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Image synthesis across and within medical imaging modalities is an active area of research 
with broad applications in radiology and radiation oncology. This book covers the prin-
ciples and methods of medical image synthesis, along with state- of- the- art research.

First, various traditional non- learning- based, traditional machine- learning- based, and 
recent deep- learning- based medical image synthesis methods are reviewed. Second, spe-
cific applications of different inter-  and intra- modality image synthesis tasks and of syn-
thetic image- aided segmentation and registration are introduced and summarized, listing 
and highlighting the proposed methods, study designs, and reported performances with 
the related clinical applications of representative studies. Third, the clinical usages of med-
ical image synthesis, such as treatment planning and image- guided adaptive radiotherapy, 
are discussed. Last, the limitations and current challenges of various medical synthesis 
applications are explored, along with future trends and potential solutions to solve these 
difficulties.

The benefits of medical image synthesis have sparked growing interest in a number of 
advanced clinical applications, such as magnetic resonance imaging (MRI)-only radiation 
therapy treatment planning and positron emission tomography (PET)/MRI scanning. This 
book will be a comprehensive and exciting resource for undergraduates, graduates, 
researchers, and practitioners.
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Recently, medical image synthesis became a vital aspect of both medical imaging research 
and clinic study in radiology and radiation oncology fields. Within the medical imaging 
and medical physics communities, promising work on inter- modality synthesis (e.g., MRI- 
based synthetic CT/dual energy (DE) CT, CBCT- based synthetic CT, CBCT/CT- based 
synthetic MRI, CBCT/CT- based stopping power map estimation, CT- based ventilation 
image, PET- based synthetic CT and image- based dose plan prediction) and intra- modality 
(cross- modality) synthesis (e.g., low- count PET- based full- count PET image estimation, 
PET/SPECT attenuation correction, intra- multiparametric MRI transformation, ultra-
sound/CT/MRI high- resolution image generation, 2D- based 3D volumetric image gen-
eration, MRI inhomogeneity correction, low- dose CT, MRI/CT/US denoising and metal 
artifact reduction) is being performed in PET/SPECT attenuation correction, MRI- based 
treatment planning, CBCT- guided adaptive radiotherapy, image segmentation, multimo-
dality image registration, high- quality image generation, low- dose PET or CT generation, 
fast MRI imaging, real- time motion tracking, and numerous other areas. Therefore, we 
believe that it is time to combine the mostly used and well- known methods – to prepare 
a book dedicated to the topic of medical image synthesis. The aim of this book is to pro-
vide principles and methods, and state- of- the- art research, for undergraduates, graduates, 
researchers and practitioners. In this book, first, various traditional non- learning- based, 
traditional machine- learning- based and recent deep- learning- based medical image syn-
thesis methods are reviewed. Second, specific applications of different inter- modality and 
intra- modality image synthesis tasks and of synthetic image- aided segmentation and reg-
istration are introduced and summarized. Third, the clinic usage of medical image syn-
thesis, such as treatment planning and image- guided adaptive radiotherapy, is discussed. 
Last, the limitations and current challenges of various medical synthesis applications are 
explored. The future trends or potential solution to solve these difficulties are discussed.
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1.1  Introduction

Image synthesis across multimodality has been actively studied and widely adopted in 
radiology and radiation oncology. For diagnosis and treatment purposes, it is quite com-
mon to involve medical imaging of several modalities, e.g., computed tomography (CT), 
magnetic resonance imaging (MRI), and positron emission tomography (PET). However, 
high- quality image acquisition can be too expensive, time- consuming, or laborsome and 
thus become infeasible during clinic workflow. In some cases, the radiation constraints and 
image registration complexity will also restrict the direct use of some imaging modalities 
[1]. To overcome such obstacles, image synthesis techniques have been introduced to gen-
erate difficult images from easy- to- obtain images (intermodality synthesis) or synthesize 
high- quality images from low- quality inputs (intramodality synthesis).

Before the era of deep learning, image synthesis was conventionally performed with 
non- learning- based or traditional machine- learning- based methods, including single/
multi- atlas- based, random forest, support vector machine (SVM), and other techniques [2]. 
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4 Medical Image Synthesis

Such models are considered more difficult when the two involved imaging modalities 
carry very different information, e.g., between CT and MRI where MRI intensity informa-
tion is not uniquely related to electron density like the CT Hounsfield unit (HU) value does 
[3]. In fact, MRI- based synthetic CT (sCT) or sometimes called pseudo–CT (pCT), has been 
a major topic in such studies since if we can obtain sCTs from standard clinical MRI 
sequences for treatment planning and patient positioning verification, then an MRI- only 
radiotherapy (RT) workflow can be implemented to greatly simplify the treatment process 
and reduce received doses, with a better lesion target and organ at risk (OAR) delineation 
provided by MRI [2].

In this chapter, we will review the published articles focusing on utilizing traditional 
computer- aided image synthesis before the development of modern deep learning- based 
techniques, which mainly include non- learning- based and traditional machine- learning- 
based methods. The remainder of the chapter is organized as follows: Section 1.2 provides 
an overview of non- learning- based methods, mainly the atlas- based algorithms. Section 
1.3 introduces works utilizing traditional machine- learning- based methods. In Section 1.4 
we will discuss the achievements and limitations for these conventional image synthesis 
techniques.

