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Preface
The theory of elastic wave propagation is open to a large variety of areas of applica-
tions such as seismology, site characterization, nondestructive testing, medical image
processing, and among others. These vast areas of applications, which are sometimes
connected with scattering problems, are the result of its long history and growing the-
ory. The purpose of the book is to describe the theory and applications for graduate
students, researchers and engineers interested in elastic wave propagation.

Chapter 1 serves as an introduction to the theory of elastic wave propagation. We
first clarify the basic concept of the continuum mechanics together with the defi-
nition of the Euler and Lagrange approaches. In addition, we define the strain and
stress tensors using the modern style found in textbooks (Schutz, 1990). We try to
connect the physical understandings with mathematical definitions for these tensors.
Even today, it seems that there are not so many textbooks for the continuum me-
chanics concerned with the modern mathematical viewpoint of tensors. That is the
reason why we chose the above description of the strain and stress tensors. The tensor
algebra needed to understand the above content is provided in Appendix A.

We also introduce the Reynolds transport theorem to derive the equation of motion
for a continuum medium. We linearize the equation of motion assuming that the
motions in continuum media exhibit small-amplitude vibrations. The elastic wave
equation, the treatments and/or the investigations of which are the theme of the book,
is derived from the linearized equation above under the assumption that the medium
is isotropic.

At the end of this chapter, the reciprocity of the elastic wavefield is derived using
the Gauss divergence theorem. It may be true that the contents of this chapter seem
to be complex and difficult, readers are, however, just required to have the knowl-
edge of the strength of material, general mechanics, fluid mechanics, elementary of
calculus and linear algebra, which should be taught at the undergraduate level in the
engineering course.

In Chapter 2, we discuss the solutions for the elastic wave equation for a 3-D full
space. As preparations for the discussions in this chapter, we also derived solutions
for the scalar wave and Helmholtz equations. Solutions of the elastic wave equation
are discussed by decomposing the elastic wave equation into scalar wave equations
for P and S waves. The presence of the P and S waves for the elastic wavefield is
an important fact, which is verified by the properties of a vector field consisting of
irrotational and divergence-free components.

Green’s functions for the scalar wave, as well as the elastic wave equations, have
special standpoints for theoretical and numerical analyses since Green’s function
not only reveals the properties of wave propagation but also transforms the partial
differential equation into an integral equation. We present the explicit forms as well
as the derivation processes of Green’s functions for a 3-D full space in detail in §2.4.
The derivation of Green’s function by the use of the Dirac delta function and Fourier

xiii
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transform can be thought of as a basic skill in mathematical physics for graduate
engineering students. The basics for the Dirac delta function as well as the Fourier
transform to understand the above procedures are explained in Appendix B.

The coupling of the reciprocity of the wavefield obtained in Chapter 1 and Green’s
function yields a representation theorem for the solution of the elastic wavefield. The
representation theorem clarifies the relationship among the solution of the elastic
wave equation, the boundary values and body forces. A practical application of the
representation theorem for an engineering problem is presented in §4.1.

In Chapter 3, we discuss the solutions of the elastic wave equation for a 3D half-
space. We show the presence of three types of waves: P, SV, and the SH waves. The
interaction between P and SV waves is caused at the free boundary, whereas SH wave
exists independently from the P and SV waves. The presence of the Rayleigh wave
can be recognized based on the interaction of P and SV waves for a special case.

We also derived Green’s function for an elastic half-space. We find that deriva-
tion of the closed form of Green’s function for an elastic half-space is impossible. In
stead of the closed form, we derive Green’s function for an elastic half-space in the
form of a Fourier-Hankel transform. We introduced two types of historical approx-
imation methods for computing Green’s function. The approximation methods we
introduce are branch line integral and steepest descent path methods. Nowadays, it is
not difficult to compute Green’s function for an elastic half-space without using ap-
proximation methods. In this sense, the approximation methods for Green’s function
are sometimes thought to only have historical importance. We will see, however, that
the historical approximation approach has the potential to improve modern compu-
tational methods. This is discussed in the next chapter.

