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J’ai vécu le jour des merveilles

Vous et moi souvenez-vous-en

Et j’ai franchi le mur des ans

Des miracles plein les oreilles

Notre univers n’est plus pareil

        —Louis Aragon

“Je chante pour passer le temps”






 Preface

With progresses in miniaturization and lithography techniques, the concept of quantum dot or quantum box as a pool of confined charge carriers, electrons or holes, emerged around the early 1990s with the realization of the first solid-state structures. These nanoscale systems manifest “single-electronics” behaviors when the electrostatic energy to add an electron to the dot exceeds the particle thermal energy. “Coulomb blockade” effects manifest when the conductance of an electronic current passing through the dots exhibits a staircase profile instead of a linear dependence on the charging voltage.

While early quantum dots contained hundreds to thousand electrons, refinement in nanotechnology soon achieved tinier dots confining just a handful of charge carriers with well-defined discrete energy depending on the shape and diameter of the dot. The charging energy is augmented by new contributions, which asides from the repulsive “Coulomb barrier” reveals subtle effects such as the exchange interaction among electrons with parallel spins displayed as “atomic magic numbers” in the addition spectra. The manipulation of individual electron spins in these “artificial atoms,” or “artificial molecules,” opened a new field of “spintronics,” where the exchange interaction between two electron spins in coupled dots can be achieved by electric gating as in field-effect transistors. The modulation of the particle entanglement in artificial hydrogen molecules are among the basic systems for the realization of quantum gates for qubit operations with semiconductor technology.

This book is a compilation of articles on the electronic properties of III-V compounds and silicon quantum dots operating in realistic experimental conditions. Computational approaches involve density functional theory implemented by eigenvalue solvers designed by the authors, self-consistent exact diagonalization, or k.p techniques adapted to depict specific phenomena occurring in particular types of quantum dots. These physical models are described within a comprehensive framework, accounting for the material features as well as the and environment.

The first section of the book is devoted to “planar quantum dots” in which the lateral shape of the AlGaAs/GaAs dots is electrostatically generated while the vertical confinement is achieved by squeezing the electrons between a heterointerface and an external electric field. Density functional theory combined with self-consistent Poisson–Schrödinger equation describes in detail the single-electron charging effects, shell-filling in individual dots, as well as exchange interaction modulation in laterally coupled dots integrated in quantum circuits. For detailed descriptions of state mixing and electron entanglement, exact diagonalization is used for obtaining the energy spectra of artificial molecules.

The second section addresses many-body quantum effects in “vertically-confined quantum dots” that are AlGaAs/GaAs pillars vertically confining electrons between two hetero-interfaces. Such structures, promoted by the Tokyo group of Dr. S. Tarucha, offer the advantage of tight vertical coupling between double, and even triple, dots.

In the third section, self-assembled InGaAs/GaAs quantum dots obtained by epitaxy on strained surfaces, and exhibiting single-electron charging with excitonic interactions, are modeled within the framework of three-dimensional k.p technique. Emphasis is placed on the specific lens- or pyramidal-dot shape as well as on the effect of strain between the two materials that affects the electron– hole energy spectra in single as well as in stacked quantum dots.

The final section focuses on self-consistent k.p models for describing single-electron charging in silicon nanocrystals embedded in silicon dioxide of a field-effect device. Emphasis is placed on the shape and size, strain, and crystallographic orientation of the dot with respect to the transistor channel, along with a proposal for a new “single-electronic” memory.

These physical models were developed over a period extending from the early 1990s to the end of the first 2000 decade. They have involved several generations of graduate students, postdocs, and colleagues, whose names appear as my co-authors in the set of articles displayed in this book. To them, I convey the expression of my deepest appreciation for the privilege they gave me with their collaboration. In this respect, graduate students deserve a special recognition for their constant and invaluable effort in updating and improving the computational codes that are the foundation of this work. This book could not have seen the day without their dedication to their research mission. Finally, I would like to address a special thanks to Nagendra Athreya, Bohao Wu, and Mingye Xiong for their invaluable help in conceiving this volume.

Jean-Pierre Leburton

Urbana, June 2021




Part I ELECTROSTATIC QUANTUM DOTS: PLANAR TECHNOLOGY




Chapter 1 Self-Consistent Analysis of Single Electron Charging Effects in Quantum Dot Nanostructures

Dejan Jovanovic and Jean-Pierre Leburton

Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

jleburto@illinois.edu


1.1 Introduction

Semiconductor nanostructures have now been investigated for some time and have been shown to possess a wide variety of transport properties. Quantum interference effects and resonant tunneling are but a few of the phenomena that have stimulated general interest in the quantum nature of carrier transport in small geometries.1 Recently, significant attention has been given to structures exhibiting the Coulomb blockade of resonant tunneling.2–5 This phenomenon presents a unique combination of quantum-mechanical (resonant tunneling) and statistical mechanical (Coulomb blockade) effects that together reveal the quantized nature of charge. From a theoretical standpoint, the seminal investigation of the Coulomb blockade by Kulik and Shekhter6 introduced a phenomenological capacitance model which treats the charging of classical metallic particles imbedded in an insulator between two macroscopic contacts. The recent experimental investigations involving semiconductor nanostructures have motivated reexamination of the Coulomb blockade in the presence of a discrete energy spectrum with energy separations approaching the thermal energy kT. In the structure of Meirav and co-workers,2 the modulation of a gate potential over a quantum dot under slight source-drain basis leads to a highly periodic array of thermally broadened conductance peaks. The preeminent explanation for this oscillatory behavior are given by the kinetic approaches of Beenakker7 and Averin, Korotov, and Likharev,8 and the Anderson model treatment by Meir, Wingreen, and Lee.9 While these models give good qualitative interpretations of the periodicity, temperature dependence, and line shape of the peaks, their analytic forms lack the ability to corroborate experimental data for a particular device geometry.

_______________
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In order to achieve a quantitative level of accuracy, a three-dimensional (3D) self-consistent treatment is required which implicitly takes into account the interplay between the statistical and quantum-mechanical properties of the confinement geometry. This type of simulation would have powerful preductive capabilities and the ability to evaluate the success of the various theoretical models on a rigorous basis. Previous efforts at self-consistently simulating nanostructures, however, have focused on localized regions in the device which exhibit a uniform reduced degree of dimensionality. Although these simulations have yielded much information on general quantum-mechanical properties in the device active region,10–12,35 their lack of integration of the dots (0D), leads (1D), contacts (2D), and bulk regions of a particular geometry prevents them from achieving good agreement with experimental data. The absence of a coherent model has been due in large part to computational time constraints in solving the Schrödinger equation over an arbitrarily large number mesh. By employing an efficient iterative extraction-orthogonalization method for solving the eigenvalue problem, we have overcome this difficulty and rendered a computationally tractable 3D self-consistent Schrödinger–Poisson simulation capable of treating the entire device geometry. The model takes into account the dimensionality of each quantized region in a particular structure and incorporates high-order effects such as the Coulomb blockade and exchange correlation. In this paper, we apply the method to the investigation of single-electron charging in the structure reported by Meirav and co-workers.2 Good agreement is found between the theoretical conductance calculated from our model and the experimental data with respect to periodicity and peak line shape. In contrast to experiment, however, the amplitude of the theoretical conductance varies by several orders of magnitude between adjacent peaks. This is a result of the wide barriers encountered in the present structure, which allow appreciable tunneling only near their tips. We attribute the disparity between theoretical and experimental data to interface disorder (neglected in our model), which should enhance the transmission probability through the tunnel barriers.



1.2 Model


1.2.1 Background

Figure 1.1 shows the specific device used in our investigation along with the breakdown of the geometry into components reflecting the dimensionality of the electron gas. The device was fabricated by growing an inverted GaAs/AlxGa1-xAs heterostructure13 which confines the electrons to a 2D gas at the interface. The layer dimensions used in the device consist of a 100-nm undoped Al0.3Ga0.7As barrier, a 120-nm undoped layer of GaAs, and a 20-nm-thick GaAs cap layer. In our simulation, the doping of the cap layer was uniformly distributed with a concentration ND = 5 × 1018 cm–3 to bring the conduction band just above the Fermi energy at the GaAs-cap layer/undoped GaAs interface. The inverted heterostructure was grown on an n+ GaAs substrate, and charge control was achieved by modulating the bias VG on a backgate. In our model, we assume a negligible potential drop over the conductive substrate and apply VG directly to the bottom of the Al0.3Ga0.7As layer. A quasi-1D charge channel is created in the structure by the deposition of metal electrodes 0.4 µm apart on the GaAs surface which act as split gate and confine electrons under a negative bias VB. We follow the experimental configuration2 and set VB ≃ –0.5 V. The tabs patterned in the electrodes, which are separated by distances L0 ranging from 0.6 to 0.8 µm, cause a local depletion of electrons in their vicinity and therefore create longitudinal barriers which confine the region between them into a quantum dot. It is the tunneling through the barriers and the electron-electron interaction in the quantum dot that account for the periodic conductance oscillations observed in the experimental I-V characteristics.2


[image: ]
Figure 1.1
(a) Experimental device geometry used for investigating single-electron charging effects. A negative bias on the gate confines charge in the lateral direction to form 1D leads and a quantum dot between the constrictions. Modulation of the bottom gate bias adds electrons to the quantum dot in single increments. (b) The separation of the device geometry into regions reflecting the dimensionality of the electron gas.

The primary focus of our model is the evaluation of local electronic eigenenergies in each quantized region, and their subsequent use in the calculation of charge densities and transport characteristics. As such, we solve the 3D Poisson equation,
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self-consistently with the stationary Schrödinger equation in the envelope approximation which is characterized by the Hamiltonian:
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In the above equations, n (r) is the electron charge, p (r) is the hole charge, and ND+(r) and NA+(r) are the ionized donor and acceptor concentrations, respectively. Equation (1.2) applies only to electrons since they alone experience quantized confinement in the present device. The conduction-band edge Ec(r) is given by Ec(r) = –qϕ(r) + ΔEc, where ΔEC is the band offset between different material systems. Exchange and correlation are self-consistently incorporated into the model using the the Kohn-Sham density functional method.14 This approach accounts for the high-order electron-electron interactions by adding a correction to the Har-tree potential in Ĥ:
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where ϵxc(n) is the exchange-correlation energy per electron derived from the local electron density. We use the Slater exchange energy and the Perdew-Zunger parametrization of the correlation potential15 in the formulation of ϵxc(n). The effect of exchange and correlation is predominant in the localized quantum-dot region, where the conduction band is altered by as much as 1 meV.

Figure 1.1(b) illustrates the dimensionality of the electron gas throughout the structure. The eigenenergies and eigenstates are computed in each region based on the degree of quantization and the 3D electrostatic potential arising from the Poisson equation. The wave functions are then assembled using the appropriate occupation probabilities derived from the grand canonical ensemble to generate a 3D charge density throughout the device. In general, there is an inverse relationship between the dimensionality of the electron gas and the symmetry properties that can be invoked when evaluating the Schrödinger equation. For example, in regions exhibiting a 0D gas, the high degree of confinement in all three dimensions requires a full 3D solution of the Schrödinger equation. In 1D gas regions, however, we use the adiabatic approximation (see Sec. 1.2.6) by assuming that the Schrödinger equation is separable into longitudinal (z) and transverse components (x, y). This approximation assumes that the longitudinal component of the wave function response instantaneously to variations of the transverse potential. Since the longitudinal wave functions generally exhibit a propagating nature, they are cast as plane waves to enhance the performance of our code. In the quasi-1D leads, therefore, the quantum-mechanical problem breaks down into solving the 2D Schrödinger equation in slices down the length (z) of the 1D region. Likewise, in the 2D gas regions, the adiabatic approximation is invoked for the transverse (x, z) directions, and 1D Schrödinger equations are solved in the confined (y) direction over the (x-z) plane. The use of plane waves in our model results in an incomplete treatment of evanescent leakage and reflection in regions where propagating states impinge on barriers. The plane-wave approximation is justified, however, since in the calculation of charge densities we are interested only in counting the occupied propagating states relative to a rigorously calculated quasibound eigenenergy. In subsequent transport calculations, matching constraints for the wave functions are restored in the propagating directions to allow a detailed analysis of the transport properties of the device.



