distribution. In the example, =NORMDIST(6, 3, 2, 1)  -  93.3%. Which 
command to use is one of personal preference. 

 The Normal Distribution Is Continuous, Not Discrete 

 A discrete distribution is one where  X  cannot take on fractional values, whereas a 
continuous variable can take on any fractional value. A nominal (0, 1) variable is 
always discrete, whereas metric variables can be either continuous or discrete. For 
example, the probability distribution for the following variable is discrete:  

  X  here only takes on the discrete values of 1, 2, 3, 4, and 5. On the other hand, 
if  X  could take on values such as 1.3, 2.67, or 4.3332, it would be continuous. 

Figure 1.7 displays graphically the probability distribution for the discrete vari-
able shown in Table 1.2.  Note that the area under the curve sums to 1.0. The area 
for the value  X  = 2.0 is given by the width of the bar (one unit) times the height 
(which is 0.33), so the area is 0.33. The individual subareas sum to one because the 
probabilities sum to one. 
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 If  X  were continuous, the area for a value (such as 2.67, a number I arbitrarily 
chose) is given by the height (2.67) times the width, except that the width would 
be zero. This produces a paradox that the probability of any specifi c value of a 
continuous variable is zero! Obviously this situation cannot occur, as the variable 
will take on specifi c values in particular cases. To resolve this paradox, we stipulate 
that for continuous variables, one can only meaningfully talk about the values of 
cumulative probabilities, for example, the probability of obtaining a value of 2.67 
or less, or the probability of obtaining a value of 2.67 or more. The probability of 
obtaining exactly 2.67 is undefi ned.  

 The normal distribution is a continuous distribution.  Z -scores are therefore also 
continuous and the probability of obtaining a particular  z- score cumulative. Thus 
while it is meaningful to write such expressions as Prob( z  ≤ 0.23), it is not meaning-
ful to write expressions such as Prob( z  = 0.23). 

  Table 1.2  A Discrete Probability Distribution 

   X      Probability   

 1  15% 

 2  33% 

 3  7% 

 4  12% 

 5  33% 

 Total  100% 
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  Figure 1.7  Example probability distribution for a discrete variable. 
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 EXPLORING THE CONCEPT 

 In thinking about the normal curve and calculating the probability of  z -scores, why 
do we typically compute the area of the curve that is to the right (or left) of a certain 
point? 

 The Normal Approximation (the 100-Coin Example) 

 Suppose the problem is to compute the probability that if one tosses 100 fair 
coins, that 60  or less  will come up heads. I present in this section two differ-
ent methods for approaching this problem: (a) With the binomial formula, and 
(b) with the normal curve. The latter is more complicated with this particular 
problem, but the approach will prove useful on problems considered in other 
chapters. 

 The Binomial Formula 

 To use the binomial formula, simply use the Excel syntax: 

 = BINOMDIST( k, n , π, 1) (use a 1 because we want cumulative probabilities). 
 = BINOMDIST(60, 100, 0.5, 1)  -  98.2%. 

 The Normal Approximation of the Binomial 

 It can be shown that as  n  approaches infinity, the binomial distribution approaches 
the normal distribution. When  n  is large, the differences between the distribu-
tions are negligible, so we speak about the normal  approximation  of the binomial. 
However, the binomial distribution is discrete, whereas the normal distribution is 
continuous, and this fact causes the approximation to be off a little, requiring what 
is known as a  continuity correction . Let us set the continuity correction aside for a 
moment, as it will be the last step in our calculations. 

 We will fi rst need to calculate a  z -score, and to do that we need to know the 
mean and SD of the binomial distribution.  Table 1.3  shows the mean and variances 
of both the Bernoulli and binomial distributions. For the binomial distribution, 
there are different means and variances depending on whether the outcome is a 
count (e.g., 50 hits) or a proportion of the trials that involve hits (e.g., 50% hits). 
We are presently concerned with the former situation.  

 In our example, the mean is  n  π (100 * 0.50 = 50). If we toss 100 coins in the air, 
the most likely outcome is 50 heads (see  Figure 1.3 ). Although the likelihood of this 
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occurring is only 8%, it is still the most likely outcome. It is certainly possible that 
we might get 49 or 53 coming up heads rather than exactly 50, but the number of 
heads is still likely to be around 50. The mean is also known as the  expected value . 

 In our example, the variance is  n  π(1 – π). This is sometimes written as  nPQ , with 
 P  representing the probability of a hit, and  Q  the probability of a miss. In statistics, 
by convention Greek letters refer to population parameters and English letters to 
sample estimates of these parameters. Because we are not dealing with samples here, 
I use the Greek letters in writing the formulas. 