At the end of this chapter in §3.5, we introduce the modern viewpoint of mathe-
matics, which is the spectral theory of the operator to Green’s function for an elastic
half-space. According to §3.3, Green’s function can be expressed by the residue term
and branch-line integrals, respectively. These terms are unified in terms of the eigen-
functions of the point and continuous spectra using the spectral theory. We seek the
representation of Green’s function in terms of eigenfunctions. The discussions seem
to be in a rather abstract manner. The representation of Green’s function, however,
enables us to formulate an efficient method for the scattering problem, which is also
discussed in the next chapter.

The derivation of Green’s function in the wavenumber domain, which is used in
§3.2–§3.4, is very complicated. In addition, Green’s function in the wavenumber do-
main yields the resolvent kernel used in §3.5, whose properties are very important for
the spectral representation of Green’s function. Therefore, the derivation of Green’s
function in the wavenumber domain as well as of the resolvent kernel together with
its properties are separated from Chapter 3, and summarized in Appendix C. The
comparisons of Green’s functions obtained from various computational methods are
summarized in Appendix D.

In Chapter 4, we develop numerical methods for the scattering of the elastic waves
using Green’s functions derived in Chapters 2 and 3. In §4.1, we apply the representa-
tion theorem to a solid-fluid interaction problem. Discretization of the representation
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theorem yields a boundary-element technique. We analyze the vibration of a virtual
underground energy storage system and examine its properties.

In §4.2, we apply the spectral representation of Green’s function and the general-
ized Fourier transform obtained in §3.5 to the equation of the type of the Lippmann-
Schwinger equation. We compute the scattering wavefield caused by an underground
fluctuation of the wavefield. It is true that the spectral representation of Green’s func-
tion as well as the generalized Fourier transforms obtained in §3.5 are rather abstract.
In spite of these mathematical forms, we show that the spectral representation of
Green’s function and the generalized Fourier transform can provide an efficient tool
for analyzing engineering problems.

In §4.3, we compute the inversion of the point-like scatterers by means of the
pseudo-projection and MUSIC algorithms. The MUSIC algorithm is presented in
Appendix E. The pseudo-projection method is developed by the steepest descent
path method, which is considered to be of historical importance. The discussions in
§4.3 show a case in which the historical method can also improve the efficiency of
modern computational methods.

In this book, we could not include the discussions for wave propagation in layered
media, dispersion of guided waves, the time domain solutions via the Cagniard-de
Hoop method and among others. The author, however, would like to disclose ev-
ery computer program used for Chapter 4, so that the readers of this book can re-
produce the same results. The author would appreciate it if many engineers were
interested in the methods described in Chapter 4. The software is disclosed at
https://www.rs.tus.ac.jp/∼ttouhei/main.pdf.

https://www.rs.tus.ac.jp
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1 Introduction
1.1 BASIC CONCEPT OF CONTINUUM MECHANICS
Materials can take the form of solids, liquids, or gases. Liquids and gases, the shapes
of which are easily deformed, are considered to be fluids. Gases, however, are differ-
ent from liquids in that their volumes can easily change. We encounter many types of
solids and fluids in our daily lives. However, the distinction is not always so obvious.
For example, the Earth’s mantle and glaciers are considered to be solids. However,
both behave like fluids if they are observed over a long time period. Therefore, in
order to investigate different phenomena, not only objects to be observed, but also
the temporal and spatial scales need to be considered.

In general, the distance between molecules or atoms is about 1 nm. As a result,
an enormous number of molecules or atoms are present, even in a cubic volume with
side lengths of 1 µm. Therefore, a macroscopic approach to investigating deforma-
tion phenomena for solid or fluid flow is possible, in which the solid or fluid body
can be assumed to be continuous. This is a starting point of continuum mechanics,
and we refer to the investigated body as a continuum body. We also define a par-
ticle or spatial point in a continuum body as it still contains enormous number of
molecules or atoms. As a consequence, the motion of a particle has to be understood
as an averaged value for an enormous number of molecules or atoms in a particle
under certain temporal and spatial scales.