1.2.2 Solution of the Schrödinger Equation

The use of conventional eigenvalue solvers in the generation of multiple solutions of the Schrödinger equations over a large grid is prohibitively expensive from a computational standpoint. The execution time of these methods scale as N3G where NG is the number of grid points. Furthermore, conventional methods generate NG eigenvalues, a majority of which are unnecessary and therefore lead to inefficient use of computer time. To overcome these difficulties, we have employed the iterative extraction-orthogonalization method (IEOM) for solving the general eigenvalue problem which is given by
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where |m〉 is an eigenstate of the operator Λ̂, and λm is the eigenvalue of |m〉. The IEOM was originally developed by KoslofF and Tal-Ezer16 and has found use in the generation of initial states in time-dependent problems.17–20 However, the lack of appreciation of this method for the evaluation of stationary eigenstates, particularly in application to nanostructure problems, leads us to present its salient features here.

The theory behind the IEOM involves the creation of a function operator F(Λ̂) that effectively extracts the lowest eigenvalue basis state |0〉 (i.e., the ground state) from an initial guess vector |fϕ0〉 comprised of a mixture of basis states. Operating on |ϕ0〉 with F(Λ̂) gives
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Clearly, if f (λm) decreases with increasing λm the first term in Eq. (5) will dominate and the new basis composition will favor the ground state. Successive applications of f (λm) further extract the ground state such that after some number of iterations Ni the high-order contributions become vanishingly small:
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A constraint on the extraction capability of f(Λ̂) is that it must have a well-behaved Taylor expansion to cast it into a computationally tractable form. In addition, physical eigenvalue problems typically require more eigenstates than just the lowest state, so a mechanism must be used to maintain the spectrum of higher (excited) eigenstates. This is accomplished by creating a set of NE initial guess states ϕn and applying the Gram-Schmidt orthogonalization algorithm
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after each iteration of Eq. (1.5). The net effect of the Gram-Schmidt orthogonalization is to eliminate all basis components with indices m = 1,2, …, n – 1 from ϕn, such that a unique basis state |n〉 is extracted for each ϕn. The application of multiple extraction and orthogonalization iterations thereby converts a set of initial states |ϕn〉 into a set of solution states |n〉.

For the quantum-mechanical eigenvalue problem, Λ̂ and λm become the Hamiltonian Ĥ and eigenenergy Em, respectively. Furthermore, the form of f(Λ̂) we choose is an exponential, exp (−αĤ), where a is chosen to allow an accurate first-order Taylor expansion. This choice for the extraction function is similar to that used in time propagation problems, so we follow the time-dependent theory in discretizing the exponential extraction function. The exponential operator is first cast into a split-time form17 which allows independent application of the potential- and kinetic-energy portions in each extraction iteration:
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where the error is due to the general noncommutativity of the two operators. In problems exhibiting periodic boundary conditions, Eq. (1.8) can be expanded in Fourier space. In the more general case involving Dirichlet or nonzero Neumann boundary conditions, Eq. (1.8) is discretized in real space, and the kinetic-energy operator requires further modification. For the rectilinear geometries often encountered in quantum devices, the kinetic-energy operator can be separated into (x, y, z) components:
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with no commutation error if the wave functions have continuous partial derivatives. Each of the exponential kinetic-energy operators in Eq. (1.9) can therefore be applied independently and cast into Cayley’s form_21
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which is second-order accurate and requires only the inversion of simple tridiagonal matrices. This discretization scheme leads to an efficient vectorizable algorithm and offers the additional advantage of an easy extension of the model to time-dependent problems.

Upon normalization, and after Ni iterations, the IEOM transforms the initial guess state into a new state |ϕNin〉 given by
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The rate of convergence for this scheme can be ascertained from the above expression by imposing an error tolerance ϵ on the error projection. If convergence is defined to occur when the second term in Eq. (1.12) falls below ò, the convergence criterion can be written
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Clearly, α should be maximized to reduce the number of iterations and still maintain a high degree of accuracy in the Taylor expansion of exp(−αĤ). In addition, the number of iterations is greatly reduced by choosing an initial wave vector that closely resembles the solution wave vector. Equation (1.13) also points out an overall limitation of this method in that the number of iterations required to achieve convergence scales inversely with the energy separation between eigenstates. This problem can be alleviated somewhat by selecting initial trial states with appropriate parity such that the error projections vanish for eigenstates with opposite symmetry. The chief advantage of the IEOM is the ability to generate an arbitrarily small number of eigenstates NE. As a result, the IEOM scales as N2ENG as opposed to N3G for conventional eigenvalue methods. The iterative extraction-orthogonalization method therefore maps particularly well into the simulation of nanostructures exhibiting a small number of occupied states and a large number of mesh points.



1.2.3 Boundary Conditions

Boundary conditions for the Schrödinger equation are imposed by assuming vanishing wave functions around the perimeter of each quantized region. Special consideration, however, is required for the boundary conditions around the 0D region, particularly in the longitudinal direction. Since the localized quantum-dot states hybridize into propagating states in the lead (1D) region, the constraint of a vanishing wave function at the 0D-1D boundary artificially alters the weakly localized eigenen-ergies. To avoid this problem, we impose the longitudinal boundary conditions well into the lead regions and let the localized states acquire propagating components. This, however, generates an additional problem since the parity of the quasilocalized 0D states is now determined in part by the propagating portion as well as the localized portion. The Gram-Schmidt calculation would then or-thogonalize the quasilocalized states based on their overall parity (localized and propagating) and tend to collapse them into the resonant linewidth of the ground state. We avoid this by creating an interior boundary for the integrations in the Gram-Schmidt step that treats the parity only in the localized region and allows us to retain an orthogonal set of localized 0D states.

The boundary conditions imposed on the potential reflect the confinement geometry of the structure. Potentials along exposed surfaces are modeled by Dirichlet conditions which convey Fermi-level pinning. The Schottky-barrier heights ϕs are strongly influenced by surface chemistry so we use experimental data of Grant et al.22 for GaAs and Best23 for Al0.3Ga0.7As. Gated surfaces are treated by modifying the Schottky barriers by ϕs – VG, where VG is the gate bias. Unexposed boundaries are assumed to be under flat-band conditions and are modeled by Neumann boundary conditions.



1.2.4 Charge Densities and Equilibrium Statistics

Once the wave functions are obtained in each region exhibiting quantum confinement, they are assembled to create a local charge density. As mentioned above, the wave functions are cast into quasibound forms with free-electron behavior in the unconfined directions where applicable. The charge densities therefore take on the form
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In the above expressions, F–1/2(E) and F0(E) are the Fermi integrals of order 

−
1
2


 and 0 respectively, and f0(m) is the distribution function for a quantum dot which is derived from the grand canonical ensemble. If the dot is in strong contact with the leads through tunneling, the distribution is well approximated by the Fermi-Dirac form. If, on the other hand, the dot wave functions exhibit a high degree of localization, only an integer number of electrons N can occupy the dot and this constraint is imposed on the Gibbs’ distribution7,8 such that
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where the partition function Z (N) is given by
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In the above expressions, μ is the chemical potential in the leads, and the sums are carried out over all possible occupation configurations {ni} with the constraint that Σini = N. The lack of diffusive contact between the quantum dot and the rest of the structure implies that µ is well denned only in the leads and contacts. For carriers that do not exhibit confinement (holes) and regions that are not governed by quantum mechanics a semiclassical Thomas-Fermi model is used to generate the charge density.

Under nondiffusive conditions, the equilibrium number of electrons in the quantum dot Neq will generally be determined by the configuration that minimizes the free energy F(N) = –kT ln[(Z(N)]. Figure 1.2(a) shows a comparison of the Fermi-Dirac distribution with the constrained Gibbs’ distribution in the regime kT ≃ En + 1 – En. The disparity between the two distributions is largest near the Fermi energy EF. For highly populated quantum dots, however, the use of the Fermi-Dirac factor greatly expedites the simulation since the calculation of the Gibbs’ distribution scales as 2 (2NE), which can easily dominate the execution time. The free energy as a function of the number of electrons in the dot for a particular bias is displayed in Fig. 1.2(b), and exhibits a minimum for N = 9. The charging energy of the quantum dot U(N) is denned by7
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Figure 1.2
(a) A comparison of the Fermi-Dirac (×) and constrained Gibbs’ (•) distributions in the regime kT ≃ ΔEn. The distributions show good agreement except near EF. (b) The free energy exhibits a minimum for N = 9 which determines the number of electrons in a highly localized quantum dot.
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For electrons to tunnel through states in the quantum dot, it is necessary for them to overcome the Coulombic barrier U(N + 1) – U(N) = F(N) – F(N + 1), which is modulated by VG.



1.2.5 Model Self-Consistency

The Schrödinger and 3D Poisson equations are solved simultaneously using the Newton-Raphson method which iteratively drives the solution towards self-consistency via
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where




F(
ϕ
)=∇[ 
ϵ(
r
)∇ϕ(
r
)
 ]+eρ(
r
),


(1.21)

and i indicates the iteration in the convergence loop. Upon obtaining the charge density throughout the structure (see Sec. 1.2.4), it is inserted into Eq. (1.21), and a new solution vector for the potential is obtained via Eq. (1.20). We assume that in the evaluation of the charge derivatives, the variation of the wave functions with potential adds a negligible contribution compared to the potential variation of the occupation probability.24 To allow simulations at low temperatures (T ≥ 50 mK), the Newton algorithm incorporates a line-search along the solution vector to minimize the residual. The symmetry of the structure (see Fig. 1.1) is used to reduce the execution time of the Newton iteration by evaluating Eq. (1.20) over only one quadrant of the device geometry. Convergence is monitored by examining the residual F(ϕ) and allowing the simulation to run until it falls below an imposed error tolerance. A typical simulation requires approximately 450 iterations to achieve satisfactory convergence, which translates into about 15 CPU hours on a superscalar HP 9000/735 workstation.



1.2.6 Transport Model

The self-consistent simulation is carried out in quasiequilibrium. Transport properties for the structure are subsequently evaluated in the linear-response regime by making use of the adiabatic approximation which condenses the 3D problem down to a 1D form. We first assume that the wave functions ψ(r) are separable such that ψ(r) = ϕm (x, y: z)ξn(z). Then, if the potential energy is cast in a local representation, the Schrödinger equation reduces to
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by neglecting the 2 variation of ϕm. Here the adiabatic quasi-1D eigenenergy Em(z) is obtained from the auxiliary equation
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which is solved in “slices” down the longitudinal z axis of the computational grid. Once Em(z) is calculated, it is used in a transfer-matrix calculation25 to obtain the transmission probability |T(ϵ)|2 over the relevant energy range for a given gate bias. The transfermatrix calculation takes into account the quasi-2D contacts by extending the adiabatic eigenenergies into the these regions. Furthermore, to accurately treat the extremely narrow linewidths of the highly localized quantum-dot states, an iterately focused search algorithm is performed around each resonance to within machine precision. Although our approach neglects the effects of mode coupling which occur near rapid potential variations,26,
27 its rapid execution time enables a computationally tractable and accurate extraction of all relevant transmission resonances. Moreover, the smooth variation of the confining potential in the present device exhibits an enhancement of barrier thickness with increasing mode index which strongly reduces the presence of high-order structure in the overall transmission probability resulting from mode coupling effects. For accuracy, our approach was tested against a multimode 2D recursive Green’s function method,28 and demonstrated good agreement even for highly asymmetric confining potentials. Further validity of the adiabatic approximation is given in Table 1.1, which shows a comparison of the localized quantum-dot eigenenergies obtained from the rigorous 3D solution of the Schrödinger equation with the resonant eigenenergies extracted from the peaks in the |T(ϵ)|2. The good agreement between the eigenenergy spectra supports our transport model and justifies the use of the adiabatic approximation in the 1D and 2D quantized regions (see Sec. 1.2.1).

