


Measure of 
Noncompactness, 

Fixed Point Theorems, 
and Applications

The theory of the measure of noncompactness has proved its significance in 
various contexts, particularly in the study of fixed point theory, differential equa-
tions, functional equations, integral and integrodifferential equations, optimiza-
tion, and others. This edited volume presents the recent developments in the the-
ory of the measure of noncompactness and its applications in pure and applied 
mathematics. It discusses important topics such as measures of noncompactness 
in the space of regulated functions, application in nonlinear infinite systems of 
fractional differential equations, and coupled fixed point theorem.

Key Highlights:

•  �Explains numerical solution of functional integral equation through coupled

•  �Showcases applications of the measure of noncompactness and Petryshyn’s
fixed point theorem functional integral equations in Banach algebra

•  �Explores the existence of solutions of the implicit fractional integral equation
via extension of the Darbo’s fixed point theorem

•  �Discusses best proximity point results using measure of noncompactness and
its applications

•  �Includes solvability of some fractional differential equations in the holder space 
and their numerical treatment via measures of noncompactness

This reference work is for scholars and academic researchers in pure and applied 
mathematics.
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Preface

This book features original chapters on the theory of measure of noncom-
pactness, fixed point theorems and their involvement in finding the solution
of differential and integral equations in the classical and fractional sense, as
well as in obtaining the Darbo-type fixed point theorems. Each chapter de-
scribes the problem of current importance, summarizes ways of their solution
and possible applications methods, and improves the current understanding
pertaining to measure of noncompactness and fixed point theorems. The pre-
sentation of the chapters is clear and self-contained throughout the entire
book. The list of chapters is arranged alphabetically by the last name of the
first author of each chapter.

Chapter 1 is devoted to some generalized fixed theorems containing Darbo
and other researchers via fixed point and coupled fixed point theorems, and
measure of noncompactness. Application of results is given by an example in
a functional integral equation. For validity of this work, an iterative algorithm
to approximate the solution of the above problem with an acceptable accuracy
is constructed.

Chapter 2 establishes the existence of solution of nonlinear functional in-
tegral equations in Banach algebra by using the concept of Petryshyn’s fixed
point theorem and measure of noncompactness. Some interesting examples to
examine the validity of our results are provided.

Chapter 3 is devoted to prove some fixed theorems in Banach space via
the measure of noncompactness and proves the existence of solutions to an
implicit functional equation involving a fractional integral with respect to a
few functions which generalizes the Riemann-Liouville fractional integral and
the Hadamard fractional integral. In order to illustrate the result, an example
is constructed with the help of an integral equation.

Chapter 4 presents a brief survey of cyclic (noncyclic) condensing operators
and utilizes them to investigate the existence of the best proximity points
(pair) by using the measure of noncompactness. Also, some applications in
the existence of optimum solutions for differential equations are described.

Chapter 5 investigates a class of Volterra functional integral equations with
fractional-order and Hadamard-type fractional integrals. The main objective
is to establish the existence of solutions for these equations using Petryshyn’s
fixed point theorem in Banach algebra. The findings of this chapter provide
important insights into the behavior of fractional-order Volterra functional
integral equations and contribute to the ongoing research in this field.

ix



x Preface

Chapter 6 is devoted to generalized Darbo fixed point theorem via measure
of noncompactness, α−admissible function, and coupled fixed point theorem.
Applications of the proved theorems and results are given by some examples.
Therefore, the numerical solution of quadratic integral equations system is
given via an iterative convergent algorithm with an acceptable accuracy.

Chapter 7 proves best proximity point (pair) theorems for newly defined
cyclic and noncyclic contractive operators. By using these results, the optimum
solution of an integral equation is obtained including illustrative examples.

Chapter 8 is devoted to obtaining the general solution and investigating
alternative H-U stability results for the finite dimensional additive functional
equation in a modular space via direct method. Moreover, the stability results
for the same additive functional equation in modular space by using fixed
point method with the help of Fatou property are investigated.

Chapter 9 explores the Ulam stability results of the quadratic functional
equation in Banach space and multi-normed space by means of two different
approaches, namely, Hyers and fixed point techniques.

Chapter 10 proves the existence of a solution of some nonlinear integral
equations with the help of common fixed point theorems satisfying the gener-
alized contractive condition in complete metric space for two pairs of weakly
compatible mappings.