1.2  Overview of Non-learning-based Methods

Traditionally, one of the dominating applications of image synthesis in medicine is to gen-
erate sCTs from MRI sequences since CTs provide accurate patient positioning information 
and electron density distribution for RT treatment planning but suffer from low soft tissue 
contrast and extra radiation exposure; while clinical MRIs provide high soft tissue con-
trast for lesion targeting but don’t contain electron density information. Thus, in the early 
days bulk density override methods were utilized to convert MRIs to sCTs intuitively, e.g., 
overriding the whole MRI with water- equivalent electron density for RT treatment plan-
ning [4–10]. Such early methods simply assume a homogeneous electron density across the 
volume and the treatment planning with sCTs could lead to a dose discrepancy of greater 
than 2% compared with the ground truth heterogeneous CTs [2]. Later, more sophisticated 
overriding methods were developed by assigning different electron density numbers or 
HU values to different classes on the MRI [11–20]. Though the more specific overriding 
methods achieved better accuracies, they often require manual contouring to segment dif-
ferent zones (air, bone, soft tissues, etc.) on MRIs.

Compared with the bulk density overriding methods, atlas- based methods are gener-
ally considered to achieve improved results with a fully automated workflow and are the 
most important non- learning- based type of algorithms for generating sCTs from MRIs, 
which can be used for treatment planning and PET attenuation correction for PET/MR 
systems. In atlas- based methods, numerous co- registered pre- acquired MRI- CT image 
pairs form a reference database. The incoming MR image will be registered or warped to 
the reference MRIs, and the warping deformation will be applied to corresponding refer-
ence CTs, which will be brought up to generate the final sCT of the incoming MRI. An 
example workflow of atlas- based sCT synthesis is shown in Figure 1.1 [21]. Considering 
the number of atlases CTs used to output the final sCT, there exist single- atlas- based meth-
ods and multiple- atlas- based methods.
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1.2.1  Single-Atlas-Based Method

Using a single atlas to create the sCTs is simple and straightforward. In a PET/MR study, 
Schreibmann et al. [22] used a multimodality optical flow deformable model to register a 
selected CT atlas template to the incoming patient MR images, by first performing a rigid 
registration to align the patient template with the patient MR images, and then using a 
BSpline deformable transform [23] to resolve the warping field between CT and MRIs, and 
finally applying a Hermosillo algorithm [24, 25] to refine the registration results. Thus, an 
sCT was created for PET attenuation correction. They compared the sCT attenuation with 
the true CT attenuation PET results for 17 clinical brain tumor cases, and a high agreement 
was found through the histogram analysis.

1.2.2  Multi-atlas-based Method

Compared to the single- atlas method, the multi- atlas- based method is more commonly 
used and considered to perform superior. Burgos et al. [26, 27] used a multi- atlas- based 
algorithm to synthesize CT from T1w MRI for PET attenuation correction. An atlas data-
base was composed of affinely aligned CT and MRI pairs. To synthesize CT images for the 
target MRI, the atlas MRIs in the database were registered to the target MRI, and the same 
transformation was applied to corresponding atlas CTs. The convolution- based fast local 
normalized correlation coefficient (LNCC) [28] and the local normalized sum of square 
differences (NSSD), were used as two local similarity measures between the target MRI 
and transformed atlas MRIs. The ranks of local similarity measures were then converted to 
spatially varying weights. Then the sCT was generated by averaging the transformed atlas 
CTs with those weights. Finally, the HU values in sCT were converted to linear attenuation 
coefficients in cm−1 for PET image correction.

Uh et al. compared several atlas- based methods for MRI- CT synthesis of 14 pediatric 
patients with brain tumors. They used three types of atlas groups containing a single atlas, 

FIGURE 1.1
The workflow of generating sCT images from atlas images. The same warping deformation was applied to both 
atlas MRIs and the corresponding atlas CTs. The final sCT was a combination of the warped atlas CTs. (Reprint 
permission from [21].)
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six atlases, or twelve atlases. For the six atlases group, they employed a simple arithmetic 
mean process or pattern recognition with Gaussian process (PRGP) [29] to combine the 
warped CT atlases into the final output, while for the 12 atlases group, they only used the 
PRGP merging process. Their results suggest the average root- mean- square (RMSD) 
between pseudo and real CTs improves with more atlases, and the PRGP combination is 
better than the simple arithmetic mean process.

Sjölund et al. [30] proposed a novel method to combine the multiple registered CT 
atlases to form a final sCT, which iteratively estimates the final single sCT from the voxel- 
wise mean of warped reference CTs. They claimed their iterative mean registration esti-
mation made significant improvement compared to a simple mean- estimator of the 
multiple CT atlases or the single best- warped atlas. Degen et al. [12] addressed the chal-
lenge of multimodal image registration with the self- similarity context as a matching cri-
terion, to match CT atlases to patient anatomy. Multimodal local atlas fusion is then 
performed to jointly combine the registered atlases. The method compared the dissimilar-
ity between the two modalities at each location and only fuse those atlases morphologi-
cally similar enough to the incoming MRI. Such a method could extend the MR- CT 
synthesis technique from brain studies with strict alignment of CT- MRI pairs to whole- 
body scans without well- aligned CT- MRI pairs. Burgos et al. [14] tried to jointly solve 
organ segmentation and pCT synthesis by a multi- atlas method. The mean absolute error 
(MAE) and mean error (ME) were 45.7 ± 4.6 HU and −1.6 ± 7.7 HU, respectively, between 
sCTs and true CTs.