Table 1.1 Comparison of eigenenergies calculated rigorously with the 3D Schrödinger equation to those obtained with a transfer-matrix calculation based on the adiabatic approximation


	
	Localized eigenenergy



	n
	3D solution (meV)
	adiabatic (meV)





	1
	–0.751215
	–0.751520



	2
	–0.664473
	–0.664506



	3
	–0.541697
	–0.541180



	4
	–0.393627
	–0.392981



	5
	–0.236616
	–0.235743



	6
	–0.081263
	–0.079489



	7
	0.074872
	0.079586



	8
	0.249054
	0.258956



	9
	0.446732
	0.463158



	10
	0.663504
	0.687477





The conductance through the structure is calculated using the Landauer formula29 for finite temperatures:
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The charging effects are contained in the transmission function T (ϵ;VG), which carries a different statistical weight for the arbitrarily assigned spin-up (+) and spin-down (–) states on each bare energy level. This effectively lifts the twofold spin degeneracy and accounts for the fact that charge is added to the quantum dot in single increments. The form of T (ϵ;VG) for each bare eigenenergy is based on the degenerate two-level system examined by Beenakker,7 and is given by
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where ϵ+ = ϵ + U(N + 1) – U(N) and ϵ– = ϵ + U(N) – U(N – 1).




1.3 Results

The confining potentials in the structure are displayed in Fig. 1.3, which shows the conduction-band edge for slices taken through the device active region. A potential-energy minimum occurs at the interface (y = 0.1 µm) between the undoped GaAs and Al0.3Ga0.7As spacer layer [Fig. 1.3(a)]. The confinement in this direction (y) is the strongest, and therefore provides the largest contribution to the eigenenergy spectrum (ΔEy = 30–40 meV). The transverse confinement arising from the split gate at y = 0.24 µm is also evident in Fig. 1.3(a), which reveals the split-gate separation of 0.4 µm in the x direction. The strength of the planar (x,z) confinement is considerably weaker, and therefore plays the most significant role in determining the quasiequili-brium properties of the device. This fact has often been used to justify two-dimensional approximations of quantized structures. Figure 1.3(b) shows the conduction-band edge in a horizontal plane taken at the undoped GaAs/Al0.3Ga0.7As interface (y = 0.1 µm). The split-gate (x) confinement is again evident, in addition to the longitudinal (z) confinement arising from the patterned gate constrictions. The effects of the constrictions are twofold. First, the local maxima of the conduction band in their vicinity causes charge depletion and leads to the confinement of charge into the region between the constrictions. This effect was also observed in a semiclassical Thomas-Fermi analysis of this structure.2 The second, and more important contribution to the quantum-dot geometry results from the increased lateral confinement of the (x) potential in the region just below the constrictions. This effect causes a sharp highly localized increase in the quasi-1D eigenenergy which ultimately plays the dominant role in establishing the barrier between the 1D leads and the quantum dot. The barrier profile is evident in Fig. 1.4, which shows the first two sets of localized eigenenergies arising from the 3D self-consistent potential of the dot. Also shown are the first two quasi-1D eigenenergies obtained by extending the quasi-1D adiabatic approximation into the quantum-dot region. The latter curves are useful as a reference for visualizing the relative position of the localized eigenenergies which are computed from a rigorous 3D calculation. The localized quantum-dot states assume a nearly uniform energy separation implying a quasi-harmonic-oscillator potential between the constrictions. Although the localized states corresponding to two quasi-1D modes are occupied for this particular gate bias, the channel corresponding to the first excited 1D subband is essentially closed owing to its relatively low occupation probability and wide tunnel barriers. The device should therefore exhibit single-mode characteristics over a wide range of gate biases, as has been seen experimentally. Note that the barriers have widths on the order of hundreds of nanometers which would allow effective tunneling only over a small range of energies near their tips. This is in agreement with a semi-classical Thomas-Fermi simulation of the present device.2
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Figure 1.3
Conduction-band-edge variation for slices taken in the device active region. (a) A vertical slice taken at the center of the 0D region shows the lateral confining potential arising from the heterojunction (y) and split gate (x). (b) A horizontal slice taken at the heterojunction shows the effects of the split gate and constrictions which create an additional level of confinement in the z direction.


[image: ]
Figure 1.4
The localized 0D eigenenergies and their respective quasi-1D eigenenergies derived from the adiabatic approximation. The eigenenergies associated with the ground (solid) and first excited (dotted) quasi-1D states are the only ones occupied (EF = 0 meV).

Figure 1.5 shows several localized 3D wave functions that reside in the quantum dot. The labeling scheme we use reflects the number of antinodes in each spatial direction.12 For instance, state (3,1,2) has three antinodes in the x direction, one antinode in the y direction, and two antinodes in the z direction. The various localized states are coupled to the propagating 1D states by nx and ny quantum numbers. As such, the (2,1) lead state can elastically scatter only to the (2, 1, nz) localized states via tunneling. The (1, 1, nz) states are energetically the lowest and therefore make the dominant contribution to the 0D charge density. Some (2, 1, nz) states, however, can become occupied in a typical sweep of VG and contribute to the charge density and potential profile even though they are inaccessible to the leads via tunneling. This is evident in Fig. 1.6, which shows the behavior of the localized eigenenergies relative to EF for a typical sweep of VG. The electron density in the active region is displayed in Fig. 1.7, and shows the depletion of charge in the vicinity of the split-gate constrictions. The formation of a quantum dot is visible as a pocket of charge between the charge-free constricted regions. The presence of charge in the 1D leads and 2D contacts is also apparent in Fig. 1.7.
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Figure 1.5
Localized electronic wave functions in the quantum dot. The wave functions were obtained rigorously from a 3D self-consistent solution of the Schrödinger and Poisson equations in the region of the quantum dot.
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Figure 1.6
Quantum-dot eigenenergies as a function of gate bias (relative to threshold). The levels corresponding to the transverse ground state (solid), first transverse excited state (dashed), and second transverse excited state (dotted) are shown. The data were taken at T = 50 mK for L0 = 0.8 µm.
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Figure 1.7
(a) Calculated electron density for a horizontal slice taken at the heterojunction. The formation of a quantum dot is visible as an island of charge between the two quasi-1D leads. (b) The carrier density in the active region (x = 0.7 μm, y = 0.11 μm) as a function of the longitudinal distance (z) down the wire. The charge-free regions indicate the position of the tunnel barriers.

The manifestation of the charging energy in the adiabatic quasi-1D eigenenergy is shown in Fig. 1.8. Each curve represents a configuration which is constrained through the Gibbs’ distribution to support an integer number of electrons in the quantum dot for a particular gate bias. The integer occupancy constraint in the dot results from the lack of diffusive contact with the leads, which limits the population to take on integer values. The different well profiles for the curves in Fig. 1.8 essentially account for the charging energy encountered when adding or subtracting electrons from the quantum dot. The equilibrium population Neq for this configuration occurs for Neq = 6. Any deviation away from equilibrium requires an energy input in excess of the charging energy to maintain its stability. For example, if an additional electron is added to the well (in equilibrium) such that N = 7, the energy imbalance in the dot favors the expulsion of the electron unless excess energy is provided to the system to maintain this imbalance. Likewise, if an electron is removed from the dot (N = 5), the energy imbalance favors the admission of an additional electron. The inability of electrons with energies lower than the charging energy to alter the dot population results in the Coulomb blockade of resonant tunneling through the structure.
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Figure 1.8
Adiabatic quasi-1D eigenenergy data taken for various electron populations in the quantum dot. The equilibrium density occurs for Neq = 6.

In general, a particular equilibrium population in the dot Neq will be maintained over some range of VG. As the gate bias is modulated beyond this range, the minimum free-energy configuration eventually yields a new equilibrium population that differs from the old by a single electron. This effect is evident in Fig. 1.9(a), which shows Neq over a 15-mV sweep of VG. The plateaus in Neq represent biases for which F(N) has a unique minimum. The biases where the electron population experiences a transition correspond to a degeneracy condition for the free energy, [i.e., F(Neq) = F(Neq + 1)]. Under this condition, the quantum dot will effectively accommodate both Neq and Neq + 1 electrons. This situation leads to the special circumstance where the Coulomb blockade is lifted (i.e., the charging energy disappears) and transport is permitted through the device.6 The flow of electrons then proceeds in a sequential manner, one electron at a time, because the quantum dot can support only one additional electron without again experiencing a Coulombic barrier. Figure 1.9(b) shows the transport characteristic calculated from Eq. (1.22) which corresponds to the bias sweep in Fig. 1.9(a). As expected, the conductance exhibits thermally broadened periodic peaks whenever the electron density exhibits a degenerate population. The qualitative basis for the thermal broadening of the conductance peaks is that the electron distribution in the leads, which is smeared around the Fermi energy at finite temperature, gives rise to certain electrons overcoming the Coulomb blockade and tunneling through the structure for arbitrary gate biases.
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Figure 1.9
(a) Number of electrons in the quantum dot as a function of gate bias. (b) Corresponding conductance data taken for L0 = 0.8 μm and T = 50 mK.

Since the numerical self-consistent model used in this analysis is based only on externally controlled parameters such as device geometry, material properties, and biases, it should yield data that closely corroborates the experimental findings. It is therefore useful to examine the validity of the orthodox picture of single-electron tunneling effects and look for possible inconsistencies. For example, the traditional capacitance model6 phenomenologically treats the charging energy by examining dot gate, dot lead, etc. capacitances. Although the capacitance model has rather weak predictive capabilities, it nevertheless gives a correct picture of the quadratic behavior of the charging energy with electron population, and is supported by the numerically calculated free energy data in Fig. 1.2(b). The theory of transport in the presence of the Coulomb blockade has been treated on the basis of kinetic arguments7,8 or the Anderson model.9 While these models give good predictions for the peak line shape, their use of a sequential transfer approach to tunneling does not take into account the fact that the bound states in the quantum dot display hybridization with propagating states in the leads. The numerically calculated transport characteristics we obtain via Eq. (1.22), however, implicitly treat charging effects and electron tunneling and therefore should show good agreement with the experimental data.2 Figure 1.10 shows the conductance as a function of VG at T = 50 mK for two quantum-dot lengths, L0 = 0.8 [Fig. 1.10(a)] and 0.6 µm [Fig. 1.10(b)]. The conductance exhibits a general increase in oscillatory period with decreasing L0, as observed experimentally. In addition, the oscillation period of the L0 = 0.8 µm device is approximately 0.75 the period of the L0 = 0.6 µm device, as expected from simple geometrical arguments. A comparison with the experimental data gives ΔVG = 1.8 (experimental) and 2.3 mV (theoretical) for the L0 = 0.6 µm structure, and ΔVG = 1 (experimental) and 1.7 mV (theoretical) for the L0 = 0.8 µm structure. The data show reasonably good agreement, and we attribute the discrepancy to potential drops over the conductive substrate which are neglected in our simulation, and also to processing-induced variations in the experimental device. We have attempted to account for the latter effect by using rounded constrictions in our simulations to make them more closely resemble those found in the experimental structure.2
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Figure 1.10
Transport characteristics of the device as a function of the distance between the constrictions L0 (T = 50 mK). Data are taken for (a) L0 = 0.8 µm and (b) L0 = 0.6 µm which shows the general increase in oscillatory period with decreasing L0.

In contrast to the period, the amplitude of the conductance oscillations [Figs. 1.9(b) and 1.10] shows significant deviation from the behavior found in the experimental data. Our model predicts that the relative amplitudes between successive peaks vary over several orders of magnitude, and that the overall conductance envelope should monotically increase with increasing VG. This is a result of wide tapered barriers (Fig. 1.4) which show a strong decrease of resonant linewidths with decreasing eigenenergy due to enhanced localization. Experimental conductance data, however, exhibit peak conductance amplitudes that vary only slightly from peak to peak and are characterized by an envelope that exhibits regions of local decrease. We believe that this apparent inconsistency between theory and experiment results from the presence of interface disorder in the experimental device which is neglected in our model. Evidence of interface disorder has been obtained from luminescence studies of epitaxially grown heterointerfaces30,31 which have indicated the presence of alloy clustering even in carefully grown samples. Furthermore, single-barrier devices based on epitaxially grown heterojunctions have been shown to exhibit anomalous resonant-tunneling characteristics at turn-on that strongly suggest the presence of localized interface states.32 Theoretical examination33,34 of interface disorder in structurally confined quantum wires have demonstrated a significant influence on the overall electronic properties. The effect of interface disorder on the present device would enhance tunneling through the relatively thick barriers shown in Fig. 1.4. This would account for the slight peak-to-peak amplitude variation and nonuniform envelope found experimentally. Direct evidence for the manifestation of interface disorder in the present structure is provided by thermally cycling the device.2 Upon heating the device to room temperature and subsequently cooling it down, the conductance maintains its periodicity but exhibits large variations in amplitude and envelope. This behavior is readily explained by the reorganization of the interface disorder at high temperatures, which freezes in a particular configuration as a sample is cooled and leads to a unique conductance profile. We therefore believe that interface disorder plays a significant role in determining the transport properties of the present structure, and its prominence in transport models should be elevated from that of a second-order effect. Such information is not available from the various analytical models which phenomenologically account for barrier tunneling. This fact emphasizes the importance of the numerical approach in treating similar problems.



