The coaching process is about enhancing performance by providing feedback about the performance to the athlete or team. Researchers have shown that human observation and memory are not reliable enough to provide accurate and objective information for high-performance athletes. Objective measuring tools are necessary to enable the feedback process. These can take the form of video analysis systems post-event, both biomechanical and computerised notation systems, or the use of in-event systems.

Essentials of Performance Analysis in Sport 3rd Edition is fully revised with updated existing chapters and the addition of 12 new chapters. It is a comprehensive and authoritative guide to this core discipline of contemporary sport science. The book offers a full description of the fundamental theory of match and performance analysis, using real-world illustrative examples and data throughout. It also explores the applied contexts in which analysis can have a significant influence on performance. To this end the book has been defined by five sections.

In Section 1 the background of performance analysis is explained and Section 2 discusses methodologies used in notating sport performance. Current issues of performance analysis applied research, such as chance, momentum theory, perturbations and dynamic systems are explored in Section 3. Profiling, the essential output skill in performance analysis, is examined in depth in Section 4. The book’s final section offers invaluable applied information on careers available for performance analysts.

With extended coverage of contemporary issues in performance analysis and contributions from leading performance analysis researchers and practitioners, _Essentials of Performance Analysis in Sport 3rd Edition_ is a complete textbook for any performance analysis course, as well as an invaluable reference for sport science or sport coaching students and researchers, and any coach, analyst or athlete looking to develop their professional insight.

Mike Hughes is Emeritus Professor of Sport and Exercise Science, Cardiff Metropolitan University, UK. He is the founder and now President of the International Society of Performance Analysis of Sport and President of the International Society of Performance Analysis of Sport Asia. He has published over 200 papers, over 24 books, and organised 25 international conferences.
Ian M. Franks PhD is Professor Emeritus at the University of British Columbia (UBC), Canada. He now specializes in the neural control of skillful movement in his Motor Learning and Control Laboratory at the School of Kinesiology, UBC. He has published over 150 refereed research articles, 22 book chapters and five books.

Henriette Dancs is a Professor in the Institute of Sport Sciences at Szombathely, Eötvös Loránd University, Hungary. Professor Dancs has more than 30 years’ academic experience involved in a wide range of different academic activities in Hungary and abroad (Founder/Coordinator and now General Secretary of the International Network on Sport and Health Sciences).
Contents

List of figures xv
List of tables xxi
About the Editors xxiv
About the Contributors xxv

SECTION I
The Background 1

1 The Importance of Feedback to Performance 3
DANA MASLOVAT AND IAN M. FRANKS
1.1 Background 3
1.2 The Need for Valid and Reliable Feedback 4
1.3 Video Feedback 6
1.4 Presenting Visual Feedback to Athletes 7
1.5 Precision and Timing of Feedback 8
1.6 Feedback and Attentional Focus 9
1.7 Summary 9

2 What is Performance Analysis? 11
MIKE HUGHES AND ROGER BARTLETT
2.1 Notational Analysis 11
2.1.1 Introduction 11
2.1.2 The Applications of Notation 12
2.1.2.1 Tactical Evaluation 12
2.1.2.2 Technical Evaluation 13
2.1.2.3 Movement Analysis 14
2.1.2.4 Development of a Database and Modelling 15
2.1.2.5 Educational Applications 16
2.2 Biomechanics – What Is the Biomechanical View of Performance Analysis? 16
2.3 Conclusions 19

3 Project Management Issues in Performance Analysis 21
HENRIETTE DANCS AND KATALIN KOVÁCS
3.1 The Role of the Performance Analyst in the Coaching Process 21
3.2 About Project Management in General 22
 3.3.1 Initiation 27
 3.3.2 Planning 28
 3.3.3 Execution/Implementation and Monitoring 30
 3.3.4 Closing 31

4 A Pedagogical Approach to Performance Analysis in Physical Education 32
KATALIN KOVÁCS AND HENRIETTE DANCS
4.1 The Role of the Domains in Physical Education 32
 4.1.1 Cognitive Domain 32
 4.1.2 Psychomotor Domain 33
4.2 Bloom Taxonomy in Performance Analysis in Physical Education and in the Coaching Process 36
 4.2.1 Planning 37
 4.2.2 Phrasing 38
 4.2.3 Evaluation 39
4.3 Summary 40

5 Video-Based Technologies 41
DARIO G. LIEBERMANN, MICHAEL T. HUGHES AND IAN M. FRANKS
5.1 Augmented Feedback in Elite Sports: True “Need” or “Fashion”? 41
5.2 Extrinsic and Intrinsic Feedback in Sports 42
5.3 Feedback, Video and Motor Learning 43
5.4 Qualitative Feedback and Quantification of Performance Using Video-Based Technologies 45
5.5 Modeling and Learning from Simulation: Feedback about Differences between Simulated and Observed Performance 46
5.6 Watching versus Performing Movements in Virtual and Real Environments 47
5.7 Video Technology and Temporal Feedback 48
5.8 Immediacy as a Prerequisite for the Effective Use of Feedback during Skill Acquisition 49
5.9 Summary 49
SECTION II
The Methodology of Notational Analysis

6 The Use of Performance Indicators in Performance Analysis
MIKE HUGHES AND ROGER BARTLETT

6.1 Introduction 53
6.2 Analysis of Game Structures 59
 6.2.1 Net-Wall Games 59
 6.2.1.1 Match Classification Indicators 61
 6.2.1.2 Technical Indicators 62
 6.2.1.3 Tactical Indicators 63
 6.2.1.4 Biomechanical Indicators 63
 6.2.2 Invasion Games 64
 6.2.2.1 Match Indicators 65
 6.2.2.2 Technical Indicators 67
 6.2.2.3 Tactical Indicators 67
 6.2.2.4 Biomechanical Indicators 68
 6.2.3 Striking and Fielding Games 69
 6.2.3.1 Match Indicators 69
 6.2.3.2 Technical Indicators 70
 6.2.3.3 Tactical Indicators 70
 6.2.3.4 Biomechanical Indicators 71

6.3 Summary and Conclusions 73

7 Sports Analysis
MIKE HUGHES

7.1 Creating Flowcharts 75
7.2 Levels of Analysis – The Team, Subsidiary Units and Individuals 81
7.3 Summary 85

8 How to Develop a Notation System
MIKE HUGHES

8.1 Data Collection Systems 86
 8.1.1 Scatter Diagrams 86
 8.1.2 Frequency Tables 88
 8.1.3 Sequential Data Systems 89
8.2 Data Collection Systems in General 93
8.3 Examples 95
 8.3.1 A Cricket Notation System 95
 8.3.2 Examples of Analysis of Cricket Data 97
8.4 General Steps in Analysis 98
Contents

8.5 Different Types of Data 101
 8.5.1 General or Summary Data 101
 8.5.2 Frequency Distributions 101
 8.5.3 Sequentially Dependent Data 106
8.6 Summary 106

9 Examples of Notation Systems 108
MIKE HUGHES

9.1 Individual Sports 108
 9.1.1 A Notation System for Tennis 108
 9.1.2 A Notation System for Boxing 113
9.2 Team Sports 118
 9.2.1 A Notation System for Basketball 118
 9.2.2 A Notation System for Soccer 121
 9.2.3 A Notation System for Netball 127
 9.2.4 A Motion Analysis of Work-Rate in Different Positional
 Roles in Field Hockey 131
9.3 Summary 140

SECTION III
Current Issues of Performance Analysis 141

10 Reliability Issues in Sports Performance Analysis 143
PETER O’DONOGHUE AND MIKE HUGHES

10.1 Measurement Issues in Performance Analysis 143
 10.1.1 Validity 143
 10.1.2 Objectivity 144
 10.1.3 Reliability 145
 10.1.4 Consistency and Completeness Checking 146
 10.1.5 Representativeness 147
 10.1.6 Performance Indicators 148
10.2 Reliability Statistics 148
 10.2.1 Sample Data 148
 10.2.2 Preparing Data for Reliability Assessment 149
 10.2.3 Reliability of Output Frequencies 151
 10.2.4 Reliability of Raw Input Data 152
10.3 Relating Reliability to the Analytical Goals of Studies 156
10.4 Conclusions 160

11 The Statistical Processes of Identifying KPIs in a Sport,
Using Basketball as an Example 161
GÁBOR CSÁTALJAY AND HENRIETTE DANCS

11.1 Introduction – Statistical Procedures 161
 11.1.1 Performance Indicators that Distinguish Winning and
 Losing Teams in Basketball 161
11.2 Identification of Performance Indicators Considering Score Difference 162
11.2.1 Methods 163
11.2.2 Results 164
11.2.3 Discussion 164
11.3 Principal-Component Analysis of Basketball Performance Indicators 166
11.3.1 Methods 166
11.3.2 Results 168
11.3.3 Discussion 169
11.5 Conclusions 171

12 Sport Analytics as a Tool for Effective Decision-Making 172
TAMÁS STERBENZ, KRISTÓF VILÁGI AND GERGELEY CSURILLA
12.1 Introduction 172
12.1.1 Bounded Rationality Theory in Basketball 172
12.1.2 Uncertainty, Risk and Complexity in Sports 174
12.1.3 Offensive Strategy in Basketball 177
12.2 The Role of Statistics in Sports 178
12.2.1 The Traps in Using Statistical Methods 180
12.2.2 The Trap of Averages 181
12.3 Conclusions 183

13 Qualitative Biomechanical Analysis of Technique 184
ARNOLD BACA AND MARTIN GRÖBER
13.1 Observational Strategies 184
13.1.1 Overview 185
13.1.2 Phase Analysis Model 185
13.1.3 Morphological Approach 187
13.2 Tools 189
13.2.1 Apps 189
13.2.2 Software for Windows 191
13.3 Example 192
13.3.1 Preparation 192
13.3.2 Observation 192
13.3.3 Evaluation 194
13.3.4 Intervention 195

14 Probability Analysis of Sports Contests: Skill and Chance 196
TIM MCGARRY AND ALEX DODGSHON
14.1 Skill and Chance 196
14.2 Probability: Stationarity and Independence 196
14.3 Taking a Random Walk in a Field of Probabilities 197
14.4 Investigating Sports Contests Using Probability Analysis 198
14.5 Football: The Penalty Shoot-Out 199
14.6 Football: Passing Sequences and Goals Scored 202
14.7 Football: Expected Goals 204
14.8 On the Requirement for Invariant Data 205
14.9 Conclusions 205

15 Applied Motion Analysis
MICHAEL T. HUGHES

15.1 Introduction 207
15.2 GPS Use in Team Sports 209
15.3 Local Positioning Systems 213
15.4 Optical Tracking in Sport 213
15.5 Conclusions 214

16 Momentum and “Hot Hands”
MIKE HUGHES, NIC JAMES, MICHAEL T. HUGHES, HENRIETTE DANCS AND STAFFORD MURRAY

16.1 The “Hot Hands” Myth 215
16.2 Momentum through Notational Analysis Studies 216
 16.2.1 Momentum Graphs – The Beginning in Squash 217
 16.2.2 Examining the Patterns within the Graphs 222
 16.2.3 Perturbations in Sports Match Play 225
 16.2.4 Momentum and Perturbations in Other Team Sports 232
16.3 Summary 234

17 Dynamical Systems Theory and “Perturbations”
MATTHEW ROBINS AND MIKE HUGHES

17.1 Introduction 236
17.2 What is a Dynamical System? 236
17.3 The Features of a Dynamical System 238
17.4 Inter-Personal Coordination 242
17.5 Perturbations 246
 17.5.1 Methods in Soccer 248
 17.5.2 Methods in Squash 249
 17.5.3 Results in Soccer 249
 17.5.3.1 Perturbations not Leading to Shots on Goal 253
 17.5.3.2 Creating a Performance Profile Using Perturbations in Soccer – A Case Study of Arsenal 255
 17.5.4 General Results in Squash 261
17.6 Conclusions 265

