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Preface

The expression “how fast time passes” is frequently used in our daily lives. This perception seems to become more real everyday considering the fact, that enormous and sustained development in technology related to communication and information systems is contributing to a considerable reduction in the “time” required for different activities and processes of our society.

There are several publications and books about time. Why would it then be interesting to read another book about this subject? Everyone is familiar with the term time as it is incorporated into our lives since birth. Nevertheless, it is worth taking into account that familiar concepts are the most mysterious, and so is the case of time, which is something that can’t be perceived by our five senses, except when one feels that they are becoming older as time “goes by.”

The concept of time is viewed in a different way by a physicist, a biologist, and a historian, for example. In particular, people related to sciences and engineering frequently work with graphics showing the change of some variables with time, for instance, position, velocity, and temperature versus time. But the question, “what is time?”, is seldom formulated and it is rather impossible to obtain an accurate answer from the great number of books and articles that deal with this subject from different perspectives. Someone could say that time is what is measured by clocks. Some could say that time is a kind of parameter, and others could say that the concept of time has sense only under the occurrence of events or changes.

It is worth mentioning, the opinion about the concept of time of the famous theologian, Saint Agustín: “I know if nobody asks me. If someone asks me and I want to explain it, I do not know.” For the French philosopher André Comte-Sponville: “Time is the present. The past is not since it no more exists. The future is not because it is not yet. Only the present exists and it is the only real time”.

Further, almost everybody relates the concept of time with something that flows in one direction and is determined by a sequence of events so that a time arrow can be associated with that sequence. Each area of physics is involved with a specific arrow. For instance, the cosmological arrow is related to the expansion of the universe starting from a singular event known as the Big Bang. The thermodynamic arrow deals with the second law of thermodynamics, which states that a closed system evolves so that a property known as the entropy (defined as a measure of the disorder) irreversibly increases. The radiative arrow of time considers that in the description of radiative processes, only retarded solutions are possible, so that the corresponding waves are not detected before the irreversible extinction of the source.

The present book does not attempt to give an answer to the question about the exact meaning of time and neither covers philosophical aspects or other topics which are out of the field of physics. It is addressed to students who are starting a graduate program in physics or electrical engineering, interested in complementing their studies of relativity theory and quantum physics, applying the knowledge they have acquired about these themes to the analysis of situations where the issue of time measurement is relevant.

There is the case, for example, of clock synchronization, transit time of optical signals through dielectric and absorbing media, lifetime of excited atomic states, among others. These topics, in addition to being of great importance to theoretical physicists, are the basis of many technological developments. For example, global positional systems (GPS) are based on the predictions of relativity theory about time and the effect of gravity over time measurement.

In addition, the book includes the analysis of themes related to time such as causality and the arrows of time, spooky action at distance and Einstein– Podolsky–Rosen paradox, quantum mechanics and teleportation, apparent superluminal velocity, and time reversal. During the last few years and up to now, these themes have been a matter of prolific research with many related publications. The formalism to analyze these themes is, in general, very abstract and requires knowledge of high-level mathematical theories. Using mathematical tools at the level of undergraduate students of science and engineering, these subjects have been included with the aim of bringing them closer to the interested readers and to motivate research on a subject for which until now there is no established theory widely accepted in the scientific community.

The book is divided into six chapters, which analyzes how the concept of time is present in the main fields of physics, such as classical mechanics, electrodynamics, quantum mechanics, and theory of relativity. Illustrative examples are included in each chapter. I hope that this book contributes to scientific analysis on the subject of time and encourages further research on the subject.


—Patricio Robles

Professor of the Electrical Engineering School Pontifical Catholic University Valparaíso, Chile


Introduction


Abstract

This chapter is the introduction to the book and presents the main concepts about the look of time from the perspective of physics. We discuss how the close connection between time and the special coordinates is considered in the special relativity theory, unlike what happens in classical physics, in which the time interval between two events has the same value for all observers in uniform relative motion. The principle of causality in this last theory and the time reversal in quantum physics are discussed conceptually. Finally, a brief analysis of the discrete symmetries in the laws of physics is presented, including symmetry under time reversal, and a brief reference to the concept of the arrow of time is made.


In first university courses of electromagnetism, undergraduate students can appreciate through Maxwell equations and their prediction of electromagnetic waves, a close relation between time and spatial coordinates, where a term of the form x-ct appears as an argument of the corresponding solutions in vacuum. In this last expression, x is the spatial coordinate chosen along the x-axis (considering, for simplicity, a one-dimensional case) and c is the light velocity in vacuum with a value of nearly 300,000 km/s. This connection is reinforced in special relativity theory where time appears as a fourth coordinate in Lorentz transformations which relate measurements of time and position made by two observers moving with constant relative velocity (inertial observers).

For describing any event, it is necessary to specify both its location and the corresponding time of occurrence. In Newton mechanics, time has the same value for all observers detecting the event independent of their relative motion, and only the spatial coordinates change according to Galileo’s transformation.1 A drastic change was introduced by the special relativity theory formulated by Albert Einstein in 1905 where time measured by different inertial observers is not the same. This theory has as basic postulates that light velocity is the same for all inertial observers and that there is a finite universal limit c which cannot be exceeded by any object.2 In a first course of special relativity theory, one usual example presented about differences in time intervals measured by two inertial observers in relative motion, is the case where a subatomic particle with life time τ is produced in some process and goes across a distance D = vT > vτ before becoming disintegrated. Here T is the time of flight measured by an observer A for whom the particle is in motion with velocity v. There is an apparent contradiction in this case since the measured time of flight T according to observer A is greater than the lifetime of the particle, but this is explained by relativistic time dilation: the time interval T measured by observer A is greater than time interval τ measured by an observer fixed to the particle according to whom this particle at rest.3 Another case usually discussed, is the case of two twin brothers.4 One of them (let us call him Robert) initiates a round journey to a distant star in a rocket moving with a velocity comparable with light velocity. The other twin (let us call him John) keeps on earth. When Robert comes back to meet his brother again, John has measured a greater interval of time than that measured by Robert. This paradox could also be explained by relativistic time dilation in a simplified way if in the first instance, the effects of the acceleration of the spacecraft are not considered. It must be considered that during the trip to the planet, the ship must be subjected to an enormous acceleration to reach a speed comparable to that of light and then decelerate when reaching the planet. A similar process must occur to return to earth. Therefore, when considering these accelerations and decelerations, one would expect biological effects that prevent a human observer from being able to make this type of trip and return to earth in the same biological state with which he began his trip. All these indicate that at least until now, it would not be possible for a human to travel to the future through an experiment like that of the two twins.

The postulates of the Special Relativity Theory imply that if two events A and B are causally connected so that the occurrence of event B occurs only if the first event A occurs, the same causality relation exists for all inertial observers. If it were possible, the motion of an object with a velocity greater than c, there would be an inertial frame of reference for which event B (the effect) occurs before event A (the cause) violating the principle of causality. This has been analyzed in several books and publications and up to now, causality has been accepted as a basic principle of nature that cannot be violated (see for example, the book A Brief History of Time, by Stephen Hawking). If events A and B are not causally connected, the sequence may change for two inertial observers. For example, one observer can detect these events as occurring simultaneously while for the other, they occur in sequence. These cases can be analyzed graphically in a space–time diagram which is a coordinate system with the horizontal axis representing the position (let us say x in one dimension) and the vertical axis the time. If one specific event A is located at the origin of this coordinate system and two straight lines with slope 1/c are traced symmetrically with respect to the t-axis, this defines the projection of a cone in the plane x-t of space–time, called the light cone, so that another event is (is not) causally connected to event A if it is inside (outside) this cone.2

In non-relativistic quantum physics, causality is implicit in Schrödinger’s equation and time is considered as a continuous parameter. As learned in the first courses of quantum physics, the dynamical motion of a particle is determined by this last equation giving a solution a wave function of the position and time designated as   ψ( r →  ,t)  so that the square of its modulus gives the probability of finding this particle in the neighborhood of the position given by the vector    r →  .  This result is invariant under time reversal, that is, if t is replaced by—t, provided the function ψ is replaced by its conjugate ψ* . This indicates that time reversal is related to the conjugation of the wave function.5 In fact, in quantum physics, symmetry operations are considered and one of them is the time-reversal operator which transforms the wave function   ψ( r →  ,t) to  ψ ∗  ( r →  ,−t)  implying that the vector velocity   v →  gets transformed to   − v →  

The combination of non-relativistic quantum physics with special relativity theory and Field concepts gives rise to quantum field theory, which underlies elementary particle physics and constitutes the basis for nuclear physics, atomic physics, condensed matter physics, and astrophysics. This theory presents discrete symmetries with respect to time reversal, charge conjugation, and parity, expressed as operators acting over the solutions of the Dirac equation which is a relativistic equation used instead of Schrödinger’s equation.6 This equations has both solutions with positive and negative energies. These last solutions are associated with antiparticles traveling backwards in time (relativistic quantum theory predicts that every particle has a corresponding antiparticle with the same mass but with opposite electric charge and magnetic moment). In this theory, time reversal consists of reversing the sense of the flow of time by applying an operator designated as T. Charge conjugation is expressed by the action of an operator designated as C transforming a particle into its antiparticle. Parity is expressed by the action of an operator designated as P which changes the sign of the spatial coordinates.

