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Adaptive filtering still receives attention in engineering as the use of the adap‑
tive filter provides improved performance over the use of a fixed  filter under 
the time‑varying and unknown statistics environments. This  application 
evolved communications, signal processing, seismology, mechanical design, 
and control engineering. The most popular optimization criterion in adap‑
tive filtering is the well‑known minimum mean square error (MMSE) cri‑
terion, which is, however, only optimal when the signals involved are 
Gaussian‑distributed. Therefore, many “optimal solutions” under MMSE are 
not optimal. As an extension of the traditional MMSE, the minimum mean 
p‑power error (MMPE) criterion has shown superior performance in many 
applications of adaptive filtering. This book aims to provide a comprehen‑
sive introduction of the MMPE and related adaptive filtering algorithms, 
which will become an important reference for researchers and practitioners 
in this application area. This book is geared to senior undergraduates with 
a basic understanding of linear algebra and statistics, graduate students, or 
 practitioners with experience in adaptive signal processing.
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Symbols and Abbreviations

The main symbols and abbreviations used throughout the text are listed as 
follows:
k discrete and continuous time index
t continuous time index

{ }E ⋅  the statistical‑expectation operator
⋅� � vector or matrix norm

I N NR∈ ×  the identity matrix
( )T⋅  transpose of a vector or a matrix

[ ]⋅Tr  the trace of a matrix
{ }iλ ⋅  the ith eigenvalue of a matrix

Re( )⋅  the real part of a complex number
()u  input signal vector

Ruu correlation matrix
dPu  cross‑correlation vector

( , )F x yXY  joint distribution function
(., .)κ  Mercer kernel

., .〈 〉H inner product
( )⋅sign  sign function

diag[·] diagonal matrix
1A−  inverse of matrix A

n�  n‑dimensional real Euclidean space
ow  optimal weight

w�  weight error power
( )v k  additive noise at time instant k

ω weight vector in feature space F
ωω�  weight error power in feature space F
ϕϕ a nonlinear feature mapping
F a high‑dimensional feature space
ΨΨ ⋅( ) weighted‑auto‑correlation matrix
Φ ⋅( ) weighted‑cross‑correlation vector
γ  forgetting factor
MSE mean square error
LAFs linear adaptive filters
RMSE root mean square error
EMSE excess mean square error
MPE mean p‑power error
MFE mean fourth error
MSD mean square deviation
LAD least absolute deviation
LMS least mean square
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LMF least mean fourth
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ALMP adaptive least mean p‑power
NLMP normalized least mean p‑power
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VNLMP variable normalization least mean p‑power algorithm
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PLMP proportionate least mean p‑power
KMPE kernel mean p‑power error
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LMMN least mean mixed norm
RMN robust mixed norm
GMN generalized mixed norm
DGMN diffusion generalized mixed norm
FIR finite impulse response
KAF kernel adaptive filtering
RKHS reproducing kernel Hilbert spaces
KLMS kernel least mean square
KRLS kernel recursive least squares
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KRMN kernel recursive mixed norm
RFF‑EX‑KRLP random Fourier features extended KRLP
DAF diffusion adaptive filtering
DLMS diffusion least mean square
DRLS diffusion recursive least squares
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DNLMP diffusion normalized least mean p‑power
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Preface

Over the past few decades, adaptive filters have found widespread applica‑
tion in various scenarios, including system identification, echo cancellation, 
channel equalization, time series prediction, and so on. To ensure the efficient 
design of an adaptive filter, it is crucial to select an appropriate loss function 
(or criterion function) that can enhance the filter’s convergence performance. 
The classical adaptive filtering algorithms, such as least mean square (LMS) 
and recursive least squares (RLS), are primarily developed based on the 
well‑known minimum mean square error (MMSE) criterion, which performs 
exceptionally well when signals follow Gaussian distributions. However, 
the mean square error (MSE) loss function only captures the second‑order 
statistics in the data and may result in suboptimal filtering performance in 
non‑Gaussian situations, particularly when the underlying system is affected 
by noises of heavy‑tailed or multimodal distributions.

To enhance the filtering performance in the presence of non‑Gaussian 
noises, adaptive filters have been developed using various non‑MSE (non‑
quadratic) loss functions. These include the mean p‑power error (MPE) loss, 
Huber’s loss, risk‑sensitive loss, correntropy loss, error entropy loss, and oth‑
ers. Among these, the minimum MPE (MMPE) criterion is particularly note‑
worthy as it is a natural extension of MMSE and can capture higher order 
(p > 2) or lower order (0 < p < 2) statistics while being mathematically and com‑
putationally simple. The MMPE encompasses special cases such as the least 
absolute deviation (LAD) (p = 1), MMSE (p = 2), and least mean fourth (LMF) 
(p = 4). In practical applications, the MPE has demonstrated superior perfor‑
mance compared to the conventional MSE when used as a loss function in 
adaptive filtering. For a finite impulse response (FIR) filter, the MPE loss can 
yield a more accurate solution than the Wiener solution of MSE. In addition, 
by selecting an appropriate p, MPE‑based adaptive filters can achieve faster 
and more robust convergence performance under heavy‑tailed or light‑tailed 
non‑Gaussian noises.

To date, numerous adaptive filtering algorithms have been developed 
under the MMPE criterion. This book aims to consolidate all of these algo‑
rithms, along with their corresponding analysis and numerical results, into a 
single comprehensive resource. Many of the contents of this book were origi‑
nally published in previous papers by the authors. This book is divided into 
eight chapters, with Chapter 1 providing an introduction to the background 
and outline of the book. Chapter 2 reviews classical adaptive filtering algo‑
rithms under the MMSE criterion, while Chapter 3 covers the basic defini‑
tion and properties of MMPE as well as several extended versions of MMPE. 
Chapter 4 focuses primarily on gradient‑based (LMS type) adaptive filter‑
ing algorithms under MMPE criterion, while Chapter 5 presents recursive 
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(RLS type) adaptive filtering algorithms under MMPE. Chapter 6 introduces 
some nonlinear adaptive filtering algorithms under MMPE criterion, and 
Chapter 7 focuses on adaptive filtering algorithms under mixture MMPE cri‑
terion. Finally, Chapter 8 discusses adaptive filtering under kernel MMPE 
criterion.

This book is a valuable resource for graduates, professionals, and research‑
ers seeking to enhance the performance of adaptive filtering algorithms and 
design new adaptive algorithms under MMPE. It is also an excellent refer‑
ence for those interested in adaptive system training and machine learning. 
In addition, this book can be used as a reference textbook for graduate or 
undergraduate students majoring in electronics communication, electrical or 
computer engineering.

The authors are grateful to the National Key R&D Program of China and 
National Natural Science Foundation of China, which have funded this book. 
We also acknowledge the support and encouragement from our colleagues 
and friends.
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1
Introduction

1.1 Basic Knowledge of Adaptive Filtering Algorithms

Classical filters, such as the Wiener filter [1,2] and Kalman filter [3,4], require 
accurate estimation of the correlation coefficient and noise power of input 
signals for effective application. However, this is often difficult to achieve in 
practice, and inaccurate estimation can significantly impact filtering perfor‑
mance. In addition, the parameters of these filters are typically fixed and can‑
not be adjusted in response to changing input signals, limiting their real‑time 
processing capabilities. To address these limitations and meet the demands 
of signal processing, adaptive filters (AFs) have been developed as a class of 
optimal filtering methods from the Wiener and Kalman filters. Unlike classi‑
cal filters, AFs incorporate a feedback channel between the output and filter 
system, allowing for dynamic adjustment of filter coefficients based on the 
output and expected signal at a given time [5,6].

