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Preface
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Part 2: Mental Health (Chapters 8–14), Part 3: Nurse Care Records (Chapters 15–
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C H A P T E R 1

Forecasting Parkinson’s
Disease Patients’
Wearing-Off Using
Wrist-Worn Fitness Tracker
and Smartphone Dataset
John Noel Victorino, Yuko Shibata, Sozo Inoue,
and Tomohiro Shibata

Kyushu Institute of Technology

1.1 INTRODUCTION

Parkinson’s disease (PD) is a neurogenerative disorder affecting patients’ motor
and non-motor functions. Due to the lack of dopamine-producing cells in the pa-
tient’s brain [15,36], their motor abilities start to deteriorate with tremors, slowness
of movement (bradykinesia), muscle stiffness (rigidity), and postural instability as
PD’s cardinal symptoms. Over time, non-motor symptoms manifest, such as mood
changes, sleep, speech, and mental difficulties. These motor and non-motor symp-
toms negatively influence PD patients’ daily life and quality of life (QoL) [32].

One of the difficulties experienced by PD patients is called the “wearing-off
phenomenon”. This phenomenon happens when symptoms reappear earlier than
their scheduled Levodopa (L-dopa) treatment intake. L-dopa treatment is one of
the best treatments doctors and clinicians prescribe to PD patients to manage their
symptoms. Taking an L-dopa dose increases the dopamine production inside the
brain, temporarily relieving the patient’s symptoms [7]. However, the prolonged use
of L-dopa treatment shortens the treatment’s effective time. During the wearing-
off period, the symptoms re-emerge, causing discomfort to the patients. Thus,
PD patients’ clinicians must monitor and discuss the wearing-off phenomenon.

https://doi.org/10.1201/9781003371540-2
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Upon assessment by their doctors, they can properly adjust their patients’ L-dopa
treatment plan or entirely change their treatment [3,8,28,31].

As a contribution to PD management, we forecast future wearing-off in the next
hour using the fitness tracker datasets from earlier periods, e.g., data from one day
before. Then, existing deep learning architectures were compared to examine the
wearing-off forecasting with the fitness tracker features. This chapter’s contributions
can be summarized by answering these research questions.

1. Can wrist-worn fitness tracker datasets be used to forecast wearing-off in the
next hour?

2. Which among the six deep learning architectures performed well in forecasting
wearing-off in the next hour?

We used existing and simple deep learning architectures to answer the research ques-
tions. Our results showed that a CNN model could forecast the next hour’s wearing-
off with an average balanced accuracy of 80.64% ± 10.36% across ten participants.
Furthermore, the current period’s and the previous day’s data were necessary for
forecasting wearing-off, as both models had high AUC and balanced accuracy scores,
respectively. PD patients and clinicians can use the results of this study to mon-
itor and manage PD symptoms during wearing-off periods. PD patients can get
early warnings before a wearing-off period. Thus, the PD patient can adapt using
such future information. Furthermore, clinicians can deploy personalized forecasting
models to collect and monitor wearing-off periods in PD patients.

This chapter is divided into different sections. Section 1.2 provides existing
wearing-off prediction models using different datasets from various devices. Section
1.3 describes this chapter’s approach to developing wearing-off forecasting models
from data collection (Section 1.3.1), data processing (Section 1.3.2), and model
development (Section 1.3.3). Then, Sections 24.4 and 1.5 present and discuss the
result of the developed forecasting models for wearing-off. Finally, Section 24.5 sum-
marizes the goals of this chapter, along with the future directions of this research.

1.2 RELATED STUDIES

This section summarizes existing approaches to detect and predict wearing-off
periods among PD patients. In practice, clinicians use their experience and clinical
rating scales to regularly assess each patient’s PD situation [3,10]. Then, clini-
cians adjust the PD patients’ treatment plan based on their assessment. The latest
approaches in monitoring PD patients’ symptoms have utilized wearable devices
like Parkinson’s Kinetigraph (PKG). PKG collects accelerometer data to detect
tremors, bradykinesia, and dyskinesia among PD patients. The collected motion
data from the PD patients assist clinicians’ evaluation of wearing-off [14]. In other
studies, various motor-related datasets from accelerometer, gyroscope, and elec-
tromyography (EMG) have been used to detect or predict any PD symptoms or
wearing-off events. Aside from motor-related datasets, non-motor features from
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wearable devices have been introduced to predict wearing-off to understand and
match wearing-off periods in terms of non-motor symptoms.

In a literature review conducted on wearable technologies to detect or pre-
dict wearing-off, the utilization of wearable devices showed promise in improv-
ing the management of PD symptoms. For example, models estimated “on” and
“off” states [2] using machine learning algorithms with accelerometer data. In this
study, PKG was deployed to collect accelerometer data. Then, different statistical
and gait parameters were used to train Random Forest, Support Vector Machine
(SVM), k-Nearest Neighbor, and Naive Bayes classifiers to detect “on” and “off”
states. Based on its results, the Random Forest classifier produced the best accuracy
of 96.72% among the other classifiers, which shows that wearing-off could be de-
tected using accelerometer data [2]. Similarly, other studies have used motion-based
datasets, particularly accelerometer data, to detect wearing-off states utilizing dif-
ferent machine learning techniques. Other models have also detected specific PD
symptoms. These models produced an accuracy of at least 81% [1,5,16,18,20,26,29].
Given these studies, it was suggested to extend the use of machine learning models
to non-motor symptoms in detecting wearing-off [5].

Commercially available fitness trackers’ datasets were utilized to predict
wearing-off. Two PD participants wore the fitness tracker for 30 days while re-
porting wearing-off using the Wearing-Off Questionnaire (WoQ-9) [3,11] on their
smartphone application [21]. Correlation analysis showed the relationship between
PD participants’ sleep features and wearing-off symptoms. Intuitively, the time
elapsed from the last drug intake strongly predicted wearing-off [35]. Then, each
PD participant’s prediction model resulted in a balanced accuracy ranging from
70.0% to 76.9% using Gradient Boosting or Logistic Regression learning algorithms.
Although the balanced accuracy was lower than those models using motor features
from an accelerometer or gyroscope, detecting wearing-off using mainly the non-
motor datasets from fitness trackers was feasible [34].

