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This book explains the principles and techniques of microwave physiological sens-
ing and introduces fundamental results of the noninvasive sensing of physiological 
signatures, vital signs, as well as life detection. Specifically, noninvasive microwave 
techniques for contact, contactless, and remote sensing of circulatory and respiratory 
movements and physiological volume changes are discussed.

Noninvasive Physiological Measurement: Wireless Microwave Sensing, is written by 
a pioneering researcher in microwave noninvasive physiological sensing and lead-
ing global expert in microwaves in biology and medicine. The book reviews current 
advances in noninvasive cardiopulmonary sensing technology and measurement. It 
includes measurements of the vital signs and physiological signatures from labora-
tory research and clinical testing. The book discusses the applicable domains and 
scenarios in which there is an interaction of radio frequency (RF) and microwaves 
with biological matter in gas, fluid, or solid form, both from inside and outside of the 
human or animal body. The book also provides examples for healthcare monitoring 
and diagnostic applications through wearables, devices, or remote contactless sen-
sors for physiological signals and signature, vital signs, and body motion sensing. 
This book is an essential guide to understanding the human body’s interaction with 
microwaves and noninvasive physiological sensing and monitoring.

This book is intended for researchers and professionals in biomedical, electrical, and 
computer engineering with an interest in antenna, sensors, microwaves, signal pro-
cessing, and medical applications. It will also be of interest to healthcare profession-
als, technologists, and practitioners interested in noninvasive physiological sensing 
and patient monitoring.
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more to follow them. He is recognized as one of the world’s most renowned scientists 
who has studied microwave and RF radiation in biology and medicine. He has served 
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Preface
It has been known since the early 1970s that Doppler microwave radars can be applied 
to sense vital signs in humans and animals. The exponential growth of research and 
development in wireless microwave noninvasive sensing of physiological signatures 
and volume changes during the past two decades has prompted a special interest in 
this subject. As a result, there has been a massive outpouring of concepts, technology, 
and information aimed at achieving, quantifying, and applying connected technologi-
cal advancements. However, in spite of the tremendous advancement in recent years, 
there are few textbooks that provide a broad, cohesive treatment in moderate depth of 
the essential elements of the various aspects of microwave radar sensing in physical 
fitness, sports medicine, and healthcare delivery. One objective of this book on non-
invasive physiological measurement through wireless microwave sensing is to fulfill 
the need by presenting comprehensive and, amply illustrated coverage of the subject. 
It is intended for use as a textbook at the graduate or advanced undergraduate level, 
and as a source of general information for electronic engineers, biomedical scientists, 
and healthcare professionals interested in research and development of microwave 
noninvasive physiological sensing to help improve public and patient health.

The book begins with an introduction to the subject and sets off with a historical 
perspective on pioneering investigations in the subject area. To assist understanding 
of later materials and discussions, the next four chapters are structured to provide 
fundamental concepts and methods that underpin the specific themes of application 
that constitute the last five chapters of the book. Thus, Chapter 3 describes the prin-
ciples and physical laws governing microwave propagation, reflection, and scattering 
to augment knowledge of microwave sensing. The two Chapters (i.e., Chapters 4 
and 5) that follow are devoted to biophysical topics of the microwave property of 
biological materials and interactions with biological bodies, with an aim to facili-
tate an understanding of microwave physiological sensing. Chapter 6 discusses the 
principles of linear system analysis and signal processing alongside a brief overview 
of relevant software algorithms to augment detection and extraction of microwave 
physiological signals. Descriptions of specific algorithms involved in many of the 
investigations are included with the specific topics discussed in later chapters.

