Stability Analysis and State Estimation of Memristive Neural Networks

Hongjian Liu
Zidong Wang
Lifeng Ma
Stability Analysis and State Estimation of Memristive Neural Networks
Stability Analysis and State Estimation of Memristive Neural Networks

Hongjian Liu
(https://orcid.org/0000-0001-6471-5089)
Zidong Wang
(https://orcid.org/0000-0002-9576-7401)
Lifeng Ma
(https://orcid.org/0000-0002-1839-6803)
To the Wang Dynasty and our families.
Contents

Preface xi
Acknowledgment xiii
Authors Biographies xv
List of Figures xvii
List of Tables xix
Symbols xxii

1 Introduction 1
1.1 Background on Memristive Neural Networks 2
1.1.1 Memristor and Its Circuit Realization 4
1.1.2 Stability Analysis and State Estimation for MNNs 5
1.1.3 Recent Progress on Several Types of Neural Networks . . . 6
1.1.3.1 RNNs . 7
1.1.3.2 BAMNNs . 8
1.1.3.3 CMNNs . 8
1.2 MNNs subject to Engineering-Oriented Complexities 9
1.2.1 Stochasticity . 10
1.2.2 Time-Delays . 10
1.2.3 Network-Induced Incomplete Information 11
1.2.3.1 Missing Measurements 11
1.2.3.2 Channel Fading 12
1.2.3.3 Signal Quantization 12
1.3 Design Techniques . 13
1.3.1 Event-Triggering Mechanisms 13
1.3.2 Network Communication Protocols 14
1.3.2.1 RR Protocol 14
1.3.2.2 WTOD Protocol 15
1.3.2.3 SC Protocol . 15
1.3.3 Set-Membership Technique 15
1.3.4 Non-Fragile Algorithm 16
1.4 Outline . 16
2 H_∞ State Estimation for Discrete-Time Memristive Recurrent Neural Networks with Stochastic Time-Delays 19
 2.1 Problem Formulation ... 20
 2.2 Main Results ... 23
 2.3 An Illustrative Example ... 28
 2.4 Summary .. 31

3 Event-Triggered H_∞ State Estimation for Delayed Stochastic Memristive Neural Networks with Missing Measurements: The Discrete Time Case 33
 3.1 Problem Formulation .. 34
 3.2 Main Results ... 40
 3.3 An Illustrative Example ... 49
 3.4 Summary .. 52

4 H_∞ State Estimation for Discrete-Time Stochastic Memristive BAM Neural Networks with Mixed Time-Delays 55
 4.1 Problem Formulation and Preliminaries 56
 4.2 Main Results ... 63
 4.3 Numerical Example ... 72
 4.4 Summary .. 76

5 Stability Analysis for Discrete-Time Stochastic Memristive Neural Networks with Both Leakage and Probabilistic Delays 77
 5.1 Problem Formulation .. 78
 5.2 Main Results ... 83
 5.3 Illustrative Examples .. 92
 5.4 Summary .. 94

6 Delay-Distribution-Dependent H_∞ State Estimation for Discrete-Time Memristive Neural Networks with Mixed Time-Delays and Fading Measurements 95
 6.1 Problem Formulation .. 96
 6.2 Main Results ... 102
 6.3 Illustrative Examples .. 112
 6.4 Summary .. 115

7 On State Estimation for Discrete Time-Delayed Memristive Neural Networks under the WTOD Protocol: A Resilient Set-Membership Approach 117
 7.1 Problem Formulation .. 118
 7.1.1 Memristive Neural Network Model 118
 7.1.2 The WTOD Protocol 120
 7.2 Main Results ... 124
 7.3 An Illustrative Example .. 130
The rapid development of artificial intelligence (AI) has been profoundly changing our daily life as well as the human society. Nowadays, the relevant disciplines of AI technology have been promoted from different aspects including but not limited to theoretical modeling, technological innovation and software and hardware upgrades, etc. To date, the AI technology has been triggering a chain of breakthroughs and promoting various fields of society from networked and digital to intelligent.