Within the current landscape, detection or prediction models classify whether
a PD patient currently suffers wearing-off or not, given the present input features.
In the studies mentioned, detection and prediction have been interchangeably used
for the classification task. As such, this chapter aims to forecast future wearing-off
periods like in the next 30 minutes or 1 hour. Forecasting wearing-off periods drew
inspiration from other studies in different domains. Forecasting results provided
action points before the event or insights ahead of the anticipated event [23]. For
instance, a forecasting model predicted COVID-19 symptoms and signs of viral
infection three days before the onset of the symptoms. This study utilized a smart
ring’s physiological outputs such as heart rate (HR), body temperature, and sleep
with the self-reported symptoms from a mobile application [9]. Another similar
example used smartwatch data to detect pre-symptomatic COVID-19 cases 4–7
days before the onset of the symptoms [4,22]. In these examples, the insight by the
forecasting model provides action points like taking a COVID-19 test. Similarly,
this chapter aims to provide similar insights by forecasting future wearing-off events
(Table 1.1).
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TABLE 1.1 Comparison of Previous Studies on Detecting Specific PD Symptoms or Detecting Eearing-off

Study Aim Data Used Method Result

Keijsers [20] Determine between “on”
and “off” based on
daily activities using
wearable data

Accelerometer Unsupervised method
using frequency-based
method

Sensitivity: 97%
Specificity: 97%

Jeon [18] Classify severity of
tremors from wearable
data

Accelerometer,
gyroscope

Decision Tree (DT),
k-Nearest Neighbor
(kNN), Random Forest
(RF), Support Vector
Machine (SVM),
Discriminant Analysis

DT: 85.55% accuracy

Sama [26] Detect gait-related
disorders using
wearable data

Accelerometer SVM Accuracy: 91.81% across
12 patients

Aich [1] Detect freezing of gait
(FoG) using wearable
data

Accelerometer SVM, kNN, DT, Naive
Bayes (NB)

SVM: 88% accuracy

Steinmetzer [29] Detect motor
dysfunctions using
wearable data

Accelerometer,
gyroscope,
magnetometer

Convolutional Neural
Network (CNN)

Accuracy: 93.40%

(Continued)
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TABLE 1.1 (Continued) Comparison of Previous Studies on Detecting Specific PD Symptoms or Detecting Eearing-off

Study Aim Data Used Method Result

Hssayeni [16] Detect “on” and “off”
states

Gyroscope SVM with fuzzy labeling Accuracy: 90.5%
Sensitivity: 94.2%
Specificity: 85.4%

Aich [2] Detect “on” and “off”
using gait signals

Accelerometer RF, SVM, kNN, NB Accuracy: 96.72%
Sensitivity: 97.35%

Victorino [34] Predict “wearing-off” on
individual-level

Heart rate, Stress score,
Sleep features, Step
count

RF, GB, DT, Logistic
Regression (LR),
Linear SVM

Balanced accuracy
Participant 1: 70.00%–
71.70%

Participant 2: 76.10%–
76.90%

Current study Forecasting next hour
“wearing-off” on
individual-level

Heart rate, stress score,
sleep features, step
count

Multilayer perceptron
(MLP), Long
short-term memory
(LSTM), CNN

Balanced accuracy
80.64%± 10.36%
across ten patients
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1.3 METHODOLOGY

This section describes (1) how the datasets were collected from the PD patients,
(2) how the data was processed for model development, and (3) how each deep
learning architecture was developed to forecast wearing-off. This chapter introduces
the feasibility of forecasting wearing-off from fitness tracker datasets in previous
periods. As such, the target wearing-off forecast is 1-hour into the future. The
following subsections detail the data collection, processing, and model development.

1.3.1 Data Collection

The data collection process was similar to the previous work on understanding and
predicting wearing-off among the two PD patients [34,35]. The Garmin vivosmart4
fitness trackers were distributed to PD participants to collect the heart rate, stress
score, sleep data, and step count. In addition, Android smartphones were provided
to the PD participants with the needed applications. These two tools mainly col-
lected fitness tracker datasets and wearing-off periods among PD participants.

Both tools collect and send data from PD participants to their respective servers.
On the one hand, vivosmart4 sends data to the Garmin Connect smartphone
application through Bluetooth. Then, Garmin Connect uploads the received data
to Garmin servers. Finally, collected datasets were accessed using Garmin Health
API.1 On the other hand, PD patients answered different questionnaires through
a customized smartphone application. The wearing-off questionnaire asked what
symptoms were experienced, and when the symptoms started and ended. The data
collected from PD participants were received by different servers, as illustrated in
Figure 1.1 [34,35].

Figure 1.1 The data collection process from the tools to the servers where each

dataset can be accessed [34].
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TABLE 1.2 Garmin Vivosmart4 Collected Datasets via Garmin Health API

Dataset Interval Description

Heart rate 15-second Beats per minute
steps 15-minute Cumulative step count per interval,

with 0 as the lowest value
Stress score 3-minute Estimated stress score [13]

• 0–25: resting state,
• 26–50: low stress,
• 51–75: medium stress,
• 76–100: high stress,
• −1: not enough data to detect stress,
• −2: too much motion

Sleep stages with
each sleep duration

Varying interval
for each date

Start and end time for each sleep stage
[12]

• Light sleep
• Rapid eye movement (REM) sleep
• Deep sleep
• Awake

Various datasets collected and provided by each tool were also presented in
Figure 1.1. For the vivosmart4 fitness tracker, Garmin Health API provides access to
the heart rate, stress score, number of steps, and sleep duration for each sleep stage.
Each dataset from Garmin Health API comes in different time intervals. The heart
rate (HR) in beats per minute (bpm) is reported every 15 seconds. Meanwhile, the
number of steps is accumulated every 15 minutes. Then, the stress score is estimated
by Garmin’s algorithm. Stress scores are estimated every 3 minutes, ranging from 0
to 100, where 100 is the most stressful. Stress scores can also be reported with “-1”
and “-2” for insufficient data and too much motion, respectively [24,30]. Finally,
the sleep duration is grouped by date and by sleep stages [12] (Table 1.2).

