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Preface

Around 1960 Joe Hirschfelder wrote an essay outlining what he felt were
the three unsolved problems in theoretical chemistry. I think that he called
them bottlenecks. One of the bottlenecks was the lack of a satisfactory
theory of liquids. If a theoretical physicist were to have made in 1960 a
similar list of bottlenecks in theoretical physics, the list would undoubt-
edly have been different. However, it is quite likely that the need for a
satisfactory theory of liquids would have appeared on this list also.

In any case, the past quarter century has seen a dramatic increase in
our understanding of homogeneous or bulk liquids. However, our un-
derstanding of inhomogeneous liquids (liquids near interfaces or confined
liquids) is less satisfactory. Since the feature that distinguishes a liquid
from a dense gas is the presence of an interface, one might argue that
even our understanding of homogeneous liquids is incomplete without an
understanding of inhomogeneous fluids. It is for this reason that many of
us who worked earlier on the theory of homogeneous liquids have turned
our attention to inhomogeneous liquids. Indeed, van der Waals, after
developing his theory of liquids, almost immediately turned his attention
to interfaces.

A further reason for an interest in inhomogeneous liquids is that many
of the technological processes that involve liquids occur at interfaces. A
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few examples that come to mind are corrosion, oil recovery, and colloidal
stability.

I have used the term inhomogeneous fluids rather than inhomogeneous
liquids in the title so as to include such interesting and important topics
as the wetting of a surface by a gas. Furthermore, the distinction between
a liquid and a dense gas is somewhat artificial. Also, in lattice models,
there is a reciprocity between the liquid and vapor phases. This reciprocity
is mirrored, at least approximately, in the real world.

There has been considerable progress in the past decade in the de-
velopment of the theory of inhomogeneous fluids. Thus, it seems timely
to bring out a book outlining this progress. The emphasis here is on theory,
although experimental work is referred to in the book. In fact, one chapter
is devoted to wetting experiments.

The book is divided into thirteen chapters, each written by a recognized
expert. Rowlinson begins with a historical introduction written with the
insight that only he can provide. Jim Henderson discusses exact sum rules
for inhomogeneous fluids, many of which he derived. Evans and I outline
the two main theoretical tools in the theory of inhomogeneous fluids,
density functional, and integral equation techniques, respectively. Jan-
covici discusses his exact solutions for two-dimensional homogeneous
plasmas, and Blum and I discuss the recent progress, mostly based on
integral equations, in the theory of interfacial electrochemistry.

Franck discusses wetting experiments—the viewpoint of an experi-
mentalist is complementary and of interest. The theory of wetting (the
modern theory of adsorption) is also described in some of the other chap-
ters (see the chapters of Jim Henderson and Evans, in particular). Lozada-
Cassou describes confined liquids, mostly electrolytes, largely using the
integral equations he has obtained.

Next, phase transitions {mostly first-order) are considered. Haymet
discusses freezing with an emphasis on quantum systems. His view is
that a solid is a highly inhomogeneous fluid. Although this likely would
not be a useful basis for solid-state theory, it seems useful as a description
of solids in equilibrium with a liquid and provides the first really useful
theory of freezing. Oxtoby discusses homogeneous nucleation in liquid—
vapor and solid-liquid transitions. Marko completes this trilogy with a
discussion of liquid crystal transitions. The treatment of these three chap-
ters uses the density functional approach discussed by Evans.

The final two chapters are those of Dawson and Mundy on self-organ-
izing liquids and of Davis on kinetic phenomena in inhomogeneous fluids
using a modified Enskog theory. Unfortunately an author who was invited
to write a chapter on computer simulations did not submit his manuscript.
Its lack is compensated for by the fact that many of the authors in this
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volume make references to and comparisons with computer simulations
in their own chapters.

1 want to thank the chapter authors, who made many suggestions that
improved this volume. I hesitate to single out any of them, but Tony
Haymet and Jim Henderson were especially helpful. Much of the orga-
nization of the book was done while I was a visiting professor at the Scuola
Normale Superiore in Pisa, Italy, in the spring of 1989. I am grateful to
this institution and to Dr. Alessandro Tani for many Kindnesses.

Lastly I want to thank my wife, Rose-Marie. The production of a book
goes through three phases: initial excitement at the enterprise, frustration
with the delays and necessary drudgeries, and finally relief that the busi-
ness is finished. 1 am grateful for her bemused tolerance as I passed
through these phases.

Douglas Henderson



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


https://taylorandfrancis.com

Contents

Preface iii
Contributors ix
[. Development of Theorics of Inhomogeneous Fluids |

J. S. Rowlinson

2. Statistical Mechanical Sum Rules 23
J. R. Henderson

3. Density Functionals in the Theory of Nonuniform Fluids 85
R. Evans
4. Integral Equation Theories for Inhomogeneous Fluids 177

Douglas Henderson

5. Inhomogeneous Two-Dimensional Plasmas 201
B. Jancovici

6. Statistical Mechanics of Electrolytes at Interfaces 239
L. Blum and Douglas Henderson

vii



viii
7. Wetting Experiments
Carl Franck
8. Fluids Between Walls and in Pores
Marcelo Lozada-Cassou
9. Freezing
A. D. J. Haymet
10. Nucleation
David W. Oxtoby
11. Liquid Crystals
J. F. Marko
12. Nature of Microemulsion
K. A. Dawson and Christopher J. Mundy
13. Kinetic Theory of Strongly Inhomogeneous Fluids
H. Ted Davis
Index

Contents

277

303

363

407

443

497

551

599



Confributors

L. Blum, Ph.D. Professor of Physics, Department of Physics, University
of Puerto Rico, Rio Pedras, Puerto Rico

H. Ted Davis, Ph.D. Professor and Head, Department of Chemical En-
gineering and Materials Science, University of Minnesota, Minneapolis,
Minnesota

K. A. Dawson, Ph.D. Assistant Professor, Department of Chemistry,
University of California, Berkeley, California

R. Evans, Ph.D. H. H. Wills Physics Laboratory, University of Bristol,
Bristol, England

Carl Franck Associate Professor of Physics, Laboratory of Atomic and
Solid State Physics, and Materials Science Center, Cornell University,
Ithaca, New York

A.D. J. Haymet, Ph.D. Department of Chemistry, University of Sydney,
Sydney, N.S.W., Australia



X Contributors

Douglas Henderson, Ph.D. Research Scientist, Utah Supercomputing In-
stitute/IBM Partnership, and Adjunct Professor, Department of Chem-
istry, University of Utah, Salt Lake City, Utah

J. R. Henderson, Ph.D. School of Chemistry, University of Leeds,
Leeds, England

B. Jancovici, D.Sc. Professor, Laboratoire de Physique Théorique,
Université de Paris-Sud, Orsay, France

Marcelo Lozada-Cassou, Ph.D. Professor, Department -of Physics, Uni-
versidad Auténoma Metropolitana-Iztapalapa, Mexico City, Mexico

J. F. Marko, Ph.D. James Franck Institute, University of Chicago, Chi-
cago, lllinois

Christopher J. Mundy, B.S. Research Assistant, Department of Chem-
istry, University of California, Berkeley, California

David W. Oxtoby, Ph.D. Professor of Chemistry, Department of Chem-
istry, James Franck Institute, University of Chicago, Chicago, Illinois

J. S. Rowlinson Dr. Lee’s Professor of Chemistry, Physical Chemistry
Laboratory, Oxford University, Oxford, Great Britain



1

Development of Theories of
Inhomogeneous Fluids

J. S. Rowlinson
Oxford University
Oxford, Great Britain

I. INTRODUCTION: LAPLACE'S THEORY OF THE
SHARP INTERFACE

From the earliest days of physical science it must have been clear that
matter in thin films and at surfaces differed in its properties from the same
matter in bulk. The ‘‘natural philosophers’’ of the seventeenth and eigh-
teenth centuries were curious about both the optical and mechanical prop-
erties of surface films, as, for example, the interference colors of New-
ton’s rings and the damping of the waves on the sea by a film of oil, a
subject that interested Benjamin Franklin, among others. The first of these
effects to be tackled quantitatively was that of capillarity—the rise of
water (and the depression of mercury) in narrow tubes or, in its more
practical aspect, the rise of sap in trees. This apparent defiance of the
laws of gravity was correctly perceived to arise from cohesive forces
between the ultimate constituents of matter that were not gravitational in
origin. Francis Hauksbee, Newton’s assistant at the Royal Society,
showed this convincingly by observing that the capillary rise of water
depended only on the internal diameter of the tube and was independent
of the thickness of its walls. The force responsible must therefore be of
short range and act essentially only between the layers of liquid and solid
that are in contact. As well as this cohesive force it was realized that

1



2 Rowlinson

there were other, presumably weaker, forces that acted within the body
of the liquid since, as James Jurin (1719) and A. C. Clairaut (1743) ob-
served, drops of liquid that are too small for their shape to be influenced
by gravity are spherical. J. A. Segner (1751) synthesized these and similar
observations into the concept of surface tension.