1.2.3  Patch-based Atlas Method

Though it is intuitive to treat the MRI and CT images as a whole to extract the anatomy 
information, some studies extend to the patch- based atlas method in the sCT fusion/gen-
eration phase. Hofmann et al. [29] built an atlas database of co- registered CT- MR pairs 
from 17 patients, and then warped the atlas CTs by MRI registration between the atlas 
and patient MR images. After the prior atlas registration, they used a pattern recognition 
technique that searched neighboring MR patches in the warped atlases and then gener-
ate sCT patches by Gaussian process regression, integrating with the mean value of prior 
registered CT atlases. By testing the method on three independent patients, the mean per-
centage difference between the MRI- based attenuation correction and the CT- based PET 
attenuation is 3.2% +/− 2.5%.

Besides synthesizing CTs from MRI, Roy et al. proposed a patch- based atlas method 
for generating T2- weighted (T2w) MRI from T1- weighted (T1w) MR images [31]. As an 
atlas- based method, they also created atlases with co- registered T1w and T2w images. 
From the atlas image pairs, then multiple subsampled patches were obtained from these 
image pairs to form numerous atlas patches. For each patch on the targeting T2w, a few 
similar- looking atlas patches were used to generate the synthetic T2w patches. Similar 
T1w atlas patches of the neighborhood of that targeting patch with similarity metrics 
were collected. Then the warped T2w reference atlases corresponding to these picked 
T1w atlases were combined to obtain the synthetic T2w patches, which were merged to 
form the final output T2w image. The peak signal- to- noise ratio (PSNR) is 28.68 vs. 
25.62, and median cerebral spinal fluid (CSF) intensities are 2.17 vs. 1.91 for high vs. low 
resolution images, respectively, indicating a better performance on high- resolution 
datasets.
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1.3  Overview of Traditional Machine-Learning-based Methods – 
Voxel-based Techniques

Though the atlas- based method is probably the most popular technique for image synthe-
sis before the emergence of deep learning, there are other trials using traditional machine 
learning models such as random forest (RF) to investigate the image synthesis tasks at the 
voxel level.

Zhao et al. [32] proposed a bi- directional MR- CT synthesis framework using machine 
learning. The multiple co- registered MR- CT atlas pairs first performed a supervoxel over- 
segmentation process using the simple linear iterative clustering (SLIC) method, followed 
by a k- means clustering algorithm for tissue characterization into z- fields. Then for each 
field (tissue class), there are two RF regressors for sCTs from T1w or for T1w synthesis from 
CTs. Besides, two RF classifiers were trained to extract features and generate the z labels on 
both modalities, so that the image synthesis could be feasible by applying the bi- directional 
RF regressor of each tissue class. In an experiment involving six MR- CT atlas pairs, the 
structural similarity (SSIM) for sCT is 0.63–0.73, and the SSIM for synthetic MR is 0.7–0.8; 
while the PSNR for sCT is 27–30, and the PSNR for synthetic MR is 20–28 (Figure 1.2).

Besides the commonly discussed MR- CT synthesis problem, Jog et al. proposed a com-
putationally efficient machine learning method to generate MR images of a desired modal-
ity from other input MR modalities, namely, the Regression Ensembles with Patch Learning 
for Image Contrast Agreement or REPLICA [33]. They extract multi- resolution features 

FIGURE 1.2
(a) example of CT-MR atlas pairs; (b) result of SLIC over-segmentation; (c) examples of z-fields after k-means 
clustering; (d) training of RF regressors; (e) RF classifiers trained to estimate z-fields from single modalities; and 
(f) computation of pairwise potentials for a Markov Random Field (MRF). (Reprint permission from [32].)
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based on voxel intensities and high- resolution context descriptors to feed into an RF train-
ing model. The model learns to convert the input MR sequences to the target MR modality 
images at the voxel level. In an experiment of generating T2w MR images from 32 
magnetization- prepared gradient echo (MPRAGE) scans, their method outperformed 
FUSION (a multi- atlas registration and intensity fusion method [34]) or MIMECS [34, 35] 
with a PSNR of 50.73, universal quality index (UQI) of 0.89, and an SSIM of 0.87. In another 
experiment of synthesizing 125 FLuid Attenuated Inversion Recovery (FLAIR) images of 
84 patients from T1w, T2w, and PD- weighted (PDw) sequences, their method achieved a 
PSNR of 21.73, UQI of 0.84, and SSIM of 0.81. They also pointed out that FUSION is an 
atlas- based model so the lesion intensity cannot be precisely synthesized if those intensi-
ties were not available in the atlases.