AFs are capable of automatically adjusting the filtering structure in digital 
signal processing, whereas nonadaptive filters have static filter coefficients 
that result in fixed transfer functions. In many applications, adaptive coef‑
ficients are required for processing due to the lack of prior knowledge of the 
parameters to be operated, such as the characteristics of some noise signals. 
In such cases, AFs are typically utilized to adjust the filter coefficients and 
frequency responses with feedback. With the development and maturity of 
adaptive filtering technologies, AFs have become widely used as effective 
tools in various fields, including signal processing [7–12], control [13,14], and 
image processing [15,16]. This is due to the stronger adaptability and better 
filtering performance of AFs.

AFs can be categorized into two types based on their structure: linear 
adaptive filters (LAFs) and nonlinear adaptive filters. Nonlinear adaptive 
filters (NAFs), such as Voetlrra filters [17,18], kernel filters [19,20], and neu‑
ral network‑based AFs [21,22], have stronger signal‑processing capabilities. 
Owing to their low computational complexity, LAFs are still widely used 
in most practical applications. The LAFs built with a linear combiner are 
designed for sequential learning [20]. They are equipped with a mechanism 
that enables the filter to adjust its free parameters automatically in response 

https://doi.org/10.1201/9781003176114-1


2 Adaptive Filtering Under Minimum Mean p-Power Error Criterion

to statistical variations in the environment in which it operates. This capa‑
bility has led to a wide range of applications of AFs in diverse fields, such 
as adaptive equalization in communication receivers, adaptive noise cancel‑
ation in active noise control, adaptive beamforming in radar and sonar, sys‑
tem identification, and adaptive control.

1.1.1 AF Framework

AFs mainly involve three elements: filter structure, cost function, and opti‑
mization algorithm. In general, AFs rely on error‑correction learning for 
their adaptive capability. A common filtering configuration is depicted in 
Figure  1.1, where a tapped‑delay‑line (transversal) is used as the filter for 
adaptation. The filter has a set of adjustable parameters (weights) denoted by 
the vector w(k − 1), where k denotes discrete time. An input signal vector u(k), 
applied to the filter at time k, produces the actual response y(k), which is com‑
pared with an externally supplied desired response d(k) to produce the error 
signal e(k). This error signal is, in turn, used to produce an adjustment to the 
parameter vector w(k − 1) of the filter by an incremental amount denoted by 
w( )k∆ . The adjustment is made to minimize the cost function J(w), which 

measures the difference between the actual and desired responses. The opti‑
mization algorithm determines the incremental adjustment Δw(k) that mini‑
mizes the cost function J(w). Accordingly, the updated parameter vector of 
the filter can be expressed by

 ( ) ( )= − + ∆w w w1 ( )k k k  (1.1)

On the next iteration at time k + 1, w(k) becomes the latest value of the param‑
eter vector to be updated. The adaptive filtering process is continually 
repeated in this manner until the filter reaches a condition, whereafter the 
parameter adjustments become small enough to stop the adaptation. As is 
clear, the weights here embody the hypothesis in the definition of sequential 
learning. Overall, the filter structure, cost function, and optimization algo‑
rithm work together to enable AFs to adapt to changing input signals and 
achieve optimal filtering performance.

( )kw

( )kw

( )y k ( )d k( )ku
Adaptive Filter

Update Algorithm

FIGURE 1.1
Block diagram of adaptive filters.
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As previously mentioned, AFs utilize feedback to adjust filter coefficients 
and frequency responses, and the adaptive process involves update algo‑
rithms that use a cost function to determine how to change the filter coeffi‑
cients to reduce the cost of the next iteration process. The adaptive algorithm 
generates a correction factor based on input and error signals, which is used 
to update the coefficients according to the defined cost function to obtain an 
estimation of the desired signal. The least mean square (LMS) [5] and recur‑
sive least square (RLS) [23] are two outstanding coefficient updating algo‑
rithms. The cost function is another key element and serves as the evaluation 
criterion for the best performance of the filter, such as the ability to reduce the 
noise component in the input signal.

Compared with other types of filters, the key to the better effect of AFs 
is the feedback structure of AFs. The adaptive process of adaptive filtering 
is to adjust the coefficient of FIR or IIR filter by adaptive algorithm (update 
algorithm) according to a suitable cost function (or adaptive learning crite‑
rion) so that the error signal is close to zero. In the following subchapters, the 
classical adaptive learning criteria and corresponding update algorithms are 
reviewed.

1.1.2 Adaptive Criteria

An essential aspect of designing AFs is the availability of an adaptive cri‑
terion. Traditional criteria for AFs include the least square (LS) criterion 
[24], minimum mean square error (MMSE) criterion [25,26], least absolute 
deviation (LAD) [27–29], and higher order error criteria [30–32]. The LS cri‑
terion is mathematically tractable and has a closed‑form solution, defined 
by minimizing the sum of squared errors between observed and fitted val‑
ues. Usually, a regularized version of the LS solution may be preferred [33]. 
Many AFs have been developed using the LS criterion, such as the RLS and 
its variants [34–37]. The MMSE criterion is commonly used as a measure of 
estimation quality in statistics and signal processing, which minimizes the 
mean square error (MSE) between the filter output and a desired variable. In 
AFs, the MMSE is often used as a cost function for stochastic approximation 
methods, which are a family of iterative algorithms that attempt to find the 
extrema of functions that cannot be computed directly and only estimated 
through noisy observations. The LMS algorithm [38–42], proposed in 1960 by 
Bernard Widow and Ted Hoff, is a typical stochastic gradient descent algo‑
rithm with MMSE criterion.

The LS and MSE criteria, which rely on the assumption that the error fol‑
lows a Gaussian distribution, may be inadequate for practical data due to the 
likelihood of non‑Gaussian interferences or outliers. To address this issue, 
robust regression methods are necessary to mitigate the bad effects of outliers 
on the estimation. In addition, research has shown that modeling expression 
data using heavy‑tailed distributions [27], like the Laplacian distribution, 
can lead to more accurate results. Some authors have proposed a microarray 
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normalization method that assumes errors follow a Laplacian model [43–45], 
using LAD regression as an optimization technique to compute normaliza‑
tion coefficients and avoid the effects of outliers in the original data. The 
LAD algorithm, also known as the sign‑error LMS or pilot LMS [46–48], cal‑

culates the sum of absolute residuals ∑
=

e i
i

k

( )
1

 and searches for the minimum 

value, making it more robust to anomalous points with large deviations in 
the data compared to the LMS algorithm, which may cause relatively large 
fluctuations after squaring.

Moreover, several studies have indicated that AFs based on higher order 
moments of the error signal can outperform those using MSE in certain criti‑
cal applications [49,50]. Notably, the mean fourth error (MFE) criterion has 
been adopted as a cost function in adaptive filtering fields due to its con‑
vexity with respect to the weight vector. By stochastic gradient method, the 
least mean fourth (LMF) algorithm was developed to minimize the MFE and 
obtain the optimal weight [51]. Research has shown that the LMF algorithm 
can outperform the LMS algorithm in cases involving additive non‑Gaussian 
noise, resulting in smaller excess MSE at the same convergence speed [31].

1.1.3 Typical Algorithms

1.1.3.1 Linear Adaptive Filtering Algorithms

In recent times, a plethora of adaptive filtering algorithms (AFAs) have 
emerged from diverse origins, each possessing unique characteristics. 
Researchers are particularly interested in AFAs that exhibit fast convergence, 
low computational complexity, and good numerical stability. Linear adaptive 
filters and their corresponding algorithms are more commonly employed 
in practical applications compared to NAFs due to their uncomplicated 
structure and low computational complexity. Notable algorithms under the 
MMSE criterion include the LMS, RLS, affine projection [52,53], and sub‑band 
decomposition algorithms [54–56], among others, as documented in [6].