In the context of continuum mechanics, we define physical quantities in a spatial
and/or temporal coordinate system. For example, let ∆V and ∆M be the volume of
a small element and the mass of the element, respectively. Then, the relationship
between ∆V and ∆M can be expressed as

∆M = ρ(xxx)∆V (1.1.1)

where ρ is the mass density at a spatial point xxx.
In this textbook, three-dimensional (3D) solid media are considered, and a spa-

tial point is expressed in a Cartesian coordinate system, unless otherwise stated. We
generally express the components of the position vector in the following form:

xxx = (x1,x2,x3) = (x j), ( j = 1,2,3) (1.1.2)

where the subscripted index describes the component of the coordinate system. In
this chapter, however, we express the components of a vector and clarify the chosen
coordinate system. For example, we use the following expression for the components
of a vector:

xxx→
O
(x1,x2,x3) = (x j), ( j = 1,2,3) (1.1.3)
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where O denotes the coordinate system, which defines the location of the origin and
the direction of the base vectors 1. Note that a vector itself represents a physical
quantity that is independent of the coordinate system. Equation (1.1.3) is convenient
for determining the transformation rule for the components between two different
coordinate systems, i.e., different locations of the origins as well as different direc-
tions of the base vectors. The tensor algebra necessary for continuum mechanics in
this textbook is explained in Appendix A.

Here, we define the term ”particle” in a continuum body. Based on the concept
of a particle, we can formulate two different approaches in continuum mechanics,
which are the Lagrange approach and the Euler approach. The Lagrange approach
considers the trajectory of a particle in a continuum body, whereas the Euler approach
considers the motion of a particle at its current coordinates. The Lagrange approach
is used when the current state of a continuum body is strongly affected by its initial
state, whereas, in the Euler approach, the effects of the initial state can be ignored.
For wave problems in elastic solids, where the vibration amplitude is small compared
to the wavelength, the difference between the Lagrange and Euler approaches is very
small, which leads to a linear equation for elastic wave motion, which is the theme of
this text book. This introduction describes the linear equation for elastic wave motion
and its reciprocity, after the description of the strain and stress tensors. In addition,
the Euler and Lagrange approaches, as well as the Reynolds transport theorem, are
also discussed.

1.2 STRAIN TENSOR
1.2.1 DEFORMATION OF CONTINUUM BODY

Figure 1.2.1 shows a continuum body, which occupies a region V0 at time t = 0. The
body undergoes deformation and moves to a region V at time t. In this section, we
deal with a finite region of the continuum body to investigate the deformation.

With respect to the Lagrange and Euler approaches, we use two coordinate sys-
tems to investigate the deformation, which are the original coordinate system denoted
by (Xi),(i = 1,2,3), and the current coordinate system denoted by (xi),(i = 1,2,3).
We also use the following notations:

XXX →
O

(X1,X2,X3) (1.2.1)

xxx →
O

(x1,x2,x3) (1.2.2)

The original coordinate system is used to distinguish particles in the original state,
whereas the current coordinate system is used to describe the location of particles at
the current time. Note that the location of the origin as well as the direction of the

1We use the notation in Eq. (1.1.3) following Schutz, B.F. (1990). We discuss the concept of the tensor
algebra by means of the above notation in Appendix A. We also try to provide the physical meaning of
the strain and stress tensors in this chapter from the mathematical definition of tensors given in Appendix
A.
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Figure 1.2.1 Deformation of a continuum body. Region V0 undergoes deformation and
moves to V . Consequently, the line element P0Q0 in V0 shifts to PQ in V . The original co-
ordinate system Xi is used to distinguish particles in V0, and the current coordinate system xi

is used to describe the location of the particle at the current time. We show the Lagrangian and
Eulerian descriptions for the displacement field in (a) and (b), respectively.

base vectors for both the original and current coordinate systems can be identical, as
we used the notations for Eqs. (1.2.1) and (1.2.2).

