

Magnesium Alloys for Biomedical Applications Advances and Challenges

EDITED BY DEEPAK KUMAR AND NOORUDDIN ANSARI

Magnesium Alloys for Biomedical Applications

Magnesium alloys have enormous potential for use in biomedical implants. *Magnesium Alloys for Biomedical Applications* delves into recent advances and prospects for implementation and provides scientific insights into current issues posed by Mg alloy materials. It provides an overview of research on their mechanical and tribological characteristics, corrosion tendencies, and biological characteristics, with a particular emphasis on biomedical implants.

- Details the fundamentals of Mg alloys as well as necessary surface modifications of Mg alloys for biomedical use.
- Discusses emerging Mg alloys and their composites.
- Covers mechanical, tribological, and chemical properties, as well as fatigue and corrosion.
- Highlights emerging manufacturing methods and advancements in new alloy design, composite manufacturing, unique structure design, surface modification, and recyclability.
- Helps readers identify appropriate Mg-based materials for their applications and select optimal improvement methods.
- Summarizes current challenges and suggests a roadmap for future research.

Aimed at researchers in materials and biomedical engineering, this book explores the many breakthroughs achieved with these materials and where the field should concentrate to ensure the development of safe and reliable Mg alloy-based implants.

Magnesium Alloys for Biomedical Applications Advances and Challenges

Edited by Deepak Kumar and Nooruddin Ansari

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business Cover image: © Shutterstock

First edition published 2024 by CRC Press 2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 selection and editorial matter, Deepak Kumar and Nooruddin Ansari; individual chapters, the contributors

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark Notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Kumar, Deepak, PhD, editor. | Ansari, Nooruddin, editor. Title: Magnesium alloys for biomedical applications : advances and challenges / edited by Deepak Kumar and Nooruddin Ansari. Description: First edition. | Boca Raton, FL : CRC Press, 2024. | Includes bibliographical references and index. Identifiers: LCCN 2023050327 | ISBN 9781032508818 (hardback) | ISBN 9781032509587 (paperback) | ISBN 9781003400462 (ebook) Subjects: MESH: Magnesium--chemistry | Alloys--chemistry | Biocompatible Materials--chemistry | Materials Testing--methods Classification: LCC R857.M3 | NLM QT 37.5.M4 | DDC 610.28--dc23/eng/20240126 LC record available at https://lccn.loc.gov/2023050327

ISBN: 978-1-032-50881-8 (hbk) ISBN: 978-1-032-50958-7 (pbk) ISBN: 978-1-003-40046-2 (ebk)

DOI: 10.1201/9781003400462

Typeset in Times by KnowledgeWorks Global Ltd.

Contents

List of Figu	res and	1 Tables	xi
About the E	ditors		xvii
Contributor	s		xix
Chapter 1	Mag	nesium Alloys for Biomedical Applications: Scope and	
	Opp	prtunities	1
	~ 11		
	Gou	rav Khajuria and Vivudh Gupta	
	1.1	Introduction	1
		1.1.1 Metal-based Biomaterials	3
		1.1.2 Polymer-based Biomaterials	4
		1.1.3 Ceramic-based Biomaterials	4
		1.1.4 Natural Biomaterials	4
		1.1.5 Inorganic Glass-based Biomaterials	5
		1.1.6 Regenerative Biomaterials	5
	1.2	Magnesium Alloys: Advancements and Applications	8
		1.2.1 Mg-Ca Alloys	9
		1.2.2 Mg-Zn Alloys	10
		1.2.3 Mg-Si Alloys	10
		1.2.4 Mg-Al Alloys	10
		1.2.5 Mg-Sr Alloys	11
		1.2.6 Mg-Nd Alloys	11
	1.3	Challenges and Opportunities	11
	1.4	Conclusions	14
Chapter 2	Man	ufacturing Methods of Mg Allovs for Biomedical	
r	Appl	ications	20
	Prali	had Pesode, Shivprakash Barve, Sagar V. Wankhede and	
	Man	oj Mugale	
	2.1	Introduction	20
	2.2	Manufacturing Techniques of Mg Alloy for Biomedical	
		Applications	25
		2.2.1 Casting	25
		2.2.2 Forming	26
		2.2.3 Machining	27
		2.2.4 Severe Plastic Deformation	28
		2.2.5 Alloying Mg	29
		2.2.6 AM (3D Printing)	
	2.3	Necessity for AM of Mg.	31
	2.4	AM of Mg for Biomedical Applications	32
		- II	