These types of symmetries are known as discrete symmetries, since the application of two successive actions of these operators gives the initial quantity, that is T2 = C2 = P2 = I, where I is the identity operator. The theorem CPT expresses that all interactions are invariant under the combined operation CPT, although the result of each one of these operations acting separately may be non-invariant for some processes. According to the results of all the experimental known up to now, the gravitational, electromagnetic and nuclear interactions are symmetric with respect to T, C, or P acting separately.7 However the weak interaction governing the radioactive decay processes is not symmetric under the separate action of C or P, but preserves CP and T. Processes involving K mesons show CP and T violations but not CPT (meson K is a member of a family of subatomic particles).

If the laws of physics are unchanged by the combination of operations CPT, one expects that they should be unchanged under operation T alone, even though there is a big difference between forward and backward directions of time in ordinary life. As Stephen Hawking says in his book, A Brief History of Time when a cup of water falls off a table and breaks into pieces on the floor, except in a film, in our real life, we cannot see the pieces of a broken cup gathering themselves together off the floor and jumping back onto the table. This is usually explained by the second law of thermodynamics which says that in any closed system, the degree of disorder measured by a quantity called Entropy is always increasing with time.8

The increase of entropy with time may be associated with an arrow of time distinguishing the past from the future. This is called the thermodynamic arrow of time. Other arrows considered in the physical research about time are9:


	Cosmological arrow: related to the expansion of the universe as time increases.

	Quantum arrow: expresses the fact that before a measurement is made in a quantum system, the wave function corresponds to a superposition of states. When a measurement is made, this superposition disappears and the system takes only one of these states, a process known as the collapse of the wave function.

	Radiative arrow: waves never uniformly converge on a point, but in general, they are seen as uniformly diverging.


This book is addressed to undergraduate students of science and engineering interested in complementing their studies of relativity theory and quantum physics applying the knowledge they have acquired about these themes to the analysis of situations where the issue of time measurement is relevant. It is written in a style trying to make a scientific trip inside a kind of vehicle—let us call time—starting from the macroscopic level where classical mechanics and electromagnetic theory are fully valid, to the smallest dimensions where it is essential to apply the quantum theory. In this trip, we will find relativistic effects that cannot be ignored so we will have to use the relativity theory. One of the main objectives of this book is to show the readers how the concept of time manifests itself in the different areas covered by the theoretical framework of physics, from classical mechanics and electrodynamics to quantum mechanics, including in a relevant way, the theory of relativity whose formulation at the beginning of the 20th century radically changed the way the notion of time is considered.

In Chapter 1, we analyze conditions for time-reversal symmetry of the laws of motion in classical mechanics according to the Hamiltonian formalism and show some examples where this symmetry does not exist even for ideal and conservative systems, in the presence of interactions which produce forces dependent on velocity, as is the case of the motion of a charged particle subject to a magnetic field.

In Chapter 2, we analyze the effect of time reversing the equations describing the behavior of the electromagnetic field in different media. One of the main conclusions is that the equations of macroscopic electrodynamics are not time-reversal invariant when the system has dissipative elements, but in contrast, in a microscopic formalism—with all the light and matter degrees of freedom included in the analysis—the dynamics of the considered system has time-reversal symmetry. In the absence of dissipation, the propagation of an electromagnetic wave is symmetric under time reversal and Maxwell´s equations allow the propagation of a retarded and advanced solution. This last solution can be used in engineering techniques for locating sources of electromagnetic waves, as is analyzed in this chapter.

Chapter 3 discusses time-reversal symmetry for systems whose spatial dimensions require a description based on quantum mechanical theory. We start with the analysis of Schrödinger’s equation verifying that for obtaining a time-symmetric description of the dynamics of a particle, the operation of time-reversal must include conjugation represented by the action of an antiunitary operator acting over a wave function. In particular, we analyze quantum systems whose evolution is determined by a set of external parameters varying cyclically, discussing how even though these parameters return to their initial values, the state of the system acquires a geometric phase, which depends on the path followed by the external parameters in the parameter space and which in general is attributable to the broken time-reversal symmetry of the system. Another issue covered in this chapter is related to the demand for Hermiticity of a Hamiltonian in a quantum mechanical system, which can be relaxed if the Hamiltonian is invariant under the combined PT symmetry, where P denotes the parity operation and T denotes time reversal.

Chapter 4 analyzes the way in which Einstein’s theory of special relativity radically changed the notion of time and space accepted until the beginning of the 20th century based on Newton’s laws. In particular, we revisit the relativistic time dilation effect and discuss examples where the time interval between two events is not the same for two inertial observers in relative motion and how even their sequence can change if these events are not causally connected.

In Chapter 5, we analyze how the presence of massive bodies curves the space time in a way determined by the Einstein field equations and the General Relativity Theory. One of the predictions of this theory is that these effects are such that time goes slower as the lower is the distance of an observer to a massive body. Another important prediction of this theory is the existence of black holes, which corresponds to regions of space with a very high density of mass so that gravity is so strong that even light cannot escape from the interior of the corresponding volume, and the space–time is distorted in such a way that time looks as frozen at points over the so-called “event horizon.”

In Chapter 6, we discuss some of the most recent publications related to physical theories about time, such as the cellular automaton interpretation of quantum mechanics formulated by Gerard’t Hooft, where information loss is considered a source of time-reversal asymmetry. Then we continue with the thermal time hypothesis of Carlo Rovelli, who asserts that it is possible to formulate classical mechanics in a way in which the time variable is treated on equal footing as other physical variables, and not singled out as the special independent variable. Afterward, we analyze theories which propose the quantization of time, and then continue with the discussion of proposed time operators for non-relativistic and relativistic quantum mechanics. At the end of this chapter, we discuss theories related to time in quantum gravity and then we briefly explore the physics of time travel.
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Chapter 1 Time in Classical Mechanics


ABSTRACT

In the absence of the dissipation of energy, one expects that the laws of Classical Mechanics should have time-reversal symmetry. However, this requires careful analysis as made in this chapter where we analyze conditions for time-reversal symmetry of the laws used to predict the movement of objects in classical mechanics according to the Hamiltonian formalism and show some examples. In this chapter, we analyze cases where this symmetry does not exist even for ideal and conservative systems, in the presence of interactions which produce forces dependent on velocity, as is the case of the motion acquired by a charged particle subject to a magnetic field.



1.1 Introduction

Time and space form a natural frame where we conceive the occurrence of different processes related to our life. For example, daily at 9 a.m., we can be used to be in some specific place of our home or office turning on our personal computer for reviewing the received e-mails, or we must be present in a meeting in some predefined place and starting at a specific hour.

At a microscopic level and in a way imperceptible for us, several physical processes and interactions occur in our environment making possible the life on our planet.

Symmetries play an important role in helping to find the structures of physical theories. Roughly speaking, a symmetry is a transformation (a map) that leaves invariant the structure of a physical theory. In Physics, the existence of symmetries has important consequences. Thus, translation invariance (a consequence of the uniformity of the space) implies the conservation of the total momentum vector  P →   of the system. Similarly, isotropy of the space implies the conservation of the total angular momentum  L →   and time translation invariance implies the conservation of the total energy E.
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Thereby, such invariances provide information about the properties of the space. This argument has made philosophers of science see an alternative way of approaching old philosophical problems from a new perspective. The nature of space and time could be better understood by studying the symmetries presented by physical theories.

Philosophical and scientific publications have devoted special efforts to drawing conclusions about the nature of time, in particular, whether or not time has a privileged direction. There are some properties that we intuitively assign to our concept of time, as for example, a flow-like behavior with a privileged direction only toward the future. However, such properties are not necessarily related to the real world. There are two main issues: on the one hand, one may wonder why the predictions obtained from the fundamental dynamical laws should give an asymmetric evolution of our world. On the other hand, one would like to know if the theories of physics imply a fundamental direction of time.

However, it cannot be affirmed that time has a fundamental direction, considering the possibility that the asymmetric behavior of our world could be a result of, for example, a very special set of initial conditions at the beginning of the universe, being possible the existence of time reversed worlds that comply with the same physical laws as ours. In this case, the direction of time is a property that is due to a particular solution (or to a set of solutions) of the fundamental dynamical laws. The second question is concerned with the fact that according to the fundamental dynamical laws, certain evolutions are physically impossible, in particular, those that imply that time goes from the present to the past. When analyzing a physical theory, a relevant aspect is whether it yields solutions for both directions of time, independently of special initial conditions and their corresponding solutions. A fundamental arrow of time should be encoded in the dynamical laws, and should not be just a property of a particular solution or a set of solutions of these laws.