The nature of the cohesive forces was, of course, unknown and was
to remain so until this century, but speculation was not lacking. John
Keith (1709) proposed an attractive force that varied as r~”, where n
exceeded the Newtonian value of 2. More complex schemes were devised
by John Rowning (1735) and Rudjer Boskovic, or Roger Boscovich (1758),
who suggested alternating zones of attraction and repulsion around each
particle, arranged in such a way that the separations at which the force
is zero, corresponded to the densities of the material in its solid, liquid,
and gaseous forms. Such speculation had outrun the evidence, for there
was no theory to link these hypothetical forces with their physical or
macroscopic consequences. It was probably because of this lack that the
second half of the eighteenth century saw little further advance. At the
beginning of the nineteenth century two men independently rescued the
subject from its stagnation, Thomas Young [1] in London and Pierre
Simon Laplace 2] in Paris. Many of their conclusions were the same, but
those of Young are less accessible since in his early papers, he expressed
his results in words rather than in symbols and equations, and in his later
papers he was still using old methods of handling the calculus which makes
his work hard to follow. This short account is, therefore, based substan-
tially on that of Laplace and, indeed, it was his work which, for the same
reasons, was more influential later in the century.

Laplace calculated the force between two bodies of liquid with planar
parallel walls and separated by vapor of negligible density. He knew that
the forces between the molecules must be short-ranged on a human scale
but he assumed, nevertheless, that their range was long compared with
the mean separation of the molecules. This assumption has now become
a formal requirement in some molecular theories of matter and has been
given the name of the mean-field approximation. 1t has played an im-
portant, and often controversial, role in physics for nearly 200 years.

With this approximation he did not have to worry about the actual
distribution of the molecules in the liquid but could assume that it was
uniform, that is, that they were distributed at random. His result for the
attractive force per unit area between two surfaces in contact, K, is most
easily expressed in modern form in terms of the potential energy, ¢(r),
of a pair of molecules at a separation r. This potential energy is related
to the force between the pair, f(r), by —f(r) = do(r)/dr. If @an(r) <0
and .. () = 0, then f(r) < 0; that is, the force is attractive. Laplace’s
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result for the attractive force per unit area of two slabs of liquid in contact
can be expressed as

d
K = —2'n'p2J an(r)r? dr (1N

where p is the number of molecules per unit volume, d the range of the
intermolecular potential, and o a cutoff distance for the attractive poten-
tial. He showed also that the work done per unit area to separate the two
slabs of liquid to a separation d (or greater) is given by

d
H= —mp? L o) dr @)

Since two surfaces have been created, this quantity is twice the excess
energy per unit area of the liquid surface and hence twice the liquid—gas
surface tension; H = 2y, The cohesive energy density of the liquid, or
energy per unit volume, is —2K, and the “‘internal pressure’ inside a
spherical drop of radius R is K + (H/R), a quantity that is not directly
accessible to experiment. The difference of the observed pressure inside
and outside the drop is accessible and is given by what we now call La-
place’s equation,

3)

If a liquid touches a solid, similar arguments can be used to obtain
expressions for the two surface tensions, y** and y*’. These are related
to the angle 6 between the liquid—gas and the liquid-solid surface by
Young’s equation,

v =y + y'% cos 8 (4)

These two equations, of Laplace and Young, suffice to solve all common
problems of capillarity, such as the rise (or fall) of liquids in narrow tubes,
the shapes of liquid surfaces in contact with solid surfaces, the shapes of
systems of bubbles, and so on.

This achievement was an important success in the Laplacian (or New-
tonian) program of obtaining the physical properties of matter from the
microscopic interparticle forces. The very success of the theory provoked
a more detailed examination from which several difficuities emerged. The
first was the nature of the repulsive forces that are needed to balance the
postulated attractive forces in a system at equilibrium. Laplace, a believer
in the caloric theory, at first ascribed the necessary repulsion to heat, a
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view that received some support from the observation that most liquids
expand on heating. In his later work (1819 onward) he came around to
the view that the strength of these caloric-induced repulsions must fall
off more rapidly with distance than the attractive forces, as Boskovic and
others had deduced earlier. The second mechanical difficulty was the
structure of the supposed equilibrium array of stationary particles. It was
not difficult to envisage how a crystal might be constructed by packing
together in a regular way a large number of molecules of simple shape,
but there could be no such geometrical picture of a liquid. This, again,
was a problem that could not be tackled within the essentially static model
of Laplace, and its solution had to await the development of a kinetic
theory of matter later in the century.

A third and more subtle problem concerned the size of the postulated
molecules and the range of the forces between them. Young observed
that since the integral H has a factor of »* and the integral K, a factor of
r?, the ratio 2H/K is a measure of the effective range of the potential,
@ae(r). We have seen that H is twice the surface tension, so is easily
measured, but that K, the cohesive energy density, is not directly mea-
surable. Young estimated it for water at 25 kbar (in modern units), prob-
ably by an argument based on the compressibility of the liquid. He de-
duced that the effective range of @..(r) is therefore about 1 x 107 ' m,
a figure that we now know to be low only by a factor of about 5. He then
went on, wrongly, to identify this distance with the mean molecular sep-
aration in steam on the point of condensation, since he thought that this
was the distance at which the attractive forces must start to act if they
were to bring about condensation. Since liquid water is more than 1000
times denser than steam at its normal boiling point, he was able to con-
vince himself that the mean molecular separation in liquid water is many
times smaller than the range of the cohesive forces, and so justify the use
of the mean-field approximation.

We have seen how the early enthusiasm for Newton’s physics in the
first half of the eighteenth century led to many attempts to explain the
properties of gases and liquids in terms of interparticle forces, and how
this enthusiasm faded in the second half of the century when the program
failed to produce quantitative results. The work of Laplace and the Arceuil
school in France gave the field a renewed vigor that lasted for about 25
years. From about 1830 onward, however, the effort faltered again for
the same reason-—no significant new results were forthcoming. It was not
until the creation of the mechanical theory of heat and of kinetic theory
and the development of thermodynamics that the next round in the theory
of liquids and their surfaces could be opened.
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II. VAN DER WAALS’ THEORY OF THE DIFFUSE
INTERFACE

In 1869, Dupré [3] recalculated the internal energy density, — K, of La-
place’s theory. He called this quantity le travail de désagrégation totale,
a name that reflected the way in which it was calculated—by calculating
the force needed to remove the particles in the surface layer of a liquid,
one by one. A particle that is within a distance d of the surface experiences
a net inward attraction because of the lack of spherical symmetry in its
surroundings. Although his result was correct (within the mean-field ap-
proximation), his argument is flawed since a system that contains particles
on which there are unbalanced forces cannot be at equilibrium, so the
liquid cannot have the sharp surface that he and Laplace had supposed.
This flaw was, in fact, pointed out by Poisson [4], a follower of Laplace,
in 1831, but he had then gone on to deduce, incorrectly, that if a sharp
surface were replaced by a diffuse one, of thickness comparable with the
range d, the surface tension would vanish. His fault lay in an implicit
assumption that it is possible to define unambiguously the local values of
a thermodynamic function in terms of the local values of other functions,
as in a homogeneous system. A systematic application of this argument
does, indeed, lead to the vanishing of the surface tension, but the argument
itself is correct only if the attractive forces are of zero range, and it is
this circumstance that is responsible for the vanishing of the surface ten-
sion, as is seen from Eq. (2) in the limit of d — . A less restrictive view
of the local thermodynamics of inhomogeneous systems was needed be-
fore an interface of nonzero thickness and forces of nonzero range could
be reconciled with a nonzero value of the surface tension.

Three men, apparently independently, found the natural way of gen-
eralizing this restricted view to a more general or nonlocal thermody-
namics of an inhomogeneous system. They were Karl Fuchs [5] at Press-
burg (now Bratislava, in Czechoslovakia), Lord Rayleigh [6], who worked
mainly in his laboratory at his home at Terling in Essex in Britain, and
J. D. van der Waals [7] in Amsterdam. The theory put forward by Fuchs
and by Rayleigh was still in the tradition of Laplace in that it was purely
a mechanical treatment of the problem; it ignored the motions of the
molecules or, in thermodynamic terms, it used an energy where a free
energy was more appropriate. Van der Waals was the first to realize the
importance of this distinction.

Fuchs observed that since the attractive force has a nonzero range,
molecules in a surface layer will influence, and be influenced by, other
molecules that are in a fluid of quite different local density. Hence the
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average energy at a given point, r, so also the average value of the local
pressure, will depend not only on the density p(r) but on its gradient and
higher derivatives. If we have a flat surface in the xy-plane, these deriv-
atives can be written p'(z), p'(z), and so on. For obvious reasons of
symmetry, there cannot be a term linear in p'(z), and Fuchs was the first
to show that the excess of the tangential or horizontal component of the
pressure over the vertical component at height 7 can therefore be ex-
pressed as

Ap(z) = —&{p()p"(2) — [p (D*H 5
where

I = —fr3f(r) dr (6)

and where f(r) < 0 is the force between two molecules at separation r.
He took this result no further, but a simple integration over z gives for
the surface tension,

v= [ ap@d =g [0 @F d ™
This last step was taken by van der Waals in a short communication to
the Academy of Sciences that was published in 1889 and in his definitive
paper of 1893 [7], and, in 1892, by Rayleigh [6].