		2.4.1	PBF	33
		2.4.2	SLM Technology	36
		2.4.3	Selective Laser Sintering (SLS)	37
		2.4.4	WAAM	39
		2.4.5	Indirect Additive Manufacturing (I-AM)	39
		2.4.6	Jetting Additive Manufacturing	40
		2.4.7	FSAM	41
	2.5	Biocor	npatibility of Additively Manufactured Mg Alloys	44
	2.6	Challe	nges with Making Magnesium-based Alloys	
		By AN	И	46
	2.7	Conclu	sion and Future Prospective	47
	Decl	aration c	of Competing Interest	50
Chapter 3	Role	of Alloy	ring Elements on Biomedical Performance	
•	of M	g Alloys	<i></i>	62
	~			
	Qazı	Junaid	Ashraf and G.A. Harmain	
	3.1	Introd	uction	62
	3.2	Magne	esium and Its Alloys	63
		3.2.1	Characteristics of Magnesium and Magnesium	
			Alloys	63
		3.2.2	Biomedical Applications of Magnesium and	
			Magnesium Alloys	66
		3.2.3	Limitations of Magnesium and Magnesium	
			Alloys	67
	3.3	Effect	of Alloying Elements on Magnesium Alloys for	
		Biome	dical Applications	68
		3.3.1	Aluminum	68
		3.3.2	Zinc	69
		3.3.3	Calcium	70
		3.3.4	Manganese	71
		3.3.5	REEs	72
		3.3.6	Silver	73
	3.4	Proces	sing Techniques of Magnesium Alloys for	
		Biome	dical Applications	73
		3.4.1	Casting	73
		3.4.2	Extrusion	74
		3.4.3	Rolling	74
		3.4.4	Powder Metallurgy	74
		3.4.5	Additive Manufacturing	75
	3.5	Challe	nges	75
		3.5.1	Regulatory Issues	75
		3.5.2	Clinical Trials	75
		3.5.3	Standardization	75
		3.5.4	Emerging Technologies	76
	3.6	Conclu	sion and Future Scope	76

Contents

Chapter 4	Mechanical, Chemical, Fatigue, and Biological Compatible Properties of Mg Alloys				
	Arav	n Muzaffar and Fatima Jalid			
	41	Introduction	82		
	4.2	Biomedical Allovs of Magnesium			
	4.3	Mechanical and Fatigue Properties of Biomedical			
		Mg Allovs	86		
		4.3.1 Mg-Al Allovs	86		
		4.3.2 Mg-Zn Allovs	88		
		4.3.3 Mg-Ca Alloys	90		
		4.3.4 Mg-RE Alloys	91		
		4.3.5 Mg-Sr Alloys	93		
	4.4	Chemical Properties/Corrosion Resistance of Biomedica	1		
		Mg Alloys	93		
		4.4.1 Mg-Al Alloys	94		
		4.4.2 Mg-Zn Alloys	95		
		4.4.3 Mg-Ca Alloys	96		
		4.4.4 Mg-RE Alloys	98		
		4.4.5 Mg-Sr Alloys	99		
	4.5	Biocompatibility of Biomedical Mg Alloys	100		
		4.5.1 Mg-Al Alloys	100		
		4.5.2 Mg-Zn Alloys	101		
		4.5.3 Mg-Sr Alloys	101		
		4.5.4 Mg-Ca Alloys	101		
		4.5.5 Mg-RE Alloys	102		
	4.6	Conclusion	103		
Chanter 5	Surf	ace Modification of Magnesium Alloy Employing External			
Chapter 5	Coat	ing for Biomedical Applications	109		
	Cour	ing for biomodical reprioritions	109		
	Kam Shub	elendra Vikram, Sumit Pramanik, Viorel Paleu and Arajit Bhaumik			
	5 1	Introduction	100		
	5.1	Influencing Factors of Mg Alloys Performances in	107		
	5.2	Biomedical Applications	110		
	53	Mg Alloys In Medicine: Concept and Practical	110		
	0.0	Applications	111		
	5.4	Classification of Coatings			
		5.4.1 Physical and Chemical Vapor Deposition			
		Coating	115		
		5.4.2 Chemical Conversion Coatings	116		
		5.4.3 Biomimetic Deposition	116		
		5.4.4 MAO Coating	116		
		5.4.5 SolGel Coating	116		
		5.4.6 Ion Implantation	117		
		*			

	5.5	Effect of Surface Coating Modification on			
		Biocompatibility of Mg Alloy	117		
	5.6	Effect of Chemical Transformation on Biocompatibility	118		
	5.7	Effect of MAO on Biocompatibility	118		
	5.8	Effect of Sol-Gel Method on Biocompatibility	119		
	5.9	Effect of Thermal Spraving Method	119		
	5.10	Concluding Remark	120		
	Decl	aration of Competing Interest	120		
Chanter 6	Surfa	ace Modification of Mg Alloys: An Insight into Friction			
F	Stir-l	Based Techniques	124		
	Sufia	un Raja, Farazila Yusof, Ridha bin Muhamad, Mohd Fadzil			
	Jama and 1	ıludin, MD.F. Khan, Mohd Bilal Naim Shaikh, Sajjad Arif Mohammad Azad Alam			
	6.1	Introduction	125		
	6.2	FSP: A Promising Friction Stir-Based Technique			
		for Surface Modification of Mg Implants	126		
		6.2.1 Effect of FSP on Mechanical and			
		Tribological Properties	129		
		6.2.2 Effect of FSP on Corrosion Properties	134		
	6.3	Additional Friction Stir-Based Approach for			
		Manufacturing Mg-Based Implants	135		
		6.3.1 Friction Stir Welding (FSW) and Its Effect on			
		Various Properties	135		
		6.3.2 Friction Stir Additive Manufacturing (FSAM)			
		and Its Effect on Various Properties	137		
		6.3.3 Friction Surfacing (FS) and Its Effect on			
		Various Properties	139		
	6.4	Conclusions	140		
Chanter 7	Biolo	ogical and Chemical Stability of Coatings	147		
	Fatima Jalid and Aravi Muzaffar				
	7.1	Introduction	147		
	7.2	Metallic Coatings	149		
		7.2.1 Metal Oxide Coatings	149		
		7.2.2 Metal Hydroxide Coatings	151		
	7.3	Nonmetallic Coatings	153		
		7.3.1 MgF ₂ Coatings	153		
		7.3.2 Phosphate Coatings	154		
		7.3.3 Graphene Oxide Coatings	156		
	7.4	Polymer Coatings	157		
		7.4.1 Natural Polymer Coatings	157		
		7.4.2 Synthetic Polymer Coatings	159		
		• • •			