18 Rule Changes in Sport and the Role of Notation
JASON WILLIAMS

18.1 Safety 266
18.2 Natural Development and Progression 269
18.3 Entertainment, Commercial and Media 272
18.4 The Role of Notational Analysis in Tracking the Effect of Rule Changes 274
18.5 Rules and Cheating 277
18.6 Conclusion 280

19 Notational Analysis of Coaching Behaviour 281
KENNY MORE, EWAN CAMERON AND IAN M. FRANKS
19.1 Introduction 281
19.2 Evolution of the Analysis of Coaching Behaviour 282
19.2.1 A Historical Perspective 282
19.2.2 Systematic Observation Instruments 282
19.3 Purpose and Examples of Published Work 284
19.3.1 Building a Knowledge Base of Coaching Behaviour 285
19.3.2 Building a Knowledge Base Related to the Impact of Coaching Behaviours 285
19.3.3 Developing Effective Coaching Behaviours 286
19.4 Summary 292

20 Performance Analysis in Elite Masters Football: Strategic Team and Player Development Implications 294
HARRY HUBBALL AND PHILIPPE LOPES
20.1 Theoretical Underpinnings for Performance Analysis in Elite Masters Football 294
20.2 Conceptual Framework: A Performance Analysis Framework to Enhance Strategic Team and Player Development in Elite 055+ Masters Small-Sided Football Contexts 296
20.3 Case Study Application 298
20.3.1 HIPC (Tournament-Specific Challenge) 298
20.3.2 HITC, HITD and HITO (Tournament-Specific Challenge) 299
20.4 Evidence of Impact 300
20.5 Summary 301

SECTION IV
Profiling in Sport with Examples 303

21 Performance Profiling 305
HENRIETTE DANCS, MIKE HUGHES, MICHAEL T. HUGHES, NIC JAMES, JULIA WELLS AND STAFFORD MURRAY
21.1 Processes in Creating Performance Profiles 305
21.1.1 Performance Indicators 305
21.1.2 Analysis of the Relative Importance of Performance Indicators 308
Contents

21.1.3 Reliability 310
21.1.4 Establishing the Stability of Performance Profiles 311
 21.1.4.1 Empirical Methods 311
 21.1.4.2 Confidence Intervals 312
 21.1.4.3 Normative Profiles of Sports Performance
 (O’Donoghue, 2005) 313
21.1.5 Comparing Sets of Data 315
21.1.6 Presenting Performance Profiles 317
 21.1.6.1 Empirical Models 318
 21.1.6.2 Examples 319

21.2 Overall Conclusions 326

22 Example of Profiling Techniques: Profiling in Soccer 328
HENRIETTE DANCS, MIKE HUGHES AND NIC JAMES

22.1 Introduction 328
22.2 Example 1 – Individual Roles within a Team Framework – the PIs 328
 22.2.1 Methodology 329
22.3 Example 2 – Learning from Crossing and Shooting in the
 1986 and 1998 World Cups For Soccer 334
22.4 Example 3 – Analysis of Penalties Taken in Shoot-Outs 340
22.5 Conclusion 351

23 Example of Profiling Techniques: Performance Profiling in
Squash 353
MIKE HUGHES, MICHAEL T. HUGHES, NIC JAMES, JULIA WELLS
AND STAFFORD MURRAY

23.1 Introduction 353
23.2 Method 354
 23.2.1 Subjects 354
 23.2.2 Data Collection 354
 23.2.3 Real-Time Analysis System 355
 23.2.4 Lapse-Time Analysis System 355
23.3 Results and Discussion 357
23.4 Conclusions 363

24 Profiling in Canoeing – A Practical Example 364
JULIA WELLS

24.1 Data Reliability 364
24.2 Performance Indicators 365
 24.2.1 Examining Performance Indicators (PIs) 365
 24.2.1.1 Broad PIs 365
 24.2.1.2 Results 366
 24.2.1.3 Specific PIs 367
 24.2.1.4 Implications for Coaching 367
24.3 Conclusions 368
25 Performance Profiling in Rugby Union

MICHAEL THOMAS HUGHES, JASON WILLIAMS, NIC JAMES AND MIKE HUGHES

25.1 Introduction 370
25.2 Performance Indicators (PIs) 371
25.3 PIs in Rugby 371
25.4 Performance Profiles in Rugby 372
25.5 Example 373
 25.5.1 Method 373
 25.5.2 Results and Discussion 374
 25.5.3 PIs in Rugby 384
 25.5.4 Performance Profiles in Rugby 385
25.6 PIs in Team Sports 389
25.7 Moneyball and Rugby Union 390
25.8 Conclusions 390

SECTION V
Careers in Performance Analysis

26 Accreditation

MICHAEL T. HUGHES, NIC JAMES AND MIKE D. HUGHES

26.1 Reasons Why We Look to Accredit and Why It Is Important for Independent Bodies 395
26.2 How We Approached Creating the Accreditation System 396
26.3 Four Major Streams Identified 396
26.4 Individual Accreditation 397
 26.4.1 Data – Core Competency 397
 26.4.2 Management 397
 26.4.3 Analysis 398
 26.4.4 Video – Core Competency 398
26.5 Academic – Specialist Competency 399
 26.5.1 Qualifications 399
 26.5.2 Area of Expertise 399
26.6 Applied – Specialist Competency 400
 26.6.1 Data Visualisation 400
 26.6.2 Systems Development 400
26.7 Communication 401
26.8 Departmental Accreditation 401
 26.8.1 Data – Core Competency 401
26.9 Video – Core Competency 402
26.10 Academic – Specialist Competency 403
26.11 Applied – Specialist Competency 404
26.12 Conclusions 405
27 Cooperation between Performance Analysts and Sport Data Analysts

HENRIETTE DANCS

27.1 Ongoing Issues about Sport Data Analytics 407
27.2 The Significance of the Cooperation between Performance Analysts and Sport Data Analysts – A Challenge to Fulfil! 409
27.3 Conclusion 410

References and Bibliography 411
Index 455
Figures

1.1 Flowchart of performance, analysis, and feedback.
2.1 Stick figure.
2.2 SIMM skeleton and muscles.
3.1 The modified simple flowchart of the role and place of any type of performance analysis in the coaching process.
3.2 The “classic” project management cycle.
3.3 “Life Cycle of Providing Objective Project Feedback.”
3.4 The logic of the weekly, monthly, yearly project management cycles.
4.1 Bloom’s taxonomy.
6.1 Hierarchical technique model of the long jump.
6.2 Contour map of the distance a javelin travels (R) as a function of two release parameters, with all others held constant.
6.3 Game classification.
6.4 Sub-categorisation of net and wall games, with some common examples.
6.5 Some factors that contribute to success or improved performance in net and wall games.
6.6 Sub-categorisation of invasive games, with some common examples.
6.7 Some factors that contribute to success or improved performance in invasive games.
6.8 Sub-categorisation of striking and fielding games, with some common examples.
6.9 Some factors that contribute to success or improved performance in striking and fielding games.
7.1 Hierarchical structure of a model for representing events that take place in a team game such as field hockey, soccer, basketball, water polo, etc.
7.2 Some actions, and their respective outcomes, for soccer.
7.3 Simple schematic flowchart of soccer.
7.4 Core elements of any analysis system of performance.
7.5 A simple flowchart for squash.
7.6 Primary-level game analysis – team.
7.7 Individual analysis.
List of Figures

8.1 A simple scatter diagram for recording position of loss of possession for soccer. 87
8.2 A simple scatter diagram for recording position of loss of possession, and the player involved, for soccer. 87
8.3 A simple scatter diagram for recording position of loss of possession, and the player and the action involved, for soccer. 88
8.4 A definition of position on a representation of a field hockey pitch. 90
8.5 A definition of position on a representation of a field hockey pitch oriented to analysing attacking moves. 91
8.6 A definition of position on a representation of a field hockey pitch oriented to analysing attacking moves. 92
8.7 Example of the distribution of the frequency of shots per player. 102
8.8 A different way of presenting the same data of the distribution of the frequency of shots per player 103
8.9 Example of a frequency distribution of actions in a field hockey match. 104
8.10 Example of a frequency distribution of errors in a field hockey match. 105
8.11 Representation of three-dimensional data distribution using two two-dimensional graphs. 105
8.12 Example of sequential data – path to a shot on goal in field hockey. 106
9.1 Division of the court into six cells for analysis of tennis. 109
9.2 (a) Notation of data using the system for tennis. (b) Schematic representation of data used in example in (a). 110
9.3 Example of the tennis data gathering system. 111
9.4 Distribution of the types of punches thrown by Tyson in the Bruno-Tyson match (1989). 116
9.5 Distribution of the types of punches thrown by Bruno in the Bruno-Tyson match (1989). 116
9.6 Distribution of jabs on a round by round analysis by both fighters (Bruno-Tyson, 1989). 117
9.7 Schematic representation of the basketball court in order to define position cells for a data gathering system. 119
9.8 Representation of the number of completed passes. 124
9.9 Representation of the number of incomplete passes. 124
9.10 Representation of the clearances. 124
9.11 Representation of the percentage of activities throughout the first half. 125
9.12 Schematic diagram of a soccer pitch showing suggested divisions of the playing area into a grid for notation. 126
9.13 Schematic representation of the netball court for divisions of the playing surface. 129
9.14 Hierarchical structure representing events that take place in team games. 133
9.14a Hierarchical model of time motion analysis in field hockey. 134
9.15 The overall data from the reliability study. 136
9.16 Pie chart displaying movement pattern breakdown of a forward. 137
9.17 Pie chart displaying movement pattern breakdown of a midfield. 138
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.18</td>
<td>Pie chart displaying movement pattern breakdown of a defender.</td>
<td>138</td>
</tr>
<tr>
<td>9.19</td>
<td>Bar chart representing movement patterns of a forward, midfield and defence.</td>
<td>139</td>
</tr>
<tr>
<td>10.1</td>
<td>The definition of positional cells across the squash court area.</td>
<td>149</td>
</tr>
<tr>
<td>10.2</td>
<td>The data added by column to give the positional frequency of rally-ending shots in the example squash match data.</td>
<td>150</td>
</tr>
<tr>
<td>11.1</td>
<td>Decision tree of statistical tests</td>
<td>162</td>
</tr>
<tr>
<td>11.2</td>
<td>Scree plot of principal-component analysis.</td>
<td>167</td>
</tr>
<tr>
<td>12.1</td>
<td>Decision making situation in basketball.</td>
<td>173</td>
</tr>
<tr>
<td>12.2</td>
<td>Expected values of alternatives.</td>
<td>173</td>
</tr>
<tr>
<td>12.3</td>
<td>Uncertainty scale.</td>
<td>175</td>
</tr>
<tr>
<td>12.4</td>
<td>The skill-luck scale.</td>
<td>176</td>
</tr>
<tr>
<td>12.5</td>
<td>Decisions in sports games.</td>
<td>177</td>
</tr>
<tr>
<td>12.6</td>
<td>Shooting percentages of 2- and 3-point shots in the NBA.</td>
<td>178</td>
</tr>
<tr>
<td>12.7</td>
<td>Incidence of 2- and 3-point shots in the NBA.</td>
<td>178</td>
</tr>
<tr>
<td>12.8</td>
<td>Performance indicators and their context.</td>
<td>182</td>
</tr>
<tr>
<td>13.1</td>
<td>Qualitative analysis according to Knudson and Morrison (2002)</td>
<td>185</td>
</tr>
<tr>
<td>13.2</td>
<td>Selected image from a gymnastic exercise using Coach’s Eye for qualitative analysis.</td>
<td>190</td>
</tr>
<tr>
<td>13.3</td>
<td>Selected image from a gymnastic exercise using Kinovea for qualitative analysis: (a) tracking tool, (b) highlight function</td>
<td>191</td>
</tr>
<tr>
<td>13.4</td>
<td>Images of front somersault. (a) Run-up, (b) retraction phase, (c) action phase, (d) follow-through.</td>
<td>193</td>
</tr>
<tr>
<td>14.1</td>
<td>Probability structure depicting a sequence of three coin tosses.</td>
<td>197</td>
</tr>
<tr>
<td>14.2</td>
<td>Negative binomial distribution of the number of passing sequences in soccer. The data were first reported in Reep and Benjamin (1968).</td>
<td>202</td>
</tr>
<tr>
<td>15.1</td>
<td>A global positioning satellite receiver.</td>
<td>208</td>
</tr>
<tr>
<td>15.2</td>
<td>Factors influencing GPS reliability.</td>
<td>209</td>
</tr>
<tr>
<td>16.1</td>
<td>Example of “momentum analysis” graph.</td>
<td>218</td>
</tr>
<tr>
<td>16.2</td>
<td>Example of “momentum analysis” graph.</td>
<td>218</td>
</tr>
<tr>
<td>16.3</td>
<td>Example of a cumulative momentum analysis graph.</td>
<td>219</td>
</tr>
<tr>
<td>16.4</td>
<td>The momentum graph of PM in his match with DE.</td>
<td>219</td>
</tr>
<tr>
<td>16.5</td>
<td>The momentum graph of DE in his match with PM.</td>
<td>220</td>
</tr>
<tr>
<td>16.6</td>
<td>The cumulative momentum graph of PM and DE in their match, with game by game analysis.</td>
<td>220</td>
</tr>
<tr>
<td>16.7</td>
<td>An example of an individual player’s momentum with rally length.</td>
<td>221</td>
</tr>
<tr>
<td>16.8</td>
<td>Development of winners and errors during the game.</td>
<td>222</td>
</tr>
<tr>
<td>16.9</td>
<td>Example of aggregated patterns of peaks and troughs of application by the players during a match.</td>
<td>223</td>
</tr>
<tr>
<td>16.10</td>
<td>Examples of stabilisation of the mean values of the amplitude of the peaks for two of the players.</td>
<td>223</td>
</tr>
<tr>
<td>16.11</td>
<td>A comparison of predicted and actual frequencies of shots by Manchester United and Newcastle United for each of the perturbation variables by Newcastle in one match.</td>
<td>227</td>
</tr>
<tr>
<td>16.12</td>
<td>The frequency of actions by the player on the ball that led to perturbations being smoothed out.</td>
<td>228</td>
</tr>
</tbody>
</table>
List of Figures