Van der Waals opens his treatment by introducing at once the condition
that the free energy is a minimum in a system of fixed mass, volume, and
temperature. He makes free use of the hypothetical continuous isotherm
that passes smoothly through the two-phase region. The usefulness of this
curve had been guessed first by James Thomson in 1871 [8] after the
publication of Andrews’s classic experiments on the critical point of car-
bon dioxide, and it had become accepted as a useful construct after its
use in van der Waals’ thesis in 1873 [9]. The results of van der Waals can
be expressed simply by introducing first the Gibbs dividing surface of
zero adsorption. This divides the liquid from the gas at an arbitrary height
Z¢ defined by

[ o0 = pt1dz = 0 ®)

where p'# is p’ for z < zo and p* for z > z,. A local excess free-energy
density ¥(z) can then be defined as the sum of two terms,

W(z) = AYlp(2)] + imlp' (D)) 9)

where Ay is the amount by which the free-energy density on the contin-
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uous (Thomson-van der Waals) isotherm exceeds that of the two bulk
phases at the same overall density, which is
p(z) — p* p' = p(2)
Y v
PP pr— p°
He showed that the coefficient m is the fourth moment of the attractive
part of the intermolecular potential,

2
m= =5 | r eulr) dr (10)
and so differs only by a numerical factor of 30 from Fuchs’s integral I of
Eq. (6). Van der Waals obtained the surface tension from the integral of
the excess free-energy density defined with respect to the Gibbs dividing
surface of zero adsorption:

v= [ v@d-m[ Werd (1

The two terms in Eq. (9) contribute equally to the surface tension.

This ‘*square-gradient’’ theory of van der Waals was wholly within the
mean-field approximation, all fluctuations are ignored, and it gives rise
to a classical critical index:

y~(T“-T* wn=3 (12)

It was, however, the most satisfactory theory of the surface layer between
gas and liquid to be put forward until modern times. Its impact was limited
by the general loss of vitality of the field of liquid state physics after 1914
[10], so that its results were rediscovered independently many years later,
as will be discussed below.

. INTERFACES BETWEEN SOLUTIONS OF
ELECTROLYTES

At the end of the nineteenth century the word solution usually meant an
aqueous solution of an electrolyte, that is, an acid, a base, or a salt. At
the same time as Fuchs, Rayleigh, and van der Waals were developing a
theory of the liquid-gas interface, Nernst [11] and Planck [12] were taking
up the problem of the junction between two aqueous solutions of elec-
trolytes, which could be either solutions of different substances or of the
same substance at different compositions. Such an interface differs fun-
damentally from the liquid—gas interface, for it cannot be at equilibrium;
diffusion of the electrolyte must slowly bring about complete mixing and
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the junction will disappear. Nevertheless, diffusion in liquids is slow com-
pared with the time needed to establish an almost stationary distribution
of ions, so Nernst and Planck were justified in using quasi-thermodynamic
arguments. Their work was contemporary with that of Fuchs and of van
der Waals’ first note, but there is no evidence that either set of workers
knew of or was influenced by the other. Nernst and Planck phrased their
argument in terms of the force generated by a gradient of osmotic pressure
which is balanced by that of the electric field. A modern route to the same
result (e.g., that of Maclnnes [13]) considers the flow of ions into and out
of an infinitesimal layer of the interface. The potential of the liquid junc-
tion, £, between two phases, a and B, is given by

RT ([« S 1;
E, = F JB ;Z—[dlna,- (13)

where #;, z;, and q; are the transport number, number of electronic charges,
and activity of the ion of species /.

This expression is not without its problems. There is the question of
the meaning to be attached to single-ion activities since these cannot be
measured—a restriction that was not fully appreciated until this century.
A characteristically forthright expression of our inability to determine
single-ion chemical potentials and electrode potentials was given by Gug-
genheim in 1929 [14]. The restriction arises from the need to preserve
electrical neutrality. If, however, the junction is between two solutions
of the same electrolyte, for example a uni-univalent electrolyte in a cell
in which the electrodes are reversible to the anion, then, since r, + f_
= 1, we have

B B
ELzlgfadlna,-2R—FTLt+dlnar (14)
where a% = a.,a_, the square of the mean ionic activity, which is mea-
surable. The first term is the contribution to the emf of the cell from the
two electrodes, so the last term is the electromotive force (emf) of the
whole cell.

Matters are less simple if we have a junction between two different
electrolytes. Even if we are willing to make an assumption about single-
ion activities (e.g., that ¢, = a_ = a-.), we still cannot integrate Eq.
(13) without knowing more about the concentration gradients of the ions
in the interface and how ¢; depends on the local concentration. The last
problem can be solved by auxiliary experiments, but the problem of the
gradients of ionic concentration requires a further ad hoc assumption.
Planck took this assumption to be what we now call a boundary zone of
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constrained diffusion, which can be envisaged as the zone established by
diffusion in the pores of a plug, the two faces of which are washed by the
two homogeneous phases sufficiently rapidly for the concentration at each
face to be constrained to be that of the appropriate bulk phase. The form
of equations to which this gives rise are set out in an appendix in
Maclnnes’s book [13].

A simpler assumption, made later by Henderson [15], seems to agree
as well with experiment. He assumed that the composition of each point
in the boundary zone was that of a fraction of y of phase « and fraction
(1 — y) of phase B. He assumed further that y is a linear function of
distance from either of the faces of the zone, although it was later found
that this assumption was redundant. (It is a curiosity that many years
later, and in ignorance of Henderson’s work, I made exactly the same
assumptions about the composition profile of the boundary layer between
a binary liquid mixture and its vapor in order to calculate the surface
tension [16].)

IV. ELECTRICAL DOUBLE LAYER

The surface between an electrode and a solution of an electrolyte is an
inhomogeneous system that can be at true equilibrium and so can be
treated with more precision than the liquid-liquid junction between two
solutions in a common solvent. The treatment of an interface at true equi-
librium might, at first sight, be expected to owe something to the earlier
work of Laplace or of van der Waals on the liquid—gas surface, but the
long range of ionic forces means that the dominant structures are quite
different and, at first, the theoretical treatments had nothing in common.
It is only in recent times that the theoretical methods have converged, as
both have been grounded more thoroughly in modern statistical mechan-
ics.

Helmbholtz [17] was the first to realize that a charged metal plate im-
mersed in a solution of an electrolyte would have as its neighbor a zone
in which the ions were predominantly of the opposite charge, thus forming
a double layer. He defined the moment of this layer as the product of its
thickness D and the density of positive (or negative) electricity within it,
e. He envisaged, however, that D was of molecular dimensions, so that
the electrolytic part of his double layer comprised more an adsorbed layer
of ions than a diffuse zone that is thick by comparison with the size of
any one ion. Billiter [18] realized that the double layer need not be con-
fined to one layer, or even few layers, but would spread out into the bulk
of the liquid phase. He spoke of ‘‘a dissociation of the double layer’ [19]
but did not develop a theory for calculating its thickness and structure.
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That task was undertaken independently by Gouy in Lyon in 1910 [20]
and by Chapman in Oxford in 1913 [21]. Each treated the problem in the
same way and their two papers are remarkable, even by the standards of
the day, in that neither of them has a single reference.

The diffuseness of the layer arises from the opposing effects of the
electric force from the electrode, which tends to make the layer thin, and
the combination of the repulsive forces between the ions and of their own
diffusive motion from places of high density to those of low density (then
generally called the osmotic force), which tends to make the layer thick.
If the layer is sufficiently thick, we can, as a first approximation, assume
that the ions are of negligible size.

Their method of tackling the problem is to assume that the concentra-
tion profile of the ions satisfies two equations. The first of these is Pois-
son’s equation of electrostatics,

div grad V(r) = E—(:-) (15)

where p is the density of charge at position r, € the permittivity of the
solution (taken to be independent of r), and V the electric potential. The
second equation is Boltzmann’s distribution for ions in an external po-
tential V:

(16)

. [*zieV(r)}
ni{r) = n>exp | ——

kT

where n;(r) is the concentration at r of ions of species i/ which carry a
charge of z;e, and n;” is the concentration at infinite distance from the
electrode where V is zero. Since

p(r) = > nir)ze (17)

1

we have

(18)

VaV(r) = —é > ni*zie exp [:m]

kT

which is the Poisson-Boltzmann equation, the most used equation in the
theory of inhomogeneous electrolytic solutions. It is not exact because
the Boltzmann distribution is correct only for ions of zero size and with
no forces between them other than the Coulomb forces. Moreover, the
solvent is treated as a continuous dielectric medium, not as a collection
of discrete molecules that exert forces on the ions and on each other.
Nevertheless, the Poisson-Boltzmann equation embodies much of the
essential physics of the problem, at least for dilute solutions.
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It is convenient to depart from strict historical order and consider first
the linearized equation obtained by assuming that V is small and hence
that the exponential can be expanded to give

ViV(r) = —k2V(r) (19)
where
Z.'zﬂioc 12
K =@ (2[: W) (20)

The parameter k ' has the dimensions of length and is a measure of the
thickness of the double layer. This equation was used in 1923 by Debye
and Hiickel [22] to determine the potential and the concentration of ions
around a chosen ion in a dilute solution. The problem is one of spherical
symmetry for which the operator has the form

d_2 N 2/nd
dr? dr

so V(r) has the form that is now usually called a Yukawa potential {23]:

V2 = (21)

Vi = 2% L - 22)
€ Kr
where z is the charge on the central ion and where the constants of in-
tegration have been chosen so that V(r) approaches its Coulomb value
as r becomes infinite.

