

NONINVASIVE PHYSIOLOGICAL MEASUREMENT

WIRELESS MICROWAVE SENSING

James C. Lin

Noninvasive Physiological Measurement

This book explains the principles and techniques of microwave physiological sensing and introduces fundamental results of the noninvasive sensing of physiological signatures, vital signs, as well as life detection. Specifically, noninvasive microwave techniques for contact, contactless, and remote sensing of circulatory and respiratory movements and physiological volume changes are discussed.

Noninvasive Physiological Measurement: Wireless Microwave Sensing, is written by a pioneering researcher in microwave noninvasive physiological sensing and leading global expert in microwaves in biology and medicine. The book reviews current advances in noninvasive cardiopulmonary sensing technology and measurement. It includes measurements of the vital signs and physiological signatures from laboratory research and clinical testing. The book discusses the applicable domains and scenarios in which there is an interaction of radio frequency (RF) and microwaves with biological matter in gas, fluid, or solid form, both from inside and outside of the human or animal body. The book also provides examples for healthcare monitoring and diagnostic applications through wearables, devices, or remote contactless sensors for physiological signals and signature, vital signs, and body motion sensing. This book is an essential guide to understanding the human body's interaction with microwaves and noninvasive physiological sensing and monitoring.

This book is intended for researchers and professionals in biomedical, electrical, and computer engineering with an interest in antenna, sensors, microwaves, signal processing, and medical applications. It will also be of interest to healthcare professionals, technologists, and practitioners interested in noninvasive physiological sensing and patient monitoring.

Dr. James C. Lin's pioneering work inspired many researchers to follow, and many more to follow them. He is recognized as one of the world's most renowned scientists who has studied microwave and RF radiation in biology and medicine. He has served as a professor of bioengineering, electrical and computer engineering, physiology and biophysics, and physical and rehabilitation medicine.

Noninvasive Physiological Measurement Wireless Microwave Sensing

James C. Lin

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business Designed cover image: James C. Lin

First edition published 2024 by CRC Press 2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 James C. Lin

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Lin, James C., author.

Title: Noninvasive physiological measurement : wireless microwave sensing / James C. Lin. Description: First edition. | Boca Raton, FL : CRC Press, 2024. | Includes bibliographical references and index. Identifiers: LCCN 2023037654 (print) | LCCN 2023037655 (ebook) | ISBN 9781032319155 (hardback) | ISBN 9781032324753 (paperback) | ISBN 9781003315223 (ebook)

Subjects: MESH: Monitoring, Physiologic--methods | Microwaves | Wireless Technology Classification: LCC RA569.3 (print) | LCC RA569.3 (ebook) | NLM WB 117 | DDC 612/.014481--dc23/eng/20231113 LC record available at https://lccn.loc.gov/2023037654

LC ebook record available at https://lccn.loc.gov/2023037655

ISBN: 978-1-032-31915-5 (hbk) ISBN: 978-1-032-32475-3 (pbk) ISBN: 978-1-003-31522-3 (ebk)

DOI: 10.1201/9781003315223

Typeset in Times by KnowledgeWorks Global Ltd. To my grandsons: Jonah Anderson, Lucas Theodore, and Kai Rong-Zhi and to the bright future that awaits each of them.

Contents

List of Figu Preface	res and	l Tables.		xiii xlv
Acknowledg	rments			xlvii
About the A	uthor			xlix
Chapter 1	Intro	duction.		1
				-
	1.1	Microv	wave and RF Radiation	3
	1.0	1.1.1 M	Frequency Bands and Designations	4
	1.2	Microv	wave Radar Technology	1
	1.5	Physio	logical Sensing and Radiological Imaging	8
	1.4	Micro	wave Sensing of Physiological Signatures and	0
	1.5	Moven	INC.	9
	1.5	Optim	al Microwave Frequency for Physiological Sensing	ζ 10
		1.5.1	Remote, Near-Field, and Noncontact Strategy	11
	1.0	1.5.2	Direct-Contact Strategy	12
	1.0	Bench	-Top Systems for Microwave Physiological Sensing	g 14
	1./	Teleme	edicine and the COVID-19 Pandemic	15
	1.8	Protec	tion Limits for Human Exposure to Microwaves	16
	1.9	Organ	Izing Principles of the Book	17
Chapter 2	Pion	eering In	vestigations	21
	2.1	A Scie	ntific Research Journey	21
		2.1.1	Respiratory Measurement and Microwave	
			Cardiography	22
		2.1.2	Vital-Sign Sensing	23
		2.1.3	Arterial Pressure Pulse Wave and Cerebral	
			Edema	24
		2.1.4	Translational Research	25
		2.1.5	DARPA Workshop on Noninvasive Blood	
			Pressure Monitoring	29
		2.1.6	DARPA RadioBio—A Sensing Challenge	
		2.1.7	A Side Bar—Microwave and Blood–Brain	
			Barrier (BBB) Interactions: A Different Kind	
			of Sensing	32
	2.2	Micro	wave Sensing of Physiological Signatures and	
		Volum	e Changes in the 1970s	34
		2.2.1	Respiratory Activity Measurement	35
		2.2.2	Measurement of Heart Rate and Sensing of	
			Cardiac Events	
		2.2.3	Noninvasive Monitoring Fluid Buildup in	
		2.2.5	the Lungs	41
			uie 19115	

	2.3	Microv	wave Sensing of Vital Signs and Arterial Pulses	
		in the	1980s	43
		2.3.1	Remote Contactless Sensing of Vital Signs	43
		2.3.2	Arterial Pulse Wave and Pressure Sensing	47
		2.3.3	Cerebral Edemas and Extravasations	49
	2.4	A Sum	mary	50
Chapter 3	Micr	owave P	ropagation, Reflection, and Scattering	58
	3.1	The M	axwell Equations	59
	3.2	The W	ave Equation	62
	3.3	Bound	ary Conditions at Material Interfaces	63
	3.4	Energy	V Storage and Power Flow	65
	3.5	Plane V	Waves and Far-Zone Field	66
	3.6	Polariz	ation and Propagation of Plane Waves	67
		3.6.1	Plane Waves in Free Space	69
		3.6.2	Plane Waves in Lossy or Biological Media	69
	3.7	Reflect	ion and Transmission at Interfaces	71
	3.8	Refrac	tion of Microwave and RF Radiation	74
	3.9	Radiat	ion of Electromagnetic Energy	76
		3.9.1	The Short Dipole Antenna	77
		3.9.2	Near-Zone Radiation	78
		3.9.3	Antenna Receiving Characteristics	82
		3.9.4	Radar Cross Section	83
		3.9.5	Conventional Antenna Configurations and	
			Radiation Patterns	84
		3.9.6	Microstrip Patch and Array Antennas	88
Chapter 4	Micr	owave P	roperty of Living Matter	94
	4.1	Freque	ncy Dependence of Dielectric Permittivity	94
	4.2	Dielect	tric Relaxation Processes	96
		4.2.1	Low-Loss Dielectric Materials	97
		4.2.2	Lossy Dielectrics at Low Frequencies	98
		4.2.3	Biological Materials	100
	4.3	Tempe	rature Dependence of Dielectric Properties	101
		4.3.1	Temperature Dependence of Measured	
			Tissue Dielectric Permittivity	102
	4.4	Measu	red and Modeled Tissue Permittivity Data	104
		4.4.1	Permittivity of Water	105
		4.4.2	Measured Tissue Permittivity	107
		4.4.3	Debye Modeling of Biological Tissue	
			Permittivity Data	115
Chapter 5	Micr	owaves i	n Biological Systems	119
	5.1	Metric	s for Exposure and Dosimetry	119
		5.1.1	Exposure Quantities and Units	119
		5.1.2	Dosimetry Quantities and Units	120

Contents

	5.2	Reflect	ion and Transmission at Planar Tissue Surfaces	122
		5.2.1	Angle of Incidence and Polarization	125
	5.3	Multipl	e Tissue Layers	125
	5.4	Anaton	nic Phantom Models	129
		5.4.1	SAR in Anatomical Models	130
	5.5	Freque	ncy Dependence and Resonance Absorption	132
	5.6	Orienta	tion and Polarization Effects for Elongated Bodies .	136
	5.7	Scatter	ing Coefficient for Prolate Spheroidal Bodies	137
	5.8	Dopple	r Effect from Target Motion	139
	5.9	Range	and Velocity Resolution	141
Chapter 6	Syste	m Analy	sis and Signal Processing	145
	6.1	Signals	and Systems	145
		6.1.1	Linear Systems	145
		6.1.2	Orthogonal Signals	146
	6.2	Fourier	Series Representation of Signals	148
		6.2.1	Example of Fourier Series Representation of	
			Signals	149
		6.2.2	Time Shifting and Scaling Properties of the	
			Fourier Series	150
	6.3	The Im	pulse Function as a Signal	151
		6.3.1	Fourier Series for an Impulse Train	152
		6.3.2	Sifting or Sampling Property of the Unit $\delta(t)$	
		0.0.12	Function	153
	64	Multipl	ication Property of Fourier Series	154
	6.5	Impuls	e Response of a Linear System	155
	6.6	Fourier	· Transforms	156
	0.0	661	Fourier Transform Properties and Relations	156
	67	Symme	Provide Transforms	160
	6.8	System	Transfer Function	100
	6.0	Sampli	ng of Continuous Signals	105
	0.7	6 9 1	Aliasing from Undersampling	105
		692	Quantization of Sampled Signals	100
	6 10	Ontime	al Detection using Matched Filter	100
	6.11	Cascad	ad Linear Systems and Filters	160
	0.11	6 11 1	An Ideal I ow Pass Inverse Filter	109
		6 11 2	A Dealistic Inverse Filter	171
		6 11 3	Distortionless Filter and System	172
		6 11 4	Ideal High Dass and Dand Dass Filters	174
		6 11 5	A Practical Paalizable Eilter	170
	6.12	Advanc	ced Signal Conditioning and Processing Methods	177
Chapter 7	Vital	Sign Ser	nsing: Heartbeat and Respiration	179
•	7.1	Organs	in the Thorax	180
		7.1.1	The Heart and Coronary Vessels	180
		7.1.2	The Lungs	181
			U	

	7.2	Measu	rement of Respiration	182	
		7.2.1	Respiratory Parameters	182	
		7.2.2	Microwave Measurement of Respiration	183	
		7.2.3	Respiratory Sensing of Animal Under		
			Stress	186	
		7.2.4	Contactless Microwave Apnea Monitor	187	
		7.2.5	Other Developments in Microwave		
			Respiratory Monitoring	190	
	7.3	Microv	wave Respiratory Sensor on A Chip	191	
		7.3.1	Doppler Radar Apnea Monitoring on a		
			Single Chip	191	
		7.3.2	System-on-Chip Ultrawide-band Pulse Radar		
			for Measuring Respiration Rate	193	
		7.3.3	Radar Measurement of Respiration During		
			Cancer Radiotherapy	195	
	7.4	Contin	uous Respiratory Monitoring with Frequency-		
		Modul	ated CW Radar	200	
		7.4.1	FMCW Radar Sensor	201	
		7.4.2	Preclinical Study Using a Prototype		
			FMCW Sensor.	202	
	7.5	Heartb	eat Sensing and Microwave Cardiography	205	
		7.5.1	Measurement of MACG	208	
	7.6	Vital S	ign Measurements	210	
		7.6.1	A Portable Contactless Vital-Sign Monitor	210	
		7.6.2	Remote Noncontact Vital-Sign Sensing	215	
	7.7	Recent	Advances in Vital-Sign Sensing	222	
		7.7.1	Chip Scale Radar Sensors	223	
		7.7.2	Low-IF CW Radar Architecture and		
			Injection-Locked Oscillators	228	
		7.7.3	Injection-Locked Oscillator Architectures	232	
		7.7.4	High Sensitivity CW Doppler CMOS		
			Radar Chips	244	
	7.8	Summ	arv and Perspective	260	
			· · · · · · · · · · · · · · · · · · ·		
				200	
Chapter 8	Arterial Pulse Wave and Pressure Sensing				
	8.1	The Ci	rculatory System	268	
	8.2	Arteria	al Pulse-Wave Measurement	270	
		8.2.1	Noninvasive Contact Pulse-Wave Measurement	272	
		8.2.2	Near-Field Contactless Pulse-Wave Monitoring	280	
	8.3	Nonin	vasive Arterial-Pressure Sensing	287	
		8.3.1	Arterial-Wall Movement and Pressure Pulse	288	
		8.3.2	Doppler Radar Measurement of Pulse Pressure	288	
		8.3.3	Blood Pressure from PTT	291	
		8.3.4	SIL Microwave Radar Arterial Pressure Sensor	293	
		8.3.5	MMW Radar Pressure Sensor	296	