16.13 Cumulative momentum plot for match 1. 230
16.14 Match 2 – cumulative total phase scores with perturbation indicators. 230
16.15 The winner and error momentum graph of TL in his match with DP. 233
16.16 The perturbations momentum graph of TL in his match with DP. 233
17.1 Hand notation system used for collecting perturbation data. 249
17.2 Squash court cell, used to record position of shot. 250
17.3 The frequency of actions by the player on the ball that led to perturbations being smoothed out. 254
17.4 The frequency of actions by the defence that led to perturbations being smoothed out. 255
17.5 Shot and goal distribution by time. 256
17.6 Distribution of Arsenal perturbations by nature. 257
17.7 Proportion of attacking perturbations by nature. 257
17.8 Location of perturbations in attack. 258
17.9 Shot and goal distribution over time. 260
17.10 Distribution of opposition perturbations by nature. 261
17.11 Type of shot that caused a perturbation when playing a squash match. 262
17.12 Squash court cell, used to record position of shot. 263
17.13 The frequency of actions by the player on the ball that led to perturbations being smoothed out. 263
17.14 Performance profiles for male squash: top is where players play perturbations from and bottom left is England Squash’s winner distribution, and right error distribution. 264
18.1 A model for the analysis of cheating. 279
19.1 An example from a soccer training session that is described using a hierarchical model with a continuous time-line of activity segments. 286
19.2 The structure of the instructional component, representing four levels of data entry for each verbal comment. 288
20.1 A performance analysis framework to enhance strategic team and player development in elite 055 masters small-sided football contexts. 297
21.1 A schematic chart of the steps required in moving from data gathering to producing a performance profile. 306
21.2 A digital systems approach to the data sharing that the interactive commercial systems have enabled for performance analysts working with coaches and athletes. 307
21.3 A normative performance profile for Venus Williams (26 matches). 315
21.4 Processes for comparing sets of data. 316
21.5 A comparison of aerial challenge outcomes for four centre backs playing for a professional British soccer team. 320
21.6 Form chart of the tenth match compared against performances from the previous nine matches for a professional British soccer team. 321
21.7 Distribution of goalkeepers’ on-the-ball actions. 322
21.8 Distribution of defenders’ on-the-ball actions. 323
21.9 Distribution of midfielders’ on-the-ball actions. 323
21.10 Distribution of strikers’ on-the-ball actions. 324
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.11</td>
<td>Comparison of the techniques used between defenders, midfielders and strikers.</td>
</tr>
<tr>
<td>21.12</td>
<td>Average quality rating of techniques used across playing positions.</td>
</tr>
<tr>
<td>21.13</td>
<td>Distribution of defenders’ passing technique ratings.</td>
</tr>
<tr>
<td>21.14</td>
<td>Distribution of midfielders’ passing technique ratings.</td>
</tr>
<tr>
<td>21.15</td>
<td>Distribution of strikers’ passing technique ratings.</td>
</tr>
<tr>
<td>22.1</td>
<td>A comparison of shots on target on a match by match basis (matches 1–6).</td>
</tr>
<tr>
<td>22.2</td>
<td>A comparison of shots on target on a match by match basis (matches 7–12).</td>
</tr>
<tr>
<td>22.3</td>
<td>Form chart of the tenth match compared against performances from the previous nine matches for a professional British soccer team.</td>
</tr>
<tr>
<td>22.4</td>
<td>The prime target area – to where the ball should be crossed.</td>
</tr>
<tr>
<td>22.5</td>
<td>Respective frequency of the different paces of striking the ball.</td>
</tr>
<tr>
<td>22.6</td>
<td>Relative percentages of the different types of approach runs to the ball.</td>
</tr>
<tr>
<td>22.7</td>
<td>The frequencies of the outcomes of each of the approaches, and these frequencies expressed as percentages of the totals of each approach.</td>
</tr>
<tr>
<td>22.8</td>
<td>The frequencies of the outcomes of each of the approaches, and these frequencies expressed as percentages of the totals of each approach.</td>
</tr>
<tr>
<td>22.9</td>
<td>Fast run-up with different pace strikes and the respective outcomes.</td>
</tr>
<tr>
<td>22.10</td>
<td>Medium-speed run-up with different pace strikes and the respective outcomes.</td>
</tr>
<tr>
<td>22.11</td>
<td>Low-speed run-up with different pace strikes and the respective outcomes.</td>
</tr>
<tr>
<td>22.12</td>
<td>The frequency of outcomes associated with each of the different paced run-ups.</td>
</tr>
<tr>
<td>22.13</td>
<td>The frequency of outcomes associated with each of the different paced run-ups expressed as percentages of the total number of shots at that number of paces.</td>
</tr>
<tr>
<td>22.14</td>
<td>The cell division of the goal and surround for direction of strikes and the frequencies of shots at each area.</td>
</tr>
<tr>
<td>22.15</td>
<td>The respective % conversion rates in different parts of the goal.</td>
</tr>
<tr>
<td>23.1</td>
<td>Example of 16 cell division of squash court.</td>
</tr>
<tr>
<td>23.2</td>
<td>Squash SWEAT data gathering interface.</td>
</tr>
<tr>
<td>23.3</td>
<td>Squash lapsed-time data gathering interface.</td>
</tr>
<tr>
<td>23.4</td>
<td>Example of initial winner/error data produced from the computerised full analysis system.</td>
</tr>
<tr>
<td>23.5</td>
<td>Example of shot frequency summary data.</td>
</tr>
<tr>
<td>23.6</td>
<td>Examples of various screens of data available.</td>
</tr>
<tr>
<td>23.7</td>
<td>Summary of data used as feedback and storyboard for edited video.</td>
</tr>
<tr>
<td>23.8</td>
<td>An example of normalised distribution data.</td>
</tr>
<tr>
<td>23.9</td>
<td>Distribution of shots that were two shots before a winner by Player A [(N−2)W].</td>
</tr>
</tbody>
</table>
List of Figures

23.10 Example of shot option analysis. 361
23.11 W/E frequencies from the SWEAT system with respect to length of rally. 361
23.12 Example of “momentum analysis” graph. 362
23.13 Example of momentum analysis with rally length included. 363
25.1 Summary data from the 2011 World Cup. 375
25.2 A selection of charts illustrating the data captured within the study. 382
25.3 Form chart comparing the median performances for the analysed team (previous five matches) relative to prior performances (previous five matches) by their next opponents. 387
25.4 Inter-positional comparison of the positional clusters of scrum-half and outside-half, illustrating median frequencies and 95% confidence limits for the population median. 388
25.5 Qualitative analysis of skills specific to position (scrum-half). 388
27.1 A framework of sports analytics. 408
27.2 The approach of performance analysts and sport data analysts to analysing sport performance. 410
Tables