Since the announcement from the HP Lab on the experimental prototyping of the memristor, memristors and memristive devices have gained wide research attention for their prospective applications in nonvolatile memories, logic devices, neuromorphic devices, and neuromorphic self-organized computation and learning. In the context of neural networks, synapses are essential elements for computation and information storage, which needs to remember its past dynamical history, store a continuous set of states, and be “plastic” according to the synaptic neuronal activity. All these cannot be accomplished by a resistor in traditional recurrent neural networks (RNNs). When the resistors are replaced by the memristors, the resulting memristive neural networks (MNNs) could rather completely solve these problems. Meanwhile, the implemented MNNs could be more efficient than the traditional RNNs when applied in brain emulation, combinatorial optimization, knowledge acquisition, and pattern recognition. As such, the dynamics analysis problems, such as stability and synchronization for MNNs, have recently received considerable research attention and a rich body of relevant literature has been available for different kinds of MNNs. It should be mentioned that almost all results obtained so far have been exclusively for continuous time MNNs and the corresponding results on discrete-time memristive neural networks (DMNNs) have been much fewer.

On the other hand, in real-world applications especially in the networked situations, certain frequently-occurring engineering-related issues, such as time-delays, parameter uncertainties, random disturbances, limited communication bandwidth and incomplete information, have proved to be the main sources of system instability as well as performance deterioration, and further imposed fundamentally new challenges on the study of various types of neural networks. When discussing the stability analysis and estimator design problems, these engineering-oriented phenomena cannot be neglected. In contrast, they must be taken into simultaneous consideration with the neural networks.
dynamics under a unified framework so as to achieve a satisfactory level of performance.

In this book, faced with various sorts of network-induced phenomena, we discuss the stability analysis and estimator design problems for discrete-time MNNs subject to time-delays. By drawing on a variety of theories and methodologies such as Lyapunov stability theory, delay-dependent technique, graph theory and certain convex optimization algorithms, the study on stability analysis and state estimation have been approached from different perspectives including systems sciences, control theory, signal processing and optimization. Specifically, in each chapter, the analysis problems are firstly considered, where the stability, synchronization and other performances (e.g. reliability, robustness, disturbances attenuation level) are investigated within a unified theoretical framework. In this stage, some novel notions are put forward to reflect the engineering practice in a much more realistic yet comprehensive way. Then, the estimator design issues are discussed where sufficient conditions are derived to ensure the existence of the desired estimators with the guaranteed performances. Finally, the theories and techniques developed in previous parts are applied to deal with some issues in several emerging research areas. This book is a research monograph whose intended audience is graduate and postgraduate students as well as researchers.

Hongjian Liu
Wuhu, China

Zidong Wang
London, UK

Lifeng Ma
Nanjing, China
Acknowledgment

The authors would like to express their deep appreciation to those who have been directly involved in various aspects of the research leading to this book. Special thanks go to Professor Bo Shen from Donghua University, Shanghai, China, Professor Fuad E. Alsaadi from King Abdulaziz University, Jeddah, Saudi Arabia, Professor Xiaohui Liu from Brunel University London, London, U.K., Professor Abdullah M. Dobaie from King Abdulaziz University, Jeddah, Saudi Arabia, Professor Tingwen Huang from Texas A&M University at Qatar, Doha, Qatar, Professor Hongli Dong from Northeast Petroleum University, Daqing, China, Professor Weiyin Fei from Anhui Polytechnic University, Wuhu, China and Professor Yurong Liu from Yangzhou University, Yangzhou, China.

The writing of this book was supported in part by the National Natural Science Foundation of China under Grants 61773209, 61773017, 61873148, 61933007 and 61973163, the AHPU Youth Top-notch Talent Support Program, the Natural Science Foundation of Universities in Anhui Province under Grants gxyc2019053 and kj2019A0160, the Natural Science Foundation of Jiangsu Province under Grant BK20190021, the Six Talent Peaks Project in Jiangsu Province under Grant XYDXX-033, the Heilongjiang Postdoctoral Sustentation Fund under Grant LBH-Z19048, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany. The support of these organizations is gratefully acknowledged.
Authors Biographies

Hongjian Liu received his B.Sc. degree in applied mathematics in 2003 from Anhui University, Hefei, China and the M.Sc. degree in detection technology and automation equipments in 2009 from Anhui Polytechnic University, Wuhu, China, and the Ph.D. degree in control science and engineering in 2018 from Donghua University, Shanghai, China. In 2016, he was a Research Assistant with the Department of Mathematics, Texas A&M University at Qatar, Doha, Qatar, for two months. From March 2017 to March 2018, he was a Visiting Scholar in the Department of Information Systems and Computing, Brunel University London, UK. He is currently a Professor in the School of Mathematics and Physics, Anhui Polytechnic University, Wuhu, China. His current research interests include filtering theory, memristive neural networks and network communication systems. He is a very active reviewer for many international journals.