Contents

	8.4 8.5	Multiparameter Blood Pressure Sensing				
Chapter 9	Sensing of Tissue Volume Change and Redistribution					
	9.1	Pathophysiologic Respiratory and Fluid Volume				
		Changes				
		9.1.1 Pulmonary Edema and Pleural Effusion				
		9.1.2 Cerebral Edema				
		9.1.3 Arterial-Wall Movement and Blood Pressure				
	9.2	Microwave Sensing of Fluid Buildup in the Lungs				
		9.2.1 Earlier Pulmonary Edema Investigations				
		9.2.2 Wideband Microwave Scanning				
	9.3	Pulmonary Edema Diagnostic and Monitoring Systems 316				
		9.3.1 Body-Area Network-Integrated RF Sensor				
	~ .	9.3.2 Wideband Near-Field Microwave Detection				
	9.4	Commercial Wearable Sensing Systems				
		9.4.1 Wearable Near-Field RF Sensing System				
	0.5	9.4.2 Noncontact Near-Field Patch Sensor				
	9.5	Near-Field Respiratory Volume Sensing				
	9.6	Cerebral Edema and ICP				
		9.6.1 Microwave Transmission for Cerebral				
		Edema in a Phantom Model				
		9.6.2 Microwave Sensing of Cerebral Edema in				
	07	Animal Model				
	9.7	Microwave Tomographic Imaging of Hemorrhagic				
	0.0	Miarowaya Thermoscoustic Tomography and				
	9.0	Imaging 340				
	0.0	Hamorrhagia Blood Volume Change 341				
	9.9	Temormagic blood volume change				
Chapter 10	Wear	able Devices and Sensors				
	10.1	Fitness and Sleep Trackers				
	10.2	Smartwatch Heart-Rate Sensors				
	10.3	Wearable Microwave Vital-Sign Sensing				
		10.3.1 A Miniature Wearable Microwave				
		Arterial Pulse Sensor				
		10.3.2 Wearable SILO Radar Pulse Sensors				
		10.3.3 Another Prototype Wearable Pulse Monitor				
	10.4	Wearable Microwave HR Sensors				
	10.5	Chest-Worn SILO Tag Sensor for HR Monitoring				
	10.6	Contact Sensing of Fingertip and Wrist Pulse Waves				
	10.7	Wearable Millimeter-Wave Arterial Pulse Sensor				
	10.8	Chest-Worn 5.8 GHz SILO for Respiration Monitoring 370				
	10.9	Wearable Cardiopulmonary Motion Sensors				

Chapter 11	Adva	nced Top	pics and Contemporary Applications	379
	11.1	Remote Subject	e Radar Sensing of Vital Signs of Multiple	
		11.1.1	Detection of Subject Vital Signs Through	
			Office Partitions	381
		11.1.2	Contactless Heart Rate Measurement Using	
			X-Band Array Radar	384
		11.1.3	Hybrid Doppler Radars for Multisubject	
			Vital-Sign Sensing	386
		11.1.4	Sensors for Localization of Multiple Subjects	
			in Cluttered Environments	392
		11.1.5	Software Algorithm-Assisted 24 GHz FMCW	
			Radar Sensing	405
		11.1.6	MM-Wave Radar Sensor for Multiple Subjects	418
	11.2	Applica	ations in Medicine and Healthcare	423
		11.2.1	Sleep Medicine — Diagnosis of Sleep Apnea-	
			Hypopnea Syndrome	423
		11.2.2	Real-Time Apnea-Hypopnea Event Detection	427
		11.2.3	Postsurgery and Anesthesia Recovery	430
		11.2.4	Monitoring Diabetes-Related Physiological	
			Signals	432
		11.2.5	Telehealth and Telemedicine for Diabetes	
			Management	436
	11.3	Monito	oring Driver Vital Signs	438
Appendix				449
Index				451

Figure 1.1	A part of the electromagnetic spectrum including microwave and radio frequency radiation	3
Figure 1.2	The sine wave, sin (<i>t</i>), and definition of a wavelength, λ	4
Figure 1.3	Active and passive modalities for noninvasive microwave sensing of physiological changes and conditions	8
Figure 1.4	Basic functional diagram of a Doppler microwave physiological sensor.	9
Figure 1.5	Frequencies for minimal attenuation of microwave signals and maximal spatial resolution in skin (muscle) and fat tissues	13
Figure 1.6	System setup of a Doppler microwave radar system for vital- sign measurement.	. 14
Figure 2.1	A basic functional diagram of a Doppler microwave physiological sensor.	35
Figure 2.2	Microwave measurement of respiration of an unanesthetized but calm rabbit inside of a cardboard box.	36
Figure 2.3	Microwave respiratory measurement for a seated human subject breathing at 47 times per minute	.37
Figure 2.4	A transceiver horn antenna directed microwaves at 10 GHz toward the upper torso of the cat.	37
Figure 2.5	A microwave apnea detector recorded respiratory activity of an anesthetized cat showing apneic episode and recovery	38
Figure 2.6	Continuous tracing of microwave sensor-monitored respiratory record of a cat subjected to a brief period (heating on and off) of selective heating of the head and brain.	38
Figure 2.7	A human participant lying on a table in the supine position	39
Figure 2.8	Microwave apexcardiography or Doppler radar sensing of a healthy young male participant's cardiac events.	40
Figure 2.9	Changes in the baseline of the amplitude of the microwave reflection coefficient and in left atrial pressure during development of pulmonary edema in an anesthetized 25 kg dog on a respirator.	.42
Figure 2.10	A microprocessor-based contactless 10.5 GHz microwave vital sign monitor showing a circuit board and handheld circularly polarized antenna.	.44

Figure 2.11	Heart and respiration channel records of a healthy human subject from a microprocessor-based contactless 10.5 GHz microwave vital sign monitor
Figure 2.12	Contactless remote microwave sensing of vital signs of a human subject wearing summer or winter clothing
Figure 2.13	Microwave (20 mW, 10 GHz) sensing of heartbeat and respiration from a human subject sitting behind a cinder block wall (15 cm thick) at 3 m
Figure 2.14	Heartbeat and respiration signals of a female human subject recorded from the top of simulated rubble with a 450 MHz reflector antenna. The subject is lying within a cavity among the rubble. The peak at 0.6 Hz is the second harmonic of the respiration signal
Figure 2.15	A direct contact Doppler microwave arterial pulse wave sensor
Figure 2.16	Oscilloscope tracings of brachial artery motion measured using a 25 GHz Doppler microwave sensor in contact with the skin on the arm over the artery
Figure 2.17	Tracings of arterial-wall motion measured using 10 GHz Doppler microwaves: (a) radial artery in the arm; (b) femoral; (c) posterior tibial; and (d) dorsalis pedis arteries in the leg of a human subject
Figure 2.18	Microwave sensing of the carotid pressure pulse wave (MWPP) and invasively recorded intra-aortic pressure pulse wave (IAPP) from a human subject
Figure 2.19	Microwave sensing of intracranial pressure (ICP) in rats. Maximum phase change versus ICP change for injections of aliquots (symbols represent volume of aliquots)
Figure 2.20	Intracranial pressure (ICP) in rats (bottom), electrocardiogram (ECG) (middle), and microwave phase change (top) following aliquot injection of 0.07 and 0.05 mL aliquots of saline (arrows)
Figure 3.1	Boundary conditions and schematics for evaluating tangential and normal electric and magnetic field components at interface between two different material media. (a) tangential components of the electric field strength; (b) Normal components of the electric flux density; (c) Tangential components of magnetic field strength; (d) Normal components of magnetic field strength; (d) Normal components of magnetic flux density
Figure 3.2	The direction of plane-wave propagation, electric field, and magnetic field orientation in space at a given moment in time 67

Figure 3.3	Polarization of electromagnetic plane waves: (a) linear polarization; (b) circular polarization; (c) elliptical polarization. Arrows indicate directions of electric field and its coordinate components.	68
Figure 3.4	A standing wave created when a plane wave impinges normally on a perfect conductor. The fields are shown at time, $t = T/8$, where T is the period of the wave	72
Figure 3.5	Plane wave impinging on two-layered media: medium 1 (air) and medium 2 (a tissue layer).	72
Figure 3.6	Plane wave incident upon a boundary surface at an angle of incidence θ .	75
Figure 3.7	An elementary dipole antenna of length <i>l</i> which is short compared with a wavelength, $(\lambda \gg /)$, and the width or diameter is small compared with its length	77
Figure 3.8	Flow of electromagnetic energy from a dipole antenna where the arrows represent the direction of energy flow at successive instants of time. The same flow pattern is on both sides of the dipole antenna	79
Figure 3.9	The on-axis power density of a uniform square antenna	81
Figure 3.10	The on-axis power density of a tapered circular aperture antenna	81
Figure 3.11	An 3-D sketch of a donut shaped or toroidal radiation pattern for a typical linear dipole antenna with its length along the z-axis.	85
Figure 3.12	Configuration for open-ended waveguide (a) and rectangular horn (b) antenna: (A and a) and (B and b) indicating width and height of horn and waveguide sections, respectively	85
Figure 3.13	Shape of circular dish and parabolic reflector antennas	85
Figure 3.14	Photograph of a cavity-backed microwave slot antenna	86
Figure 3.15	Schematic diagram of a circular or parabolic reflector antenna	86
Figure 3.16	Radiation pattern for a circular dish antenna with a main and multiple minor or side lobes.	87
Figure 3.17	Radiation pattern for a horn antenna with main and side lobes.	87
Figure 3.18	A coaxial circular waveguide aperture antenna	88
Figure 3.19	A 2450 MHz aperture antenna with circular matching dielectric plate for direct-contact applications	88