For a flat surface, as considered by Gouy and Chapman, it is not nec-
essary to linearize the Poisson—-Boltzmann equation. The operator V2 now
takes the simple form d?/dx?, where x is the distance perpendicular to the
planar electrode. For a single symmetrical electrolyte, z; = z,. = z_ =
Z, we have the equation

d*V(x) _ 2zen™ zeV(x)

e . sinh T (23)
of which the integral with the appropriate boundary conditions is
zeV(x) zeV°®
= K 24
tanh KT tanh T © (24)

where V° is the potential at the surface of the electrode (x = 0). Gouy
wrote this as

- ug'? — 1 . uo'? + 1
w? — 1 w2 + 1

(25)



12 Rowlinson

where u = n./n.~, that is, the relative excess of cations, and u, is the
value at x = 0. Clearly, uo < 1 if the plate carries a positive charge (V
> 0), and u, > 1 if it is negative, and vice versa for the anions since n,. n _
=n.*n_" = n?.

The Gouy-Chapman theory and Poisson-Boltzmann equation on
which it is based, like many simplest approximations, have virtues that
can easily be lost when attempts are made to improve them. Equations
(23) to (25) satisfy, for example, the conditions of mechanical equilibrium
at all points in the diffuse layer. Nevertheless, the imperfections of the
Gouy-Chapman theory and, more particularly, of its linearized version,
the Debye—Hiickel theory, have been recognized from the earliest days.
The best known formal analyses of the Debye—Hiickel theory were those
of Fowler [24], Onsager [25], and Kirkwood [26].

The first significant attempt to improve the Gouy-Chapman theory was
based on the recognition by Stern [27] that the nonzero size of the ions
prevented their centers from reaching the actual surface of the electrode,
and so prevented the surface concentration of counterions reaching the
impossibly high figures that could result from the Gouy—Chapman equa-
tion. He assumed that there would be an adsorbed layer of counterions
whose density he calculated from arguments similar to those used earlier
by Langmuir [28] for calculating the extent of adsorption of molecules at
uncharged surfaces. This adsorbed layer of counterions is now usually
known as the Stern layer. Much later, Bikerman [29] proposed a correc-
tion for the nonzero size of the ions in the diffuse layer by introducing a
co-volume, b, but did not attempt to calculate the consequences of his
proposal. Since the two assumptions of a linearized Boltzmann distri-
bution and a co-volume are reminiscent of the two assumptions behind
the van der Waals equation of state of homogeneous fluids, it is of interest
to see what is the corresponding result for an inhomogeneous electrolyte
solution. This point is explored briefly in an appendix to this chapter.
Dutta and Baggchi [30] and, independently, Eigen and Wicke [31] pro-
posed similar modifications of the Debye-Hiickel equation.

These attempts at improvement are, however, all without formal theo-
retical foundation. Modern work has developed in two directions. The
first is based on the critical work of Kirkwood and others and led in 1951
to the so-called modified Poisson-Boltzmann equation of Loeb [32],
which has been developed further by Levine and Outhwaite [33]. The
second has been the introduction into these fields of the integral equations
used first for homogeneous and uncharged liquids, such as the Yvon-
Born-Green and hypernetted chain integral equations. With these de-
velopments we reach the modern era, and so subjects of later chapters
of this book.
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One field of application of the theory of the diffuse layer should, how-
ever, not go unnoticed. This is the theory of the forces between colloidal
particles, which is based, in part, on the behavior of two interacting double
layers. Earlier work on this subject, such as that of Langmuir [34], Der-
jaguin and Kussakov [35], and Levine [36], was, as has been said, ‘‘con-
flicting on some essential points, even on the important question of
whether the double layer interaction produces attraction or repulsion’
[37]. The matter was due to have been thrashed out at the Faraday Society
Discussion in Cambridge in September 1939, but that meeting was never
held, although many of the papers and a little of the discussion by cor-
respondence were published {38]. The classic work on this problem, which
resolved many of these difficulties and paved the way for more recent
work that is firmly grounded in statistical mechanics, was that carried out
in the Netherlands during World War II by Verwey and Overbeek and
published by them as a monograph in 1948 entitled Theory of the Stability
of Lyophobic Colloids [37].

V. VIRIAL EXPRESSIONS AND FUNCTIONAL
EXPANSIONS: THE MODERN ERA

From its earliest development in the 1880s up to World War II the prop-
erties of solutions of electrolytes were at the center of what had become
known as physical chemistry. The field has developed continuously since
the war, although it has never regained the leading position it had in that
subject during the 1920s and 1930s. 1n contrast, the theory of uncharged
liquids and solutions, which was a flourishing branch of physics until
World War I, became something of a backwater until after World War 11
[10]. In consequence, the theory of inhomogeneous liquids did not make
any significant advance beyond the square-gradient theory of the liquid—
gas interface of van der Waals for nearly 60 years. This theory itself was
reinvented by Landau and Lifshitz in 1935 [39] to treat the formally similar
problem of the interface between two magnetic domains, and by Mitsui
and Furuichi in 1953 [40] for that between two ferroelectric domains. In
1958, Cahn and Hilliard [41] independently derived the results again for
the liquid-gas surface in a treatment of nucleation, but although they
quote, in a different context, results from the relevant papers of Rayleigh
and van der Waals, they did not recognize at first that their results were
essentially those of van der Waals.

The foundations of the modern treatment of interfaces can be seen in
two developments that it is not too farfetched to regard as the completion
of the programs of Laplace and van der Waals. The first was the devel-
opment of an exact virial expression for the surface tension. It had long
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been recognized that the tension depended on a difference in the interface
between the normal and the tangential components of the pressure tensor.
For a plane interface,

y= [T tost0) - pita a2 (26)

—x

The use of this expression requires an exact statistical mechanical expres-
sion for the components of the pressure tensor. This was given first in
1949 by Kirkwood and Buff [42] and, in a different form, by Irving and
Kirkwood [43]. There is more than one way of tackling this problem, so
pr(z) is not a unique function, although the integral (26) is invariant to
this lack of uniqueness. One of the versions of p;(z) is now usually as-
sociated with the name of Harasima [44]. The normal component, p(z),
is, by the condition of mechanical equilibrium, a constant at a planar
interface and equal to both p’ and p*, the pressures in the liquid and
gaseous phases. The result obtained by substituting these statistical me-
chanical expressions for the pressure tensor into the integral in (26) is the
so-called virial expression for the surface tension. It can be regarded as
the exact result to which the treatment initiated by Laplace led, even if
the path to this result took over 140 years to accomplish.

A natural corollary of this result is the Yvon-Born-Green (YBG) equa-
tion, which 1s obtained by differentiating with respect to the position of
particle 1 the statistical mechanical expression for p(r,) in an inhomo-
geneous system:

CkTVip(r) = plen)V,V(r) + f 02(ry e)Vig(ra) drs  (27)

where V(r,) is the external potential at r;, and p'®(r,,r,) is the two-body
distribution function. In a homogeneous fluid each term vanishes (the
integral by symmetry) and the first nontrivial YBG equation is the second
member of the hierarchy in which the left-hand side is —kTV,p®(r,r2)
and the integral is over the three-body distribution function p**(r;,r,, r3).
For obvious reasons, early users of these equations paid more attention
to this equation than to Eq. (27), the one-body equation.

Yvon [45] was the first, in 1935, to use such equations, although Kirk-
wood [46] obtained an equivalent two-body equation the same year. There
were later independent derivations in 1946 by Born and Green [47] and
by Bogoliubov [48]. Because of these many independent works the hi-
erarchy of equations is sometimes known as the YBG and sometimes as
the BBGKY hierarchy.
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The second foundation of the modern treatment of interfaces has been
the method of functional expansions of the distribution functions. It is
this approach that was described above as the natural end of the line of
development opened by Fuchs, Rayleigh, and van der Waals with the
square-gradient approximation. It is a necessary feature of this early work
that it postulates the existence of thermodynamic functions of states of
the fluid that have no independent equilibrium existence, such as a ho-
mogeneous fluid state of a density between that of the orthobaric gas and
liquid states. A similar freedom in statistical mechanical theory to suppose
the existence of functionals of distribution functions of states not at equi-
librium came much later, but has proved to be equally fruitful. Such func-
tionals were introduced in 1960 by Lee and Yang [49] and by Green [50],
and were soon applied to the statistical mechanics of inhomogeneous
systems by Morita and Hiroike [51], De Dominicis [52], Stillinger and
Buff [53], Lebowitz and Percus [54], Mermin [55], and Ebner and Saam
[56].