The relationship between the original and current coordinate systems is described
by a map defined as:

xxx = Θ(XXX , t) (1.2.3)

where t is the current time. We call Eq. (1.2.3) the Lagrangian description, since the
map Θ enables us to trace the trajectory of a particle in a continuum body. Alter-
natively, we can also define a map from (XXX , t) to its original position of a particle
as

XXX = Θ̄(xxx, t) (1.2.4)

which is called the Eulerian description. Equations (1.2.3) and (1.2.4) have to be
consistent each other in the sense that Eq. (1.2.4) can be derived by solving Eq.
(1.2.3).

As shown in Fig. 1.2.1, a line element P0Q0 ∈V0 shifts to PQ∈V due to the defor-
mation. The position vectors for P0,Q0 ∈V0 are denoted by XXX and XXX +dXXX , whereas
P,Q ∈ V are xxx and xxx+ dxxx, respectively. Vectors

−→
P0P and

−−→
Q0Q are the displacement

vectors defined by the endpoints of the line elements. We introduce a displacement
field to express these vectors such that

−→
P0P = uuu(XXX , t) = xxx−XXX

= Θ(XXX , t)−XXX
−−→
Q0Q = uuu(XXX +dXXX , t) = xxx+dxxx− (XXX +dXXX)

= Θ(XXX +dXXX , t)− (XXX +dXXX) (1.2.5)

where uuu denotes the displacement field. We applied the Lagrangian description to the
displacement field, where the independent variables (XXX , t) are used. We can also use
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the Eulerian description to the displacement field by
−→
P0P = uuu

(
Θ̄(xxx, t), t

)
= xxx− Θ̄(xxx, t)

−−→
Q0Q = uuu

(
Θ̄(xxx+dxxx, t), t

)
= xxx+dxxx− Θ̄(xxx+dxxx, t) (1.2.6)

where the independent variables (xxx, t) are used. We also show the concept of the
Lagrangian and Eulerian descriptions of the displacement field in Figs. 1.2.1 (a) and
(b), respectively.

1.2.2 DEFINITION OF STRAIN TENSOR

It is necessary to have a quantitative measure of the degree of deformation that en-
ables us to describe the internal states of the body. This is expressed in the following
form:

η :=
|PQ |− |P0Q0 |

|P0Q0 |
=

|dxxx|− |dXXX |
|dXXX |

(1.2.7)

which is the ratio of the change in length to the original length of the line element
(see Fig. 1.2.1). We will derive the expression for η in terms of the components of
the coordinate system. By means of the properties of η , which is a physical quantity
independent of the coordinate system, we will proceed to the concept of the strain
tensor.

We start with an evaluation of the difference between the squared lengths of the
line elements before and after deformation:

|dxxx|2 −|dXXX |2

because this is related to η by the following equation:

|dxxx|2 −|dXXX |2 =
|dxxx|− |dXXX |

|dXXX |
|dxxx|− |dXXX |+2|dXXX |

|dXXX |
|dXXX |2

= η(η +2) |dXXX |2 (1.2.8)

For |η | ≪ 1, Eq. (1.2.8) can be simplified as

η = (1/2)
|dxxx|2 −|dXXX |2

|dXXX |2
(1.2.9)

Now, let the components of dxxx and dXXX be expressed by

dxxx →
O

(dx1,dx2,dx3)

dXXX →
O

(dX1,dX2,dX3) (1.2.10)

Then, the difference in the squared lengths can be expressed as

|dxxx|2 −|dXXX |2 = dxidxi −dXidXi

=
( ∂xi

∂Xk

∂xi

∂Xl
−δkl

)
dXkdXl

= 2LkldXkdXl (1.2.11)
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where

Lkl = (1/2)
( ∂xi

∂Xk

∂xi

∂Xl
−δkl

)
(1.2.12)