Figure 3.20	The design of a 4×4 element patch antenna array	89
Figure 3.21	Patch antenna arrays with 2×1 elements (a), 3×2 elements (b); and 6×2 -elements (c). Dimensions in millimeters	89
Figure 3.22	Simulated 3-D far-field patterns (FFP) of patch antenna arrays shown in Figure 3.21(a), (b), and (c). (From Rabbani and Ghafouri-Shiraz, 2017.)	90
Figure 3.23	A prototype dual-band wearable button antenna sensor	91
Figure 3.24	Design configuration of circularly polarized patch antenna: $r_{i1} = 6 \text{ mm}, r_{o1} = 7.5 \text{ mm}, r_{i2} = 10.5 \text{ mm}, r_{o2} = 13 \text{ mm},$ $g_1 = 1 \text{ mm}, g_2 = 8 \text{ mm}, \theta_1 = 45^\circ, \theta_2 = 157.5^\circ, r_u = 10 \text{ mm},$ $r_1 = 4 \text{ mm}, l_f = 10 \text{ mm}, w_f = 1.5 \text{ mm}, l = 45 \text{ mm}, w = 34 \text{ mm},$ $t_s = 0.8 \text{ mm}, \text{ and } t_c = 27\mu\text{m}.$	91
Figure 3.25	Simulated performance of circular polarized patch antenna with and without the outer ring slot shown in Figure 3.22: (a) S11 transmission parameter, (b) axial ratio parameter, (c) E-plane radiation pattern, and (d) H-plane radiation pattern	92
Figure 4.1	Dielectric permittivity and electrical conductivity of muscle- like biological materials as a function of frequency from 1 Hz to 1 THz.	95
Figure 4.2	Frequency dependence of permittivity of typical or common low-loss dielectric materials.	97
Figure 4.3	Frequency-dependent characteristics of permittivity and conductivity of lossy dielectric materials.	100
Figure 4.4	Temperature dependence of relative permittivity and conductivity of animal liver tissue at 2450 MHz.	104
Figure 4.5	Permittivity (dielectric constant and conductivity) of free water at 37 °C from 0.01 to 1000 GHz (10 MHz to 1 THz)	105
Figure 4.6	Temperature dependence of dielectric permittivity (dielectric constant and conductivity) at six microwave frequencies.	106
Figure 4.7	Dielectric permittivity and conductivity of gray matter in the brain at 37°C. (From Gabriel and Gabriel, 1996.)	109
Figure 4.8	Dielectric permittivity and conductivity of white matter in brain at 37°C. (From Gabriel and Gabriel, 1996.)	109
Figure 4.9	Permittivity properties of homogenized fresh brain tissues at 37°C in the microwave frequency range 2–4 GHz. Fresh human data (a) and combined fresh canine, ovine, primate, swine, and human (b)	110
Figure 4.10	Dielectric constant ε_r and conductivity σ for blood at 37°C as a function of frequency. (From Gabriel and Gabriel, 1996.)	111

Figure 4.11	Relative permittivity and conductivity for the heart muscle in the frequency range of 10 Hz to 100 GHz. (From Gabriel and Gabriel, 1996.)
Figure 4.12	Relative permittivity and conductivity for the aorta in the frequency range of 10 Hz to 100 GHz. (From Gabriel and Gabriel, 1996.)
Figure 4.13	Frequency dependence of the dielectric constant and conductivity for deflated lungs. (From Gabriel and Gabriel, 1996.)
Figure 4.14	Frequency dependence of the dielectric constant and conductivity for inflated lungs. (From Gabriel and Gabriel, 1996.)
Figure 4.15	Relative permittivity and conductivity for cerebrospinal fluid tissues in the frequency range of 10 Hz to 100 GHz. (From Gabriel and Gabriel, 1996.)
Figure 4.16	Dielectric permittivity and conductivity for fat tissues in the frequency range of 10 Hz to 100 GHz. (From Gabriel and Gabriel, 1996.)
Figure 4.17	Measured and modeled tissue properties using two Debye relaxation constants for (a) muscle and (b) fat116
Figure 5.1	A plane wave impinging normally on a planar tissue medium122
Figure 5.2	Power transmission coefficients at different tissue interfaces as functions of frequency. The power reflection coefficient is equal to 1 – the power transmission coefficient124
Figure 5.3	Magnitude of reflection coefficients for E and H polarized microwaves at 2450 MHz with a plane wavefront
Figure 5.4	Phase of reflection coefficients for E and H polarized 2450 MHz microwaves with a plane wavefront
Figure 5.5	Plane wave in air impinging on a composite fat-muscle layer127
Figure 5.6	Relative specific absorption rate in planar fat-muscle layers
Figure 5.7	The peak specific absorption rate as a function of fat-layer thickness in a planar layered tissue model of skin-fat-muscle at different frequencies. The skin thickness is 2 mm, and the incident power density is 10 W/m ²
Figure 5.8	Normalized amplitudes in and outside the horizontal section of a phantom head model exposed to microwave radiation. (From Mobashsher et al., 2016.)
Figure 5.9	Plane wave specific absorption rate distribution in the central coronal section of a human body model at three microwave

	frequencies: (a) 700 MHz; (b) 1800 MHz; (c) 2700 MHz normalized to 1 W/kg (0 dB)	132
Figure 5.10	Frequency and size dependence of absorption in a 14-cm diameter spherical model of the human brain and muscle equivalent materials from 100 MHz to 10 GHz	133
Figure 5.11	Specific absorption rate distribution in a homogeneous spherical brain model (18 cm diameter) exposed to a 915 MHz plane wave. The direction of microwave propagation is along the z axis.	133
Figure 5.12	Specific absorption rate characteristics in 2-D displaying microwave absorption in the canonical brain models exposed to 915 MHz plane waves propagating along the x direction. Note symmetry in the transverse dimension.	134
Figure 5.13	Specific absorption rate distributions inside a 9-cm radius adult brain sphere exposed to a 400 MHz plane wave. The three rows represent XY, ZX, and YZ plane patterns, respectively. The corresponding line distributions are along the direction of propagation (red) and transverse (blue) to the direction of propagation shown on the right. The direction of wave propagation is along the X axis	135
Figure 5.14	The scattering coefficient for a 14-cm long homogeneous prolate spheroidal tissue model with a major-to-minor axis ration of 1.5 exposed to a 915 MHz plane wave	137
Figure 5.15	The scattering coefficient for a 14-cm long homogeneous prolate spheroidal tissue model with a major-to-minor axis ration of 1.5 irradiated by 2450 MHz microwaves	138
Figure 5.16	Scattering of a plane wave by a moving biological target with velocity, <i>u</i>	139
Figure 5.17	Effect of target rotation on reflected microwave signal	140
Figure 6.1	A periodic sequence of rectangular t ₀ wide pulses with a period of T.	149
Figure 6.2	The impulse function	152
Figure 6.3	An impulse train, $f(t) = \delta(t)$ with a period, <i>T</i>	153
Figure 6.4	The spectrum of Fourier series for an impulse train	153
Figure 6.5	The input $f(t)$ and output $g(t)$ of a linear system $h(t)$ in block diagram form.	155
Figure 6.6	An illustration of the symmetry of Fourier transform pairs: (a) rect (t), (b) Fourier transform of rect (t), spectrum with constant over a specific frequency band and zero elsewhere, and (d) time function or inverse transform of (c)	161

The system transfer function for a generalized linear system	163
An impulse train: comb function	164
Block diagram representation of two cascaded systems in time domain.	170
Block diagram for a cascaded system with an ideal low-pass inverse filter.	171
Normalized Gaussian impulse response function where $1/\sqrt{2a}$ is half-pulse width.	172
System transfer function (spectral distribution) of a Gaussian pulse with a half-pulse width, $1/\sqrt{2a} = 1\mu$ s	173
An inverse filter, $H_2(\omega)$ with ω_{\max} cutoff to realize an ideal low-pass inverse filter, $H(\omega) = H_1(\omega) H_2(\omega)$ with ω_{\max} cutoff.	174
Amplitude and phase response of $A_0 e^{(-j(\omega t_0))}$ of a distortionless system.	175
Ideal high-pass filter characteristics.	176
The system transfer function for an ideal band-pass filter	177
Frequency response of a 12th-order elliptic infinite impulse response filter to separate the heart signal from a signal that includes both heart and respiration information	177
Anatomic structure of the human heart and its position in the thorax.	180
The lungs within the human chest and rib cage.	182
Block diagram of a continuous wave microwave radar sensor for respiration. Note that received microwave signal is mixed or compared with a portion of the transmitted microwave serving as a reference signal at the same frequency, the result is a baseband signal. The scheme is called homodyne detection	184
Measurements of respiratory movement of an intact (unanesthetized) rabbit: upper tracing for microwave sensing; lower tracing for anemometer	185
Respiratory measurement from a human subject: upper tracing for microwave; lower tracing for anemometer	186
A continuous wave microwave sensor monitored respiratory record (uninterrupted from a-f) of a cat subjected to a brief period of selective heating of the head (see heating on and off arrows)	187
A contactless microwave apnea monitor.	188
	The system transfer function for a generalized linear system An impulse train: comb function

Figure 7.8	A microwave apnea detector recorded respiratory activity of an anesthetized cat showing apneic episode and recovery 189
Figure 7.9	Functional block diagram of a single-chip quadrature radar transceiver
Figure 7.10	Architecture and photograph of single chip quadrature Doppler radar transceiver for noncontact physiological sensing. (Courtesy of Jenshan Lin, University of Florida and Bell Laboratories.)
Figure 7.11	System diagram of SoC UWB pulse radar (a). The dashed lines around the target indicate the range spanned by the radar in ranging (RM) and tracking (TM) modes. Representation of the pulses at the input and output of the multiplier for three different cases of relative shift between the input pulses (b). Representation of the input and output voltages of the integrator for stationary and moving targets (c)
Figure 7.12	Output from PG of the SoC radar: (a) Ultrawide-band (UWB) pulses with 350 ps duration; (b) The power spectral density (PSD) of pulse measured before and after antenna filtering and FCC UWB masking
Figure 7.13	Input (upper trace) and output (lower trace) signals of the multiplier measured for three cases: (a) monocycle input pulses without relative delay (i.e., time alignment), (b) a relative delay of half of the time duration, and (c) relative delay equal to the time duration
Figure 7.14	System on chip ultrawide-band pulse radar. Micrograph of the radar chip (a). The die size is 1.5×1.3 mm (including the multiplier as stand-alone device). Radar testchip packaged in a leadless package (bottom view) with exposed ground pad (size 5×5 mm) (b)
Figure 7.15	Respiration record of a seated female detected with ultrawide- band radar sensor at 30 cm in front of chest. The measured output voltage in TM mode (fPR at 40 MHz) is expressed in mV and shows a respiratory rate about 0.3 Hz
Figure 7.16	Output voltage (mV) showing respiratory record of a male subject from before and after voluntarily holding his breath at 25 cm from the radar
Figure 7.17	Motion-adaptive radiotherapy based on radar respiration sensing. The process includes two steps: treatment planning and treatment execution sessions. Insets: (a) multiple radars, (b) beam-scanning radar, and (c) the 2.4-GHz miniature radar sensor (see quarter coin for size comparison). (Courtesy of Changzhi Li, Texas Tech University.)