In the analysis of the arrow of time as a property of the fundamental dynamical equations, the concept of symmetry acquires a relevant role, and the property of having a privileged temporal direction may be formally represented in terms of a symmetry transformation. There are two notions that are essential to understand the directed nature of time (or its lack of directionality) in terms of physical symmetries: the first one is that of “reversal of time,” as the symmetry transformation that changes the direction of time, and the second notion is that of “time-reversal invariance,” as the symmetry that results from the first.

What is the meaning of time-reversal invariance? Commonly, a physical process is said to be time-reversal invariant if its reverse is also allowed by the laws of nature. However, the exact physical meaning of the time-reversal invariance of a process is still a matter of discussion. According to the simplest view, to reverse a process, it suffices to reverse the order as the instantaneous states of the process occur.

A theory is time-reversal invariant if for any infinite sequence of instantaneous states S(to), S(t1), S(t2) ….. S(tN) allowed by the theory, the reverse sequence of time-reversed states, S(tN)…. S(t2), S(t1), S(to) is also allowed.

In the Newtonian formulation of classical mechanics, time reversal is simply the result of reversing the order in which events (positions, in this case) occur along a trajectory x(t). That is, if x(t) is the curve describing the position along the axis x of a particle at every instant t, then the time-reversed motion is given by the curve x(–t), which describes the same positions occurring in the reverse order.

In the Hamiltonian formulation of classical mechanics, time reversal is more than reversing the order of events in a trajectory. Since under the time-reversal transformation, a rightward-moving body becomes a leftwardmoving body, the momentum of an instantaneous state must be reversed.

The common dogma that classical mechanics is time-reversal invariant requires careful analysis. There are various ways that it can go awry, even for conservative systems, in the presence of uncommon interactions such as velocity-dependent forces.

In this chapter, we study the time-reversal symmetry or asymmetry of the laws of motion in classical mechanics according to the Hamiltonian formalism and show some examples. By means of these examples, the following conclusions can be obtained:


	Systems whose dynamics is symmetric under time reversal but with energy dissipation are not time-reversal invariant in the sense that the reverse sequence of time-reversed states, S(tN) …. S(t2), S(t1), S(to) is not allowed.

	If a system is conservative, this does not necessarily imply that it is time-reversal invariant.





1.2 Time-Reversal Symmetry

The traditional way in which time-reversal symmetry is described is related to the form used to make observations of physical phenomena. If from the picture of the dynamics of a mechanical system, it is impossible to decide whether its dynamic behavior occurs in the forward or backward direction in time, this system qualifies as one that has time-reversal symmetry.

When we consider the case of a pendulum oscillating with non-negligible friction, we can identify the difference between a video that shows the dynamics of this pendulum in the forward or backward direction.

As analyzed in Ref. [2], there are several examples showing that time-reversal invariance can fail in classical mechanics.


1.2.1 What Does Time-Reversal Invariance Mean?

Suppose we film one harmonic oscillator bobbing back and forth as shown in Figure 1.1, and then play the film in reverse. The result would be a new “reversed” motion of a bob on a spring. This transformation is roughly what will be meant by the time-reversal transformation.

[image: ]
Figure 1.1 A particle joined to a harmonically oscillating spring.


How should this transformation be described mathematically? In the Newtonian formulation, it is simply the reversal of the order in which a particle attached to this oscillator (see Figure 1.1) goes through the different positions along a path x(t). That is, if x(t) is the curve describing the position of the bob over time, then the time-reversed trajectory is given by x(− t).

If we do not know the original film, then as observers it would be impossible to affirm with certainty that the movie went backwards. This is explained because the backward movement of the film also corresponds to a possible dynamic of the same system. This means that the reverse motion is described by the same laws as the forward motion. The only difference between moving forward or backward in time is determined by the starting position and speed of the pendulum at the point where the film began to be shown.

If from a movie that shows the dynamics of a mechanical system, it is not possible to decide whether it moves forwards or backwards, we say that it is a physical system with time-reversal symmetry.

Coming back to the case of a swinging pendulum subject to friction, it is possible to identify the difference between a forward and a reverse film of this pendulum. Namely, the original (forward) film will show how the amplitude of the oscillations of the swinging pendulum is decreasing until there is no movement at all. However, the film that is rolled back will show a pendulum oscillating with increasing amplitude with time. The latter film clearly has no physical sense according to our perception of reality since it does not satisfy the natural laws of motion, if we assume that there is no effect of some hidden source of energy supplied to the pendulum. The effect of friction, meaning energy dissipation, breaks the time-reversal symmetry of an ideal pendulum which theoretically can oscillate eternally.

The time-reversal symmetry described in the above case is an example of a situation very often studied in books about classical mechanics. Although in nature, it is practically impossible to find mechanical systems with perfect time-reversal symmetry, in theory if a truly isolated pendulum could be built, it would have time-reversal symmetry. The friction and energy transfer result from the coupling of the pendulum with its environment.




1.3 Time Reversal for a Simple Case: The Dynamics of a Projectile

We start with a simple case corresponding to the well-known example consisting of the throw of a projectile, which could be a small stone or a tennis ball, as shown in Figure 1.2.

[image: ]
Figure 1.2 Trajectory of a projectile thrown with an initial velocity vector that forms an angle α with respect to the x axis.


Here    v →   o   is the initial velocity vector with components vxo = vo cosα and vy = vo sinα along the x and y axes as shown and  v=|  v →   0  |.  From a kinematical analysis based on Newton’s laws, we get that in the absence of any friction, the components of the instantaneous velocity and position of the projectile are given by

(1.1)vx(t)=vxo

(1.2)vy(t)=vyo−gt

(1.3)x(t)=vxot

(1.4)y(t)=vyot−12gt2

The time of flight T is calculated from y(T) = 0 implying from eq 1.4 that T = 2vyo/g. Substituting this value in eq 1.2, we get

(1.5)vy(t=T)=vyo−g2vyog=−vyo

From eq 1.3, it can be deduced that the horizontal displacement of the projectile from the initial to the final position is given by D = 2vxo vyo/g.

From the above equations, we can appreciate that there is time symmetry because the description does not change if t is replaced by –t and the vector  v →  =( v x  , v y  )  is replaced by  −v →  :  This is like time is made to run backward so that the initial instant is chosen as the instant when in Figure 1.2, the projectile is at point (x = D, y=0).

Let us now change the conditions including friction and for simplicity, we assume that there is a small friction in the horizontal direction so that only the x-component of the velocity is affected by viscous friction represented by a coefficient μ according to the following equation:

(1.6)mdvxdt+μvx=0

Considering the same initial conditions as above, from eq 1.6, one gets that while the vertical position is still given by eq 1.4, the x-position is now given by

(1.7)x(t)=vxoτ(1−e−t/τ),

where  τ= m μ   is the corresponding time constant. If the coefficient μ is small, the following approximation may be used

(1.8)e−t/τ≈1−tτ+12t2τ2

From the combination of eqs 1.7, 1.8, and 1.4, the resulting kinematics for this case is described by

(1.9)x(t)=vxot−vxoμ2mt2

(1.10)y(t)=vyot−12gt2

From these last two equations, it can be seen that time-reversal symmetry is lost for this case due to the second term in eq 1.9. In fact, if we make t → –t and    v →   o  →  v →   o  ,  we would have

(1.11)x(−t)=(−vxo)(−t)−(−vxo)μ2m(−t)2=vxot+vxoμ2mt2≠x(t)

This last equation indicates that the time-reversed description of the dynamics of the motion here considered is different from the description with time running forwards, as is familiar to us.


Example 1.1

With respect to the dynamics of a projectile discussed in this section, let us consider now a more real case where there is friction only for the motion in the vertical direction so that only the y-component of the velocity is affected by viscous friction represented by a coefficient η according to the following equation

(1.12)mdvydt+ηvy=mg

Obtain the vertical components of the velocity and position and discuss how a loss of time-reversal symmetry occurs due to dissipation.


Solution

Solving the differential eq 1.12, we get that the instantaneous value of the y-component of the velocity vector is given by

(1.13)vy(t)=mgη+(vyo−mgη)e−t/τ2

where τ2 = m/η is the time constant for this case.

The vertical position y(t) is obtained by integration of υy (t) with initial condition y(0) = 0, obtaining

(1.14)(t)=mgηt+(vyo−mgη)τ2(1−e−t/τ2)

If the coefficient η is small, we can make an approximation similar to that of eq 1.8 so that we obtain

(1.15)y(t)≈mgηt−(vyo−mgη)t−(vyo−mgη)ηt22m=vyot−(vyo−mgη)ηt22m

Time reversing the above equation implies making t → –t and υyo → –υyo) so that

(1.16)y(−t)=+(−vyo)(−t)−(−vyo−mgη)η(−t)22m==vyot+(vyo+mgη)ηt22m

The above equation shows that if the friction coefficient η → 0, y(–t) → y(t) and the condition of time-reversal symmetry is approached.