For the smartphone application, the wearing-off periods, drug intake time and
its effect on each wearing-off symptom, and other basic information were collected
from PD participants. PD participants manually answered each questionnaire. The
wearing-off periods, the drug intake time, and the drug effects were recorded using
the Japanese version of the Wearing-Off Questionnaire (WoQ-9). The first part of
the WoQ-9 asked PD participants whether they experienced these nine wearing-off
symptoms or not [3,11]. In addition, the PD participants had to specify when the
symptoms started and ended.

1. Tremors,

2. Slowing down of movement,

3. Change in mood or depression,

4. Rigidity of muscles,
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5. Sharp pain or prolonged dull pain,

6. Impairment of complex movements of the hand & fingers,

7. Difficulty integrating thoughts or slowing down of thoughts,

8. Anxiety or panic attacks, and

9. Muscle spasm.

Then, the second part of the WoQ-9 asked about the drug intake time and its
effects. The PD participant had to indicate whether each symptom subsided or
not. Other pieces of information were asked using the smartphone application, such
as age, sex, Hoehn and Yahr (H&Y) scale, the Japan Ministry of Health, Labor, and
Welfare’s classification of living dysfunction (JCLD) for the PD stage [6,19], and
the Parkinson’s Disease Questionnaire (PDQ-8) for the PD patient’s self-assessed
quality of life [17]. These datasets are summarized in Table 1.3.

This research study has received the University’s ethical review. Meanwhile,
the two tools were distributed to PD participants. PD participants can participate
in this research if (1) they experience wearing-off, (2) they can use the tools, and
(3) they do not have any severe illnesses or symptoms that could affect them during
the data collection period. PD participants are referred to either by their doctor or
by other PD patients. Before starting the data collection period, PD patients were
informed of the research goals. Then, we asked for their written consent. Afterward,
the tools were distributed to begin the data collection period. PD participants
were asked to contribute seven (7) days’ worth of data. However, they can freely
discontinue or opt out of the research study if they cannot proceed with the data
collection.

During the data collection period, participants were asked to wear the Garmin
vivosmart4 every time, even when taking a bath or sleeping. Meanwhile, it is im-
portant to wear it during the night to capture the sleep duration data. On the
other hand, recording the participant’s wearing-off at their own convenient time

TABLE 1.3 The Smartphone Application Collected Datasets

Data Type Description

WoQ-9 Symptoms onset and drug intake time
Basic Information Age and gender
Hoehn and Yahr Scale (H&Y), Participant’s PD stage
Japan Ministry of Health, Labor, and

Welfare’s classification of living
dysfunction (JCLD)

PDQ-8 Participant’s QoL measurement specific
to PD: 0%–100%, with 100% showing
the worst QoL
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was emphasized to the participants. Using the smartphone application was sug-
gested during their “on” state or when their wearing-off symptoms are less severe.
In addition, PD participants were instructed to correct and review their responses
with the correct time in the application. Aside from the previously stated con-
straints and suggestions, there were no strict limitations during the data collection
period.

1.3.2 Data Processing

The Garmin vivosmart4 and smartphone application wearing-off datasets were pro-
cessed and combined to develop the wearing-off forecasting model. This section
describes the data processing for each dataset and the combined dataset.

On the one hand, the raw Garmin vivosmart4 datasets were cleaned, processed,
and re-sampled to the chosen time interval. First, missing values were supplied with
“−1,” like how Garmin supplied missing values [12]. A value of “−1” also indicated
that the fitness tracker was not worn. Next, each fitness tracker dataset was re-
sampled due to different intervals provided by Garmin Health API, as shown in
Table 1.2. The combined dataset was re-sampled into 15-minute intervals to match
the highest interval provided by Garmin. The last available data was used to fill the
missing values caused by the re-sampling. Finally, the sleep duration for each sleep
phase was distributed in each record by its calendar date. Additional sleep features
were extracted from the sleep dataset as shown in Equations 1.1– 1.4 [25,27].

Total non-REM duration = Deep sleep duration + Light sleep duration, (1.1)

Total sleep duration = Total non-REM duration + REM sleep duration (1.2)

Total non-REM percentage =
Total non-REM duration

Total sleep duration
(1.3)

Sleep efficiency =
Total sleep duration

Total sleep duration + Total awake duration
(1.4)

On the other hand, the raw smartphone application dataset was also transformed
like with raw Garmin vivosmart4 datasets. First, overlapping wearing-off peri-
ods were combined into one wearing-off period. Then, each wearing-off report was
matched with the re-sampled 15-minute timestamp. If wearing-off falls within the
interval, a value of “1” was assigned for the wearing-off symptom. Otherwise, the
wearing-off symptom was given a value of “0”. Likewise, the drug intake reports and
their effect on the symptom were processed to match each timestamp. If the symp-
tom subsided after taking medicine, the symptom was marked with “0”. However,
if the symptom was still experienced, the value of “1” was kept.

Finally, the two datasets were combined by matching the 15-minute timestamp.
The hour of the day and the day of the week were also included. The day of the week
was encoded with “0” to “6”, matching “Monday” to “Sunday.” Meanwhile, the
hour of the day was encoded using sine and cosine functions. Finally, the following
features were used to develop the wearing-off forecasting model.
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x1: Heart rate (HR)

x2: Step count (Steps)

x3: Stress score (Stress)

x4: Awake duration during the estimated sleep period (Awake)

x5: Deep sleep duration (Deep)

x6: Light sleep duration (Light)

x7: REM sleep duration (REM)

x8: Total non-REM sleep duration (NonREMTotal)

x9: Total sleep duration (Total)

x10: Total non-REM sleep percentage (NonREMPercentage)

x11: Sleep efficiency (SleepEfficiency)

x12: Day of the week (TimestampDayOfWeek)

x13: Sine value of Hour of the day (TimestampHourSin)

x14: Cosine value of Hour of the day (TimestampHourCos)

y: Wearing-off

1.3.3 Model Development

This section presents the development of the wearing-off forecasting model. This
section includes the data split specification among training, validation, and test sets,
the metrics used to evaluate the forecasting model, and the architectures considered
in developing the wearing-off forecasting model. The wearing-off forecast models
were built individually per PD participant because it was assumed that each PD
participant experienced PD differently. The data processing and model development
used different Python libraries such as Pandas, Tensorflow, and Keras.