Figure 7.18	Block diagram of DC-coupled radar sensor system with RF coarse-tuning and baseband fine-tuning architectures. ZigBee protocols are used to transmit data and receive commands wirelessly. (Courtesy of Changzhi Li, Texas Tech University.)	199
Figure 7.19	DC-coupled sensor measured respiratory signal of a human participant: (a) Radar measured respiration signal; (b) Generated gating signal. The shaded area indicates the coach reference data domain, and the line represents the reference for gating.	200
Figure 7.20	Transmitted waveform of a sawtooth frequency- modulated continuous wave (FMCW) radar: Ramp frequency modulation versus time (upper) and instantaneous amplitude variation with time (lower).	201
Figure 7.21	Photograph of prototype quadrature frequency-modulated continuous wave radar showing signal generator and patch array antennas with low-noise amplifier (LNA), data acquisition (DAQ), and local oscillator (LO). (Courtesy of Changzhi Li, Texas Tech University.)	203
Figure 7.22	Human respiration pattern showing chest-wall displacement obtained using a 5.8 GHz frequency-modulated continuous wave radar sensor	203
Figure 7.23	Frequency-modulated continuous wave radar-detected patient breathing patterns with superimposed heartbeats during mechanical ventilation.	204
Figure 7.24	Frequency-modulated continuous wave radar monitored spontaneous breathing with different breathing patterns. Each inspiratory cycle is characterized by a first peak (chest-wall expansion during inhalation) followed by a curved peak (during exhalation).	205
Figure 7.25	The sternum, xiphoid, and thoracic cage	206
Figure 7.26	Antenna located over the apex of the heart for microwave apexcardiography.	207
Figure 7.27	Illustration of electrocardiography (ECG), apexcardiography (ACG), and microwave apexcardiography (MACG) recordings in arbitrary units.	207
Figure 7.28	Experimental diagram for microwave cardiography - noncontact microwave measurement of precordial movements using homodyne detection	208
Figure 7.29	Microwave pulsatile microwave apexcardiography (MACG) for a healthy young male along with electrocardiography	

	(ECG) and phonocardiography (PCG) tracings. Note the same heart rate is recorded by the ECG, PCG, and MACG	209
Figure 7.30	Salient features (landmarks) of microwave-measured ventricular movement in a healthy young male	209
Figure 7.31	Functional diagram of a portable contactless vital sign monitor	211
Figure 7.32	Transceiver output signal sensed from human chest	212
Figure 7.33	Typical heart and breathing waveforms recorded by the portable contactless vital sign monitor from a healthy young adult.	212
Figure 7.34	Scatter plot of measured and visually identified breathing rates of rats	213
Figure 7.35	Scatter graphs of the vital-sign monitor displaying measured and visually identified heart (a) and respiration rates (b) for human subjects	214
Figure 7.36	Summary of basic steps in the pattern recognition software algorithm	214
Figure 7.37	Schematic diagram of the remote heart and respiration rate detection system	216
Figure 7.38	Microwave sensing of heartbeat and respiration from a human subject sitting at 2 m from and behind a 15 cm thick cinder block wall	217
Figure 7.39	Heart signals of a human subject lying on the ground at 30 m measured with a 10 GHz microwave Doppler radar beam	217
Figure 7.40	Schematic diagram of a 1150-MHz microwave life-detection system.	219
Figure 7.41	Heartbeat and respiration signals of a female human subject recorded from the top of simulated rubble with a 450 MHz reflector antenna. The subject is lying within a cavity in the rubble. The peak at 0.6 Hz is the second harmonic of the respiration signal. (a) Temporal waveform, (b) frequency spectrum.	220
Figure 7.42	Breathing and heartbeat signals recorded from a human subject lying beneath 9 ft (~2.74 m) of rubble by a 450 MHz life-detection system. (a) Temporal waveform, (b) frequency spectrum.	221
Figure 7.43	Sensing of heartbeat signals by two side-by-side antennas in a 1150 MHz life-detection system. Simulation of human	

	subjects or a phantom heart model under 3 ft of wire-mesh rubble.	221
Figure 7.44	Phantom heartbeat signals sensed by two side-by-side antennas in a 1150 MHz life-detection system. Results are displayed as time-domain, spectra (FFT), and cross correlations.	222
Figure 7.45	Heart and respiration activity measured with the 2.4 GHz quadrature radar chip. The analog filtered I and Q outputs, which contain both heart and respiration information, are shown at the top, followed by the digitally filtered I and Q signals, with only heart information. Neither the I nor Q output is at the maximum sensitivity point or at the null point. They have similar amplitudes and accuracies. The I output is within 1 beat per min of the reference 82% of the time, and the Q output is correct 81% of the time	224
Figure 7.46	Heart and respiration activity measured with the 1.6 GHz BiCMOS chip. The top trace is the analog-filtered raw signal, and the second is the analog-filtered heart signal. The third and fourth traces are the raw and heart signals, respectively, after digital filtering. The bottom trace is the pulse reference. The filtered heart signal was within one beat per minute of the reference 100% of the time, while the filtered raw signal agreed 92% of the time	225
Figure 7.47	Schematic diagram of the 5 GHz radar transceiver with interfaces for input/output antennas. (Courtesy of Changzhi Li, Texas Tech University.)	226
Figure 7.48	Photomicrograph of integrated chip sensors: (a) a double sideband vital-sign detection radar fabricated in 0.18 μ m CMOS process (Li et al., 2008) and (b) a direct conversion radar fabricated in 0.13 μ m CMOS process. (Courtesy of Changzhi Li, Texas Tech University.)	226
Figure 7.49	Schematic block diagram of the software-configurable 5.8 GHz quadrature continuous wave radar-on-chip sensor. (Courtesy of Changzhi Li, Texas Tech University.)	227
Figure 7.50	Radar-on-chip output signal detected from the back of a human subject: Waveforms of I (dashed line) and Q (solid line) channels (top) and frequency spectrum of demodulated (CSD) signal (bottom)	227
Figure 7.51	CMOS radar-on-chip sensor output signal detected from the front of a human subject at 1.5 m: Waveforms of I (dashed line) and Q (solid line) channels (top) and frequency spectrum of demodulated (CSD) signal (bottom)	228

Figure 7.52	Schematic diagram of coherent low-IF system showing signal flow	229
Figure 7.53	Schematic diagram of a 5.8 GHz double-sideband low-IF continuous wave radar system with both envelope detection (ED) and synchronous demodulation (SD) demonstrated at the output.	230
Figure 7.54	Experimental setup for motion measurements using the 5.8 GHz low-IF radar system with a pair of 2×2 patch antennas for microwave transmission and reception. The human subject would be in the position of actuator and metal plate shown. (Courtesy of Lianming Li, Southeast University.)	231
Figure 7.55	Comparison between the envelop detection and synchronous demodulation methods for vital sign detection. The 20-s waveform (a-top) and corresponding power spectrum under normal (freely) breathing conditions (b-bottom)	231
Figure 7.56	Prolonged human vital-sign (heartbeat) monitoring by envelope detection (ED) method. The total detection interval is 140 s. Detected vital-sign (heartbeat) results are the same as the reference pulse rate. The detection accuracy is better than 96%.	232
Figure 7.57	Schematic diagram of a self-injection-locked oscillator (SILO) radar system	233
Figure 7.58	Schematic diagram of an SIL radar sensor developed for vital-sign measurement using an ISM band. It includes annotated specifications of key system components.	233
Figure 7.59	Vital signs detected using ISM band SIL radar: Breathing waveform (top) and frequency spectrum showing a rate of 17 beats/min (below)	234
Figure 7.60	Heartbeat detected using an ISM SIL radar sensor: (a) Heartbeat waveform and (b) Frequency spectrum indicating a heartbeat of 79 beats/min.	235
Figure 7.61	Heart signal detection results at different distances between the subject and SIL sensor operating at 1.8 GHz.	236
Figure 7.62	Heart signal detection results at different distances between the subject and SIL sensor operating at 2.4 GHz.	237
Figure 7.63	Heart signal detection results at different distances between the subject and SIL sensor operating at 3.6 GHz.	238
Figure 7.64	Heart signal detection using an SIL sensor at a continuous wave Doppler radar "null" point showing heart-signal detection with frequency sweeping compared to that without	238

Figure 7.65	SIL AIA radar sensor: (a) Circuit diagram of self-oscillating AIA sensor, (b) Photograph of AIA, and (c) Schematic diagram showing differentiator-based envelop detector. (Courtesy of Chao-Hsiung Tseng, National Taiwan University of Science and Technology.)	239
Figure 7.66	SIL AIA sensor measurement of a cardiopulmonary signal: (a) Time-domain results of cardiopulmonary detection and (b) Spectrum showing respiration and heartbeat rates. Inset: Reference pulse rate from finger	240
Figure 7.67	Schematic and timing diagram of the frequency modulated SIL radar architecture	241
Figure 7.68	Experimental arrangement for remote SIL radar detection of location and cardiopulmonary signatures: (a) Photograph of two subjects seated 2–5 m behind a wooden partition wall and (b) Reconstructed image of subject locations. (Courtesy of T.S. Jason Horng, National Sun Yat-Sen University.)	241
Figure 7.69	Schematic diagram of single-conversion SIL (SCSIL) hybrid mode radar sensor.	242
Figure 7.70	Experimental arrangement for remote single-conversion SIL (SCSIL) radar detection and sensing of the vital signs of two seated subjects. (Courtesy of Fu-Kang Wang, National Sun Yat-Sen University.)	243
Figure 7.71	Experimental results obtained using fast Fourier transform (FFT) and frequency estimation algorithms (FEA). The black and gray lines with circular symbols represent the output spectra of the baseband signals: (a) Range detection and (b) Vital-sign detection.	244
Figure 7.72	Photograph (a) and schematic diagram (b) of a 60 GHz prototype vital-sign measurement system setup using V-band waveguide components. (Courtesy of Tzuen-Hsi Huang, National Cheng Kung University.)	246
Figure 7.73	System block diagram illustrating CMOS Doppler radar, flip-chip integration, TX and RX PCB patch antennas, 60 GHz RF section, 6 GHz IF, and baseband I/Q outputs. The overall dimensions are 31.3 × 45 mm	247
Figure 7.74	Photomicrograph of the 60 GHz CMOS radar chip. (Courtesy of Jenshan Lin, University of Florida.)	247
Figure 7.75	Final system photograph including the flipped chip, TX and RX patch antennas, and DC bias wires. (Courtesy of Jenshan Lin, University of Florida.)	248

Figure 7.76	Spectrum of respiration signal detection from two different displacements: (a) No prominent respiration peak and (b) possible respiration peak at 15 breath/min.	248
Figure 7.77	60 GHz CMOS radar chip detected respiration signals: (a) I and Q outputs before recovery algorithm is applied and I and Q outputs after recovery algorithm is applied and (b) spectrum of recovered respiration peak from I and Q outputs for the signal shown in Figure 7.76(a)	249
Figure 7.78	Photomicrograph of 60 GHz CMOS direct-conversion Doppler radar chip (size 2 × 2 mm). (Courtesy of Huey-Ru Chuang and Tzuen-Hsi Huang, National Cheng Kung University.)	250
Figure 7.79	Schematic diagram of 60 GHz CMOS direct-conversion Doppler radar RF sensor with clutter canceller circuits for single-antenna noncontact human vital-signs detection. The Doppler radar chip sensor has a high isolation QC and a clutter canceller circuit. It consists of a VCO, FD, PA, and QC, clutter canceller with a low phase-variation VGA and a full 360 continuously adjustable PS, LNA, I/Q subharmonic mixer (SHM), and three directional couplers. The inset figure to the right illustrates the principle of clutter cancellation. (Courtesy of Tzuen-Hsi Huang, National Cheng Kung University.)	251
Figure 7.80	Measured respiration and heartbeat signals of the human subject at 0.75 m: (a) Time-domain I/Q signal of the heartbeat signal, (b) Frequency spectrum of the heartbeat signal, (c) Time-domain I/Q signal of the breathing signal, and (d) Frequency spectrum of the respiration signal	253
Figure 7.81	Photomicrograph of 60 GHz CMOS Doppler radar sensor integrated with a V-band PD. The chip size is 2×2.34 mm. (Courtesy of Huey-Ru Chuang, Tzuen-Hsi Huang, National Cheng Kung University.)	254
Figure 7.82	V-band Doppler radar-measured respiration and heartbeat signals of the human subject with normal breathing at 1.2 m: (a) Time-domain I/Q channel signals and (b) Frequency spectrum.	255
Figure 7.83	V-band radar sensor measured heartbeat signals of a human subject holding its breath at 1.2 m: (a) Time-domain I/Q channel signals and (b) Frequency spectrum.	256
Figure 7.84	Photomicrograph of 65 nm CMOS 100 GHz radar system on chip with dimensions of 0.9×2.0 mm including circuit blocks: LNA, I/Q down-conversion mixer, polyphase filter	

