PHYSIOLOGICAL CONSEQUENCES OF BRAIN INSULIN ACTION

INSULIN

EDIT<mark>ed by</mark> André kleinridders

Physiological Consequences of Brain Insulin Action

The brain is crucial for the regulation of whole-body metabolism and behavior. The pancreas-derived hormone insulin modulates brain function and affects energy metabolism as well as cognition. This is partially achieved by modulating several types of brain cell populations including those relevant to satiety and reward. Importantly, brains of Alzheimer's disease patients exhibit a signature of brain insulin resistance with perturbed brain metabolism. This book will cover the basics of insulin signaling in the brain and will describe concepts of insulin resistance, a feature of type 2 diabetes. Moreover, insulin's effect on cognitive function will be pointed out and the association between brain insulin resistance and neurodegenerative diseases discussed. Additionally, potential behavioral and pharmacological concepts which can affect brain insulin signaling will be summarized.

Key Features:

- Summarizes insulin and the closely related IGF-1 receptor signaling
- Depicts concepts of insulin resistance
- Highlights the importance of conserved brain insulin signaling for brain function, metabolism, and behavior
- Describes potential behavioral and pharmacological approaches to support brain insulin signaling

Oxidative Stress and Disease

Series Editor: Enrique Cadenas, MD, PhD Helmut Sies, MD University of Southern California School of Pharmacy Los Angeles, California

PUBLISHED TITLES

Mitochondria in Liver Disease edited by Derick Han and Neil Kaplowitz

Fetal and Early Postnatal Programming and its Influence on Adult Health edited by Mulchand S. Patel and Jens H. Nielsen

> Biomedical Application of Nanoparticles edited by Bertrand Rihn

The Biology of the First 1,000 Days edited by Crystal D. Karakochuk, Kyly C. Whitfield, Tim J. Green, and Klaus Kraemer

Hydrogen Peroxide Metabolism in Health and Disease edited by Margreet C M Vissers, Mark Hampton, and Anthony J. Kettle

> Glutathione edited by Leopold Flohé

Vitamin C: Biochemistry and Function edited by Margreet C M Vissers and Qi Chen

Cancer and Vitamin C edited by Margreet C M Vissers and Qi Chen

Mammalian Heme Peroxidases: Diverse Roles in Health and Disease edited by Clare Hawkins and William M. Nauseef

Redox Regulation of Differentiation and De-differentiation edited by Carsten Berndt and Christopher Horst Lillig

> Proteostasis and Proteolysis edited by Niki Chondrogianni, Elah Pick and Anna Gioran

Oxidative Eustress in Exercise Physiology edited by James N. Cobley and Gareth W. Davison

Physiological Consequences of Brain Insulin Action edited by André Kleinridders

For more information about this series, please visit: https://www.crcpress.com/Oxidative-Stress-and-Disease/book-series/CRCOXISTRDIS

Physiological Consequences of Brain Insulin Action

Edited by André Kleinridders

CRC Press is an imprint of the Taylor & Francis Group, an informa business

First edition published 2023 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 André Kleinridders

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.

ISBN: 9780367529482 (hbk) ISBN: 9780367529512 (pbk) ISBN: 9781003079927 (ebk)

DOI: 10.1201/9781003079927

Typeset in Joanna by codeMantra

CONTENTS

Series Preface / vii Preface / ix Acknowledgements / xi Editor / xiii Contributors / xv Abbreviations / xxi

1 • MOLECULAR MECHANISMS OF BRAIN INSULIN SIGNALING / 1 Simran Chopra, Robert Hauffe, and André Kleinridders

- 2 INSULIN/IGF SIGNALING IN EARLY BRAIN DEVELOPMENT / 21 Selma Yagoub and Rachel Lippert
- 3 INSULIN SIGNALING MODULATES NEURONAL METABOLISM / 35 Oian Huang, Jialin Fu, Kolly Ang

Qian Huang, Jialin Fu, Kelly Anne Borges, and Weikang Cai

 REGULATION OF GLIAL FUNCTION BY INSULIN PEPTIDES / 53

> Ana M. Fernandez, Laura Martinez-Rachadell, Patricia Miranda-Azpiazu, and Ignacio Torres Aleman