1.4 Reversible Laws of Motion in Classical Mechanics

In Classical Mechanics, for a given set of initial conditions, the dynamical equations of a physical system allow us to predict the motion of the different particles which constitute that system. Having a complete solution to the motion of a system implies that the coordinates of all its constituent particles as functions of time become known.

That means that for a single point particle moving in all three spatial directions, we can obtain its position vector  r →  (t)  as a function of time. For a system of several particles, the motion is described by a set of functions denoted as   r →  i  (t),  where the subscript i labels one specific particle in which we are interested. So generally speaking, solving the dynamical equations of a system means that we are able to predict where each particle will be found at any instant of time. In addition, knowing the function   r →  i  (t),  means that we can take its derivative and obtain the velocity   υ →  i  (t)=d r →  i  (t)/dt  at any time as well.

The movement of all the components of a system is encoded in a set of differential equations, known as the equations of motion. If quantum and relativistic effects are not significant and can be neglected, these equations can be obtained using Newton’s laws of motion which students learn in

undergraduate courses of Physics as presented in several standard books, as for example that quoted in Ref. [3].

Newtonian mechanics can be generalized as made by means of the Hamiltonian formulation of classical mechanics that allows a description of a system in terms of generalized coordinates qk and generalized momenta p k by means of the Hamiltonian function

(1.17)H(q,p,t)=∑kpkq˙k−[T(q,q˙,t)−V(q,t)],

where T(q, q̇, t) represents the kinetic energy, V(q, t) the potential energy, and the index k identifies a specific particle of the considered system. The second term inside brackets on the right side of eq 1.17 is the Lagrangian function ℒ(q, q̇, t) = T(q, q̇, t) −V (q,t). The dynamics of a system can be described by means of the Lagrange equations which in the absence of dissipation are:

(1.18)ddt(∂ℒ∂q˙k)−∂ℒ∂qk=0

An alternative form for describing the dynamics of a system is given by the Hamilton equations which are given as:

(1.19)q˙k=∂H∂pk

(1.20)p˙k=−∂H∂qk

Under a time-reversal transformation, t → –t, pk → –pk and qk → qk, and from the above equations, we obtain

        d q k    d(−t)   =  ∂H   ∂(− p k  )   ⇒ q ˙  k  =  ∂H   ∂ p k            d(− p k  )   d(−t)   =−  ∂H   ∂ q k    ⇒ p ˙  k  =−  ∂H   ∂ q k         } 

Therefore, the form of the equations is kept under time reversal. One of the effects of time-reversal symmetry is as follows: consider a system is evolved forward in time starting from some initial condition up to an instant t; at this instant, the evolution is stopped, the sign of the velocity of each particle in the system is reversed, and the system is allowed to evolve once again for another time interval of length t; the system will return to its original starting point in phase space so that it will come back to its initial condition.

In this section, we analyze three examples where the absence of dissipation leads to time-reversal symmetry.


Example 1.2

Using a simple example, time-reversal symmetry can be verified for an ideal case. To do this, we consider the well-known example of the classical harmonic oscillator consisting of a mass m connected to one extreme of a spring of elastic constant k shown schematically in Figure 1.3. The Hamiltonian for this system shows that there is time-reversal symmetry.

[image: ]
Figure 1.3 Classical Harmonic Oscillator. A mass M is fixed to a spring of elastic constant k.



Solution

Considering that the Hamiltonian is the total energy of the system, for this case, we can write directly

(1.21)ℋ=p22m+kq2

Since this Hamiltonian does not show an explicit dependency on time, there is time-translational symmetry, meaning that energy is conserved. Furthermore, from Hamilton eqs 1.19 and 1.20, we obtain

 q ˙  =  ∂H   ∂p   = p m  and p ˙  =−  ∂H   ∂q   =−kq 

Combining these last two equations

 q ¨  = p ˙  m  =−  kq  m  ⇒q ¨  + k m  q=0  which is the equation of an ideal classical harmonic oscillator without dissipation, confirming that there is energy conservation and therefore time-reversal symmetry.




Example 1.3

Suppose now that the mass m of the above example is attached to an extreme of a spring with elastic constant k and with the other end fixed to a massless cart moving uniformly with speed υo under the action of an external device. See Figure 1.4. Is there time-reversal symmetry in this case? This example is based on Ref. [4].

[image: ]
Figure 1.4 Harmonic oscillator fixed to a uniformly moving cart. Source: Adapted from Ref. [4]



Solution

If υo << c, we can use Galileo’s transformation between a reference system S fixed to ground and system S’ fixed to the cart, so that the coordinates x and x’ of the mass m referred to the systems S and S’, respectively, are related as follows:

(1.22)x′=x−υot

Equation 1.22 corresponds to the effective compression of the spring, so that the Lagrangian function, which is the difference between the kinetic and potential energy for the system mass-spring, is given by

(1.23)ℒ(x,x˙,t)=Kcin−Upot=m2x˙2−k2(x−υot)2

The corresponding Hamiltonian is

(1.24)ℋ(x,p,t)=p22m+k2(x−υot)2

Since this Hamiltonian has an explicit dependence on time, one could think that it is not a conserved function. However, we can see that it is time-reversal invariant since it does not change under the transformation t → –t and υo → –υo.

Furthermore, this Hamiltonian can be written in terms of x’ as

(1.25)ℋ(p′,x′)=x˙′p′−ℒ(x,x′)

Considering eq 1.22 and that ẋ = ẋ ′ + υo, the Lagrangian of eq 1.23 can be written in terms of the coordinates x’ and p’ as

(1.26)ℒ(x′,x˙′)=m2x˙2−k2x′2=m2(x˙′+υo)2−k2x′2=m2x˙′2+mυox˙′+m2υo2−k2x′2

From eq 1.26, we obtain the conjugate momentum pʹ as

(1.27)p′=∂ℒ∂x˙′=mx˙′+mυo→x˙′=p′m−υo

which combined with eqs. (1.25) and (1.26) gives

(1.28)ℋ(p′,x′)=x˙′p′−ℒ(x,x′)=(p′m−υo)p′−m2(p′m−υo)2−mvo(p′m−υo)−m2υo2+k2x′2=(p′−mυo)22m−m2υo2+k2x′2

From this last equation, we can see that this new Hamiltonian has no explicit time dependence so that it is a conserved quantity, and therefore, since there is no dissipation, there is a conservation of the total energy. In addition, it can be proved that this system is time-reversal invariant and that the corresponding Hamilton’s equation lead to the same dynamic equation:

(1.29)mx¨′+kx′=0




Example 1.4

Prove that the system of example 1.3 is time-reversal invariant and that the dynamics is given by eq 1.29.


Solution

From Hamilton’s eqs 1.19 and 1.20 and with the Hamiltonian of eq 1.28

      x ˙  ′  =  ∂H   ∂ p ′    =   p ′  −m v o   m         p ˙  ′  =−  ∂H   ∂ x ′    =−k x ′      

Combining these last two equations we obtain:

  x ¨  ′  =   p ˙  ′   m  =  −k x ′   m  ⇒m x ¨  ′  +k x ′  =0  which is the same equation as 1.29 corresponding to a classical harmonic oscillator without dissipation, so that there is time-reversal symmetry.





1.5 Dissipation and Time-Reversal Asymmetry

For a system with dissipation losses due to friction, there is no time-reversal symmetry as can be seen in the following example based on Ref. [4] (problem 16 of Chapter 2) dealing with a one-dimensional system where frictional effects are incorporated directly in the Lagrange function as follows:

(1.30)ℒ(q,q˙,t)=eγt(mq˙22−kq22)

The corresponding Hamiltonian H (q, p, t) is obtained from eq 1.17 with the canonical momentum  p=  ∂ℒ   ∂q ˙     given for this case as

(1.31)p=mq˙eγt⇒q˙=pme−γt

Therefore, in terms of the canonical quantities q, p, t, the Hamiltonian for this case is

(1.32)ℋ(q,p,t)=pq˙−ℒ(q,q˙,t)=p2me−γt−eγtm2p2m2e−2γt+eγtkq22=p22me−γt+eγtkq22

From eq 1.32, we get

(1.33)p˙=−∂H∂q=−kqeγt

Combining Eqs. (1.31) and (1.33):

(1.34)q¨=p˙me−γt−γpme−γt=−kqm−γq˙

eq 1.34 can be recast as

(1.35)q¨+γq˙+kmq=0

This equation describes the motion acquired by a damped harmonic oscillator starting, for example, from an initial position, and with zero speed, and whose dynamics has no time-reversal symmetry due to the term γq̇ which represents the damping of the oscillations.