1.4 Conclusion

In conclusion, the quantitative assessment of single-electron charging effects requires the use of self-consistent models which incorporate thorough treatments of quantum mechanics and carrier statistics. With the use of such a simulation, we have achieved good agreement with experimental data with respect to oscillation period, but demonstrated a large discrepancy between the theoretical and experimental amplitudes. This latter fact suggests the prominent role of disorder mechanisms in this structure (which were not treated in our model) and their importance in determining the transport properties of this and similar structures. In the process of this investigation, several proposed transport models7–9 were validated along with the phenomenological expression for the charging energy.6 As device geometries continue to shrink and exhibit multiple regions of dimensionality, self-consistent quantum-mechanical models will play an increasingly important role in their analysis.
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2.1 Introduction

In the last few years, there have been numerous investigations of near-threshold resonant tunneling through molecular-beam-epitaxy (MBE)-grown planar quantum-dot nanostructures. These devices have generated significant interest because they exhibit strong Coulomb-blockade effects1 and show promise for robust resonant-tunneling applications. Although analytical2,3 and numerical4 models have successfully explained the periodic conductance peaks observed at cryogenic temperatures, several features of the experimental data have not been analyzed in detail and their explanation to date remains inconclusive. Specifically, the nonmonotomic increase of the conductance amplitudes with gate bias implies the presence of some type of disorder, which influences the transport properties of the structure. This possibility was initially explored in the analytic model of Meir, Wingreen, and Lee3 who phenomenologically introduced variations in resonant linewidths IF and reproduced a nonmonotonic peak variation. A self-consistent numerical analysis of this device4 in the virtual-crystal approximation (VCA), i.e., by assuming perfect surfaces and Al0.3Ga0.7As interfaces, and neglecting disorder, revealed an exponential monotonic growth of Γ with increasing gate bias. Since the experimental data exhibit a much more gradual albeit nonmonotonic envelope, they appear likely due to an unscreened disorder mechanism (i.e., interface roughness) which activates transmission through the tunnel barriers and accounts for the disparity between the experimental and numerical data. Other lateral resonant-tunneling quantum-dot devices are characterized by a similar series of randomly varying resonant peak amplitudes,5 which typically show no correlation from device to device.6 The suggestion that the near-threshold transport properties of these devices are dominated by intentionally fabricated features is, therefore, in serious doubt and the more likely explanation is that each resonant structure is derived from the disorder potential as in single-barrier devices.7,8
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Various experimental investigations have characterized the nature of structural imperfections, which arise during material growth and processing. Holonyak et al.9 have shown that slow epitaxial-growth processes [i.e., MBE and metal-organic chemical-vapor deposition] with sharp on-off control display an inherent lack of stoichiometric control near a heterointerface on the order of one or two monolayers in the growth direction. The disorder is laterally manifested in the form of interface clusters, which result from the diffusion and desorption of alloy constituents over the growth plane.10 A direct characterization of heterointerface quality is possible with exciton photo-luminescence (PL) techniques as discussed by Herman, Bimberg, and Christen.11 Their data illustrate the presence of large-scale interfacial macrocluster formation with a lateral extent in excess of 1-µm GaAs-Al0.3Ga0.7As quantum wells. The resolution of PL measurements, however, is limited by the size of the induced exciton, which is typically in the range of 5–10 nm. A probe of the microscopic structure of interface roughness in GaAs-Al0.3Ga0.7As quantum wells has recently been performed by Johnson et al.12 using scanning tunneling microscopy. Their data are accurate to within atomic precision and reveal interfacial roughness on the order of 1–10 monolayers in both the perpendicular and lateral directions even in high-mobility samples. This type of interface disorder is generated by inherent variations in Al mole fraction in the ternary Al0.3Ga0.7As layer. Surface roughness and impurity disorder in doping layers are also present in varying degrees depending on the specific device configuration. The topology of an exposed surface has long-range influence on a quantization potential via random fluctuations in the location of Fermi-level pinning. In addition, the spatial variations of impurity atoms in a doping layer have been shown to give rise to pronounced structure in the confined regions of modulation-doped devices.13 The combined effect of all these disorder mechanisms may result in a distortion of the desired confining potential in a particular geometry, which can lead to significant deviations from intended device performance.

Numerous theoretical investigations have been undertaken to study the strength and impact of disorder in various device geometries. Catellani and Ballone14 have demonstrated that the introduction of islands with ± one-monolayer depth at the interfaces of double quantum wells gives rise to energy shifts and line shapes that closely resemble the measured optical spectra. An analysis of MBE-grown vicinal quantum wires by Taylor et al.15 reveals a significant distortion of the one-dimensional (1D) density of states in the presence of interface disorder when compared to the predicted ideal behavior. A similar analysis by Singh16 suggests that even if the overall distortion of the 1D density of states is suppressed, a large fraction of the low-energy states experiences localization and that carrier transport, which inherently samples the long-range behavior of the wave functions, should be significantly altered. Furthermore, the comprehensive work of Davies and Nixon and co-workers13,17 reveals the significant potential fluctuations, which result from unscreened randomly distributed dopants in modulation-doped devices. Their analysis goes so far as to calculate the conductance through a point contact and demonstrates the degradation of conductance plateaus for various disordered dopant configurations.

The purpose of the presentinvestigation is to analyze the transport characteristics of an MBE-grown lateral single-gated quantum-dot device and assess the degree to which structural disorder affects its transport properties. The transport characteristics of the device display anomalous conductance fluctuations6 despite the presence of relatively wide tunnel barriers. To analyze the influence of structural disorder, we perform a numerical simulation of the device with a self-consistent 3D Schrödinger–Poisson4 approach similar to that used for investigating the single electron transfer device conceived by Meirav et al.1 Structural disorder in the form of interface and surface roughness is added in varying degrees to gauge how the transport characteristics are transformed from the VCA to a disorder dominated system. Although the rigorous theoretical investigation of ionized dopant randomization by Davies and Nixon and co-workers13,17 leaves no doubt of its importance, we omit this disorder mechanism due to difficulties in capturing its essential features with a coarse computational mesh. Instead, we will show that interface and surface roughness are sufficient to account for the resonant-transport features observed in the experimental devices. Our results can be generalized to other disorder mechanisms (i.e., ionized dopant randomization), which are not directly included in our model but which undoubtedly contribute to quantum transport in an analogous fashion.



2.2 Experimental Device

The experimental device examined here is a thin-gated mesa-etched quantum-dot nanostructure. A cross section of the device and a set of theoretical potential energy contours are shown in Fig. 2.1. Briefly, the heterostructure was grown by MBE on an undoped GaAs substrate. A 1-mm-thick GaAs buffer layer was grown on the substrate followed by a 17.5-nm undoped Al0.3Ga0.7As spacer, a Si δ doping of 5 × 1012 cm–2, a 20-nm layer of Al0.3Ga0.7As, and a 20-nm n+-GaAs cap layer. Hall measurements on the sample indicated a sheet carrier density of Ns = 4.7 × 1011 cm–2 and a mobility of µs = 5.0 × 105 cm2/V s at T = 4.2 K. Isolation and contact patterning were then carried out by optical lithography followed by a wet etch. Ohmic contacts to the source/drain were made with alloyed AuGe/Ni/Au. A source-drain separation of 20 µm was chosen to allow relaxation of hot electrons injected from the source. The n+ -GaAs cap was then removed from the heterostructure surface by selective wet etching. High-resolution e-beam lithography was used to define the Poly-Methyl-Methacrylate (PMMA) resist for the quasi-1D mesa followed by a wet etch in H3PO4:H2O2:H2O. Despite the better resolution of dry etching, a wet etch was chosen in an effort to minimize surface damage. Finally, the thin gate was defined using e-beam lithography followed by Ti/Au lift off. Devices with quasi-1D channel widths ranging from 0.15 to 0.7 µm were fabricated and a 0.24-µm channel width was found to give the best threshold behavior. Wider channels operated in a depletion mode whereas narrower mesas resulted in a completely cut off channel. The 200-nm thin-gate length was modulated with a positive gate bias, which induced the third dimension of confinement and formed a quantum dot in the quasi-1D channel below the gate.


[image: ]
Figure 2.1
(a) Schematic configuration for the experimental planar thin-gated quantum-dot device. (b) Potential contours calculated in a plane just below the GaAs-Al0.3Ga0.7As interface. The arrows indicate the direction of current flow.

A set of I-V characteristics of this device is shown in Fig. 2.2 for various drain-source biases, VDS. The measurements were conducted at T = 4.2 K and the samples were cooled without illumination to avoid persistent currents resulting from DX center activation. The gate bias, VG was swept while VDS was fixed to values ranging from 0.1 to 1 mV. The predominant features in the conductance are independence of the threshold voltage from VDS and the conductance peaks that persist beyond VDS = 1 mV. Both of these features point to resonant tunneling as the predominant mechanism for controlling the near turn-on I-V characteristic. However, the presence of resonant features is rare in the device population and, when present, exhibits a strong lack of uniformity in peak amplitude and periodicity from sample to sample. The case for resonant tunneling can be made simply with a qualitative examination of the confinement geometry of the device. The application of a positive VG forms the quantum dot in the quasi-1D channel by locally lowering the potential energy underneath the gate. The remaining portions of the quasi-1D channel retain a higher potential energy and, therefore, form barriers separating the quantum dot from the contacts [see Fig. 2.1(b)]. A positive sweep of VG gradually lowers the height of quasi-1D barriers and results in the eventual activation of conduction. In addition, a positive gate-bias sweep results in an enhancement of the quantum-dot charge density and the generation of multiple resonant conditions between the quantum-dot eigenenergies and the Fermi energy in the contacts, EF. Undoubtedly, Coulomb-blockade effects are also present and play a role in determining the conductance characteristics. However, this simple model fails to explain the relatively sparse number of experimental devices that exhibit near-resonant characteristics or the large fluctuations in peak height and periodicity. In addition, inspection of the device dimensions reveals that the quasi-1D barriers should be on the order of ≃500 nm–1 µm wide and, therefore, relatively impermeable to tunneling, except over a few tenths of µeV from the very tip of the barrier. For higher barriers or lower carrier energy, the resonance transmission is too sharp and too narrow to withstand a realistic thermal broadening of more than a few mK. Clearly, a randomizing agent is present in the device population and responsible for the lack of uniformity in the I-V characteristics. This randomness can be accounted for by interface disorder and surface roughness, both of which are inherent properties of material growth and processing. It might be counterintuitive to invoke surface and interface roughness to explain the oscillatory structures in the I-V characteristics of high-mobility materials when it is known that impurity scattering due to random dopants is a significant limiting factor for low-temperature mobility in mesoscopic devices. However, structural disorder which manifests on a shorter range than impurity scattering, with fluctuations of the order of 1 meV in the barrier height, is sufficient to account for the experimental data, while the long-range influence of random dopant certainly contributes to the general trends observed in this work.
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Figure 2.2
Experimental conductance characteristics at T = 4.2 K for a rare sample, which exhibits features of resonant tunneling. The various curves indicate the persistence of distinguishable resonant-tunneling characteristics beyond VDS = 1.0 mV.