Chapter 11 introduces q-Pascal difference sequence spaces c(P (q)∇) :=
cP (q)∇ and c0(P (q) := (c0)P (q)∇. This chapter also obtains the Schauder bases
and determines Alpha-(α-), Beta-(β-) and Gamma-(γ-) duals of c(P (q)∇) and
c0(P (q)∇). The final section has been devoted to compactness via Hausdorff
measure of noncompactness on the space c0(P (q)∇).
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Nǐs, one in Belgrade and one in Skopje). He published 130 scientific papers,
including 104 papers in JCR journals. He collaborated with more than 30
authors, most of whom were his students. His results are cited approximately
1400 times, and the Hirsch index is 22. Dragan Djordjević served as the in-
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Chapter 1

The existence and numerical solution
of functional integral equation via
coupled fixed point theorem,
measure of noncompactness and
iterative algorithm

Reza Arab

Islamic Azad University, mathreza.arab@iausari.ac.ir

Mohsen Rabbani

Islamic Azad University, mo.rabbani@iau.ac.ir

1.1 Introduction and auxiliary facts

Darbo’s fixed point theorem [11] is a very important generalization of
Schauder’s fixed point theorem and includes the existence part of Banach’s
fixed point theorem. To generalize some fixed theorems and coupled fixed
point theorems with the help of measure of noncompactness, we introduce
notations, definitions, and preliminary facts which are used throughout this
chapter. Denote by R the set of real numbers and put R+ = [0,+∞). Let
(E, ∥ · ∥) be a real Banach space with zero element 0. Let B(x, r) denote the
closed ball centered at x with radius r. The symbol Br stands for the ball
B(0, r). For X, a nonempty subset of E, we denote by X and ConvX the
closure and the closed convex hull of X, respectively. Moreover, let us denote
by ME the family of nonempty bounded subsets of E and by NE its subfamily
consisting of all relatively compact sets. We use the following definition of the
measure of noncompactness given in [8].

Definition 1.1.1. A mapping µ : ME → R+ is said to be a measure of
noncompactness in E if it satisfies the following conditions:

(10) The family kerµ = {X ∈ ME : µ(X) = 0} is nonempty and kerµ ⊂ NE,

(20) X ⊂ Y ⇒ µ(X) ≤ µ(Y ),
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mailto:mathreza.arab@iausari.ac.ir
mailto:mo.rabbani@iau.ac.ir
https://doi.org/10.1201/9781003436577-1


(30) µ(X̄) = µ(X),

(40) µ(ConvX) = µ(X),

(50) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1],

(60) If (Xn) is a sequence of closed sets from mE such that Xn+1 ⊂ Xn(n =
1, 2, ...) and if lim

n−→∞
µ(Xn) = 0, then the set X∞ =

⋂∞
n=1Xn is

nonempty.

The family kerµ defined in axiom (10) is called the kernel of the measure
of noncompactness µ.

One of the properties of the measure of noncompactness is X∞ ∈ kerµ.
Indeed, from the inequality µ(X∞) ≤ µ(Xn) for n = 1, 2, 3, ..., we infer that
µ(X∞) = 0. Further, facts concerning measures of noncompactness and their
properties may be found in [3, 6, 7, 8, 9, 15].

Theorem 1.1.2. (Schauder’s theorem) [1] Let C be a closed and convex subset
of a Banach space E. Then every compact and continuous map T : C → C
has at least one fixed point.

In the following, we state a fixed point theorem of Darbo type proved by
Banaś and Goebel [8].

Theorem 1.1.3. Let C be a nonempty, closed, bounded and convex subset of
the Banach space E and T : C → C be a continuous mapping. Assume that
there exists a constant k ∈ [0, 1) such that µ(TX) ≤ kµ(X) for any nonempty
subset of C. Then T has a fixed point in the set C.

1.2 New fixed point theorem for α−admissible functions

Definition 1.2.1. Let Ω be a nonempty subset of Banach space E. Let F :
Ω −→ Ω be a map and α : R+ → R be a function. Then we say that operator
F is a α−admissible if for any subset X of Ω

α(µ(X)) ≥ 1 =⇒ α(µ(FX)) ≥ 1. (1.1)

where µ is an arbitrary measure of noncompactness.

We start this section with the first of our main theorems.

Theorem 1.2.2. Let Ω be a nonempty, bounded, closed and convex subset
of a Banach space E, µ is an arbitrary measure of noncompactness and F :
Ω −→ Ω be a map. Suppose that the following conditions are satisfied:
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(1) F is α−admissible;

(2) F is continuous;

(3) there exists Ω0 ⊆ Ω such that α(µ(Ω0)) ≥ 1;

(4) for any nonempty subset X of Ω

α(µ(X))ψ(µ(FX)) ≤ φ(µ(X)), (1.2)

where ψ,φ : [0,∞) → [0,∞) are continuous, φ(t) < ψ(t) for each t > 0 and
φ(0) = ψ(0) = 0. Then F has at least one fixed point, and the set of all fixed
points of F in Ω is compact.