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Weekly, monthly, yearly Gantt charts – possible template examples of a performance analyst.</td>
<td>23</td>
</tr>
<tr>
<td>4.1</td>
<td>Bloom’s taxonomy.</td>
<td>34</td>
</tr>
<tr>
<td>4.2</td>
<td>Psychomotor domain theories.</td>
<td>35</td>
</tr>
<tr>
<td>4.3</td>
<td>The cognitive dimension.</td>
<td>38</td>
</tr>
<tr>
<td>4.4</td>
<td>An example matrix that has been filled.</td>
<td>39</td>
</tr>
<tr>
<td>6.1</td>
<td>Published performance indicators used in notational analysis.</td>
<td>56</td>
</tr>
<tr>
<td>6.2</td>
<td>Categorisation of different performance indicators that have been used in analyses of net or wall games.</td>
<td>60</td>
</tr>
<tr>
<td>6.3</td>
<td>Categorisation of different performance indicators that have been used in analyses of soccer, an example of invasion games.</td>
<td>66</td>
</tr>
<tr>
<td>6.4</td>
<td>Categorisation of different performance indicators that have been used in analyses of cricket, an example of striking and fielding games.</td>
<td>72</td>
</tr>
<tr>
<td>8.1</td>
<td>A simple frequency table for basketball.</td>
<td>89</td>
</tr>
<tr>
<td>8.2</td>
<td>Comparison of nationally ranked players to county players – shot patterns that have differences in frequency ($P < 0.05$).</td>
<td>102</td>
</tr>
<tr>
<td>8.3</td>
<td>Shooting data from the 1990 World Cup for soccer.</td>
<td>103</td>
</tr>
<tr>
<td>8.4</td>
<td>Shooting data from the 1990 World Cup for soccer.</td>
<td>104</td>
</tr>
<tr>
<td>9.1</td>
<td>Symbols used in the data gathering system for boxing.</td>
<td>114</td>
</tr>
<tr>
<td>9.2</td>
<td>Example data from the Tyson-Bruno fight (1989) using the data gathering system for boxing.</td>
<td>115</td>
</tr>
<tr>
<td>9.3</td>
<td>Collated data of total punches thrown.</td>
<td>115</td>
</tr>
<tr>
<td>9.4</td>
<td>Analysis of the number of types of punches thrown by both boxers.</td>
<td>115</td>
</tr>
<tr>
<td>9.5</td>
<td>The number of punches thrown while holding.</td>
<td>117</td>
</tr>
<tr>
<td>9.6</td>
<td>The number of jabs thrown in each round.</td>
<td>117</td>
</tr>
<tr>
<td>9.7</td>
<td>A demonstration of how the notation system works.</td>
<td>119</td>
</tr>
<tr>
<td>9.8</td>
<td>Each player has designated areas within which they must play.</td>
<td>129</td>
</tr>
<tr>
<td>9.9</td>
<td>Example of a record sheet for simple data gathering for notation of netball.</td>
<td>130</td>
</tr>
<tr>
<td>9.10</td>
<td>Data processed from a notated netball match (part only).</td>
<td>130</td>
</tr>
<tr>
<td>9.11</td>
<td>Shorthand symbols.</td>
<td>133</td>
</tr>
<tr>
<td>9.12</td>
<td>Data from a field hockey game notated once by two operators for 20 minutes, presented as an inter-reliability analysis.</td>
<td>135</td>
</tr>
<tr>
<td>9.13</td>
<td>Movement patterns of a forward.</td>
<td>137</td>
</tr>
<tr>
<td>9.14</td>
<td>Movement patterns of a midfielder.</td>
<td>137</td>
</tr>
<tr>
<td>Table Number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>9.15</td>
<td>Movement patterns of a defender.</td>
<td>138</td>
</tr>
<tr>
<td>9.16</td>
<td>Movement patterns for an average hockey player.</td>
<td>139</td>
</tr>
<tr>
<td>9.17</td>
<td>Independent T-test results.</td>
<td>139</td>
</tr>
<tr>
<td>10.1</td>
<td>The arithmetic differences in the positions recorded by the two analysts.</td>
<td>151</td>
</tr>
<tr>
<td>10.2</td>
<td>Areas of squash court recorded by two observations.</td>
<td>154</td>
</tr>
<tr>
<td>10.3</td>
<td>Weights used in weighted kappa for the squash example.</td>
<td>155</td>
</tr>
<tr>
<td>10.4</td>
<td>Synthetic data representing trivial errors and good strength of agreement.</td>
<td>158</td>
</tr>
<tr>
<td>10.5</td>
<td>Synthetic data representing serious errors and poor strength of agreement.</td>
<td>158</td>
</tr>
<tr>
<td>11.1</td>
<td>Analysis of all the games and close games of the 2007 European Basketball Championship for men.</td>
<td>165</td>
</tr>
<tr>
<td>11.2</td>
<td>Rotation of extracted principal components.</td>
<td>167</td>
</tr>
<tr>
<td>11.3</td>
<td>Interpretation of the independent principal components.</td>
<td>168</td>
</tr>
<tr>
<td>11.4</td>
<td>Comparison of winning and losing team performances by performance indicators and principal components.</td>
<td>170</td>
</tr>
<tr>
<td>12.1</td>
<td>Expected value of choices.</td>
<td>173</td>
</tr>
<tr>
<td>12.2</td>
<td>TFSE -Vasáros kosárlabda mérkőzés statisztikai lapja.</td>
<td>179</td>
</tr>
<tr>
<td>12.3</td>
<td>Statistical table of a basketball game with the scoring system.</td>
<td>182</td>
</tr>
<tr>
<td>13.1</td>
<td>Examples of phases of selected skills.</td>
<td>186</td>
</tr>
<tr>
<td>13.2</td>
<td>Examples of sub-phases for the action phase of selected skills.</td>
<td>187</td>
</tr>
<tr>
<td>13.3</td>
<td>Software tools for qualitative biomechanical analysis.</td>
<td>189</td>
</tr>
<tr>
<td>13.4</td>
<td>Phase analysis model template for a front salto.</td>
<td>194</td>
</tr>
<tr>
<td>16.1</td>
<td>The lengths and amplitudes of upswings (peaks, of ≥ 2) and downswings (troughs, of ≤ −2) in momentum for six elite female and six elite male players, averaged over eight matches for each player.</td>
<td>224</td>
</tr>
<tr>
<td>17.1</td>
<td>Goals and the number of perturbation skills.</td>
<td>250</td>
</tr>
<tr>
<td>17.2</td>
<td>Number of shots for the successful and unsuccessful teams.</td>
<td>251</td>
</tr>
<tr>
<td>17.3</td>
<td>Perturbation variables for the successful and unsuccessful team with the ensuing shots, goals and shot/goal ratios.</td>
<td>251</td>
</tr>
<tr>
<td>17.4</td>
<td>Occurrences of perturbations and the general categories of actions that caused the smoothing out of the critical incidents.</td>
<td>253</td>
</tr>
<tr>
<td>17.5</td>
<td>Distribution of shots by nature (i.e. game state – winning, losing or drawing),</td>
<td>256</td>
</tr>
<tr>
<td>17.6</td>
<td>Goals and the frequency of perturbation skills in defence.</td>
<td>259</td>
</tr>
<tr>
<td>17.7</td>
<td>Distribution of shots of the opposition by nature (i.e. game state – winning, losing or drawing).</td>
<td>260</td>
</tr>
<tr>
<td>18.1</td>
<td>Milestone deals between TV companies and English football bodies 1983–1997.</td>
<td>274</td>
</tr>
<tr>
<td>18.2</td>
<td>Examples of the types of cheating using Fraleigh’s (2003) definition within different sports.</td>
<td>278</td>
</tr>
<tr>
<td>19.1</td>
<td>Example data from one soccer coach using coaching behaviour analysis.</td>
<td>289</td>
</tr>
<tr>
<td>21.1</td>
<td>Categorisation of the application of different performance indicators in games.</td>
<td>308</td>
</tr>
</tbody>
</table>
List of Tables xxiii

21.2 Some examples of sample sizes for profiling in sport.
21.3 Mean profiles and 95% confidence limits for the positional clusters of prop, hooker and lock.
21.4 An analysis of the different statistical processes used in subsequent data analyses in some randomly selected performance analysis research papers.

22.1 Technical requirements of positions.
22.2 Individual tasks when in possession of the ball.
22.3 Individual tasks when not in possession of the ball.
22.4 The skill requirements (Key Performance Indicators) for the different positions in soccer.
22.5 Lists of KPIs for the goalkeeper and a generic list for outfield players.
22.6 Continuum of technique ratings.
22.7 Comparing crosses played in front and behind defence in the 1986 and 1998 World Cups with respect to strikes on goal and goals scored.
22.8 Comparing types of crosses in the 1986 and 1998 World Cups with respect to strikes on goal and goals scored.
22.9 Data entry system in Access for the actions of the penalty taker.
22.10 Data entry system in Access for the actions of the goalkeeper.
22.11 Outcomes of penalties.
22.12 Frequency of the different paces of striking the ball with the outcomes expressed as percentages.
22.13 Frequency of penalty shots taken with the number paces of the approach run.
22.14 Frequency of the different paces of striking the ball with the outcomes expressed as percentages.
22.15 Relative percentages of the different types of approach runs to the ball, with the different outcomes of the shots.
22.16 Schematic representation of the percentage success rates of shooting at the different areas of the goal.
24.1 Performance indicators used in the analysis of canoe/kayak slalom.
24.2 Race percentages for 2011 (calculated from winning k1men’s time).

25.1 The final ranking of the top eight teams (Tier A) at the 2011 World Cup.
25.2 Summary data from the 2011 World Cup.
25.3 Summary data of England’s goal-kicking performance in the 2011 World Cup.
25.4 RWC 2011 possession (poss) – times and productivity.
25.5 RWC 2011.
25.6 RWC 2011 tries scored v Tier A teams.
25.7 RWC 2011 linebreaks.
25.8 RWC 2011 linebreaks v Tier A teams.
25.9 Possession completion.
25.10 Red zone conversion.
25.11 Red zone conversion v Tier A.
About the Editors

Mike Hughes is Emeritus Professor of Sport and Exercise Science, Cardiff Metropolitan University, UK. He is the founder and now President of ISPAS (International Society of Performance Analysis of Sport), President of the International Society of Performance Analysis of Sport Asia, Member of the Coordination Council, and Chair of the Performance Analysis Group for the International Network of Sport and Health Science. He has four International Journal Editorial Board positions. He has published over 200 papers, over 24 books, organised 25 international conferences, and is a frequent keynote speaker. He is also a consultant to NGBs – for squash, rugby, hockey, soccer and badminton – EIS, PGIR. His accreditations include Level 5 by ISPAS and BASES Accredited “Sport and Exercise Scientist”. He is a Level IV squash coach, and has coached English and Welsh national squads and the GB University squash squad. He founded the International Journal of Performance Analysis of Sport. His research interests include analysis of sports performance, analysis of coaching behaviour, developing methodologies in notational analysis, modelling of sports performance, dynamic systems and momentum in sport and performance profiling.

Ian M. Franks PhD is Professor Emeritus at the University of British Columbia, Canada. He now specializes in the neural control of skillful movement in his Motor Learning and Control Laboratory at the School of Kinesiology, UBC. Since joining UBC in 1980 he has published over 150 refereed research articles, 22 book chapters and five books in the areas of Sport Analysis, Skill Acquisition and Movement Control.

Henriette Dancs is a Professor in the Institute of Sport Sciences at Szombathely, Eötvös Loránd University, Hungary. Professor Dancs has more than 30 years academic experience involved in a wide range of different academic activities in Hungary and abroad (Founder/Coordinator and now General Secretary of the International Network on Sport and Health Sciences). She has developed and designed courses and also was involved in the organization of a number of international academic projects (e.g. IPPAS 2000-2003, and international ISPAS courses) and study programmes in the field of Performance Analysis in Sport. Her related lecturing subjects are Performance Analysis in Sport, Notational Analysis and Project Management.
About the Contributors

Arnold Baca is Full Professor at the Department of Biomechanics, Kinesiology and Computer Science in Sport at the University of Vienna, Austria. He was President of the International Association of Computer Science in Sport from 2007 to 2013 and is now Honorary President of this association. He is Founding Editor-in-Chief of the e-Journal “International Journal of Computer Science in Sport”, is a member of the editorial or advisory board of eight international journals and a reviewer of numerous national and foreign scientific journals, such as the Journal of Biomechanics, Medicine and Science in Sports and Exercise and the European Journal of Applied Physiology. Arnold Baca has authored and co-authored numerous peer-reviewed journal and conference articles, book chapters and eight books. His current research activity focuses on Computer Science Applied to Biomechanics, Ubiquitous Computing in Sports and Exercise, Multimedia and Information Systems in Sports, Human Motion and Game Analysis.

Roger Bartlett was employed in higher education for 41 years before his retirement in August 2014. His esteem indicators include Chair of the British Association of Sports and Exercise Sciences (BASES), Editor in Chief of the Journal of Sports Sciences, 1995–2001, and of Sports Biomechanics, Chair of the BOA’s Performance Analysis Steering Group and Visiting Professor at the Universities of Salzburg and Innsbruck, Austria, and Nottingham Trent and Cardiff Metropolitan, UK. He was a full Professor at Manchester Metropolitan University, Staffordshire University, Sheffield Hallam University, and the University of Otago in New Zealand. He published six authored books, one co-authored book, eight edited or co-edited books, and more than 20 book chapters, and over 50 peer-reviewed journal articles. He supervised 14 PhD completions, 15 Masters degree completions, and was an external examiner for more than 12 PhDs and MPhils.