 To continue with the example, the variance is  n  π(1 – π) = 100 * 50% * 50% = 25. 
The standard deviation is the square root of the variance, or 5. The  z -score is then: 
z X mean

SD= −  = −60 50
5  = 2.00, Prob( z ≤  2.00) = 97.7%. This result does not jive with the 

calculation using the binomial formula (98.2%) because we have not yet applied 
the continuity correction. When using  z- scores, it is assumed that the values are 
continuous. But we are here using discrete raw score values, for example, 62, 61, 
60, 59, 58, etc. We want to fi nd the probability of getting a value of X ≤ 60 . The 
area of the probability distribution corresponding to 60 is assumed with the normal 
curve method to have a width of zero (because continuous variables are assumed), 
when in fact the bar for 60 has a width of one. The area of the bar to the right of 
the midpoint corresponds to the probability excluded from the calculation with 
the normal curve method. This method leaves out “half a bar” associated with the 
binomial formula method, which gives the exact value. The point of the continuity 
correction when using the normal approximation is basically to “add half a bar” to 
the probability estimate. We can do this if we use the value of  X  = 60.5 rather than 
60 in the  z -score calculation. 

 z
X mean

SD
=

−
 =

−.60 5 50
5

 = 2.10, Prob( z ≤  2.10) = 98.2%. 

 This result is equal to the one from using the binomial method. 
 If we were to use proportions, rather than counts, the variance would be 

50 50
100 0 25

% %
. %

*( ) =  and so z = =−60 5 50
0 25

2 10. % %
. %

. , which is the same result as if counts 
were used, but the formula for the variance is different (see  Table 1.3  and Technical 
Note 1.1). 

  Table 1.3  Means and Variances of the Bernoulli and Binomial Distributions 

   Parameter      Distribution   

        Bernoulli      Binomial Count      Binomial Proportion   

 Mean  π   nπ  π

 Variance  π(1 – π)   n π(1 – π)  π(1 – π)/ n   
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 The normal approximation is an important procedure for the material discussed 
in this book. It may seem unnecessary here to go through all the gyrations when we 
can calculate the exact probability with the binomial formula, but in many other 
situations we will not have recourse to the binomial formula or some other “exact” 
formula and therefore will need to use the normal approximation. 

 Continuity Corrections With X or More Problems 

 One last problem: What is the probability of obtaining 60  or more  heads when toss-
ing 100 fair coins. Once again, we should apply a continuity correction. However, 
there is a second adjustment we will need to make, namely the one described a few 
pages back for “ X  or more” problems (specifically using  X –  1 in the Excel formula). 
Therefore, instead of using  X  = 60 in the formula, we should use  X  = 59. But for the 
continuity correction, we also need to add a half a bar. Therefore, the correct  X  to 
use is 59.5: 

 z
X mean

SD
=

−
=

−.59 5 50
5

= 1.90, Prob( z ≤  1.90) = 97.1%. 

 Subtracting from 100%, the probability of obtaining 60 or more heads is 2.9%. 

 EXPLORING THE CONCEPT 

 The probability of obtaining 60 or more heads is 2.9%. The probability of obtaining 
60 or less heads is 98.2%. These probabilities sum to more than 100%; they sum to 
101.1%. Can you explain why? 

 Problems 

  1. What is the scale of measurement for the following random variables? 
 a) Someone’s weight (in pounds). 
 b) The state in which a person resides (Nevada, California, Wisconsin, etc.). 
 c) Someone’s IQ score. 

  2. What is the scale of measurement for the following random variables? 
 a) A student’s percentile ranking on a test. 
 b) Self-report of the number of close friends an adult has. 
 c) Political party affiliation. 
 d) Categorizing individuals into the highest college degree obtained: Doctorate, 

master, bachelor, associate, or none. 
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  3. One throws two dice. What is the probability of: 
 a) Obtaining a seven (combining the two numbers)? (HINT: Try to think of the 

different permutations that would produce a seven, and use the multiplica-
tion rule for joint events.) 

 b) Obtaining a nine? 
  4. In a single throw of two dice, what is the probability that: 

 a) Two of the same kind will appear (a “doublet”)? 
 b) A doublet or a six will appear? (HINT: These are not mutually exclusive 

events.) 
  5. In three tosses of a fair coin, what is the probability of obtaining at least one 

head? 
  6. Three cards are drawn at random ( with replacement ) from a card deck with 52 

cards. What is the probability that all three will be spades? 
  7. Three cards are drawn at random  (without replacement)  from a card deck with 

52 cards. What is the probability that all three will be clubs? (HINT: when 
two events are not statistically independent, and  A  occurs first, Prob( A  &  B ) = 
Prob( A ) * Prob( B  |  A ).) 

