PROSPECTS IN SMART TECHNOLOGIES

WSN and loT An Integrated Approach for Smart Applications

Edited by SHALLI RANI and ASHU TANEJA

WSN and IoT

Nowadays, all of us are connected through a large number of sensor nodes, smart devices, and wireless terminals. For these Internet of Things (IoT) devices to operate seamlessly, the Wireless Sensor Network (WSN) needs to be robust to support huge volumes of data for information exchange, resource optimization, and energy efficiency. This book provides in-depth information about the emerging paradigms of IoT and WSN in new communication scenarios for energy-efficient and reliable information exchange between a large number of sensor nodes and applications.

WSN and IoT: An Integrated Approach for Smart Applications discusses how the integration of IoT and WSN enables an efficient communication flow between sensor nodes and wireless terminals and covers the role of machine learning (ML), artificial intelligence (AI), deep learning (DL), and blockchain technologies which give way to intelligent networks. This book presents how technological advancement is beneficial for real-time applications involving a massive number of devices and discusses how the network carries huge amounts of data allowing information to be communicated over the Internet. Intelligent transportation involving connected vehicles and roadside units is highlighted to show how a reality created through the intelligent integration of IoT and WSN is possible. Convergence is discussed and its use in smart healthcare, where only through the intelligent connection of devices can patients be treated or monitored remotely for telemedicine or telesurgery applications. This book also looks at how sustainable development is achieved by the resource control mechanism enabling energy-efficient communication.

A wide range of communication paradigms related to smart cities, which includes smart healthcare, smart transportation, smart homes, and intelligent data processing, are covered in the book. It is aimed at academicians, researchers, advanced-level students, and engineers who are interested in the advancements of IoT and WSN for various applications in smart cities.

Prospects in Smart Technologies

Series Editor Mohammad M. Banat Mohammad M. Banat, Jordan University of Science and Technology, Irbid, Jordan banat@just.edu.jo Sara Paiva, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal sara.paiva@estg.ipvc.pt

Published Titles

Emerging Technologies for Sustainable and Smart Energy Edited by Anirbid Sircar, Gautami Tripathi, Namrata Bist, Kashish Ara Shakil, and Mithileysh Sathiyanarayanan

CYBORG Human and Machine Communication Paradigm Kuldeep Singh Kaswan, Jagjit Singh Dhatterwal, Anupam Baliyan, and Shalli Rani

Emerging Technologies and the Application of WSN and IoT Smart Surveillance, Public Security, and Safety Challenges Edited by Shalli Rani and Himanshi Babbar

WSN and IoT An Integrated Approach for Smart Applications Edited by Shalli Rani and Ashu Taneja

WSN and IoT An Integrated Approach for Smart Applications

Edited by Shalli Rani and Ashu Taneja

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business Designed cover image: Shutterstock

MATLAB[®] and Simulink[®] are trademarks of The MathWorks, Inc. and are used with permission. The MathWorks does not warrant the accuracy of the text or exercises in this book. This book's use or discussion of MATLAB[®] or Simulink[®] software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use of the MATLAB[®] and Simulink[®] software.

First edition published 2024 by CRC Press 2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 selection and editorial matter, Shalli Rani and Ashu Taneja; individual chapters, the contributors

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.

ISBN: 978-1-032-56689-4 (hbk) ISBN: 978-1-032-56771-6 (pbk) ISBN: 978-1-003-43707-9 (ebk)

DOI: 10.1201/9781003437079

Typeset in Times by KnowledgeWorks Global Ltd.

Contents

	res and Tablesvii
	gmentsxvii
Editors	xix
Contributor	3xxi
Chapter 1	Introduction to IoT and WSN
	Jyoti Maini and Shalli Rani
Chapter 2	The Role of Sustainable IoT in Present-Day Life
	Parul Saini, Lipika Gupta, Shivani Malhotra, and Imali Dias
Chapter 3	Designing an Integrated IoT-WSN Framework for Smart City Applications
	Sanjivani Hemant Kulkarni, Namrata Gawande, Ashwin S. Chatpalliwar, Namita Parati, Kishor S. Wagh, Deepak T. Mane, and Basant Tiwari
Chapter 4	Principles of Artificial Intelligence in the Internet of Things
	Ankita Sharma and Shalli Rani
Chapter 5	Blockchain-Based Communication Frameworks for Smart Vehicles
	Rakhi Mutha, Neeraj, and Ashu Taneja
Chapter 6	A Sustainable IoT-Based Smart Transportation System for Urban Mobility
	Mahendra Balkrishna Salunke, Shailesh V. Kulkarni, Shraddha Ovale, Bhushan M. Manjre, Suresh Limkar, Farhadeeba Shaikh, and Vyasa Sai
Chapter 7	Optimizing Content Delivery in ICN-Based VANET Using Machine Learning Techniques
	Rais Allauddin Mulla, Mahendra Eknath Pawar, Anup Bhange, Krishan Kumar Goyal, Sashikanta Prusty, Samir N. Ajani, and Ali Kashif Bashir

Chapter 8	The Role of IoMT Technologies in Revolutionizing Healthcare: A Comprehensive Overview	187
	Sushmita Sunil Jain, Saurabh Manoj Kothari, and Satyam Kumar Agrawal	107
Chapter 9	Deep Learning and Its Applications in Healthcare	203
	Shubham Gupta, Pooja Sharma, and Thippa Reddy	
Chapter 10	An Explainable Deep Learning Model for Clinical Decision Support in Healthcare	225
	Shrinivas T. Shirkande, Sarika T. Deokate, Sulakshana Sagar Malwade, Raju M. Sairise, Ashwin S. Chatpalliwar, Rashmi Ashtagi, Vinit Khetani, and Syed Hassan Ahmed	
Chapter 11	Deep Learning Models for Automated Diagnosis of Brain Tumor Disorder in Smart Healthcare	243
	Kamini Lamba and Shalli Rani	
Chapter 12	6G and Distributed Computing for IoT: A Survey	264
	Abhishek Hazra, Mainak Adhikari, and Lalit Kumar Awasthi	
Chapter 13	Designing a Decentralized IoT-WSN Architecture Using Blockchain Technology	291
	Vaibhav V. Gijare, Satpalsing D. Rajput, Srinivas Ambala, Mrunal Swapnil Aware, Wankhede Vishal Ashok, Yatin Gandhi, and Imran Memon	
Chapter 14	Privacy-Preserving Machine Learning on Non-Co-Located Datasets Using Federated Learning: Challenges and Opportunities	314
	Jyoti L. Bangare, Nilesh P. Sable, Parikshit N. Mahalle, and Gitanjali Shinde	
Chapter 15	Deep Learning Method for Hyperspectral Image Classification	336
	Parul Bhanarkar and Salim Y. Amdani	
Chapter 16	Toward Smarter Industries: Security Framework Using Attribute-Based Encryption and Systematic Solutions	355
	Shruti and Shalli Rani	
Index		379

List of Figures and Tables

Figure 1.1	Internet of Things
Figure 1.2	Layers of IoT architecture
Figure 1.3	IoT architecture
Figure 1.4	Underground WSNs7
Figure 1.5	Multimedia WSNs
Figure 1.6	Underwater WSNs
Figure 1.7	Wireless sensor network10
Figure 1.8	Wireless sensor network topologies11
Figure 1.9	Point-to-point network11
Figure 1.10	Star network
Figure 1.11	Tree network13
Figure 1.12	Smart city
Figure 1.13	IoT in healthcare
Figure 1.14	Smart farming
Figure 1.15	Smart homes19
Figure 1.16	Applications of IoT and WSN
Figure 1.17	Edge computing
Figure 1.18	AI and ML24
Figure 2.1	Basic architecture of an IoT system
Figure 2.2	Benefits of IoT in every field
Figure 2.3	An illustration of sustainable IoT using solar energy to power IoT nodes
Figure 2.4	Major contributing factors of sustainable IoT devices40
Figure 2.5	Reducing the carbon footprint using sustainable approaches
Figure 2.6	Key strategies for increasing energy efficiency
Figure 2.7	Contribution of 5G technology to lowering the carbon footprint
Figure 2.8	Two contributing factors for sustainable development