Over the past few decades, numerous AFAs have been proposed for vari‑
ous applications. Despite this, the LMS and RLS algorithms remain classical 
algorithms that have been thoroughly examined for optimality and stability. 
Since their inception, they have garnered significant attention, with research 
focusing on convergence analysis [57–62], performance enhancement [63–67], 
and the development of several LMS or RLS algorithms with unique meth‑
odologies, such as sparse AFAs [68–89], diffusion AFAs [90–107], constrained 
AFAs [108–115], and kernel AFAs [116–131]. These algorithms have been 
utilized for sparse system identification, distributed estimation, nonlinear 
time‑series prediction, and other applications. In the  following section, we 
will review these special algorithms.
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1.1.3.1.1 Sparsity‑Aware AFs

Sparsity‑aware AFs have been developed for sparse system identification 
and can be categorized into two types: sparsity constraint AFAs [68–78] and 
proportionate AFAs [68–78]. Sparsity constraint AFAs are designed by inte‑
grating a sparsity constraint, such as an lp‑norm constraint, into the cost 
function of the classical LMS or RLS algorithm [68–78]. The zero attraction 
term added to the update equation of the filter tap‑weight vector aims to 
accelerate the identification speed by attracting small coefficients toward 
zero. However, the steady‑state performance and instantaneous behavior of 
these algorithms depend on the selection of the zero attractor, which should 
be set according to the power of the measurement noise signal to ensure 
good steady‑state mean square performance [70,71]. An adaptive strategy 
is proposed to select the zero attractor in the l0‑norm constraint LMS algo‑
rithm [74]. In addition to the zero attractor LMS‑aware algorithms, l1‑norm 
regularized RLS adaptive algorithms have also been suggested in [75–78]. 
The SPARLS algorithm [75] presents an expectation‑maximization approach 
for sparse system identification. The authors of [76] propose the application 
of an online coordinate descent algorithm together with the least‑squares 
cost function penalized by an l1‑norm term. Another RLS algorithm for 
sparse system identification is proposed in [77], where the RLS cost function 
is regularized by adding a weighted norm of the current system estimate. 
Eksioglu further considers the regularization of the RLS cost function in a 
manner alike to the approach as outlined in [77]; the regularization term is 
defined as a general convex function of the system estimate, and an update 
algorithm is developed for the convex regularized RLS using results from 
subgradient calculus [77].

By expediting the elimination of inactive taps that correspond to sys‑
tem sparsity, sparsity‑constrained AFs can deliver substantial performance 
improvements compared to their conventional counterparts, particularly 
during the steady‑state phase. Nevertheless, there are also systems that are 
not strictly sparse but exhibit a relatively sparse (non‑uniform) structure, 
where a small number of taps contribute to a significant portion of the energy 
[79]. In situations where sparsity is a crucial factor, proportionate‑type algo‑
rithms have emerged as an important class of sparsity‑aware AFAs. These 
algorithms employ the proportionate updating mechanism to update the fil‑
ter coefficients. The pioneer in this field was Duttweiler, who introduced the 
proportionate normalized least mean square (PNLMS) algorithm [79]. This 
algorithm updates the filter coefficients by assigning a gain proportional to 
the magnitude of the current coefficient. The PNLMS algorithm outperforms 
the LMS and NLMS algorithms when applied to a sparse impulse response. 
However, its effectiveness diminishes when the impulse response is dis‑
persive. To address this issue, several enhanced PNLMS algorithms have 
been proposed in the literature [80–82] to enhance the algorithm’s resilience 
against time‑varying sparsity. A different set of algorithms was developed 
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by searching for a condition that would lead to the quickest overall conver‑
gence when all the coefficients approach their true values simultaneously. 
This approach gave rise to the μ‑law PNLMS (MPNLMS) [83] and its vari‑
ant [84]. The MPNLMS algorithm tackles the problem of assigning exces‑
sive update gain to large coefficients, which is a common issue with PNLMS 
algorithms. However, the convergence rate becomes unacceptably slow 
when dealing with correlated input conditions, such as speech. The Wavelet 
domain MPNLMS (WMPNLMS) [85] algorithm effectively tackles the prob‑
lem of input decorrelation while preserving the sparsity of the impulse 
response. It achieves this by generating the conditional probability density 
function of the current weight deviations based on the preceding weight 
deviations, using a range of proportionate‑type LMS algorithms [86]. Despite 
extensive research on the proportionate update mechanism in the context of 
NLMS‑based AFs, the efficient design of sparse RLS algorithms using this 
mechanism remains an open issue. In a previous study [87], a natural recur‑
sive least squares (NRLS) algorithm was proposed, which utilized a propor‑
tionate matrix on the input vector to exploit system sparsity. However, this 
approach may render NRLS more sensitive to the condition number of the 
input covariance matrix than the standard RLS in certain scenarios [88]. In 
another study [89], a proportionate recursive least squares (PRLS) algorithm 
was introduced, which applies a proportionate matrix on the (Kalman) gain 
vector of the standard RLS.

1.1.3.1.2 Diffusion AFs 

In the field of signal processing, distributed estimation has become a funda‑
mental problem in recent years [90]. Typically, a group of nodes distributed 
across a geographical area work together to estimate an unknown model 
parameter based on linear measurements received by all nodes. There are 
three main methods for distributed estimation: incremental, consensus, and 
diffusion strategies. Among these, the diffusion strategy has been found to 
offer more advantages [90]. Diffusion‑based algorithms are widely employed 
for distributed estimation, wherein neighboring nodes diffuse their esti‑
mates and measurements to adapt and combine their estimates. Among these 
algorithms, diffusion LMS (DLMS) is a fundamental method that utilizes the 
MSE criterion and diffusion structure [90–99]. Thanks to the exponentially 
weighted least squares (EWLS) criterion, the diffusion RLS (DRLS) algorithm 
has been enhanced to achieve rapid convergence, even for colored signals 
[100,101]. This algorithm aims to solve the network‑wide LS estimation prob‑
lem in a distributed adaptive manner, approaching the optimal LS without 
the need to transmit or invert any matrix. Mateos et al. introduced a novel 
distributed RLS algorithm for solving the EWLS problem using the alter‑
nating direction method of multipliers [102]. To minimize computation and 
communication expenses, this algorithm was further refined by censoring 
observations with small innovations, resulting in several variants [103–105]. 
To address the issue of biased estimation due to noisy input signals, various 
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non‑cooperative bias‑eliminating algorithms have been proposed that uti‑
lize a bias‑compensated mechanism [106,107].

1.1.3.1.3 Constrained AFs

Linearly constrained adaptive filtering (CAF) algorithms have gained sig‑
nificant attention and have been effectively utilized in various applications 
such as system identification, interference suppression, and array signal 
processing [108]. The  primary advantage of CAFs is their ability to prevent 
error accumulation resulting from error correction, making them a preferred 
choice in these applications. Among the linearly constrained AFAs, the con‑
strained LMS (CLMS) stands out as a simple stochastic gradient‑based adap‑
tive algorithm [109,110]. Initially designed as an adaptive solution to a linearly 
constrained minimum variance filtering problem in antenna array process‑
ing, CLMS has become a popular choice in various applications. Although 
the CLMS algorithm is simple and computationally efficient, it suffers from 
low convergence speed, particularly when the input signal is correlated. To 
address this issue, the constrained RLS (CRLS) algorithm was introduced in 
[111], albeit at the cost of higher computational complexity. Further improve‑
ments to the CRLS algorithm can be found in [112,113], while several con‑
strained affine projection (CAP) algorithms were also developed in [114,115]. 
However, these constrained AFs with MSE criterion tend to perform poorly, 
especially when the signals involve non‑Gaussian noises or outliers. This is 
mainly because the MSE  criterion only captures the second‑order moment.