Bowles et al. [36] proposed an interesting application of synthesizing pseudo- healthy 
FLAIR images from an incoming T1w MRI. By subtracting this pseudo- healthy FLAIR 
from the patient’s true FLAIR, they could obtain the difference voxel intensities corre-
sponding to the probability of a pathological lesion, and train a support vector machine 
(SVM) to generate a probability map. The critical component is again the pseudo- healthy 
FLAIR synthesis from the input T1w images. They used a regression model to learn the 
voxel level relationship between healthy FLAIR and T1w, which directly mapped the T1w 
voxels to synthetic FLAIR images. The lesion detection of the proposed method is satisfac-
tory, with a dice similarity coefficient (DSC) of 0.703, average symmetric surface distance 
(ASSD) of 1.23, Hausdorff distance (HD) of 38.6, and intraclass correlation (ICC) of 0.985.

We summarize the reviewed work for image synthesis in Table 1.1, including the study 
details, utilized methods, and obtained results.

1.4  Discussion

Medical image synthesis is an increasingly important topic in today’s clinical improve-
ment, since it could greatly save the time, economical cost, and other physical and psycho-
logical burden of patients by reducing the imaging modality involvement and simplifying 
the clinical workflow. Traditional image synthesis focuses on MR- CT synthesis or MR- MR 
synthesis, to extract anatomy or functional information from existing images, without the 
need of further medical scans. Most studies are preliminary and included small cohorts of 
patients, investigating mostly brain/head, and prostate or whole- body images.

1.4.1  Achievements

For MR- CT synthesis, the atlas- based methods seem to be the most commonly adopted tech-
nique [21, 30, 39–43]. In general, atlas- based methods perform better than the simple bulk 
density overriding techniques, and the atlas- based models can be carried out in a fully auto-
mated workflow while the density overriding often requires human contouring or segmenta-
tion of the MR images. Moreover, using multiple atlases outperforms the single- atlas method 
since more information can be tailored from the multi- atlas database. The major steps of the 
atlas- based method are the registration to align atlas MR- CT pairs to form co- registered atlas 
pairs, the registration of incoming MRI to atlas MRIs, and the fusion of warped CT atlases to 
generate final sCTs. The first two steps are highly dependent on the accuracy of rigid or non-
rigid registration between multimodal images, and that is beyond the scope of this chapter. 
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TABLE 1.1

Summary of the Reviewed Work for Image Synthesis in Sections 2.1–2.3 and 3

Author Year Tasks Location Method Dataset Results

Hofmann et al. [29] 2008 sCT for PET/MRI 
correction

Brain Patch- based atlas 20 patients PET quantification with a mean error of 3.2% +/− 2.5%

Schreibmann et al. [22] 2010 sCT for PET/MRI 
correction

Brain Single- atlas- based 17 brain tumor 
cases

mean voxel- to- voxel difference < 2 HU

Burgos et al. [26] 2013 sCT for PET/MRI 
correction

Brain Multi- atlas- based 28 subjects Average mean absolute residual (MAR) between sCTs and 
ground truth is 73–108 in HU for different CT modalities

Burgos et al. [27] 2014 sCT for PET/MRI 
correction

Brain Multi- atlas- based 18 + 41 brain cases 
for parameter 
optimization and 
validation

The average MAE is 113 HU for full head and 240 HU for 
skull

Uh et al. [21] 2014 sCT from MRI Brain Single/multi- 
atlas- based

14 pediatric 
patients

More atlases and novel combination methods yielded 
better results

Sjölund et al. [30] 2015 sCT from MRI Whole 
head

Multi- atlas- based 10 patients Best mean absolute errors (HU) is 114.5 ± 20.5

Roy et al. [31] 2016 MRI synthesis from 
other sequences

Whole 
head

Patch- based atlas 44 patients PSNR is 28.68 vs. 25.62 dB, and median CSF intensities are 
2.17 vs. 1.91 for high-  vs. low- resolution images

Degen et al. [37] 2016 sCT from MRI Whole 
body

Multi- atlas- based 18 3D CT atlases The dice overlap of segmentation labels between MRI and 
CT is greatly enhance after fusion

Bowles et al. [36] 2017 MRI synthesis from 
other sequences

Brain SVM, Regression 
model

127 subjects Lesion detection: DSC of 0.703, ASSD of 1.23, HD of 38.6, 
and ICC of 0.985

Burgos et al. [38] 2017 sCT from MRI Prostate Multi- atlas- based 15 subjects MAE of 45.7 ± 4.6 HU, and ME of −1.6 ± 7.7 HU
Zhao et al. [32] 2017 Bi- directional MR/

CT synthesis
Whole 
head

RF 6 MR/CT atlas 
pairs

SSIM for sCT is 0.63–0.73, and the SSIM for synthetic 
MR is 0.7–0.8; while the PSNR for sCT is 27–30, and the 
PSNR for synthetic MR is 20–28

Jog et al. [33] 2017 MRI synthesis from 
other sequences

Brain RF 21 and 84 patients 
for T2w and 
FLAIR synthesis

A PSNR of 50.73, UQI of 0.89, and a SSIM of 0.87 for T2w 
MRI synthesis; a PSNR of 21.73, UQI of 0.84, and SSIM of 
0.81 for FLAIR synthesis

Mean absolute error (MAE), mean absolute residual (MAR), mean error (ME), peak signal- to- noise ratio (PSNR), structural similarity (SSIM), universal quality index 
(UQI), mean surface distance (MSD), Hausdorff distance (HD), dice similarity coefficient (DSC), root- mean- square distance (RMSD), averaged symmetric surface dis-
tance (ASSD), intraclass correlation (ICC), and cerebral spinal fluid (CSF).
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The last step, however, is unique in image synthesis and the novelty of many sCT studies 
focused on proposing devised fusion strategy. Common practices are taking the weighted 
average of warped atlas CTs as the sCTs or employing a patch- based method to fuse the final 
output. Similar principles also apply to atlas- based MR- MR synthesis.