Figure 2.9	Application areas of IoT	53
Figure 2.10	Benefits of IoT in agriculture with SDGs.	55
Figure 2.11	Benefits of IoT in healthcare with SDGs.	56
Figure 2.12	Some of the latest developments of IoT-enabled healthcare products.	57
Figure 2.13	IoT in the smart city with the sustainable development goals (SDGs) of the United Nations	58
Figure 2.14	IoT-based manufacturing industries with SDGs of the United Nations.	59
Figure 3.1	IoT-WSN integrated framework	67
Figure 3.2	IoT-WSN framework with cloud infrastructure	78
Figure 4.1	Relationship between AI, ML, and DL.	89
Figure 4.2	The working of AI	90
Figure 4.3	AI principles	90
Figure 4.4	Use of AI data mining.	92
Figure 4.5	Techniques of AI.	93
Figure 4.6	ML classification algorithms.	94
Figure 4.7	Comparison of the accuracy of ML classification algorithms	94
Figure 4.8	DL classification algorithms	95
Figure 4.9	Comparison of DL classification algorithms	95
Figure 4.10	Computer vision	96
Figure 4.11	AI-powered IoT	98
Figure 4.12	Steps for AI-IoT.	99
Figure 4.13	Applications of AI-IoT	105
Figure 5.1	Smart vehicles for clean mobility.	110
Figure 5.2	Vehicle-to-vehicle (V2V) communication	110
Figure 5.3	Vehicle-to-infrastructure (V2I) communication.	111
Figure 5.4	Vehicle-to-cloud (V2C) communication.	111
Figure 5.5	Vehicle-to-pedestrian (V2P) communication	112
Figure 5.6	Vehicle-to-grid (V2G) communication.	112
Figure 5.7	Role of blockchain technology in addressing these challenges.	115

Figure 5.8	Core principles of blockchain.	116
Figure 5.9	Components of blockchain.	118
Figure 5.10	Blocks, headers, and transactions in a blockchain.	119
Figure 5.11	Consensus algorithms	120
Figure 5.12	Types of blockchain	120
Figure 5.13	Cryptographic techniques used in blockchain	122
Figure 5.14	Merkle tree	123
Figure 5.15	Secure vehicle-to-vehicle (V2V) communication.	124
Figure 5.16	Trusted vehicle-to-infrastructure (V2I) communication	126
Figure 5.17	Immutable data logging and tamperproof records	128
Figure 5.18	Smart contract	130
Figure 5.19	Blockchain and IoT integration	135
Figure 5.20	Blockchain, smart contracts and AI integration	136
Figure 6.1	IoT-based smart transportation system	145
Figure 6.2	Smart transportation system	147
Figure 6.3	Design for a smart transportation system	149
Figure 6.4	Traffic optimization	151
Figure 6.5	Flowchart for traffic flow prediction	152
Figure 6.6	IoT-based smart transportation system	155
Figure 6.7	Outcome	158
Figure 6.8	Autonomous vehicles and traffic integration framework	159
Figure 6.9	Integration of mobility-as-a-service (MaaS) with a smart transportation system	161
Figure 7.1	Architecture for zone-based congestion control in VANET	169
Figure 7.2	Basic ICN architecture in VANET.	171
Figure 7.3	Communication model in information-centric networking (ICN).	172
Figure 7.4	ICN-based content delivery.	173
Figure 7.5	VANET machine learning model.	177
Figure 7.6	NDN using deep learning.	180
Figure 7.7	Collaborative filtering powered by AI in the edge cloud	180

Figure 7.8	CCN architecture.	182
Figure 8.1	Development of IoMT	191
Figure 8.2	Architecture of IoMT	192
Figure 8.3	Types of IoMT devices.	193
Figure 8.4	Different applications of IoMT.	196
Figure 9.1	General structure of a healthcare network.	205
Figure 9.2	Healthcare monitoring system (using both in-building and mobile antennas).	206
Figure 9.3	Patient monitoring and tracking in a hospital ward	208
Figure 9.4	Applications of a Recommender System	209
Figure 9.5	Overall structure of the Health Recommendation System (HRS).	210
Figure 9.6	The flow of information in MHealth.	211
Figure 9.7	Artificial neural network (ANN) and deep learning (DL) topologies are compared.	212
Figure 9.8	Deep learning applications in healthcare.	216
Figure 9.9	The machine learning (ML) process.	216
Figure 9.10	Categorization of machine learning (ML) algorithms.	217
Figure 9.11	Hierarchical representation of deep learning.	218
Figure 9.12	The architecture of a convolutional neural network	219
Figure 9.13	The deep belief network (DBN) framework	221
Figure 9.14	A representation of an autoencoder.	221
Figure 10.1	Clinical decision support system	226
Figure 10.2	Explainable deep learning models	229
Figure 10.3	Communication model in the CDS system.	230
Figure 10.4	Explainable deep learning model for clinical decision support	233
Figure 10.5	Integration of EDL methods into WSN and IoT	235
Figure 10.6	Precision	236
Figure 10.7	Recall	236
Figure 10.8	F1-Score	237
Figure 10.9	Accuracy.	237

List of Figures and Tables

Figure 10.10	Comparative evaluation of explainable deep learning models	238
Figure 11.1	Basic architecture of a traditional artificial neural network	244
Figure 11.2	Basic architecture of a deep neural network.	244
Figure 11.3	Basic architecture of an effective hybrid model with style-transfer learning	248
Figure 11.4	Basic architecture of federated learning	249
Figure 11.5	Basic architecture of convolutional neural networks	250
Figure 11.6	Basic architecture of recurrent neural networks	251
Figure 11.7	Basic architecture of long short-term memory model	251
Figure 11.8	Basic architecture of a convolutional-based autoencoder (AE)	252
Figure 11.9	Basic architecture of generative adversarial network	253
Figure 11.10	Opportunities in smart healthcare	256
Figure 11.11	Current challenges in IoT-based smart healthcare.	257
Figure 12.1	IoT and fog-cloud architecture	266
Figure 12.2	Requirements of 6G in IoT technology	275
Figure 12.3	IoT-cloud layered model	279
Figure 12.4	Standard fog computing architecture.	280
Figure 12.5	Components and functionalities of serverless computing	281
Figure 12.6	Components and functionalities of container-based scheduling	282
Figure 13.1	Overview of IoT-WSN architecture.	292
Figure 13.2	Working flow diagram of IoT-WSN architecture using blockchain technology.	293
Figure 13.3	Basic block diagram of IoT-WSN architecture	297
Figure 13.4	Overview of blockchain technology.	302
Figure 13.5	Block overview of proposed IoT-WSN architecture.	303
Figure 13.6	Basic diagram of blockchain-based IoT-WSN architecture	305
Figure 13.7	Block diagram of decentralization in IoT-WSN architecture compared to centralized architecture	305
Figure 14.1	Machine learning approaches for privacy preservation in IoT.	315