Zidong Wang was born in Jiangsu, China, in 1966. He received the B.Sc. degree in mathematics in 1986 from Suzhou University, Suzhou, China, and the M.Sc. degree in applied mathematics in 1990 and the Ph.D. degree in electrical engineering in 1994, both from Nanjing University of Science and Technology, Nanjing, China.

He is currently Professor of Dynamical Systems and Computing in the Department of Computer Science, Brunel University London, U.K. From 1990 to 2002, he held teaching and research appointments in universities in China, Germany and the UK. Prof. Wang’s research interests include dynamical systems, signal processing, bioinformatics, control theory and applications. He has published more than 600 papers in international journals. He is a holder of the Alexander von Humboldt Research Fellowship of Germany, the JSPS Research Fellowship of Japan, William Mong Visiting Research Fellowship of Hong Kong.

Prof. Wang serves (or has served) as the Editor-in-Chief for International Journal of Systems Science, the Editor-in-Chief for Neurocomputing, and an Associate Editor for 12 international journals including *IEEE Transactions on Automatic Control, IEEE Transactions on Control Systems Technology, IEEE Transactions on Neural Networks, IEEE Transactions on Signal Processing,* and *IEEE Transactions on Systems, Man, and Cybernetics-Part C.* He is a Member of the Academia Europaea, a Fellow of the IEEE, a Fellow of the Royal Statistical Society and a member of program committee for many international conferences.
Lifeng Ma

received the B.Sc. degree in Automation from Jiangsu University, Zhenjiang, China, in 2004 and the Ph.D. degree in Control Science and Engineering from Nanjing University of Science and Technology, Nanjing, China, in 2010. From August 2008 to February 2009, he was a Visiting Ph.D. Student in the Department of Information Systems and Computing, Brunel University London, U.K. From January 2010 to April 2010 and May 2011 to September 2011, he was a Research Associate in the Department of Mechanical Engineering, the University of Hong Kong. From March 2015 to February 2017, he was a Visiting Research Fellow at the King’s College London, U.K.