Proof. Let Ω0 ⊆ Ω such that α(µ(Ω0)) ≥ 1. Define a sequence {Ωn} by Ωn =
Conv(FΩn−1), n ≥ 1. FΩ0 = FΩ ⊆ Ω = Ω0,Ω1 = Conv(FΩ0) ⊆ Ω = Ω0,
therefore by continuing this process, we have

Ω0 ⊇ Ω1 ⊇ Ω2 ⊇ · · · . (1.3)

If there exists an integer N ≥ 0 such that µ(ΩN ) = 0, then ΩN is relatively
compact and since FΩN ⊆ Conv(FΩN ) = ΩN+1 ⊆ ΩN . Thus theorem 1.1.2
implies that F has a fixed point. So we assume that µ(Ωn) ̸= 0 for n ≥ 0. So,
from (6.13) and (20), we deduce that {µ(Cn)} is a non-negative non increasing
sequence and consequently there exists δ ≥ 0 such that

lim
n→∞

µ(Cn) = δ.

We claim that δ = 0. On the contrary, assume that

lim
n→∞

µ(Cn) = δ > 0. (1.4)

By condition (3), we have α(µ(Ω0)) ≥ 1. Since, by hypothesis, F is
α−admissible, we obtain

α(µ(Ω1)) = α(µ(conv(F (Ω0)))) = α(µ(F (Ω0))) ≥ 1 =⇒ α(µ(F (Ω1))) ≥ 1,

α(µ(Ω2)) = α(µ(conv(F (Ω1)))) = α(µ(F (Ω1))) ≥ 1 =⇒ α(µ(F (Ω2))) ≥ 1.

By induction, we get

α(µ(Ωn)) ≥ 1 for all n ∈ N ∪ {0}.

Now, by (1.2), we have

ψ(µ(Ωn+1)) = ψ(µ(Conv(F (Ωn)))) = ψ(µ(F (Ωn))) (1.5)

≤ α(Ωn)ψ(µ(F (Ωn)))

≤ φ(µ(Ωn)). (1.6)



Since

φ(µ(Ωn)) ≤ ψ(µ(Ωn)), (1.7)

then from (1.5) and (1.7), we get

ψ(µ(Ωn+1)) ≤ φ(µ(Ωn)) ≤ ψ(µ(Ωn)). (1.8)

Since φ and ψ are continuous, then from (1.4) and (1.8), we have

ψ(δ) = lim
n→∞

ψ(µ(Ωn)) = lim
n→∞

φ(µ(Ωn)) = φ(δ),

and so δ = 0, a contradiction. Thus

lim
n→∞

µ(Ωn) = 0.

Since Ωn+1 ⊆ Ωn and F (Ωn) ⊆ Ωn for all n ≥ 1, then from (A6), Ω∞ =⋂∞
n=1 Ωn is a nonempty convex closed set, invariant under T, and belongs to

Kerµ. Therefore Theorem 1.2.2 completes the proof.

From Theorem 1.2.2 if the function α : R+ → R is such that α(t) = 1 for
all t ∈ R, we deduce the following theorem.

Theorem 1.2.3. Let Ω be a nonempty, bounded, closed and convex subset of
a Banach space E and F : Ω −→ Ω be a continuous operator satisfying

ψ(µ(FX)) ≤ φ(µ(X))

for any subset X of Ω where µ is an arbitrary measure of noncompactness on
E and ψ,φ : [0,∞) → [0,∞) are continuous, φ(t) < ψ(t) for each t > 0 and
ψ(0) = φ(0) = 0. Then F has at least one fixed point.

From Theorem 1.2.2 if the function α : R+ → R is such that α(t) = 1
for all t ∈ R, ψ(t) = ψ1(t) and φ(t) = ψ1(t) − φ1(t) for each t ∈ R+ where
ψ1, φ1 : R+ −→ R+ are continuous and increasing function such that ψ1(t) =
φ1(t) = 0 if and only if t = 0, we deduce the following theorem.

Theorem 1.2.4. [4] Let Ω be a nonempty, bounded, closed and convex subset
of a Banach space E and let F : Ω → Ω be continuous operator satisfying

ψ1(µ(FX)) ≤ ψ1(µ(X))− φ1(µ(X)),

for any nonempty X ⊆ Ω, where µ is an arbitrary measure of noncompactness
and ψ1, φ1 : R+ −→ R+ are continuous and increasing function such that
ψ1(t) = φ1(t) = 0 if and only if t = 0. Then F has at least one fixed point in
Ω.