Ewan Cameron has a BSc in Computing Science and MBA with several years of industrial experience. As a Director and Consultant with Elite Sports Analysis, Ewan worked in a wide range of professional, Olympic and Commonwealth sports, with his main focus on national teams in badminton, swimming and cross
country skiing. Ewan was also a consultant to the ECB, implementing the use of specific technologies in cricket. He also has ISPAS Level 5 Accreditation.

Gábor Csátaljay PhD is a Teacher of Physical Education and a professional sports coach in basketball at the University of Physical Education, Budapest. He received his PhD in Performance Analysis of Basketball from Middlesex University, London. He has ten years of academic experience at the University of West Hungary and 12 years in coaching education. He also has more than 20 years experience in basketball coaching. His research interests include performance analysis of basketball and identification of performance indicators in team sports.

Martin Gröber is a research assistant in the department of Biomechanics, Kinesiology and Computer Science in Sport at the University of Vienna, Austria. Martin obtained his Bachelor of Medical Engineering from Ulm University of Applied Science in 2015 and his M.Sc. degree in Movement and Health from the Technical University of Munich in 2017. His research interests include muscle mechanics, the muscle contraction mechanism, motion analysis, kinematics and analysis of sport performance.

Harry Hubball PhD is a Professor and National Teaching Fellow, Canada, in the Faculty of Education at The University of British Columbia, Canada. He has supervised more than 450 Tenured Faculty Members with Graduation Portfolios for External Review and University Educational Leadership Certification. He has overseen three PhD completions and seven MA completions. He has written 65 peer-reviewed journal articles and book chapters and presented at 41 invited presentations at international universities. He is the Chair and Academic Program Director of the International Program for the Scholarship of Educational Leadership (1998–present). Harry is the founding Chairperson of the International Masters five-a-side/Futsal World Cup Football Tournament and Symposium (2006–present), and he is the Director and Head Coach of the INTER UBC Masters 5v5/Futsal Research and Soccer Academy Program (1999–present).

Michael T. Hughes has been working full-time in elite level sport and has had the privilege of working with some outstanding teams, including the British and Irish Lions, England Rugby, British Cycling and England Squash. Initially his experience was mainly in Performance Analysis although his role expanded to straddle other elements of Sport Science particularly around data collection, management and dissemination. He has been involved strategically with creating measurable individual player plans and the subsequent implementation of an iPad application-based system for monitoring and delivering these plans. He has also been involved with and managed a number of innovative projects in areas such as materials development, wind-tunnel testing and software and hardware development. Since starting with the RFU in 2008 he has been responsible for the design and implementation of all data collection and processing protocols from
the Senior team, throughout the Performance Pathway, to the Academy teams. He was a Senior Performance Analyst on the British Lions Tour where the Lions won a test series for the first time in 16 years and for the first time in Australia in 24 years. He was also a part of the England management team at the 2011 Rugby World Cup.

Nic James’s PhD esteem indicators include an invitation to be a visiting Professor at the University of Zagreb, Croatia, Chair of the International Society of Performance Analysis of Sport and Member of the Coordination Council for the International Network of Sport and Health Science. He holds five international journal editorial board positions and is an ad hoc reviewer for 21 international journals. He has presented 17 keynote addresses at international conferences. He is also an external consultant for the English Institute of Sport. He has four PhD completions, eight MPhil completions, and six PhD students enrolled as well as being an external examiner for five PhDs and three MPhils. He received ERASMUS funding (£164,000) for the Intensive programme in Performance Analysis of Sport. He is a Fellow of the Higher Education Academy and Programme Leader for MSc Performance Analysis of Sport (UWIC – 2007–2010; Middlesex University – 2010–2013). He has acted as admissions tutor, examinations officer and laboratory director and has served on many departmental, faculty and university committees.

Dario G. Liebermann is a Senior Lecturer working with the Sackler Faculty of Medicine, University of Tel Aviv. He assumed the faculty appointment in 2000, after completing two years of post-doc research in the Faculty of Medicine (Clinical Neurosciences) and in the Faculty of Kinesiology (Sport Technology Research) at the University of Calgary. Dr. Liebermann headed the Movement Science Unit of the Ribstein Centre for Research and Sport Medicine Sciences at the Wingate Institute in Israel from 1989 until 1997. During that period he focused on research and applications of Sport Biomechanics for the assessment and enhancement of performance of young gifted and elite adult athletes at the national, international and Olympic levels in diverse sports areas (e.g. judo, tennis, basketball, soccer and the jumps in athletics).

Philippe Lopes is an associate Professor in Exercise Physiology at the University of Evry. She has worked for several years on the effects of exercise on the autonomic nervous system in elite sports subjects and in primary and secondary prevention of cardiovascular disease. She focused her research activities on the effects of exercise on the cardiovascular and autonomic nervous systems in neurodegenerative diseases within the Neuromuscular Degeneration and Plasticity laboratory in Paris Descartes University. She is also the head of the Sport and Exercise Science Department at the University of Evry. Her research interests include heart rate variability, cardiorespiratory benefits of exercise, holistic approaches to coronary heart disease prevention, artificial intelligence applied to health, computer applications for sport and exercise, and masters soccer. She has overseen three PhD completions and two MPhil completions. She has had more than 60
publications in refereed journals, conferences and book chapters. She is co-editor of a special issue on machine learning for soccer (Machine Learning, Springer). She is a member of the management committee of the European COST action on “Open multiscale systems medicine” and of various professional bodies (ACSM, ECSS, BASES).

Dana Maslovat PhD has worked in academia for over 20 years as a faculty member in the Kinesiology Department at Langara College and Research Associate at the University of British Columbia (Vancouver, Canada). He also served as the Langara Kinesiology Department Chair (2010–2017) and member of the Research Ethics Board (2012–present), as well as a Course Conductor for the Canadian National Coaching Certification Program. Dana completed a Master’s and Doctoral degree at the University of British Columbia. During this time, he was awarded a number of accolades, including the SCAPPS Franklin Henry Young Scientist Award (2010). His area of expertise is motor learning and control, with research focusing on the neural basis of movement preparation and the effects of physical and observational practice on skill development. As an active researcher, he has published over 40 peer-reviewed journal articles, along with over 50 conference proceedings, and a variety of invited presentations and book chapters. Dana also has a background in athletic activities. He has played competitive basketball for many years, including a National Canadian Collegiate Championship as a player (1997–98) and coach (1998–99). He has also competed in triathlons for a number of years, including completion of Ironman Canada in 2007.

Tim McGarry PhD completed his undergraduate studies at Liverpool John Moore University, England, under the guidance of Professor Mike Hughes and graduate studies at the University of British Columbia, Canada, under the guidance of Professor Ian M. Franks. His teaching and research interests include motor control – brain, behaviour, muscle, excitatory-inhibitory control – and sports performance – system analysis, dynamics, pattern detection, decision-making, strategies, and tactics.

Kenny More has a BEd (Jordanhill, Glasgow) and an MA (UBC, Vancouver) where he conducted applied research into the systematic observation and analysis of coaching behaviour. From 2000 until 2016 he was a Director of Elite Sports Analysis, working as a consultant in a wide range of professional, Olympic and Paralympic sports, with his main focus on national teams in association football, curling and field hockey. Since 2016, Kenny has been employed as lead notational analyst at SportsScotland’s Institute of Sport, leading and managing delivery to Scotland’s high-performance athletes and teams, and contributing practically and strategically to its Performance Solutions Team. His highlights are being analyst to the national football team for eight years, as well as working five Winter Olympics and three Commonwealth Games. Kenny has BASES “High Performance Accreditation” and acts as a BASES Assessor for HPSA in Performance Analysis.
Stafford Murray is Head of Performance Analysis, Biomechanics and Skill Acquisition, EIS. He is responsible for the leadership, development and integration of three disciplines, creating a vision and implementing a strategic plan ensuring a performance impact from this integration. He targets, recruits and directs world-leading experts to deliver CPD, performance solutions and consultancy. He also builds and drives partnerships with external organisations (UKS, NGBs, Unis, etc.), and creates essential collaborations. He implements and leads internal expertise matrix (sharing of knowledge, practice and equipment across the network). He “horizon scans” the competition to ensure we are constantly striving and aspiring to be the world’s best. He provides strategic input into the EIS national model as a member of the Heads of Service team. He also provides budget management for three disciplines (CPD circa £20,000, equipment £50,000 – £150,000 p.a.) He delivers performance solutions and expert consultancy to key targeted sports (e.g. McLaren, GB Sailing, badminton).

Peter O’Donoghue is a Reader at Cardiff Metropolitan University, UK. He is a former Chair of the International Society of Performance Analysis of Sport and General Editor of the International Journal of Performance Analysis in Sport. His research interests include racket sport performance and opposition effects in sports performance.

Matt Robins completed the BSc (2002) and MSc (2003) in Sport and Exercise Science at Cardiff Metropolitan University (formally UWIC), and a PhD in Sports Biomechanics (2013) at Sheffield Hallam University. Matt worked as Senior Lecturer at Nottingham Trent University from 2007 to 2011, and was programme coordinator for the MSc International Performance Analysis of Sport (IMPAS) course (2009–2011) and coordinator for the Performance Analysis pathway for the MRes Sport Science degree (2008–2011). He joined the University of Chichester in 2012 as Senior Lecturer in Biomechanics and Performance Analysis. He is the programme coordinator for the MSc Sports Performance Analysis programme. Matt is also a Fellow of the Higher Education Academy. Matt has published in the fields of both sports biomechanics and performance analysis, and is a reviewer for numerous international periodicals. Matt’s research interests include variability of sports performance, dynamic systems theory and its application for study of individual and team behaviour, performance profiling and biomechanical analysis of basketball shooting.

Tamás Sterbenz PhD is Vice-Rector for General Affairs, Head of Economics and Social Sciences Institute as well as Head Coach of Universiade Basketball Women’s National Team. He is also a Managing Director at the University of Physical Education. After playing on the national basketball men’s team, he coached youth national teams, the University of West Hungary’s Men’s basketball team and the Hungarian Basketball Women’s National team. He was secretary general of the Hungarian Basketball Federation and then Head of the Sport Management Department at Semmelweis Unversity. His research interests include decision making in sports, performance analysis and incentive systems,
competitiveness of sport organizations, strategic management, basketball, and chess. His memberships in professional organizations include the FIBA Europe Youth Commission, the Hungarian Olympic Committee, President of the Sport Management Commission of the Hungarian Society of Sport Science and Vice President of the Hungarian University Sports Federation.

Julia Wells’s career started in Cardiff, south Wales, (1995–2004) providing performance analysis consultancy with the Cardiff Met’s (formally UWIC) Centre for Performance Analysis team working with several sports and later working within the English Institute of Sport in Loughborough 2004. Julia worked in multi-sports and then focused on British Canoeing’s Canoe Slalom Olympic Programme for the Beijing 2008 and London 2012 Olympic Games. She worked at the Lee Valley White Water Centre in preparation for the Olympics in London. One of Julia’s career highlights is the Canoe Slalom’s best ever Olympic success story to date of gold and silver medallists in the men’s Canoe Doubles (C2) category. Julia became an integral part of the EIS Technical PA team, which involved managing and mentoring analysts across a number of Olympic/Paralympic sports in 2012–2018. In 2013 Julia branched out to work with the Sport Wales Institute, which focused on developing and implementing their performance analysis team and strategy. Julia heads a team of more than 20 performance analysts across British Olympic and Paralympic sports. The role focuses on practitioner and discipline development through aligning the PA delivery to the sports “what it takes to win” programme with the ultimate goal of Olympic and Paralympic success.