5 • NEUROENDOCRINE INTERACTIONS IN THE CONTROL OF GLUCOSE- AND ENERGY HOMEOSTASIS / 63

Kaj Kamstra and Alexander Tups

6 • HYPOTHALAMIC NEURONAL CIRCUITS ARE MODULATED BY INSULIN AND IMPACT METABOLISM / 79

Tadeu de Oliveira Diz, Sabela Casado, Rubén Nogueiras, and Sulay Tovar

- 7 INSULIN AND BRAIN REWARD SYSTEMS / 105 Brian C. Liu, Qingchen Zhang, and Emmanuel N. Pothos
- 8 THE IMPACT OF INSULIN ON BRAIN SEROTONERGIC SYSTEM: CONSEQUENCES ON DIABETES-ASSOCIATED MOOD DISORDERS / 125 Hugo Martin, Sebastian Bullich, Bruno P. Guiard, and Xavier Fioramonti
- 9 ORGAN CROSS-TALK REGULATES (BRAIN) INSULIN ACTION / 139 Thomas Laeger
- 10 INSULIN RESISTANCE AS A RISK FACTOR FOR ALZHEIMER'S DISEASE / 157 Miren Ettcheto, Amanda Cano, Elena Sanchez-Lopez, Carme Auladell, Jaume Folch, and Antoni Camins
- 11 BRAIN INSULIN ACTION IN THE CONTROL OF METABOLISM IN HUMANS / 177 Stephanie Kullmann
- 12 IMPACT OF DIETARY AND EXERCISE INTERVENTIONS ON BRAIN INSULIN ACTION AND BRAIN FUNCTION / 195 Stefan Kabisch
- 13 PHARMACOLOGICAL AND SURGICAL INTERVENTIONS TO IMPROVE BRAIN INSULIN RESISTANCE / 219

Linus Haberbosch, Lukas Maurer, and Reiner Jumpertz-von Schwartzenberg

Index / 237

SERIES PREFACE

PHYSIOLOGICAL CONSEQUENCES OF BRAIN INSULIN ACTION

EDITOR: ANDRÉ KLEINRIDDERS

THE EDITOR

Dr. André Kleinridders is a Professor for Experimental and Molecular Nutritional Medicine at the Institute of Nutritional Science at the University of Potsdam. Prof. Kleinridders' research programs address the impact of brain insulin signaling on whole body pathophysiology and behavior with implications for diabetes, obesity and neurodegeneration. His studies focus on understanding the mechanisms of central insulin resistance (involving impairment of mitochondrial function) and its consequences on energy homeostasis and neurological alterations associated with aging. Dr. Kleinridders' expertise in endocrinology and genetics expands to areas of high significance for human pathophysiology, including metabolism, insulin signaling, and insulin resistance, the latter an umbrella term with implications for not only diabetes and obesity but also for neurodegenerative disorders, such as Alzheimer's disease. His research focuses on insulin action in the brain and its effect on mitochondrial stress responses and reduction of diet-induced weight gain. His recent publications establish Dr. Kleinridders' unique research focus on the role of brain insulin in human pathophysiology.

PHYSIOLOGICAL CONSEQUENCES OF BRAIN INSULIN ACTION

PHYSIOLOGICAL CONSEQUENCES OF BRAIN INSULIN ACTION, focuses on different aspects of brain insulin and its regulation of a myriad of systemic effects ranging from starve-feed cycles to behavioral patterns. This book is particularly attractive because it places brain insulin signaling in the physiologic maintenance of whole-body homeostasis as well as impairment of brain insulin signaling in the pathology of diabetes and obesity. Moreover, brain insulin resistance is a critical factor in the pathogenesis of Alzheimer's disease, sometimes termed diabetes type III, hence the significance of brain insulin in modulation of cognitive functions. The book entails mechanistic aspects of brain insulin signaling and that triggered by activation of the insulin-like growth factor receptor (IGF1R), the regulation of neuronal circuits and how insulin modulates metabolism in different brain cell populations. How hypothalamic insulin signaling controls energy metabolism, food intake, and behavior, is viewed among the systemic effects of brain insulin. These chapters expand the effects of brain insulin in terms of insulin resistance as it occurs in type 2 diabetes and Alzheimer's disease as well

as diseases associated with protein misfolding. Pharmacological and dietary interventions that have the potential to overcome insulin resistance are also addressed.

Overall, the major thrust of this book is the recognition of the multifaceted effects of brain insulin and its signaling pathways not only in the brain and in different brain cell populations but how brain insulin modulates systemic tissue functions. This acquires further relevance in terms of brain insulin resistance and its impairment of wholebody homeostasis and association with cognitive deficits.