	(PPF), IF transimpedance amplifier (TIA), LO generation, up-conversion mixer, and power amplifier (PA) and surrounding test pads. (Courtesy of Lianming Li, Southeast University.)
Figure 7.85	Schematic diagram of the 100 GHz double-sideband low-IF continuous wave Doppler radar system-on-chip with transceiver chip, two horn antennas, and the off-chip digital signal processing. (Courtesy of Jenshan Lin, University of Florida.)
Figure 7.86	Human vital-sign detection results from 2 m: (a) Two segments of time domain signals detected with and without respiration, (b) Normalized spectrum distribution showing breathing and heartbeat rates with respiration, and (c) spectrum distribution showing heart rate without respiration
Figure 8.1	Tracing of an arterial pulse wave illustrating the location of the foot, the systolic peak, and the dicrotic notch in the pulse waveform
Figure 8.2	Major blood vessels near the heart
Figure 8.3	Major arteries of the head and neck
Figure 8.4	Arteries in the arm and shoulder
Figure 8.5	Arterial and veinous circulation of the leg
Figure 8.6	Functional diagram of a contact Doppler K-band radar arterial pulse-wave sensor and analyzer272
Figure 8.7	A contact Doppler K-band radar arterial pulse-wave sensor and analyzer with 1×1 cm waveguide antenna applicator
Figure 8.8	Arterial pulse waveforms detected by the K-band Doppler pulse-wave sensor: (a) carotid pulse, (b) radial pulse, and (c) brachial pulse
Figure 8.9	Similarity of radial pulse waveform for the same subject: (a) Initial recording and (b) recording taken 4 months later
Figure 8.10	Recordings of the radial pulse made at three test distances by the same microwave sensor: (top) 0.6 cm, (middle) 1.3 cm, and (bottom) 2.5 cm were used for the measurements
Figure 8.11	Feature extraction algorithm for analysis of arterial pulse wave patterns
Figure 8.12	Microwave-sensed pulse waves from peripheral arteries in the human upper and lower extremities: (a) Radial in the arm, and (b) femoral, (c) posterior tibial, and (d) dorsalis pedis arteries in the leg

Figure 8.13	Schematic diagram of a compact S-band microwave arterial pulse-wave sensor. The ribbon antenna is seen at the upper right corner within the transistor circle. (Lin, 1989.)	278
Figure 8.14	A compact S-band microwave sensor held by an elastic headband for direct contact with the skin over the temporal region of the head	279
Figure 8.15	A compact S-band microwave sensor measured superficial temporal artery pulse waves by direct contact with the scalp	279
Figure 8.16	Schematic diagram of the proposed self-injection locked radar architecture for a wrist pulse rate sensor	280
Figure 8.17	Photograph of wrist pulse rate monitor attached through clothing with a wristband. (Courtesy of Fu-Kang Wang, National Sun Yat-Sen University.)	281
Figure 8.18	Radial pulse detected through a sleeved shirt from a subject: (a) Bandpass-filtered pulse signal and (b) frequency spectrum	282
Figure 8.19	Schematic diagrams for a wrist pulse detection (a) and microwave sensor based on injection- and phase-locked loop (PLL) (b).	282
Figure 8.20	Injection and phase-locked loop sensor-measured wrist pulse signal: (a) Time-domain bandpass-filtered signal from sensor, (b) frequency spectrum from radar sensor, and (c-bottom) bandpass-filtered data and frequency spectrum from piezoelectric transducer.	283
Figure 8.21	Wearable self-injection locked radar pulse rate sensor with amplifier integrated antenna (AIA) and differentiator-based envelope detector.	284
Figure 8.22	Self-injection locked radar measured pulse-wave data: (top) Time-domain results of wrist pulse detection and (bottom) normalized spectrum.	285
Figure 8.23	Image of a frequency-modulated continuous wave mm-wave radar chip showing transmitter and receiver locations. (Courtesy of Jessi Johnson, Blumio, Inc.)	286
Figure 8.24	Normalized time-domain waveform (top) and frequency spectrum (bottom) measured from the radial artery of a human subject.	287
Figure 8.25	Comparison of simultaneous intra-aortic pressure pulse (IAPP) and noninvasive microwave (MWPP) pulse pressure sensing	289
Figure 8.26	Analysis of pulse wave diagnostic features: QS2 (Q wave to second heart sound time), LVET (Left Ventricular Ejection Time), PEP (Pre-Ejection Period) = QS2 – LVET	290

xxviii

Figure 8.27	Method of pulse transit time extraction from aortic and radial pulse waves measured by a microwave sensor	292
Figure 8.28	Handheld self-injection locked radar arterial pulse pressure wave sensor. (Courtesy of Chao-Hsiung Tseng, National Taiwan University of Science and Technology.)	294
Figure 8.29	Definition of S1, the first systolic peak and S2, second systolic peak of the arterial pulse wave and R-PTT, the time interval between S1 and S2.	294
Figure 8.30	Photographs of near-field microwave self-injection locked (NFSIL) radar sensor with a split-ring resonator, amplitude demodulator, and MCU module. (Courtesy of Chao-Hsiung Tseng, National Taiwan University of Science and Technology.)	295
Figure 8.31	Self-injection locked oscillator radar sensor measured raw (top) and filtered (bottom) arterial pulse waveforms from the wrist of normal subject.	295
Figure 8.32	Frequency-modulated continuous wave mm-wave radar sensor in a plastic cover attached to the subject using a nylon strap and placed over the radial artery (a). Simultaneous recordings of radial arterial pressure waves using a handheld tonometer on the opposite wrist (b). (Courtesy of Jessi Johnson, Blumio, Inc.)	297
Figure 8.33	Example waveforms and corresponding spectral distribution for subjects with varying R2 values: (a) low, P9; (b) typical, P3; and (c) high, P12, obtained by mm-wave radar and tonometer (dotted line)	298
Figure 8.34	Prototype multipoint near-field sensing system: (a) The transceiver by two software-defined radios (SDR1 and SDR2), (b) the sensing antenna pair at 1.8 GHz band, (c) the 900 MHz and 5 GHz bands, and (d) the sensing antenna placement when four antenna pairs are deployed to Points 1–4. The sensing antenna pairs are placed over the shirt. (Hui et al., 2020.)	301
Figure 8.35	The multipoint microwave system for near-field sensing. Placement of the sensing points (1–4): 0 (Erb's point), ST (stethoscope), LL and RA (ECG electrodes). (Hui et al., 2020.)	302
Figure 8.36	Central blood pressure analysis based on Hilbert-Huang transform frequency-time analysis of near-field backscattering channel C11 during systole: (Top) Subject sat on the floor; (bottom) subject was in a standing posture. The synchronized ECG signal (blue) indicates timing. (Hui et al. 2020)	302
	(1101 ct al., 2020.)	505

Figure 9.1	Comparison of 30-second records of AC coupled Doppler microwave radar sensed respiratory volume signal (top), reconstructed waveform (middle), and spirometer transducer output (bottom).	308
Figure 9.2	Computer X-ray tomographic (CT) images of the coronal section of the human chest: (a) CT of ambulatory subject with dry lungs (non-heart failure), and (b) CT of a patient showing pulmonary edema in congestive heart failure	310
Figure 9.3	Magnetic resonance image of cerebral edema: (Left) Ventricular edema and (right) tumorigenic brain edema	311
Figure 9.4	Changes in the baseline of the amplitude of the microwave reflection coefficient and left atrial pressure during development of pulmonary edema in an anesthetized 25 kg dog on a respirator.	313
Figure 9.5	Experimental results showing correlation between the phase of transmitted 915 MHz signal and the pulmonary arterial pressure in a dog during induction of pulmonary edema. (INF = infusion)	314
Figure 9.6	Radiometric response to injections of water in a model of the human thorax. The phantom model's emissivity decreases as the volume of water increases	315
Figure 9.7	A functional block diagram of the wideband microwave automated scanning system.	315
Figure 9.8	Configuration of a coax-coplanar-waveguide-fed prototype slot antenna design: The evolution process of antenna 1 to antenna 5	316
Figure 9.9	Differential scattering profile of lowest detectable fluid compared to normal cases with identical scaling: (a) 10 mL water, (b) normal; and (c) 4 mL water, (d) normal. (Rezaeieh et al., 2014.)	317
Figure 9.10	Details of wearable sensor antenna: active port 1 is the radio frequency transmitter and 15 passive ports serve as the receivers. (Courtesy of Asimina Kiourti, Ohio State University.)	.318
Figure 9.11	Antenna placement on torso of mannequin and placement of porcine lungs inside the torso. (Courtesy of Asimina Kiourti, Ohio State University.)	318
Figure 9.12	Transmission coefficients of radio frequency signals measured using a prototype sensor system for diagnosis of pulmonary edema: (a) with porcine lung alone, (b) with six water balls inserted into the porcine lungs, and (c) with	
	12 water balls inserted into the porcine lungs	319

Figure 9.13	Experimental arrangement of a near-field microwave pulmonary edema sensing system with an antenna array embedded inside a foam bed. (Rezaeieh et al., 2015.)	320
Figure 9.14	Images obtained using an 8×2 array configuration for a torso phantom: (Left) Normal artificial lungs without water and (right) abnormal artificial lungs with 1 mL inserted water	321
Figure 9.15	Variation of the intensity of differential scattered field with the increase of water volume in the lungs using arrays of eight antennas (normalized with respect to the field value at 100 mL fluid volume)	322
Figure 9.16	Images from using 8×2 antenna array configuration for a phantom torso with animal lungs: (Left) normal lamb lungs and (right) abnormal lamb lungs with 1 mL injected water	322
Figure 9.17	A set of scattered field intensity images obtained from healthy volunteers. The high-intensity area corresponds to the location of the heart in the human volunteers	323
Figure 9.18	A commercial noncontact near-field sensor with antennas embedded in a wearable vest over clothing. (Amir et al., 2016.)	324
Figure 9.19	Comparison of lung fluid level in participants (N = 31) quantitated using computerized tomography and noninvasive radio frequency sensing	325
Figure 9.20	A noninvasive radio frequency pulmonary edema sensing system with an adhesive patch and a removable antenna sensor: (a) Sensor's front view and (b) adhesive patch. (Wheatley-Guy et al., 2020.)	326
Figure 9.21	Placement of the sensor and patch in the left anterior axillary. (Wheatley-Guy et al., 2020.)	326
Figure 9.22	Comparison of radio frequency-measured pulmonary fluid content based on subject's sitting versus supine body position	327
Figure 9.23	Correlation between computerized tomography and radio frequency-measured fluid contents in the lungs.	327
Figure 9.24	Experimental arrangement of the prototype system and test components, attachments, data collection, and signal flow of all sensors including commercial BIOPAC devices, chest belts, and a pneumotachometer (PTM) connected to a facemask. (Sharma et al., 2020.)	328
Figure 9.25	Correlation and agreement between near-field microwave sensors (NCS) and pneumotachometer (PTM) measured respiratory volume (RV) for all participants. The label shows a marker for each breathing mode, including	