Example 1.5

Starting from eq 1.32 and with initial conditions (0) = qo, q̇(0) = q̇o = 0 show that for the undamped case, there is no time-reversal symmetry and that the generalized position is given by

(1.36)q(t)=e−γ2t(qocosk2m2−γ24t+q˙0+γ2qok2m2−γ24sink2m2−γ24t)


Solution

From the expression of the Hamiltonian given by eq 1.32, it can be seen that there is no time-reversal symmetry since

 T[ℋ(q,p,t)]=ℋ(q,−p,−t)=    (−p)  2    2m    e  −γ(−t)   + e  γ(−t)     k q 2   2  =   p 2    2m    e  +γt   + e  −γt     k q 2   2  ≠H 

(q, p, t), where the symbol T means the time-reversal operator. The time-reversal asymmetry for this system is confirmed if one determines the temporal evolution as follows:

Assuming a solution of the form est with s a complex parameter to be determined, from eq 1.35 we get

(1.37)s2+γs+km=0

Solving for s, we obtain  s=− γ 2  ±iΩ  where  Ω=   k m  −   γ 2   4    . 

Therefore, we get that the general solution of eq 1.35 is

(1.38)q(t)=e−γ2t{AeiΩt+Be−iΩt}

where A and B are constants that can be obtained from the initial conditions, which are q(0) = qo, q̇(0) = q̇o = 0. From eq 1.38, we obtain the following system of equations for determining the constants A and B:

(1.39)A+B=qoA−B=−iγqo2Ω }

From the system of Eqs. (1.39), we obtain

(1.40)A=qo2−i(γqo4Ω)

(1.41)B=qo2+i(γqo4Ω)

Substituting the expressions for A and B in eq 1.38 and after some algebra, one obtains eq 1.36. Clearly, this expression gives a time evolution that has no time-reversal symmetry since

  q(−t)= e  − γ 2  (−t)   (   q o  cos     k 2     m 2    −   γ 2   4    (−t)+   γ 2   q o         k 2     m 2    −   γ 2   4      sin     k 2     m 2    −   γ 2   4    (−t)  )     = e  + γ 2  t   (   q o  cos     k 2     m 2    −   γ 2   4    t−   γ 2   q o         k 2     m 2    −   γ 2   4      sin     k 2     m 2    −   γ 2   4    t  )≠q(t)   




Example 1.6

Analyze the dynamics of a particle of mass m which is left to fall from a height h and is subject to a frictional damping force which varies proportionally with the magnitude of the velocity. Discuss about the effect of dissipation over the loss of time-reversal symmetry. This problem is based on problem 23, Chapter 1 of Ref. [4].


Solution

The Lagrangian for the particle without friction is

(1.42)ℒo=12mz˙2−mgz

The frictional effect in the Lagrangian formalism is included by adding the dissipation function    k z ˙  2   2  ,  so that the Lagrangian is

(1.43)ℒ=ℒo+F=12mz˙2−mgz+kz˙22

Therefore, the equation of motion is obtained from the Lagrange equation which in this case is

(1.44)ddt(∂ℒ∂z˙)−∂ℒ∂z+∂F∂z˙=0⇒mz¨=mg−kz˙

With  z ˙  ≡  dv   dt    eq 1.44 may be recast as

(1.45)mdυdt+kυ=mg

Equation 1.45 is a linear differential equation of the first order and if the initial condition is υ(0) = 0, the solution is

(1.46)υ(t)=mgk(1−e−kmt)=υ∞(1−e−tτ),

where   υ ∞  =  mg  k   is the final velocity acquired by the particle and τ = m/k is the time constant. This case is quite similar to the behavior of an R–L circuit (a resistor R connected in series with an inductor L, as shown in Figure 1.5) where if a constant voltage V is applied at the terminals, the evolution of the current is given by the equation

[image: ]
Figure 1.5 An RL circuit whose dynamical behavior is analog to that of the mass falling due to gravity and subject to a friction force proportional to velocity. This circuit is energized at t = 0 when switch S closes.


(1.47)Ldidt+i(t)R=V

and the current i(t) is given by

(1.48)i(t)=VR(1−e−tτ),

where the time constant for this case is τ = L/R.

Clearly, the dynamics of both systems, the falling particle subject to friction and the RL circuit, are not time-reversal invariant due to energy dissipation.




Example 1.7

Repeat example 1–6 but with frictional damping proportional to the square of the velocity, that is Ffriction = − Aυ2sign(υ) where A is a constant and sign (υ) = +1 if υ > 0 and –1 if υ < 0.


Solution

Directly from Newton’s laws, we have that the dynamics of a falling particle subject to this kind of friction force is given by

(1.49)υ˙=dυdt=g−Amυ2

At first sight and from a mathematical point of view, one would be tempted to say that there is time-reversal symmetry since applying the time-reversal operator to both sides of eq 1.49, we would have

 T[υ ˙  ]=  d(−υ)   d(−t)   =  dυ   dt   

 T[+g− A m   υ 2  ]=g− A m    (−υ)  2  =g− A m   υ 2  

Therefore, we would think that both sides of eq 1.49 are invariant under time reversal. To verify this statement, let us first examine the evolution of the velocity and the vertical position. First, we note that the particle reaches a steady-state velocity υ∞ which in this case is given by   υ ∞  =±  mg/A   .  In terms of this velocity, the equation of motion can be written as

(1.50)dυdt=gυ∞2(υ∞2−υ2)⇒dvυ∞2−υ2=gυ∞2dt

The left side of this last equation can be expressed as

(1.51)dυυ∞2−υ2=dυ2υ∞[ 1υ∞−υ+1υ∞+υ ]

From Eqs. (1.50) and (1.51) and after some calculus of integrals we obtain

(1.52)υ(t)=υ∞tanh(gtυ∞)

Solving eq 1.52 for the vertical position y(t) with initial condition y(0) = h and zero initial velocity, we obtain

 y(t)=h−   υ ∞    2   g  ln[  Cosh(   g   υ ∞    t  )  ] 

The mass m reaches the ground at an instant tg given by

    υ ∞ 2   g  ln[  Cosh(   g   υ ∞     t g   )  ]=h 

Under time reversal  T[υ(t)]=−υ(t)=− υ ∞  tanh(    gt    υ ∞     )  and solving again for the vertical position y(t) with initial condition (0) = 0, we obtain

 y(−t)=   υ ∞    2   g  ln[  Cosh(   g   υ ∞    t  )  ] 

From this last equation, it can be seen that in the absence of dissipation, at time –tg, the particle returns to its initial height h over the ground. However, although the dynamical equations show time-reversal symmetry, during the free fall of the particle, there occurs dissipation of energy due to the frictional force. This implies that on reaching the ground, the particle has a kinetic energy K equal to its initial potential energy MgH minus the energy Q dissipated by friction. In order to return to its initial state, that is, to be situated again at a height H with zero speed, it must be launched by an external agent with a kinetic energy K'=K+Q > K. Therefore, this example shows that without an external agent, the analyzed process is irreversible, even though the dynamic equations show symmetry under time reversal.





1.6 Time Reversal of a Conservative System

In general, it is said that a system is conservative if the work    ∫  r →  ( t 1  )   r →  ( t 2  )    F →  ⋅dr →      is path independent, that is the integral that represents the work done by the force F →  is independent of the chosen path to join the points corresponding to the initial position  r →  ( t 1  )  and the final position  r →  ( t 2  )  This is valid when the force F →  depends only on the position. However, it is not necessarily well-defined in the presence of velocity-dependent forces. This is because there can be many velocity-dependent force vectors  F →  (r →  ,υ →  )  at the same position r → , corresponding to the different values of υ → . A path integral of this force along a given curve between the initial al final positions in the space, is not well-defined in such cases, since a position r →  is not enough to know the force  F →  (r →  ,υ →  )  at this place.

As a specific case of a system conservative according to the above definition but non-time-reversal symmetric, we consider a particle subject to a force of the form  F →  = K r →      ×υ →    ,  where K is a constant with units such this expression has units of force. If this is the only force acting over this particle, the corresponding work made in a motion along some path Σ connecting two points P1 and P2 is

(1.53)W=∫O1P2F→⋅ds→=∫t1t2=t1+Δtr→×υ→⋅υ→dt

where Δt is the traveling time for going from P1 to P2. Since the vector product  r →  ×υ →   gives a vector perpendicular to υ →  it can be concluded that for any path Σ this work is null.

In particular, for the case of any closed path, this work is null and one could say that this system is conservative. Nevertheless, there is no time-reversal symmetry. In fact, under time reversal,  r →  →r →  ,υ →  →−υ →  ,  so that  F →  →−F →   in this case. As an illustration, we consider a particle placed at a given distance r from the origin of the system of coordinates. If initially the particle is at rest, under the action of the force   K r →      ×υ →    ,  the particle will acquire a velocity with components υθ and υϕ according to a dynamics described by the following equations:

(1.54)d2θdt2=Krmυϕ

(1.55)d2ϕdt2=−Krmυθ,

where m denotes the mass of the particle. In this case, r is the constant since there is no radial acceleration.