Figure 14.2	Federated learning approach.	316
Figure 14.3	Horizontal federated learning	318
Figure 14.4	Vertical federated learning.	319
Figure 14.5	Federated learning on non-co-located datasets	325
Figure 14.6	Flow diagram for federated learning with secure aggregation.	327
Figure 15.1	Hyperspectral image classification.	337
Figure 15.2	Integration of hyperspectral imaging (HSI) with IoT and WSN	340
Figure 15.3	Convolutional neural network (CNN) architecture for hyperspectral image classification	343
Figure 15.4	Recurrent neural network (RNN) architecture for hyperspectral image classification	344
Figure 15.5	Deep belief network (DBN) architecture for hyperspectral image classification	345
Figure 15.6	Precision.	349
Figure 15.7	Recall	349
Figure 15.8	F1-Score	349
Figure 15.9	Accuracy.	349
Figure 15.10	Comparative analysis	350
Figure 15.11	Object detection on hyperspectral images in wireless networks	351
Figure 16.1	Industry 4.0's various manufacturing sectors	356
Figure 16.2	Architecture of the attribute-based encryption (ABE) scheme	358
Figure 16.3	Characteristics of Industry 5.0	361
Figure 16.4	Opportunities of Industry 5.0.	362
Figure 16.5	Various applications of Industry 5.0.	363
Figure 16.6	Architecture of the Industrial Internet of Things (IIoT).	369
Figure 16.7	Outline of the proposed IIoT framework using the ABE model	371
Figure 16.8	Steps for obtaining a sustainable model in Industry 5.0	373
Table 1.1	Differences between WSN and IoT	13
Table 1.2	Edge Computing in IoT and WSN	23

List of Figures and Tables

Table 1.3	Tools for Blockchain	28
Table 2.1	Different Factors and Technologies Used for Making Sustainable IoT Systems	49
Table 3.1	Comparison of Sensor Types Utilized in Smart City Applications	70
Table 3.2	Protocols Used in Smart City Applications for Communication	76
Table 3.3	Comparative Study of Various Machine Learning Algorithms Used in an IoT-WSN Framework for Smart City Applications	81
Table 4.1	Comparison Table Based on AI Principles, Techniques and Applications	106
Table 6.1	Outcomes of the IoT-based smart transport system	157
Table 6.2	Integration of Autonomous Vehicles	160
Table 6.3	Integration of Mobility-as-a-Service (MaaS)	161
Table 7.1	Summary of Different Methods and Common Pitfalls	170
Table 7.2	Comparison Emphasizing the Key Traits of Machine Learning Methods	178
Table 7.3	Deep Learning/Machine Learning Analysis in Detail	181
Table 8.1	Differences between IoT and IoMT	189
Table 9.1	Summary of Deep Learning Algorithm Models	219
Table 10.1	Publically Available Datasets	232
Table 10.2	Analysis of Explainable Methods	235
Table 11.1	Comparison of DNN Approaches in Healthcare	245
Table 11.2	Parameter-Based DL and IoT Approaches	246
Table 11.3	State-of-the-Art Techniques for Diagnosing Brain Tumors	254
Table 11.4	State-of-the-Art Techniques for Diagnosing Brain Tumors	255
Table 11.5	State-of-the-Art Techniques for Diagnosing Brain Tumors	255
Table 12.1	Comparison between 6G and the Existing Communication Technologies	267
Table 12.2	Performance Analysis among the Existing Research	283
Table 13.1	Comparative Study of the Components of a Decentralized IoT-WSN System	296
Table 15.1	Publically Available Hyperspectral Image Datasets	342

Table 15.2	Comparison of Deep Learning Techniques for Hyperspectral Image Classification	346
Table 15.3	Pavia University Hyperspectral Dataset	347
Table 15.4	Experimental Results	348
Table 16.1	Differences between Industry 4.0 and Industry 5.0	360
Table 16.2	Differences between the use of ABE in Industry 4.0 and Industry 5.0	367

Preface

This book presents the integration of the Internet of Things (IoT) and Wireless Sensor Networks (WSNs) for smart applications. It includes the emerging technologies of IoT and WSN, the latest innovations, trends, and concerns, as well as practical challenges encountered, and solutions adopted.

At present, all of us are connected through a large number of sensor nodes, smart devices, and wireless terminals. For these IoT devices to operate seamlessly, the WSNs need to be robust. To support huge volumes of data for information exchange, resource optimization and energy efficiency play an important role. The role of machine learning (ML), artificial intelligence (AI), blockchain, caching, deep learning (DL) in optimum network performance will lead to smarter applications of the future. A wide range of communication paradigms pertaining to smart applications, which includes smart cities, smart healthcare, smart transportation, and intelligent data processing, are also discussed.

This book also covers a thorough convergence of IoT and WSN for different use case scenarios. It is revealed that how a set of key enabling technologies (KET) related to network management, resource control, data sensing, decision-making, and automation can be efficiently integrated in one system. The technological advancement is beneficial for real-time applications involving a massive number of devices. The technology can be extremely useful for Industrial IoT (IIoT) and Industry 5.0. The vision of intelligent transportation which involves connected vehicles and the road side units can be made a reality through the intelligent integration of IoT and WSN. This convergence finds usage in smart healthcare where through the intelligent connection of the devices, the patients can be treated or monitored remotely for telemedicine or telesurgery applications. The resource control mechanism enables energy efficient communication for sustainable development. This book provides step-by-step guidance to readers, starting from the technological background to real-time implementation involving different use-case scenarios.

MATLAB[®] is a registered trademark of The Math Works, Inc. For product information, please contact:

The Math Works, Inc. 3 Apple Hill Drive Natick, MA 01760-2098 Tel: 508-647-7000 Fax: 508-647-7001 E-mail: info@mathworks.com Web: http://www.mathworks.com

Acknowledgments

First and foremost, I would like to thank my husband, **Shvet Jain**, for standing beside me throughout my research career so far. He has been my motivation for continuing to improve my knowledge and move forward in my career. I dedicate this book of mine to him.

Moreover, without the prayers and best wishes of my parents, my sister, and both of my sons, none of my achievements would have been possible.

I am also thankful to the editorial team and my co-editor, **Dr. Ashu Taneja**, who really helped me in every aspect of the preparation of this book. Her prompt response and care of the literature and contributions was remarkable. She is indeed a great and responsible researcher.

I would also like to thank each and every one behind the completion of this book, who were a great help, and without their efforts, it wouldn't have been possible to publish this book.

Last, but not least, my gratitude is due to my inspiration **Dr. Archana Mantri**, Vice Chancellor, Chitkara University, Punjab, for her trust in me and for giving me the confidence to make my efforts successful in each and every field.

Editors

Shalli Rani, PhD, has been pursuing a postdoctoral fellowship from Manchester Metropolitan University, UK, since July 2022. She is a professor at Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India. She has more than 18 years of teaching experience. She received an MCA degree from Maharishi Dyanand University, Rohtak in 2004, the M.Tech degree in Computer Science from Janardan Rai Nagar

Vidyapeeth University, Udaipur in 2007, and a PhD degree in Computer Applications from Punjab Technical University, Jalandhar in 2017. Her main areas of interest and research are Wireless Sensor Networks, Underwater Sensor Networks, Machine Learning, and Internet of Things. She has published/accepted/presented more than 100 papers in international journals/conferences (SCI & Scopus) and edited/authored five books with international publishers. She is serving as the associate editor of *IEEE Future Directions Letters*. She served as a guest editor in *IEEE Transaction on Industrial Informatics*, Hindawi WCMC, and Elsevier IoT Journals. She has also served as reviewer in many repudiated journals of IEEE, Springer, Elsevier, IET, Hindawi, and Wiley. She has worked on Big Data, Underwater Acoustic Sensors, and IoT to show the importance of WSN in IoT applications. She received a young scientist award in February 2014 from Punjab Science Congress, Lifetime Achievement Award and Supervisor of the Year Award from Global Innovation and Excellence, 2021.