  8. Evaluate the following expression 1
4( ). (HINT: Remember that k

n( ) = n
k n k

!
! !−( ) .) 

  9. Evaluate the following expression: 3
4( ). 

 10. You toss four coins. Using the binomial coefficient formula, compute how many 
permutations are associated with a combination of two heads and two tails. 

 11. You toss four coins. Using the binomial formula, compute the probability of 
obtaining exactly two heads if the coin is fair. (HINT: The probability is given 
by k

n( )*π πk n k1 −( ) −( ).) 
 12. In a toss of four coins, use the binomial formula to compute the probability of 

obtaining exactly two heads if the coin is biased and the probability of a head 
is 75%. 

 13. Repeat the previous problem using Excel. 
 14. Using Excel, find the probability of obtaining two heads or  less  (again, with 

 n  = 4 and π = 75%). 
 15. Using Excel, find the probability of obtaining two heads or  more  (again, with 

 n  = 4 and π = 75%). 
 16. Chart the frequency distribution when  n  = 4 and π = 75%. 
 17. You construct a science achievement test consisting of 100 multiple-choice 

questions. Each question has four alternatives, so the probability of obtaining a 
correct answer, based on guessing alone, is 25%. If a student randomly guesses 
on each item, what is the probability of obtaining a score of 30 or more correct? 
 a) Use the binomial function in Excel. (HINT: Find the probability of 29 or less, 

and then subtract from one.) 
 b) Use the normal approximation method, without a continuity correction. 

You will need to calculate a  z -score, which means you will need to calculate 
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the mean expected correct ( nπ)  and the standard deviation of this nπ π(1 − . 
(HINT: Find the probability of 29 or less, and then subtract from one.) 

 c) Use the normal approximation with a continuity correction. (HINT: Find 
the probability of 29.5 or less, then subtract from one.) 

 18. If  Y  is a binomial random variable with parameters  n  = 60 and  π =  0.5, estimate 
the probability that  Y  will equal or exceed 45, using the normal approximation 
with a continuity correction. 

 19. Let  X  be the number of people who respond to an online survey of attitudes 
toward social media. Assume the survey is sent to 500 people, and each has a 
probability of 0.40 of responding. You would like at least 250 people to respond 
to the survey. Estimate Prob( X  ≥ 250), using the normal approximation with a 
continuity correction. 

 Technical Note 

 1.1 The variance of a proportion is π π1−( )
n

. The rationale is as follows. If one were 
to double all the values of a random variable, so that x x* = 2 , then the SD 
would double and the variance, which is the square of the SD, would qua-
druple. In general, Var kx k Var x( ) = ( )2 . In calculating a proportion, the count 
is divided by  n,  which is the same as multiplying by 1/ n.  The variance of 
a count is therefore multiplied by 1

2n
 to obtain the variance of a proportion. 

Specifically, 1 1
2 1

n
n nπ π π π−( )  = −( )  
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 APPENDIX 1.1 

 LOGIC BEHIND COMBINATION FORMULA (EQ. 1.9) 

 k
n( ) is the number of ways of combining  n  things so that there are  k  hits, for example, 

combining 100 coins so that there are 60 heads showing. The formula is: !
! !k

n n
k n k( ) =

−( ) . 
This appendix explains the logic behind this formula. 

 Three Object Example 

 First consider a simpler scenario. Suppose three people (Harry, Dick, and Tom) go to 
the theatre. There are a number of possible seating arrangements: 

 HDT 
 DHT 
 HTD 
 DTH 
 THD 
 TDH 

 There are six permutations. Any one of the three people can fi ll the fi rst seat. Once 
the fi rst seat is fi lled, there are two people left, so either one could fi ll the second 
seat. Once the second seat is fi lled, there is just one person left, and so there is just 
one possibility for fi lling the third seat. The total number of possibilities is 3 * 2 * 
1 = 6. This is the factorial of three (3!). More generally, there are  n  ! distinct ways of 
arranging  n  objects. 