Note that the summation convention for the subscripted index (see Appendix A) is
applied to Eq. (1.2.11). In the following, the summation convention is also applied to
subscripted indices for all of the equations, unless otherwise stated. For the derivation
of Eq. (1.2.11), we use the following equation:

dxi =
∂xi

∂Xk
dXk (1.2.13)

Equation (1.2.11) can be interpreted as a linear mapping of two vectors into a real
number, if we distinguish dXk and dXl as different vectors. In this sense, Lkl is a
component of a rank-2 tensor. We call Lkl the Lagrangian (Green) finite strain tensor.
Alternatively, if we apply the following equation:

dXi =
∂Xi

∂xk
dxk (1.2.14)

to the difference between the squared lengths, then we have

|dxxx|2 −|dXXX |2 = dxidxi −dXidXi

=
(

δkl −
∂Xi

∂xk

∂Xi

∂xl

)
dxkdxl

= 2Ekldxkdxl (1.2.15)

where Ekl is defined by

Ekl = (1/2)
(

δkl −
∂Xi

∂xk

∂Xi

∂xl

)
(1.2.16)

As in the case for Lkl in Eq. (1.2.11), Ekl can be regarded as a component of a rank-2
tensor. We refer to Ekl as the Eulerian (Almansi) finite strain tensor. The difference
between Eqs. (1.2.12) and (1.2.16) is in the use of independent variables. Namely,
the original coordinate system (XXX , t) is used for Eq. (1.2.12), whereas the current
coordinate system (xxx, t) is used for Eq. (1.2.16), yielding the strain tensors based on
the Lagrange and the Euler approaches, respectively.

In order to analyze wave propagation in a continuum body, the governing equation
uses the displacement field as an unknown function to be solved. Therefore, it is nec-
essary to determine the relationship between the strain tensor and the displacement
field. According to Eq. (1.2.5), we have

xi = ui +Xi (1.2.17)

and as a result,
∂xi

∂Xk
=

∂ui

∂Xk
+δik (1.2.18)
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Therefore, the Green finite strain tensor can be expressed as

Lkl = (1/2)
(∂uk

∂Xl
+

∂ul

∂Xk
+

∂ui

∂Xl

∂ui

∂Xk

)
(1.2.19)

Likewise, from
Xi = xi −ui (1.2.20)

we obtain the expression for the Eulerian strain tensor in the following form:

Ekl = (1/2)
(∂uk

∂xl
+

∂ul

∂xk
− ∂ui

∂xl

∂ui

∂xk

)
(1.2.21)

The relationship of the gradient of the displacement field between the Lagrange
and Euler approaches is expressed as

∂uk

∂xl
=

∂uk

∂Xj

∂Xj

∂xl

=
∂uk

∂Xj

(
δ jl −

∂u j

∂xl

)

=
∂uk

∂Xl
− ∂uk

∂Xj

∂u j

∂xl
(1.2.22)

Therefore, for a case that the gradient of the displacement field is very small, namely
∣∣∣∣
∂uk

∂Xj

∣∣∣∣≪ 1,
∣∣∣∣
∂uk

∂xl

∣∣∣∣≪ 1 (1.2.23)

we can proceed our discussions by assuming that

∂uk

∂xl
=

∂uk

∂Xl
(1.2.24)

Equation (1.2.24) shows that the differences between the Lagrange and Euler ap-
proaches are very small if Eq. (1.2.23) holds. For this case, Eqs. (1.2.19) and (1.2.21)
yield:

εi j = (1/2)
(∂u j

∂xi
+

∂ui

∂x j

)
(1.2.25)

which is referred to as the infinitesimal strain tensor. As for the Green and Almansi
strain tensors, εi j can be also regarded as a rank-2 tensor. The difference between
the squared lengths of the line elements in terms of the infinitesimal strain tensor is
expressed as

|dxxx|2 −|dXXX |2 = 2εi jdxidx j (1.2.26)
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1.2.3 CHARACTERIZATION OF INFINITESIMAL STRAIN TENSOR