Such functionals are at extrema when their arguments, the distribution
functions, take their equilibrium values, and the values of the functionals
then correspond to the equilibrium value of a thermodynamic potential
such as F or Q. If p*™(r") denotes an arbitrary N-body distribution func-
tion in the canonical ensemble which is normalized so that

J’f)(N)(rN) dl‘N = N! (28)

thus we can define a functional of p that becomes the free energy when
p™ becomes p'™’, the equilibrium distribution function; this functional
is
1
FIH] = =7 [ BVION + KT In(A% )] dr (29)
The first two functional derivatives of % can be obtained by using two
equations obtained by Yvon in 1958 [57]. The equations are

— kT 8p(ry) 8(r; — ry)

h(z) =
R W TS )

(30)

and its inverse,

L8V | 3 - 1)
KT Bp(r2) ~ p(ry)

where 4% and ¢@ are the total and direct correlation functions between

C(Z)(l‘l r2) =

3D
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points r; and r,. The functional derivatives of ¥ are

sy vV (32)
BZg[ﬁ(N)] kTd(r; — r))
= — kTePr,, ;
dp(ry) dp(r) o(ry) c¥(ry,rp) (33)

where p is the chemical potential. The derivatives are taken in the equi-
librium state, so these results can be used to expand % about its value
for a uniform system in powers of Ap(r) = p(r) — p,. A first approxi-
mation to the excess free energy per unit area of a liquid-gas interface
follows from this expansion [58,59] and leads again to the square-gradient
approximation to the surface tension of Eq. (11) but with the coefficient
m now given not by Eq. (10) but by

)
m(p) = ?’T ka e (rip,) dr (34)

where ¢@(r;p,) is the direct correlation function in a uniform fluid of
density p,. This result is the modern justification for the square-gradient
approximation. It differs from the original version in that m becomes a
function of density, and, moreover, one that is not well defined, for two
reasons. The first is that ¢ (r;p) is an unknown function if p is a hy-
pothetical uniform density between p’ and p¥, and second, because (34)
diverges at the critical point. The two results, old and recent, are, in fact,
close in their predictions for the surface tension since a well-known es-
timate for ¢ (r),

—kTc®(r) = @anlr) at large r (35)

is familiar as the mean-spherical approximation [60].

In view of these uncertainties it is fortunate that there are other lines
of argument that lead to an exact expression for the surface tension in
terms of the direct correlation function of the real inhomogeneous fluid.
This expression can be obtained in several ways, such as the change in
the grand potential {2 that arises from an increase in surface area caused
by a fluctuation in density, or from the change of pressure in the liquid
needed to transform a planar interface into a spherically curved one. This
last method uses Eq. (31), the second of Yvon’s two equations. The result
is

y= 3T [ @) da [ (34 30 @) drs (36)

This result was obtained first by Yvon in 1948 and reported by him at a
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meeting in Brussels that year but was never formally published. It was
obtained independently by Triezenburg and Zwanzig in 1972 [61] and
again by Lovett et al. in 1973 [62]. Like most exact equations it suffers
from the disadvantage that the essential function ¢®(r,,r,) is generally
not known, and attempts to guess it are apt to lead to a result close to
the approximate equation, (11) with (34).

The two expressions for the surface tension, Eq. (26) with the appro-
priate expression for the pressure tensor, and Eq. (36), are very different.
The first is not restricted to a sharp interface, although it is easy to show
that for such an interface and with the mean-field approximation for the
liquid the virial expression of Kirkwood and Buff reduces to that of La-
place. The second obviously takes into account explicitly the diffuseness
of the interface, but its relation to the virial expression is not obvious.
Schofield [63] was the first to show the equivalence of the two expres-
sions; Waldor and Wolf [64] have recently rederived the same result by
a different method.

It is, perhaps, appropriate to close this chapter by noting that the es-
sential feature of a theory of inhomogeneous fluids is the need to account
explicitly for the ‘‘nonlocal’ character of all properties. By this is meant
that the property of the fluid at any point r is determined not only by the
local density at r, p(r), and by the local temperature T and the local
chemical potential p. (the last two being constant throughout a system at
equilibrium) but also by the properties of the fluid near but not at r. We
can distinguish three levels of accuracy. First the nonlocal character is
ignored, so that the free-energy density ¥ (for example) is held to be a
function only of the two independent variables T and p(r):

V() = ¥p(r);T] (37

This was the assumption made by Poisson which led him to conclude that
a diffuse interface has a vanishing surface tension. It was made again in
modern times by Tolman [65] and by Ono and Kondo [66].

The next level of accuracy is that of Fuchs, Rayleigh, and van der
Waals, in which

W(r) = ¥lp(r),Vp(r);T] (38)

This leads to the square-gradient approximation and is still a useful ap-
proximation for some purposes.

Finally, we have the formally exact results, exemplified by Eq. (36),
in which the free-energy density is a function of the properties of the fluid
at two points and the correlation between these points:

W(r;)) = ¥[p(r),p(r2),c@(ry,rp); T] (39)
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The range over which the nonlocality must be considered is the so-
called correlation length in the fluid, which is generally a measure of the
range of the intermolecular forces. Near the critical point, however, it
grows to macroscopic size, so a classical treatment that does not account
accurately for the extent of this growth leads to a significant error in its
description of how the surface tension vanishes at that point.

APPENDIX
Bikerman [29] proposed that Eq. (16) be replaced by
ni(r) _ .
T one) o) n; expl—z:eV(r)/kT] (AD)
where
n(r) = > nr) (A2)

1

and n/ is a constant which, for a single symmetrical electrolyte, can be
written

nt =nt =107 - bn*)! n T =07 =" (AY)
The charge density is given by

p(r) = zefn (r) — n_(r)] (A4)

_ zen aosm'h[z(r)] (AS)

1 + 2bn™ sinh?*[y(r)/2}
where y(r) (or y, for simplicity) is zeV(r)/kT. In the Gouy-Chapman treat-
ment, po, the charge density at the plate rises exponentially with | V; |,
the surface potential, but here it is restricted by the sizes of the ions to
maximum value of | ze/b |. One integration of the Poisson-Boltzmann

equation gives
dy\> 2«2
(d—i> = Za% In (1 + 2bn™ sinh? %) (A6)

The total charge in the diffuse layer is proportional to the potential gra-

dient at the electrode:
o (&)
€ dx 0 (A7)

2 kT 1/2
- [ Eb In (1 + 2bn™ sinh? %)]
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Since x~ ' In(1 + x) < 1, this charge is lower than that predicted by the
Gouy—-Chapman treatment. There seems, however, to be no way of in-
tegrating (A6) analytically to obtain V(x). On linearization, as in the
Debye—Hiickel regime, the leading term is independent of b.
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Statistical Mechanical Sum Rules

J. R. Henderson
University of Leeds
Leeds, England

I. INTRODUCTION

The theory of inhomogeneous fluid phenomena has been transformed dur-
ing the last decade by an explosive input from physicists, into what had
previously been a long-established branch of physical chemistry (Derja-
guin, 1940). Particularly striking are new conceptual frameworks obtained
from rigorously based models (Nakanishi and Fisher, 1982) and a high-
lighting of the significance of fluctuations to interfacial phenomena (Li-
powsky, 1987). For example, in just one subject known as wetting (Sul-
livan and Telo da Gama, 1986) we now possess a unified theory of all
equilibrium behavior associated with adsorption at interfaces. We are
likely to see an increasing emphasis on complex fluids (Chapters [1 and
12} and in dynamic phenomena such as interfacial motion (spreading and
film growth) and transport at surfaces and in confined media (Chapter
13).

The interest by physicists was driven by the consequences of inho-
mogeneity rather than a desire to study fluids; in particular, excitement
centered on newly understood phase transitions (Cahn, 1977; Ebner and
Saam, 1977). Infact, as explained in Section I1.B, the physics of interfacial
phenomena has opened up a new world inhabited by a myriad of phase
transitions, including new classes of critical phenomena. Here the pi-
oneering work has come from phenomenological physics, such as Landau
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dau or van der Waals theories (Sullivan, 1981) and interfacial Hamilto-
nians (Lipowsky, 1984), and also from rigorously based lattice models
(Pandit et al., 1982), including some exact results (Abraham, 1980) and
Monte Carlo simulations (Binder et al., 1986). However, liquid-state the-
ory based on molecular Hamiltonians has much to offer that complements
the foregoing work {van Swol and Henderson, 1984), thanks in particular
to the availability of powerful techniques borrowed from functional cal-
culus. In this chapter we are concerned with contributions to the fun-
damental understanding of equilibrium interfacial phenomena obtainable
from liquid-state theory founded on realistic many-body Hamiltonians.

Much of what is discussed below can be traced back to seminal work
in the 1950s and 1960s that was focused toward an understanding of liquid-
vapor interfaces in simple atomic fluids. In the event, the so-called simple
liquid—vapor interface turned out to be an extremely difficult problem
from a fundamental point of view, due to the essential role that external
fields play in broken symmetry systems (Section II.A). Reviews of this
work can be found in Evans (1979), Percus (1982), Rowlinson and Widom
(1982), and Henderson (1986¢). Here it is convenient to avoid repetition
of the painful gestation by presenting a unified discussion of fliids in the
presence of external fields. In particular, let us seek to establish a general
context appropriate to the many varied problems that have recently been
tackled from within this single mathematical framework.