 Suppose now that Harry and Dick are identical twins. Some of the six permu-
tations will no longer appear distinct. If H = D and substituting H for D, the six 
permutations become: 

 HDT  -  HHT 
 DHT  -  HHT 
 HTD  -  HTH 
 DTH  -  HTH 
 THD  -  THH 
 TDH  -  THH 

 The number of distinct arrangements has been cut in half. We could just modify 
the formula by dividing six by two, or more specifi cally, 2!). In general, when  k  
of the objects (or people) are identical, the number of distinct permutations is 
given by n

k
!
! . 
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 We need to divide by  k  !, and not just  k,  because there are  k  ! ways of arranging 
the  k  identical objects, and each of these correspond to a possibility that is duplica-
tive of another possibility. There are therefore only three possible outcomes: HHT, 
HTH, and THH. If instead of people, we let H represent a coin toss coming up heads, 
and T tails, we can see that there are three permutations corresponding to a com-
bination of two heads and one tail. In other words, !

! !2
3 3

2 3 2
3( ) = =

−( ) . More gener-
ally, !

! !k
n n

k n k( ) =
−( ) , where n k−( ) is the number of misses. Although in the example,

n k−( ) =! 1 in more complex examples n k−( )! may refl ect duplicative possibilities, 
so we need to divide by this term as well as  k !. 
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 CHAPTER 2 

 ESTIMATION AND HYPOTHESIS TESTING 

 In this chapter, we examine how to estimate the value of a population parameter 
such as a probability (π) or mean ( µ ). We will also examine the binomial test, which 
tests hypotheses about π. 

 Estimation 

 The Estimation Problem(s) 

 In teaching this topic in my course on categorical data analysis, I begin the lesson 
by asking students to answer on a piece of paper, “Have you ever been married?” 
This question asks about a nominal variable and therefore it is appropriate to calcu-
late or estimate proportions. The goal of the exercise is to infer what percentage of 
students at the university as a whole have ever been married ( N  = 30,000). In other 
words, we need to estimate the population proportion. Doing so requires taking a 
sample and using sample statistics to estimate the population parameter. (A popula-
tion parameter is a numerical feature of a population that we are trying to estimate.) 
The sample should be random, but in this exercise, we suppose that the class repre-
sents a random sample. The population is all the students at the university. 

 By convention, population parameters are represented by Greek letters: In 
this case, pi (π) for a proportion. (For a metric variable, we would estimate μ, the 
population mean.) By convention, English letters (e.g.,  P  or X) represent sample 
statistics. Note that π, the population proportion, is also a probability. Therefore, 
if 60% of the students at the university have been married, then if one  randomly  
draws an individual out of the population, there will be a 60% probability that 
she or he has been married. Suppose our sample consists of 20 students ( n  = 20). 
If  X  is the number of students in our sample who have been married, the expected 
value ( n π) is the most likely value of  X  in the sample. Likewise, the expected value 
of  P  is π. This example shows why it is important to use random samples: The 
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laws of probability make it likely that the characteristics of the sample will be rep-
resentative (i.e., similar) to the population. In this case, if the sample contained 
12 students who had been married, the  P  will be 60%, just like the population, 
where π = 60%. 

 However, recall that this expected value is only the most likely value of our sam-
ple estimate  P ; it is possible that we could draw a sample with 11 or 14 married 
students. We should expect that we will obtain a sample of  about  12 students who 
have been married, but that our estimate will be off a little. The “off a little” refl ects 
 sampling error , the fact that even with a random sampling, the sample might not 
represent the population perfectly. Because of sampling error, we always represent 
statistical estimates in the form of confi dence intervals, for example .58 ± .02 (with 
95% confi dence). 

 Forming a Confidence Interval for a Proportion 

 In the previous example, we stipulated that 60% of the population had been mar-
ried. However, we typically will not know the population parameters, which is why 
we must estimate them. Suppose we now take a random sample of 30 individu-
als, and 19 of them indicate that they have been married. (This category would 
include people who are presently married as well as those who have been divorced 
or widowed.) Then P = =19

30 63 3. %.  P  is our sample estimate of π. How do we form 
a confidence interval? 

 To address this question, we need to understand the concept of a  sampling dis-
tribution . This concept is, next to probability, the most foundational one in all of 
inferential statistics. A sampling distribution for a sample statistic, such as  P , given a 
particular sample size (e.g.,  n  = 30), is the distribution of the statistic associated with 
all the different possible samples of size  n  that could be drawn from the population. 
For each such sample, there is a P. The sampling distribution of  P  is the distribution 
of all the possible  P ’s (one for each sample). 