Contents

	7.5 7.6	Composite Coatings Conclusions	162 166	
Chapter 8	Corrosion Behavior of Mg Alloys in Simulated Body Fluids			
	Umer Masood Chaudry, Tea-Sung Jun, Hafiz Muhammad Rehan Tariq, Badar Zaman Minhas and Muhammad Atiq Ur Rehman			
	8.1 8.2	Introduction Electrochemical Corrosion Response of Magnesium	177	
	8.3	Alloys in Simulated Body Fluid Bio-Friendly Coatings and Surface Modification for Mg	178	
	8.4	Alloys Magnesium Alloy as a Degradable Material in Orthopedic Applications	183 185	
Chapter 9	Reus	e, Remanufacturing, and Recycling of Mg Alloys	189	
	Saga and 1	r V. Wankhede, Akbar Ahmad, Pralhad Pesode Manoj Mugale		
	9.1	Introduction	189	
	9.2	Sources of Magnesium Scrap	190	
		9.2.1 Die-Casting Scrap	190	
	0.2	9.2.2 Post-Consumer Scrap	190	
	9.3	Refining Technologies for Magnesium	192	
		9.3.1 Flux Kellning Technologies	192 104	
		9.3.2 Fluxless Kellining Technology	194	
		934 Inert Gas and Filter Refining	195	
		9.3.5 Vacuum Distillation Refining	196	
		9.3.6 Hydrometallurgy	196	
	9.4	Coating and Postprocessing Techniques for		
		Magnesium Alloy	196	
	9.5	Conclusions	201	
Chapter 10	Magi Scop	nesium Alloys for Biomedical Applications: Future e and Challenges	207	
	Viren Haru	ndra Pratap Singh, Vinyas Mahesh and Dineshkumar Arsampath		
	10.1	Introduction	207	
	10.2	Corrosion in Biofluids	208	
		10.2.1 Corrosion Phenomenon in Mg Alloys	208	
	10.3	Types of Corrosion	211	
		10.3.1 Corrosion Fatigue	211	

	10.3.2	Galvanic Corrosion	211
	10.3.3	Erosion Corrosion	213
	10.3.4	Pitting Corrosion	213
10.4	Factor	Affecting Corrosion	214
	10.4.1	Influence of Microstructure	
	10.4.2	Influence of Heat Treatment	215
	10.4.3	Effect of Manufacturing Process	216
	10.4.4	Influence of Alloying Elements	217
	10.4.5	Effect of Albumin	217
	10.4.6	Effect of pH Value	218
10.5	Progres	ss on Research of Mg Alloys as Biomaterials	219
	10.5.1	Strategies and Challenges for Mg Alloys as	
		Orthopedic Material Implants	
	10.5.2	Modification of Surfaces	
10.6	Conclu	sion	
Index			

List of Figures and Tables

Figure 1.1	Yearwise distribution of research articles in biomaterials and biomedical magnesium alloys. (From ScienceDirect.)	2
Figure 1.2	The schematic diagram depicting the complete structure of this chapter	3
Figure 1.3	Diagram depicting the implant characteristics in biomedical applications.	6
Figure 1.4	The schematic diagram highlighting challenges and opportunities of Mg-based alloys in biomedical applications	13
Figure 1.5	The schematic diagram of opportunities of magnesium alloys in biomedical applications.	14
Figure 2.1	An example of a typical MAM process workflow	33
Figure 2.2	PBF system schematic diagram	34
Figure 2.3	SLM process parameters.	37
Figure 2.4	A typical setup for SLS used to create metal scaffolds	38
Figure 3.1	Various Mg alloys	63
Figure 3.2	Tensile properties of various Mg alloys	64
Figure 3.3	Corrosion rate of various Mg alloys	65
Figure 3.4	Mg-Al alloy phase diagram.	69
Figure 3.5	Processing steps of biodegradable Mg alloys	74
Figure 4.1	Effect of Al on tensile properties of Mg-based alloys (Abdelaziz et al. 2017).	87
Figure 4.2	<i>S-N</i> curves of as-cast AZ91 and AZ91 processed by ECAP (Fintová and Kunz 2015).	88
Figure 4.3	Effect of Zn content (wt%) on (a) YS and UTS, and (b) % elongation of as-cast and extruded Mg-Zn-Mn alloys (Zhang et al. 2009)	89
Figure 4.4	S-N curves of AZ31 and ZN11 alloys (Nascimento et al. 2010).	90
Figure 4.5	Comparison of (a) UTS, (b) tensile yield strength (TYS), and (c) % elongation of Mg-4Zn and Mg-4Zn-0.4Ca alloys in the heat-treated (T4) and ECAPed (E) alloy systems (Hradilová et al. 2013).	91