Another commonly used type of implementation for CT- MR or MR- MR synthesis is a 
voxel- based method [15, 44–46]. The main idea is to obtain the voxel or supervoxel correla-
tion between multimodal images via regression or machine learning models. Such tech-
niques are claimed to outperform the atlas- based fusion methods [33]. In the scope of 
synthesizing CTs from MRIs, apart from the standard MRI sequences alone [47–53], there 
exist techniques utilizing ultra- short echo time (UTE) sequences in which the bone struc-
tures are more easily differentiated from air. However, taking these UTE sequences is costly 
in time and resources and not included in standard clinical workflow, so we didn’t elabo-
rate on those UTE work in this chapter.

Besides the most frequently seen CT and MR images, the CT synthesis from other 
modalities such as transrectal ultrasound was also investigated, which could potentially be 
useful in brachytherapy [54]. In the future, image synthesis tasks involving more imaging 
modalities can be expected, especially with the fast- developing deep- learning techniques.

1.4.2  Limitations

Though the atlas- based methods have achieved promising accuracy in image synthesis for 
both CT and MR images and have been considered as a robust method especially on unex-
pected or unusual cases [1], some limitations exist in such techniques. The first limitation is 
inherent within the method itself that the final synthetic images come from the co- registered 
atlas database. That explains why a single atlas can lead to noticeable deviance [40] due to 
its insufficiency of representing patient variations. Increasing the number of atlases in the 
database may relieve the problem, but could still perform poorly for atypical patients, e.g., 
patients with large tumors or surgical cavities [21]. Besides, increasing the atlases numbers 
can burden the cost of the already complex registration process in both the atlas MR- CT co- 
registration phase and the incoming MRI registration phase. Moreover, the effect of adding 
atlases is still not fully investigated. The optimal number of atlases needed for various tasks 
can depend on the similarity between atlases and the incoming images [42], while some stud-
ies reported limited benefits of adding atlases beyond 15 patients [55]. For machine learning 
techniques, they are often used with patch- based voxel level methods involving non- standard 
MRI sequences such as UTE that elongated patient stays, while for those used with standard 
MRI sequences, the need to manually contour bone and air may limit their use [2].

1.5  Conclusion

We have overviewed the state- of- the- art progress of conventional medical image synthe-
sis before the blossom of deep learning. The main topics are MR- CT synthesis or MR- MR 
synthesis, and there are three major pathways to implement the tasks: the bulk density 
overriding, the atlas- based synthesis, and the traditional machine- learning- based meth-
ods. Though these techniques are relatively simple compared to the latest deep learning 
models, they have proven to be successful in generating desired images without the need 
for additional modality scans, and thus help reduce patient stays and lower radiation 
exposure.
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2.1  Introduction

Image synthesis involves the generation of artificial or simulated images in a specific 
target image modality or target domain using input images from a different image modal-
ity [1]. The objective of a synthesis task is to use synthetic images to replace the physical 
patient during the imaging procedure. This is motivated by a variety of factors, such as 
the infeasibility of a specific image acquisition, the added cost and labor of the imaging 
procedure, the ionizing radiation exposure to patients by some of those imaging proce-
dures, or the introduction of uncertainties via performing image registration across dif-
ferent modalities. Over the past decade, image synthesis research has been introduced 
considerable attention in radiation oncology, radiology, and biology fields [2]. Potential 
clinical applications of image synthesis include radiation treatment using magnetic reso-
nance imaging (MRI) only [3–10], positron emission tomography (PET) attenuation cor-
rection (AC) and image quality enhancement [11, 12], stopping power estimation[13–15], 
medical image quality improvement [23–32], medical image reconstruction [33, 34], syn-
thetic image-aided auto-delineation [16–22], super-resolution image estimation [35–37], 
and others [38–42].

Image synthesis technology has been a hot topic of investigation for the past decade. 
Conventional machine learning-based image synthesis methods often rely on prior knowl-
edge that is explicitly and manually designed for converting images from one modality to 
another [43–50]. The robustness and accuracy of these methods are based on the way of 
prior knowledge definition and investigation [51–53]. In recent years, deep learning-based 
methods have dominated the field of image synthesis [54]. Contrary to standard machine 
learning, deep learning does not depend on manually extracted features ruled by prior 
knowledge [55–57]. It employs neural networks (NN) or convolutional neural networks 
(CNN) with hidden layers of neurons or convolutional kernels to learn features automati-
cally. These methods mostly follow a general workflow that adopts a data-driven method-
ology to map image intensities.