The wearing-off forecasting models were built for each PD participant. Individ-
ualized forecasting models were built instead of a general forecasting model because
this chapter assumes that each patient experiences PD differently. Then, each PD
participant’s dataset was divided sequentially into training, validation, and test sets.
The first 60% of the PD participant’s dataset was used for training, while the next
20% was used for validation. The final 20% of the PD patient’s dataset was held out
to test and evaluate the forecasting model on different metrics. The balanced accu-
racy (Bal.Acc.) was the main metrics to evaluate the developed wearing-off forecast
models because of the imbalance in the dataset. Bal.Acc. took into consideration
the distribution of wearing-off within the PD participants’ datasets, as shown in
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Equation 1.5. Other than Bal.Acc., Accuracy, F1Score, Precision, Recall, and
AUC were also reported and calculated as follows:

Bal. Acc. =
TP
P + TN

N

2
, (1.5)

Accuracy =
TP + TN

TP + FP + TN + FN
, (1.6)

F1 Score =
2 · TP

2 · TP + FP + FN
, (1.7)

Precision =
TP

TP + FP
, (1.8)

Recall =
TP

TP + FN
, (1.9)

TP is the number of true positives where the predicted wearing-off is equal to
the actual wearing-off (“1”), while TN is the number of true negatives where the
predicted normal state is equal to the actual normal state (“0”). Then, P is the
total number of wearing-offs, and N is the total number of a normal state. Finally,
FP is the number of false positives or where the predicted value is wearing-off, but
the actual value is a normal state, and FN is the number of false negatives or where
the predicted value is a normal state, but the actual value is wearing-off.

1.3.3.1 Experiments

In terms of deep learning architectures, there were six architectures considered in
this chapter. Equation 1.10 defines the general model of the six architectures.

yt+1 = f(Xt, yt), Xt = {x1, x2, . . . , x14} (1.10)

In finding the wearing-off in the next hour yt+1, the models accept the 14 features
Xt = {x1, x2, . . . , x14} at the current time t explained in Section 1.3.2. The models
also accept the wearing-off at the current time yt. Equation 1.10 summarizes the
first three architectures, Baseline, Linear, and Single time-step Dense.

The Baseline architecture copied the wearing-off label into the next hour t1.
Next, the Linear architecture or a multi-layer perceptron model applied a linear
transformation in the form of a single Dense layer. Another version of the Lin-
ear architecture contained more Dense layers to compare how adding more layers
differed from a single Dense layer. As specified in Equation 1.10, these first three
architectures only used the features at the current time to forecast the next hour.
Hence, no historical context has been incorporated into these architectures [33].

The following three architectures used multiple time steps to forecast wearing-off
in the next hour. Equation 1.11 accepts a matrix M of 14 features and wearing-off
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in previous time steps from the current time until w time step before the current
time. This chapter used the last day’s data (w = 23).

yt+1 = f(M(X, y,w)),M =


Xt yt

Xt−1 yt−1
...

...
Xt−w yt−w

 (1.11)

The Multi time-step Dense architecture extended the Single time-step Dense
architecture by accepting 1-day’s worth of input data t0 . . . t24. Each time step
was flattened as another set of features before passing onto the two Dense layers.
Like the Multi time-step Dense architecture, the CNN architecture incorporated
multiple time steps as its input. However, the CNN architecture step had an initial
Conv1D layer that could accept an input of any length. On the other hand, the
Multi time-step Dense architecture could only accept a fixed input length. Finally,
the LSTM architecture has been considered well-suited for time-series data since
it keeps an internal state from one time step to the subsequent step [33]. Table 1.4
provides the specification of each architecture.

Finally, the models were implemented in a computer with an Intel i7-6700 CPU
@ 3.40 GHz with four cores and 16 GB RAM. The architectures were trained with
the following set of hyperparameters. The maximum number of epochs was fixed
at 200, with an early stopping mechanism based on the validation’s loss until ten
epochs. A binary cross-entropy loss function was used for training the models. Then,
the Adam algorithm was used for optimization with a learning rate of 0.001. Eight
mini-batches were also produced for training each model.

TABLE 1.4 Architectures Considered for Wearing-off Forecast Model [33]

Architecture Input Output Layers

Baseline t0 t1 N/A
Linear t0 t1 Dense(1, sigmoid)
Single time-step dense t0 t1 Dense(64, ReLu)

Dense(64, ReLu)
Dense(1, sigmoid)

Multi time-step dense t0 . . . t23 t24 Flatten
Dense(64, ReLu)
Dense(64, ReLu)
Dense(1, sigmoid)

CNN t0 . . . t23 t24 Conv1D((64, 24), ReLu)
Dense(64, ReLu),
Dense(1, sigmoid)

LSTM t0 . . . t23 t24 LSTM(16, return_sequence=True)
Dense(1, sigmoid)

Each architecture forecasts the wearing-off in the next hour (t1 or t24), given previous fitness

tracker features and wearing-off (t0 or t0 . . . t23).
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1.4 RESULTS

In this chapter, we have built wearing-off forecasting models for each of the 10
PD participants who joined the research study. The 7-day data collection started
upon their written consent. Some PD participants have contributed more than
others. In contrast, two participants lacked the number of days needed due to the
discomfort caused by their symptoms or for other reasons. This variation in the
data collection duration resulted in an average of 9 days ± 1.826. In general, PD
participants have met the prescribed 7-day data collection since the average PD
stage of the participants was 2.8 ± 0.632 on Hoehn & Yahr Scale, while 1.7 ± 0.483
for Japan’s Ministry of Health, Labor, and Welfare’s Classification of Impairment
of Life Function. The average PD stage was characterized by shaking of either or
both limbs, muscle stiffness on either or both sides, no to mild physical disability,
and some inconvenience with daily life [6,19]. Furthermore, PD participants’ self-
reported quality of life according to their PDQ-8 response was 42.50% ± 0.192,
which indicated a low to middle quality of life for a PD patient (Table 1.5).