Figure 4.6	(a) YS and UTS and (b) elongation of some Mg-RE alloys (Liu et al. 2019)	92
Figure 4.7	Fatigue characteristics of GW103K alloy (Mirza et al., 2013)	93
Figure 4.8	Effect of Sr content (till 4 wt%) on mechanical properties of as-rolled Mg-Sr alloys (Gu et al. 2012)	94
Figure 4.9	Corrosion rates of pure Mg and some Mg-Al alloys in m-SBF (Wen et al. 2009).	95
Figure 4.10	Effect of Zn addition on corrosion rates of Mg-Zn alloys (Cai et al. 2012)	96
Figure 4.11	Corrosion rates of some Mg-Zn-Ca alloys (Abdel-Gawad and Shoeib 2019)	97
Figure 4.12	Potentiodynamic polarization curves of Mg-RE alloys in NaCl (Zhao et al. 2013)	98
Figure 4.13	Corrosion rate of some (a) Mg-Sr biomedical alloys (Bornapour et al. 2013) and (b) Mg-Sn-Ca and Mg-Sn-Zr alloys (Chen et al. 2020).	99
Figure 4.14	L-929 cell viability of as-cast Mg-1X alloys after two and four days (Gu et al. 2009)	00
Figure 4.15	(a) YS and elongation of some typical Mg biomedical alloys, and (b) corrosion rate of typical Mg biomedical alloys (Chen et al. 2014)	03
Figure 5.1	Influence parameters for magnesium alloy corrosion 1	11
Figure 5.2	The most significant applications of magnesium in the medical field is in the treatment of illnesses 1	11
Figure 5.3	Applications of magnesium and alloys of magnesium in the field of implantology1	14
Figure 5.4	Coating on Mg alloys materials based on their functions	15
Figure 5.5	Surface coating techniques for biomedical Mg alloys, including an examination of their classifications and connections	17
Figure 6.1	 (a) Illustration of FSP (Vaira Vignesh et al. 2019). (b) Introduction of the additives by using grooves during FSP (Rathee et al. 2018). 	27
Figure 6.2	Application of FSP in various materials for biomedical implant1	29
Figure 6.3	(a) Wear rate comparison of parent metal (PM) and conventional FSPed (denoted by NFSPed abbreviation) and SFSPed workpieces. (b) Friction coefficient (Bhadouria et al. 2017)	30

List of Figures and Tables

Figure 6.4	SEM image of the worn surfaces of the (a) base AZ91 and (b) SFSPed workpiece (Bhadouria et al. 2017)131
Figure 6.5	(a) SEM images of the worn surfaces at higher magnification.(b) SFSPed workpiece EDS (Bhadouria et al. 2017)
Figure 6.6	 Plot of frictional coefficient of (a) base AZ91 Mg alloy, (b) conventionally cooled friction stir processed workpiece, (c) air jet-cooled friction stir processed workpiece (Iwaszko and Kudła 2021)
Figure 6.7	 (a) FSPed AZ31 Mg alloy corrosion characteristics. (b) TCPS. (c) Adhesion of cell upon the base material. (d) FSPed AZ31 Mg alloy. (e) FSPed AZ31Mg alloy using HA additive after incubation (Ratna Sunil et al. 2014)
Figure 6.8	Schematic illustration of the FSW process (Ogunsemi et al. 2021)
Figure 6.9	Schematic illustration of the different zones of the cross section of the FSWed specimen (Ogunsemi et al. 2021)
Figure 6.10	Schematic illustration of the FSAM method (A. K. Srivastava et al. 2021)
Figure 6.11	Microstructural illustration. (a) Base AZ31B. (b-d) FSAM of AZ31B alloy with different HA percentages (Ho et al. 2020)
Figure 6.12	Various phases of friction surfacing. (a) Rotation of rod. (b) Starting of contact. (c) Beginning of deformation. (d) Material build-up phase (Gandra et al. 2014)
Figure 7.1	Hydrogen evolution volume as a function of immersion time in Ringer's solution for TiO_2 thin films deposited onto the MgCa ₂ Zn ₁ Gd ₃ alloy and bare alloy (Kania, Szindler, and Szindler 2021)
Figure 7.2	Effects of implantation in Group A, untreated AZ31 magnesium alloy screw; group T, titanium alloy screw; group F, AZ31 magnesium alloy screw coated with fluorine at different intervals of implantation. (a) Specimens of bone tissue reaction around implantations. (b) Hard tissue section of the interface of implantation and bone. (c) Hematoxylin- eosin (HE)-stained sections surrounding implantation (Sun et al. 2016)
Figure 7.3	Images of untreated (a and b), phosphate coated (c and d), and MgF_2 coated (e and f) implants of the alloy Mg-3Zn-0.8Zr after three months of implantation in white rabbits (Sun et al. 2013)