The typical work includes a learning/training stage, where the network-based model 
learns the correlation between the arrival one and the object one, and an estimation stage, 
where the learned model generates the synthetic target based on an input. Deep learning-
based methods have several advantages over conventional machine learning-based meth-
ods. They exhibit higher generalizability since the same network architecture can be 
applied to several sets of image modalities with the smallest adaptations. This makes it 
possible to fast map different imagery modalities which is clinically meaningful. Despite 
the requirement for substantial attempts in data gathering and mining during the training 
stage, the prediction of an image usually only takes a few seconds. Due to these advan-
tages, there has been a significant increase in the clinical research interest of medical images 
used in radiotherapy.

In this chapter, we aim to:

 • Summarize the latest network architecture designs of deep learning-based medi-
cal image synthesis.

 • Summarize the latest deep learning-based medical image synthesis applications.
 • Emphasize significant involvements and recognize current contests.
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2.2  Literature Searching

The focus of this review is confined to deep learning-based methods designed for synthetic 
image estimation. Medical image synthesis applications include studies on multimodality 
MRI synthesis, proton stopping power estimation, image quality improvement/enhance-
ment, super/high-resolution visualization, MRI-only-based radiotherapy, inter-modality 
image registration, segmentation, PET AC, and data augmentation for image analysis.

Searches of peer-reviewed journal articles and conference proceedings references were 
conducted on PubMed by means of the conditions in title or abstract as of December 2022: 
(“estimate*” OR “reconstruct*” OR “trans*” OR “syn*” OR “restore*” OR “corr*” OR “gen-
erate*”) AND “deep learning” AND “generative” OR “adversarial” OR “convolution*” 
OR “neural” (“MR” OR “MRI” OR “CT” OR “PET” OR “Medical” OR “Biomedical” etc.).

2.3  Network Architecture

The frameworks of the reviewed investigations are roughly categorized into four catego-
ries: NN, CNN, FCN, and GAN. These categories of methods are not entirely distinct from 
one another; instead, they demonstrate incremental increases in architectural complexity. 
After introducing the four categories of network design, we will then summarize feasible 
loss functions that can be used to train these networks.

2.3.1  NN

A NN is a network or circuit of biological neurons, or, in a modern sense, an artificial NN, 
composed of artificial neurons or nodes. In medical image synthesis, a most popular NN 
design is the autoencoder (AE) network.

AE and its variants have been extensively explored in the literature and remain widely 
employed in the field of analysis of medical images [58]. AE typically involves a NN encod-
ing layer, which represents the image via latent layers with minimum representation error. 
The aim of this layer is to re-establish the arrival data within a low-dimensional latent 
space. AE is able to discover relevant patterns in the data by restricting the dimension of 
latent space vector representation.

To avoid potential overfitting issues caused by AE learning an identity function, recently, 
improvement of AE has been studied. A widely-known enhancement of AE is the stacked 
autoencoder (SAE), which is constructed by utilizing stacking operators. SAEs are com-
posed of multiple AEs arranged in stacked layers. The yield of an individual layer is cou-
pled with the input of the subsequent layers [59]. SAE serves a greedy layer-wise learning 
to obtain optimal parameters. The advantage of SAE is its ability to capture the significant 
hierarchical features of the input data [59].

Another variant of the AE is the denoizing autoencoder (DAEs), which enables the cre-
ation of improved higher-level feature representations [60]. DAEs avoid learning insignifi-
cant solutions for the trained model, such as estimating a denoised output from its noisy 
input [61]. The stacked denoising autoencoder (SDAE) is a learning model that uses the 
capabilities of DAE [62].
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By incorporating a sparsity constraint, it can to overcome the weakness of AEs poten-
tially, which typically exhibit a modest number of neurons. By introducing many neurons 
to exhibit a low average output via the sparse AE, the network ensures that many neurons 
remain inactive for most of the time [63].

SAE requires layer-wise learning, which can be time-consuming and tedious due to the 
fully connected layers used in its construction. Li et al. did the earliest attempt to train a 
convolutional AE (CAE) in an end-to-end manner without pre-learning [64]. Guo et al. 
recommended that CAEs are beneficial for learning features for images, preserving local 
structures, and avoiding alteration of feature space [65]. Wang et al. recommended a hybrid 
model of transfer learning and CAE for automated chest screening [66].

2.3.2  CNN

CNN is a variant of NNs. The core of CNN is the convolution layer, which is aimed at 
information mining [67]. The convolution layer generates information maps based on its 
optimized convolutional kernels. A pooling layer conducts a summarizing of the infor-
mation by taking either the maximum or average value within the specified neighbor-
ing region, thereby reducing the structural resolution of arrival information. The rectified 
linear unit (ReLU) is the commonly employed activation function in CNNs [68]. The fully 
connected layer establishes connections between each neuron in the preceding layer and 
every neuron in the succeeding layer such that the information can be transferred from the 
beginning to the end layer. Then, the end layer predicts the probability from the previous 
information.

During training, the CNN architecture’s learnable parameters are employed to predict 
the objective categorization of the training data. The loss function, typically cross-entropy 
(CE) loss, is then computed, and the weights are updated via the gradient descent (GD) 
method through back-propagation. Adam gradient descent (AGD) and Stochastic gradient 
descent (SGD) are among the greatest widespread methods used for optimization.