> ENRIQUE CADENAS HELMUT SIES

Series Editors Oxidative Stress and Disease

PREFACE

The discovery of insulin represents a landmark achievement in medical sciences. Insulin was discovered by Frederick Grant Banting and Charles Herbert Best in the laboratory of John James Rickard McLeod more than 100 years ago and saved millions of lives from a formerly non-curable disease. While type 1 diabetes is characterized by insulin deficiency, which can be treated by the administration of insulin, the majority of patients suffer from type 2 diabetes. These patients exhibit initially reduced sensitivity to insulin, known as insulin resistance. Insulin resistance causes reduced glucose uptake in skeletal muscle and adipose tissue. In the liver, insulin resistance causes deteriorated hepatic glucose production, leading to elevated blood glucose levels overall. Although glucose uptake in the brain is mostly independent of insulin, insulin and its receptor have already been detected in the late 1960s and 1970s in the brain, and research over the last decades has clearly demonstrated that the brain is an insulin-sensitive organ.

Insulin in the brain regulates food intake, affects energy metabolism and glucose handling in peripheral tissues and even modulates fertility. In addition, there is ample evidence that insulin exhibits neuroprotective function. The presence of brain insulin resistance is not only a feature of unhealthy obesity but is also observed in the brains of patients suffering from Alzheimer's disease. Together, these observations highlight the importance of the precise regulation of insulin action in the central nervous system for a healthy metabolism and proper cognitive function.

This book will cover the molecular mechanisms of insulin signaling and the establishment of insulin resistance. As the brain shows region-specific differences in terms of function and cell composition, cell- and region-specific effects of insulin action are discussed. Diabetes-associated disorders including mood disorders and neurodegenerative diseases will be described and associated with brain insulin resistance. The complex interaction of peripheral organs with the brain is characterized to a great extent in this book, as is the hormonal crosstalk of insulin with leptin in the central nervous system. Importantly, novel insights about brain insulin signaling in humans will be explained in addition to behavioral and pharmacological treatment options to counteract insulin resistance. In summary, this book will provide a comprehensive overview about the physiological consequences of brain insulin action.

ACKNOWLEDGEMENTS

I would like to thank all the people who helped with the preparation of this book. A special thanks goes to all authors and co-authors who dedicated their time and work to contribute to important chapters. Without their efforts, this book would not have been possible.

EDITOR

Prof. Dr. André Kleinridders is a Professor for Experimental and Molecular Nutritional Medicine at the Institute of Nutritional Science at the University of Potsdam, Germany. Dr. Kleinridders' research programs aim at understanding causes and consequences of brain insulin resistance with implications for diabetes, obesity and neurological disorders. His studies focus on the interaction of mitochondrial function and insulin signaling and its consequences on energy homeostasis and behavior. Several publications establish Dr. Kleinridders' unique research focus on the role of brain insulin in metabolic disorders.

CONTRIBUTORS

CARME AULADELL Department of Cellular Biology, Physiology and Immunology, Faculty of Biology University of Barcelona Barcelona, Spain

KELLY A. BORGES Department of Biomedical Sciences New York Institute of Technology College of Osteopathic Medicine Old Westbury, New York, USA

SEBASTIAN BULLICH Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI) Toulouse University Toulouse, France

WEIKANG CAI Department of Biomedical Sciences New York Institute of Technology College of Osteopathic Medicine Old Westbury, New York, USA

ANTONI CAMINS

Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació Universitat de Barcelona Barcelona, Spain and Biomedical Research Networking Centre Neurodegenerative Diseases (CIBERNED) Madrid, Spain and Institut de Neurociències Universitat de Barcelona Barcelona, Spain

AMANDA CANO

Biomedical Research Networking Centre Neurodegenerative Diseases (CIBERNED) Madrid, Spain and Institute of Nanoscience and Nanotechnology (IN2UB) University of Barcelona Barcelona, Spain and Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències de l'Alimentació Universitat de Barcelona Barcelona, Spain and Research Center and Memory Clinic, Fundació Ace Alzheimer Center Barcelona Barcelona, Spain

SABELA CASADO Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS) Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS) Santiago de Compostela, Spain and CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) Madrid, Spain SIMRAN CHOPRA Institute of Nutritional Science, Molecular and Experimental Nutritional Medicine University of Potsdam Nuthetal, Germany MIREN ETTCHETO Departament de Farmacologia, Toxicologia i Química Terapèutica, Facultat de Farmàcia i Ciències de l'Alimentació Universitat de Barcelona Barcelona, Spain and

Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut Universitat Rovira i Virgili Reus, Spain and Biomedical Research Networking Centre Neurodegenerative Diseases (CIBERNED) Madrid, Spain and Institut de Neurociències Universitat de Barcelona Barcelona, Spain

ANA M. FERNANDEZ Department of Functional and Systems Neuroscience Cajal Institute, CSIC Madrid, Spain and Ciberned