Figure 7.4	Osteoblast cell morphologies after three days of culture on (a) uncoated and (b) CaP-coated samples, (c) cell viability, and (d) alkaline phosphate activity when cells were cultured with sample extracts. *p < 0.05, compared to uncoated group (Gao et al. 2021)
Figure 7.5	(a) Polarization resistance of PLA-coated (different thickness) alloy samples after a 2-h immersion in SBF. (b) Polarization resistance of AZ91 magnesium alloy and PLA-coated magnesium alloy samples, after different immersion intervals in SBF (Alabbasi et al. 2012)
Figure 7.6	Composite coatings based on (a) organic-inorganic layers, (b) inorganic-organic layers, (c) organic-organic layers, (d) inorganic-inorganic layers, (e) organic/inorganic or inorganic/ inorganic or organic/organic composite layers, (f) organic/ inorganic/composite-composite-organic/inorganic/composite layer assemblies on Mg-based alloys (Singh et al. 2023)
Figure 7.7	Schematic representation of degradation control in AZ-A (uncoated) samples compared with AZ-AHP (coated) samples (Hanas et al. 2016)
Figure 8.1	Mg absorption and elimination balance in human body (De Baaij, Hoenderop, and Bindels 2012)
Figure 8.2	Nyquist curves (a) and Tafel plots (b), respectively, for pure Mg, ZK30, ZEK300 Mg alloys (Savaedi et al. 2022)
Figure 8.3	(a) Comparison between corrosion rates of magnesium and other biomaterials. (b) Effect of Ca addition in Mg on polarization resistance. (c and d) Tafel curve of pure magnesium and AZ31 Mg alloy after immersing in SBF for 16 and 24 days, respectively (Chaudry, Hamad, and Kim 2019, Wan et al. 2008, Wen et al. 2009)
Figure 8.4	(a-c) Bode plots of AZ91D alloy over the immersion time in SBF at 37°C. (d and e) SEM image of AZ91D, bare and after 35 h in SBF. (f and g) Equivalent electric circuits used to fit EIS spectra, one-time constant and two-time constants for an electrode-electrolyte solution interface, respectively
Figure 8.5	Implant material and implant location. (a) Extruded magnesium pin. (b) Radiograph of implant location
Figure 9.1	Schematic of the experimental setup for the coalescence tests 193
Figure 9.2	Block diagram of stir casting process
Figure 10.1	The position of magnesium and stages of biomedical implants (indicated by an arrow)

Figure 10.2	Potentiodynamic polarization curves for various electrolytes (10 mM PBS, MEM, and 0.05 M NaCl) for (a) Mg ₁ Ca and (b) Mg ₁₀ Gd.	210
Figure 10.3	(a) Three critical factors, including uneven microstructure, larger grain size, and secondary phase, leading to augmentation of corrosion in Mg implants and the percent involvement of each factor is specified. (b) S-N curves for AZ91D at ambient temperature in SBF and air and at 37°C. The number of cycles was taken as 107 cycles.	212
Figure 10.4	The schematic depicts pitting corrosion (<i>left</i>) and stress corrosion cracking (<i>right</i>) of magnesium alloys submerged in a physiological environment.	213
Figure 10.5	The behavior of (1) untreated AZ91D alloy, (2) AZ91D alloy with MAO film, and (3) AZ91D alloy with composite coatings were evaluated by plotting potentio-dynamic polarization curves in a 3.5% NaCl solution, (b) microstructure of MAO film, and (c) coating on AZ91D	214
Figure 10.6	Various common factors affecting corrosion	215
Figure 10.7	The schematic illustrations of corrosion mechanism for Mg alloy (MA8) in the MEM. Three stages (a, b, and c) of the corrosion film evolution were exposed	216
Figure 10.8	Mg samples tested under different pH values in Hank's solution at 37°C: (a) Potentiodynamic polarization maps and (b) Nyquist maps of EIS data.	219
Figure 10.9	Alloy design of magnesium.	221
Figure 10.10	Electrochemical corrosion behavior of various samples. (a) Polarization maps. (b) Nyquist maps. (c) Bode plots of log Z . (d) Bode plot of phase angle. (e) Equivalent circuits of uncoated magnesium alloy. (f) Equivalent circuits of coated magnesium alloys.	223
Figure 10.11	 (a) No pore or crack was discovered in the microstructure of a Ti-coated pure Mg sample, confirming a dense Ti-coating. (b) Ti-coating fracture surface displaying a cleavage fracture. (c) High-definition microstructure Mg substrate and Ti-coating. (d) Ti-element line scan at the Ti-coating/Mg substrate contact as showed by vellow line in part (c). 	225
Figure 10.12	 (a) Stress-strain analysis of as-cast ZK20(-0.6Sc/Nd) alloys at room temperature; the fracture analysis of (b) ZK20, (c) ZK20-0.6Sc, and (d) ZK20-0.6Nd. 	226
Figure 10.13	Analysis of SEM microstructure of treated surfaces after immersion in NaCl solution for 26 h	22.7
		/