Ashu Taneja, PhD, is an associate professor at Chitkara University Research and Innovation Network (CURIN), Chitkara University, Punjab, India. She has a PhD in Electronics and Communication Engineering with 12 years of experience serving industry, teaching, education, and research. She received her Master of Engineering (M.E.) degree from Thapar University, Patiala, Punjab in 2011 and Bachelor of Technology (B.Tech) degree from Kurukshetra University, Haryana, in 2008. She has authored more than 50 publications in international journals/conferences (SCI & SCOPUS) and

she has filed more than 20 patents. Dr. Taneja has also served as a reviewer in many reputable journals from IEEE, Springer, Elsevier, IET, Hindawi, and Wiley. Her research interests include Next Generation Wireless Networks, IoT, 5G, 6G, Energy Harvesting, User Selection, Antenna Selection, Intelligent Reflecting Surfaces, and Vehicular Communication.

Mainak Adhikari

Indian Institute of Information Technology Lucknow, India

Satyam Kumar Agrawal

Centre for In Vitro Studies and Translational Research Chitkara School of Health Sciences, Chitkara University Rajpura, India

Syed Hassan Ahmed California State University

Long Beach, USA

Samir N. Ajani

Department of Computer Engineering St. Vincent Pallotti College of Engineering and Technology Nagpur, India

Srinivas Ambala

Pimpri Chinchwad College of Engineering Pune, India

Salim Y. Amdani Babasaheb Naik College of Engineering Pusad, India

Ankita Sharma

Chitkara University Institute of Engineering and Technology Chitkara University Rajpura, India

Wankhede Vishal Ashok

Department of Electronics and Telecommunication Engineering S.H.H.J.B. Polytechnic Nashik, India

Rashmi Ashtagi

Department of Computer Engineering Vishwakarma Institute of Technology Pune, India

Mrunal Swapnil Aware

Computer Science and Engineering MIT World Peace University Pune, India

Lalit Kumar Awasthi

National Institute of Technology Uttarakhand, India

Jyoti L. Bangare

Department of Computer Engineering Vishwakarma Institute of Information Technology Pune, India

Ali Kashif Bashir

Manchester Metropolitan University Manchester, UK

Parul Bhanarkar

Babasaheb Naik College of Engineering Pusad, India

Anup Bhange

Department of Computer Science and Engineering KDK College of Engineering Nagpur, India

Ashwin S. Chatpalliwar

Department of Industrial Engineering Shri Ramdeobaba College of Engineering and Management Nagpur, India

Sarika T. Deokate

Department of Computer Engineering Pimpri Chinchwad College of Engineering Pune, India

Imali Dias

Faculty of Science, Engineering, and Built Environment Deakin University, Burwood Campus Melbourne, Australia

Yatin Gandhi

Competent Softwares Pune, India

Namrata Gawande

Department of Computer Engineering Pimpri Chinchwad College of Engineering Pune, India

Vaibhav V. Gijare

Department of Electronics and Telecommunication School of Electrical Engineering MIT Academy of Engineering, Alandi (D) Pune, India

Krishan Kumar Goyal

Faculty of Computer Application R.B.S. Management Technical Campus Agra, India

Lipika Gupta

Department of Electronics and Communication Engineering Chitkara University Institute of Engineering and Technology Rajpura, India

Shubham Gupta Rayat-Bahra University Mohali, India

Abhishek Hazra National University of Singapore Singapore

Sushmita Sunil Jain Centre for In Vitro Studies and Translational Research Chitkara School of Health Sciences Rajpura, India

Vinit Khetani

Cybrix Technologies Nagpur, India

Saurabh Manoj Kothari

College of Engineering Design and Physical Sciences Brunel University Uxbridge, UK

Sanjivani Hemant Kulkarni

Computer Science and Engineering MIT World Peace University Pune, India

Shailesh V. Kulkarni

Department of Electronics and Telecommunication Engineering Vishwakarma Institute of Information Technology Pune, India

Kamini Lamba

Chitkara University Institute of Engineering and Technology Rajpura, India

Suresh Limkar

Department of Artificial Intelligence and Data Science AISSMS Institute of Information Technology Pune, India

xxii

Parikshit N. Mahalle

Department of Artificial Intelligence and Data Science Vishwakarma Institute of Information Technology Pune, India

Jyoti Maini

Chitkara University Institute of Engineering and Technology Rajpura, India

Shivani Malhotra

Department of Electronics and Communication Engineering Chitkara University Institute of Engineering and Technology Rajpura, India

Sulakshana Sagar Malwade

Department of Computer Science and Engineering School of Polytechnic and Skill Development MIT World Peace University Pune, India

Deepak T. Mane

Department of Computer Engineering Vishwakarma Institute of Technology Pune, India

Bhushan M. Manjre

Department of Computer Science and Engineering G. H. Raisoni Institute of Engineering and Technology Nagpur, India

Imran Memon Bahria University Islamabad, Pakistan

Rais Allauddin Mulla

Department of Computer Engineering Vasantdada Patil Pratishthan College of Engineering and Visual Arts Mumbai, India

Rakhi Mutha

Amity University Jaipur, India

Neeraj

Chitkara University School of Engineering and Technology Solan, India

Shraddha Ovale

Department of Computer Engineering Pimpri Chinchwad College of Engineering Pune, India

Namita Parati

Department of Computer Science and Engineering, Maturi Venkata Subba Rao (MVSR) Engineering College Hyderabad, India

Mahendra Eknath Pawar

Department of Computer Engineering Vasantdada Patil Pratishthan College of Engineering and Visual Arts Mumbai, India

Sashikanta Prusty

Department of Computer Science and Engineering Siksha 'O' Anusandhan (Deemed to be University) Bhubaneshwar, India

Satpalsing D. Rajput Pimpri Chinchwad College of

Engineering Pune, India

Shalli Rani Chitkara University Institute of Engineering and Technology Rajpura, India

Thippa Reddy College of Information Science and

Engineering Jiaxing University Jiaxing, China

Nilesh P. Sable

Vishwakarma Institute of Information Technology Pune, India

Vyasa Sai

Intel Corporation Santa Clara, USA

Parul Saini

Department of Electronics and Communication Engineering Chitkara University Institute of Engineering and Technology Rajpura, India

Raju M. Sairise

Yadavrao Tasgaonkar College of Engineering and Management Pune, India

Mahendra Balkrishna Salunke

Department of Computer Engineering Pimpri Chinchwad College of Engineering and Research Pune, India

Farhadeeba Shaikh

Department of Computer Science and Engineering School of Polytechnic and Skill Development MIT World Peace University Pune, India

Pooja Sharma

Rayat-Bahra University Mohali, India

Gitanjali Shinde

Vishwakarma Institute of Information Technology Pune, India

Shrinivas T. Shirkande

Department of Computer Engineering S.B. Patil College of Engineering Pune, India

Ashu Taneja

Chitkara University Institute of Engineering and Technology Rajpura, India

Basant Tiwari Hawassa University Hawassa, Ethiopia

Kishor S. Wagh

Department of Computer Engineering AISSMS Institute of Information Technology Pune, India

xxiv

1 Introduction to IoT and WSN

Jyoti Maini and Shalli Rani

1.1 INTRODUCTION

Internet of Things (IoT) and Wireless Sensor Networks (WSNs) are two closely related technologies that are transforming the way we collect and analyze data in a wide range of industries. IoT is a connected arrangement of various devices, vehicles, and other objects installed with different sensors and software that empower data collection and data interchange with other systems. These data can then be used to inform decision-making, enhance processes, and improve efficiency across a wide range of applications.