XAVIER FIORAMONTI Univ. Bordeaux Bordeaux INP NutriNeuro, Bordeaux, France

JAUME FOLCH

Departament de Bioquímica i Biotecnologia, Facultat de Medicina i Ciències de la Salut Universitat Rovira i Virgili Reus, Spain and Biomedical Research Networking Centre Neurodegenerative Diseases (CIBERNED) Madrid, Spain

JIALIN FU

Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Section of Vascular Cell Biology, Joslin Diabetes Center Harvard Medical School Boston, Massachusetts, USA

BRUNO P. GUIARD

Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI) Toulouse University Toulouse, France

LINUS HABERBOSCH

Department of Endocrinology and Metabolic Diseases Charité University Medicine Berlin, Germany

ROBERT HAUFFE

Institute of Nutritional Science, Molecular and Experimental Nutritional Medicine University of Potsdam Nuthetal, Germany

QIAN HUANG Department of Biomedical Sciences New York Institute of Technology College of Osteopathic Medicine Old Westbury, New York, USA

Madrid, Spain

REINER JUMPERTZ-VON SCHWARTZENBERG German Center for Diabetes Research (DZD) Neuherberg, Germany and Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology Eberhard-Karls University Tübingen Tübingen, Germany

STEFAN KABISCH Clinic of Endocrinology and Metabolic Medicine Campus Benjamin Franklin Charité University Medicine Berlin, Germany and German Center for Diabetes Research (DZD) München-Neuherberg, Germany

KAJ KAMSTRA

Centre for Neuroendocrinology and Brain Health Research Centre University Otago Dunedin, New Zealand and Department of Physiology Dunedin School of Medicine, University of Otago Dunedin, New Zealand

ANDRÉ KLEINRIDDERS

Institute of Nutritional Science, Molecular and Experimental Nutritional Medicine University of Potsdam Nuthetal, Germany

STEPHANIE KULLMANN

Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich University of Tübingen Tübingen, Germany and German Center for Diabetes Research (DZD) Tübingen, Germany

THOMAS LAEGER Physiology and Pathophysiology of Nutrition University of Potsdam Potsdam, Germany RACHEL N. LIPPERT 'Neurocircuit Development and Function' Junior Research Group German Institute of Human Nutrition Nuthetal, Germany and German Center for Diabetes Research (DZD) Düsseldorf, Germany and NeuroCure Cluster of Excellence Charité – Universitätsmedizin Berlin, Germany

BRIAN C.LIU

Department of Immunology (former Integrative Physiology and Pathobiology), Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences Tufts University School of Medicine Boston, Massachusetts, USA

HUGO MARTIN Univ. Bordeaux Bordeaux INP NutriNeuro.

Bordeaux, France

LAURA MARTINEZ-RACHADELL

Department of Functional and Systems Neuroscience Cajal Institute, CSIC Madrid, Spain and Ciberned Madrid, Spain

LUKAS MAURER

Department of Endocrinology and Metabolic Diseases Charité University Medicine Berlin, Germany

PATRICIA MIRANDA-AZPIAZU

Laboratory of Neurobiology of Insulin Peptides Achucarro Basque Center for Neuroscience Leioa, Spain

RUBÉN NOGUEIRAS

Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS) Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS) Santiago de Compostela, Spain and CIBER Fisiopatología de la Obesidad y Nutrición

(CIBERobn) Madrid, Spain

TADEU DE OLIVEIRA DIZ

Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS) Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de

Compostela (IDIS) Santiago de Compostela, Spain

EMMANUEL N. POTHOS

Department of Immunology (former Integrative Physiology and Pathobiology), Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences Tufts University School of Medicine

Boston, Massachusetts, USA

ELENA SANCHEZ-LOPEZ

Biomedical Research Networking Centre Neurodegenerative Diseases (CIBERNED) Madrid, Spain and Institute of Nanoscience and Nanotechnology (IN2UB) University of Barcelona Barcelona, Spain and Unitat de Farmàcia, Tecnologia Farmacèutica i Fisico-química, Facultat de Farmàcia i Ciències

de l'Alimentació

Universitat de Barcelona Barcelona, Spain

IGNACIO TORRES ALEMAN Ciberned Madrid, Spain and Laboratory of Neurobiology of insulin peptides Achucarro Basque Center for Neuroscience Leioa, Spain and Ikerbasque Foundation for Science Bilbao, Spain

SULAY TOVAR

Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS) Universidade de Santiago de Compostela, Instituto

de Investigaciones Sanitarias de Santiago de Compostela (IDIS)

Santiago de Compostela, Spain

and

CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn) Madrid, Spain

ALEXANDER TUPS

Centre for Neuroendocrinology and Brain Health Research Centre University Otago Dunedin, New Zealand and Department of Physiology Dunedin School of Medicine, University of Otago Dunedin, New Zealand