	conscious normal, deep, fast and breath-hold (BH), as well as spontaneous breathing in relaxation and attention states. Also shown are the scatter plot (top) with Pearson's correlation coefficient r, and Bland-Altman plot (bottom) showing bias m at the center (solid line), and the corresponding limits of agreement (dash lines) given by $m \pm 2.24$ (σ). (Sharma et al., 2020.)
Figure 9.26	Microwave instrumentation for detection and monitoring of cerebral edema: 1) Microwave signal generator, 2) directional coupler, 3) antennas, 4) vector voltmeter, and 5) chart recorder
Figure 9.27	Changes in the phase of microwave signal transmitted through the phantom head model. The \pm signs associated with W and E correspond to addition or subtraction of 10 mL of water and ethanol
Figure 9.28	Phase changes in microwave signal transmitted through a phantom head model in response to successive additions of a measured amount (in mL) of saline (mimicking cerebrospinal fluid [CSF])
Figure 9.29	Schematic diagram of experimental setup for recording microwave phase change, electrocardiogram, and intracranial pressure
Figure 9.30	Changes in relative phase, electrocardiogram (ECG), and intracranial pressure (ICP) following saline injections (see arrows) of 0.07 mL and 0.05 mL, respectively
Figure 9.31	Relative phase and intracranial pressure (ICP) following suction (see arrow). A volume of 0.02 mL of saline was withdrawn into the syringe
Figure 9.32	Maximum phase change versus maximum intracranial pressure (ICP) change for injection of aliquots. Volumes of aliquot are shown by symbols
Figure 9.33	Change in phase, electrocardiogram (ECG), and intracranial pressure (ICP) following a saline infusion (see upward arrow) of 0.16 mL/min
Figure 9.34	Return of relative phase toward the baseline after cessation of a saline infusion (see downward arrow)
Figure 9.35	Transient changes in phase and intracranial pressure (ICP) associated with each heartbeat during a period of hypoxia
Figure 10.1	Sleep stage, duration, and timeline cycled through during the night on a screen display

xxxiii

Figure 10.2	A screen display showing 7-day sleep patterns compared to the prior 14-day average.	348
Figure 10.3	A wearable tracker as health monitor for vital signs such as respiration rate, heart rate, heart rate variability, and skin temperature.	349
Figure 10.4	Daily activity and comparison to "recovery" to normal weekly levels	350
Figure 10.5	The standard three-lead configuration (I, II, and III) for electrocardiogram recording.	350
Figure 10.6	Normal single lead (lead I) electrocardiogram from a wrist- worn smartwatch sensor.	351
Figure 10.7	A modern Holter monitoring device for cardiac rhythm diagnosis. (From Medical Encyclopedia, Holter heart monitor, MedlinePlus [Internet]. Bethesda (MD): National Library of Medicine (US); [updated Jun 24; cited 2020 Jul 1]. Available from: https://medlineplus.gov/.)	352
Figure 10.8	Insulated electrodes for capacitive coupling sensors	353
Figure 10.9	Schematic diagram of a miniature S-band microwave arterial pulse-wave sensor. The ribbon antenna is seen at the upper right corner within the transistor circle	354
Figure 10.10	A wearable microwave sensor held in direct contact with the skin over the right temporal artery of the head using an elastic headband	355
Figure 10.11	A wearable miniature S-band microwave sensor measuring superficial temporal artery pulse waves by direct contact through a thin dielectric with the scalp	355
Figure 10.12	Positioning of the prototype microwave sensor and a subject's wrist. (McFerran et al., 2019.)	357
Figure 10.13	Measured radial artery results from a human subject's wrist using a voltage-controlled oscillator	357
Figure 10.14	A wearable clip-on microwave sensor inside a plastic sleeve over clothing.	358
Figure 10.15	Microwave sensor board including integrated microwave circuit, patch antenna, filter, and microcontroller in transparent plastic clip-on badge holder	359
Figure 10.16	Comparison between clip-on wearable microwave Doppler sensor (top) and commercial electrocardiogram monitor (bottom)-measured heart signals	359
Figure 10.17	Clip-on wearable microwave sensor measurements taken from three different subjects. The top row of tracings was taken with horizontal polarization and the bottom row	

	corresponds to vertical polarization. The right-most data are for a subject with medically diagnosed Wolff-Parkinson- White syndrome
Figure 10.18	Wearable microwave radar sensor with a self-injection locked oscillator (SILO) tag for monitoring the heartbeats of a person in motion
Figure 10.19	The system architecture for a chest-worn self-injection locked oscillator (SILO) tag sensor for heart-rate monitoring 361
Figure 10.20	A wearable self-injection locked oscillator (SILO) tag attached (see inset) to the subject's clothing. The FM receiver is located 30 cm away on a tripod along with a BIOPAC electrocardiogram monitor. (Courtesy of TS. Jason Horng, National Sun Yat-Sen University.)
Figure 10.21	Comparison of the Doppler microwave signal detected by the SILO tag (Upper trace in each panel) with the reference ECG signal (Lower trace) in a seated subject. The figure at top shows five characteristic points, A, B, C, D, and E, identifiable in a cycle of the Doppler waveform. Specifically, A - corresponds to the middle of the T-P interval, B - the peak of the P wave, C - the peak of the R wave, D - the beginning of the T wave, and E - the end of the T wave in the ECG
Figure 10.22	Comparison of the Doppler signal detected by the self- injection locked oscillator (SILO tag) (upper) with the reference electrocardiogram ECG signal (lower) in phase 2 of the experiment
Figure 10.23	Computational simulation of 5.6 GHz electric-field distributions on virtual observation planes in front of the CSRR: (a) Simulation configuration for observations at distances of (b) 0.0, (c) 3.0, (d) 6.0, and (e) 10.0 mm. (Courtesy of Chao-Hsiung Tseng, National Taiwan University of Science and Technology.)
Figure 10.24	System block diagram of the ILO-CSRR or SO-CSRR sensor. (Courtesy of Chao-Hsiung Tseng, National Taiwan University of Science and Technology.)
Figure 10.25	Photograph of ILO-CSRR sensor: (a) Top view showing microcontroller unit (MCU) used to control the phase-lock- loop (PLL IC) and (b) the bottom view showing the finger/ wrist pulse sensor location. (Courtesy of Chao-Hsiung Tseng, National Taiwan University of Science and Technology.)
Figure 10.26	Measurement setups for finger (a) and wrist (b) pulse sensing. (Courtesy of Chao-Hsiung Tseng, National Taiwan University of Science and Technology.)

Figure 10.27	Measured time-domain results of finger pulse detection using ILO-CSRR and photoplethysmography sensor (upper)
Figure 10.28	Examples of the measured time-varying wrist pulse wave detection using an ILO-CSRR sensor (lower) compared to photoplethysmography sensor (upper)
Figure 10.29	Model of an antenna and enclosure positioned on the skin over an artery with H for artery height and W for width. Note that the extent of expansion (height and width) of the artery is exaggerated for illustration. (Courtesy of Jessi Johnson, Blumio Inc.)
Figure 10.30	Photograph of mm-wave arterial sensor strapped on wrist of a subject for radial artery pulse measurement. (Courtesy of Jessi Johnson, Blumio Inc.)
Figure 10.31	Normalized radial artery waveform (Upper in each case) and frequency spectrum (Lower) obtained from a human subject with stronger signal (P1) and a subject with weaker signal (P2)
Figure 10.32	Wearable self-injection locked oscillator radar sensor positioned on a subject's chest for measurement of breathing activity. (Costanzo et al., 2023.)
Figure 10.33	Block diagram of wearable respiration monitor for breathing rate detection with radio frequency energy harvesting via system-on-a-chip
Figure 10.34	Output voltage waveforms of the demodulator circuit: (a) normal breathing at 0.25 Hz (15 bpm) and (b) rapid breathing at 0.7 Hz (42 bpm)
Figure 10.35	Microwave TX and RX antennas connected to the software-defined radio (SDR) transceiver in a 3D-printed package. (Sharma et al., 2020.)
Figure 10.36	The laboratory setup to monitor heartbeat and respiration. (Sharma et al., 2020.)
Figure 10.37	Correlation and agreement between the near-field coherent sensing and electrocardiogram-measured heart rate for the entire dataset. The label shows a marker for each breathing mode, including conscious normal, deep, fast, and breath- hold (BH), as well as spontaneous breathing in relaxation and attention states. The scatter plot (top) with Pearson's correlation coefficient r and Bland-Altman plot (bottom) showing bias m at the center (solid line) and the corresponding limits of agreement (dashed line) given by $m \pm 1.96(\sigma)$

Figure 10.38	Correlation (top) and limits of agreement (bottom) of the near-field coherent sensor compared to reference device for respiratory rate measurement (see also explanations in Figure 10.37)
Figure 11.1	A multisubject vital-sign sensing system combining self- injection-locked (SIL) radar with frequency-modulated continuous-wave (FMCW) and sum-difference pattern detection techniques
Figure 11.2	Photograph of the experimental arrangement for detection of two test participants behind a wooden partition panel. (Courtesy of TS. Jason Horng, National Sun Yat-Sen University.)
Figure 11.3	Cumulative (1 s) frequency-modulated continuous-wave spectra for range (distance) detection
Figure 11.4	Vital signs detected for participant 1: (a) Position fluctuations due to vital signs at participant position and (b) spectrum of position fluctuations corresponding to heartbeat and respiration
Figure 11.5	Vital signs detected for participant 2: (a) Position fluctuations due to vital signs at participant position and (b) spectrum of position fluctuations corresponding to heartbeat and respiration
Figure 11.6	Reconstructed image for positions of the two participants based on the range and azimuth information. (Courtesy of TS. Jason Horng, National Sun Yat-Sen University.)
Figure 11.7	Schematic diagram of a radar measurement system with four-channel network analyzer and a planar wide-beam array antenna and electrocardiogram (ECG) as a reference signal
Figure 11.8	Normalized histograms of errors in estimating the heart rate using the directionally constrained minimization of power (DCMP) for one participant (black), DCMP for two participants (light black), and a single channel for two participants (dashed) compared to electrocardiogram measurements
Figure 11.9	Dual-beam phased array radar detection scenario for two subjects using multiple-input, multiple-output (MIMO) beamforming techniques. (Courtesy of Mehrdad Nosrati, Stevens Institute of Technology.)
Figure 11.10	Photograph of assembled dual-beam CW radar system including the transmitting and receiving patch antenna arrays. (Courtesy of Mehrdad Nosrati, Stevens Institute of Technology.) 387

xxxvi

Figure 11.11	Measurement setup for the concurrent respiration monitoring of two participants using the dual-beam phased array CW radar sensor. (Courtesy of Mehrdad Nosrati, Stevens Institute of Technology.)
Figure 11.12	Frequency spectrum of two sets of detected signals for radar operating in single-beam mode and in dual-beam mode: (a) Mixed colliding signal for radar operating in the single-beam mode and (b) solid and dashed curves showing the output of beam #1 and #2, respectively under dual-beam mode
Figure 11.13	Schematic diagram of a prototype monopulse CW Doppler radar system for concurrent respiratory monitoring of multiple subjects
Figure 11.14	Experimental setup showing two participants inside a microwave anechoic chamber. (Islam et al., 2020.)
Figure 11.15	Radar sensor separated respiratory signatures (gray) and chest belt signals (black) for: (a) subject-1 and (b) subject-2, along with corresponding frequency spectra used to extract respiration rates for: (c) subject-1 and (d) subject-2. Measured breathing rates are 0.18 Hz for subject-1 and 0.35 Hz for subject-2, both values closely match the chest belt reference
Figure 11.16	Schematic diagram of an integrated frequency-modulated continuous-wave (FMCW)-interferometry radar system. (Courtesy of Changzhi Li, Texas Tech University.)
Figure 11.17	Prototype sensor measured respiration and heartbeat signals of a participant: (a) Amplitude of I and Q channel output signals with detailed waveforms shown in insert and (b) normalized frequency spectrum after envelope detection
Figure 11.18	Continuous spectrogram of radar-sensed heartbeat and respiration signals. (Courtesy of Changzhi Li, Texas Tech University.)
Figure 11.19	Differentiation of human targets from strong stationary clutter-return scenarios: (a) Range profile corresponding to detection of human subjects behind a glass wall with various stationary targets and human-signature-associated fluctuations and (b) extraction of a human target using standard deviation enhancements
Figure 11.20	Integrated radar sensor to identify human subjects in a complex environment with multiple stationary clutters: (a) Experimental scene, (b) 2-D mapping result for the scenario, and (c) human subject isolation from the 2-D mapping experiment. (Courtesy of Changzhi Li, Texas Tech University.)