He is currently a Professor in the School of Automation, Nanjing University of Science and Technology, Nanjing, China. His current research interests include control and signal processing, machine learning and deep learning. He has published more than 50 papers in refereed international journals. He serves as an editor for Neurocomputing and International Journal of Systems Science.
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Framework of the survey.</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Physical model of memristor element [145].</td>
<td>4</td>
</tr>
<tr>
<td>1.3</td>
<td>Memristor mimicking human brain neuron synapses [56].</td>
<td>5</td>
</tr>
<tr>
<td>2.1</td>
<td>Output estimation error $\hat{z}(k)$.</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>The state and its estimate of node 1.</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>The state and its estimate of node 2.</td>
<td>31</td>
</tr>
<tr>
<td>3.1</td>
<td>The state and its estimate of node 1.</td>
<td>51</td>
</tr>
<tr>
<td>3.2</td>
<td>The state and its estimate of node 2.</td>
<td>51</td>
</tr>
<tr>
<td>3.3</td>
<td>Estimation error of node 1 and nod 2.</td>
<td>52</td>
</tr>
<tr>
<td>3.4</td>
<td>Event-based release instants and release interval.</td>
<td>52</td>
</tr>
<tr>
<td>4.1</td>
<td>Trajectories of state $x_i(k)$, its estimate $\hat{x}_i(k)$, $i = 1, 2$.</td>
<td>74</td>
</tr>
<tr>
<td>4.2</td>
<td>Trajectories of state $\tilde{x}_i(k)$, its estimate $\hat{\tilde{x}}_i(k)$, $i = 1, 2$.</td>
<td>75</td>
</tr>
<tr>
<td>4.3</td>
<td>Estimation error of $x_i(k) - \hat{x}_i(k)$, $i = 1, 2$.</td>
<td>75</td>
</tr>
<tr>
<td>4.4</td>
<td>Estimation error of $\tilde{x}_i(k) - \hat{\tilde{x}}_i(k)$, $i = 1, 2$.</td>
<td>76</td>
</tr>
<tr>
<td>5.1</td>
<td>State trajectory of the DSMNN in the example.</td>
<td>93</td>
</tr>
<tr>
<td>6.1</td>
<td>The framework of H_{∞} state estimation.</td>
<td>100</td>
</tr>
<tr>
<td>6.2</td>
<td>Ideal measurements y_k and received signals \hat{y}_k of the estimator.</td>
<td>114</td>
</tr>
<tr>
<td>6.3</td>
<td>z_k and its estimate \hat{z}_k.</td>
<td>115</td>
</tr>
<tr>
<td>6.4</td>
<td>Estimation error e_k.</td>
<td>115</td>
</tr>
<tr>
<td>7.1</td>
<td>SEP for an MNN under the WTOD protocol.</td>
<td>120</td>
</tr>
<tr>
<td>7.2</td>
<td>The selected nodes of MNNs.</td>
<td>131</td>
</tr>
<tr>
<td>7.3</td>
<td>The actual and estimated trajectories of $z_1(t)$ and $z_2(t)$.</td>
<td>132</td>
</tr>
<tr>
<td>7.4</td>
<td>The estimation errors of $z_1(t)$ and $z_2(t)$.</td>
<td>132</td>
</tr>
<tr>
<td>7.5</td>
<td>The actual and estimated values of $\hat{y}_1(t)$ and $\hat{y}_2(t)$.</td>
<td>133</td>
</tr>
<tr>
<td>7.6</td>
<td>The estimation errors of $\hat{y}_1(t)$ and $\hat{y}_2(t)$.</td>
<td>133</td>
</tr>
<tr>
<td>8.1</td>
<td>State estimation with stochastic communication protocols.</td>
<td>138</td>
</tr>
<tr>
<td>8.2</td>
<td>$z_1(s)$ and $\hat{z}_1(s)$.</td>
<td>148</td>
</tr>
<tr>
<td>8.3</td>
<td>$z_2(s)$ and $\hat{z}_2(s)$.</td>
<td>148</td>
</tr>
<tr>
<td>8.4</td>
<td>$z_3(s)$ and $\hat{z}_3(s)$.</td>
<td>149</td>
</tr>
<tr>
<td>8.5</td>
<td>$\tilde{z}(s)$ and $\tilde{\hat{z}}(s)$.</td>
<td>149</td>
</tr>
</tbody>
</table>
List of Figures

9.1 Remote state estimation under the dynamic ETM. 154
9.2 The state $z_1(s)$ and its estimate $\hat{z}_1(s)$. 165
9.3 The state $z_2(s)$ and its estimate $\hat{z}_2(s)$. 165
9.4 The state $\bar{z}(s)$ and its estimate $\hat{\bar{z}}(s)$. 166
9.5 The estimation error of $\bar{z}(s)$. ... 166
9.6 Event-based release instants and release interval: dynastic case. 167
9.7 Event-based release instants and release interval: static case. 167

10.1 Remote state estimation under the RRP. 171
10.2 $z_1(s)$ and $\hat{z}_1(s)$ with RRP. ... 185
10.3 $z_2(s)$ and $\hat{z}_2(s)$ with RRP. ... 186
10.4 $\bar{z}(s)$ and $\hat{\bar{z}}(s)$ with RRP. ... 186
10.5 The estimate error $\tilde{z}(s)$ with RRP. 187
10.6 $z_1(s)$ and $\hat{z}_1(s)$ without RRP. .. 187
10.7 $z_2(s)$ and $\hat{z}_2(s)$ without RRP. .. 188
10.8 $\bar{z}(k)$ and $\bar{\hat{z}}(k)$ without RRP. 188
10.9 The estimate error $\tilde{z}(k)$ without RRP. 189
10.10 The scheduling of the nodes with RRP. 189
List of Tables

5.1 Allowable maximum τ_M for different δ. 94
5.2 Allowable maximum τ_M for different ℓ. 94
10.1 Filter Gains . 185
Symbols

\mathbb{R}^n The n-dimensional Euclidean space.