Figure 10.14	The electrochemical behavior of Ti and $Zr_{62.5}Cu_{22.5}Fe_5Al_{10}$ bulk metallic glasses (BMGs) were investigated using potentiodynamic polarization curves under different conditions. The experiments were conducted both with and without N-PIII treatment in two different environments, namely (a) AS and (b) SBF	9
Table 1.1	List of Biomaterials and Its Characteristics and Applications	4
Table 1.2	Different Examples of Implant Materials	7
Table 1.3	Biocompatibility and Mechanical Properties of Magnesium Alloy Elements	9
Table 1.4	Research Studies on Biomedical Magnesium Alloys 12	2
Table 2.1	Comparative Analysis of the Physical and Mechanical Characteristics of Various Metallic Implants and Human Bone	1
Table 2.2	Effect of Alloying Elements on Mg	9
Table 2.3	Benefits and Drawbacks of AM Techniques and Their Typical Applications	2
Table 3.1	Mechanical Properties of Mg Alloys and Other Metallic Implants	4
Table 4.1	Properties and Characteristics of Some Common Implant Metals and Their Comparison with Natural Bone	3
Table 4.2	Cell Viability of Certain Mg-RE Alloy Implants	2
Table 4.3	Effects of Some of the Alloying Additions on Mg Alloys	4
Table 5.1	The Influence of Alloying Element on the Properties of Mg Alloys	2
Table 5.2	Advantages and Disadvantages of Mg Alloy for Biomedical Application	4
Table 8.1	Effect of Alloying Elements on Magnesium Presented in Different Studies	0
Table 8.2	Coatings for Mg and Its Alloys through Different Techniques 184	4
Table 9.1	Categories of Magnesium Scrap 19	1
Table 9.2	Tool Materials for FSP	0
Table 10.1	Selection Criteria of Alloying Elements for Biomedical Magnesium Alloys	9

About the Editors

Dr. Deepak Kumar boasts an impressive academic journey. He obtained his B.Tech. in Mechanical Engineering from Uttar Pradesh Technical University, India, in 2013 and went on to earn his M.Tech. in Mechanical System Design from the National Institute of Technology, Srinagar, India, in 2016. During his Master's program, he had the privilege of being a visiting student at the esteemed Indian Institute of Technology, Delhi, and his dedication was rewarded with a Gold Medal for his Master of Technology achievement. In 2021, Dr. Kumar achieved a significant milestone by completing his doctorate from the Materials Science and Engineering Department at the Indian Institute of Technology, Delhi, India. His academic excellence was further showcased when he participated in a summer camp organized by the University of Tokyo, Japan, in 2019, where he received recognition for his innovative ideas. Moreover, he secured best presentation and paper awards in India for IEEE and AIP conferences. Driven by his passion for research and learning, he traveled to Germany after being awarded a travel scholarship by the Government of India, enabling him to attend an international conference. Dr. Kumar's contributions to the field are notable, as evidenced by his publication record. He has authored 36 papers in prestigious SCI journals and presented 6 conference proceedings. Notably, several articles are currently under review in renowned SCI journals. His doctoral dissertation delved into the nanoscale mechanical and tribological behavior of magnesium alloys. He conducted comprehensive investigations into the fundamental mechanisms of friction, wear, and deformation under both dry and lubricated conditions. Using a unique AFM setup, he probed the in situ tribofilm development mechanisms, particularly in localized regions/phases of magnesium alloy under distinct lubricative conditions. Additionally, Dr. Kumar has explored the mechanical and tribological properties of titanium alloys and high-entropy alloys (HEAs). His expertise extends to the field of corrosion, where he has conducted research on Ni-Ti shape memory alloys. Following the completion of his Ph.D. in the Department of Materials Science and Engineering at IIT Delhi, Dr. Kumar continued to expand his research horizons. He has investigated nanomechanical and tribological characteristics of 3D printed medium entropy alloys. Currently, Dr. Kumar serves as a postdoctoral research associate in the Department of Mechanical Engineering at Carnegie Mellon University, USA, a position he has held since September 2021. His work involves the development of thin conductive film, integration of these methods with devices using clean room technology, characterizing device behavior through a novel, in-house-built controlled characterization platform, and analyzing the results to unravel the mechanisms governing performance limits and failure modes.

Dr. Nooruddin Ansari earned his B. Tech. in Mechanical Engineering from Jamia Millia Islamia, India, in 2014, followed by an M. Tech. in Industrial and Production Engineering from Aligarh Muslim University, India, in 2017, where he was awarded the Silver Medal for his Master of Technology. In 2021, he successfully completed his doctorate from the Materials Science and Engineering Department at the Indian

Institute of Technology, Delhi, India. In 2018, he represented India as an Indian Youth Delegate in China, fostering collaborations in education. Dr. Ansari has an impressive publication record, with 12 papers in renowned SCI journals and 2 conference proceedings. His doctoral research focused on the thermomechanical processing and deformation behavior of Mg-Y alloys with varying Y concentrations. This involved the development of lightweight Mg-Y alloys through casting and hot rolling, as well as an exploration of recrystallization and deformation behavior at both room and high temperatures. Additionally, he has devoted attention to the mechanical behavior of steel, Al, and Ti alloys.

Presently, Dr. Ansari serves as Postdoctoral Research Associate in the Department of Mechanical Engineering at Texas A & M University, Qatar. His current work focuses on the development of steels, Ti, Al, and Mg alloys through additive manufacturing, with a focus on investigating their mechanical and corrosion behavior across different environments.