Lecun et al. earlier developed a CNN model, called LeNet, for hand-written numeral 
identification [69]. LeNet is compiled of a set of convolutional layers, fully connected lay-
ers, and pooling layers. The progress in the computer unit and the sufficient data made 
CNN training possible. AlexNet was introduced by Krizhevsky et al. They won the 
ILSVRC-2012 Image Classification Competition [70] with a greatly lesser misclassification 
rate than the second rank [71]. Subsequently, CNNs have attracted prevalent consider-
ation, and their alternatives have been established, leading to state-of-the-art performance 
in various image-processing tasks. ZFNet was developed by Zeiler and Fergus. It is devel-
oped as an enhancement to increase the execution of AlexNet. This study [72] showed that 
shallow networks could realize the boundary, intensity, and structural information of an 
image. They also demonstrated that deeper networks can achieve better performance. The 
primary enhancement in ZFNet is the utilization of a deconvolution network for visualiz-
ing the information maps.

Simonyan and Zisserman introduced the Visual Geometry Group (VGG) to investigate 
the capabilities of network models with intense layers [73]. The focal advance of VGG is an 
utter assessment of the network’s performance when increasing its layers’ depth. The 
study showed that a significant improvement on the prior-art configurations can be 
achieved by increasing the depth to 16–19 layers. GoogLeNet was introduced to expand 
the network structure [74]. Through the integration of the proposed inception module, 
GoogLeNet emerged victorious in the ImageNet Large-Scale Visual Recognition Challenge 
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2014 (ILSVRC14), an image classification and detection competition. The inception module 
aids the CNN model in providing more descriptive representations of the entered informa-
tion, all the while augmenting the size of the network model.

These new technologies allow the network to have increased size which improves the 
performance. Nevertheless, the merely deeper network would result in overfitting issues. 
In order to reduce the complexity of optimizing a deep model and solve the overfitting 
consequence produced by adding more layers, He et al. introduced a residual network 
(ResNet) [75]. ResNet, primarily comprised of residual blocks, has been proven capable of 
surpassing a 100-layer obstacle and even reaching 1,000 layers.

Taking inspiration from the ResNet, Huang et al. later introduced a densely connected 
convolutional network (DenseNet) by establishing connections between individual layer 
to every other layer [76]. In contrast to ResNet, which focuses on learning the fundamen-
tal change between the input data and the output data, DenseNet [77] intended to merge 
multiple frequencies of information from the preceding and flow layers using dense 
block [78].

2.3.3  FCN

Most CNNs take an image or patch as input and then estimate a voxel-wise value, which 
is correlated to the central of the patch. The first proposal for a CNN was introduced by 
Shelhamer et al., in which the fully connected layers of previous CNN are substituted with 
convolution layers. The new network is referred to as a fully convolutional network (FCN) 
since all the layers of the network are convolutional layers. Due to significant enhance-
ments in deconvolution kernels used for up-sampling the feature map, an FCN enables the 
model to achieve dense voxel-wise prediction for the entire full-size volume, rather than 
patch-wise classification, as seen in traditional CNNs [79]. FCN allows segmenting the 
entire image in a single forward pass, combining high-resolution information with low-
resolution information, and then passing them to the remaining layers. FCN can improve 
localization performance and produce more accurate output.

The U-Net architecture, which was originally developed by Ronneberger [80], is a 
widely-known FCN model used in auto-delineation. The U-Net comprises an encoding set 
of FCN layers and a decoding set of FCN layers. In between, long skip connections exist 
between the two sets. These operators supply high-frequency information to the decoding 
path, allowing the network to address the potential imbalance between the localization 
accuracy of a delineated organ and the organ boundary specification. This issue arises 
because using bulky-sized data requires extra downsized operators, which in turn can 
lower the localization precision. In contrast, minor-sized data are not able to capture unlim-
ited texture information to represent the organ boundary. Later on, V-Net [81] appears to 
be an improved network based on the U-Net architecture, with a similar structure.

In place of relying solely on single optimization, as done in traditional FCNs, the main 
objective behind the deep supervision model [82, 83] is to offer intended optimization for 
middle sets of FCN layers and transmit learned information to the remaining layers. The 
approach extends optimization to the hidden and shallower layers of FCN, which increases 
the judicial capability of learned information in distinguishing multiorgans in auto-delin-
eating projects. Lately, attention gates and transformers have been integrated into FCN to 
advance the execution of recognition [84]. The attention gate has the capability of learning 
how to diminish unrelated information and emphasize outstanding information that is 
beneficial for users’ tasks.
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2.3.4  GAN

GANs have garnered significant attention in medical imaging because of their capacity to 
generate data without the need for explicit modeling of the probability density function. 
As compared to CNN, GANs include an additional sub-network, called discriminator net-
work. This approach offers an innovative means of integrating samples with no ground 
truth data into learning procedures and enforcing sophisticated constancy. This approach 
demonstrated its utility in numerous cases, including but not limited to image reconstruc-
tion [85], image enhancement [86–89], segmentation [90–92], diagnosis [93], data genera-
tion [94], and multimodality image estimation [95].