In addition to classical LMS and RLS family AFs, non‑MSE (or non‑sec‑
ond‑order moments)‑based AFs have also demonstrated exceptional per‑
formance under certain conditions. For instance, the LMF and the LAD 
algorithms have shown remarkable results. The MFE criterion is a convex 
function (and thus unimodal) of the weight vector [51,132], which can out‑
perform AFs with MSE for non‑Gaussian additive noise, such as uniform 
and sinusoidal noise distributions. In such cases, the LMF algorithm has 
been found to yield smaller excess MSE for the same convergence speed. 
Various stability issues, tracking behaviors, and convergence analyses of the 
LMF algorithm have been explored in [49,50,133–138]. The Normalized LMF 
(NLMF) algorithm has been found to outperform the NLMS algorithm, par‑
ticularly in low SNR scenarios, resulting in better steady‑state performance 
[138]. In recent times, there has been a surge of interest in sparse NLMF algo‑
rithms. These algorithms incorporate different sparse penalty functions, 
such as zero‑attracting (ZA), reweighted zero‑attracting (RZA), reweighted 
l1‑norm, lp‑norm, and l0‑norm, leading to the development of various sparse 
NLMF‑type algorithms [139–144]. Moreover, there are proportionate‑aware 
LMF algorithms available to estimate the parameters of a sparse system with 
precision [145–147]. |In addition, ref. [148] has introduced a diffusion LMF 
(DLMF) algorithm that utilizes the diffusion strategy to improve the per‑
formance of distributed estimation in strong, non‑Gaussian noise environ‑
ments. To strike a balance between fast convergence rate and low steady‑state 
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misalignment, a variable step‑size method has been incorporated into the 
DLMF. Furthermore, a sparse diffusion LMF algorithm has been proposed 
for estimating sparse parameters in Gaussian mixture noise environments 
[149]. The behavior of the DLMF algorithm has been analyzed in terms of 
mean and mean square in [150].

Overall, AFAs utilizing the MSE and MFE criteria have demonstrated excep‑
tional performance in the realm of adaptive signal processing. Nevertheless, 
their convergence capabilities may be compromised when confronted with 
measurement noise that contains impulsive interferences. Accordingly, to 
combat impulsive interferences  [151–155], the LAD criterion, which is based 
on l1‑norm minimization, has been proposed. The algorithms that incorpo‑
rate LAD are referred to as least absolute deviation [151,152] or sign AFAs. 
In recent times, there has been extensive research on the steady‑state and 
tracking analysis of signed‑aware AFAs under various assumption condi‑
tions [156–158]. Considering the robustness of the signed aware algorithms, 
the sparsity sign subband AF (SSAF) [159,160] and diffusion sign algorithms 
[161–164] have been found to be highly robust signed aware algorithms for 
sparse system identification and distributed estimation. These algorithms 
minimize the l1‑norm of the sub‑band a posteriori error vector, making them 
effective in handling sparse data.

1.1.3.2 Nonlinear AFAs

Linear adaptive filters have gained popularity in practical applications due to 
their straightforward structure and low computational complexity. However, 
their limited signal‑processing capacity has restricted their use in certain 
applications. Nonlinear adaptive filters, such as Volterra filters, neural net‑
work‑based adaptive filters, and kernel adaptive filters (KAFs), have emerged 
as a promising research area in adaptive signal processing due to their robust 
signal‑processing capabilities. This book primarily concentrates on the KAFs 
and neural networks with random weights (NNRW)‑based nonlinear adap‑
tive filters.

The KAF has garnered significant attention in the fields of machine learn‑
ing and signal processing as a powerful tool for solving nonlinear problems 
[20]. By transforming input data into higher or even infinite‑dimensional 
reproducing kernel Hilbert spaces (RKHS), KAFs based on the conventional 
linear framework in RKHS have been extensively researched to address a 
wide range of nonlinear applications, including pattern classification, system 
identification, time‑series prediction, and channel equalization. The Kernel 
Recursive Least‑Squares (KRLS) algorithm, which can be considered as the 
RLS algorithm in RKHS, was initially developed in [116]. Several variants of 
KRLS have been proposed in a sequential manner, including sliding‑win‑
dow KRLS, extended KRLS algorithms, sparse KRLS, and quantized KRLS, 
as documented in [117–121].  Liu et al. further developed LMS algorithm in 
RKHS, called kernel least‑mean‑square (KLMS) algorithm [122]. Moreover, 
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its theoretical convergence behavior was analyzed and derived because of 
its inherent simplicity and robustness in [123] and [124]. To reduce the com‑
putational complexity of the KLMS, the quantized KLMS (QKLMS) [125] and 
KLMS with promoting sparsity strategy [126] were proposed by quantized 
and constrained growth method. Some improved versions of KLMS were 
presented in  [127–131]. An overview of kernel adaptive filtering is referred 
to [20]. While traditional KAF algorithms are effective in minimizing the 
widely used MSE, they are primarily designed to handle Gaussian noises. 
Unfortunately, real‑world environments often contain non‑Gaussian noises, 
which can cause KAF algorithms to become less robust. This is because MSE 
only captures the second‑order statistics of the error signal, leaving KAF 
algorithms vulnerable to the limitations of this approach.

Neural networks (NNs) have been extensively researched as effective NAFs 
for system identification and noise cancelation, as evidenced by numerous 
studies [21,165–168]. The NNRW with a non‑iterative learning mechanism is 
a feedforward neural network that employs a random learning algorithm to 
select input layer parameters and obtain output layer parameters through 
non‑ iterative calculation, resulting in an exceptionally fast learning speed. 
According to the different network structures and the degree of random‑
ness, the current mainstream research methods for NNRWs include Random 
Vector Functional Link (RVFL) networks, Extreme Learning Machine (ELM), 
and Broad Learning System (BLS). In this book, we focus on reviewing ELM 
and BLS. Both ELM and BLS share the common feature of random weight 
and bias from the input layer (or feature layer) to the middle layer, while 
the weight and bias from the middle layer to the input layer are obtained by 
seeking the pseudo‑inverse. The key difference between BLS and ELM lies 
in whether the feature layer (or input layer) is connected to the output layer 
(BLS: yes, ELM: no) and whether the input layer directly inputs data or fea‑
ture (ELM: data, BLS: feature).

The ELM [169] is a novel fast learning algorithm designed to train a sin‑
gle‑layer feedforward network (SLFN) with hidden neuron weights that are 
randomly initialized and fixed. This approach differs significantly from tra‑
ditional training algorithms, such as the back‑propagation (BP) algorithm 
and its improved versions [170,171], which require the tuning of hidden neu‑
ron weights. ELM, on the other hand, offers fast learning speed [172], univer‑
sal approximation capability [172,173], and a unified learning paradigm for 
regression and classification [173]. For online identification problems, data 
samples often arrive in a time‑ordered sequence. To address this, Liang et al. 
[174] proposed the online sequential ELM (OS‑ELM), which can learn data 
one‑by‑one or chunk‑by‑chunk with fixed or varying chunk sizes. In addi‑
tion, several improvements have been proposed and successfully applied in 
various applications [175–179]. In ELM, OS‑ELM and many variants of them, 
the MSE criterion is usually adopted to construct their cost functions. Since 
the MSE criterion only takes into account the second‑order statistics, it makes 
sense in the signal processing with Gaussian assumption. Consequently, 
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ELM suffers from two drawbacks: (1) MSE minimization learning can eas‑
ily suffer from overfitting. The problem will be serious if the characteristics 
of the learned dataset can’t be represented by the training data [180,181]. (2) 
ELM may perform poorly in the data under nonlinear and non‑Gaussian 
situations, as it only captures the second‑order statistics in the samples [182].