Contributors

Akbar Ahmad

School of Mechatronics Engineering Symbiosis Skills and Professional University Pune, India

Mohammad Azad Alam

Department of Mechanical Engineering Universiti Teknologi PETRONAS Seri Iskandar, Malaysia

Sajjad Arif

Department of Mechanical Engineering ZHCET Aligarh Muslim University Aligarh, India

Qazi Junaid Ashraf

Department of Mechanical Engineering University of Kashmir, Zakura Campus Srinagar, India and National Institute of Technology Srinagar, India

Shivprakash Barve

School of Mechanical Engineering Dr. Vishwanath Karad MIT World Peace University Pune, India

Shubrajit Bhaumik

Department of Mechanical Engineering Amrita School of Engineering Amrita Vishwa Vidyapeetham Chennai, India

Umer Masood Chaudry

Department of Mechanical Engineering Incheon National University Incheon, Republic of Korea and Research Institute for Engineering and Technology Incheon, Republic of Korea

Vivudh Gupta

Department of Mechanical Engineering Government College of Engineering & Technology Jammu, India

G.A. Harmain

Department of Mechanical Engineering National Institute of Technology Srinagar Srinagar, India

Dineshkumar Harursampath

Department of Aerospace Engineering NMCAD Lab. Indian Institute of Science Bengaluru, India

Fatima Jalid

Department of Chemical Engineering National Institute of Technology Srinagar, India

Mohd Fadzil Jamaludin

Centre of Advanced Manufacturing and Material Processing (AMMP Centre) University of Malaya Kuala Lumpur, Malaysia

Contributors

Tea-Sung Jun

Department of Mechanical Engineering Incheon National University Incheon, Republic of Korea and Research Institute of Engineering & Technology Incheon, Republic of Korea

Gourav Khajuria

Department of Mechanical Engineering Government College of Engineering & Technology Jammu, India

Md. F. Khan

Department of Mechanical Engineering College of Engineering King Faisal University Al-Ahsa, Saudi Arabia

Vinyas Mahesh

Department of Mechanical Engineering National Institute of Technology Silchar, India

Badar Zaman Minhas

Department of Materials Science & Engineering Institute of Space Technology Islamabad, Pakistan

Manoj Mugale

Cleveland State University Cleveland, USA

Ridha bin Muhamad

Department of Mechanical Engineering, Faculty of Engineering Centre of Advanced Manufacturing and Material Processing (AMMP Centre) University of Malaya Kuala Lumpur, Malaysia

Aravi Muzaffar

Department of Metallurgical and Materials Engineering National Institute of Technology Srinagar, India

Viorel Paleu

Mechanical Engineering Faculty Gheorghe Asachi Technical University of Iași Iași, Romania

Pralhad Pesode

School of Mechanical Engineering Dr. Vishwanath Karad MIT World Peace University Pune, India

Sumit Pramanik

Department of Mechanical Engineering College of Engineering & Technology SRM Institute of Science & Technology Chennai, India

Sufian Raja

Department of Mechanical Engineering, Faculty of Engineering University of Malaya Kuala Lumpur, Malaysia

Muhammad Atiq Ur Rehman

Department of Materials Science & Engineering Institute of Space Technology Islamabad, Pakistan

Mohd Bilal Naim Shaikh

Department of Mechanical Engineering ZHCET Aligarh Muslim University Aligarh, India

Contributors

Virendra Pratap Singh

Department of Mechanical Engineering National Institute of Technology Mizoram Aizawl, India and Department of Mechanical Engineering IES College of Technology Bhopal, India

Hafiz Muhammad Rehan Tariq

Department of Mechanical Engineering Incheon National University Incheon, Republic of Korea

Kamlendra Vikram

Department of Mechanical Engineering College of Engineering & Technology SRM Institute of Science & Technology Chennai, India

Sagar V. Wankhede

School of Mechatronics Engineering Symbiosis Skills and Professional University Pune, India

Farazila Yusof

Department of Mechanical Engineering, Faculty of Engineering and

Centre of Advanced Manufacturing and Material Processing (AMMP Centre)

and

Centre for Foundation Studies in Science

University of Malaya

Kuala Lumpur, Malaysia

1 Magnesium Alloys for Biomedical Applications Scope and Opportunities

Gourav Khajuria and Vivudh Gupta Department of Mechanical Engineering, Government College of Engineering & Technology, Jammu, India

1.1 INTRODUCTION

Tissue engineering is a multidisciplinary area dedicated to the regeneration of vital human tissues. Although living organs have inherent self-healing abilities, the extent of healing differs between tissues and can be compromised by the extent of injury [1-5]. Tissue engineering is the formation of bioengineered tissues in vitro and the modification of cell growth and function in vivo by the implantation of appropriate cells extracted from donor tissue and biocompatible scaffolds [2, 6-9]. Tissue engineering combines material and cell transplantation principles to create tissues and promote regeneration. The strategy was devised to bridge the gap between the enhancing number of patients due to end-stage failures and the limited number of donated organs [3, 10-13]. Tissue engineering is a branch of biomedical engineering discipline that integrates biology and ecological system with engineering to create tissues or cellular products outside the living body or to make use of gained knowledge to better manage the repair/reconstruction of tissues within the living body [12-15].

Biomaterials are an integral part of tissue engineering. The biodegradability, chemistry, and porosity of biomaterials used in tissue engineering must be controlled to promote optimum properties like cell adhesion and deposition of extracellular matrix materials by cells [10, 16]. The utilization of biocompatible materials for the development of implants has increased manifolds with the purpose to improve patients' health. Usage of such implants is commonly observed in the field of orthopedics (spinal fixation, bone fixation, tendon/ligament/cartilage replacement, etc.). Various biomaterials' properties that make them useful for medical applications include their ductility, high strength, fracture toughness, wear resistance, and corrosion resistance. Commonly used examples of implant materials include Co-Cr alloys, stainless steel, titanium alloys, magnesium alloys, etc. [17].