2.3 Theoretical Background

The analysis of structural disorder in semiconductor devices has traditionally been treated by representing crystalline imperfections as randomly distributed elastic-scattering centers. While this approach is well justified in bulk systems for which transport is inherently particlelike, quantized systems exhibit extended electronic states and require a nonlocal treatment of disorder. The manifestation of disorder-induced potential leads to weakly localized conducting channels through seemingly impenetrable barriers, which give rise to resonant-transport characteristics. To fully account for this behavior, structural disorder must be rigorously modeled and realistically encoded. The symmetry-breaking nature of a crystalline imperfection, therefore, implies that a 3D model is required to fully capture its essential properties. One such model developed by Ting, Kirby, and McGill18 has been used to investigate the influence of interface roughness on transport perpendicular to a heterointerface. Their approach involves a 3D planar supercell simulation capable of rigorously treating transport in structurally confined quantized geometries. Their data clearly demonstrate the nonlocal influence of disorder via auxiliary peaks in the transmission coefficient for double barrier resonant-tunneling structures and structurally confined quantum wires. For the planar field-confined geometry analyzed here, interface and surface roughness play a prominent role since transport occurs parallel to the interface. In addition, field confinement and disorder screening require self-consistency between the potential and charge distributions.

Our theoretical model is based on a 3D self-consistent quantum-mechanical simulation of the electronic properties of the structure.4 Briefly, the Schrödinger equation is solved using the iterative extraction-orthogonalization method20 (IEOM), which enables the rapid evaluation of an arbitrary number of eigenstates in each quantized region of a particular device geometry. In the present device, we identify regions that exhibit 2D or 1D confinement and adiabatically solve 1D or 2D versions of the Schrödinger equation, respectively. Although a similar analysis has been used to treat 0D (quantum-dot) confinement rigorously with a full 3D solution of the Schrödinger equation,4 this level of simulation would prove too costly in the present treatment since the weak disorder-induced localization would generate an enormous number of simulated 0D eigenstates. Instead, we treat the quantum dot as an extension of the 1D leads and draw on the efficiency of the 2D IEOM evaluation of the transverse wave functions to enhance the performance of the simulation. The accuracy of the 1D adiabatic approximation was previously tested against a rigorous 3D simulation of a 0D confined region in the VCS and good agreement was found between the respective eigenenergies, thereby validating its general use.4 However, in the highly disordered systems encountered here, the rapid variation of the potential in all three dimensions casts doubt on the integrity of the adiabatic approximation. Nevertheless, in this investigation we are interested in capturing a qualitative understanding of the influence of structural disorder and the adiabatic approximation represents a reasonable tradeoff between theoretical rigor and execution time.

Once we obtain the relevant eigenstates in each region, they are assembled and weighted with the relevant statistical factor to obtain a device-wide 3D charge density. The charge density is then fed into a modified Newton-Raphson algorithm which implicitly solves Poisson’s equation and drives the simulation towards self-consistency. We include exchange and/or correlation effects via the Kohn-Sham local-density approximation to account for high-order many-body effects at low temperatures. The computational mesh and boundary conditions are cast to accurately model the various material properties and overall 3D device geometry. Fermi-level pinning is imposed on all exposed surfaces to account for occupied surface states. This condition is modeled by establishing Dirichlet boundary conditions in the form of Schottky barriers ϕs on all surfaces except those under the gate, which are modified by the gate bias VG via ϕs–qVG. Our choice for this surface model is based on its overall simplicity and computational efficiency despite the fact that it fails to account for the long-range Coulombic surface effects arising from the thin gate. Computational (unexposed) surfaces in our 3D grid are chosen such that they terminate in regions where bulk behavior occurs and are, therefore, suitably modeled by Neumann boundary conditions. A nonuniform mesh is used in the vertical (heterojunction) to allow refinement of the mesh width down to 5 Å to accurately model the disorder at the GaAs-Al0.3Ga0.7As interface. The disorder is created by allowing interpenetration of GaAs mesh “tiles” into the Al0.3Ga0.7As and vice versa. Mesh tiles of various lateral dimensions (200 × 200 Å2, 800 × 800 Å2, and 1600 × 1600 Å2) are randomly assembled along the interface to create disordered interface clusters. Similarly, surface roughness is modeled by spatially varying the thickness of the surface boundary tiles over ≃100 nm. This approach results in a spatial variation of the Fermilevel pinning boundary condition, which subsequently generates long-range randomization of the confining potential. We note that both the disorder mechanisms in our model experience screening since they are treated self-consistently within our formalism.



2.4 Transport

Once an equilibrium simulation is complete, the adiabatic multisubband quasi-1D eigenenergy is stored and subsequently used in the evaluation of transport characteristics. The eigenenergies are extended into the source regions by assuming that the transfer of electrons from the source into the lead also occurs adiabatically. Since the equilibrium simulation is somewhat computationally intensive (≃10 h on a HP9000/735 workstation for each bias point), we run the code for several gate biases only and use IMSL interpolation routines on the adiabatic eigenenergies to obtain a quasicontinuous transconduc-tance characteristic. At each interpolated gate bias, the transmission coefficient is evaluated from the interpolated adiabatic eigenenergy using a 1D transfer-matrix calculation. The justification of the adiabatic approximation is as follows. We first assume that the potential exhibits slow longitudinal variation giving rise to wave functions ψ(r), which are separable such that ψ(r) = ϕm(x, y; z)ξn(z). Then, with the potential energy represented locally, the 3D Schrödinger equation reduces to
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where we assume that the z variation of ϕm(x,y;z) is negligible. The adiabatic quasi-1D eigenenergy Em(z) is obtained from the auxiliary equation
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which is solved in transverse planes (1D) down the longitudinal z axis of the computational grid. Once Em(z) is calculated at each interpolated gate bias, VDS is phenom-enologically superimposed and the transfer-matrix calculation is used to generate the transmission probability |T(ϵ)|2 over the relevant energy range. The finite temperature current I is finally obtained by inserting |T(ϵ)|2 into the standard tunneling current formula19
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where e is the electron charge, h is Planck’s constant, and f (ϵ) is the Fermi-Dirac distribution. To accurately treat the extremely narrow linewidths of the highly localized quantum-dot states, an iteratively focused search algorithm is performed around each resonance to within machine precision. This technique extracts resonances that would otherwise be missed by a uniform integration over the applicable energy range. The accuracy of the 1D adiabatic approximation was tested against a 2D recursive Green’s function method and good agreement was demonstrated even for highly asymmetric confining potentials.21 We note that although Coulomb-blockade effects were previously included in a similar VCA model,4 they are omitted in the present simulation. The large number of resonances arising from the disorder-induced weak localization render the inclusion of charging effects too computationally expensive.



2.5 Results and Discussion

Initially, we simulate the device in the VCA to determine whether the perfect device potential alone is sufficient to account for the resonant-tunneling features found in the experimental device characteristics. The adiabatic quasi-1D ground-state eigenenergy and I-V characteristics of the perfect device are shown in Fig. 2.3. The adiabatic quasi-1D eigenenergy [Fig. 2.3(a)] clearly exhibits the presence of a quantum dot in the vicinity of the thin gate and the formation of barriers in the quasi-1D channel, which separate the quantum dot from the 2D contact regions. In principle, electrons can tunnel through the active region only when interference effects in the quantum-dot cavity create standing waves (bound states) and thereby fulfill the resonance requirement. Although some degree of resonant tunneling should exist in the perfect device, the transport characteristics [Fig. 2.3(b)] show a complete lack of detectable structure in the device current. Examination of Fig. 2.3(a) reveals that the quasi-1D barriers are relatively flat and thick (≃500 nm). Since the barrier width is considerably larger than the electron Fermi wavelength, any transmission resonances through the structure should exhibit exceedingly narrow linewidths. The explanation for the structure-free I-V characteristics, therefore, follows by comparing the relative magnitudes of the tunneling component of the current to the thermionic-emission component. As VG is increased, the long-range influence of the gate lowers the quasi-1D barriers and, therefore, monotonically enhances the thermionic-emission current at T = 4.2 K. On the other hand, the tunneling current, which is superimposed on the thermionic-emission current, has a magnitude proportional to the resonant linewidth Γ when kT >> t. Since the broad barriers in the perfect device lead to a set of Γ, which satisfy this condition, resonant tunneling contributes indistinguishably to the overall current and the transport characteristics in the VCA are completely dominated by thermionic emission.


[image: ]
Figure 2.3
(a) Adiabatic quasi-1D eigenenergy calculated for the device geometry in the VCA. (b) Transport characteristics indicate the absence of any structure in the current for perfect crystalline properties. The wide tunnel barriers (≃500 nm) create extremely narrow resonant linewidths, which do not influence electronic transport.

In the presence of disorder, weak localization in the barrier regions should significantly increase Γ for each resonance and thereby provide a discernible resonant-tunneling contribution to the overall current. To provide an initial examination into the influence of disorder, we have phenomenologically added highly localized repulsive barriers to the VCA adiabatic eigenenergy and reexamined the device transport properties. Figure 2.4 shows the modified adiabatic eigenenergy and the resulting I-V characteristics. Unlike the VCA result, the I-V characteristics for the modified structure exhibit strong resonant-tunneling behavior over a large range of VG. Clearly, this phenomenological model demonstrates the potentially significant impact short-range disorder has on electronic transport in fabricated quantized devices.
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Figure 2.4
(a) Adiabatic quasi-1D eigenenergy in the VCA with an artificially induced sharp repulsive barrier in the quasi-1D channel. (b) Transport characteristics show strong resonant-tunneling behavior and indicate that disorder may be an activating process for observing resonant-tunneling characteristics in quantized devices.

To quantitatively assess the influence of realistic interface and surface roughness, we have introduced these disordered mechanisms into the 3D device geometry as described in Sec. 2.3. Figure 2.5 shows a comparison of conduction-band surface plots in the VCA and in the presence of disorder. The plots are taken in the plane just below the GaAs-Al0.3Ga0.7As interface and cover the entire active region of the device including the leads and contacts. The conduction-band energy in Fig. 2.5 scales with height and shading is used to discern subtle energy variations. The conduction band with disorder [Fig. 2.5(b)] clearly exhibits a mottled texture arising from the interface and surface roughness. Moreover, a comparison of Fig. 2.5(a) and 2.5(b) reveals that whereas the VCA simulation produces relatively thick uniform quasi-1D barriers, the disordered conduction band exhibits numerous islands of weak localization in the quasi-1D regions. The net influence of weak localization is the effective narrowing of the tunneling length in quasi-1D barriers, which activates resonant transport through the device. Figure 2.6(a) shows the adiabatic eigenenergy corresponding to the disordered structure of Fig. 2.5(b). The disorder was produced by randomly assigning 200 × 200 × 5-Å3 tiles at the heterointerface to either GaAs or Al0.3Ga0.7As and randomly varying the position of the etched surface using 200 × 200 × 200-Å3 boundary tiles. The influence of the disorder on the adiabatic eigenenergy is twofold. First, there is the vertical modulation of the potential, which provides an adiabatic shift of the local eigenenergy. In addition, the transverse modulation, largely due to surface roughness, causes local fluctuations of a few meV in the confinement strength, which are manifest as peaks and valleys in the adiabatic quasi-1D eigenenergy. Clearly, these potential fluctuations are mostly influential at the top of the barrier where they cannot be screened by the carriers and are consequently relevant for tunneling. In addition, the random nature of the potential results in a spectrum of narrowly and irregularly spaced eigenstates with significantly broadened transmission resonances. Qualitatively, the disordered potential reduces the effective barrier width and enables robust tunneling several meV below the maximum energy in an otherwise classical barrier.
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Figure 2.5
Theoretical conduction-band surface plots calculated in a plane just below the GaAs-Al0.3Ga0.7As interface (a) using the VCA and (b) with the presence of interface and surface disorder. The potential energy scales with the height of the surface and shading is used to discern subtle energy variations. The disordered surface clearly exhibits a mottled texture arising from the disorder and the presence of weakly localized regions in the quasi-1D channel, which activate resonant transport through the device.
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Figure 2.6
(a) Adiabatic quasi-1D eigenenergy arising from structural disorder in the 3D device geometry. Interface clusters are randomly built from 200 × 200 × 5-Å3 tiles at the GaAs-Al0.3Ga0.7As interface. Surface disorder occurs over 200 × 200 × 200-Å3 boundary tiles. (b) I-V characteristics indicate the presence of pronounced resonant-tunneling behavior.