SELMA YAGOUB

'Neurocircuit Development and Function' Junior Research Group German Institute of Human Nutrition Nuthetal, Germany

QINGCHEN ZHANG

Department of Immunology (former Integrative Physiology and Pathobiology), Program in Pharmacology and Experimental Therapeutics and Pharmacology and Drug Development, Graduate School of Biomedical Sciences Tufts University School of Medicine Boston, Massachusetts, USA

NOTICE

Scientific knowledge constantly advances. The authors and editor reassessed their sources of information, which they considered as solid to give detailed information about the respective scientific topics. Yet due to possible human error and/or scientific progression, neither the editor nor the authors nor any other party warrants that the presented information of this book is in every aspect accurate and thus disclaims responsibility for any errors or omissions of the provided information in this work.

ABBREVIATIONS

[Ca2+]i	Cytosolic Ca ²⁺ Concentration	BAT	Brown Adipose Tissue
5-HT	Serotonin	BBB	Blood–Brain Barrier
AARE	Amino Acid Response Element	BCAA	Branched-Chain Amino Acids
ACE	Angiotensin-Converting	Bcl-2	B-cell Lymphoma 2
	Enzyme	BCSF	Blood–Cerebrospinal Fluid
Acrp30	Adipocyte Complement-Related		Barrier
	Protein of 30 kDa	BDI	Beck's Depression Inventory
AD	Alzheimer's Disease	BDNF	Brain-Derived Neurotrophic
ADCY	Adenylate Cyclase		Factor
AdipoR	Adiponectin Receptor	BHB	Beta-Hydroxybutyrate
ADP/ATP	Adenosine Di-/Triphosphate	BIR	Brain Insulin Resistance
Ads	Antidepressants	BMI	Body Mass Index
AGE	Advanced Glycation	BOLD	Blood-Oxygen-Level-
	End-Products		Dependent Contrast
AgRP	Agouti-Related Protein	CART	Cocaine and Amphetamine-
AKT/PKB	Ak Strain Transforming		Related Transcript
	Kinase/Protein Kinase B	CBF	Imaging or Cerebral Blood Flow
AMPA	Alpha-Amino-3-Hydroxy-5-	CDKAL1	Cyclin-Dependent Kinase 5
	Methyl-4-Isoxazolepropionic		Regulatory Subunit-Associated
	Acid		Protein 1-Like 1
АМРК	5'AMP-Activated Protein Kinase	ChREBP	Carbohydrate-Response
ANGPTL6	Angiopoietin-Related Protein 6		Element-Binding Protein
ANLS	Astrocyte-Neuron Lactate	CNO	Clozapine-N-Oxyde
	Shuttle	CNS	Central Nervous System
APOE	Apolipoprotein E	CRE	Camp Response Element
ARC	Arcuate Nucleus	CREB	Camp Response Element
ASD	Autism Spectrum Disorder		Binding Protein
ATF4	Activating Transcription Factor 4	CRP	C-Reactive Peptide
Αβ	Amyloid Beta (Aβ)	CSF	Cerebrospinal Fluid
BACE1	Beta-Secretase 1	CVD	Cardiovascular Disease
Bad	BCL2 Associated Agonist Of	DA3-CH	GLP-1/GIP Dual Receptor
	Cell Death		Agonist