BLS [183,184] is a shallow neural network model that has emerged as a 
promising discriminative learning method. It has demonstrated the poten‑
tial to outperform some deep neural network‑based learning methods, 
including the multi‑layer perceptron (MLP)‑based method [185], deep belief 
networks (DBNs) [186], and stacked autoencoders (SAEs) [187]. To create a 
BLS, there are several essential steps that must be taken. First, the input data 
must be transformed into general mapped features using feature mappings. 
These generated mapping features are then connected by nonlinear activa‑
tion functions to form the “enhancement nodes”. The mapped features and 
the “enhancement nodes” are then sent together into the output layer, and 
the corresponding output weights are obtained through the use of pseudoin‑
verse. One of the benefits of BLS is that all weights and biases of the hidden 
layer units can be randomly generated and remain unchanged. This means 
that only the weights between the hidden layer and the output layer need to 
be trained, which greatly simplifies the training process. Furthermore, in the 
event that new samples are introduced or the network requires expansion, a 
number of practical incremental learning algorithms have been developed 
to ensure that the system can be quickly remodeled without the need for a 
complete retraining process from the beginning [183]. As a result of these 
appealing features, BLS has garnered increasing attention [188–195] and has 
been successfully implemented in various applications, including image rec‑
ognition, face recognition, and time‑series prediction. In addition, several 
variants of BLS, such as fuzzy BLS [196], graph regularized BLS [197], recur‑
rent BLS [198], and structured manifold BLS [199], have been developed from 
different perspectives.

The standard BLS algorithm employs the minimum mean square error 
(MMSE) criterion as its default optimization criterion for training the net‑
work output weights. However, like other MMSE‑based methods mentioned 
earlier, it may experience a decline in performance in complex noise environ‑
ments, particularly when the data are tainted by outliers.

1.2 AFAs under MMPE Criterion

While commonly used cost functions like LS and MSE are reliable in most 
practical situations and remain the go‑to for adaptive filters, they do have 
limitations. For instance, they only capture second‑order statistics in the data, 
which can be a poor approximation criterion in nonlinear and non‑Gaussian 
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scenarios, such as heavy‑tail or finite‑range distributions. To address this 
issue, researchers have explored non‑MSE (nonquadratic) criteria, includ‑
ing mean p‑power error (MPE) [200,201], maximum correntropy criterion 
[202–204], minimum error entropy criterion [205–207], and Huber criterion 
[208–210], among others. This book focuses on the MPE criterion which con‑
siders higher or lower order statistics and its application to adaptive filtering. 
Notably, the LS, MMSE, MAE, and MFE criteria can be viewed as special 
cases of the MPE.

1.2.1 MMPE Criterion

As a more general version of the MMSE approach, lp‑norm minimization 
(also known as Minimum MPE or MMPE) has found widespread applications 
in various fields, including filter design, beamforming array, and deconvolu‑
tion. In particular, when dealing with impulsive noise‑contaminated signals, 
sinusoidal frequency estimation tends to favor lp‑norm (p = 1) minimization 
[200,201,210]. Given the success of lp‑norm minimization, there is growing 
interest in developing adaptive Finite Impulse Response (FIR) filter algo‑
rithms based on the MMPE criterion [184,194–198]. If we set p = 2, the general‑
ized criterion becomes the conventional MSE criterion. However, for values 
of p other than 2, the MPE criterion may exhibit superior properties to the 
MSE criterion in certain circumstances. Notably, the MPE criterion reduces 
to the LAD criterion when p = 1, and the MFE criterion can be obtained by 
setting p = 4.

Pei and Tseng investigated the advantageous features of an adaptive FIR 
filter that utilizes the MMPE criterion [201]. Their findings demonstrated that 
the MMPE criterion outperforms the conventional MSE criterion in certain 
applications, provided that an appropriate value of p is selected. First, it is 
important to note that the optimum solution of the MPE function may out‑
perform the Wiener solution of the MSE function. This is particularly relevant 
in system identification, where the MPE function may provide a solution that 
is closer to the true system parameters. Second, in cases where the optimal 
solution of the MPE function is the same as the Wiener solution of the MSE 
function for p ≠ 2, the steepest descent algorithm based on the MPE criterion 
may exhibit superior performance, such as faster convergence speed, com‑
pared to the conventional Widrow‑Hoff LMS algorithm. Third, when input 
signals or desired responses are corrupted by impulse noises, adaptive fil‑
ters based on the MPE criterion with p = 1 may demonstrate stronger robust‑
ness than the LMS algorithm [156]. Furthermore, both analytical results and 
extensive simulations have shown that the new algorithms with p = 3 or p = 4 
can perform better than the sign and LMS algorithms across a wide range of 
estimation scenarios.
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1.2.2 MMPE Criterion based AFAs

As previously mentioned, the MMPE criterion serves as a useful cost func‑
tion for designing various AFAs. This section will focus on summarizing 
MMPE‑based AFAs, which can be broadly categorized into two types: linear 
and nonlinear. Figure 1.2 provides a detailed breakdown of this classification.

1.2.2.1 Linear AFAs under MMPE Criterion

1.2.2.1.1 Least Mean p‑Power Error (LMP) 

In [200,201], an adaptive FIR filter based on the MPE criterion is explored. 
This filter is a generalization of the instantaneous gradient descent algorithm 
for alpha‑stable processes and is known as the least MPE (LMP) algorithm. 
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AFAs under MMPE.
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When dealing with signals corrupted by impulsive noise, the LMP algorithm 
with p = 1 is the preferred choice. However, when the signal is affected by 
noise or interference, the adaptive algorithm with an appropriate selection of 
p may be more suitable [201]. To tackle the challenge of identifying nonlin‑
ear systems in impulsive noise environments, researchers have turned to the 
LMP algorithm to identify the Volterra kernels [211]. Their findings demon‑
strate that the cost function is convex in relation to the filter weights for p ≥ 1. 
Through an approximation analysis, they have determined the convergence 
range for the step size of the LMP algorithm. In addition, the authors have 
explored the impact of p on performance and have discovered that the opti‑
mal performance is achieved when p is closest to the characteristic factor α 
of the alpha‑stable process. Using Taylor series expansion, the steady‑state 
mean‑square error (MSE) was analyzed for both real and complex LMP algo‑
rithms [211]. In [212], the authors provided closed‑form analytical expressions 
for the steady‑state MSE, along with the corresponding restrictive conditions 
for step size. Inspired by the NLMS algorithm, a normalized LMP algorithm 
(NLMP) was developed that utilizes a normalization by dividing the update 
term by p‑norm of the input vector [213]. A normalized LMAD algorithm can 
be achieved by setting p = 1 in the NLMP algorithm.

To enhance the robustness of the adaptive infinite impulse response (IIR) 
Notch filter (ANF), a new approach was proposed in [214], which utilizes the 
least MPE criterion. In addition, Maha [215] conducted a steady‑state analy‑
sis of the constrained ANF with MPE. The findings indicate that the ANF 
with p = 1 outperforms the LMS algorithm in canceling 60‑Hz interference 
in electrocardiogram recordings. Furthermore, when the ANF with MPE is 
employed to estimate the frequency of a sinusoid embedded in white noise, 
it exhibits superior statistical accuracy compared to the LMS algorithm, 
particularly when p is set at 3. The success of MMPE has sparked interest 
in designing IIR filters based on the MMPE criterion [216,217]. Tseng [218] 
has proposed a digital IIR filter with MPE that uses the reweighted method, 
allowing for an arbitrarily prescribed frequency response. In addition, Xiao 
et al. [219] developed an adaptive algorithm based on the least MPE criterion 
for Fourier analysis in the presence of additive noise. Analytical results and 
extensive simulations have shown that the proposed algorithm for p = 3 or 
p = 4 generates improved discrete Fourier coefficient estimates in moderate 
to high SNR, with similar degrees of complexity. In [220], the filtered‑x LMP 
algorithm (FxLMP) was proposed, which minimizes a fractional lower order 
moment (p‑power of error) that is applicable to stable distributions. It has 
been demonstrated that the FxLMP algorithm with p < a exhibits superior 
robustness to ANC of impulsive noise. To enhance the convergence perfor‑
mance of the FxLMP algorithm, two modified versions were proposed in 
[221]. The first algorithm aims to improve the robustness of the FxLMP algo‑
rithm by utilizing modified reference and error signals. The second algo‑
rithm, known as normalized FxLMP (NFxLMP), extends the concept of the 
NLMP to the FxLMP algorithm.
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1.2.2.1.2 Constrained LMP 

Constrained adaptive filters (AFAs) have a wide range of potential applica‑
tions in signal‑processing domain. The primary objective is to solve a con‑
strained optimization problem explicitly. Typically, the MSE criterion is used 
in constrained adaptive filters, like CLMS [222], due to its attractive features 
of mathematical tractability, convexity, and low computational complexity. 
However, the CLMS is also susceptible to non‑Gaussian noise interference. 
To  address this issue, some robust constrained AFs have been developed 
based on the maximum correntropy criterion (MCC) and MPE criterion [223–
225]. Peng et al. proposed a constrained LMP algorithm [225] by combining 
an equality constraint with the MPE criterion, which can achieve much bet‑
ter performance, especially in the presence of impulsive noises with a proper 
p value.