Jason Williams PhD is acting as the Head of Learning and Teaching and Deputy Dean within the School of Technologies at Cardiff Metropolitan University. He has worked in academia for over 20 years in the areas of Performance Analysis and Computing with particular focus on rugby union. With his work in research and teaching he has been involved in the following area:, analyst for the International Rugby Board, Treasurer of the International Society of Performance Analysis of Sport, two international journal editorial board positions, ad hoc reviewer for 10 international journals, match analyst for the BBC, software developer and analyst for the Welsh Rugby Union and Welsh FA. He has over 50 refereed journal and conference articles along with book chapters. He has also overseen ten PhD completions and six PhD students enrolled.
Section I

The Background
1 The Importance of Feedback to Performance

Dana Maslovat and Ian M. Franks

1.1 Background

Participation in sport is typically undertaken with the intent to improve performance. One of the most important variables affecting learning and subsequent performance of a skill is feedback (see Schmidt et al., 2019, pp. 341–373, for an overview). Feedback involves sensory information resulting from a particular movement and one source of feedback is from the athlete’s own sensory channels (i.e., sight, hearing, touch, etc.), known as intrinsic or inherent feedback. Although some information from these sources provides a clear indication of performance (i.e., the ball missed the goal), the more detailed information (i.e., coordination of joint activity, amount of force produced, where to direct one’s attention) often requires experience in order for the performer to evaluate what they have just achieved. A second source of feedback usually comes from an outside source, typically a coach, and is meant to complement the intrinsic feedback. This information is known as extrinsic feedback and helps the athlete compare what was done to what was intended. This is usually achieved by drawing the attention of the performer to some key element of performance error.

For most complex skills, it is thought that extrinsic information accelerates the learning process and may be necessary to assist the athlete in reaching optimal performance levels (see Magill and Anderson, 2012 for a review). Presumably, the experience and background of the coach allows him or her to provide useful information about a given movement to aid in the development of that skill along with error detection and correction mechanisms. Thus extrinsic feedback can be thought of as a complement to intrinsic feedback. Extrinsic feedback can be delivered in two main forms; knowledge of results (KR) and knowledge of performance (KP). KR involves information pertaining to the outcome of the action (e.g., “you were 5 m away from the target”), while KP involves information pertaining to the movement pattern that caused the result (e.g., “you didn’t rotate your hips enough”). The majority of feedback from the coach involves KP, as often KR is inherently obvious from the athlete’s own feedback sources.
1.2 The Need for Valid and Reliable Feedback

In order to provide meaningful and reliable feedback, the coach must first observe and evaluate performance. Traditional coaching intervention has often involved subjective observations and conclusions based on the coach’s perceptions, biases and previous experiences. However, a number of studies have revealed that subjective observations are potentially both unreliable and inaccurate. Human memory systems have limitations, and it is almost impossible to remember accurately all the meaningful events that take place during an extended period of time (e.g., competition). These studies have shown, for example, that international-level soccer coaches could only recollect 30% of the key factors that determined successful soccer performance and were less than 45% correct in the post-game assessment of what occurred during a game (Franks and Miller, 1986, 1991). Furthermore even when experienced coaches are allowed to take notes whilst watching a game the probability of recalling critical events accurately was still only 59% (Laird and Walters, 2008).

If we consider how humans process information, the above results are not particularly surprising. Committing data to memory and then retrieving it at a later time is a complex process with many opportunities for interference. Distinctive portions of a competition (i.e., controversial decisions, exceptional technical performances, actions following stoppages in play, etc.) are often easily remembered by coaches and spectators alike, while non-critical events are more likely to be forgotten. This form of **highlighting**, when combined with emotions and personal bias of the observer, may cause a distorted perception of the game in total [for a review of episodic memory and its processes see Gronlund et al., (2007)]. Furthermore, our processing system has limitations which make it near impossible to view, assimilate and store all actions that take place within the playing area. These limitations result in the coach focusing attention on a specific area of play (usually what is considered to be the most critical area) with the peripheral action largely ignored.

Interestingly, the inaccuracies of subjective coaching observations are very similar to eyewitness reports during criminal situations, which are also typically considered to be unreliable and often incorrect (see Wright and Davies, 2007). In his paper on Eyewitness Testimony in Ulrich Neisser’s book “Memory Observed” Robert Buckhout (1982) explains succinctly the problem facing both eyewitnesses and coaches alike.

> The observer is an active rather than a passive perceiver and recorder; they reach conclusions on what they have seen by evaluating fragments of information and reconstructing them. They are motivated by a desire to be accurate as they impose meaning on the overabundance of information that impinges on their senses, but also by a desire to live up to the expectations of other people and to stay in their good graces.

Errors in eyewitness reports have been attributed to such things as increased arousal level (Clifford and Hollin, 1980), improper focus of attention (Wells and Leippe, 1981) or bias of the observer (Malpass and Devine, 1981). These factors are also present in a coaching environment. While accurate eyewitness testimony is of critical
The Importance of Feedback to Performance

importance during a criminal investigation, the same can also be said of coaching observations during competition situations, as this information forms the basis of the feedback presented by the coach.

The coaching process can be thought of as a complex ongoing cycle of performance, analysis and feedback, as shown in Figure 1.1 (flowchart adapted from Franks and Hughes, 2016). During and following athletic performance, it is the responsibility of the coach to observe and analyze the performance and combine this information with previous results and observances. This forms the basis for planning and implementation of upcoming practices to improve performance. Thus a successful coaching process hinges on the accuracy of collection and analysis of performance. Clearly, given the previous discussion, personal subjective observations are not sufficient and different observation tools are necessary for coaches to effectively instigate observable changes in athlete performance.

Surprisingly, given the importance of observation and analysis in the coaching process, there does not seem to be a standard or predefined system to monitor and evaluate performance. If reliance on the human information-processing system is problematic, we should find other ways to collect information during athletic performances. It should be apparent from the arguments presented earlier in this chapter that this information should be objective, unbiased and as comprehensive as possible. This can be achieved by creating a sport evaluation system, through the

Figure 1.1 Flowchart of performance, analysis, and feedback.
Source: adapted from Franks and Hughes, 2016.
use of notational analysis. One purpose of this book is to provide the reader with information pertaining to the development and implementation of such systems to improve coaching and performance in sport.

1.3 Video Feedback

Advances in technology have made the development of a notational analysis system a much less onerous task. Computerized recording allows for almost limitless storage, retrieval and analysis of data from a sporting competition in real time. Although these technologies will be further discussed in upcoming chapters, we introduce them now to highlight the importance of collecting objective information that can be used as feedback for athletes. Obvious benefits of interactive computer video analysis systems are that they can collect and store information that can be replayed to the athlete and reviewed numerous times. This reduces observer bias and enables a visual image of the event to be collected. It has been suggested that a potential drawback of using video is that too much information may be presented and the learner may not be able to concentrate on the important details of the skill. Thus, effective presentation of video feedback likely involves **cuing** from a coach (e.g., “focus on the release of the ball during the throw”) to highlight salient features during the viewing period (Kernodle and Carlton, 1992). Other alternatives include editing the videotape before showing it to an athlete or using slow motion to reduce the attention demands of the viewer. Use of video feedback also may change with the skill level of the learner. As opposed to experts, athletes at an early stage of learning will likely need considerable instruction from a coach to ensure they pay attention to the critical skill features and not be overwhelmed by the volume of information presented.

A further consideration is that analytical requirements differ greatly from sport to sport, thus resulting in a potentially very different video analysis system. For example, the coaching intervention for a team sport may differ greatly from that for an individual sport. Also, individual **closed** skills (in which events or the environment are predictable) may differ in their analysis when compared to individual **open** skills (in which events or the environment are unpredictable) (Del Rey, 1972). For individual sports involving closed skills (e.g., diving, gymnastics, golf), the focus of the evaluation typically revolves around how the pattern of movement is performed, as this is what primarily determines success in the sport. This is often achieved by comparing the movement pattern to a set criterion performance in order to determine where differences (errors) occur. To ensure this comparison is effective, clear criteria of expected performance must be established and understood by the athlete. Therefore, it is expected that the athlete should be involved in the analysis, such that they can improve their error detection and correction mechanisms to assist them with future attempts of the skill. When examining individual sports involving open skills (e.g., tennis, boxing, squash), a greater emphasis should be placed on the analysis of decision-making and tactics. Tactics play a much larger role in team sports, therefore the evaluation of performance should reflect this fact. For example, if we consider the involvement of the 22 players during a 90-minute soccer game, it becomes apparent that each player spends a majority of the time not in contact
with the ball. It is critical therefore that visual information related to “off the ball” behavior be taken into consideration.

1.4 Presenting Visual Feedback to Athletes

Even when reliable and valid information is collected about a performance the coach still has a number of decisions regarding how and when this feedback is to be presented (see Wulf and Shea, 2004 for a review). One consideration is the mode of presentation. Historically most coaches have tended to provide feedback verbally to their athletes; however, coaches are now realizing the benefits of presenting visual information in their instruction [a picture is really worth a thousand words (Weiss and Kimberley, 1987)]. One method of presenting this information to learners is via a model of performance. This model can be either the coach or peer demonstrating, or a video image (see Maslovat et al., 2010a for a review). This particular method of instruction has been shown to be more effective than simply allowing the performer to learn through practice alone (Ashford et al., 2006). The process of observing an image of correct performance has been extensively examined, due to the recent discovery of what is now known as the mirror neuron system (MNS): a network of neurons in the brain that activate during both physical performance and passive observation of a given movement (see Rizzolatti and Sinigaglia, 2010 for a review). This discovery provides neurophysiological evidence that during observation of a skill the body is experiencing similar neural activity in our motor system as if performing the skill, and may help explain why visual images of skilled performance are useful in accelerating the learning process. Watching a skill can be considered as a form of practice in which the brain performs all the same neurological actions required to perform the skill, yet the motor commands are inhibited from reaching the muscles and thus no movement occurs.

Interestingly, research has shown that the MNS is only active for movements with which the observer has had physical experience, or is part of the performer’s “motor repertoire”. For example, female ballet dancers show MNS activation while watching movements that are performed only by female dancers but do not show activation when observing movements that are performed only by male dancers (and vice versa for male ballet dancers), even though the dancers have watched movements of the opposite sex for many years (Calvo-Merino et al., 2006). In addition, watching a new dance routine did not produce MNS activation in observers, yet after five weeks of practicing the routine, MNS activation occurred during observation, confirming that motor experience with the task is necessary for this system to be active (Cross et al., 2006). The practical application of this research is that demonstrations should show the to-be-learned movement pattern at a skill level and manner similar to that being performed by the learner. For example, same-sex models have been shown to be more beneficial than opposite-sex models for observational learning (e.g., Griffin and Meaney, 2000). Similarly, showing a model that is learning the to-be-performed task can be a more effective demonstration than an expert model, especially if feedback is given pertaining to the errors made by the learning model (McCullagh and Caird, 1990). In both examples, it is
likely that the disparity between the motor repertoire of the observer and modeled movement pattern did not allow for MNS activation and thus reduced the effectiveness of the demonstration.