The impact of the disorder is immediately apparent on the theoretical I-V characteristic shown in Fig. 2.6(b) which, contrary to simulations in the VCA, exhibits strong resonant-tunneling features near threshold at T = 4.2 K. As VG is swept to higher values and the quasi-1D barriers are lowered, the thermionic-emission component of the current begins to dominate and the resonant features are gradually diminished. The effect of varying the size of the interface clusters is shown in Figs. 2.7 and 2.8. The investigated interface tile sizes are 800 × 800 × 5 Å3 (Fig. 2.7) and 1600 × 1600 × 5 Å3 (Fig. 2.8) in addition to the 200 × 200 × 5 Å3 of Fig. 2.6. In all cases, the same surface disorder profile (200 × 200 × 200 Å3) was used. The larger disorder data in Fig. 2.7 exhibit a reduction in the rapid variation in the adiabatic quasi-1D eigenenergy over that in Fig. 2.6 and correspondingly less resonant-tunneling features in the I-V characteristic. Nevertheless, near-threshold oscillations persist and more closely resemble the typical experimental transport data in Fig. 2.2. The coarsest interface disorder data (Fig. 2.8) show the least structure in the adiabatic quasi-1D eigenenergy. The primary disorder mechanism in Fig. 2.8 is surface roughness which, owing to long-range screening, results in a more gradual variation of the adiabatic eigenenergy. This is reflected in the very subtle resonant features in the conductance characteristic of Fig. 2.8.
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Figure 2.7
(a) Adiabatic quasi-1D eigenenergy arising from structural disorder in the 3D device geometry. Interface clusters are randomly built from 800 × 800 × 5-Å3 tiles at the GaAs-Al0.3Ga0.7As interface. Surface disorder occurs over 200 × 200 × 200-Å3 boundary tiles. (b) I-V characteristics indicate the presence of resonant-tunneling behavior.
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Figure 2.8
(a) Adiabatic quasi-1D eigenenergy arising from structural disorder in the 3D device geometry. Interface clusters were randomly built from 1600 × 1600 × 5-Å3 tiles at the GaAs-Al0.3Ga0.7As interface. Surface disorder occurred over 200 × 200 × 200-Å3 boundary tiles. (b) I-V characteristics indicate the presence of subtle resonant tunneling behavior.

These data suggest that interface irregularities on the order of 500–1500 Å are the most likely explanation for the resonant-tunneling features found in the experimental device.

To investigate the influence of VDS variations on the conductance, we have run various simulations at T = 4.2 K with 800 × 800 × 5-Å3 interface disorder and displayed the results in Fig. 2.9. The VDS- induced broadening has little influence on the conductance in the linear response regime (VDS < kT). Under this condition, thermal broadening dominates and the conductance shows little modification with decreasing VDS. However, as VDS is increased beyond kT, the VDS-induced broadening begins to dominate and eventually smears the resonant peaks. Figure 2.9 shows that the resonant conductance peaks retain good resolution beyond VDS = 1 mV at T = 4.2 K, which is confirmed by the experimental data in Fig. 2.2. The influence of temperature variation is exhibited in Fig. 2.10, which shows the conductance at various temperatures while VDS = 0.1 mV. The curve at T = 0.5 K shows the strongest structure in the conductance and most closely resembles the bare transmission coefficient through the device. As the temperature is increased, the thermal broadening softens the resonant behavior and modifies the threshold voltage due to the onset of thermionic emission. Some resonant features remain up to T = 10 K indicating the relative robustness of the disorder-induced resonant tunneling. We should emphasize that although our theoretical approach involving the adiabatic quasi-1D eigenenergy encapsulates the 3D nature of disorder into a simple ID form, the transmission characteristics we calculate can be found in any appropriately disordered system, which qualitatively validates our model. Moreover, the disorder-induced near-threshold resonant behavior we have investigated has been repeatedly observed in planar modulation-doped nanostructures.
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Figure 2.9
Theoretical conductance characteristics with VDS as a parameter at T = 4.2 K. Interface clusters are randomly built from 800 × 800 × 5-Å3 tiles at the GaAs-Al0.3Ga0.7As interface. Surface disorder occurs over 200 × 200 × 200-Å3 boundary tiles.
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Figure 2.10
Theoretical conductance characteristics with temperature as a parameter for VDs = 0.1 mV. Interface clusters are randomly built from 800 × 800 × 5-Å3 tiles at the GaAs-Al0.3Ga0.7As interface. Surface disorder occurs over 200 × 200 × 200-Å3 boundary tiles.



2.6 Conclusion

In this investigation, we have demonstratedthatdisordermechanisms play a prominent role in determining near-threshold conductance characteristics in quantum-dot nanostructures. This conclusion supports our earlier conjecture4 that disorder has a prominent role in activating transport in certain Coulomb-blockade devices.1 While our simulations indicate that interface and surface roughness alone can explain anomalous resonant-tunneling features, other disorder mechanisms (i.e., disorder in the impurity layer) are undoubtedly present in fabricated devices and contribute to the general trends we have observed. It is worth mentioning that most of the lateral quantum-dot nanostructures that have been realized to date exhibit relatively weak confinement potentials, which are easily dominated by inherent disorder-induced fluctuations for T ≤ 10 K. As fabrication techniques improve and lead to higher temperature operation, disorder-induced potential fluctuations will become insignificant, thereby enabling a practical resonant-tunneling-device technology.
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Chapter 3 Three-Dimensional Self-Consistent Simulation of Interface and Dopant Disorders in Delta-Doped Grid-Gate Quantum Dot Devices
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3.1 Introduction

Quantum dots have generated much interest as basic structures to study fundamental electronic properties of ultralow-dimensional systems, as well as their potential for novel device applications.1 However relatively few experiments and theoretical studies have focused on the effects of granular disorders in these nanostructures.2,3 Inherent granular fluctuations which include interface roughness and random dopant distribution, vary greatly according to fabrication processes.4 As devices are made smaller, sensitivity to material randomness and dopant disorder is becoming a major issue for device reproducibility. For instance, narrow channel modulation doped field effect transistors (MODFETs) have shown noisy conductance characteristics attributed to dopant disorder when their active regions are scaled down to sizes comparable to the average separation between dopant atoms.5 Threshold voltage fluctuations due to channel dopant number fluctuations were also reported in submicron metal-oxide semiconductor field effect transistors (MOSFETs).6 Analysis have shown that low-dimensional devices like quantum wires and quantum dots, are even more sensitive to potential fluctuations caused by dopant randomness.7,8
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In a different perspective, microscopic roughness of interfaces between heterostructure materials has long been a major topic of study.9–11 Much focus has been placed on the influence of interface roughness on resonant tunneling phenomena in quantum wells and various nanostructures.2,10,11 With recent advances in scanning-tunneling microscopy (STM) enabling atomic resolution probing of various semiconductor heterojunction interfaces,12,13 it has been found that local inhomogeneities due to alloy fluctuations at Al1 – xGaxAs/GaAs heterojunctions are responsible for surface roughness on a scale of 5 to 50 Å, while monolayer fluctuations during crystal growth can reach a lateral extent of up to 1000 Å.9 This produces a mottled interface with an intermix of small and large material clusters. The resulting monolayered displacement of the mean interface position causes the quantum well sizes to fluctuate, affecting the electronic states in the well.

In this article, we present an investigation of interface and dopant disorder in periodic grid-gate quantum dot device. In order to analyze the influence of various disorder mechanisms, we perform self-consistent simulations of the device by solving the 3D Poisson and 1D Schrödinger’s equations for the strong vertical confinement in the dot by taking into account the influence of random structural and doping disorder. The charging behavior of the device is obtained by computing the number of electrons in the quantum dot simulation at different gate bias.

The remaining presentation of this article will be organized into three main sections. In Sec. 3.2, the basic device structure is described. The approach based on the self-consistent solution of the Poisson–Schrödinger equations with pertinent boundary conditions will be presented. In Sec. 3.3, we will describe the models for interface roughness and dopant disorders and their incorporation into the simulation of the basic device structure. In addition, a new model to treat disordered boundary conditions which replace the zero-Neumann conditions for ideal devices, will be introduced. Section 3.4 will be devoted to the presentation and discussion of our results and Sec. 3.5 will be our conclusion.



3.2 Device Structure and Model

The periodic grid-gate quantum dot device is fabricated with a meshlike metal gate on top of a GaAs and Al1 – xGaxAs heterostructure (Fig. 3.1). A 50 Å GaAs cap layer is followed by a 450-Å-thick undoped Al1 – xGaxAs, which contains a n+ δ-doped layer that is approximately 10 Å thick, with a sheet density of 1.5 × 1012 cm–2. This Al1 – xGaxAs layer is grown on top of a lightly p-doped GaAs substrate with a background dopant density of 1 × 1014 cm–3, forming a modulation doped structure. A quantum well containing a 2D electron layer is induced at the Al1 – xGaxAs/GaAs heterojunction in the device, approximately 100 Å from the dopant plane. By applying a negative gate bias, the quantum well regions between the gate and the substrate will be depleted, except for the material beneath the gate aperture, creating a quantum dot. This structure is similar to the lateral superlattice structure (LSSL) described by Ismail et al.14
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Figure 3.1
Schematic of the grid-gate structure with the unit cell of the device.

In this analysis, we simulate a unit cell of the grid-gate structure and focus on the role of disorder on the electronic properties of the quantum dot. The 3D potential, ϕ(x, y, z), within the unit cell is obtained from the solution of the nonlinear Poisson’s equation.
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(3.1)

where, n(x, y, z) and p(x, y, z) are the electrons and holes densities, respectively. The nonuniform doping is described by the ionized donor and acceptor densities, N+D (x, y, z), N−A (x, y, z). The dielectric permittivity variation, ϵ(x, y, z), across the fluctuating heterojunction is also taken into account.

As the lateral potential variations (x and z directions) produced by the gate is expected to be much more gradual than the vertical potential change (y direction) across the Al1–xGaxAs/GaAs heterojunction, we have assumed that the effective quantum confinement is achieved only in the vertical direction, neglecting the lateral phase coherence of the electron wavefunction. As such, we have chosen to use a 1D quantum mechanical description of the electron quantization in the quantum well. By avoiding the full 3D quantum mechanical treatment, we can perform a less computationally prohibitive analysis, when coupled to the self-consistent solution of the 3D Poisson’s equation. However, we expect to underestimate the effects of disorder on the device, which is due to the fact that lateral quantization levels would be more sensitive to the shape of the well, compared to the 1D quantizations considered here. The 1D adiabatic Schrödinger’s equation for the electron at the Al1 – xGaxAs/GaAs heterojunction reads,
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(3.2)

Here, ΔEc(y) is the material band offsets, μxc(n) is the exchange-correlation contribution to the potential energy, and m*(y) is the effective mass of the electron which is allowed to vary across the heterointerface along y. The electrostatic potential, ϕ(y; x, z), is obtained as a 1D y slice at a particular (x, z) point of the 3D electrostatic potential, ϕ(x, y, z) solution of Eq. (3.1). In these notations, x and z are parameters on which the 1D adiabatic eigenenergy Ei(x, z) and wavefunctions ψi(y; x, z) depend. The electron density in the quantum well is computed adiabatically for the whole device using the 3D potential and 1D solutions of the Schrödinger’s equation self-consistently. The total 3D electron density at each point, n(y; x, z) of the x-z plane is computed with the 2D density of states and the equilibrium Fermi level, which reads,
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(3.3)

Because of the assumption of 1D quantization of the electron states, discretization of the electron number in the device cannot be performed here, since it would require the self-consistent simulation of the filling of 3D quantized electron boundstates constrained by spin and Gibb’s statistics.15 However, because of the influence of disorder, the confining potential will fluctuate from cell to cell, thereby inducing some fluctuations in the number of electrons in each quantum dot to the grid-gate device. Therefore, an averaged electron number, N per quantum dot, which is not necessarily an integer number, is computed by summing the total electron density with respect to the volume element at each grid point in the device unit cell.
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Exchange and correlation effects accounting for electron-electron interaction are included as corrections to the electrostatic potential15 in the local density approximation.
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These correlations are only introduced when the quantum dot contains more than one electron. Since, the holes are only present in the bulk where no quantum mechanical treatment is required, the hole density is evaluated using the Thomas–Fermi model.
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Here F1/2 is the Fermi integral. We have chosen to simulate a device unit cell in the regime where regions beneath the gate are strongly depleted and the electrons are well confined within the dots. In such a regime, a potential barrier of about 100 meV extending over a distance of 500 Å arises between the individual cells and no coupling between adjacent dots exists.