Characteristic GANs are composed of two opposing models, called a generator model 
and a discriminator model [96]. The generator model is used to produce synthetic samples 
that are closely approximated to target distribution from a feature representation field. The 
discriminator model is used to differentiate between the generated sample and the definite 
sample. The discriminator model forces the generator model to obtain more faithful sam-
ples by imposing penalties on idealistic generated samples during the optimization pro-
cess. The two networks compete. As is summarized by Yi et al., [97], Multiple GAN variants 
can be categorized into three groups: 1) variants of the discriminator’s objective, 2) vari-
ants of the generator’s objective, and 3) variants of the architecture.

2.3.4.1  Conditional GAN

Traditional GAN was trained without limitations on data generation. Subsequently, it was 
enhanced by incorporating restricted restrictions to generate samples with required assets, 
known as conditional generative adversarial network (cGAN). The generator model of 
cGAN is built via FCN, either an end-to-end manner or a non-end-to-end manner. The 
former manner can produce equal-sized samples as input, while the latter manner can-
not. The end-to-end FCN is commonly structured with a set of encoding layers and a set 
of decoding layers. The combination of these two sets of layers is able to derive equal-
sized output. The encoding set uses convolutional layers with different settings of stride 
sizes and w/o pooling based on the users’ purpose. On the other hand, the decoding set 
comprises deconvolution layers to achieve end-to-end mapping, several convolution lay-
ers, and a final layer for regression. Short skip connections, such as residual blocks [87] or 
dense blocks [95], can be employed by connecting the two sets of layers. The benefit of a 
residual block is mining the disagreement between the input and output. The aim of the 
dense block is the aggregation of the low- and high-frequency information from input. 
The long residual block creates a skip connection that directs information between long-
distance layers, guiding the entire layers to concentrate on the optimization purpose [98]. 
Certain studies have incorporated attention gates into the long skip connection to trap 
crucial information instead of expanding the receptive field [17]. The kernels updated in 
hidden layers can be used to remove irrelevant features. The non-end-to-end FCN, on the 
other hand, typically only consists of a set of encoding layers, possibly followed by NN 
layers. The discriminator of the GAN model is implemented similarly to non-end-to-end 
FCN, expect the last layer culminating in a sigmoid or softmax operator to facilitate recog-
nition or assessment.

Many different variations of the cGAN model have been suggested in bumping into 
specific anticipated requirements. This review work explores several cGAN models that 
can be either designed for or adaptable to medical image synthesis, including pix2pix, 
deep convolutional GAN (DCGAN), and Information Maximizing GAN (InfoGAN).
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2.3.4.1.1  DCGAN

DCGAN can yield better and more steady training results when a fully convolutional layer 
is used as opposed to a fully convolutional layer. This architecture is illustrated in the work 
of [99]. In the core of the framework, pooling layers were replaced with fractional-stride 
convolutions, which allowed it to learn from a random input noise vector by using its own 
spatial up-sampling to generate an image from it. Two important changes were adopted 
to modify the architecture of early cGAN: batch normalization and leaky ReLU. Batch 
normalization [100] was employed to address inadequate initialization and avoid model 
collapse. The model collapse was a significant obstacle for GAN frameworks in earlier 
research. In all the layers of a discriminator, Leaky ReLU [101] activation was introduced 
as a replacement for maxout activation [96], leading to an improvement in the resolution 
of image output [38].

2.3.4.1.2  Pix2pix

The Pix2pix model, which is trained in a supervised manner, is an image-to-image transla-
tion model introduced by Isola et al. [102]. The network aims to learn a translation between 
the arrival data and the learning target and requires the generated data to be tightly close 
to the distribution of the target. To achieve the goal, the discriminator loss, which assesses 
the truthfulness of generated data, and the image-wise error (e.g., mean absolute error 
(MAE)) are employed. The use of image-wise error trains the model under supervised 
means, making it more fit for imaging synthesis tasks when the ground truth data are 
given. An illustration of this is the task of MRI-only radiation therapy, where the planning 
CT and co-registered MRI are provided for learning the model. After training, the synthetic 
CT (sCT) generated from the input MRI has accurate Hounsfield values (HUs) like a real 
CT, which are critical for accurate dose calculation in radiotherapy planning.

2.3.4.1.3  InfoGAN

Recently, there are groups of synthesis tasks that show that the trained model should not 
only rely on image intensity loss but also on histogram similarity: for example, the cone 
beam CT (CBCT) scatter correction [103, 104] and PET AC [105–108]. Under these require-
ments, a model may not be properly learned by just utilizing image-wise error as the loss 
function [109, 110]. InfoGAN is a variation of cGAN that was developed to learn disen-
tangled representations via counting information-theoretic extensions [111]. It does this 
by maximizing the mutual information, which is an assessment of distribution similar-
ity [112]. InfoGAN has been successful in disentangling written characters from the digit 
structures on the Modified National Institute of Standards and Technology public dataset 
[112]. It has also been used for generating volumetric CT from 2D kilovoltage image [113].

2.3.4.2  CycleGAN

Numerous diverse variations of CycleGAN models have been proposed for synthesis 
tasks recently. This work summarizes the use of these models in medical imaging [87, 95, 
114–116]. As mentioned, in cGANs, there are two sub-networks: a discriminator and a gen-
erator. These two sub-networks are trained alternatively and competitively. Mismatches 
might persist between the input and output for specific clinic use, even with successful 
image registration, leading to potential issues. To tackle this concern, CycleGAN proposes 