If familiarity with the model is an important factor in determining the usefulness of a demonstration, then it would be logical to assume that viewing oneself perform the action would be the most effective form of modeling. Indeed, self-observation has been considered to be superior to viewing another individual due to greater similarity in neural activation between observation and execution (Holmes and Calmels, 2008). Self-observation can be used as a feedback method, in which the observer watches the best attempt of the skill he or she has just performed, or in a feedforward method, in which a video of past performances is artificially manipulated to show the individual performing movements at a higher level than he or she can actually perform (known as self-modeling; see Dowrick, 1999 for a review). While both types of self-observation can be effective, feedforward self-modeling has been shown to significantly improve an athlete’s performance (Ste-Marie et al., 2011a; 2011b; see also Maile, 1985, as cited in Franks and Maile, 1991); however, it is important to realize that this method requires substantial time and effort by the coach to edit and assemble the appropriate videos.

1.5 Precision and Timing of Feedback

In addition to the mode of feedback presentation, the coach must also consider the precision and timing of this feedback. More precise feedback seems to be of more benefit; however, this does seem to be dependent on the skill level of the athlete. As the athlete’s skill level increases, so too must the precision of the feedback. Also dependent on skill level appears to be the amount of feedback. Although large amounts of feedback may be beneficial early on in the learning process, too much feedback later in learning may actually impair performance. It is thought that high-frequency feedback may result in a dependence on that feedback by the athlete, and therefore not allow him or her to perform correctly when the extrinsic feedback is no longer present such as during a competition situation (Schmidt et al., 1989). Thus, error detection and correction mechanisms may develop faster with reduced feedback or feedback that guides the athlete to the correction rather than simply changing behavior.

In terms of timing of feedback presentation, feedback during a skill will often interfere with performance as the athlete’s attention is divided between the feedback source and the skill itself (Maslovat et al., 2009). It also appears that feedback immediately following performance may not be optimal. Once an athlete performs a skill he or she should be encouraged to evaluate the performance and then compare the intrinsic feedback to the desired (even predicted) result. Providing feedback during this “self-reflection” timeframe can interfere with this process and in some cases may retard skill development, again by disrupting internal error detection and correction mechanisms (see Salmoni et al., 1984 for a review of KR timing). Thus although presentation of feedback is a critical role of the coach, there are many considerations to ensure this feedback is given correctly to maximize learning for the athlete.
1.6 Feedback and Attentional Focus

As we have summarized thus far, in order to optimize performance it is critical to understand the role of extrinsic feedback and carefully consider how and when feedback is presented. An area that has gained recent interest is the examination of feedback regarding where the performer should focus their attention (see Wulf, 2007 for a review). Attentional focus can broadly be considered as either internal (focus on one’s own movements) or external (focus on the environment or apparatus involved in the task). Although the difference between these foci can be subtle, research indicates that an external focus of attention improves skill learning, may prevent reliance on external feedback, and may even decrease the incidence of “choking” under pressure.

In one of the first studies to examine the role of the learner’s focus of attention, Shea and Wulf (1999) used a balancing task and instructed participants to focus on either their feet (internal focus) or the platform on which they were standing (external focus). Participants with an external focus outperformed those with an internal focus, a result that has been replicated many times with a variety of lab and sport-based tasks (e.g., Hodges and Franks, 2001; Wulf et al., 2002). In addition to the learning benefits, external attention may also allow for greater frequency of extrinsic feedback. Typically, providing feedback after every trial can actually hinder performance, as the learner may become too dependent on the extrinsic feedback, a situation known as the “guidance hypothesis” (Salmoni et al., 1984). However, an external focus of attention seems to negate the guidance effects of feedback, thus allowing for greater feedback frequency without the fear of overdependence by the performer (Wulf et al., 2002: 2010).

Another benefit of an external focus of attention relates to the phenomenon known as “choking”, whereby a skilled performer produces sub-optimal performance under the extreme pressures of competition (see Beilock and Gray, 2007 for a review). One explanation for choking suggests that highly practiced tasks are typically performed in an automatic nature, with little attention focused internally. However, under pressure the learner may shift attention to an internal focus, which is detrimental to performance (Beilock and Carr, 2001). Thus, feedback from an external source that encourages a shift in attention back to an external source (e.g., focus on the back of the rim for a basketball free throw rather than the release of the ball from the hand) may reduce or dispel the potentially harmful effects of choking, allowing the athlete to perform at an optimal level, even in high-pressure situations.

1.7 Summary

Extrinsic feedback provided by a coach has the potential to greatly affect performance by the athlete. Historically, coaching intervention has been based on subjective observations, which have been shown to be problematic. Bias, highlighting, limitations of memory and observational difficulties are just a few of the pitfalls associated with a subjective evaluation. Thus, successful coaching hinges on the collection and analysis of unbiased, objective data. Coaches should also carefully consider the many factors associated with feedback presentation, such as content,
amount and timing. Of prime consideration is the mode of feedback, with the use of appropriate visual demonstrations being one of the most useful methods to employ. In addition, thought should be given to providing feedback as to where the performer should direct their attention, in order to optimize performance within the stressful competition environment.
2 What is Performance Analysis?

Mike Hughes and Roger Bartlett

2.1 Notational Analysis

2.1.1 Introduction

Notational analysis is an objective way of recording performance, so that critical events in that performance can be quantified in a consistent and reliable manner. This enables quantitative and qualitative feedback that is accurate and objective. No change in performance of any kind will take place without feedback. The role of feedback is central in the performance improvement process, and by inference, so is the need for accuracy and precision of such feedback. The provision of this accurate and precise feedback can only be facilitated if performance and practice are subjected to a vigorous process of analysis.

Augmented feedback has traditionally been provided by subjective observations, made during performance by the coaches, in the belief that they can accurately report on the critical elements of performance without any observation aids. Several studies not only contradict this belief, but also suggest that the recall abilities of experienced coaches are little better than those of novices, and that even with observational training, coaches’ recall abilities improved only slightly. Furthermore, research in applied psychology has suggested that these recall abilities are also influenced by factors that include the observer’s motives and beliefs. The coach is not a passive perceiver of information, and as such his or her perception of events is selective and constructive, not simply a copying process. This importance of feedback to performance improvement, and the limitations of coaches’ recall abilities alluded to above, implies a requirement for objective data upon which to base augmented feedback, and the main methods of “objectifying” these data involve the use of video / notational analysis (Hughes and Franks, 1997, p. 11).

Coaches have been aware, consciously or unconsciously, of these needs for accuracy of feedback and have been using simple data gathering systems for decades. More recently, sports scientists have been using notational analysis systems to answer fundamental questions about game play and performance in sport. An early work, over some decades, on analysis of soccer was picked up by the then Director of Coaching at the Football Association, and this had a profound effect on the patterns of play in British football – the adoption of the “long ball” game. Generally, the first publications in Britain of the research process by notational analysis of sport were
in the mid 1970s, so as a discipline it is one of the more recent to be embraced by sports science. The publication of a number of notation systems in racket sports provided a fund of ideas used by other analysts. Because of the growth and development of sports science as an academic discipline, a number of scientists began using and extending the simple hand notation techniques that had served for decades. This also coincided with the introduction of personal computers, which transformed all aspects of data gathering in sports science. Currently hand and computerised notation systems are both used to equal extents by working analysts, although the use of computer databases to collate hand-notated data post-event makes the analyses much more powerful.

The applications of notation have been defined as:

1. tactical evaluation,
2. technical evaluation,
3. analysis of movement,
4. development of a database and modelling, and
5. for educational use with both coaches and players.

Most pieces of research using notation, or indeed any practical applications working directly with coaches and athletes, will span more than one of these purposes.

2.1.2 The Applications of Notation

2.1.2.1 Tactical Evaluation

The definition of tactical patterns of play in sports has been a profitable source of work for a number of researchers. The maturation of tactics can be analysed at different levels of development of a specific sport, usually by means of a cross-sectional design. The different tactics used at each level of development within a sport will inevitably depend upon technical development, physical maturation and other variables. The “maturation models” have very important implications for coaching methods and directions at the different stages of development in each of the racket sports. These tactical “norms” or “models”, based upon both technique and tactics, demonstrate how the different applications, defined above, can overlap.

Sanderson and Way (1979) used symbols to notate 17 different strokes, as well as incorporating court plans for recording accurate positional information. The system took an estimated 5–8 hours of use and practice before an operator was sufficiently skilful to record a full match actually during the game. In an average squash match there are about 1000 shots, and an analyst using this system will gather over 30 pages of data per match. Not only were the patterns of rally-ending shots (the Nth shot of the rally) examined in detail, but also those shots that preceded the end shot (N−1), to a winner or error, and the shots that preceded those (N−2), to a winner or error. In this way the rally-ending patterns of play were analysed. Not surprisingly, processing the data for just one match could take as long as 40 hours of further work. The major emphasis of this system was on the gathering of information concerning
What is Performance Analysis?

“play patterns” as well as the comprehensive collection of descriptive match data. Sanderson felt that “suggestive” symbols were better than codes, being easier for the operator to learn and remember. The main disadvantages of this system, as with all longhand systems, was the time taken to learn the system and the large amounts of data generated, which in turn needed so much time to process.

The 1980s and ’90s saw researchers struggling to harness the developing technology to ease the problems inherent in gathering and interpreting large amounts of complex data. Hughes (1985) modified the method of Sanderson and Way so that the hand-notated data could be processed on a mainframe computer. Eventually, the manual method was modified so that a match could be notated in-match at courtside directly into a microcomputer. This work was then extended to examine the patterns of play of male squash players at recreational, county and elite levels, thus creating empirical models of performance, although the principles of data stabilisation were not thoroughly understood at the time. This form of empirical modelling of tactical profiles is fundamental to a large amount of the published work in notational analysis. Comparing the patterns of play of successful and unsuccessful teams or players in elite competitions, world cup competitions, for example, enables the definition of those performance indicators that differentiate the two groups. This research template has been used in a number of sports to highlight the tactical parameters that determine success, and it has been extended in tennis to compare the patterns of play that are successful on the different surfaces on which the major tournaments are played.

Most of the examples for tactical applications of notation could appear in the other sections of direct applications of notational analysis, but their initial aims were linked with analysis of tactics. The interesting theme that is emerging, from some of the recent research, is that the tactical models that are defined are changing with time, as players become fitter, stronger, faster, bigger (think of the changes in rugby union since professionalisation in 1996), and the equipment changes – for example, the rackets in all the sports have become lighter and more powerful. Over a period of less than 15 years the length of rallies in squash, for elite players, has decreased from about 20 shots, to about 12 shots per rally. Reviews (Croucher, 1996; Hughes, Hughes and Behan, 2007; Nevill, Atkinson and Hughes, 2008;) of the application of strategies using notational analysis of different sports outline the problems, advantages and disadvantages associated with this function.

2.1.2.2 Technical Evaluation

To define quantitatively where technique fails or excels has very practical uses for coaches, in particular, and also for sports scientists aiming to analyse performance at different levels of development of athletes.

Winners and errors are powerful indicators of technical competence in racket sports and have often been used in research in notational analysis of net-wall games. It has been found that, for all standards of play in squash, if the winner: error ratio for a particular player in a match was greater than one, then that player usually won. (This was achieved with English scoring and a 19-inch tin.) Although this ratio is a
good index of technique, it would be better used with data for both players, and the ratios should not be simplified or decimalised. Rally-end distributions, winners and errors in the different position cells across the court, have often been used to define technical strengths and weaknesses. This use of these distributions as indicators is valid as long as the overall distribution of shots across the court is evenly balanced. This even distribution of shots rarely occurs in any net or wall game. Dispersions of winners and errors should be normalised with respect to the totals of shots from those cells. It would be more accurate to represent the winner, or error, frequency, from particular position cells, as a ratio to the total number of shots from those cells.