DAG	Diacyl Glycerol	GCN2	General Control
DASH	Dietary Approaches to Stop		Nonderepressible 2
	Hypertension	GDF15	Growth/Differentiation
DAT	Dopamine Transporter		Factor 15
db/db	Leptin Receptor-Deficient	GDP/GTP	Guanosine Di-/Triphosphate
DCX	Doublin or Lissencephalin-X	GH	Growth Hormone
DHA	Docosahexaenoic Acid	GHRH	Growth Hormone Releasing
DIO	Diet-Induced Obesity		Hormone
DKK1	Dickkopf-Related Protein 1	GHSR	Growth Hormone Secretagogue
DM2	See T2D, T2DM		Receptor
DMH	Dorso-Medial Hypothalamus	GI	Glycemic Index
DPP-4	Dipeptidyl Peptidase-4	GIP	Glucose-Dependent
DRD2	Dopamin Receptor D2		Insulinotropic Polypeptide;
DREADD	Designer Receptor Exclusively		Gastric Inhibitory Peptide
	Activated by Designer Drug	GIRKO	Glial Insulin Receptor
DRN	Dorsal Raphe Nucleus		Knock-Out
DRP1	Dynamin-Related Protein 1	GLP1	Glucagon-Like Peptide 1
Dvl	Dishevelled	GluA1	Glutamate Receptor 1
EEG	Electroencephalography	GLUT	Glucose Transporter
EGF	Epidermal Growth Factor	GPCR	G-Protein-Coupled Receptor
eIF2α	Eukaryotic Initiation Factor 2 Alpha	GRB2, Grb-2	Growth Factor Receptor-Bound Protein 2
Emx-Cre	Emx Locus Cre Recombinase	GRP94	Endoplasmin
EOAD	Early-Onset AD	GS	Glycogen Synthase
EPA	Eicosapentaenoic Acid	GSK	Glycogen Synthase Kinase
EPAC	Exchange Protein Activated by	GSK3B	Glycogen Synthase Kinase-38
	Camp	GWAS	Genome Wide Association
ER	Endoplasmic Reticulum		Study
ERK	Extracellular Signal-Regulated	Hb	Habenula
	Kinase	HFD	High-Fat Diet
ETC	Electron Transport Chain	HGP	Hepatic Glucose Production
F2,6P2	Fructose-2,6-Bisphosphate	HMG	Hemimegalencephaly
FA	Friedreich's Ataxia	HMG-CoA	B-Hydroxy
fa/fa	Zucker Fatty Rat		β-Methylglutaryl-CoA
FABP2	Fatty-Acid Binding Protein 2	HMW	High-Molecular-Weight
FDA	Food And Drug Administration	HOMA-IR	Homeostasis Model Assessment
FDG	¹⁸ F Fluorodeoxyglucose		of Insulin Resistance
FDG-PET	2-Fluoro-2-Deoxy-D-Glucose	HPA axis	Hypothalamic–Pituitary–
EEA	Free Fatty Acid	USCAC	Hoperen Sulfato
FIA ECE 2	Fibroblast Growth Factor 2	IISGAG	Clycosaminoglycan
FGF21	Fibroblast Growth Factor 21	ICV	Intracerebroventricular
FGFR	Fibroblast Growth Factor	IDF	Insulin Degrading Enzyme
IGIN	Receptor	IDI	Intranasal Delivery of Insulin
fmri	Functional Magnetic Resonance	IGF-1 IGF1	Insulin-Like Growth Factor 1
	Imaging	IGF-1R. IGF1R	Insulin-Like Growth Factor 1
FOXO	Forkhead Box O	101 110,101 110	Receptor
FTO	Fused Toos and Obesity	IGF2	Insulin like Growth Factor 2
Fzd	Pused-toes and Obesity		
1.20	Frizzled	IGFBP	Insulin-Like Growth Factor
G6P	Frizzled Glucose-6-Phosphate	IGFBP	Insulin-Like Growth Factor Binding Protein
G6P GABA	Frizzled Glucose-6-Phosphate Gamma-Amino Butyric Acid	IGFBP	Insulin-Like Growth Factor Binding Protein Inhibitor of Nuclear Factor