1.4.1 Can Wrist-worn Fitness Tracker Datasets Be Used to Forecast
Wearing-off in the Next Hour?

Each PD participant’s model was able to forecast 1-hour future wearing-off. With
the current time’s fitness tracker datasets and the current wearing-off status. The
single time-step dense forecasting model provided the highest Bal.Acc. and AUC
scores of 79.05% ± 7.09% and 69.14% ± 10.60%. Meanwhile, with 1-day’s worth of
fitness tracker datasets and wearing-off periods, the CNN model showed the highest
Bal.Acc. and AUC scores of 80.64% pm 10.36% and 60.52% pm 30.26%, respec-
tively. These results showed that we could forecast wearing-off in the next hour,
either with the current period or with the previous day’s fitness tracker datasets
and wearing-off periods.

TABLE 1.5 The Participants Demographics

Participant Age Gender H&Y JCLD PDQ-8 Number of Collection Days

1 43 Female 2 1 37.50% 9
2 38 Female 3 2 65.63% 6
3 49 Female 3 2 34.38% 10
4 69 Female 3 1 78.13% 10
5 49 Female 2 2 37.50% 8
6 56 Female 2 2 37.50% 9
7 48 Male 3 1 15.63% 6
8 77 Male 3 2 34.38% 11
9 84 Male 4 2 59.38% 11
10 58 Male 3 2 25.00% 10
Average 57.1 2.8 1.7 42.50% 9
Std. Dev. 15.059 0.632 0.483 0.192 1.826
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TABLE 1.6 Wearing-Off Forecast Model Performance

Architectures Bal. Acc. (%) AUC (%) Accuracy (%)

Baseline 79.05 ± 7.09 50.20 ± 5.68 86.97 ± 7.19
Linear 79.05 ± 7.09 64.71 ± 16.25 70.33 ± 28.13
Single time-step dense 79.05 ± 7.09 69.14 ± 10.60 92.49 ± 3.62
Multi time-step dense 80.64 ± 10.36 60.23 ± 28.33 81.73 ± 26.99
CNN 80.64 ± 10.36 60.52 ± 30.26 85.09 ± 12.41
LSTM 50.00 ± 0.00 57.83 ± 17.13 85.67 ± 10.73
Architectures Precision (%) Recall (%) F1 Score (%)

Baseline 7.81 ± 10.16 7.59 ± 9.66 7.69 ± 9.90
Linear 5.08 ± 6.34 28.73 ± 33.58 8.09 ± 9.68
Single time-step dense 6.25 ± 13.50 6.15 ± 15.83 5.10 ± 11.37
Multi time-step dense 18.55 ± 32.29 36.17 ± 42.24 20.40 ± 29.72
CNN 18.61 ± 31.98 25.06 ± 39.10 15.58 ± 21.31
LSTM 3.20 ± 5.17 8.10 ± 14.78 3.83 ± 6.24

The reported metric scores were averaged across the individual metric scores for each par-

ticipant. While some participants had extremely low precision, recall, and F1 scores.

1.4.2 Which among the Six Deep Learning Architectures Performed Well in
Forecasting Wearing-off in the Next Hour?

Among the six architectures considered in this chapter, single time-step Dense,
multi time-step dense, and CNN models produced the best metric scores. Both
multi time-step Dense model and the CNN model had the best Bal.Acc. across all
10 PD participants. However, the CNN model produced the highest precision and
recall scores of 18.61% ± 31.98% and 36.17% ± 42.24%. Our results have shown
that despite being used prominently in time-series datasets, the LSTM model per-
formed the worst among the architectures and just a little above the Baseline model.
However, this chapter did not optimize the hyperparameters or customize each ar-
chitecture. Table 1.6 presents how each architecture performed in each metric.

1.5 DISCUSSIONS

The multi time-step dense and CNN models produced similar results across all met-
rics. These two architectures were the same, except that the CNN model can accept
varying input lengths. The CNN model’s first layer handled the sliding window to
accommodate the variation in input data. Despite having a similar architecture,
the multi time-step dense model provided the highest recall score among all archi-
tectures. However, the recall score was lower than 50%. We wanted a higher recall
score because we did not want the forecasting model to miss a wearing-off event.
For example, the wearing-off forecasting model was deployed to notify the PD par-
ticipant whether a wearing-off could happen in the next hour. With the current
highest recall score, the forecasting model missed informing the actual wearing-off
events. These missed events were illustrated in the confusion matrix (Figure 1.2),
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Figure 1.2 Confusion matrix produced by the CNN model using participant 1’s com-

bined data. The CNN model for participant 1 failed to forecast the wearing-off label

(TP = 0). A similar confusion matrix with TP = 0 was evident among the other

five participants.

where the forecasting model had missed all the actual wearing-off events. Five par-
ticipants had zero recall scores with multi time-step dense model. In comparison, six
participants had zero recall with the CNN model. These cases caused the average
recall, precision, and F1 scores to have low scores.

Within the context of a notification application for PD patients, we wanted a
higher recall score because we did not want to miss actual wearing-off. However,
we also wanted to minimize false positives because we did not want to overwhelm
the PD patients with the notifications, only to end up as false alarms. The AUC
metric balances the true positive rate or recall and the false positive rate. That was
why the single time-step dense model had also been considered due to having the
highest AUC score.