WSN, on the other hand, is a specific type of IoT network that is designed to collect data from a large number of small sensors spread over a wide area. These can be used to analyze a variety of environmental factors, such as temperature, humidity, and pressure, and can transmit these data wirelessly to a central hub or data collection system.

The main distinction between IoT and WSN is that IoT is a more general term that encompasses a large count of devices and applications, while WSN is a specific type of IoT network that is focused on collecting data from sensors in a wireless, distributed manner. WSNs are often used in many areas such as monitoring environmental factors, industrial automation, and smart cities, where it is important to collect data from many sensors over a wide area.

Together, IoT and WSN are revolutionizing industries such as agriculture, transportation, manufacturing, and healthcare by enabling real-time operational insights, enabling predictive maintenance, and optimizing resource utilization. The potential benefits of these technologies are vast, and as they are progressive, they will have an increasingly crucial role in developing the future of the global economy.

1.1.1 INTERNET OF THINGS

IoT is described as the interconnection of physical objects, home appliances, vehicles, and other products that incorporate electronics, software, sensors, and connectivity that allow these items to connect and exchange data through the Internet (Figure 1.1). IoT devices encompass everything from smartwatches and fitness trackers to home security systems, thermostats, and even cars. IoT allows these devices to communicate with each other and with other systems, providing new ways to monitor and control various aspects of daily life [1].

The potential benefits of IoT include increased efficiency, improved safety, and reduced costs across various industries, from manufacturing and agriculture

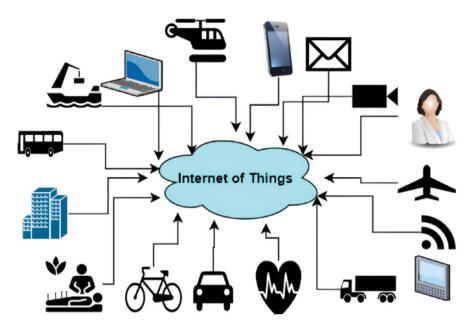


FIGURE 1.1 Internet of Things.

to healthcare, transportation, and smart homes. However, IoT also raises concerns about potential abuse and unintended consequences, as well as privacy and data security.

The adoption rate of IoT devices has increased rapidly over the last few years and is expected to continue to succeed remarkably. According to Statista's report, the number of IoT devices worldwide will reach to approx. 76 billion by 2025, from 27 billion in 2019 [2]. This growth can be attributed to several factors, including:

- 1. Advancements in technology: The rapid development of new technologies such as low-power wireless networks, miniaturized sensors, and cloud computing have made it easier and more affordable to deploy IoT devices.
- Cost reduction: The cost of IoT devices has decreased significantly over the years, making them more approachable to an ample range of industries and applications.
- 3. *Increased connectivity:* The widespread availability of high-speed Internet and the increasing adoption of 5G technology have made it easier for IoT devices to communicate and share data.
- 4. *Business benefits:* IoT devices offer numerous benefits to businesses, including improved efficiency, productivity, and cost savings, which have encouraged their adoption.
- Consumer demand: The growing demand for connected devices and smart home technologies has also contributed to the increased adoption of IoT devices.

It will become increasingly important to address concerns such as security, privacy, and interoperability to ensure that these devices are used safely and responsibly, as the number of IoT devices continues to grow.

1.1.1.1 Key Features of IoT

Here are few of the features of IoT [3, 4]:

- *Connectivity*: IoT devices are often connected to the Internet to be able to exchange data and interact with other devices.
- *Sensors and actuators*: These devices often are embedded with sensors that collect data about various factors such as temperature, environment, etc. as well as actuators that can control and respond to that environment.
- *Data analytics*: IoT devices generate large amounts of data that can be analyzed to generate insights and improve decision-making, optimize processes, automate tasks, and enhance overall productivity and efficiency.
- *Machine learning (ML) and artificial intelligence (AI)*: IoT can incorporate ML and AI algorithms to automate tasks and improve efficiency.
- *Interoperability*: IoT devices are designed to work together and with other systems, allowing for seamless integration and interoperability, which means you can connect anything to your communications infrastructure and global information.
- *Inconsistent or non-uniformity*: IoT system is based on various networks and hardware platforms. These can communicate with other devices or service platforms with varying sizes and functionality over various networks, meaning IoT devices are inconsistent.
- *Dynamic and self-adapting*: IoT devices need to adapt dynamically depending on the situation. For example, a camera can capture data depending on the lighting conditions. It automatically switches to night mode or day mode. It is a self-adaptive technique.
- *Security*: IoT devices must be secure to protect against cyberattacks and ensure the privacy of user data.
- *Scalability*: IoT systems can be scaled up or down to accommodate changes in demand and the addition of new devices and applications.

1.1.1.2 Layers of IoT Architecture

The IoT architecture typically consists of several layers that work together to enable the connectivity and functionalities of IoT devices and systems [5]. Here is a brief overview of each layer:

- *Perception layer*: This layer consists of the sensors and various physical devices that collect data about the environmental parameters, such as temperature, light, sound, or motion.
- *Network layer*: This layer connects devices and sensors to each other and to the Internet, typically using wireless protocols such as Wi-Fi, Bluetooth, or Zigbee.

WSN and IoT

- *Middleware layer*: This layer handles the interaction between the devices and the applications that use the data they generate. It also provides services such as data storage, messaging, and security.
- *Application layer*: This layer consists of the software applications and services that analyze and use the data generated by the devices. Examples of applications include smart home systems, healthcare monitoring tools, or industrial control systems.
- *Business layer*: Under this layer, the business models and processes are included that drive the development and deployment of IoT solutions. It also includes the governance and management of the data generated by IoT systems.

The architecture of IoT is designed for collecting, processing, and analyzing data which has been generated by various physical devices and sensors, enabling the development of applications and services that improve efficiency, security, and quality of life across various industries and applications.

Here is a simplified diagram of the architecture of IoT (Figure 1.2), showing the different layers and their interconnections:

1.1.1.3 Building Blocks of IoT Architecture

IoT architecture, shown in Figure 1.3, consists of four building blocks. These are (1) Sensors, (2) IoT gateways and frameworks, (3) Cloud server system, and (4) Mobile applications.

- 1. *Sensors*: Sensors obtain information from the environment or specific locations and are ubiquitous. For example, an IoT gateway allows a temperature sensor to send room temperature. Sensors can collect a wide range of data, including location, weather and environmental conditions, machinery in operation, engine maintenance information, human body information, and vehicle vital signs.
- 2. *IoT Gateways and frameworks*: The network of sensor nodes is linked to the Internet through gateways. It is an entrance or a path to the Internet

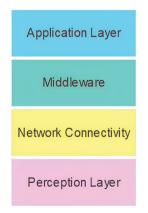


FIGURE 1.2 Layers of IoT architecture.

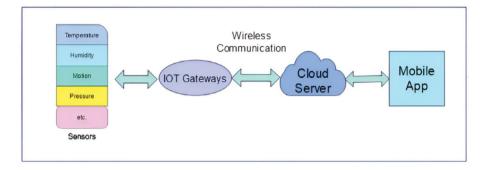


FIGURE 1.3 IoT architecture.

for all the things and devices that we want to interact with. It collects data from sensors and sends it to the Internet infrastructure to establish connectivity.