From these equations, we get that the dynamics of the rotation in the plane xy is given by

(1.56)d3ϕdt3+(Krm)2dϕdt=0

The solution of this third-order differential equation can be written as

(1.57)ϕ(t)=A−mKrBcos(Krmt)+mωoKrCsin(Krmt)

with A, B, and C constants dependent on the initial condition.

If we assume that at t = 0, ϕ(0) = ϕoϕ̇(0) = ωo, and ϕ̈(0) = 0, we obtain the following solution for the constants

(1.58)A=ϕo

(1.59)B=0,C=mKrωo

Therefore, we get

(1.60)ϕ(t)=ϕo+ωor/msinKrmt

Applying the time-reversal operator we get

(1.61)T[ϕ(t)]=ϕ(−t)=ϕo+ωoKr/msinKrm(−t)=ϕo−ωor/msinKrmt≠ϕ(t)

Therefore, this confirms that even though there is no dissipation of energy, there is no time-reversal symmetry for this case. In the following example, we show the break of time-reversal symmetry for a charged particle subject to a magnetic field.


Example 1.8

In this example, we analyze the motion of a charged particle subject to the action of an electromagnetic field. Let us consider a particle of mass m and electric charge q moving in a plane under the combined influence of a central potential V(r) and a constant uniform magnetic field B → , perpendicular to the plane and generated by a static vector potential  A →  ,=B →  ×r →  /2.  Is there time-reversal symmetry and time-translational invariance in this case?


Solution

The motion of the particle can be described by the following equation:

(1.62)md2r→dt2=q{ −∇V(r)+dr→dt×B→ }

If the magnetic field is externally controlled, it does not vary under time reversal, and from the direct inspection of eq 1.62, we conclude that there is no time-reversal symmetry due to the second term inside brackets. In fact, under time reversal, this is the only term that changes to  −  dr →    dt   ,  and therefore, this symmetry is lost. This statement is confirmed if we analyze the Hamiltonian for this system, as follows:

The Lagrangian is given by

(1.63)ℒ=12m(r→˙)2+qr→˙⋅A→−qV(r)

From the identity  a →  ⋅b →  ×c →  =b →  ⋅c →  ×a →  =c →  ⋅a →  ×b →   we can write the second term at the right of eq 1.63 as  qr →  ˙  ⋅A →  = q 2  r →  ×r →  ˙  ⋅B →   Assuming that B →  is oriented along the z-axis, we obtain that  r →  ×r →  ˙  ⋅B →  =xy ˙  B−yx ˙  B.  Therefore, the components of the canonical momentum  P →  =p →  +qA →   are given by

(1.64)Px=mx˙−12qyB

(1.65)Py=my˙+12qxB

(1.66)Pz=mz˙

The Hamiltonian is obtained from H = Pxẋ +Pyẏ + Pzż − ℒ. Using equations (1.63)–(1.66) and after making some algebra we obtain

(1.67)ℋ=12m{ (Px+12qyB)2+(Py−12qxB)2+Pz2 }+V(r)

From equations (1.64) to (1.66), it can be seen that the canonical momenta are not invariant under time reversal. Therefore, this Hamiltonian has no time-reversal symmetry, but since it does not depend explicitly on the time    ∂ℋ   ∂t   =0,  the energy of this system is conserved and there is time-translation invariance.





1.7 Time-Reversal Symmetry of the Dynamics of a Relativistic Particle

We begin with a free relativistic particle of mass m whose dynamics is described by the following Hamiltonian :

(1.68)ℋ=mc21−β2

with β = υ/c where υ is its speed and c is the light velocity in vacuum.

Clearly, the Hamiltonian of eq 1.68 is time-reversal symmetric since it does not depend on time and it does not change under the transformation υ → –υ. In terms of the momentum p and considering for simplicity one-dimensional motion along the x direction, this Hamiltonian can be written as

(1.69)ℋ=c2p2+m2c4

From Hamilton equations (1.19) and (1.20) we get

(1.70)x˙=υ=∂H∂p=pc2c2p2+m2c4

and  p ˙  =−  ∂H   ∂x   =0  for this case.

From eq 1.70 and some little algebra, we obtain the expression for the momentum of a relativistic particle in free motion

(1.71)p=mv1−β2

Therefore, for this simple case, we conclude that the particle moves both with constant velocity and momentum and that there is time-reversal symmetry.


Example 1.9

How does the above result change if the particle is subjected to a constant decelerating force F parallel to the direction of its motion?


Solution

In this case, the Hamiltonian changes to

(1.72)ℋ=c2p2+m2c4−Fx

This Hamiltonian is also time-reversal invariant since it does not change if p → –p and the second term in this case is even under time reversal.

From Hamilton’s equation (1.20)  p ˙  =−  ∂H   ∂x   =F  which corresponds to the second law of Newton. Using the expression for the momentum of eq 1.71, we have

(1.73)p˙=dpdt=ddt(mcβ1−β2)=F

If initially the particle was at rest, the integration of this last equation gives

(1.74)β(t)=Fmct1+(Ft/mc)2

From this last equation, it can be seen that the velocity is odd under time reversal and the same occurs for the momentum. Defining the characteristic time τ ≡ mc / F, this equation can be expressed in terms of the normalized time t̃ = t/τ as

(1.75)β(t˜)=t˜1+t˜2

By integration of eq 1.74 and assuming as initial position x(0) = 0, we obtain that the instantaneous position is given by

(1.76)x(t˜)=cτ{ 1+t˜2−1 }

Figure 1.6 shows plots of β(t̃̃) and x(t̃) observing that the velocity and position are odd and even, respectively, under time reversal.

[image: ]
Figure 1.6 Velocity and position of a relativistic particle subject to a decelerating force F. The velocity is expressed in terms of c and the position is in units of τc.






1.8 Time Reversal of a Mechanical Wave

As a further example, we consider the propagation of a mechanical wave that could be for example a transversal wave in an elastic medium like a spring, an acoustic, or a seismic wave.
OEBPS/images/fig1_6_B.jpg
B and x/ct

0.8 4

(o]