Finally, Figures 1.3 and 1.4 present the sample forecast made by the model. For
participant 10’s sample forecast (Figure 1.3), the forecast at t25 and t26 matched
the ground truth labels. However, for participant 6’s sample forecast (Figure 1.4),
the forecast at t25 did not exceed the 0.5 default threshold, despite having increased
forecast probability. These results and observations happened with other partici-
pants’ forecasts, affecting the metric scores. Thus, optimizing the threshold value
for each PD patient’s forecasting model should be considered in future work.

1.6 CONCLUSION

This chapter demonstrates that deep learning models can forecast wearing-off in
the next hour using wrist-worn fitness tracker datasets. The PD patients used the
wrist-worn fitness tracker for nine days on average to collect their heart rate, stress
score, sleep duration in each sleep stage, and the number of steps. The trained
deep learning models have forecasted wearing-off in the next hour, given either the
current time or the previous day’s dataset as input to the model. The deep learning
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Figure 1.3 Sample wearing-off forecasting using the CNN model with participant

10’s combined data. The CNN model used the last day’s data (Input: t0 . . . t24)

to forecast the next hour’s wearing off (Output: t25). The forecast was marked

with “X” while the ground truth was labeled with “O”. The y-axis represented the

forecast probabilities with “0” as no wearing-off and “1” as wearing-off.

Figure 1.4 Sample wearing-off forecasting using the CNN model with participant

6’s combined data. At the time t25, the forecast had a slightly higher forecast

probability but was not considered with a wearing-off label of 1.

models have performed well compared to the baseline model, which only copied
the last period’s wearing-off state. However, the models can still be improved to
minimize false positives and negatives in their forecast.

As shown in the sample wearing-off forecasts, the best architecture in this paper
(CNN model) showed increased probability scores during actual wearing-off periods.
However, it was lower than the default 50% threshold for wearing-off. The threshold
level can be optimized for each PD participant’s model in future work to reduce the
false negative and provide a better future forecast. These can be achieved by fine-
tuning the architecture’s hyperparameters, modifying the loss function, or giving
hidden states that consider prior information about wearing-off.

This chapter has shown that the wearing-off forecasting model can use either
the previous day’s data or only the current period’s data. The Single time-step
Dense model used only the current period’s data and produced the highest AUC
score. Meanwhile, the CNN model had the highest Bal.Acc. given the previous
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day’s data. These results lead to future work balancing the historical context of
the wearing-off and the current wearing-off state. The historical data taught the
forecasting model patterns on when wearing-off could occur, e.g., what hour of the
day or at which heart rate or stress score wearing-off occurs. Meanwhile, the current
wearing-off provides immediate state of the patient, like when a wearing-off period
has begun, and PD patient has shown an extended period of wearing-off. Thus,
future forecasting models should be able to balance the historical and the current
information while identifying the best-suited forecasting period 15, 30 minutes, or
1 hour into the future.

Finally, in real-life applications, wearing-off reports were not immediately
accessible. For example, this scenario happens when forecasting models are trained
to accept the current wearing-off state. PD patients report wearing-off after the
event occurs; as such, the current wearing-off state is unknown. The forecasting
model should provide probability distribution for the missing current wearing-off in
future work. Then, the model will use that current period’s probability distribution
to forecast wearing-off in the next hour. The model should dynamically update
the probabilities given the new information when the PD patient reports the ac-
tual wearing-off periods. This last suggestion will benefit PD patients in real-life
applications where patients and their clinicians can be asked to label only specific
periods. The targetted labeling should produce the optimal changes in the fore-
casting model. This system allows monitoring and reporting of wearing-off and PD
patients’ symptoms while the models yield actionable insights.

Note
1. https://developer.garmin.com/gc-developer-program/health-api/
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2.1 INTRODUCTION

Thermal comfort is a mental state characterized by satisfaction with one’s thermal
environment, which is critical for everyday productivity [5,25], safety [33], and hu-
man well-being [24,34]. Existing research [6,30] indicates that thermal discomfort
has an impact on occupiers’ productivity as well as their long-term health. Long-
term exposure to high temperatures can result in cardiac issues or heart failure
(heat stroke), whereas prolonged exposure to cold temperatures lowers the core
temperature, which can cause drowsiness, lethargy, and even death. On a broad
scale, the relationship between heat stress, health, and performance is well recog-
nized. However, the physiological elements that affect a worker’s vulnerability are
still up for debate. Therefore, increasing a person’s or a group’s level of comfort is
a worthwhile goal.

As specified in thermal comfort standards such as ASHRAE Standard 55 [2,7],
EN 15251 [1], and ISO 7730 [3], the indoor thermal environment design and thermo-
stat settings in the vast majority of buildings with mechanical systems rely on air
temperature control values derived from the existing predicted mean value (PMV)
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model. PMV is the most commonly used metric for assessing thermal comfort lev-
els in a mechanically controlled environment. PMV is an indicator that predicts
the mean value of a set of occupants’ thermal sensation votes. The PMV model
takes into account two human-related elements, the user’s clothing insulation and
metabolic rate, as well as environmental parameters such as temperature, air ve-
locity, mean radiant temperature, and relative humidity.

Recent research have revealed various shortcomings of the PMV model when
used in real-world scenarios. Firstly, because the model was created to estimate the
average level of comfort for a large group of users, it has a low predictive accu-
racy when applied to a small sample of users. As well as, for the PMV model it is
sometimes difficult to determine the exact value of the input variables in real-world
circumstances. For example, throughout the day, the metabolic rate can fluctu-
ate. Additionally, in a real-world setting, clothing insulation may not be constant
over time, resulting in inconsistencies in PMV measurement. In general, these mod-
els, however, don’t account for the complexity of human thermoregulation or the
sufficiency of the thermal comfort offered; instead, they just show how the envi-
ronment affects a person’s thermal comfort. Furthermore, they disregard factors
such as psychophysics, gender, age, and other physiological, psychological, cultural,
and social settings that are known to influence how comfortable people feel in their
surroundings [9,23]. As a result, they fail to provide optimal thermal comfort in
practice [11,19].