- 3. Cloud server system: The data transmitted over the gateway is securely processed and stored in cloud servers, i.e. in data centers. The processed data is then utilized to execute intelligent actions that make all of our gadgets intelligent. In the cloud, all analysis and decision-making are done by keeping the user's convenience in mind.
- 4. Mobile applications: Thanks to an easy-to-use smartphone application, customers can remotely manage and monitor devices such as interior thermostats and car engines. These applications deliver critical information directly from the cloud on your smartphone or tablet. Utilizing the following analytics, the information is displayed to the customer in the form of graphs, bar charts, and pie charts, so that users can easily understand the scenario. We may pass the signals to guide the sensors to change their default settings via our mobile application. For example, adjust the default temperature of AC and many other default values.

1.1.2 WSN – INTRODUCTION

WSN is a special kind of network consisting of a large number of tiny, low-power, inexpensive, and autonomous sensor nodes that are connected to each other with wireless facilities. These sensor nodes are equipped with various capabilities such as acquisition, processing, and communication that allow them to collect and transmit data from the physical environment to a central location [6].

WSNs are typically used for monitoring and controlling physical environments, such as temperature, humidity, pressure, light, sound, speed, direction and motion, pollutant levels, chemical concentration, vibrations, and many more such conditions. They are mostly used in different applications areas, such as environmental monitoring, industrial automation, home automation, healthcare monitoring, and military surveillance.

WSNs are characterized by their ability to function in harsh and remote environments, low power consumption, self-organization, and self-healing capabilities. However, WSNs also face several challenges, such as limited bandwidth, limited energy, and limited processing capabilities, as well as security and privacy concerns [7].

Therefore, WSNs provide an economical and flexible solution for collecting and transmitting data from physical environments, enabling real-time tracking and control of various applications.

1.1.2.1 Features of WSN

WSNs are designed to have several features that enable them to perform their intended functions [8]. Here are some of the key features of WSNs:

- 1. *Low-power consumption*: WSNs are designed to consume minimal power, allowing the nodes to operate for extended periods of time on limited energy resources such as batteries.
- 2. *Small size*: The nodes in a WSN are typically small, allowing them to be deployed in large numbers and in tight spaces.
- 3. *Wireless communication*: The nodes in a WSN communicate with each other using wireless communication protocols, allowing them to be deployed in areas where wired communication is not practical or feasible.
- 4. *Self-organization*: WSNs are designed to self-organize, allowing the nodes to automatically establish and reconfigure their network connections.
- 5. *Autonomous operation*: The nodes in a WSN are typically autonomous and can operate independently of human intervention.
- 6. *Low cost*: The nodes in a WSN are typically low cost, allowing them to be deployed in large numbers and over a wide area.
- 7. *Fault tolerance*: WSN is designed to be fault tolerant and can continue to function even if some nodes fail or are damaged.
- 8. *Data processing and analysis*: WSNs are designed to perform data processing and analysis locally on the nodes, allowing them to filter and compress the data before transmitting it to the central location.

These features of WSNs enable them to be used in a large variety of applications, from environmental monitoring to industrial automation, and from healthcare to military surveillance.

1.1.2.2 Types of WSN

There are several types of WSNs that can be classified based on their applications, communication protocols, power source, and topology [6, 9]. Here are some common types of WSNs:

1. *Environmental sensor networks*: An environmental sensor network is a system of interconnected sensors designed to monitor and collect data about various aspects of the environment. These sensors are typically deployed in different locations to gather information on parameters such as temperature, humidity, air quality, noise levels, pollution levels, and other environmental factors. The sensors in the network continuously measure and record data, which is then transmitted wirelessly or through a wired connection to a

central server or data repository for analysis. The collected data can be used to monitor and assess environmental conditions in real-time, detect patterns, identify trends, and make informed decisions regarding environmental management and resource allocation. Environmental sensor networks find applications in various fields, including climate monitoring, urban planning, agriculture, industrial monitoring, and disaster management. They play a crucial role in improving environmental sustainability, enhancing public health and safety, and supporting evidence-based decision-making to address environmental challenges.

- 2. Terrestrial WSNs (TWSNs): These include many wireless sensor nodes, which can be used as unstructured or structured. Nodes are randomly distributed in unstructured mode staying within the allocated destination area [6, 9]. In pre-planned or structured mode, optimized placement, grid placement, 2D and 3D placement models are considered [6]. These networks are above ground and can get activated through solar cells. Energy can be saved by minimizing latency, optimizing routing, and using low duty cycle operation. TWSNs find applications in diverse fields, including environmental monitoring, agriculture, infrastructure monitoring, wildlife tracking, and disaster management. They provide real-time or near real-time data about the monitored parameters, allowing for better understanding, analysis, and decision-making.
- 3. Underground WSNs (UWSNs): The entire network is underground, as they are effectively used to monitor conditions underground. However, a terrestrial sink node is used to transfer information to the base station. Challenges in UWSNs include limited power supply, harsh underground conditions, network topology planning, and communication reliability (Figure 1.4). Researchers

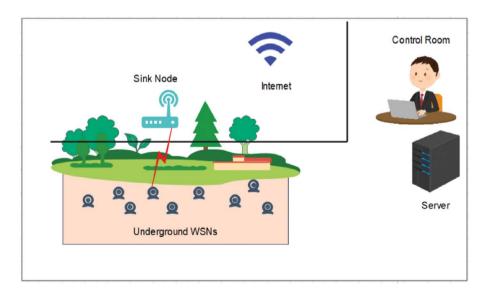


FIGURE 1.4 Underground WSNs.

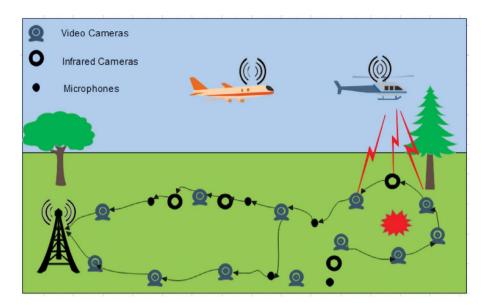


FIGURE 1.5 Multimedia WSNs.

and engineers continue to explore innovative solutions to improve the efficiency, range, and resilience of communication in these networks. These sensor networks are more expensive. The devices and machines used require proper maintenance.

- 4. *Multimedia WSNs (MWSNs)*: The nodes in these networks collect information in the form of pictures, audio, and video by connecting to cameras and microphones. They can keep a check on various actions as they occur and display the events visually (Figure 1.5). These nodes are interconnected via wireless links for the purposes of data retrieval and data compression. The latest techniques of data processing and compressing are used to compress the data. The compressed audio and video data can also be sent over these sensor networks, to reduce the power consumption and high bandwidth. Research and development in MWSNs focus on improving multimedia data processing algorithms, developing energy-efficient communication protocols, and enhancing the overall network performance to enable reliable and real-time multimedia data collection and transmission.
- 5. Mobile sensor networks (MSNs): Mobile networks are not settled at one location but can shift from one place to another. These are networks consisting of mobile nodes equipped with sensors that can move autonomously or be controlled remotely. Unlike traditional sensor networks where the sensors are stationary, MSNs allow for dynamic data collection and monitoring capabilities in various environments. They can easily connect with your surroundings. Their main benefit is to provide better area coverage, and better channel capacity. These MSNs are more adaptable when compared to other static sensor network systems. These WSNs are used in applications

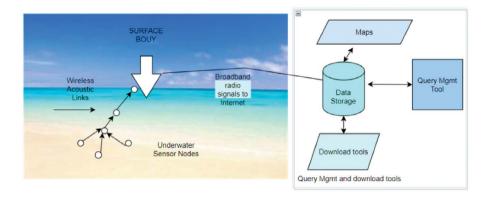


FIGURE 1.6 Underwater WSNs.

where the sensors are mobile, such as in vehicle tracking, animal tracking, and search and rescue operations.