1.2.2.1.3 Diffusion LMP 

The emergence of wireless sensor networks has spurred the development 
of distributed adaptive estimation schemes. Among these, the Diffusion 
LMS‑ [226] and RLS [100]‑type algorithms have garnered significant atten‑
tion. However, these algorithms rely on the MSE criterion and are therefore 
not well‑suited for non‑Gaussian noise environments. To address this issue, 
a diffusion LMP algorithm [227] has been proposed for distributed estima‑
tion in alpha‑stable noise environments, which are commonly encountered 
in various settings. Despite its effectiveness, the DLMP algorithm suffers 
from a slow convergence rate. To overcome this limitation, a diffusion nor‑
malized LMP algorithm has been developed [228], inspired by the concept of 
normalized algorithms. To further enhance the performance of the DNLMP 
algorithm, a robust DNLMP algorithm has been introduced, which takes 
into account the error signal in the normalization factor and can effectively 
mitigate outliers’ influence in impulsive noise environments. In addition, 
researchers have developed the diffusion LMF and LAD algorithms as spe‑
cial cases.

1.2.2.1.4 Sparsity‑Aware LMP

Sparsity‑aware AFAs have gained widespread popularity for sparse sys‑
tem identification. Most of these algorithms, including sparse LMS with 
l0‑norm constraint, proportionate LMS, and their variants, utilize the MMSE 
criterion as the cost function, which makes them well‑suited for Gaussian 
noise environments. However, in practical applications, noise often exhibits 
non‑Gaussian properties, and the MMSE criterion may result in poor per‑
formance, particularly when the noise is impulsive (e.g., alpha‑stable noise). 
To address this issue, researchers have explored robust algorithms, such as 
those presented in references [162,229–232]. In [229], two frameworks, namely 
RLS‑type and NG‑type algorithms, were proposed for designing AFAs 
that exploit channel sparseness and achieve robust performance against 
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impulsive noises. In addition, an improved proportionate affine projection 
sign algorithm (RIP‑APSA) based on the p‑norm of the error signal was 
introduced in [162]. The sparsity penalty terms play a crucial role in enabling 
the filters to fit well with the sparse structure of the system. Therefore, the 
adaptive filter and the sparsity penalty are the two main components of a 
sparse adaptive filter. However, finding the sparsest solution, which leads to 
an l0‑norm minimization problem, is a NP‑hard combinatorial optimization 
problem. To tackle this challenging issue, the l0‑norm is often approximated 
by continuous functions. In recent years, the correntropy induced metric 
(CIM) has been proven to be an excellent approximation of the l0‑norm in 
[202,233], which can achieve arbitrarily close results to the l0‑norm under 
certain conditions. To address sparse system identification in impulsive 
noise environments, several sparsity‑aware LMP algorithms with different 
sparsity penalty terms (l1‑norm, reweighted l1‑norm, and CIM) have been 
developed in [234]. In addition, Zhang et al. proposed a proportionate LMP 
algorithm [235] based on the proportionate scheme, which utilizes an adap‑
tive gain matrix to adjust the step size of each tap according to a specific rule.

1.2.2.1.5 Recursive LMP

The algorithms mentioned above that are designed to be LMP aware suf‑
fer from slow convergence when dealing with colored input signals due 
to the inconvenient stochastic gradient method. To address this issue and 
accelerate convergence in such conditions, RLS‑type algorithms are typi‑
cally preferred. In addition, various approaches have been proposed to 
improve the robustness of RLS to alpha‑stable noise. For instance, a sliding 
window LMP algorithm has been introduced for filtering alpha‑stable noise 
[236]. Unlike previous stochastic gradient‑type algorithms, this algorithm 
precisely minimizes the MPE within a sliding window of fixed size, also 
known as the recursive LMP (RLMP) algorithm. Therefore, the RLMP algo‑
rithm exhibits similar convergence speed and computational complexity to 
the RLS algorithm, as opposed to stochastic gradient‑based algorithms that 
behave like the LMS algorithm. The RLMP algorithm, proposed in [236], uti‑
lizes a reweighted least squares algorithm that converges to the minimum of 
reweighted MPE. While this approach benefits from a truly robust cost func‑
tion, both schemes encounter practical issues. Specifically, the approach in 
[236] is not truly online, as it processes all samples in a window of past inputs 
to the filter in batch mode, requiring multiple iterations of the algorithm at 
every time instant. Consequently, this increases the memory and computa‑
tional requirements of the filter. In this correspondence, a novel solution to the 
recursive least p‑norm problem was proposed by utilizing a combination of 
adaptive filters [237]. The use of adaptive filter combinations has gained sig‑
nificant traction in recent times as a straightforward yet effective approach to 
address the various tradeoffs that impact the performance of adaptive filters. 
These tradeoffs include the steady‑state error versus the convergence and 
tracking performance tradeoff. Zhang et al. proposed an enhanced RLMP 
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algorithm [238] to further improve its tracking performance. This algorithm 
utilizes an adaptive gain factor in the cross‑correlation vector and the input 
signal auto‑correlation matrix. In addition, it employs the square of the esti‑
mated impulsive‑free first moment of the error signal to control the updated 
gain factor. To address the limitations of the CLMP algorithm, a constrained 
AFA called the constrained recursive least p‑power (CRLP) algorithm was 
proposed [239]. This algorithm incorporates a set of linear constraints into 
the MMPE criterion to directly solve a constrained optimization problem.

1.2.2.2 Nonlinear AFAs under MMPE Criterion

1.2.2.2.1 Kernel LMP

Most KAFs rely on the MSE criterion, which is chosen for mathematical sim‑
plicity and convenience. However, to enhance the performance of KAFs in 
the presence of non‑Gaussian or impulsive noise with low probability but 
high amplitudes, some new KAFs based on the MMPE criterion have been 
developed. The kernel least mean p‑power (KLMP) algorithm was designed 
to deal with alpha‑stable distribution noise [240,241]. The KLMP algorithm is 
rooted in the conventional KAF framework, and it employs the MMPE crite‑
rion to mitigate the bad impact of impulsive noise on KAF. In addition, Ma 
[241] and Gao [242] have introduced two distinct kernel recursive least mean 
p‑power (KRLP) algorithms that outperform KLMP in terms of convergence 
speed and steady‑state accuracy. To enhance the convergence rate of the 
KRLP, a random Fourier features extended KRLP algorithm was developed 
[243]. This algorithm is designed to handle non‑Gaussian impulsive noise 
and offers significant improvements in convergence rate, steady‑state EMSE, 
and tracking ability in the presence of impulsive interference. In addition, 
it reduces computational complexity by replacing the calculation of kernel 
function with kernel approximation. Another approach to improving KAFs 
is the sparsified kernel adaptive filters (SKAF), which includes the projected 
kernel least mean p‑power algorithm (PKLMP) based on the MPE criterion 
and vector projection method [244]. To utilize the information contained in 
the desired outputs, a modified PKLMP algorithm has been developed by 
smoothing the desired signal. In addition, Huang et al. have introduced a 
robust kernel conjugate gradient least mean p‑power (KCGLMP) algorithm 
that combines the conjugate gradient optimization method with kernel trick, 
resulting in improved filtering accuracy and computational efficiency [245]. 
To address the challenges posed by nonlinear and non‑Gaussian environ‑
ments commonly encountered in real‑world scenarios, a diffusion approx‑
imated KLMP algorithm has been developed for nonlinear distributed 
systems [246]. This algorithm approximates the property of shift‑invariant 
kernel function using random Fourier features.
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1.2.2.2.2 Neural Networks with Random Weights