 In the previous example, we drew a sample with a  P  of 63.3%. If we were to draw 
another sample, we might obtain a  P  of 70%. If we were to draw a third sample, we 
might obtain a  P  of 55%. Theoretically, we could go on indefi nitely drawing sam-
ples and plotting the values of the sampling distribution. In practice, we typically 
draw only one sample, at most two. We therefore only observe one or two points 
of the sampling distribution. 

 Although we never observe most of the points of the sampling distribution, we 
can still make theoretical inferences about it. To construct a confi dence interval, we 
need to make inferences about the sampling distribution’s: (a) Mean, (b) standard 
deviation (standard error), and (c) shape. 

 It can be shown that the mean of the sampling distribution is π, the population 
proportion. (This claim is demonstrated in Chapter 3 and in  Appendix 2.1 .) 
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 EXPLORING THE CONCEPT 

 The mean of a sampling distribution is by definition the expected value. If the popu-
lation mean (π) were 50%, why is the most likely value of  P , from all the samples 
that could be drawn, 50%? 

 The population distribution is a Bernoulli distribution (see  Figure 1.4  in 
Chapter 1), and so the graph of the population distribution will have two bars: 
One for  X  = 1 (with Prob( X  = 1) = π) and one for  X  = 0 (with Prob( X  = 0) = 1–π). 
Recall that the variance of a Bernoulli distribution is π(1–π). Because we are using 
 P  to estimate π, we can use  PQ  to estimate the population variance, where  Q  is the 
probability of a miss ( Q  = 1– P ). 

 However, our interest is in fi nding the standard deviation of the sampling dis-
tribution, not of the population distribution. (The former is known as the  standard 
error , or  SE .) The applicable formula is: 

    Estimated SEof a Proportion
PQ
n

=  .  ( Eq. 2.1 )

  Appendix 2.1  presents the proof (see also  Chapter 3 ). 

 EXPLORING THE CONCEPT 

 Conduct a thought experiment by answering the following questions: (a) If your 
sample consisted of just one observation ( n  = 1) from a population of 30,000, how 
many different samples could you draw? (b) Would the shape of the sampling dis-
tribution be just like the population distribution (i.e., Bernoulli)? (c) Would the SDs 
of the two distributions be the same? 

 Note from Eq. 2.1 that as  n  increases, the SE decreases, meaning that the sam-
pling distribution becomes “thinner.” Eq. 2.1 implies that the SE approaches zero 
as  n  approaches infi nity. In fact, the SE would approach zero as  n  approaches  N¸  
which is the size of the population. Technically, therefore, we should include this 
additional constraint in the formula by writing: 

  Estimated SEof a Proportion
PQ
n

PQ
N

= −  .  ( Eq. 2.2 ) 

 When the population size is large, the second term is negligible, so it is typically left 
out of the formula for the SE. One should use Eq. 2.2 when the population size is 
small. 
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 EXPLORING THE CONCEPT 

 Suppose you sample the entire population where  n  =  N  = 10, and  P  = 50%. To what 
value would Eq. 2.2 reduce? How many different samples could one draw out of 
the population? Does it make sense that the SE would be zero? 

 In summary, the mean of the sampling distribution of  P  is π and the estimated 
SE is PQ

n
. In regard to shape, although the shape of the  population  distribution is 

Bernoulli, the shape of the  sampling  distribution will be binomial when  n  > 1. This 
fact is illustrated in  Figure 2.1 . The sampling distribution for  n  = 1 is Bernoulli 
(same as the population distribution). For larger  n  ( n =  2 and  n =  3 are illustrated), 
the shape is binomial. Here is the rationale. The shape of the sampling distribution 
for each observation will be Bernoulli (identical to the population distribution), 
and a series of independent Bernoulli trials yields a binomial distribution. Thus, 
in a sample of size  n  = 2, there are four possible outcomes, as shown in  Table 2.1 . 
Combining the middle two permutations where the number of hits is 1 yields the 
sampling distribution of  P,  shown in  Table 2.2  and  Figure 2.1 . Just as the binomial 
distribution characterizes the probabilities resulting from fl ipping two coins, it also 
characterizes the distribution associated with selecting a sample of two. 

 In Chapter 1, we noted that the variance of a binomial distribution could be 
estimated with the expression  nPQ . However, the astute reader may have noticed 
that I indicated previously that the variance of the sampling distribution is PQ
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Figure 2.1 Bernoulli and binomial sampling distributions for varying sample sizes. For 
n = 1, the distribution is Bernoulli (and equal to the population distribution). For n = 2 
and n = 3, the distributions are binomial.