Now, let us discuss the properties of the infinitesimal strain tensor. For the discus-
sion, we do not distinguish between the original and current coordinate systems, be-
cause we consider a situation in which the difference between the results of the Euler
and Lagrange approaches is very small. Under these circumstances, we simply use
the spatial derivative ∂/∂x j. According to Eqs. (1.2.9) and (1.2.26), the relationship
between the parameter η and the infinitesimal strain tensor is

η =
εi jdxidx j

|dxxx|2
(1.2.27)

At this point, we have two tasks related to Eq. (1.2.27). One is to connect the
tensor algebra discussed in Appendix A with Eq. (1.2.27). We have to determine
the transformation rule for the components of the infinitesimal strain tensor for the
different coordinate systems. Note that we do not distinguish between the original
and current coordinate systems for the discussion of the infinitesimal strain tensor.
At this point, the transformation rule is considered for different base vectors that span
the continuum body. The second task is to connect the infinitesimal strain tensor with
the concept of strain learned in undergraduate engineering mechanics.

The starting point of the discussion is Eq. (1.2.27). We consider two coordinate
systems O{eee1,eee2,eee3}, O′{eee′1,eee

′
2,eee

′
3} and we express the components of the direction

vector in the following form:

dxxx
|dxxx|

→
O

(d1,d2,d3)

dxxx
|dxxx|

→
O ′

(d′
1,d

′
2,d

′
3) (1.2.28)

Note that the origin of the two coordinate systems O and O ′ is identical for the
discussion.

As shown in Appendix A, the transformation rule for the components of the di-
rection vector is

d j = ai jd′
i (1.2.29)

where ai j is defined by
ai j = eee′i · eee j (1.2.30)

In addition, since the left-hand side of Eq. (1.2.27) is independent of the coordinate
system, the parameter η can also be expressed as

η = ε ′i jd
′
id

′
j (1.2.31)

As a result, we have
η = ε ′i jd

′
id

′
j = εklaikal jd′

id
′
j (1.2.32)

which yields
d′

id
′
j(ε

′
i j − εklaika jl) = 0 ⇐⇒ ε ′i j = aika jlεkl (1.2.33)
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from which we find that εi j follows the transformation for a rank-2 tensor. Therefore,
we can define a linear mapping of two vectors εεε(·, ·), the components of which are
defined by

εεε(eeei,eee j) = εi j (1.2.34)

which is called the strain tensor. For the case in which εεε takes the arguments of
direction vectors, εεε provides a clear physical meaning of

εεε
( dxxx
|dxxx|

,
dxxx
|dxxx|

)
= η (1.2.35)

Here, we consider the components of the strain tensor in more detail. At an un-
dergraduate level, normal strain is defined as the ratio of the change in length to the
original length, whereas shear strain is defined as the decrease in angle from π/2.
Figure 1.2.2 shows the concept of normal and shear strains in the x1 − x2 plane. We
now connect these concepts with the components of the strain tensor using ε11 and
ε12. According to Eq. (1.2.25), the strain tensor component ε11 is

ε11 = lim
∆x1→0

u1(xxx+∆x1eee1)−u1(xxx)
∆x1

(1.2.36)

We see that u1(xxx+∆x1eee1)−u1(xxx) in Eq. (1.2.36) is the change in length, and ∆x1 is
the original length of the line element, which are δ and L, respectively, in Fig. 1.2.2.
Therefore, ε11 corresponds to the normal strain for the x1 direction.

O
x1

x2

• •

• • •

A B

C
D E

π/2

∆x1

∆x
2

L

(a) Before deformation
O

x1

x2

•
•

• • •

A′

B′

C′ D′ E ′

∆x1

∆x
2

L δ

(b) After deformation

∆u2

∆u1

α
β

γ = α +β
ε = δ/L

Figure 1.2.2 Normal and shear strains commonly taught at the undergraduate level. Normal
strain ε is defined as the ratio of the change in length δ to the original length L. Shear strain
γ is defined as the decrease in angle from π/2. Note that points from A to E shift to A′ to E ′,
respectively, due to deformation.