Neural networks provide an important approach to construct nonlinear 
adaptive filters. As mentioned in Section 1.1.3, neural networks with ran‑
dom weights (NNRW) are a type of feedforward neural networks that uti‑
lize a non‑iterative learning mechanism. The ELM and BLS, as prominent 
examples of NNRW, rely on the MSE loss function, which is susceptible to 
non‑Gaussian noise or outliers in the training data. To improve the robust‑
ness of these models, researchers have developed robust ELM and BLS mod‑
els that employ the MPE loss function.

 a. ELM under MPE: The neural network is a nonlinear adaptive fil‑
ter, and the ELM with MSE model has gained significant atten‑
tion due to its simple structure and fast learning speed [247,248]. 
However, traditional ELM performance may deteriorate in 
non‑Gaussian scenarios, leading to the development of robust 
ELMs under MPE criterion, as reported in [249–251]. For instance, 
Yang et  al. [249] proposed a least mean p‑power ELM, which 
maintains the computationally simple ELM architecture while 
utilizing the MPE criterion to sequentially update the output 
weights. Real industrial processes often involve measurement 
samples with different statistical characteristics and are obtained 
one by one, making it challenging to achieve optimal learning 
performance for systems affected by various types of noise. To 
address this issue, the authors proposed an online sequential 
learning algorithm, known as recursive LMPELM, which is capa‑
ble of designing an online ELM [250] that can provide accurate 
predictions of variables even in the presence of non‑Gaussian 
noise. This approach outperforms both ELM and online sequen‑
tial ELM, making it a promising solution for industrial applica‑
tions. Moreover, a novel online sparse RLMP‑ELM approach is 
introduced, which incorporates a sparsity penalty constraint on 
the output weights as a cost function, in addition to the MPE 
 criterion [251].

 b. BLS under MPE: Several alternative optimization criteria have 
been proposed to improve the robustness of the original BLS. 
These criteria combine l1‑norm with different regularization 
terms, resulting in a class of robust BLS (RBLS) variants [188]. 
By using l1‑norm, which is less sensitive to outliers, the robust‑
ness of BLS has been significantly enhanced. In addition, Chu 
et al. [252] introduced the weighted BLS (WBLS), which has dem‑
onstrated good robustness in a nonlinear industrial process due 
to its well‑designed weighted penalty factor. Another notable 
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approach to improving the robustness of BLS is the robust mani‑
fold BLS (RM‑BLS) [253]. Zheng et al. proposed a robust BLS model 
that replaces the l2‑norm‑based optimization model in BLS with 
a mixed‑norm‑based one. This model has been used to design a 
powerful classifier with strong generalization capability for brain 
computer interface (BCI) research [254]. Furthermore, Zheng [255] 
has developed a least p‑norm‑based BLS (LP‑BLS) that utilizes 
the p‑norm of the error vector as a cost function and incorporates 
a fixed‑point iteration strategy. The LP‑BLS approach allows for 
flexible adjustment of the value of p (p ≥ 1) to effectively handle 
interferences from various types of noise, thereby improving the 
modeling of unknown data. To further enhance the robustness of 
BLS, Zheng has also incorporated the MCC [202] to train the out‑
put weights, resulting in a correntropy‑based BLS (C‑BLS). The 
proposed C‑BLS is expected to exhibit superior robustness to out‑
liers while maintaining the original performance of the standard 
BLS in Gaussian or noise‑free environments [256].

1.2.2.3 AFAs under KMPE Criterion

The MPE with p‑th absolute moment of the error is a powerful tool for han‑
dling non‑Gaussian data when a suitable p value is chosen. It is generally 
robust to large outliers when p < 2. Chen et al. introduced a novel non‑second 
order measure, called the kernel MPE (KMPE), which is essentially the MPE 
in kernel space [257]. When p = 2, the KMPE reduces to the correntropy loss 
(C‑Loss) [202], but with an appropriate p value, it can outperform the C‑Loss 
when used as a cost function for robust learning. Drawing inspiration from 
KMPE, a novel measure called q‑Gaussian kernel MPE (QKMPE) was pro‑
posed [258]. This measure is a generalization of the KMPE, defined with 
q‑Gaussian kernel. In addition, a recursive kernel mean p‑power is derived 
under the least QKMPE criterion for robust learning in noisy environments. 
This new algorithm has demonstrated superior performance against both 
Gaussian‑type noise and non‑Gaussian perturbations, particularly when the 
data contains large outliers. To further improve the performance of KMPE, 
a kernel mixture mean p‑power error (KMP) criterion is proposed by com‑
bining the mixture of two Gaussian functions into the kernel function of 
KMPE [259]. The Nyström method is an efficient technique for controlling 
the growth of the network size of KAFs, and the recursive update form can 
enhance the tracking ability of KAFs. Finally, a recursive AFA is developed 
using KMPE with a forgetting factor as the cost function [260].
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1.3 Outline of the Book

So far, numerous remarkable works have been accomplished on AFAs uti‑
lizing the MMPE criterion. Despite the existence of several books on AFAs 
designed under the MSE criterion, to our knowledge and investigation, there 
is still no book that presents AFAs under the MMPE criterion. Therefore, 
this book aims to provide a comprehensive treatment of AFAs under MMPE, 
with a focus on their properties, as well as linear and nonlinear AFAs. The 
remaining chapters of the book are organized as follows:

Chapter 2 delves into classical AFAs, such as the least mean square 
(LMS), recursive least square (RLS), and kernel adaptive filtering 
algorithms (e.g., kernel LMS and kernel RLS). This chapter serves as 
a foundation for readers to grasp the fundamental concepts that will 
be applied in subsequent chapters.

Chapter 3 presents a comprehensive overview of the minimum mean 
p‑power error (MMPE) criterion, including its definition and proper‑
ties. The chapter also delves into the relationship between MMPE 
and other conventional learning criteria such as MSE, MAE, and 
MFE. Furthermore, the chapter highlights several improved MMPE 
criteria, such as smoothed MMPE, adaptive MMPE, mixture MMPE, 
and kernel MMPE. This chapter is crucial for readers seeking to gain 
a deeper understanding of the fundamental principles underlying 
the MMPE criterion.

Chapter 4 focuses on various linear adaptive filtering algorithms that 
operate under the minimum mean p‑power error criterion. These 
algorithms include the least mean p‑power (LMP), adaptive LMP, 
smoothed LMP, sparsity‑aware LMP, diffusion‑aware LMP, and con‑
strained LMP algorithms.

Chapter 5  mainly introduces the recursive AFAs under minimum 
mean p‑power error criterion algorithms, such as recursive least 
mean p‑power (RLP) algorithm, enhanced RLMP, sparsity RLP, dif‑
fusion RLP, and constrained RLP algorithm.

Chapter 6 presents nonlinear adaptive filtering algorithms that oper‑
ate under the MMPE criterion. Specifically, we provide an overview 
of the kernel adaptive filtering and shallow neural network model 
under MMPE, including the kernel least mean p‑power, kernel 
recursive least p‑power, ELM under MMPE, and BLS under MMPE.