Furthermore, different occupants may have distinct subjective responses when
all other factors are equivalent. The scientific community has examined thermal
comfort from the perspective of the individual and his or her perception of the
environment, as thermal comfort is intimately tied to behavioral, physiological,
and psychological aspects and hence varies between individuals [19].

In our previous research [20], we proposed a thermal comfort provision method
based on environmental thermal sensation in four hot thermal environments. Since
thermal comfort is a subjective psychological sensation and thermoregulation re-
sults in observable physiological changes [29], it would be more effective to provide
thermal comfort based on a person’s physiological signals and subjective responses.
In this research, we focus on predicting personalized thermal comfort from em-
pirically collected data in various work conditions: i.e., reading, typewriting, and
gymnastics, focusing on hot thermal conditions in accordance with the ASHRAE
scale: normal, slightly warm, warm, and hot thermal environments and evaluated
subjective thermal responses on very hot, hot, warm, slighly warm, neutral, fresh,
and cool scale. We present a thermal comfort providing approach using heart rate
variability (HRV) data from simple wristwatch-like device equipped with various
sensors to collect autonomic nervous system activity data. In this study, we col-
lected data from 33 participants’ 10 days data to evaluate the individuals’ thermal
comfort focusing on hot environment. During the experiment, participants reported
their subjective thermal sensation states every five minutes using a thermal assess-
ment logging application that we designed and placed on a smart tablet. We com-
pared the environmental PMV thermal comfort prediction with subjective thermal
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assessment and found that almost 74% personal assessment did not match with
PMV environmental thermal prediction.

As well, in this chapter, we compared machine learning algorithms KNN, ET,
LightGBM prediction performance with CNN prediction performance based on the
person’s HRV indices to predict the subjective thermal sensation sates. We checked
the models’ performance with low-granularity easily accessible data (e.g., only heart
rate, accelerometers, skin temperature) but our investigation shows that only heart
rate data with other low-granularity signal data cannot perform well for predicting
thermal comfort labels hence the accuracy is only 56% in CNN model. On the
other hand, the model performs good while several HRV indices were used as input
to machine learning models as well as for the CNN model with HRV signals to
anticipate users’ personalized thermal sensation, providing an accuracy of 97.6%.

The rest of this chapter proceeds as follows: first, Section 2.2 begins by review-
ing the related literature on estimating thermal sensation, comfort, and preference.
Section 2.3 explains the methodology of this research, which includes data collec-
tion process, collected data overview, difference in PMV and individual thermal
assessment, feature extraction process, and model development details. Section 2.4
presents the results of the prediction of different thermal sensations and classifi-
cation methods with discussions. The conclusions drawn are presented with some
future work points in Section 2.5.

2.2 BACKGROUND: THERMAL SENSATION, COMFORT AND PREFERENCE

It is challenging to provide a single definition for the concept of ‘thermal comfort’
since it is a phrase that can refer to a variety of subjective sensations and is influ-
enced by all aspects that affect the thermal condition that an occupant experiences.
All conditions under which a person would not choose a different environment are
frequently referred to as human thermal comfort [40]. An additional definition of
thermal comfort is given by American standard ASHRAE 55 [7], which character-
izes it as a subjective term related to physical and psychological well-being with
the environment. Because each person is unique, this word is typically used to de-
scribe a set of ideal conditions, for which the majority of a group of people can feel
comfortable in their surroundings [13].

The term thermal comfort refers to every element that affects how heat is ex-
changed between the human body and its surroundings. This allows us to distin-
guish between factors related to the human body, such as age, gender, weight,
metabolic rate, type of activity, etc.; factors related to clothing, such as thermal
resistance, material structure, and number of layers; and factors related to the
environment, such as air temperature, velocity, humidity, and pressure [12,13]. A
personal thermal comfort model’s main benefit is its ability to self-learn and update
to suit a person with a data-driven approach, leading to improved prediction power.

By inputting various inputs into machine learning algorithms, numerous recent
studies have built personal thermal comfort models. (1) Environmental informa-
tion, (2) occupant behavior, and (3) physiological signals are the three main kinds
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of variables. The classification of occupants’ personal thermal comfort using tem-
perature and humidity sensors was done using a data-driven approach with the
indoor environment [17]. The second method is to observe how occupants behave,
such as modifying thermostats [22] or personal heating/cooling device settings [35],
in order to infer their level of comfort and preference with regard to the tem-
perature. In addition to behavior-tracking, physiological markers including skin
temperature [10,44], heart rate variability [32], electroencephalogram (EEG) [45],
skin conductance [16], and accelerometry [39] also demonstrate a substantial link
with human thermal feeling and comfort. Personal thermal sensation models were
created by Sim et al. [43] based on wrist skin temperature readings from wearable
sensors. By combining environmental, physiological, and behavioral data from the
occupants, a “personalized” model can be created [26]. Other recent attempts [4,21]
combined ambient sensors (such as temperature and air speed) with commercial
wearable sensors to anticipate each individual occupant’s comfort.

Although all of the research discussed above asserted improved prediction accu-
racy compared to traditional PMV and adaptive models, we highlight a few signif-
icant flaws or restrictions in those studies. In steady-state short-term lab testing,
the dynamics of thermal comfort among many daily activities and their interactions
cannot be properly recorded. Studies conducted under steady-state circumstances
were unable to record human activity or mobility. Personal thermal comfort models
created under realistic settings may be technically possible, but they may also be
inaccurate.

Previous studies using wearable sensors frequently used readily available, inex-
pensive commercial sensors. Although the manufacturers claimed that the built-in
sensors were accurate and reliable, it is unknown how well these sensors operated
when worn. The manufacture specification was typically based on laboratory vali-
dation in a static setting, which could be very different when end users employed
the sensors. For instance, a wristband like the Empatica E4 (Empatica Inc., USA)
wristband [27] be reliable when there are less motions, like when sleeping and sitting
at a table.