The plans for the rest of the book (i.e., Chapters 7–11) are to describe the leading 
applications alongside technical advantages and operating principles in each area. 
These chapters present in-depth discussions of vital-sign detection, monitoring of 
tissue-volume change and fluid redistribution, arterial pulse wave and pressure deter-
mination, wearable sensors, and contemporary applications and advanced topics in 
noninvasive microwave sensing and measurement. The guiding principles through-
out are to start with brief introductions to the specific topics, relevant anatomical 
structure and physiology, supporting methodologies, and discussions on current 
state of knowledge, and then progress to incorporation of recent advances within the 
scope of each topical area. To facilitate an understanding of the measurements and 
differences in the various organ and tissue systems, essential anatomic and physi-
ological background information is included, where appropriate. It is hoped that 
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this approach will make it unnecessary to refer extensively to the basic textbooks. 
Nevertheless, specific and general references are given at the end of each chapter. 
These are provided for the convenience of the readers, who may wish to gain a 
more detailed knowledge of the subject under discussion, to put the materials in 
proper perspective, and to overcome potential misunderstanding. Furthermore, to 
help enhance the pedagogical significance and benefit, the basic and advanced topics 
described are accompanied by 354 figures and illustrations. I take this opportunity to 
acknowledge and express my thanks to the many authors for the privilege of reusing 
published figures, diagrams, or photos in whole or in part, as cited, for illustration 
in this book.

The many colleagues and students whose contributions to various aspects of the 
subjects covered in this book are recognized with appreciation. I would like to direct 
readers to the reference citations for their names that appear in our joint publications. 
I also wish to express my thanks to the many scientists and researchers for their 
invaluable suggestions and encouragements in composing the book. Indeed, their 
scientific works and technical innovations have been an inspiration in the prepara-
tion of this book. And importantly, it is with gratitude and love that the author thanks 
his family for their faith, support, and patience throughout the entire duration in 
writing this book.

James Chih‑I Lin
University of Illinois Chicago
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1 Introduction

Monitoring vital signs is an important clinical tool for healthcare practitioners since 
it can provide a wide range of diagnostic information about the patient with a rela-
tively modest hardware setup. The standard clinical protocol for acquiring vital signs 
is to apply electrodes and sensors on the patient and wire them to a data acquisi-
tion unit, which is typically secured to the patient’s body by a strap for continuous 
ambulatory recordings. For hospitalized patients, the bulky data acquisition unit is 
placed bedside with cables extending from the body, significantly compromising 
patient mobility, comfort, and tolerance. While these problems can be considered 
as inconveniences for adult patients that can be justified by the merits of continuous 
monitoring, the same experiences can pose as serious challenges for the pediatric 
population – not only is their physiology significantly different from that of adults, 
but the physical fragility of neonates and children demands that the vital-sign moni-
toring technologies intended for children should function as noninvasively as pos-
sible and be contactless and unobtrusive, where applicable.

Such technologies would have equally profound applications in monitoring 
patients with critical burns or victims of hazardous chemical or nuclear contamina-
tion. Furthermore, compared to adults, the bundle of cables connecting the elec-
trodes, sensors, and acquisition units can exert excessive force on children’s skin 
and body, restricting the natural movements in both inpatient and outpatient settings. 
Therefore, there is a great need for vital-sign monitors that are noninvasive, unobtru-
sive, and noncontact for direct coupling with a patient’s body to enable continuous 
wireless recording and transmission of cardiopulmonary activities. It is desirable that 
the devices do not require the use of adhesives, gels, and abrasives for minimized 
impact on the skin, in general, and especially for neonate and children’s skin [Ness 
et al., 2013]. Also, in the context of veterinary healthcare, animals present distinctive 
vital signs and have radically different skin coverings [Zhou et al., 2020]. Therefore, 
noninvasive, contactless, and unobtrusive vital-sign sensing would be advantageous. 
Furthermore, it could bring about a potential microwave radar-based application to 
differentiate human subjects from animal targets.

In recent years, there has been a dramatic increase in research on the use of micro-
wave and radio frequency (RF) radars for noninvasive physiological measurements. 
In addition to vital signs, the investigations have involved contact, near-field, con-
tactless, short-range, and remote detection and monitoring of physiological signals 
and signatures. The signals of interest are associated with physical and physiological 
movements as well as surface and volume changes in healthy organs and diseased 
tissues. This interest has been sparked, in part, by pioneering research showing 
electromagnetic energy, especially in the RF and microwave frequency range, that 
possesses reasonable dispersion and propagation loss with reliably accurate mea-
surement from outside the body without puncturing or penetrating the skin. The 
rapid growth in semiconductor electronic fabrication, incredible development of the 
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