In this chapter the term statistical mechanical sum rule, hereafter
shortened to sum rule, refers to an equilibrium identity between a statis-
tical thermodynamic property and an integral over correlation functions.
The former are macroscopic physical quantities such as a free energy, a
generalized thermodynamic field, or derivatives of a free energy with
respect to thermodynamic fields. To be a sum rule a relationship must be
exact (i.e., derivable from a partition function defined by a microscopic
Hamiltonian). The significance of sum rules lies in the direct links they
create between microscopic correlations and physical properties. Thus
sum rules provide a framework for interpreting molecular models of phys-
ical phenomena. Of special importance is the fact that all macroscopic
phenomena appropriate to a given Hamiltonian must be compatible with
any sum rule derived from that Hamiltonian. Hence dramatic collective
behavior, such as associated with phase transitions or the appearance of
structural order, is often highlighted by deceptively simple sum rules (see
Section IV.A). Computer simulation studies benefit from sum rules, both
as a framework with which to analyze masses of computer-generated data
and as checks on equilibration and incorrect procedures. Density func-
tional theories (Chapter 3), especially those constructed to possess full
internal statistical mechanical consistency, are similarly enhanced by a
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close attention paid to sum rules (see Section III.D). In contrast, ap-
proximate integral equation theories invariably violate key sum rules,
pointing the way to future improvements.

It is not our purpose in this chapter to attempt a complete survey of
specific applications of sum rule analyses applied to inhomogeneous
fluids, but rather, to present a general introduction illustrated by selected
examples; the reader might also like to note a recent review by Evans
and Parry (1990). In Section 11 we present an overview of a collection of
important concepts known as broken symmetry, as relevant to inhomo-
geneous fluids. It is important to review these concepts because they form
the context in which theoreticians derive and use sum rules applied to
interfacial systems. Perhaps the greatest thrill of theoretical science is to
be able to see such deep physical understanding emerge miraculously,
yet inevitably, from the dry logic of statistical mechanical sum rules. In
Section 111 we present key sum rules of particular importance to the study
of inhomogeneous fluids and review their derivation from statistical me-
chanical theory. In Sections 1V and V we discuss examples of sum rule
analyses of wall—fluid interfaces and confined fluids, reflecting the tastes
of the present author. Such powerful methods are always available for
the study of equilibrium properties of inhomogeneous molecular systems,
thanks in particular to the utility of functional calculus.

Il. BROKEN SYMMETRY
A. Importance of External Fields

Equilibrium states of a translationally invariant Hamiltonian must them-
selves be translationally invariant. This is particularly significant for fluid
states because fluid interfaces lack rigidity and thus readily develop fluc-
tuations that lead to instability in the absence of stabilizing boundaries
or surface fields. Thus the presence of an external field term in the Ham-
iltonian is essential to theories of inhomogeneous fluids. A formal proof
of this statement is provided by a theorem due to Mermin (1965), reviewed
in Chapter 3, which implies that the one-body density profile p(r) is
uniquely determined by the one-body external field »(r), and vice versa.

An external field can play up to three direct roles in controlling the
behavior of inhomogeneous fluids. First, the symmetry of u(r) will in-
variably define the interfacial geometry. This includes the important case
of confined fluids, where a pore width or radius is defined by a parameter
contained in the wall-fluid potential. Second, v(r) will often be defined
by a set of parameters that act as surface fields controliing the microscopic
structure of wall-fluid interfaces and in special circumstances the mac-
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roscopic behavior as well. The repulsive part of v(r) will induce oscillatory
layering structure in fluids packed against walls by moderate to high pres-
sure. An attractive contribution to »(r) will always contain at least two
important parameters: a well depth and a range parameter, which play
key roles in determining adsorption phenomena (wetting). Third, an ex-
ternal field can be used to stabilize an interface against instabilities arising
from collective fluctuations. For example, a weak gravitational field is
sufficient to stabilize a liquid--vapor interface from the wandering induced
by capillary-wave fluctuations (see Section II.E).

An important class of indirect external field effects arises because
boundary conditions cannot be ignored when considering phase transi-
tions and when comparing results from different choices of ensemble.
Often these macroscopic phenomena run counter to intuition obtained
from work based on the strict thermodynamic limit. For example, con-
sider the consequences of planar interfacial symmetry on wetting tran-
sitions at wall-vapor interfaces. Namely, if one induces a wetting tran-
sition (first order or continuous) by varying temperature or a surface field,
the final outcome is a system with an infinitely thick film of liquid sep-
arating the wall from bulk vapor (which constitutes the far boundary con-
dition). Clearly, this interfacial phase transition cannot be reversed; in-
stead, to dry the wall one would now have to induce a drying transition,
thereby creating an infinitely thick layer of vapor between the wall and
the infinitely thick liquid film. Similar comments apply to finite systems
as used in computer simulation studies. Related to these effects is the
significance of boundary conditions to collective dynamics. Thus a planar
liquid film does not have the same collective modes available to it as does
a curved meniscus, which can spread out along a boundary wall. One
should therefore bear in mind that a particular choice of geometry may
induce extremely high metastable barriers preventing passage to true equi-
librium states. Interesting examples of boundary effects have also been
highlighted in studies of confined fluids. For example, models of capillary
condensation based on pores of infinite length possess metastable barriers
to pore filling (a drop must nucleate inside the pore) and to pore emptying
(a bubble must nucleate inside the pore), whereas a finite open pore can
empty from the pore ends without encountering significant metastability
(provided that the system is not immersed in a bath of liquid) (Saam and
Cole, 1975; Marini Bettolo Marconi and van Swol, 1989). Similarly, very
strongly confined fluids exhibit extreme sensitivity to the choice of en-
semble; for example, modeling a planar slit of width L in the canonical
ensemble (fixed N, closed pore) will yield a true two-dimensional system
as L tends to zero, whereas in this limit an open pore at finite chemical
potential (grand canonical ensemble) can only approach a two-dimen-
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sional weak gas, due to fluid being squeezed out from the pore ends
(Henderson, 1986b).

B. Phase Diagrams and Surface Phase
Transitions

Experimental science tends to restrict physical understanding to that
available from the use of variables that are readily to hand in the labo-
ratory. This leads to a limited view of phenomena that are better under-
stood as part of a larger reality-—like the ant confined to a two-dimensional
table top. The most important collection of physical knowledge is sum-
marized in phase diagrams, which plot the points, lines, and surfaces that
separate distinct phases of matter distinguishable via their macroscopic
properties. Passage across such a boundary in phase space is known as
a phase transition. Describing and understanding phase transitions, a fa-
vorite pastime of physicists, is of special significance because here one
controls large changes in physical behavior through small changes in ther-
modynamic variables.

A proper understanding of phase behavior is based on the identification
of thermodynamic fields (Griffiths and Wheeler, 1970). Fields are those
thermodynamic variables that always yield identical values in two or more
phases that lie in thermodynamic equilibrium. Thus all-field phase dia-
grams are the most succinct way to represent phase behavior. Further-
more, each thermodynamic field acts as a degree of freedom relevant to
the Gibbs phase rule. In general, thermodynamics proceeds by construct-
ing a thermodynamic potential to be a concave function of all relevant
fields (and thus the potential itself can be regarded as a field). Taking
partial derivatives of the potential with respect to each field generates a
set of conjugate densities (defined to be intensive variables by appropriate
division with respect to volume or area, as necessary). One then chooses
spaces from within this collection of fields and densities in which to de-
scribe physical phenomena under study. The topology of such a phase
space is controlled by the number of densities used. In the following
section an explicit version of such a theory is given for inhomogeneous
fluids, and Section 11.D introduces the development of statistical me-
chanical models that are mathematically exact realizations of this struc-
ture.

From the above it follows that a failure to identify thermodynamic fields
relevant to a class of phenomena will severely cripple attempts at a rig-
orous understanding, particularly with regard to conceptual meaning. This
lesson has been highlighted more than once during the recent expansion
of theories of inhomogeneous fluids. Here, the problem can be broken
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down into two questions. First, what bulk thermodynamic fields remain
applicable in inhomogeneous systems? In general, the answer is temper-
ature (7)) and chemical potential () but not pressure, because interfacial
stress must be described by pressure tensor component profiles (Section
I1.D). Both T and . can be defined at any point within an inhomogeneous
system such that each take on a constant value everywhere throughout
an equilibrium state; 7 is given by the average molecular kinetic energy
(in classical systems) and . by a statistical mechanical sum rule known
as potential distribution theory (Section I1.D). Second, do interfacial sys-
tems possess additional thermodynamic fields arising from the presence
of surfaces? It was the latter question that remained largely unrecognized
until the 1980s.

For example, consider wetting phenomena in the context of fluid ad-
sorbed at a wall. Can a wall-fluid interface exhibit two or more states of
adsorption at the same grand potential? If so, varying the temperature
will be one route to induce interfacial phase transitions, but are there field
variables present with more direct impact? In particular, note that a
mathematical description of the wall-fluid interaction will introduce at
least two new parameters; a well depth (e,.) and a range (a,.) of the wall-
fluid attractive potential energy. Since we are asking whether two equi-
librium states of adsorption correspond to the same values of (T,u.€,,.a..),
it follows that €, and a,. act as generalized thermodynamic fields. One
realizes immediately that if the fluid is held at bulk liquid-vapor coex-
istence at a given temperature, a sufficiently high value of €,, will induce
complete wetting of a wall-vapor interface (liquid prefers to lie next to
the wall). At the other extreme, too little attraction will ensure that a
wall-liquid interface can lower its free energy by interposing an infinite
film of vapor between the wall and bulk liquid (a drying transition). Thus
the key phase diagram for understanding wetting phenomena lies in the
space (T,m.€,.); usually, one subtracts from w its value at bulk liquid—
vapor coexistence, psa(7), so that wetting transitions are confined to the
plane p — e (7) = 0. In general, Nakanishi and Fisher (1982) argue
that for wall-fluid systems one expects to find a tricritical point on the
wetting transition line separating first-order transitions at lower T from
second-order behavior (called critical wetting). Adding the field a,, will
turn such a tricritical point into a tricritical line; thus the key phase dia-
gram for recording the separatrix between first-order and critical wetting
lies in the field space (e,.,a,). It is perhaps worth noting that €,, has a
direct magnetic analog: namely, e, translates to a surface magnetic field
strength and its conjugate density to the surface magnetization [see (56)].
Experimental progress in studying wall-fluid wetting phenomena has
been severely hampered by a lack of control over the fields (e, ,a.), in
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complete contrast to statistical mechanical theory and computer simu-
lation studies, although pioneering work by Durian and Franck (1987) has
shown the way to the development of early approaches toward laboratory
control. The future will surely see such work gaining enormous techno-
logical significance.