IL	Interleukin	ME	Median Eminence
IL-6	Interleukin 6	MEG	Magnetoencephalography
ILP	Insulin Peptides	MEK	Mitogen-Activated Protein
IP3	Inositol-1,4,5-Triphosphate		Kinase
IP3R	Inositol-1,4,5-Triphosphate	MFN1/2	Mitofusin 1/2
	(IP3) Receptor	MMSE	Mini-Mental State Examination
IQ	Intelligence Quotient	MMW	Middle-Molecular-Weight
IR, InsR, INSR	Insulin Receptor	MRI	Magnetic Resonance Imaging
IRE1	Serine/Threonine-Protein	MRN	Median Raphe Nucleus
	Kinase/Endoribonuclease	MSR	Mitochondrial Stress Response
IRS	Insulin Receptor Substrate	mTNS	Medial Nucleus of the Solitary
IRX3	Iroquois Homeobox Protein 3		Tract
iv	Intravenous	mTOR	Mechanistic Target of
iv GTT	Intravenous Glucose Tolerance		Rapamycin
	Test	mTORC	Mammalian Target of
JAK2	Janus Kinase 2		Rapamycin Complex
JNK	C-Jun N-Terminal Kinase	Munc-18	Mammalian Uncoordinated 18
K-ATP	ATP-Sensitive Potassium		Proteins
	Channels	NAC	N-Acetylcysteine
KIR6x	Inward Rectifier K(+) Channel	NAcc	Nucleus Accumbens
Klb-KO	Bklotho Knockout	NAFLD	Non-alcoholic Fatty Liver
КО	Knockout		Disease
LAT1	L-type Amino Acid	NFT	Neurofibrillary Tangles
	Transporter 1	NF-κB	Nuclear Factor Kappa B
LDH1/5	Lactate Dehydrogenase 1/5	NHID	National Health Information
LEF/TCF	Lymphoid Enhancer Factor/T		Database
	Cell Factor	NIRKO	Neuronal Insulin Receptor
LepR b	Leptin Receptor Isoform b		Knock-Out
LH	Lateral Hypothalamus	NLRP3	Nucleotide-Binding
LHA	Lateral Hypothalamic Area		Oligomerization Domain
LMW	Low-Molecular-Weight		(NOD)-Like Receptor Protein 3
	Late Onset AD	NMDA	N-Methyl-d-Aspartate
	Lipopolysaccharide	NPI NDE1/2	Neuropeptide I
LKPO	Low-Delisity Lipoprotein	NRF1/Z	Nuclear Respiratory Factor 1/2
	Long Torm (Supertie)	INKIS	Indicate Indicate
	Depression	NCD	Non caloric Sweetened
ע ד ' ז	Long Term Potentiation	IND	Reverages
MAM	Mitochondrial Associated	NSC	Neural Stem Cells
	Membrane	NTS	Nucleus of the Solitary Tract
ΜΑΟ	Monoamine Oxidase	NTS	Nucleus Tractus Solitarius
MAP	Mitogen-Activated Protein	NZO	New Zealand Obese
МАРК	Mitogen-Activated Protein	ob/ob	Leptin-Deficient
	Kinase	oGTT	Oral Glucose Tolerance Test
MBH	Medio Basal Hypothalamus	OPA1	Optic Atrophy 1
MC3R	Melanocortin-3 Receptor	Р	Postnatal Day
MC4R	Melanocortin 4 Receptor	PA	Physical Activity
МСН	Melanin Concentrating	PC2	Prohormone Convertase 2
-	Hormone	PCK-1	Phosphoenolpyruvate
MCI	Mild Cognitive Impairment		Carboxykinase 1
MCRs	Melanocortin Receptors	PCOS	Polycystic Ovarian Syndrome
MCU	Mitochondrial Ca ²⁺ Uniporter	PD	Parkinson's Disease

PDK, PDPK	Phosphatidylinositol Dependent	RCT	Randomized Controlled Trial
	Protein Kinase	Rheb-GTP	Ras Homolog Enriched in
PDX-1	Pancreatic and Duodenal		Brain-GTP
	Homeobox 1	ROS	Reactive Oxygen Species
PET	Positron Emission Tomography	RPS6	40S Ribosomal Protein S6
PFC	Prefrontal Cortex	RSPO3	R-Spondin-3
PFK	Phosphofructokinase	RTKs	Receptor Tyrosine Kinases
PFKFB3	6-Phosphofructo-2-Kinase/	RYGB	Roux-en Y Gastric Bypass
	Fructose-2,6-Bisphosphatase-3	RyR	Ryanodine Receptor
PGC1α/β	Peroxisome Proliferator-	S6K	Ribosomal S6 Kinase
	Activated Receptor Gamma	SERCA	Sarco-Endoplasmic Reticulum
	Co-activator $1-\alpha/\beta$		Ca ²⁺ -ATPase
PH	Pleckstrin Homology Domain	SERT	Serotonin Transporter
PI3K, PI-3K	Phosphoinositide 3-Kinase	SES	Socioeconomic Status
PiD	Pick's Disease	SF-1	Steroidogenic Factor 1
PIP2	Phosphatidylinositol	SGLT2	Sodium/Glucose
	4,5-Bisphosphate		Cotransporter 2
PIP3	Phosphatidylinositol	SH2B1	SH2 Domain-Containing
	3,4,5-Trisphosphate		Adaptor Protein
PKA	Protein Kinase A	SHC	SHC-Transforming Protein
РКС	Protein Kinase C	SIDD	Severe Insulin-Deficient
PKR	Protein kinase		Diabetes Mellitus Type 2
PLCB	Phospholipase C Beta	SIRD	Severe Insulin-Resistant
POMC	Pro-opiomelanocortin		Diabetes Mellitus Type 2
PPAR	Peroxisome Proliferator-	SI-KNA	Small Interfering RNA
	Activated Receptor	SIRT1	Sirtuin 1
PPP	Pentose Phosphate Pathway	SIX3	Six Homeobox 3
PREDIMED	Prevention with Mediterranean	SMOC1	SPARC-Related Modular
	Diet		Calcium-Binding Protein 1
PKK	Interferon-Inducible Double-	SNARE	N-Ethylmaleimide-Sensitive
	Stranded RNA-Dependent		Factor Attachment Protein
	Protein Kinase Activator A	CLUD	Receptors
PSD-95	Postsynaptic Density Protein 95	SNP	Single Nucleotid Polymorphism
p-rau prrp	Phyperphosphorylated Tau	SNPC	Substantia Nigra Pars Compacta
PIB	Phosphotyrosine-Binding	5005	Suppressor of Cytokine
DITIENT	Domain Devel Serverification Development	COD	
PIEN	Dual-specificity Protein	SOD	Super Oxide Distilutase
DTC	Priospilatase	505 SOV1	Soli of Seveniess Holilolog
	Turosing Protoin Phosphatasa	SUAL	Single Diston Emission
ririb	Non Recentor Type 1	SFECT	Computed Tomography
PT'PN11	Tyrosine Protein Phosphatase	SSB	Sugar Sweetened Beverages
1111111	Non Recentor Type 11	SSD	Selective Serotonin Reuptake
рун	Para-Ventricular Hypothalamus	DDIAIS	Inhibitors
PVN	Paraventricular Nucleus	STAT3	Signal Transducer and Activator
RA	Receptor Agonists	511115	of Transcription 3
Rac	Ras-related C3 Botulinum	ST7	Streptozotocin
nuc	Toxin Substrate	SUR	Sulfonylurea Receptors
RAF	Rapidly Accelerated	T1D. T1DM	Type 1 Diabetes Mellitus
	Fibrosarcoma	T2D, T2DM	Type 2 Diabetes Mellitus
Ras	Rat Sarcoma Virus	T3DM	Type 3 Diabetes
rb-2	Retinoblastoma Protein 2	TCAs	Tricyclic Antidepressants
			, 1