Similarly, performance indicators such as shots are insufficient and need to be expressed with more detail, for example shot to goal ratios (soccer). Even these, powerful as they are, need to be viewed with caution and perhaps integrated with some measure of shooting opportunities. In rugby union, simple numbers of rucks and mauls won by teams may not give a clear impression of the match; the ratio of “rucks won” to “rucks initiated” is a more powerful measure of performance. This too could be improved by some measure of how quickly the ball was won in critical areas of the pitch.

Many coaches seek the template of tactical play at the highest level for preparation and training of both elite players and/or teams, and also for those developing players who aspire to reach the highest position. Particular databases, aimed at specific individuals or teams, can also be used to prepare in anticipation of potential opponents for match play. This modelling of technical attainment has been replicated in many sports and forms the basis of preparation at the highest levels by the sports science support teams.

2.1.2.3 Movement Analysis

Reilly and Thomas (1976) recorded and analysed the intensity and extent of discrete activities during match play in field soccer. With a combination of hand notation and the use of an audio tape recorder, they analysed in detail the movements of English first-division soccer players. They were able to specify work-rates of the different positions, distances covered in a game and the percentage time of each position in each of the different ambulatory classifications. Reilly continually added to this database, enabling him to clearly define the specific physiological demands in not just soccer, but later all the football codes. This piece of work by Reilly and Thomas has become a standard against which other similar research projects can compare their results and procedures, and it has been replicated by many other researchers in many different sports.

Modern tracking systems have taken the chore out of gathering movement data, which was the most time-consuming application of notational analysis, and advanced computer graphics make the data presentation very simple to understand. Modelling movement has created a better understanding of the respective sports and has enabled specific training programmes to be developed to improve the movement patterns, and fitness, of the respective athletes.
2.1.2.4 Development of a Database and Modelling

Teams and performers often demonstrate a stereotypical way of playing and these are idiosyncratic models, which include positive and negative aspects of performance. Patterns of play will begin to establish themselves over a period of time but the greater the database then the more accurate the model. An established model provides for the opportunity to compare single performances against it.

The modelling of competitive sport is an informative analytic technique because it directs the attention of the modeller to the critical aspects of data that delineate successful performance. The modeller searches for an underlying signature of sport performance, which is a reliable predictor of future sport behaviour. Stochastic models have not yet, to our knowledge, been used further to investigate sport at the behavioural level of analysis. However, the modelling procedure is readily applicable to other sports and could lead to useful and interesting results.

Once notational analysis systems are used to collect amounts of data that are sufficiently large to define “norms” of behaviour, then all the ensuing outcomes of the work are based upon the principles of modelling. It is an implicit assumption in notational analysis in presenting a performance profile of a team or an individual that a “normative profile” has been achieved. Inherently this implies that all the variables that are to be analysed and compared have all stabilised. Most researchers assume that this will have happened if they analyse enough performances. But how many is enough? In the literature there are large differences in sample sizes.

These problems have very serious direct outcomes for the analyst working with coaches and athletes, in both practical and theoretical applications. It is vital when analysts are presenting profiles of performance that some measure of the stability of these data is known (Hughes, Evans and Wells, 2001; O’Donoghue, 2005; James, Mellalieu and Jones, 2005), otherwise any statement about that performance is spurious. The whole process of analysis and feedback of performance has many practical difficulties. The performance analyst working in this applied environment will experience strict deadlines and acute time pressures defined by the date of the next tournament, the schedule and the draw. The need then is to provide coaches with accurate information on as many of the likely opposition players, or teams, in the amount of time available. This may be achieved by the instigation of a library of team and/or player analysis files, which can be extended over time and receive frequent updating. Player files must be regularly updated by adding analyses from recent matches to the database held on each player.

Finally, some scientists have considered the use of a number of sophisticated techniques, such as neural networks, chaos theory, fuzzy logic and catastrophe theory, for recognizing structures, or processes, within sports contests. Each of these system descriptions, while incomplete, may assist in our understanding of the behaviours that form sports contests. Furthermore, these descriptions of sports contests need not be exclusive of each other, and a hybrid type of description (or model) may be appropriate in the future, a suggestion that remains only a point of conjecture at this time.
2.1.2.5 Educational Applications

It is accepted that feedback, if presented at the correct time and in the correct quantity, plays a great part in the learning of new skills and the enhancement of performance. Recent research, however, has shown that the more objective or quantitative the feedback, the greater effect it has on performance. However, in order to gauge the exact effect of feedback alone, complete control conditions would be needed in order to minimise the effect of other external variables, which is by definition impossible in real competitive environments. This experimental design is also made more difficult because working with elite athletes precludes large numbers of subjects.

Hughes and Robertson (1997) were using notation systems as an adjunct to a spectrum of tactical models that they have created for squash. The hand notation systems were used by the Welsh national youth squads, the actual notation being completed by the players, for the players. It is believed that in this way the tactical awareness of the players, doing the notation, was heightened by their administration of these systems. This type of practical educational use of notation systems has been used in a number of team sports, soccer, rugby union, rugby league, basketball, cricket, and so on, by players in the squads, substitutes, injured players, as a way of enhancing their understanding of their sport, as well as providing statistics on their team.

2.2 Biomechanics – What Is the Biomechanical View of Performance Analysis?

When the BOA set up the Performance Analysis Steering Group, bringing together biomechanists and notational analysts, there was some scepticism as to whether these two groups of sport scientists had enough in common to make the Group meaningful. After all, sports biomechanics is concerned with fine detail about individual sports techniques while notational analysts are more concerned with gross movements or movement patterns in games or teams. Furthermore, notational analysts are more concerned with strategic and tactical issues in sport than with technique analysis and the two disciplines do not share a common historical background.

However, the similarities between the two groups of analysts are far more marked than the differences. A crucial similarity is evident when we look at the other sport science disciplines: sports psychology and physiology (including nutrition) essentially focus on preparing the athlete for competition. Performance analysts, in contrast, focus on the performance in competition to draw lessons for improving performance and this is true of both notational and biomechanical analysis. Both are fundamentally concerned with the analysis and improvement of performance. Both are rooted in the analysis of human movement. Both make extensive use of video analysis and video-based technology. Although both evolved from manual systems, they now rely heavily on computerised analysis systems. Both have a strong focus on data collection and processing. Both produce vast amounts of information – this is sometimes claimed to be a strength of both sports biomechanics and notational analysis; however, it often requires careful attention in providing feedback to athletes and coaches. Many of these important topics were covered in a special issue of the
What is Performance Analysis?

In addition, biomechanists and notational analysts both emphasise the development of systematic techniques of observation. This is more obvious in notational analysis and, perhaps, in the somewhat-neglected “qualitative” analysis approach of biomechanics than in fully quantitative “computerised biomechanical analysis”, which seems somewhat out of fashion with coaches at present – for reasons that we will explore in a later chapter. Both have a strong focus on the provision of feedback to the coach and performer to improve performance and each group is now learning and adopting best practice from the other.

Biomechanics and notational analysis are, somewhat mischievously if with some justification, accused by other sports scientists of lacking theoretical foundations and being over-concerned with methodology: this might explain the attraction of notational analysis and qualitative biomechanical analysis to coaches as they are immediately seen as being of practical relevance. However, theoretical models do exist in both biomechanics and notational analysis. These can also be effectively represented graphically – by flowcharts for notational analysis and hierarchical technique models for biomechanics (Bartlett, 1999; Hughes and Franks, 1997). Both disciplines have “key events” as important features of their theoretical foundations. This again helps to present information clearly and simply to coaches and sports performers, as evidenced by the current popularity of “coach-friendly” biomechanical analysis packages, such as Dartfish (www.dartfish.com/en/), Silicon COACH (www.siliconcoach.com) and Quintic (www.quintic.com). These theoretical models can, at least in principle, be mapped onto the sophisticated approaches of artificial intelligence, such as expert systems and neural net processing, hopefully offering exciting developments in performance enhancement by the next decade. The theoretical models are highly sport, or technique, specific but with general principles, particularly across groups of similar sports or techniques. Both have strong theoretical and conceptual links with other areas of sport science and information technology, for example the dynamic systems approach of motor control.

Many practical issues which impinge strongly on performance improvement are common to biomechanics and notational analysis. These include optimising feedback to coaches and athletes, the management of information complexity, reliability and validity of data and future exploitation of the methods of artificial intelligence. Sharing of approaches and ideas has already began to have mutual benefits as was evident in the very successful NCF/BOA High-performance Coaches workshop held in Cardiff at Easter 1999, which was highly acclaimed by many of the coaches attending. But since then many biomechanists have clung to their more traditional roles and have shied away from direct involvement in performance analysis. Fortunately recent research into dynamic systems has opened common ground for notational analysts (perturbations and critical incident theories), biomechanists (variance in performance) and motor control analysts (skill-acquisition theory) – see McGarry and Franks (1996), Davids et al. (2003b), Hughes (2005) and Kelso (1997).

But, you might ask, is performance analysis really helpful in improving performance? Perhaps your sport uses sports psychologists, nutritionists, physiologists...
and conditioning consultants but no performance analyst of any “hue”. Well, biomechanics are employed in the sports science support teams for athletics, gymnastics, swimming and speed skating. Notational analysts are employed, for example, for netball, badminton, hockey, squash, sailing, cycling, canoeing, badminton, Taekwando and disability basketball. Cricket, from the ECB to county cricket clubs, uses the services of biomechanists and notational analysts, as do many other sports, such as golf and tennis (biomechanics) and rugby and soccer (notational analysis).

As to their value for the coach, biomechanics identifies the features of performance that relate to good and bad techniques, thereby helping to identify how techniques can be improved. It also facilitates comparative analysis of individual performers and helps to identify injurious techniques. The latter is well exemplified by the contribution made by biomechanists to establishing the link between low back injury and the mixed technique in cricket fast bowling (for a brief review, see Elliott et al., 1996). Notational analysis identifies the performance indicators that relate to good and bad team performance and identifies good and bad performances of team members. It, therefore, facilitates comparative analysis of teams and players. In addition, it helps to assess the physiological and psychological demands of various games (for examples, see Bartlett, 2001).

Of all the sports sciences, performance analysis is the one most influenced by technological changes. Digital video and improvements in computer processing speeds and capacities have transformed biomechanical and notational analysis almost beyond recognition in the last ten years, enabling faster turn-around times for feedback (another topic for a later article) and a far more realistic response to coaches and performers. The latter is evident, for example, by comparing crude “stick-figure” displays (Figure 2.1) of earlier biomechanical analyses (often only produced weeks after filming) by the models available in real-time from modern optoelectronic systems such as SIMM (Figure 2.2) (from the Motion Analysis Corporation of Santa Rosa, CA: www.motionanalysis.com) and Vicon (from Oxford

![Figure 2.1 Stick figure.](image-url)
What is Performance Analysis?

Dynamics: www.vicon.com). These systems are not yet routinely used by coaches and performers, but this is changing rapidly: the SRA is looking to install such a system for training and feedback in the squash centre in Manchester, where the English Institute of Sport Regional Centres have a staff of 29 analysts who use both notation and biomechanical software with a variety of sports, but mainly squash and cycling.

2.3 Conclusions

The use of systematic observation instruments provides researchers with a method of collecting behavioural data on both the coach and the athlete. These data can be analysed and processed in a variety of ways to provide a descriptive profile that can be used for giving both the athlete and the coach feedback about their actions. Advances in both computer and video technology can make this observation process more efficient and also provide the coach with audio-visual feedback about their