6. Underwater sensor networks (UWSNs): The wireless underwater system consists of devices or sensor nodes installed underwater. These WSNs are used to monitor and collect data in underwater or aquatic environments such as oceans, lakes, and rivers (Figure 1.6). These vehicles are mostly used to collect information from sensor nodes. These consist of small, battery-powered sensor nodes to measure parameters such as water temperature, salinity, pressure, pH levels, dissolved oxygen, or the presence of pollutants. These nodes communicate with each other and with a surfacebased sink node or base station to transmit the collected data. Long propagation delays and sensor failures are major challenges for these communication systems, and the batteries in these WSNs are limited and cannot be recharged. Therefore, various technologies have been evolved to solve this problem of energy utilization and conservation. Underwater communication in UWSNs faces challenges due to the features of the underwater medium, including high attenuation, limited bandwidth, multipath fading, and the requirement for specialized communication techniques. Acoustic waves are commonly used for long-range communication in UWSNs, although optical and electromagnetic methods can be employed for shortrange communication in clear water.

1.1.2.3 How It Works

A WSN is a set of special devices called sensors that are used to monitor and record various environmental conditions and store this data in a central location.

A WSN has multiple nodes. These nodes are portable, small-sized detection stations. Each sensor node consists of a transducer or sensor, transceiver, microcontroller, and power supply. The transducer detects changes in your physical condition and produces an electrical signal. These signals are sent to a microcomputer for further processing. The microcomputer transmits signal to the receiving node and data is then sent to the computer over the Internet (Figure 1.7).

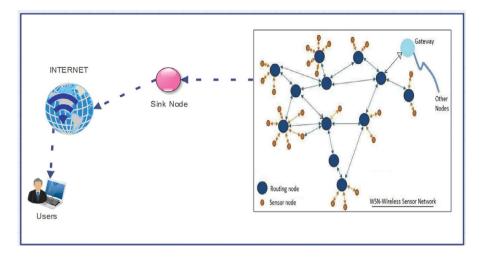


FIGURE 1.7 Wireless sensor network.

1.1.2.4 WSN Topologies

The nodes in WSN are arranged in geometric representations, called topologies [6, 9, 10]. The most common sensor network topologies are as follows (Figure 1.8):

- 1. Point-to-point (dedicated) network
- 2. Star network
- 3. Tree network
- 4. Mesh network
- 1. *Point-to-point (dedicated) network topology*: In dedicated topology, the nodes can communicate directly with each other. There is only one data communication path, realizing highly secure communication. Since there is no central hub, each node acts as both client and server (Figure 1.9).
- 2. *Star network topology*: In a star topology, communication takes place through a central hub and in contrast to point-to-point topology, direct communication between sensor nodes is not possible. Hubs act as servers and nodes act as clients (Figure 1.10).
- 3. *Tree network topology*: In tree topology, the central hub performs as a root node or parent node. Each node is connected to the previous higher node, and finally connects to the root node (Figure 1.11). The leading advantages of this topology are that the network is easy to expand, and errors can be easily detected. However, it has the drawback of being heavily dependent on the base cable. If the base cable cracks or breaks, the entire network collapses. The data is moved back from the leaf node to the parent node and finally to the root node.
- 4. *Mesh network topology*: A mesh network allows all nodes to interact directly with each other without relying on a central hub. Data can be moved from one node to another. This is the most reliable network communication

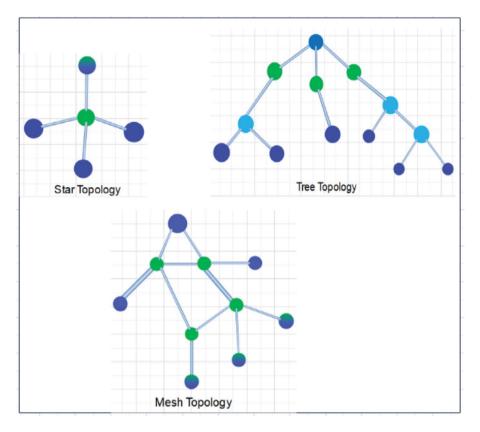


FIGURE 1.8 Wireless sensor network topologies.

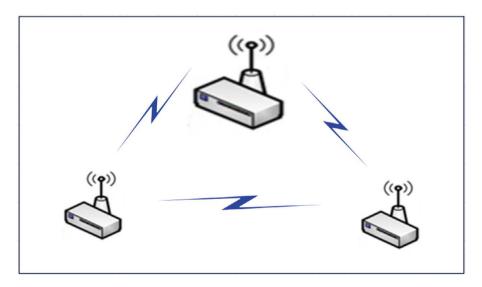
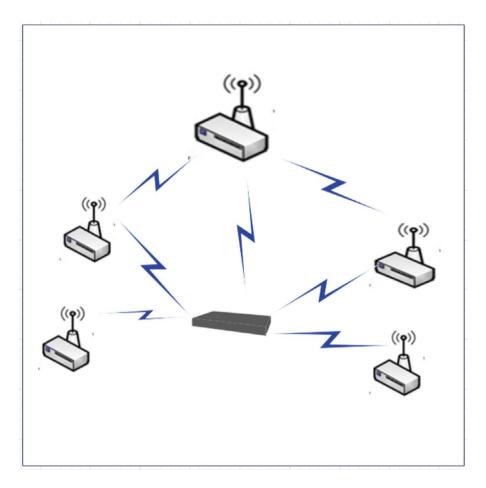



FIGURE 1.9 Point-to-point network.

structure as it has no single failure point. However, this complicated structure consumes a lot of power.

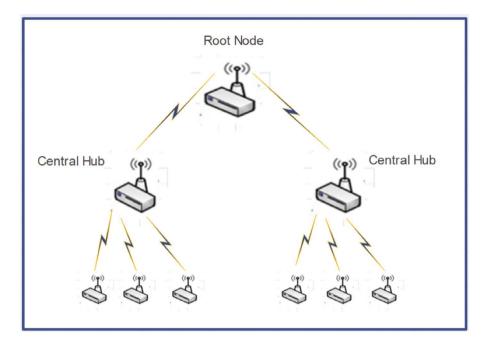

1.1.2.5 Differences between Wireless Sensor Network and Internet of Things

Table 1.1 shows the differences between WSN and IoT.

1.1.3 CONVERGENCE OF IOT AND WSN

The convergence of the IoT and WSNs is becoming increasingly common and important. This convergence involves combining the data collection capabilities of WSNs with the communication and data processing capabilities of IoT systems [12, 13].

Combining WSNs and IoT can enable more efficient, intelligent, and scalable data collection and analysis in a variety of applications. For example, WSNs can be used

to collect data from remote or harsh environmental conditions, while IoT can provide cloud-based processing and storage capabilities for the collected data.

It is a natural evolution of both technologies. The two technologies have many similarities, including the ability to collect and transmit data from the physical environment, low power consumption, and wireless communication. The convergence of

TABLE 1.1 Differences between WSN and IoT

Wireless Sensor Network

- WSN is anything that connects to a wireless network to collect data or monitor the environment.
- WSN consists of a network of a large number of tiny low-power devices called nodes that communicate through wireless channels for information sharing.
- gateway.
- Routing protocols in WSN include, DSR, CTP, PEGASIS, LEACH, SEP, AODV, OLSR, SPIN, and TEEN.