TCF7l2	Transcription Factor 7-Like 2	TyG	Triglyceride Glucose
TCPTP	T cell Protein Tyrosine	UPR	Unfolded Protein Reponse
	Phosphatase	VEGF	Vascular Endothelial Growth
TFAM	Mitochondrial Transcriptional		Factor
	Factor A	VMH	Ventro-Medial Hypothalamus
TLR4	Toll-Like Receptor 4	VMN	Ventromedial Nucleus
TNF	Tumor Necrosis Factor	VTA	Ventral Tegmental Area
TrkB	Tropomyosin Receptor	WAT	White Adipose Tissue
	Kinase B	WHO	World Health Organization
TSC	Tuberous Sclerosis	WNT	Wingless-Integration1
TXNIP	Thioredoxin-Interacting	αMSH	Alpha-Melanocyte stimulating
	Protein		hormone

CHAPTER ONE

Molecular Mechanisms of Brain Insulin Signaling¹

Simran Chopra, Robert Hauffe, and André Kleinridders

CONTENTS

Interaction between Metabolism and Insulin / 1 Insulin and Insulin Growth Factor 1 Receptor / 2 Insulin Signaling Cascade in the Brain / 3 Downstream Signaling from the Insulin and Insulin Growth Factor 1 Receptor / 4 Insulin Signaling through the AKT Pathway / 5 Extracellular Signal-Regulated Protein Kinases Isoforms / 5 Negative Modulation of the Insulin Signaling Pathway / 6 Genetic Mutations Associated with Insulin Resistance / 6 Dephosphorylation of Proteins and Metabolites Involved in the Insulin Signaling Pathway / 6 Inhibitory Phosphorylations of Proteins in the Insulin Signaling Pathway / 7 Insulin and Insulin Growth Factor 1 Receptor / 8 IR Expression in the Brain / 8 Insulin Growth Factor 1 Receptor / 9 Insulin and Insulin Growth Factor 1 Receptor Heterodimers / 9 Insulin Receptor Substrate 1 Expression in the Brain / 9 Insulin Receptor Substrate 2 Expression in the Brain / 10 Insulin Receptor Substrate 4 Expression in the Brain / 11 AKT Isoforms and Their Expression in the Brain / 11 Extracellular Signal-Regulated Protein Kinases Isoforms and Their Expression in the Brain / 12 Concluding Remarks / 12 Acknowledgments / 13 References / 13

INTERACTION BETWEEN METABOLISM AND INSULIN

With global type 2 diabetes (T2D) rates on an exponential rise, a major hallmark feature of this metabolic condition is insulin resistance. As a result, the physiological functions and downstream mechanistic actions of insulin are, to this date, being predominantly studied in its main target tissues, including the liver, muscle, and white adipocytes. Although several studies have also demonstrated a correlation between metabolic and neurodegenerative diseases, a higher risk of cognitive decline has been observed in diabetic patients (1–3). This suggests that alterations in brain insulin action can be observed as a pathological feature in both conditions, although other common signaling pathways might additionally be responsible for this, such as inflammation and apoptosis. However, the brain was not considered an insulin-sensitive organ until the late 1970s

¹ Simran Chopra and Robert Hauffe have contributed equally.