Another example of the significance of statistical physics to inhomo-
geneous fluid phenomena concerns the subject of fluids absorbed in po-
rous media (confined fluids). The basic parameter of a pore is its width
(L) or radius (R) (i.e., the extent along the confining direction). Two-
phase coexistence of fluid within an open pore (equilibrated with an out-
side reservoir via exchange of particles through the ends of the pore) is
known as capillary condensation or evaporation and has long been ob-
served as a shift in the bulk liquid—vapor coexistence curve.® A full con-
ceptual understanding of this phenomena requires the realization that L
(or R) plays the role of yet another thermodynamic field. Thus capillary
condensation takes place in the space (7,u,L). The density conjugate to
L is known as the solvation force (or disjoining pressure) (Evans and
Marini Bettolo Marconi, 1987). The field ¢, is also important, since cap-
illary condensation will interact strongly with any nearby instability to-
ward wetting at a pore wall. Also, it is thermodynamically possible for
layering transitions at the pore wall(s) to precede capillary condensation.

The foregoing considerations constitute a qualitative explanation of the
striking richness of the phase behavior of inhomogeneous fluids. Each
new relevant field increases phase space by an extra dimension and in-
troduces additional potential phase transitions, following the Gibbs phase
rule. Recent work on theories of single-component atomic fluids adsorbed
at walls and in pores has identified examples of layering transition se-
quences, prewetting transitions between thin and thick films, various
classes of wetting transitions, and capillary condensation transitions. Gen-
eralizations to molecular fluids or fluid mixtures would greatly enhance
this complexity (Section I11.C). Furthermore, the full mathematical tech-
nology of thermodynamics is immediately applicable to these extended
phase spaces (i.e., Maxwell relations, Clapeyron equations, C,-C, re-
lations, etc.). This includes standard approaches to phase transitions, such
as mean-field van der Waals loops and renormalization group critical phe-
nomena but now involving the newly identified thermodynamic variables.
Surface critical phenomena have excited particular theoretical interest

*Strictly speaking, one should limit this use of the phrase two-phase coexistence to systems
in which the fluid remains unconfined in at least two dimensions (slit pores). However, the
effects of finite-size rounding of phase transitions are usually exponentially small and thus
will rarely be seen (Evans, 1990).
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because of the association with exponent relations, scaling theories, and
dramatic collective fluctuations (soft modes). In some cases these modes
are famihar from bulk statistical mechanics, but here they possess the
character of a lower dimenstonality (the dimensionality of the interface),
while other surface critical phenomena concern interfacial modes such as
capillary waves.

Explicit examples of the foregoing conclusions are discussed below;
here, let us end by noting that phase diagrams of inhomogeneous fluid
phenomena are not always restricted to spaces belonging to the set of
fields and densities discussed above, where one can be assured of the
usual rules. Instead, some workers have found it useful to introduce hy-
brid surface-bulk diagrams, in which surface thermodynamic variables
are mixed with purely bulk variables. For example, in discussing wetting
transitions it has been common to plot, at fixed (e,.,a,.), the transition
point and any associated prewetting transition line, superimposed on the
bulk liquid-vapor coexistence curve drawn in (7,p) space. T is a valid
surface field, but p is merely the bulk fluid density in equilibrium with
the interface. Given the bulk equation of state, (T,p) can be transformed
into (7T,w), which are both true surface fields. Similar comments can be
made about adsorption isotherms for confined fluids plotted versus a bulk
pressure p belonging to a reservoir with which the pore fluid is defined
to be in thermodynamic equilibrium; in particular, p is not related to any
pressure tensor component describing the inhomogeneous fluid.

C. Statistical Thermodynamics of Broken
Symmetry

Gibbs (1906) has shown how to construct thermodynamic theories of in-
terfacial properties that remain consistent with rigorous models without
the need for explicit statistical mechanical solutions of inhomogeneous
systems. The trick is to introduce mathematically defined dividing sur-
faces, equivalent to factoring the partition function into a bulk term (here-
after assumed to be known or defined) and surface terms; the latter are
simply the parts left over. For model wall-fluid interfaces the natural
choice of dividing surface lies on the equipotential of infinite wall-fluid
repulsion. This choice has the benefit that at fixed geometry the dividing
surface is independent of all relevant thermodynamic fields. The statistical
thermodynamics of inhomogeneous fluids is invariably most conveniently
based on (2, the grand-canonical potential (often shortened to grand po-
tential). This is because most fluid interfaces exchange molecules with
neighboring bulk fluids; consider, for example, a wall-liquid interface
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modeled in semi-infinite geometry, or liquid confined to an open pore
immersed in a reservoir of gas.

Thus, following Gibbs, let us define the surface excess grand potential
with respect to a choice of dividing surface as

0 = Q- Q, )

where subscript b denotes the usual bulk term. Then the second law of
thermodynamics applied to a planar wall-fluid interface of area A, such
as discussed in Section II.B, will read

€x

Q
dQs = —§* dT — AT dp + (

" >dA — AO de,, — AV da,., (2a)

where $°* is the surface excess entropy defined analogous to (1), and I’
denotes adsorption (i.e., N* = AI', where N is the total number of fluid
molecules). If the system was bounded by two planar walls of separation
L (aslit pore), then, in addition to doubling the single wall terms appearing
on the right side of (2a), one would need to add the term

~AfdL (2b)

where f is known as the solvation force.

Underlying (2) is the fact that the thermodynamic potential can be
expressed as a function of all relevant field variables [i.e., Q*(T,p,A,
€,.,d,,L)]. The coefficients of each term on the right side of Eq. (2) are
the thermodynamic densities conjugate to each field:
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where () has appeared in (3d) and (3e) to highlight the fact that €,, and
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a,, are strictly surface fields. In Section 1I.D we explain how statistical
mechanics leads to sum rule expressions for the densities above; in par-
ticular, I', ©, ¥, and f are all defined by simple integrals over the one-
body density profile and thus act as order parameters for interfacial struc-
ture. It follows that further differentiation of these densities with respect
to the fields (w,€,,,a.,L) generates surface compressibilities.

Equations (2) and (3) admit many generalizations. One example would
be the addition of external electric field terms; see Chapters 5 and 6 for
explicit results concerning inhomogeneous plasmas and electrolytes. Gen-
eralizations to molecular fluids and fluid mixtures are straightforward and
will be touched on briefly later in this chapter. Here, let us confine our
remarks to noting the rapid increase in complexity that such generali-
zations must bring (i.e., the large growth in the number of relevant field
variables). For example, a molecular fluid interacts with a wall not just
through center of mass fields (e, ,a. ) but also through fields that act on
orientational degrees of freedom. Thus molecular fluids exist within an
extended space that allows for such phenomena as orientational wetting.
The situation with mixtures is particuiarly complex in general, since each
additional fluid component will involve not just one extra chemical po-
tential field but will also add a new member to every class of surface field;
the latter fields directly control phenomena such as selective adsorption.
In this way, (2) enables us to truly appreciate the scale of the complexity
of phase behavior belonging to the natural world.

An important paper by Evans and Marini Bettolo Marconi (1987) has
emphasized that the standard mathematical procedures of bulk thermo-
dynamics are equally applicable to inhomogeneous fluid problems, such
as defined by (2). For example, a plethora of surface Maxwell relations
follow directly from (2) and (3), such as

ar_ s (4a)
d€. o
£ = g (4b)
oL  ap

and defining additional functions (e.g., Z = Q°* + N°*u) yields many
more of these relations:
I 00
—_— = - —= 4c
o). -~ w

wy _ (i
o). = (o). “



Statistical Mechanical Sum Rules 33

Further standard manipulations lead to results mathematically equivalent
to the well-known C,—C, relation; for example, at fixed {T,A,a..} we ob-
tain from O(p,¢,,) and O(I',¢,,) a result of particular significance to critical
wetting transitions (Evans and Parry, 1989):

(?_Q) _ <§Q> _ <@> (i&) (5a)
den /1 d€, / I/ e, \O€w /1

aT\*> for\ !
GG W

where the second version follows from (4a) and I'(i.¢€..).