Chapter 7 primarily focuses on introducing the definition of the mixture 
MMPE criterion, along with various adaptive filtering algorithms 
that operate under this criterion. These include sparsity‑aware AFAs, 
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diffusion AFA, and kernel adaptive filters, all of which are designed 
to work effectively under mixture MMPE.

Chapter 8 provides a comprehensive overview of various adaptive fil‑
tering algorithms that are evaluated under the kernel mean p‑power 
error criterion (KMPE). These algorithms include recursive KMPE, 
kernel adaptive filters (KAFs) that are based on KMPE family criteria 
(such as q‑Gaussian KMPE and kernel mixture MPE‑based KAFs), 
and ELM under KMPE.
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2
Adaptive Filtering Algorithms 
under MMSE Criterion

Adaptive filtering algorithms (AFAs) have been extensively utilized in vari‑
ous practical applications, and the development of novel AFAs with distinct 
features remains a prominent research area in the field of signal processing. 
Nevertheless, the majority of new AFAs are based on traditional algorithms 
under minimum mean square error (MMSE) as their research foundation. 
To facilitate a better understanding of AFAs under minimum mean p‑power 
error (MMPE), this chapter primarily focuses on reviewing some classi‑
cal AFAs under MMSE, including least mean square (LMS), recursive least 
squares (RLS), kernel least mean square (KLMS), and kernel recursive least 
squares (KRLS).

2.1 LMS Algorithm

The traditional supervised adaptive filters rely on error‑correction learning 
for their adaptive capability. To show the learning progress, the filtering struc‑
ture depicted in Figure 2.1 is considered. The filter embodies a set of adjust‑
able parameters (weights), which is denoted by the vector w k −( 1), where 
k denotes discrete time instant, u k u k u k u k M T…= − −( ) [ ( ), ( 1), , ( )]  is an input 
signal vector applied to the filter at time k to produce the actual response 

u wy k k kT= −( ) ( ) ( 1). This actual response is compared with an externally 
supplied desired response d k( ) to produce the error signal e k d k y k= −( ) ( ) ( ).  
This error signal is, in turn, used to produce an adjustment to the param‑
eter vector w k −( 1) of the filter by an incremental amount denoted by  

w k∆ ( ). Accordingly, the updated parameter vector of the filter can be 
expressed by [261]

 w w wk k k= − − ∆( ) ( 1) ( ) (2.1)

On the next iteration at time k, w k( ) becomes the latest value of the parameter 
vector to be updated. The adaptive filtering process is continually repeated 
in this manner until the filter reaches a condition, whereafter the parameter 

https://doi.org/10.1201/9781003176114-2
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adjustments become small enough to stop the adaptation. As is clear, the 
weights here embody the hypothesis in the definition of sequential learning.

Starting from some initial conditions denoted by w(0), the ensemble‑aver‑
aged square error can be defined as:

 J E e k k …= =[ ( )], 1, 2,2  (2.2)

where E[] is the expectation operator. The (2.2) is carried out for an ensemble 
of different training sets, which can trace the learning curve of the adaptive 
filtering process. J is a quadratic function of the weight w, i.e.

 wR w P wuu uJ d
T

dσ= − +2 2 (2.3)

where R u uuu E k kT= ( ( ) ( )) is the correlation matrix, P uu E k d kd = ( ( ) ( )) denotes 
the cross‑correlation vector, and E d kdσ = ( ( ))2 2  is the variance of desired sig‑
nals. Hence, the following expression from gradient vector can be obtained

 R w Puu ud∇ = −2 22  (2.4)

Let ∇ = 02 , we get the unique optimum weight vector as

 w R Puu uo d= −1  (2.5)

Equation (2.5) is the Wiener solution.
In the design of adaptive filters, a crucial consideration is to ensure that the 

learning curve converges as the number of iterations increases. This requires 
defining the speed of adaptation, such that the ensemble‑averaged square 
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FIGURE 2.1
Basic structure of an adaptive filter.
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error reaches a relatively stable value, indicating that the adaptive filter has 
converged in the mean square error (MSE) sense.

The LMS algorithm is the most widely used and straightforward form of 
AFAs. Essentially, it operates by minimizing the instantaneous MSE cost 
function as

 J k e k=( )
1
2

( )2  (2.6)

where the factor 1/2 is introduced to simplify the mathematical formulation. 
Given that the parameter vector of the filter is w k −( 1), the error signal e k( ) is 
defined by

 w ue k d k k kT= − −( ) ( ) ( 1) ( ) (2.7)

Correspondingly, the instantaneous gradient vector can be calculated by

 
w

u
k

J k e k k
∂

∂ −
= −

( 1)
( ) ( ) ( ) (2.8)

Following the instantaneous version of the method of gradient descent, the 
adjustment w k∆ ( ) applied to the algorithm at time k is defined by

 w uk e k kµ∆ =( ) ( ) ( ) (2.9)

where µ is the step size parameter which controls the convergence speed 
of the LMS algorithm. Thus, using Eq. (2.9) in Eq. (2.1) yields the following 
update rule for the filter’s parameter vector:

 w w uk k e k kµ= − +( ) ( 1) ( ) ( ) (2.10)

The LMS algorithm is also known as the stochastic gradient algorithm, and 
its simplicity is highlighted in Table  2.1. To initialize the algorithm, it is 
 common practice to set the weight vector’s initial value to zero.

TABLE 2.1

Least Mean Square Algorithm

Initialization: w(0) = 0, µµ  

For k = 1, 2,…Do

 1. u wy k k kT= −( ) ( ) ( 1)
 2. e k d k y k= −( ) ( ) ( )
 3. w w uk k e k kµ= − +( ) ( 1) ( ) ( )

End



24 Adaptive Filtering Under Minimum Mean p-Power Error Criterion

Upon examining the computations described above, it becomes clear that 
the LMS algorithm is fundamentally simple. Despite its simplicity, this 
 algorithm can deliver effective performance, provided that the step size 
parameter µ is appropriately selected. One of the most significant advan‑
tages of the LMS algorithm is its model independence, as it imposes no 
structural restrictions on how the training data were generated. As a result, 
the LMS algorithm is renowned for its robustness. To achieve optimal per‑
formance, it is recommended to assign a relatively small value to the step 
size parameter µ. However, from a practical standpoint, this approach has 
a significant drawback: a small step size causes the LMS algorithm to con‑
verge slowly.

The benefits of utilizing the LMS can be succinctly summarized as fol‑
lows: (i) it boasts a low computational complexity; (ii) it is straightforward to 
implement; (iii) it enables real‑time operation; and (iv) it does not require any 
statistical knowledge of signals, such as Ruu and Pud.

The convergence of the LMS adaptive filter is dependent on the auto‑ 
correlation matrix Ruu. To ensure that the system converges in the mean, two 
conditions must generally be met:

 1. The auto‑correlation matrix, Ruu, is positive definite.
 2. µ λ< <0 1/ max, where λmax is the largest eigenvalue of Ruu.

Here a brief analysis of the convergence condition presented in (2) is only 
performed. For ease of analysis, it is assumed that w k( ) is independent of  
u k( ). Taking expectation on both sides of (2.10), we have

 

w w u

w u u u w

w P R w

R w P

u uu

uu u

E k E k E e k k

E k E d k k k k k

E k E k

I E k

T

d

d

µ

µ

µ µ

µ µ

= − +

= − + − −

= − + − −

= − − +

[ ( )] [ ( 1)] [ ( ) ( )]

[ ( 1)] [ ( ) ( ) ( )( ( ) ( 1))]

[ ( 1)] [ ( 1)]

( ) [ ( 1)]

 (2.11)

Following the previous derivation, it will converge to the Wiener filter 
weights in the mean sense if
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