From Theorem 1.2.2 if the function α : R+ → R is such that α(t) = 1 for
all t ∈ R, ψ(t) = t and φ(t) = β(t)t which β ∈ S, we deduce the following
theorem.
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Theorem 1.2.5. [2] Let C be a nonempty, bounded, convex and closed subset
of a Banach space E and let T : C −→ C be a continuous operator such that

µ(TX) ≤ β(µ(X))µ(X)

for any subset X of C where µ is an arbitrary measure of noncompactness on
E and β ∈ S. Then T has at least one fixed point.

From Theorem 1.2.2 if the function α : R+ → R is such that α(t) = 1 for
all t ∈ R, ψ(t) = t, we deduce the following theorem.

Theorem 1.2.6. [4] Let Ω be a nonempty, bounded, closed and convex subset
of a Banach space E and let T : Ω −→ Ω be a continuous mapping such that

µ(TX) ≤ φ(µ(X)) (1.9)

for any nonempty subset X of Ω where µ is an arbitrary measure of noncom-
pactness and φ : R+ −→ R+ is non decreasing and continuous from the right.
Then T has at least one fixed point in the set Ω.

The following corollary gives us a fixed point theorem with a contractive
condition of integral type.

Corollary 1.2.7. Let C be a nonempty, bounded, closed and convex subset of
a Banach space E, k ∈ (0, 1) and T : C → C be a continuous operator such
that for any X ⊆ C one has∫ µ(T (X))

0

f(s) ds ≤ k

∫ µ(X)

0

f(s) ds,

where µ is an arbitrary measure of noncompactness and f : [0,∞) → [0,∞)
is a Lebesgue-integrable mapping which is summable (i.e., with finite integral)
on each compact subset of [0,∞), non-negative and such that for each ϵ > 0,∫ ϵ

0
f(s) ds > 0. Then T has at least one fixed point in C.

Proof. Let α(t) = 1, ψ(t) =
∫ t

0
f(s) ds and φ(t) = k G(t) and apply Theorem

1.2.2.

1.3 New fixed point theorems

In this section, we introduce a new notion of a contraction and establish
new results for such mappings.

Recently Onsod et al. [19] introduced the notion Θ̃, the set of all the

functions θ̃ : (0,+∞) → (1,+∞) satisfying the following conditions:



(θ̃1) θ̃ is nondecreasing and continuous;

(θ̃2) inft∈(0,∞) θ̃(t) = 1.

Also, let S denote the class of real functions β : [0,+∞) → [0, 1) satisfying
the condition

β(tn) −→ 1 implies tn −→ 0.

Now, we are ready to state and prove our main result.

Definition 1.3.1. Let G be a nonempty subset of Banach space B. Let H :
G −→ G be a function. Then we say that operator H is a θ−contraction, if
there exist θ ∈ Θ̃ and k ∈ (0, 1) and β ∈ S such that for any subset G of G
with µ(G) > 0,

1

2
µ(H(G)) < µ(G)) =⇒ θ(µ(H(G))) ≤ [θ(β(µ(G))µ(G))]k (1.10)

where µ is an arbitrary measure of noncompactness.

Theorem 1.3.2. Let G be a nonempty, bounded, closed and convex subset of
a Banach space B and H : G → G be a continuous operator and θ−contraction.
Then H has at least one fixed point in G.

Proof. Let G0 ⊆ G. Define a sequence {Gn} by Gn = Conv(HGn−1), n ≥ 1.
HG0 = HG ⊆ G = G0, G1 = Conv(HG0) ⊆ G = G0, therefore by continuing
this process, we have

G0 ⊇ G1 ⊇ · · · ⊇ Gn ⊇ Gn+1 ⊇ · · · . (1.11)

If there exists a natural number N such that µ(GN ) = 0, then GN is compact.
In this case, Theorem 1.2.2 implies that H has a fixed point. So we assume
that µ(Gn) > 0 for n = 0, 1, 2, ...· Therefore ,

1

2
µ(H(Gn)) < µ(H(Gn)) = µ(Gn+1) ≤ µ(Gn)), ∀n ≥ 1. (1.12)

Hence from (1.12), for all n ≥ 1, we have

θ(µ(Gn+1)) = θ(µ(Conv(H(Gn)))) = θ(µ(H(Gn))) (1.13)

≤ [θ(β(µ(Gn))µ(Gn)]
k

< [θ(µ(Gn))]
k

< [θ(µ(Gn−1))]
k2

...

< [θ(µ(G0))]
kn+1

(1.14)

Taking n −→ ∞, we obtain

θ(µ(Gn+1)) −→ 1.
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