	•	•	•
XXXV	I	I	

Figure 11.21	Photograph of the experimental scene with two participants in an indoor corridor for demonstrating integrated frequency- modulated continuous wave interferometry radar-enabled production of inverse synthetic aperture radar (ISAR) images. (Courtesy of Changzhi Li, Texas Tech University.)
Figure 11.22	A sequence of integrated frequency-modulated continuous wave interferometry radar-enabled inverse synthetic aperture radar (ISAR) images: (Frame 1) the ISAR image at the beginning of data acquisition, (Frame 2) the ISAR image at 7 seconds, (Frame 3) the ISAR image at 26 seconds, and (Frame 4) the ISAR image at 64 seconds. (Courtesy of Changzhi Li, Texas Tech University.)
Figure 11.23	Block diagram of K-band frequency-modulated continuous wave radar system with beamforming array
Figure 11.24	Photograph of printed circuit board realization of K-band frequency-modulated continuous wave radar system with beamforming array: (a) Top view and (b) bottom view. (Courtesy of Changzhi Li, Texas Tech University.)
Figure 11.25	Experimental scene of short-range localization with a human subject and two objects (car and lamppost). (Courtesy of Changzhi Li, Texas Tech University.)
Figure 11.26	Result of the short-range localization experiment with a human subject and two stationary targets using a K-band radar sensor. (Courtesy of Changzhi Li, Texas Tech University.)
Figure 11.27	Human subject extraction with a standard deviation of 10 sequencing scans. (Courtesy of Changzhi Li, Texas Tech University.)
Figure 11.28	The modulation scheme for a frequency-shift keying radar system: (Top) Frequency-time representation and (bottom) amplitude-time representation for square-wave modulation402
Figure 11.29	Schematic diagram of a frequency-shift keying range- tracking radar system. (Courtesy of Changzhi Li, Texas Tech University.)
Figure 11.30	Photograph of range tracking using a 5.8 GHz frequency- shift keying radar for two participants walking simultaneously in opposite directions in an interior corridor. (Courtesy of Changzhi Li, Texas Tech University.)
Figure 11.31	Measurement data for two subjects walking in opposite directions in an interior corridor using a 5.8 GHz frequency-shift keying location-tracking radar404

Figure 11.32	Results measured for two subjects walking in the same direction in an outdoor open area using a 24 GHz frequency-shift keying location-tracking radar404
Figure 11.33	Software architecture of the parametric spectral estimation feature extraction algorithm: (Step I) data acquisition from the radar system; (Step II) feature extraction for range and phase information in parallel; and (Step III) detection and tracking vital signs
Figure 11.34	Experimental setup for vial-sign measurement of two seated subjects with frequency-modulated continuous wave (FMCW) Doppler radar: (a) Block diagram showing overview of subjects with reference sensor and (b) schematic diagram giving a top view of antenna and subject spacing. (Lee et al., 2019.)
Figure 11.35	Results from measurement of two subjects in the radar field: (a) Range estimation for subjects positioned at 130 and 300 cm from the radar, (b) real-time heart rate variation of the front subject at 130 cm, and (c) real-time heart rate for the back subject at 300 cm. (Lee et al., 2019.)
Figure 11.36	Comparison of extracted peak values of the real-time heart- rate data of two subjects provided by radar and reference piezoelectric pulse sensor
Figure 11.37	Measurement results for two targets: (a) Range estimation for two targets at 130 and 170 cm, respectively, (b) heart rate for the front subject at 130 cm, and (c) heart rate for the back subject at 170 cm. (Lee et al., 2019.)
Figure 11.38	Comparison between radar and reference sensor measured heart rates as functions of time
Figure 11.39	Comparison between the algorithm-based radar and the reference sensor measured variations of heart rate for the subjects at front (Target1) and in back (Target2), (b) Frequency spectrum obtained by radar and reference sensor for the subjects in front (Target1) and back (Target2)
Figure 11.40	Measurement results of three participants located at 130, 180, and 300 cm away from the radar: (a) Range estimation, (b) comparison of heart rates between the radar method and the reference sensor as a function of time, and amplitude distribution of heart rates (beat/min): (c) for participant 1, (d) for participant 2, and (e) for participant 3
Figure 11.41	Experimental results for two subjects at 100 and 140 cm: (a) Range estimation, (b) comparison of the respiration rate measured by frequency- modulated continuous wave

	(FMCW) radar method with that of reference sensor, and (c) comparison of the heart rate of the proposed method with that of reference sensor
Figure 11.42	Experimental scenario for two subjects lying side-by-side on a bed next to frequency-modulated continuous wave (FMCW) radar sensor. (Lee et al., 2020.)
Figure 11.43	Experimental results for two subjects lying side-by-side on a bed: (a) range estimation, (b) comparison of the respiratory rate (RR) obtained using the proposed radar method with commercial reference sensor, and (c) comparison of the HR obtained using the radar method with that by reference sensor
Figure 11.44	The two participants at different ranges and separated side- by-side by 0.6 meters in between: (a) Experimental scenario and (b) 2-D-FFT range profile. (Dai, 2022; Courtesy of Vo Dai, Toan Khanh, University of Tennessee.)
Figure 11.45	Accuracy rate of heartbeat estimation for two participants (a and b). Horizontal axis shows: 1) Channel average with all channels, 2) Channel average with selected channels, 3) Channel with lowest RMS error, 4) MRC with all channels, and 5) MRC with selected channels
Figure 11.46	TDM-phased multiple-input multiple-output sensor experimental setup for measurement of breathing and heartbeat signals of two participants. (Courtesy of Chung-Tse Michael Wu, Rutgers University.)
Figure 11.47	Accuracy rate of two-subject measurement for different angles between two targets. The radar-to-target distance is 1.6 m: (a) Respiration and (b) heartbeat
Figure 11.48	Experimental setup for participants not facing the radar sensor. (Courtesy of Chung-Tse Michael Wu, Rutgers University.)
Figure 11.49	Accuracy rate of two-subject measurement for different target orientations. The radar-to-target distance is 1.6 m and target angle of separation is 30°: (a) Respiration and (b) heartbeat
Figure 11.50	Sleep apnea–hypopnea syndrome (SAHS) monitoring system showing radar location under the patient bed. (Kagawa et al., 2016.)424
Figure 11.51	Functional block diagram of sleep apnea–hypopnea syndrome (SAHS) measurement system
Figure 11.52	Respiratory signals from radar output: (a) Heartbeat superimposed on top of respiration; (b) hypopnea signal with

	amplitude <50% and apnea signal with amplitude <20%; (c) I/Q channel output signals; and (d) random body movement signal starting at 11 seconds.	425
Figure 11.53	Correlation of respiratory disturbance indexes between radar and PSG measurements	425
Figure 11.54	Experimental setup for impulse-radio ultrawideband (IR-UWB) radar and polysomnography (PSG) measurement. IR-UWB radar on a bedside table is 1 meter above the floor and is less than 2 meters from the midline of a bed. (Kwon et al., 2022.)	427
Figure 11.55	Example of ultrawideband raw data and different normalized polysomnography (PSG) signals with normal breathing and three types of respiratory events: (a) normal without event, (b) central sleep apnea, (c) obstructive sleep apnea, and (d) hypopnea. The PSG signals were recorded at 500 Hz, and the UWB signals were sampled with 20 fps	428
Figure 11.56	Scatter plots of estimated apnea-hypopnea index (AHI) using impulse-radio ultrawideband radar versus AHI obtained from the polysomnography reference for (a) total sleep time from all subjects and (b) Bland-Altman plot for visualization of the agreement between the AHIs for total sleep time. The gray line indicates equality in (a). The gray bold line and dark lines in (b) indicate the average difference (bias) and the average ± 1.96 standard deviation, respectively	429
Figure 11.57	Frequency-modulated continuous wave radar-detected patient breathing patterns with superimposed heartbeats during mechanical ventilation.	431
Figure 11.58	Frequency-modulated continuous wave radar monitored spontaneous breathing showing different breathing patterns. Each inspiratory cycle is characterized by a first peak (chest-wall expansion during inhalation), followed by a curved peak (during exhalation).	432
Figure 11.59	Smartphone application in an automated insulin delivery (AID) system	435
Figure 11.60	The percentage of time children (a) and adults (b) in the two groups were in the target glucose range as measured by continuous glucose monitoring during week 22 and 23. Symbols represent hourly group median values, and shaded regions indicate the 25th and 75th percentiles	436
Figure 11.61	The telehealth and telemedicine landscape: Access, barriers, modalities, and patient-provider benefits for successful implementation	438

Figure 11.62	 Bedside monitor display of electrocardiogram (ECG, pulse or heart rate, HR), photoplethysmography (PPG), oxygen saturation (SpO₂), breathing (respiratory rate, RR), and blood pressure for a patient during postsurgery recovery in an actual hospital environment
Figure 11.63	Potential locations of radar vital-sign sensors inside a vehicle cabin
Figure 11.64	Display of recovered vital-sign signals: (a) Estimated respiration signal, (b) autocorrelation function of the respiration signal, (c) estimated heartbeat signal, and (d) spectrum of heartbeat signal
Figure 11.65	Example of a single-chip millimeter-wave radar estimated result versus reference for HR and RR441
Figure 11.66	Actual intensity (red) and depth (blue) obtained from NIR camera (a). Depth change induced by motion (blue rectangle) is inversely proportional to the intensity, which is a key source of errors in the HR reading. When motion clutters are present, they create noise frequency components that overwhelm the true HR signal (b). (From Guo et al., 2022.)
Table 1.1	Approximate Wavelength, Frequency, Common Uses, and Some Medical Applications of the Various Regions of the Electromagnetic Spectrum
Table 1.2	Internationally Designated Frequency Band of the RF and Microwave Regions of the Electromagnetic Spectrum
Table 1.3	Commonly Used Letter Band Designations of the Microwave Region of the Electromagnetic Spectrum
Table 1.4	Frequency and Wavelength in Air, Lungs, and Skin (Muscle) in the RF and Microwave Region of the Electromagnetic Spectrum11
Table 3.1	Typical Radar Cross Section of Common Objects
Table 4.1	Permittivity of Common Low-Loss Dielectric Materials at 25°C
Table 4.2	Measured Temperature-Dependent Dielectric Permittivity of Animal Tissues at Microwave Frequencies
Table 4.3	Relative Permittivity (Dielectric Constant) and Conductivity of Tissues in the Human Head at 37°C108
Table 5.1	Magnitude of Reflection Coefficient (in Percent) between Air and Tissue and between Biological Tissues at 37°C123
Table 5.2	Depth of Penetration of Microwaves in Biological Tissues as a Function of Frequency