0.2

0.4

0.6

0.8

Beta






OEBPS/images/fig1_5_B.jpg





OEBPS/images/fig1_4_B.jpg
m






OEBPS/nav.xhtml


Contents



		Cover Page


		Half Title page


		Title Page


		Copyright Page


		Dedication


		About the Author


		Contents


		Abbreviations


		Preface


		Introduction


		1. Time in Classical Mechanics

		1.1 Introduction


		1.2 Time-Reversal Symmetry

		1.2.1 What Does Time-Reversal Invariance Mean?






		1.3 Time Reversal for a Simple Case: The Dynamics of a Projectile



		1.4 Reversible Laws of Motion in Classical Mechanics



		1.5 Dissipation and Time-Reversal Asymmetry



		1.6 Time Reversal of a Conservative System



		1.7 Time-Reversal Symmetry of the Dynamics of a Relativistic Particle



		1.8 Time Reversal of a Mechanical Wave


		1.9 Time Translational Symmetry



		1.10 Conclusions


		References






		2. About Time in Electromagnetic Theory

		2.1 Introduction


		2.2 Time-Reversal Invariance of Maxwell Equations in Vacuum


		2.3 Time Reversal of Electromagnetic Waves in Vacuum


		2.4 Time Reversal of Material Relations



		2.5 Effect of Dispersion in Time-Reversal Symmetry


		2.6 Time Reversal of Processes with Transfer of Energy



		2.7 Doppler Effect And Time Reversal



		2.8 Causality In Electrodynamics


		2.9 AN ARROW OF TIME FOR ELECTROMAGNETIC RADIATION

		2.9.1 Energy Carried By Advanced And Retarded Electromagnetic Waves


		2.9.2 Wheeler–Feynman Absorber Theory






		2.10 Optical Dirac-Like Equation And Time-Reversal Symmetry

		2.10.1 Optical Dirac-Like Equation



		2.10.2 Analysis Of Time-Reversal Symmetry Of The Optical Dirac Equation



		2.10.3 PHOTON STATES WITH POSITIVE AND NEGATIVE ENERGIES







		2.11 Electromagnetic Nonreciprocity And Time Reversal

		2.11.1 Reciprocity And Time-Reversal Symmetry


		2.11.2 Non-Reciprocity In Faraday Effect



		2.11.3 Lorentz Reciprocity Theorem







		2.12 Application Of Time Reversal For Locating Lightning Discharges

		2.12.1 A Brief Description Of The Lightning Discharge Phenomenon


		2.12.2 Locating Lightning Discharges Based On Time Reversal Symmetry Of Electromagnetic Fields







		2.13 Conclusions


		References






		3. Time in Non-Relativistic Quantum Mechanics

		3.1 Introduction


		3.2 Time-Reversal Symmetry

		3.2.1 SchröDinger Equation


		3.2.2 Time-Reversal Operator


		3.2.3 Antiunitarity Of The Time-Reversal Operator



		3.2.4 Invariance of the Uncertainty Principle under Time Reversal


		3.2.5 Kramers Degeneracy And Time-Reversal Symmetry






		3.3 Breaking Of Time-Reversal Symmetry By An External Magnetic Field



		3.4 Time Reversal Of The Photoelectric Effect

		3.4.1 Schrödinger Equation for An Electron Emitted by Photoelectric Effect


		3.4.2 Mechanical System Analogous With The Photoelectric Effect


		3.4.3 Time Reversal of the Photoelectric Effect


		3.4.4 Time-Reversal Analysis of the Photoelectric Effect Using Ehrenfest Theorem






		3.5 Time-Reversal Operator for Systems with Spin



		3.6 Time Reversal and Geometric Phases

		3.6.1 Introduction


		3.6.2 The Berry Phase


		3.6.3 Example of Berry Phase Acquired by a Particle With Spin ½


		3.6.4 Berry Phase For Photons


		3.6.5 Relation of Aharonov-Bohm Effect with Berry Phase






		3.7 Effect of Dissipation in a Quantum System


		3.8 Entanglement and Causality

		3.8.1 Causality in Quantum Mechanics


		3.8.2 Entanglement






		3.9 What About Time Symmetry in Quantum Optics?

		3.9.1 The Semiclassical Model of Rabi


		3.9.2 Collapse and Revival of Rabi Oscillations






		3.10 PT—Symmetric Quantum Mechanics

		3.10.1 Introduction


		3.10.2 Eigenvalues of a PT-Symmetric Hamiltonian



		3.10.3 Complex Potentials and Parity-Time Symmetry in Optics







		3.11 Conclusions


		References


		Appendix 3.1 Additional Examples



		Appendix 3.2 Basic Concepts About Quantum Mechanics



		Appendix 3.3 Quantization Of The Electromagnetic Field


		Appendix 3.4 Revival of Rabi Oscillations Applying Time Reversal








		4. Time in Special Relativity Theory

		4.1 Introduction


		4.2 Fundamental Postulates of Relativity Teory



		4.3 Time and Length Measurements

		4.3.1 Time Dilation


		4.3.2 Lorentz Contraction of Lengths






		4.4 The Space Time and Lorentz Transformations



		4.5 About The Simultaneity Of Events


		4.6 Space Time and the Light Cone



		4.7 Some Reflections About Causality and Time


		4.8 Causality and Superluminal Signals


		4.9 Relativistic Transformation of Velocities



		4.10 Time Dilation of the Lifetime of a Particle


		4.11 Time and Relativistic Doppler Effect


		4.12 Lorentz Transformations Of Other Physical Quantities

		4.12.1 Cuadrivectors



		4.12.2 Transformation of the Electromagnetic Field



		4.12.3 Lorentz Transformation of Energy and Time







		4.13 A Note About Superluminal Particles


		4.14 Conclusions


		References






		5. Time in General Relativity Theory

		5.1 Introduction


		5.2 Equivalence Principle


		5.3 Gravity And Light


		5.4 Geometry Of Space Time



		5.5 Plausibility Arguments For Schwarzschild Metric


		5.6 Gravity And Time



		5.7 Effects Of Gravitational Field Due To Earth On Time Measurements




		5.8 Application of General Relativity Theory to Global Positioning System

		5.8.1 What is a Global Positioning System?


		5.8.2 Relativistic Effects Affecting the Accuracy of GPS







		5.9 An Overview of Einstein's Field Equations



		5.10 General Relativity and Blackholes

		5.10.1 What is a Blackhole?


		5.10.2 What Happens with Time at an Event Horizon Of A Black Hole?







		5.11 Time Reversal Symmetry in an Expanding Universe Model



		5.12 Time Reversal Symmetry in Cosmology



		5.13 Time Traveling Through Wormholes: Is It Possible?


		5.14 Quantum Entanglement According to General Relativity


		5.15 Measurement of Intervals between Events in the Space Time



		5.16 General Relativity Theory and Quantum Mechanics


		5.17 Conclusions


		References






		6. A Glance at Some Recent Theories About Time in Physics

		6.1 Introduction


		6.2 Time in the Cellular Automaton Theory


		6.3 The Thermal Time Hypothesis



		6.4 Time as a Discrete Dynamical Variable

		6.4.1 Causality and Discrete Nature of Time


		6.4.2 Discrete Time Values in Quantum Mechanics



		6.4.3 Quantization of SPACE–TIME






		6.5 Quantum Operator For The Time In Non-Relativistic Quantum Mechanics

		6.5.1 Introduction


		6.5.2 Time Operator as an Analogous “Hamiltonian”


		6.5.3 Time and Energy Operators in An Enlarged Hilbert Space







		6.6 Quantum Operator for Time in Relativistic Quantum Mechanics



		6.7 Time in Quantum Gravity

		6.7.1 Introduction


		6.7.2 The Concept of Time in General Relativity Theory


		6.7.3 Space–Time Quantization Considering Classical Gravity


		6.7.4 Time in a Quantum Theory of General Relativity


		6.7.5 Discussion


		6.7.6 Space–Time in String Theory






		6.8 Exploring in the Physics of Time Travel



		6.9 Conclusions and Epilogue

		As an Epilogue






		References






		Index





Book Landmarks



		Cover Page


		Half Title page


		Title Page


		Copyright Page


		Dedication


		About the Author


		Contents


		Abbreviations


		Preface


		Introduction


		Body Contents






List of Illustration



		Figure 1.1 A particle joined to a harmonically oscillating spring.


		Figure 1.2 Trajectory of a projectile thrown with an initial velocity vector that forms an angle α with respect to the x axis.


		Figure 1.3 Classical Harmonic Oscillator. A mass M is fixed to a spring of elastic constant k.


		Figure 1.4 Harmonic oscillator fixed to a uniformly moving cart. Source: Adapted from Ref. [4]


		Figure 1.5 An RL circuit whose dynamical behavior is analog to that of the mass falling due to gravity and subject to a friction force proportional to velocity. This circuit is energized at t = 0 when switch S closes.


		Figure 1.6 Velocity and position of a relativistic particle subject to a decelerating force F. The velocity is expressed in terms of c and the position is in units of τc.


		Figure 2.1 Two polarizable spheres excited by a fluctuating electric field along the x direction. Directions of reference are indicated for the radial and angular components of the interaction force.


		Figure 2.2 Train of pulses emitted by a moving source toward a detector.


		Figure 2.3 Transit time of a monochromatic wave through a dielectric slab made of a non-dispersive material versus the variable β = nωD/c for three values of the index of refraction: n1 = 1.2 (dotted curve), n2 = 1.4 (dashed curve) and n3 = 1.9 (solid curve).


		Figure 2.4 Average transit time of a monochromatic wave through a dielectric slab made of a non-dispersive material versus the variable β = nωD/c for index of refraction 1.2 (solid line) and 1.9 (dashed line).


		Figure 2.5 Scheme of the Wheeler–Feynman Absorber Theory. Dashed lines indicate a 180o phase shift (based on Ref. [29]). Source: Adapted from Ref. [29]


		Figure 2.6 Time-reversal symmetry (TRS): as shown by the dotted curve at time T, the state of the system is time reversed and left to evolve coming back to the initial state (if there is TRS) or to a different state (if there is not TRS).


		Figure 2.7 Light beam linearly polarized entering to a region where a static magnetic field is applied in a direction parallel to the propagation. At the output of this region, the electric field vector is rotated by an angle θ.


		Figure 2.8 A linearly polarized wave enters to a region where a static magnetic field is applied as shown. This wave is decomposed into two circularly polarized waves rotating in opposite senses. Due to the magnetic field, the refraction index is different for each circularly polarized wave.


		Figure 2.9 Position of the impact point of a lightning stroke and N detectors of the corresponding electromagnetic wave that it is produced.


		Figure 2.11 Fault occurring in a transmission line between two points where detectors are placed at x = xi and x = xj.


		Figure 2.10 Waveform of the current of a lightning strike with a peak of 100 kA, according to the model proposed in standard IEC 61312–1.42


		Waveforms of the electric fields measured by detector 1 (red curve) and detector 2 (green curve). The electric field is in kV/m and time is in seconds. The parameters considered are: Is = 100 kA, Tf = 19 μs, τ = 485 μs, and η = 0.93.


		Figure 2.13 The blue curve shows the time reversed electric field (kV/m) at the source point. The red and green curves show the electric field measured, respectively, by detectors 1 and 2 before being time-reversed.