In this study, we developed personal thermal comfort models using lab-grade,
wearable sensors that continuously analyze physiological inputs. We propose using
heart rate variability (HRV) to discretely characterize individuals’ thermal com-
fort state. HRV represents the time difference between two consecutive heartbeats.
Heartbeat intervals (also known as the R–R intervals) are not periodic. Instead, the
time between two successive R–R intervals changes from heartbeat to heartbeat.
This variance, however, is not random; rather, it varies according to complicated
extrinsic protocols placed on the heart [36]. HRV is also associated with homeosta-
sis, which is the human body’s ability to maintain optimal circumstances despite
changing environmental stressors [37]. The hypothalamus in the human brain con-
trols several mechanisms to enhance or decrease energy production in order to
restore the body’s core temperature. The parasympathetic nervous system (PNS)
and the sympathetic nervous system (SNS) work together to keep the body in
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balance (SNS). The two systems have opposite effects on the heart rate: the SNS
makes the heart beat faster, while the PNS slows it down [38].

Since thermal comfort is a personal subjective assessment of the satisfaction of
the mind with the thermal environment and that thermal changes in the environ-
ment affect homeostasis, which in turn affects HRV [8], we consider that thermal
comfort state could be predicted more accurately using HRV. Thus, in this study,
we evaluated subjective HRV indices under different work conditions and different
hot thermal environments in order to classify the thermal comfort state of indi-
viduals in hot environment by using a simple wristband E4 empatica, which is a
medical-grade wearable device that offers real-time physiological data.

2.3 METHODS

In this section, we describe the data collection procedure, data overview, differences
between PMV and individual thermal assessment, physiological metrics used in this
research, feature extraction, and model building process elaborately.

2.3.1 Data Collection

This section provides an overview of the data collection protocol, wearable sensors,
participants, data collection process, and tools used for the experiment. Each par-
ticipant gave informed consent to the processing of their data, which was obtained
with the approval of the local ethics committee.

2.3.1.1 Data Collection Protocol

The data collection protocol designed for this experiment focuses on collecting data
on hot thermal environments (neutral to hot environmental thermal states) under
different activities (Figure 2.1). In a single data collection experiment, each partici-
pant experienced eight different experimental session conditions. Table 2.1, presents
each experiment session condition elaborately. The experiment session conditions
are focused on different work environments, such as reading, typing, and gymnastics
with a focus on hot environments and settings in accordance with the ASHRAE
scale. We have set these activities in real-world circumstances. For example, elderly
people reading/watching television at home will be associated with reading activi-
ties, office work classroom study will be aligned with reading and typing activities,
and factory/outdoor labor requiring higher effort will be aligned with heavy work
activities like radio gymnastics (Figure 2.1).

Each session was planned with a specific activity and various humidity and tem-
perature levels. For instance, gymnastics activities were recorded in both a hot con-
dition (temperature 32◦C and humidity 80%) and a warm state (temperature was
25◦C and humidity 60%). In addition, reading and type writing activities were also
recorded in varied temperature and humidity states. The duration of gymnastics ac-
tivities was 10 minutes whereas other activities were 15 minutes. Participants took
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TABLE 2.1 Data Collection States for a Single Experiment

Experiment Session Task Temperature (◦C) Humidity (%) Duration

Conditions (minutes)

1 Radio gymnastics 32 80 10
2 Radio gymnastics 25 60 10
3 Reading 25 60 15
4 Reading 32 80 15
5 Reading 27 60 15
6 Reading 32 80 15
7 Typewriting 32 80 15
8 Typewriting 27 60 15

Figure 2.1 Experiment outline; data collection under different activities in different

temperatures.

a 5-minute break after completing the gymnastics activities, which were recorded
in hot temperatures (32◦C/humidity 80%) and (temperature was 25◦C/humidity
60%), so that the heavy activity in hot temperatures and humidity conditions did
not affect the following experiment.

2.3.1.2 Wearable Sensors

Participants were requested to wear Empatica E4 wristbands1, it is a wristband
that looks like a watch and contains numerous sensors, including an Electroder-
mal activity (EDA) monitor sensor, a photoplethysmography (PPG) sensor (which
measures the Blood Volume Pulse (BVP), which is a metric that may be used to
determine heart rate variability to assess sympathetic nervous system activity and
heart rate simultaneously at the same time), and a three-axis accelerometer (ACC),
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and an optical thermometer. At a sampling rate of 4 Hz, EDA shows how the skin’s
electrical properties are constantly changing. Increased skin conductivity is caused
by an increase in the level of sweating. The PPG sensor, which measures the BVP
at a frequency of 64 Hz, can be used to determine the IBI and HRV. Under seated
rest, paced breathing, and recovery conditions, the Empatica E4 wrist band [28]
accurately measures HRV. Thus, the E4 is outfitted with sensors that are designed
to collect high-quality data [27].

2.3.1.3 Participants and Procedure

Data was collected from a total of 33 participants, whose ages ranged from 22 to
50 years old (10 women, 23 men). The individuals who participated were given
specific instructions on how to do a specified task while they were inside in a
temperature-controlled environment. For this experiment, data were collected for
10 days. We made adjustments to the temperature and humidity at the time of data
collection for each activity. The continuous pulse intervals of 33 adult males and
females were measured in three different work situations involving reading, typing,
and radio gymnastics under varying environmental conditions of temperature and
humidity. During the experiment, participants wore the E4 Empatica wristband,
which was connected with an android smartphone application named E4 real time
via Bluetooth signal (Figure 2.2). Participants uploaded the data to the cloud server
of E4 connect after each session ended.

For subjective evaluation, we developed a separate subjective thermal assess-
ment logging application which was installed in a smart tablet and participants
recorded their personal thermal sensation states in each 5 minutes during the
experiment (Figure 2.3). The date and thermal comfort are recorded each time the
user touches an icon. In the application, there is a timer sets which gives reminder
to participants to record their personal assessment in every 5 minutes.

Figure 2.2 Overview of the data collection process.