Table 5.3	Propagation Characteristics of Plane Waves in Low- and High-Water-Content Biological Tissues at 37°C	125
Table 6.1	Fourier Transform Pairs of Common and Specialized Functions	162
Table 7.1	Doppler Radar Compared to Conventional Respiration Belt Measurements Associated with Different Respiratory Disorders	190
Table 7.2	Accuracy of Radar Measurement for Various Motion Amplitudes	199
Table 7.3	Statistics of Microwave Sensor and Visual Determination of Heart and Respiration Rates of Adult Human Subjects (11 Readings for Each Parameter)	213
Table 8.1	Diagnostic Indications from Patients with Various Disease States According to Pulse-Wave Features	290
Table 8.2	Comparison of Intra-Aortic Catheter Pressure and Noninvasive Microwave Pulse-Wave Measurements for 5 Human Subjects	291
Table 8.3	Calibration Parameters of SBP-PTT and DBP-PTT for Human Subjects (S1, S2, and S3)	293
Table 8.4	Result of SBP/DBP Measurements Using Microwave Doppler Radar for 3 Human Subjects	293
Table 8.5	SILO Sensor-Measured Arterial Blood Pressures of 10 Subjects Aged 23 to 48 Years: BMI (Body Mass Index)	296
Table 8.6	Summary of Computed RMS Values of Radar and ECG- Measured HR for 12 Subjects	298
Table 9.1	Comparison of Dielectric Probe Measured, Estimated, and Sensor-Detected Values of Dielectric Permittivity from 2 Different Trials	320
Table 11.1	Performance Evaluation of Separated Respiration Signatures with Reference Respiration-Belt Reference Signals at Range Distances (1–3 m) for Two Different Angular Discriminations	391
Table 11.2	Representative Result of Heartbeat and Breathing Rate Estimations for Single-Target and Two-Target Scenarios	420
Table 11.3	Diagnostic Performance in the Test Group (35 Participants)	426
Table 11.4	SAHS Severity Classification and Diagnostic Performance	430
Table A.1	Standard prefixes used with units of the international system (SI) of measurements	449

Preface

It has been known since the early 1970s that Doppler microwave radars can be applied to sense vital signs in humans and animals. The exponential growth of research and development in wireless microwave noninvasive sensing of physiological signatures and volume changes during the past two decades has prompted a special interest in this subject. As a result, there has been a massive outpouring of concepts, technology, and information aimed at achieving, quantifying, and applying connected technological advancements. However, in spite of the tremendous advancement in recent years, there are few textbooks that provide a broad, cohesive treatment in moderate depth of the essential elements of the various aspects of microwave radar sensing in physical fitness, sports medicine, and healthcare delivery. One objective of this book on noninvasive physiological measurement through wireless microwave sensing is to fulfill the need by presenting comprehensive and, amply illustrated coverage of the subject. It is intended for use as a textbook at the graduate or advanced undergraduate level, and as a source of general information for electronic engineers, biomedical scientists, and healthcare professionals interested in research and development of microwave noninvasive physiological sensing to help improve public and patient health.

The book begins with an introduction to the subject and sets off with a historical perspective on pioneering investigations in the subject area. To assist understanding of later materials and discussions, the next four chapters are structured to provide fundamental concepts and methods that underpin the specific themes of application that constitute the last five chapters of the book. Thus, Chapter 3 describes the principles and physical laws governing microwave propagation, reflection, and scattering to augment knowledge of microwave sensing. The two Chapters (i.e., Chapters 4 and 5) that follow are devoted to biophysical topics of the microwave property of biological materials and interactions with biological bodies, with an aim to facilitate an understanding of microwave physiological sensing. Chapter 6 discusses the principles of linear system analysis and signal processing alongside a brief overview of relevant software algorithms to augment detection and extraction of microwave physiological signals. Descriptions of specific algorithms involved in many of the investigations are included with the specific topics discussed in later chapters.

The plans for the rest of the book (i.e., Chapters 7–11) are to describe the leading applications alongside technical advantages and operating principles in each area. These chapters present in-depth discussions of vital-sign detection, monitoring of tissue-volume change and fluid redistribution, arterial pulse wave and pressure determination, wearable sensors, and contemporary applications and advanced topics in noninvasive microwave sensing and measurement. The guiding principles throughout are to start with brief introductions to the specific topics, relevant anatomical structure and physiology, supporting methodologies, and discussions on current state of knowledge, and then progress to incorporation of recent advances within the scope of each topical area. To facilitate an understanding of the measurements and differences in the various organ and tissue systems, essential anatomic and physiological background information is included, where appropriate. It is hoped that

this approach will make it unnecessary to refer extensively to the basic textbooks. Nevertheless, specific and general references are given at the end of each chapter. These are provided for the convenience of the readers, who may wish to gain a more detailed knowledge of the subject under discussion, to put the materials in proper perspective, and to overcome potential misunderstanding. Furthermore, to help enhance the pedagogical significance and benefit, the basic and advanced topics described are accompanied by 354 figures and illustrations. I take this opportunity to acknowledge and express my thanks to the many authors for the privilege of reusing published figures, diagrams, or photos in whole or in part, as cited, for illustration in this book.

The many colleagues and students whose contributions to various aspects of the subjects covered in this book are recognized with appreciation. I would like to direct readers to the reference citations for their names that appear in our joint publications. I also wish to express my thanks to the many scientists and researchers for their invaluable suggestions and encouragements in composing the book. Indeed, their scientific works and technical innovations have been an inspiration in the preparation of this book. And importantly, it is with gratitude and love that the author thanks his family for their faith, support, and patience throughout the entire duration in writing this book.

James Chih-I Lin University of Illinois Chicago

Acknowledgments

I would like to express my sincere thanks to those colleagues and fellow scientists and researchers for their magnanimous help in producing and providing various figures for illustration in the book. I am especially obliged to Huei-Ru Chuang, T. S. Jason Horng, Tzuen-Hsi Huang, Jessi Johnson, Asimina Kiourti, Changzhe Li, Lianming Li, Jenshan Lin, Mehrdad Nosrati, Eric Stewart, Toan Khanh Vo Dai, Chao-Hsiung Tseng, Fu-Kang Wang, and Chung-Tse Michael Wu in this regard.

About the Author

James C. Lin is Professor Emeritus at the University of Illinois, Chicago, where he has served as Head of the Bioengineering Department, Director of the Robotics and Automation Laboratory, and Director of Special Projects in Engineering. He held professorships in electrical and computer engineering, bioengineering, physiology and biophysics, and physical and rehabilitation medicine. He received BS, MS and PhD degrees in electrical engineering from the University of Washington, Seattle.

Dr. Lin is a Fellow of American Association for the Advancement of Science (AAAS), American Institute for Medical and Biological Engineering (AIMBE) and the International Scientific Radio Union (URSI), and a Life Fellow of the Institute of Electrical and Electronics Engineers (IEEE). He was recognized in Elsevier's top worldwide scientists in their fields for Career Impact and for Single-Year Impact in 2020. He held a National Science Council Research Chair from 1993 to 1997 and served for many years as an IEEE-Engineering in Medicine and Biology Society distinguished lecturer. He is a recipient of the d'Arsonval Medal from the Bioelectromagnetics Society, IEEE Electromagnetic Compatibility Transactions Prize Paper Award, IEEE COMAR Recognition Award, and CAPAMA Outstanding Leadership and Service Awards. He served as a member of U.S. President's Committee for National Medal of Science (1992 and 1993) and as Chairman of Chinese American Academic & Professional Convention (1993).

Professor Lin has served in leadership positions of several scientific and professional organizations including President of the Bioelectromagnetics Society, Chairman of URSI Commission on Electromagnetics in Biology and Medicine, Co-Chair of URSI Inter-Commission Working Group on Solar Power Satellite, Chairman of the IEEE Committee on Man and Radiation, Vice President US National Council on Radiation Protection and Measurements (NCRP), and member of International Commission on Nonionizing Radiation Protection (ICNIRP). He also served on numerous advisory committees and panels for the U.S. Congress, Office of the U.S. President, National Academy of Sciences, Engineering, and Medicine, National Research Council, National Science Foundation, National Institutes of Health, Marconi Foundation, and the World Health Organization.

He has authored or edited 15 books including the recent book on *Auditory Effects* of *Microwave Radiation* (Springer, 2021), authored 450 book chapters and journal and magazine articles, and made 300+ conference presentations. He has made many fundamental scientific contributions to electromagnetics in biology and medicine, including microwave auditory effects and microwave thermoacoustic tomography. He has pioneered several medical applications of radio frequency and microwave energies including invention of a minimally invasive microwave ablation treatment for cardiac arrhythmia, and the contact, contactless, and noninvasive microwave sensing of physiological signatures and vital signs. He has chaired several international conferences including IEEE, BEMS and ICST (founding chairman of Wireless Mobile Communication and Healthcare – MobiHealth Conference). He was Editor-in-Chief of the journal *Bioelectromagnetics* from 2006 to 2022, served

as a magazine columnist, book series editor, guest editor, and member of the editorial boards of several journals. A member of Sigma Xi, Phi Tau Phi, Tau Beta Pi, and Golden Key honorary societies, and listed in *American Men and Women of Science*, *Who's Who in America, Who's Who in Engineering, Who's Who in the World*, and *Men of Achievement*, among others.

1 Introduction

Monitoring vital signs is an important clinical tool for healthcare practitioners since it can provide a wide range of diagnostic information about the patient with a relatively modest hardware setup. The standard clinical protocol for acquiring vital signs is to apply electrodes and sensors on the patient and wire them to a data acquisition unit, which is typically secured to the patient's body by a strap for continuous ambulatory recordings. For hospitalized patients, the bulky data acquisition unit is placed bedside with cables extending from the body, significantly compromising patient mobility, comfort, and tolerance. While these problems can be considered as inconveniences for adult patients that can be justified by the merits of continuous monitoring, the same experiences can pose as serious challenges for the pediatric population – not only is their physiology significantly different from that of adults, but the physical fragility of neonates and children demands that the vital-sign monitoring technologies intended for children should function as noninvasively as possible and be contactless and unobtrusive, where applicable.

Such technologies would have equally profound applications in monitoring patients with critical burns or victims of hazardous chemical or nuclear contamination. Furthermore, compared to adults, the bundle of cables connecting the electrodes, sensors, and acquisition units can exert excessive force on children's skin and body, restricting the natural movements in both inpatient and outpatient settings. Therefore, there is a great need for vital-sign monitors that are noninvasive, unobtrusive, and noncontact for direct coupling with a patient's body to enable continuous wireless recording and transmission of cardiopulmonary activities. It is desirable that the devices do not require the use of adhesives, gels, and abrasives for minimized impact on the skin, in general, and especially for neonate and children's skin [Ness et al., 2013]. Also, in the context of veterinary healthcare, animals present distinctive vital signs and have radically different skin coverings [Zhou et al., 2020]. Therefore, noninvasive, contactless, and unobtrusive vital-sign sensing would be advantageous. Furthermore, it could bring about a potential microwave radar-based application to differentiate human subjects from animal targets.

In recent years, there has been a dramatic increase in research on the use of microwave and radio frequency (RF) radars for noninvasive physiological measurements. In addition to vital signs, the investigations have involved contact, near-field, contactless, short-range, and remote detection and monitoring of physiological signals and signatures. The signals of interest are associated with physical and physiological movements as well as surface and volume changes in healthy organs and diseased tissues. This interest has been sparked, in part, by pioneering research showing electromagnetic energy, especially in the RF and microwave frequency range, that possesses reasonable dispersion and propagation loss with reliably accurate measurement from outside the body without puncturing or penetrating the skin. The rapid growth in semiconductor electronic fabrication, incredible development of the