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1 Magnesium Alloys for
Biomedical Applications
Scope and Opportunities

Gourav Khajuria and Vivudh Gupta
Department of Mechanical Engineering, Government 
College of Engineering & Technology, Jammu, India

1.1 INTRODUCTION

Tissue engineering is a multidisciplinary area dedicated to the regeneration of vital 
human tissues. Although living organs have inherent self-healing abilities, the extent 
of healing differs between tissues and can be compromised by the extent of injury 
[1–5]. Tissue engineering is the formation of bioengineered tissues in vitro and the 
modification of cell growth and function in vivo by the implantation of appropri-
ate cells extracted from donor tissue and biocompatible scaffolds [2, 6–9]. Tissue 
engineering combines material and cell transplantation principles to create tissues 
and promote regeneration. The strategy was devised to bridge the gap between the 
enhancing number of patients due to end-stage failures and the limited number of 
donated organs [3, 10–13]. Tissue engineering is a branch of biomedical engineering 
discipline that integrates biology and ecological system with engineering to create 
tissues or cellular products outside the living body or to make use of gained knowl-
edge to better manage the repair/reconstruction of tissues within the living body 
[12–15].

Biomaterials are an integral part of tissue engineering. The biodegradability, 
chemistry, and porosity of biomaterials used in tissue engineering must be controlled 
to promote optimum properties like cell adhesion and deposition of extracellular 
matrix materials by cells [10, 16]. The utilization of biocompatible materials for 
the development of implants has increased manifolds with the purpose to improve 
patients’ health. Usage of such implants is commonly observed in the field of ortho-
pedics (spinal fixation, bone fixation, tendon/ligament/cartilage replacement, etc.). 
Various biomaterials’ properties that make them useful for medical applications 
include their ductility, high strength, fracture toughness, wear resistance, and cor-
rosion resistance. Commonly used examples of implant materials include Co-Cr 
alloys, stainless steel, titanium alloys, magnesium alloys, etc. [17].

Biomaterials are used in a wide variety of industries for a variety of applications. 
There are many materials that can be used to create biomaterials, including metals, 
ceramics, polymers, glass, and living cells/tissues [18–20]. The basic function of a 
biomaterial implant is to replace the damaged biological part in the body so that it 
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can perform its basic function well in coordination with other biological tissues and 
organs. Biomaterials should have biocompatible composition so that adverse chemi-
cal reactions can be avoided. Moreover, such materials should also offer excellent 
degradation resistance in terms of corrosion, biological, and wear resistance. Also, 
these biomaterials should have sufficient strength to withstand fluctuations arisen due 
to cyclic loads. Furthermore, in order to minimize resorption in bones, low modulus 
is required. Minimum wear in these implant materials result in minimum generation 
of debris as well [21]. Less wear debris accounts for presence of less foreign particles 
in the physiological system that hamper the working of various tissues. Present-day 
research studies show that there has been a substantial increase in the manufacturing 
methods of implants. Fabrication techniques like fused deposition modelling, invest-
ment casting, and vapor smoothing have also been in practice for the development of 
implant materials [22]. Moreover, it is evident from Figure 1.1 that research articles 
published in the field of biomaterials and biomedical magnesium alloys are continu-
ously enhancing year-wise.

3D printing techniques have been extensively used for the development of the 
same. The life of the implant materials is generally hampered by corrosion. For 
prolonging the life of biomaterials, various coatings and surface modification tech-
niques have been employed. For instance, ZrN/Cu coating has been successfully 
employed by the researchers on stainless steel and titanium materials for biomedical 

FIGURE 1.1 Yearwise distribution of research articles in biomaterials and biomedical mag-
nesium alloys. (From ScienceDirect.)
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purposes [23]. Coating techniques include thermal spraying, sputter coating, dip 
coating, sol–gel technique, electrophoretic deposition, pulsed layer deposition, bio-
mimetic coating, etc. [24].

Different types of corrosion that affect conventional materials utilized for bio-
materials development include pitting, crevice, stress corrosion cracking, corrosion 
fatigue, fretting, galvanic, and selective leaching. By-products arising out of corro-
sion of implant materials can cause dermatitis, anemia, ulcers, disturbance in central 
nervous system, Alzheimer’s disease, etc.

The surface modification technique is one of the prominent solutions to reducing 
corrosion, thereby enhancing the life span of biomaterials [25]. Electrical discharge 
machining (EDM) process is also one of the potential choices for the surface modi-
fication of titanium alloys utilized for different orthopedic applications. In EDM 
process variants, powder-mixed EDM process is significantly used for modifying 
the surface of any material [26]. The complete structure of this chapter is shown in 
Figure 1.2.

1.1.1 Metal-based bioMaterials

Due to the increasing number of cardiovascular, orthopedic, dental, and neurological 
diseases that require implants and surgeries, metals are utilized at every stage, and 
there is a growing demand for biocompatible and biodegradable metals such as stain-
less steel, gold, chromium, titanium, cobalt, nitinol, and silver [27].

FIGURE 1.2 The schematic diagram depicting the complete structure of this chapter.
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1.1.2 PolyMer-based bioMaterials

Polymeric biomaterials are used in a variety of medical applications, including vas-
cular grafts, implants applications, dressings, catheters, sutures, ligament repair, 
meshes, stents, tendon repair, and cardiac surgery valves. Polymeric (plastic) materi-
als used in these areas can be synthetic or natural. For example, proteins, cellulose, 
deoxyribonucleic acid (DNA), ribonucleic acid (RNA), silk, wool, etc. are common 
among natural polymers derived from both plant and animal resources [27].

1.1.3 CeraMiC-based bioMaterials

Bioceramics have specific properties such as chemical stability, stiffness, wear resis-
tance, and hardness, and are biocompatible. The biocompatibility of bioceramics 
varies depending on the composition of the ceramic oxides (alumina, hydroxyapatite, 
zirconia, etc.), which are chemically inactive in the human body, and on the bio-
dissolvable materials, which are to be finally replaced by the human tissues after 
carrying out repair work. These biomaterials are widely used in implants for teeth 
and bones, surgical crowns, and arthroplasty surgery (Table 1.1) [28].

1.1.4 Natural bioMaterials

Natural biomaterials can be classified into chitin, hyaluronic acid, cellulose, silk, 
gelatin, chitosan, and fibrin. They are commonly used to replace and restore the 
function and structure of injured organs, as drug delivery systems, and as medical 
biases similar to surgical sutures [18, 20, 27].

TABLE 1.1
List of Biomaterials and Its Characteristics and Applications

S. No. Biomaterials Characteristics Applications References
1. Metal Ductile, high wear resistance, 

impact resistance, low 
biocompatibility and corrosion 
resistance in physiological 
environment, mechanical 
properties different from 
biological tissues

Plates and wires, joint 
prostheses, dental 
implants, cranial 
plaques, artificial hip 
joints, knee joints, 
screw, plates

Kumar [29]
dos Santos [30]
Niinomi [31]
Minnath [32]

2. Polymer Low density, easy to produce, 
easily degradable

Sutures, arteries, 
tendons, veins, 
artificial, implants

Love [33]
Dutta [34]
Chen [35]

3. Ceramic High biocompatibility, 
corrosion resistance, low 
thermal and electrical 
conductivity, low impact 
strength, difficult in 
manufacturing implants

Medical equipment  
and tools, coatings,  
bone filling

Punj et al. [36]
Moshiri et al. [37]
Migonney [38]