Biomaterials are used in a wide variety of industries for a variety of applications. There are many materials that can be used to create biomaterials, including metals, ceramics, polymers, glass, and living cells/tissues [18–20]. The basic function of a biomaterial implant is to replace the damaged biological part in the body so that it

can perform its basic function well in coordination with other biological tissues and organs. Biomaterials should have biocompatible composition so that adverse chemical reactions can be avoided. Moreover, such materials should also offer excellent degradation resistance in terms of corrosion, biological, and wear resistance. Also, these biomaterials should have sufficient strength to withstand fluctuations arisen due to cyclic loads. Furthermore, in order to minimize resorption in bones, low modulus is required. Minimum wear in these implant materials result in minimum generation of debris as well [21]. Less wear debris accounts for presence of less foreign particles in the physiological system that hamper the working of various tissues. Present-day research studies show that there has been a substantial increase in the manufacturing methods of implants. Fabrication techniques like fused deposition modelling, investment casting, and vapor smoothing have also been in practice for the development of implant materials [22]. Moreover, it is evident from Figure 1.1 that research articles published in the field of biomaterials and biomedical magnesium alloys are continuously enhancing year-wise.

3D printing techniques have been extensively used for the development of the same. The life of the implant materials is generally hampered by corrosion. For prolonging the life of biomaterials, various coatings and surface modification techniques have been employed. For instance, ZrN/Cu coating has been successfully employed by the researchers on stainless steel and titanium materials for biomedical

FIGURE 1.1 Yearwise distribution of research articles in biomaterials and biomedical magnesium alloys. (From ScienceDirect.)

purposes [23]. Coating techniques include thermal spraying, sputter coating, dip coating, sol–gel technique, electrophoretic deposition, pulsed layer deposition, biomimetic coating, etc. [24].

Different types of corrosion that affect conventional materials utilized for biomaterials development include pitting, crevice, stress corrosion cracking, corrosion fatigue, fretting, galvanic, and selective leaching. By-products arising out of corrosion of implant materials can cause dermatitis, anemia, ulcers, disturbance in central nervous system, Alzheimer's disease, etc.

The surface modification technique is one of the prominent solutions to reducing corrosion, thereby enhancing the life span of biomaterials [25]. Electrical discharge machining (EDM) process is also one of the potential choices for the surface modification of titanium alloys utilized for different orthopedic applications. In EDM process variants, powder-mixed EDM process is significantly used for modifying the surface of any material [26]. The complete structure of this chapter is shown in Figure 1.2.

1.1.1 METAL-BASED BIOMATERIALS

Due to the increasing number of cardiovascular, orthopedic, dental, and neurological diseases that require implants and surgeries, metals are utilized at every stage, and there is a growing demand for biocompatible and biodegradable metals such as stainless steel, gold, chromium, titanium, cobalt, nitinol, and silver [27].

FIGURE 1.2 The schematic diagram depicting the complete structure of this chapter.

1.1.2 POLYMER-BASED BIOMATERIALS

Polymeric biomaterials are used in a variety of medical applications, including vascular grafts, implants applications, dressings, catheters, sutures, ligament repair, meshes, stents, tendon repair, and cardiac surgery valves. Polymeric (plastic) materials used in these areas can be synthetic or natural. For example, proteins, cellulose, deoxyribonucleic acid (DNA), ribonucleic acid (RNA), silk, wool, etc. are common among natural polymers derived from both plant and animal resources [27].

1.1.3 CERAMIC-BASED BIOMATERIALS

Bioceramics have specific properties such as chemical stability, stiffness, wear resistance, and hardness, and are biocompatible. The biocompatibility of bioceramics varies depending on the composition of the ceramic oxides (alumina, hydroxyapatite, zirconia, etc.), which are chemically inactive in the human body, and on the biodissolvable materials, which are to be finally replaced by the human tissues after carrying out repair work. These biomaterials are widely used in implants for teeth and bones, surgical crowns, and arthroplasty surgery (Table 1.1) [28].

1.1.4 NATURAL BIOMATERIALS

Natural biomaterials can be classified into chitin, hyaluronic acid, cellulose, silk, gelatin, chitosan, and fibrin. They are commonly used to replace and restore the function and structure of injured organs, as drug delivery systems, and as medical biases similar to surgical sutures [18, 20, 27].

TABLE 1.1

List of Biomaterials and Its Characteristics and Applications

S. No.	Biomaterials	Characteristics	Applications	References
1.	Metal	Ductile, high wear resistance,	Plates and wires, joint	Kumar [29]
		impact resistance, low biocompatibility and corrosion resistance in physiological environment, mechanical properties different from	prostheses, dental implants, cranial plaques, artificial hip joints, knee joints, screw, plates	dos Santos [30]
				Niinomi [31]
				Minnath [32]
		biological tissues		
2.	Polymer	Low density, easy to produce, easily degradable	Sutures, arteries, tendons, veins, artificial, implants	Love [33]
				Dutta [34]
				Chen [35]
3.	Ceramic	High biocompatibility, corrosion resistance, low thermal and electrical conductivity, low impact strength, difficult in manufacturing implants	Medical equipment and tools, coatings, bone filling	Punj et al. [36]
				Moshiri et al. [37]
				Migonney [38]
		6 F		