$\mathbb{R}^{n \times m}$ The set of all $n \times m$ real matrices.

$\| \cdot \|$ The Euclidean norm in \mathbb{R}^n.

$\text{Sym}\{A\}$ The symmetric matrix $A + A^T$.

$l_2([0, \infty); \mathbb{R}^m)$ The space of square-summable m-dimensional vector functions over $[0, \infty)$.

$\text{co}\{u, v\}$ The closure of the convex hull generated by real numbers u and v.

\otimes The Kronecker product of matrices.

\mathbb{N} The set of all nonnegative integers.

\mathbb{N}^+ The set of all positive integers.

$\lambda_{\text{min}}(A)$ The smallest eigenvalue of A.

$\lambda_{\text{max}}(A)$ The largest eigenvalue of A.

$\text{diag}_n\{A\}$ The n diagonal block matrix A.

$\text{col}_n\{x_i\}$ The vector as $[x_1 \ x_2 \ \ldots \ x_n]^T$.

$(\Omega, \mathcal{F}, \mathbb{P})$ The complete probability space.

$\delta(\cdot) \in \{0, 1\}$ The Dirac delta function.

$\text{mod}(a, b)$ The unique nonnegative remainder on division of a by b.

$\mathbb{E}\{x\}$ The expectation of stochastic variable x.

$\mathbb{P}\{x\}$ The probability of stochastic variable x.

I The identity matrix of compatible dimension.

$X > Y$ The $X - Y$ is positive definite, where X and Y are symmetric matrices.
Symbols

$X \geq Y$ The $X - Y$ is positive semi-definite, where X and Y are symmetric matrices.

M^T The transpose matrix of M.

diag\{${M_1, ..., M_n}$\} The block diagonal matrix with diagonal blocks being the matrices $M_1, ..., M_n$.

* The ellipsis for terms induced by symmetry, in symmetric block matrices.
Introduction

The rapid development of artificial intelligence (AI) has been profoundly changing our daily life as well as the human society. Nowadays, the relevant disciplines of AI technology have been promoted from different aspects including but not limited to theoretical modeling, technological innovation and software and hardware upgrades, etc. To date, the AI technology has been triggering a chain of breakthroughs and promoting various fields of society from networked and digital to intelligent. The artificial neural network (ANN) is one of the key cornerstones of the development of AI technology, which has once again attracted widespread attention all over the world.

Artificial neural network, also referred to as neural network, is a mathematical or computational model that mimics the structure and function of biological, especially human, brain neural networks. This idea of mimicking the function of the biological brain directly affects the development of AI technology. It should be noted that it is of great significance for the development of AI to better realize the “intelligence-like-brain”, thereby completing the decision-making behavior, program behavior and reflection behavior of the human brain. In view of this, researchers have paid considerable attention to the key link of ANN to realize human brain bionics, namely “bionic synapse”. It is widely known that the synapse of human brain neurons is not only the transmission channel of information, but also the basic unit of human brain learning and storing information [105, 110, 149].

On the other hand, along with the appearance of deep neural network (DNN) algorithm, the promotion of parallel computing of graphics processor and the emergence of big data, it has been found that the traditional Complementary Metal Oxide Semiconductor (CMOS) transistor is difficult to meet the current requirements of mass data computation due to its physical defects such as large size, high energy consumption and inability of multiple storage. These defects pose many difficulties for the realization of “bionic synapse”, and thus, largely hinder the theory and technology from being applied. The theory of memristor and its physical realization have brought a new dawn to conquer the aforementioned bottlenecks during the development of ANN. The memristor-based neural network, like biological brain, has the ability to handle multiple tasks at the same time. Most importantly, the memristor-based neural network does not require repeated data movement when processing large amounts of data, which is particularly suitable for machine learning systems. Therefore, memristor is a better choice for the implementation of neural