		Figure 3.1 Range of validity of the current physical theories considering the dimensions and the velocity of the components of a physical system with respect to the light speed c.


		Figure 3.2 Time reversal and evolution of the state of a particle: (a) Time reversal at t = 0 and evolution up to t = +δt; (b) Time reversal at t = –δt. Source: Adapted from Ref. [3].


		Figure 3.3 Potential energy acquired by an electron emitted by the photoelectric effect.


		Figure 3.4 Typical experimental set for detecting the photoelectric effect.


		Figure 3.5 Mechanical system with a behavior analogous to that of the photoelectric effect.


		Figure 3.6 Sketch of the photoelectric effect (a) and inverse photoelectric effect (b).


		Figure 3.7 The holonomy under the parallel transport of a vector. A vector transported on a closed path on the surface of a sphere and kept tangential to that path, does not retain its initial orientation.


		Figure 3.8 Magnetic field vector rotating with respect to z-axis with angular velocity ω.


		Figure 3.9 Curve ℂ described by the tip of the magnetic field vector during a cycle.


		Figure 3.10 Outline of an experiment for measuring Berry's phase for photons propagating along helically wound optical fibers.


		Figure 3.11 Sketch of the setup for observing the Aharonov–Bohm effect. Source: Adapted from Ref. [3]


		Figure 3.12 Illustration of the magnetic Aharonov-Bohm effect. A beam of electrons, is split into two beams, each one following a path surrounding a solenoid as shown. Due to the presence of the magnetic vector potential, there is a phase difference between the paths.


		Figure 3.13 Space–time diagram showing two points P1 and P2 not causally connected. Dashed red lines correspond to the boundaries of the light cone for the particle at P1.


		Figure 3.14 Horizontal and vertical states of polarization of each photon of an entangled pair.


		Figure 3.15 Each photon passing through a beam splitter can reach the horizontal or vertical polarization state, as shown.


		Figure 3.16 Superposition of polarization states for obtaining two entangled photons.


		Figure 3.17 States and energy differences for a two-level quantum system.


		Figure 3.18 Atomic oscillations according to semiclassical Rabi model for the atom initially in the ground state.


		Figure 3.19 Probability that the atom remais in the excited state when it is subject to a laser field in a coherent state with average number of photons 5 (red curve) and 10 (blue curve).


		Figure 3.20 Real (nR, red line) and imaginary (nl, green line) parts of the refractive index distribution.


		Figure 3.21 States and energies of a quantum two-level system.


		Figure 3.22 Probability of finding the two-level system in the ground state |f〉=|g〉|n + 1〉, for 3 values of the average number of photons: 13.4 (red curve), 19 (green curve) and 25 (blue curve).


		Figure 4.1 Luminous clock moving with respect to observer 1. A light pulse is emitted from a source placed at E (Tic). This pulse is reflected in a mirror and the reflected beam is received by a detector placed at R (Tac). Observer 2 is fixed to the luminous clock. Both observers measure the time interval between a Tic and a Tac.


		Figure 4.2 Light rays as seen by observer 1 for whom the time interval between a Tic and a Tac is τCM.


		Figure 4.3 Luminous clock moving with respect to a reference frame S with velocity V along the x axis.


		Figure 4.4 Sequence of events according to an observer fixed to the laboratory.


		Figure 4.5 Reference frame S' moving with respect to S as shown in this figure.


		Figure 4.6 Lengths of a rod according to two inertial observers S and S'.


		Figure 4.7 Orientation of axes x' and ct' (frame reference S') with respect to axes x and ct (frame reference S). Source: Adapted from Ref. [6]


		Figure 4.8 Orientation of axis ct' with respect to axis ct.


		Figure 4.9 Orientation of axis x' with respect to axis x.


		Figure 4.10 Arnold, Bruno, and Conrad begin to move at t=0 with speed V as shown.


		Figure 4.11 World line and the light cone. The curve between points A and B is the path followed in space time by any person or object according to the principle of Causality.


		Figure 4.12 The motion of a particle seen by observers S and S' with a relative velocity V→ as shown.


		Figure 4.13 Muon μ produced at a height H over the surface of the ground and falling with speed u.


		Figure 4.14 Speed required for a muon (in units of c) versus traveled distance before its disintegration at τ = 2μs.


		Figure 4.15 Signal emitted from a rocket moving away from the Earth with velocity V→ (see text).


		Figure 4.16 Rocket moving away from earth with velocity vector of magnitude V.


		Figure 4.17 Magnitude of the relative velocity between S and S' versus the angle θ for simultaneity of events at S'. Results are given for three values of the relation |Δr→/cΔt|.


		Figure 4.18 Particle with momenta p and p' with respect to reference frames S and S', respectively.


		Figure 4.19 An electromagnetic field observed from reference frames S and S'.


		Figure 4.20 Plane electromagnetic observed from reference frames S and S'


		Figure 4.21 Decaying of a π-meson in a µ-meson and a massless neutrino.


		Figure 5.1 Principle of equivalence: The behavior of objects inside an elevator in free fall is indistinguishable from that in an identical elevator car far away from all gravitating bodies.


		Figure 5.2 Principle of equivalence: Objects inside an elevator car accelerating upward (left side) behave the same way as inside a small elevator car on the surface of the Earth (right side).


		Figure 5.3 Principle of equivalence. The light ray moves in a straight line for observers at the left and at the right. On the left, the elevator is in empty space without acceleration. On the right, the elevator is freely falling.


		Figure 5.4 Principle of equivalence: According to an observer inside an elevator accelerating upward with g, the light ray emitted by a laser bends (figure at the left). The same effect is seen by an observer inside an elevator at rest over the surface of the earth (figure at the right). Both observers see that the light ray bends.


		Figure 5.5 Position vector of a point P with respect to a spherical massive object of mass M which produces a gravitational field.


		Figure 5.6 Time dilation due to the gravitational field produced by a body of mass M. An observer A measures a smaller time interval than a clock very far away from the body.


		Figure 5.7 Clocks S1 and S2 are subjected to a homogeneous gravitational field with gravity acceleration g. The clock S1 is programmed to emit light pulses with period T1 toward the clock S2 which measures the period T2 of the received pulses. The same events are seen from a free falling elevator (system K′).


		Figure 5.8 Clock emitting radiation with energy E2 toward the observer placed at point A, in presence of a gravitational field produced by the mass M.


		Figure 5.9 Airplane describing a circular orbit at an altitude h from the Earth's surface and with relative velocity u.


		Figure 5.10 The receptor R receives signals from transmitters placed at each one of the four satellites. The reference frame has its origin at the center of mass of the planet (ECI).


		Figure 5.11 Light cones in the vicinity of a black hole. At the horizon, the outgoing leg of the light cone is parallel to that horizon. Inside the black hole, all the light cones point inward toward the singularity.


		Figure 5.12 Time required for a light ray to reach and traverse the event horizon. Blue (green) curve corresponds to an emitter placed at a distance d = 50rs (30 rs) from the center of the black hole.


		Figure 5.13 Spherical portion of a fluid with mass density ρ


		Figure 5.14 Time reversal symmetry in the evolution of the universe according to Friedmann's equation.20 The time axis is expressed in terms of to which is the time elapsed from the big-bang to the present, solving a(to) = 1.  Source: Adapted from Ref. [20] and Ref. [21]


		Figure 5.15 Two regions of space time connected by a wormhole.


		Figure 6.1 Transitions corresponding to eq 6.11.  Source: Adapted from Ref. [4]


		Figure 6.2 Time generated from a macroscopic state according to the thermal time hypothesis.


		Figure 6.3 Light pulse emitted during the decay of a set of excited atoms.


		Figure 6.4 Fourier transform of the pulse shown in Figure 6.3.


		Figure 6.5 Spectrum of measured wavelengths for the light emitted during the decay of a set of excited atoms.


		Figure 6.6 Eigenvalues spectrum of the relativistic time operator.





List of Tables



		Table 2.1 Parameters for Lightning Current Waveform.





Pages



		i


		ii


		iii


		iv


		v


		vi


		vii


		viii


		ix


		x


		xi


		xii


		xiii


		xiv


		xv


		xvi


		xvii


		xviii


		xix


		xx


		xxi


		xxii


		xxiii


		xxiv


		xxv


		1


		2


		3


		4


		5


		6


		7


		8


		9


		10


		11


		12


		13


		14


		15


		16


		17


		18


		19


		20


		21


		22


		23


		24






























































































































































































































































































































































OEBPS/images/fig1_3_B.jpg





OEBPS/images/fig1_2_B.jpg
VosSen a

Vocos a

Y





OEBPS/images/fig1_1_B.jpg
Do 6aEadd






OEBPS/images/Coverpage.jpg
LOOKING AT TIME FROM
- A PHYSICS PERSPECTIVE






OEBPS/images/logo.jpg
ACADEMIC

PRESS