Internet of Things

IoT means WSN + Internet + Cloud Storage + Mobile/Web Applications.

IoT consists of a gateway that is used to connect the devices to internetworks (using switches, routers, Access Points, etc.).

WSN follows IPv4 and it has a sink node but no IoT follows IPv6 on the sensor network (802.15.4 MAC/PHY) and IPv4 on the internetwork part [11]. Routing protocols in IoT include, RPL, 6LoWPAN, MQTT-SN, CoAP, AODV, BLE Mesh, and Zigbee.

these technologies has led to the creation of new applications and opportunities in various domains, including industrial automation, healthcare, environmental monitoring, and smart cities.

One of the major advantages of the convergence of IoT and WSN is the capability to integrate large-scale networks with local sensor networks. This integration enables the collection and analysis of data from multiple sources, providing a better and improved view of the physical environment. For example, a smart city network can use IoT devices and WSNs to monitor traffic flow, air quality, and noise pollution, providing a better understanding of the city's environmental conditions.

Another benefit of this combination is the ability to reduce power consumption and increase the lifespan of the network. By using WSNs for local sensing and IoT devices for data aggregation and communication, the network can be optimized for low power consumption, reducing the need for frequent battery replacements.

It also poses several challenges, such as interoperability, security, and power management. In order to fully realize the potential of this convergence, there needs to be standardization and coordination among different technologies and protocols. Additionally, security measures need to be implemented to protect the sensitive data collected and transmitted by WSNs and IoT devices. Finally, efficient power management strategies need to be developed to extend the lifespan of WSN nodes and IoT devices.

Therefore, the convergence of IoT and WSN is expected to drive innovation and create new opportunities for businesses and individuals alike. The ability to collect and analyze data from the physical environment in real-time has the potential to revolutionize or transform many different industries and domains, improving efficiency, safety, and quality of life, but it also requires careful planning, coordination, and implementation to ensure its success.

1.1.4 SUSTAINABLE INTEGRATION OF IOT AND WSN FOR SMART APPLICATIONS

The integration of the IoT and WSN can enable the development of smart applications that enhance sustainability in various domains. This integration enables seamless data exchange between IoT devices and sensors, enabling real-time monitoring, control, and analysis of physical systems. Sustainable IoT is an approach to designing and implementing IoT systems in a way that prioritizes sustainability and environmental responsibility. Smart applications that use sustainable IoT technology aim to reduce energy consumption, minimize waste and environmental impact, and promote social well-being [14, 15].

Here are some key considerations for designing sustainable IoT systems for smart applications: [16]

 Energy efficiency: One of the crucial considerations for sustainable integration is optimizing the energy consumption of IoT devices and sensors. WSNs typically operate on limited battery power, so energy-efficient protocols and algorithms should be employed to minimize energy consumption. Sustainable IoT systems should be designed to consume minimal power, using energy-efficient components and power management techniques and to explore energy harvesting techniques to minimize energy consumption. This includes using low-power sensors, such as sleep modes and wakeon-demand, duty cycling, adaptive sampling, and data aggregation that can help prolong the network's lifetime, and leveraging renewable energy sources for power generation, including solar or kinetic energy, that can also be used to power IoT devices.

- 2. *Recycling and waste reduction*: Sustainable IoT systems should be designed to minimize waste and promote recycling. This includes using recyclable materials in IoT devices, implementing take-back programs, and designing systems that can be easily upgraded or repurposed.
- 3. Data management and analytics: Efficient data management and analytics play a vital role in sustainable IoT. IoT generates a massive amount of data from various connected devices. Sustainable IoT systems should prioritize efficient data management, minimizing the amount of data transmitted and processed to reduce energy consumption, and implement data compression techniques, edge computing, and intelligent analytics to reduce data transmission and processing. Data compression and filtering techniques can be used to minimize data transfer, and edge computing enables data processing locally to the source node, reducing the need to transfer data to the cloud, thereby conserving energy and network bandwidth. WSNs can also employ data fusion techniques to combine data from multiple sensors and eliminate redundant information.
- 4. *Lifecycle analysis and circular economy*: Sustainable IoT systems should be designed with a lifecycle analysis approach and to support circular economy principles, taking into account the environmental impact of the system throughout its entire lifecycle, from manufacturing to disposal. Consider factors like manufacturing, deployment, operation, and end-of-life management. Promote circular economy principles by designing devices for ease of repair, upgradeability, and recycling to minimize waste and resource depletion.
- 5. *Smart resource management*: Use IoT for smart resource management to optimize resource consumption and reduce waste. Monitor and control energy usage, water consumption, and other resources in real-time, enabling efficient allocation and conservation. Therefore, by leveraging IoT and WSN, real-time data can be collected, analyzed, and used to make intelligent decisions that minimize waste, improve resource allocation, and reduce environmental impact.
- 6. *Social impact and inclusion*: Ensure that IoT solutions contribute to social well-being and inclusivity. Consider accessibility, privacy, and security aspects to protect user data and maintain trust. Develop solutions that address social challenges and provide equitable access to smart services for all.
- Collaboration and partnerships: Foster collaboration among stakeholders, including governments, industry, academia, and communities, to promote sustainable IoT initiatives. Encourage knowledge sharing, research, and development of sustainable practices and technologies.

- 8. *Interoperability and standardization*: IoT and WSN integration should adhere to interoperability standards to facilitate seamless communication between devices and systems from different vendors. Standardization efforts promote compatibility, reduce implementation complexity, and foster innovation within the IoT ecosystem.
- 9. Connectivity and communication: Seamless connectivity and reliable communication between IoT devices and WSN sensors are essential. Robust wireless communication protocols and networking architectures should be used to ensure efficient and uninterrupted data transmission. This enables the integration of diverse sensors and devices into a unified smart system.
- Standards and certification: Adhere to industry standards and certifications that promote sustainable practices in IoT. Certification programs, such as Energy Star, EPEAT, or LEED, can provide guidelines and benchmarks for sustainable IoT design, operation, and disposal.

Therefore, sustainable IoT for smart applications has the potential to create more efficient and environmentally responsible systems that can reduce energy consumption, minimize waste, and improve the sustainability of our society. By prioritizing sustainability in IoT design and implementation, we can create a more resilient and environmentally conscious future.

1.1.4.1 Applications Areas of IoT and WSN

IoT and WSN have a wide range of applications areas across various industries. These applications cover different domains, including the industrial sector, medical sector, agriculture, smart cities, security, and emergencies, etc. A few of application areas shown in Figure 1.16 have been discussed here:

- a. *Smart cities*: Building smart cities includes intelligent transportation systems [17], smart buildings, traffic jams [17, 18], waste management [19], intelligent lighting, smart parking, and city maps (Figure 1.12). This may incorporate a variety of functionalities such as AI-enabled IoT devices that can be used to track, control, and mitigate traffic congestion in smart cities [20]. Moreover, IoT will also enable the installation of intelligent street lighting that adapts to the weather. To realize an IoT smart city, it is necessary to utilize RFID and sensors. IoT for most systems such as parking meters, streetlights, sprinkler systems, etc. Many countries have plans to implement the IoT facilities.
- b. *Healthcare*: As [21] explains, enhanced and automated IoT devices are assisting in the transformation of healthcare systems. Other technologies that improve a range of activities, such as communicating reports with different persons and places, maintaining records, and administering medications. It significantly improves the transformation of the healthcare industry [21]. IoT applications offer benefits to health sector as it may be broadly classified as automated data gathering and analysis, person identity and authentication, and patient, employee, and asset monitoring (Figure 1.13). Moreover, authentication and identification reduce the requirement for