We have assumed that the 2D periodic structure of the grid has infinite extent relative to the unit cell chosen, thereby neglecting edge effects on the device. The effects of periodicity can be accounted for by imposing periodic boundary conditions on the potential of the device unit cell. For a symmetrically structured device, this can be achieved by enforcing zero von Neumann boundary conditions on the four virtual lateral boundaries of the ideal device. Hence, the electric fields normal to the virtual boundary planes, Ex and Ez are identically zero.
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However, this would not be the case when device symmetry is broken due to material disorders and charge fluctuations from cell tocell. For this reason, instead of the zero-Neumann conditions, a new disordered boundary condition on the electric fields will be introduced and discussed in Sec. 3.3.4. At the gate interface, a Dirichlet boundary condition is imposed for the potential given by a constant gate bias. The bulk conditions in the GaAs substrate are simulated by relaxing the energy bands, far away from the heterojunction, to the flat band condition.

The device is discretized by using a nonuniform finite-difference mesh, consisting of 26 × 26 × 197 grid points. The discretized Poisson’s equation in finite-difference form is solved by Newton– Raphson technique and the solution process is accelerated with successive over-relaxation.15 The finite-difference 1D Schrödinger’s equation is transformed into symmetrical tridiagonal form,16 and solved by direct method using a QR algorithm.17 A self-consistent loop is employed to iterate between the two equations until convergence is achieved.



3.3 Models of Disorder

In this work, we considered three major sources of material disorder: interface roughness, dopant density fluctuations for densely doped and sparsely doped regions, and finally the random coulombic influence of neighboring cells.


3.3.1 Interface Roughness

In our analysis, interface roughness is considered as monolayer fluctuations of the Al1 – xGaxAs/GaAs interface which is modelled by intermixed monolayered material clusters of Al1 – xGaxAs and GaAs of various dimensions and shapes at the heterojunction, as revealed in the growth kinetics of adatom nucleation on the surface by atomic force microscopy (AFM) and STM studies.18

The simulated clusters are constituted from a random mixture of tiles and points [Figs. 3.2(a) and 3.2(b)]. Small islands are first constructed from randomly assigned tiles of 200 × 200 × 5 Å. Larger clusters are formed from filling the smallest interisland spacings using tiles and points. The height of these clusters is approximately 1 ML (=2.5 Å) away from the mean interface position [Fig. 3.2(c)]. The roughness of the interface is then characterized by the averaged cluster size. Figure 3.2(a) shows the material profile of the heterointerface generated with average cluster size of 800 × 800 Å. We see a series of AlGaAs plateaus and GaAs throughs surrounded by rougher regions made up of alternating AlGaAs and GaAs. The plateaus and throughs would represent smoother regions of desired monolayered growth while the surrounding rougher profile simulate regions where extensive adatoms coalescence had not occurred. Figure 3.2(b) shows a different heterointerface generated with average cluster size of 400 × 400 Å. Previous works have found that using 800 × 800-5 Å clusters to simulate interface roughness can reproduce resonant-tunneling features in GaAs/Al0.3Ga0.7As device structure observed experimentally.2 These clusters are simulated as spatial fluctuations in the band offset ΔEc(y) and the material permittivity ϵ(x, y, z) at the heterojunction. This gives rise to potential fluctuations in the solution of Poisson’s Eq. (3.1) at the heterointerface and also modulated the confinement potential that appears in Schrödinger’s Eq. (3.2).
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Figure 3.2
Simulated AlGaAs/GaAs interface roughness at the quantum well. (a) Average cluster size of 800 Å × 800 Å. (b) Average cluster size of 400 Å × 400 Å. (c) Random monolayered displacements of 2.5 Å from the nominal interface position showing cluster formation.



3.3.2 Disorder in Densely Doped Regions

Spatial spreading of δ-doped layers was recently studied with the use of scanning tunneling microscopy.13 The dopant spreading is attributed to drift resulting from coulombic repulsion between ions during material growth and has been found to be a function of doping density. Hence in Be:GaAs δ-doped layers,13 for a sheet dopant density of 3 × 1012 cm–2, the total width of the layer is approximately 28 Å. In our case, the intended δ-doping density is only half as much, 1.5 × 1012 cm–2, spread over a 18 Å distance. We have assumed that the spreading in the dopant profile obeys a Gaussian-type histogram, centered at the intended position of the δ-doped layer, with a periodicity corresponding to the lattice constant (Fig. 3.3). Thus, the dopant density, 
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Figure 3.3
Spreading of the δ-doped layer simulated by a Gaussian-fitted histogram with the nominal position at Y0. Inset (a): x-z dopant density distribution on the dopant plane at Y0. Inset (b): frequency plot of the x-z dopant density on the dopant plane at Y0.

Here, y0 is the nominal position of the δ doping, and the distance y from y0 is given in terms of integer multiples n of the monolayer thickness a0. The normalization constant is given by 
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 where N0 is the nominal sheet density of the δ-doped layer. We have estimated that the standard deviation of the spread to be σ0 = 4.8 Å, for the doping density considered here. The dopant density 
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 in each monolayer of the δ-doped profile used as the mean value for statistical random assignment of dopant densities at every (x, z) point in the dopant monolayer plane.

STM studies on Be:GaAs δ-doped layers by Johnson et al.,13 have shown that the occurrence of closely spaced dopant atoms is especially low due to coulombic interactions. On the other hand, dopant atoms that are further separated shows noordering.13 It is believed that the distribution of these dopant atoms is due to statistical fluctuations. In the dopant layer where doping density is high (1.5 × 1012 cm–2), the averaged separation between dopant atoms in the x-z plane is of the order of 80–100 Å. As the grid spacing of our simulator is comparable or larger than the average dopant separation, the likelihood of finding dopant atoms between grid points is high. Hence, it is difficult to resolve individual dopant atoms using this relatively coarse grid. Since our computer grid resolution cannot resolve features of any short-ranged ordering due to coulombic repulsion, we have chosen to model the random dopant effects by introducing fluctuations about the selected mean values of the dopant density and use a symmetric statistical distribution, that otherwise would be skewed.

As such, we have chosen to randomize the dopant density on each grid point according to a normal probability distribution derived from a Poisson process. At each lateral point (x, z) of the dopant plane, a random number, r between 0 and 1 is generated. The value r represents a probability value that corresponds to a unique dopant number nd obtained from a Gaussian probability function. Hence, a specific doping number nd(x, y, z) at a point is picked corresponding to the random number r and nd is distributed spatially according to some statistical distribution P, i.e., nd(x, y, z) = P–1(r). The probability distribution for Nd at any point on the x-z plane is Gaussian,
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The mean number of dopants at each point is computed with n̄d (x, y, z) = N̄d (y)ΔxΔyΔz. According to Poisson statistics, the standard deviation at each point is the square root of the mean number of dopants at the point, 
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d
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.

 Then the dopant density tobe assigned toeach point is given by nd(x, y, z)/ΔxΔyΔz. Hence, the resulting distribution of the dopants in each layer of the δ doping will fluctuate about the mean dopant density corresponding tothe layer, N̅d(y).

Inset (a) of Fig. 3.3 shows the x-z spatial profile of the dopant density fluctuation at the center of the δ-doped layer (y = y0). Inset (b) is a frequency plot of the dopant density Nd(x, z) on the same x-z plane (y = y0). The plot shows the distribution of the point-to-point dopant density with the mean N̅d (y = y0) = 6.5 × 1019 cm–3. Also, the total number of dopants within the δ doping ntotald = ΣNd (x, y, z) Δx Δy Δz) will fluctuate also. The spatial fluctuations in Nd(x, y, z) enters into the simulation through Poisson’s Eq. (3.1) as a disordered dopant profile.



3.3.3 Disorder in Sparsely Doped Regions

A sparsely doped region occurs at the tails of the n-type δ doping (Fig. 3.3) and in the bulk substrate regions where unintentional p-type doping results in very low doping concentrations (≃1 × 1014 − 1 × 1016 cm-3). For the donor profile used in this simulation, the tails of the δ doping occur beyond 6 Å from the peak, where the donor concentration drops far below ≃ 1.8 × 1018 cm-3 and falls into the 1016 cm-3 range. In these sparsely doped regions, the dopant atoms are spaced much further apart (~ 2000 Å) than in the densely δ-doped regions. If we assume that these dopant atoms fall only on the grid points specified for the model, we can model the dopant atoms as randomly distributed point charges. Similarly, since the average separation between the acceptors in the lightly p-doped substrate is large, isolated negative ions are used to simulate the sporadic background acceptors. An isolated point charge at any point (x, y, z) is simulated by assigning a charge density corresponding to a single dopant atom at that point, e.g., Nd(x, y, z) = 1/Δx Δy Δz. This charge density then enters into the Poisson’s Eq. (3.1) as part of the overall dopant profile. The number of dopants to be assigned is determined from the background doping and the volume of the device. 
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 where A is the cross-sectional area of the device.



3.3.4 Disordered Periodic Boundary Condition

In the absence of disorder, the description of the ideal device can be reduced to just a quadrant of a cell through symmetry considerations with periodic zero-Neumann boundary conditions. Figure 3.4(a) shows a plot of the electric field profile of a stand-alone cell where the periodic boundaries have disappeared. In this case, the fields normal to the cell boundaries relax to zero far away from the device. Figure 3.4(b) shows the x-z spatial profile of the electric field lines in an ideal device unit cell. We see that only field lines parallel to the cell boundaries exist while field lines normal to the cell boundaries are zero. Also, the field lines are mirrored across the cell boundary, satisfying the periodic boundary conditions.

However, the influence of disorder breaks the translational invariance of the grid-gate device in the x-z plane and consequently the lateral symmetry of the device structure. This means that the periodic boundary conditions, that requires the lateral electric field across the virtual device boundaries to be strictly zero, are no longer applicable. In this case, there are residual fluctuating electric field lines traversing the virtual boundaries, in and out of the device [Fig. 3.4(c)]. The magnitude of these field fluctuations and the degree of field disorder in any region should be proportional to the amount of charge located in the region [Fig. 3.4(d)]. However, from a statistical point of view, the fields across the entire virtual boundaries should average zero because of the periodic nature of the structure. As such, these requirements determine the boundary conditions on the electric fields in the device.
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Figure 3.4
(a) Lateral (x-z) electric field mappings of an ideal stand-alone device surrounded by bulk material. (b) Periodic zero von Neumann conditions. (c) Random boundary conditions. (d) Vertical slice (y) of the electric field at the virtual boundaries for the three different configurations (a)–(c).

The random residual fields at each point on the virtual surface is assigned in a manner similar to the assignment of dopant density fluctuations, i.e., with a Gaussian probability distribution,
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The electric field at any point on the virtual boundary is picked according to a random number r, between 0 and 1, i.e., Ex(y, z) = P–1(r). The mean of the distribution is zero, which will result in zero electric field being statistically dominant at the virtual boundaries. The standard deviation, which measures the degree of disorder in the field from point to point, is position dependent, σ(y, z). We have chosen it to be proportional to the field lines Exstand alone (y, z) of a standalone unit cell [Figs. 3.4(a) and 3.4(d)], which removed from the periodic lattice and is now surrounded by bulk semiconductor. In Fig. 3.4(d) (solid lines), we see a plot of the normal electric field profile at one of the virtual boundaries. The field is maximum at the dopant plane and relaxes to zero as we move into the GaAs bulk. The magnitude of the fields in various regions is a direct indication of the amount of charge in the region. We exploit this field profile, which is specific to this device structure to assign a distribution of disordered fields at the virtual boundaries of a nonideal device.

By using a scaled field profile of a stand-alone cell as the standard deviation of the random distribution, σ(y) = kExstand alone (y, z) (κ: scaling factor), will give us greater variations of field lines in regions containing high charge and much smaller variations in regions of low charge density. Figure 3.4(c) shows the field profile of a device with disordered residual fields across the virtual boundaries of the unit cell. The nonzero fields at the boundaries simulate the electrostatic influence from neighboring cells. From Fig. 3.4(d) (dashed lines) we see the behavior of the disordered boundary fields normal to one of the virtual boundaries of the unit cell. As intended, large fluctuations in the field occur at the 3-doped region, where charge density is high, and the fluctuations diminish to zero far into the GaAs bulk. The use of this periodic disordered boundary condition is of course only justified for the case where the periodic feature of the gate field dominates over the weaker influence by the various disorder mechanisms. Otherwise, the device can no longer be considered as semiperiodic and the entire structure containing the different cells will have to be simulated self-consistently.




3.4 Results and Discussion

Figure 3.5 shows the influence of interface roughness on the electronic properties of the quantum dots which results in random shifts of the energy levels as well as distortions in the 1D electron wave functions at the interface. The 5 Å fluctuations in the quantum well size results in approximately 0.2 meV shifts in the energy levels. Though potential distortions due to material offsets are localized in regions close to the interface, the distortion of the electron density occurs over a distance of ~10 Å. Hence, the overall effect of interface roughness on device behavior is relatively small. Comparing the charging characteristics of the devices with average cluster size of 400 and 800 Å, we find that the averaged fluctuations in the threshold voltage are only about 1–2 mV, for our configuration. Distortions in the charging characteristics are most prominent when the quantum dot is empty or barely populated. This corresponds to the condition when the dot size is the smallest and close to the spatial extent of the roughness.


[image: ]
Figure 3.5
Ground state wave function in the quantum well, along the y direction. The plot shows the shift in the ground state energy and the variation of the potential well due to interface roughness.

The effects of remote dopant distribution on potential fluctuations are illustrated in Fig. 3.6, for which two different dopant configurations are considered. The first simulation is for a particular dopant profile in the densely doped regions of the δ-doped layer (Nd~1019 – 1018 cm–3); the sparsely doped tail region which includes discrete point charges is not included. Figure 3.6(a) shows a cross section ofthe conduction band edge in the quantum dot along the x direction with the dopant density profile for comparison. We notice that, though the dopant profile fluctuates over distances of the order of 100 Å, the conduction band edge experiences smoother fluctuations. Figure 3.6(b) shows the corresponding 2D x-z contour plot of the same conduction band which indicates that closely spaced charges result in smaller spatial fluctuations of the potential, even though the mean value of the potential has been changed due to the overall effect of the fluctuating charge density. This is due to the fact that the 1/r potential tails of closely positioned charges produce a coherent distortion of the potential, bending the conduction band in a collective manner, thereby causing an overall shift of the potential over a larger spatial extent. Hence, the magnitude of the short order spatial fluctuations that affect the potential are reduced. It should be pointed out that these short-ranged potential fluctuations have a weak remote influence over the electrons in the quantum dot because they can be easily offset by electron screening.


[image: ]
Figure 3.6
(a) Effects of remote dopant density on the potential along the x direction in the quantum well. Solid: Actual potential profile. Dashed: ideal device. Lower dashed lines: 1D dopant profile along the x direction. (b) x-z contour plot of the potential in the quantum well with dopant density fluctuations at the center of the δ-doped layer. (c) Potential fluctuations due to point charges in the tail of the δ-doped layer. (d) x-z plot of the potential in the quantum well for the sparsely doped tails in the dopant profile.

The second simulation shown in Figs. 3.6(c) and 3.6(d) has been performed with a particular dopant configuration where the sparsely doped tails in the δ-doped layer contains discrete point charges distributed according to dopant densities less than 1/100 times the peak δ-doped density. Though the discrete charges are located at only 5–10 Å of the quantum dot, they seem to produce more dramatic modulations of the potential in the quantum well. A comparison of the conduction band edge to the dopant profile in the tail, reveals strong correlations between the point charges and the potential modulations, with a significant disorder in the potential surface [Fig. 3.6(d)]. On average, the isolated point charges do not change the average potential value very much, but induce pronounced fluctuations which has a drastic effect on local regions within the potential well, as seen in Fig. 3.6(c). This implies that the positions of the remote ions in the δ-doped tail has a more important effect on the shape of the well than the positioning of remote ions in the densely doped regions.

In order to investigate in detail the effects of random positioning of remote ions on the electronic properties of the quantum dot, we simulated different configurations of ions in the tail of the δ-doped layer. Except for the positioning of the ions in the tail of the dopant layer, all the dots are identical. We found that random positioning of these discrete dopant ions causes shifts in the threshold voltage of the device [Fig. 3.7(a)]. The average deviations in the device charging characteristics is about 2 mV, with small deviations in the capacitances [Fig. 3.7(b)]. The differential capacitance of the device is computed from the derivative (dQ/dV) of polynomial fitted functions of the electron versus gate bias charging curves. However, we would like to point out again that in our analysis, the sensitivity of the device to this particular disorder phenomenon is underestimated due to 1D quantum mechanical treatment.


[image: ]
Figure 3.7
(a) Charging behavior of the quantum dot for two different spatial configurations of dopant ions in the tail of the δ-doped layer. (b) Differential capacitance of the device.

The dopant density fluctuations in the densely doped region of the δ-doped layer have a different effect on the device behavior. We have simulated the same device with different random distribution of the dopant density in the densely doped regions which also results in fluctuations in the total number of dopants in the 3-doped layers. For all these configurations, we have intentionally excluded the sparsely doped tail of the dopant layer to remove the effects of isolated point charges. The different charging curves for each configuration with the total number of dopant atoms are shown in Fig. 3.8. The charging characteristic for a perfect device with uniform dopant density is also shown for comparison [Fig. 3.8 (solid line)]. As expected, the general trend is a shift to the left of the charging curves of quantum dot with increasing number of donors, since the threshold voltage decreases. There is an approximate 5 mV shift in threshold voltage for a difference of 1 dopant/dot in the δ-doped layer. However, the shifts are not proportional to the variations of donor atom numbers, which could be explained by the weaker dependence of the charging characteristics on the distribution of the dopants in the δ-doped layer as well. This can be seen in the comparison of the perfect crystal with a disordered configuration containing the same number of dopants (1218 donors) (Fig. 3.8). The disordered device, with dopant density fluctuations, deviates slightly from the perfect crystal, by about 2 mV. Hence, we have demonstrated both potential fluctuations in different distributions of dopant ions and the fluctuations in the total number of dopant ions in the quantum dot affects, in their own way, the threshold voltage of the device.


[image: ]
Figure 3.8
Charging curves for configurations with different number of δ-dopant atoms. The charging curve for the perfect crystal device with uniform doping density in the δ-doped layer is plotted for comparison.

The presence of discrete acceptor dopants in the quantum well region also distorts the shape of the confining potential, causing drastic variations in the electron wave functions. Figure 3.9 shows the distortion effects on the confining potential and electron wave functions as a discrete acceptor point charge is progressively moved from the bulk region into the quantum dot. We placed the ionized acceptor impurity far in the bulk (1470 Å from the interface) [Fig. 3.9(a)]. In this case, the potential near the interface is not strongly modulated [Fig. 3.9(a)], from the contour plot of the potential and the electron density [Fig. 3.9(b)], we see that the potential well close to the interface (dashed lines) is identical to that of a uniformly doped region.

We then progressively move the impurity towards the interface and the wave functions experience different modes of confinement [Figs. 3.9(c), 3.9(e), and 3.9(g)]. Figure 3.9(c) shows the case when the acceptor is moved to 330 Å away from the interface. Here, we see that the shape of the well changed drastically for the first excited state and the other higher energy states of the bounded electrons. As such electronic energies of the first excited state and the higher bound states are pushed away from the Fermi level [Fig. 3.9(c)], reducing their occupation. However, the ground state energy is only slightly affected as the lower potential part of well close to the interface remains almost the same. The shapes of the wave functions remain basically the same, except for the reduction of their spatial extents due to the tighter well. From the contour plot [Fig. 3.9(d)], we notice that a slight impression on the electron density profile has been made. Due to the off centered position of the discrete acceptor potential, the peak of the electron density is also slightly shifted to the left.


[image: ]
Figure 3.9
Left: Evolution of the wave functions as an acceptor point charge is progressively moved from the bulk to the interface. The zero of the vertical scale is the Fermi level. Right: Potential variation and electron density profile due to the acceptor position. Solid lines: contour plot of the potential in the x-y plane. Dashed lines: contour plot of the electron density. (a) and (b) Acceptor located 1470 Å away from the AlGaAs–GaAs interface. (c) and (d) 330 Å away from the interface. (e) and (f) 150 Å away from the interface. (g) and (h) 10 Å away from the interface.

Figures 3.9(e) and 3.9(f) show the acceptor being moved to just 150 Å away from the interface. The shape of the wave functions change even more dramatically. The point charge created a second confinement region away from the interface for the first excited state. This reduces the magnitude of the smaller peak of the wave function and also increase the total spatial extent of the first excited state wave function. On the other hand, the spatial extent of the ground state wave function is greatly reduced by the even tighter confinement. The squeezing of the states move them further away from the Fermi level, reducing their populations even further. This in turn produces a split in the electron density profile, producing two asymmetric lobes [Fig. 3.9(f)].

As the acceptor is moved to just 10 Å from the interface, the ground state seems to move towards the Fermi level again [Fig. 3.9(g)]. However, the superposition of the point charge potential and the quantum well potential produces an effective potential away from the interface that appears slightly parabolic to the ground state wave function. This causes the peak of the groundstate wavefunction to move away from the interface. The first excited state seems to recover its original shape, since the well appears triangular to it.

For each new positioning of the impurity, the charging behavior of the device is obtained. In every case, the number of impurities in the device is conserved. The variations in charging characteristic of the device are of the order of 3 mV [Fig. 3.10(a)]. Again, we see that substantial variation of the device capacitance occur when the quantum dot is about to be emptied [Fig. 3.10(b)].


[image: ]
Figure 3.10
(a) Variation in the device charging curves for different positions of the acceptor point charge. (b) Differential capacitance of the device.

Figure 3.11 shows a comparison between classical self-consistent computation of the potential and charge densities and simulations involving 1D quantization of the electron energy in the AlGaAs–GaAs are made. The classical electron distribution is computated according to the Thomas–Fermi approximation,
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It is seen that the classical model has a much higher electron concentration in the well than the quantum-mechanical model [Fig. 3.11 (a)]. This is due to the fact that the ground state energy level is much higher than the conduction band edge, and therefore close to the Fermi level. Hence, for the same gate bias, the quantum well electron density as predicted by the classical model is much higher than the quantum model prediction [Fig. 3.11 (b)]. This has implications on the amount of screening experience by impurities in the dot, as predicted by the two models. It is expected that the Thomas–Fermi model would produce a more drastic attenuation of the potential fluctuations. We can also see that the electric field in the y direction is correspondingly higher for the classical model [Fig. 3.11(a)].


[image: ]
Figure 3.11
(a) 1D y slice of the conduction band edge near the interface. Solid lines: self-consistent 1D Schrödinger–Poisson simulations. Dashed lines: Thomas–Fermi model. The electron densities (dotted lines) from both models are superimposed. (b) Differential capacitance of the device vs. the gate bias: Solid line: 1D quantum mechanical model, dashed line: Thomas–Fermi Model.



3.5 Conclusion

We have found that the short-ranged disorder introduced by interface roughness which is localized near the interface modulates the electron density over the extent of the wave-function (100–200 Å). However, the overall charging characteristic of the device only experiences an averaged fluctuation of 1–2 mV. On the other hand, long-ranged potential modulations due to random dopant impurities in the δ-doped layer extend deeper into the quantum dots. These fluctuations depend strongly on the averaged separations between the ions. Ions that are closely spaced (e.g., in the densely doped regions) might not necessarily produce larger spatial fluctuations of the long-range potential due to the convolution effects of the 1/r potential tails. This leads to rapid attenuation by charge screening in regions of high electron population. Local point charges in the quantum well produce more dramatic effects on the electronic bound state energies and the wave functions. As the active region is small, electron population in the well is unable to screen the much larger potential spike. The largest variation in device behavior seems to be due to variation in dopant number rather than potential fluctuations.
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