Phase coexistence in inhomogeneous fluids can be analyzed similarly.
In particular, consider all the Clapeyron equations that follow from in-
serting (2) into

i

dOS = dOg

Thus the slope of phase coexistence at fixed (A,e,,,a.,L) is determined
by

(@) _ (s - sgya )

dT T, — T,

where cc denotes coexistence curve. Similarly, at fixed (T,A,¢,.,4a..),

d_P« _ _fa - fﬁ
<dL>CC T, - Tg (6b)

and so on. Evans and Marini Bettolo Marconi (1987) point out that mean-
field theories of first-order transitions will yield van der Waals loops in
isotherms of order parameters such as I', ©, ¥, and f when plotted versus
their conjugate fields. Furthermore, it follows from (3b) and (3d) to (3f),
respectively, that the coexisting values of these order parameters are
determined by applying equal-area constructions to the loops. The van-
ishing of such loops yields standard criteria for criticality, but now in
unfamiliar variables.

D. Grand-Canonical Ensemble

Explicit statistical mechanical realizations of the thermodynamic struc-
ture discussed in Section 11.C follow from introduction of the grand par-
tition function E:

Q= —kThh E (7a)
AW N —Hnx + uN)

E=3 I1 di —_ 7b

- ¥, N! f_ld’exp< kT (75)
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where A = (h*2mwkT)'? is the translational de Broglie wavelength (i.e.,
let us assume classical dynamics) and Hx denotes an N-body potential.
For models of inhomogeneous fluids we write

N
Hy=®(1:-:N) + 2 v(i) (7¢)
i=1

where @ is a fluid-fluid many-body potential and v is the external field.
Note that Hy does not depend on the fields 7 and w., while all the remaining
fields appearing on the right side of (2) can be introduced exclusively in
terms of the one-body potential. For example, at fixed a,. a basic model
of a planar wall-fluid interface is

U(Z,€0) = €40, (2) (8)

and a simple model of confined fluids is given by a symmetric planar slit
of width L, at fixed (e...,a.):

u(z,L) = v7(2) + v*(L - 2) [v*(z) = =, z<0] 9

where the superscript « denotes the potential of a single planar wall sit-
uated at z = 0. It follows that it is not necessary to specify the inter-
molecular potential ® in order to take derivatives of the grand potential
with respect to field variables. In fact, at fixed temperature the effects of
® can be entirely subsumed within the distribution functions. Thus iso-
thermal statistical mechanics generates theories of inhomogeneous fluids
that are completely general with respect to fluid-fluid intermolecular
forces.

A formal statement of this statistical mechanical approach is given by
the following hierarchy of functional derivatives, which follow immedi-
ately from (7):

Crer)
8l —v(D] /7

(F=p=)
8 — v(DR[p — v(2)]/ 7

and so on; that is, the sth functional derivative generates the s-body dis-
tribution function p**’(1:--S). Note that (10a) constitutes a general sum
rule expression for all of the field derivatives listed in (3), apart from (3a)
and (3¢) (van Swol and Henderson, 1986):

-p(l) (10a)

1
T [p®(12) — p(1)p(2) + p(1)3(12)] ~ (10b)

Q) F
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Further differentiation and (10b) yields sum rules for a set of compres-
sibilities:

(ax,- ax,-) ) ‘k_TJC“ Pt = v(l)]jd2 P2l = ()]

3(12) 8°
X [h(lZ) + p_(l-)_] ~ fdl p(l)a}\ia)\j[p, — o(DINLN E {p,ey,a,,,L}
(12)

where we have introduced the total correlation function A(12) = [p®(12)
— p(D)p(2)V/p(1)p(2). In recognition of the importance of (12), the statistical
mechanical theory above is referred to as the compressibility route. The
compressibility route to the statistical mechanics of inhomogeneous fluids
is of special significance because it focuses directly on the thermodynamic
fields and densities of relevance, apart from the temperature and entropy.
Thus (11) generates single integral sum rules for the densities I', 6, WV,
and f, and (12) highlights the microscopic nature of collective modes
responsible for interfacial critical phenomena. The surface excess grand
potential itself is a special case that is treated separately in Section 111.C.

Other important results also follow from the hierarchy (10). In partic-
ular, consider the consequences of translational symmetry (i.e., applied
to the entire system, including boundaries):

dp(r) = [p(r + A) — p(r)] = A-Vp(r) + CA?

du(r) = [v(r + A) — v(r)] = A-Vur) + OA? (13)
Combining (13) with (10a) just confirms that finite pressure and finite
volume go together [see (23b)]. However, (13) and (10b} yield a key in-

tegrodifferential equation for the density profile (Lovett et al., 1976;
Wertheim, 1976):

|
Vep(l) = T [p(l)V“v(l) + p(1) f d2 p(2)h(12)V“v(2)] (14)

Note that integrating equations such as (14) across an interface generates
potentially useful sum rules. Even in cases where v(r) contains discon-
tinuities it is straightforward to make use of the integral equations and

sum rules above; one simply introduces the one-body y-function n(r),
defined by

o(r) = n(r) exp [%}”] (15)

and uses the fact that graphical analysis will always prove that n(r) is a
continuous function, even across a hard wall boundary {see also (17) and

(29)1.
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The statistical mechanical hierarchy (10) treats the grand potential as
a functional of the one-body field, Q[ — v]. It is equally permissible to
regard () as a functional of the one-body density, (}[p], because at fixed
(T,n) we know that p(r) is uniquely defined by v(r) and vice versa (Mer-
min, 1965). This inversion of (10) generates a complementary hierarchy
of correlation functions, called direct correlation functions. Since this
approach forms the basis of density functional theory (Chapter 3), let me
restrict the discussion here to listing a few key results:

alp) = Fol - [ dt p(1)(w - o(1)] (16a)
Flp) = Fexlp] + KT [ d1 (1) A %p(D] = 1} (16b)
OFelol  _ e (1o-5) (16¢)

Sp(1)---3p(S)

The first two of these results decompose the grand potential into one-
body terms plus the many-body free energy, F.,; here, the subscript refers
to the excess over ideal free energy. The hierarchy (16¢) is the analog of
(10), with ¢®’(1---5) denoting the s-body direct correlation function. At
equilibrium, the first member of this hierarchy can be rewritten as

p — v()

In [A*p(D)] = V(1) + T

an

that is, —kTcP(1) is the excess (over ideal) chemical potential. Applying
(13) to the second member of (16¢) and inserting this into the gradient of
(17) yields the inverse of (14):

1
Vep(l) = —+—=

77 PPl + p(1) f 42 CO(1)Vp(2)  (18)

The general statement of this functional inversion between density and
external field, known as the Ornstein-Zernike equation, can be written
compactly as

fd3 G(13)G-1(32) = 8(12) (192)

where I have used (10b) and (16¢) and (17) to define

Bp(1)
G(12) = kT ——————— = p@ _
(12 S = oy~ P02~ e(Dp) + p(18(12) - (19b)

18w — o] _ 8(12)
kT 8p(2) p(1)

G '(12) = c?(12) (19¢)
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Macroscopic symmetry will considerably simplify (19a); for example, in
planar symmetry we have

| 436125006 (25.2210) = 3z12) (200)
where I have introduced the transverse Fourier transform

G(21.22:0) = f 4R QRRG (2 22 R 2) (20b)

and similarly for its inverse; Ry; lies in the plane of the surface and d
denotes the overall dimensionality (e.g.,ind = 3, R} = x%, + y%,). Pro-
vided that G and G ~! can be expanded up to order 0,

G(21.22;0) = Go(z1,22) + Q’Goz1,22) + -+ {20c)

one can equate terms up to order Q2 in (20a) to derive
Galzrz) = ~ [ dos | deiGolz1.2)Gs (24,29 Golzs,22) - (204)

This result is important for an understanding of surface critical phenomena
because it enables singular contributions to G»(z,,z2) to be deduced from
divergences in Gy, given that G.~! is sufficiently well behaved (Evans
and Parry, 1989). Of course, the above relies on the assumption that the
decay of G(z,22,R)>) along the interface is not such as to render the
integral

1
Galzri) = 3 [ 4 ReRRGGI 2R (200

ill defined. In Section 1II.C we shall see that G,(z,,z;) determines the
interfacial tension; thus planar surface critical phenomena at which the
interface remains intact (neither zero nor infinite surface tension) should
always be described by (20) up to and including order Q2. This is in
contrast to Ornstein—Zernike theory of bulk critical phenomena, which
breaks down in d < 4, that is, below some upper-critical dimension the
disappearance of interfacial structure is associated with a nonzero value
of the exponent 7.

Compressibility route analyses of interfacial fluid phenomena are car-
ried out without explicit reference to fluid—fluid intermolecular forces;
instead, one proceeds via increasing familiarity with the behavior of the
distribution functions p(1) and p'®(12). Alternatively, one can introduce
specific molecular models of fluids

O(1-N) = 3 o2(i) + 22> ¢D(ijk) + - 21

i<y i<j<k
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and generate the distribution function hierarchy by taking functional de-
rivatives with respect to ¢*). This is the formal basis of the virial route
to statistical mechanics; in particular, introducing a displacement field
e(r), it follows that the leading-order change in free energy is given by

(6\(),)'1‘4‘L = <"sz V'e,' + 2 E('V'Ui +E ei'V[(D> (22)

which is the general expression for a virial equation of state; hereinafter
() denotes a statistical mechanical average defined by a partition function.
It is convenient to introduce a pressure tensor p*®:

VEpB(r) = kTVp(r) + O 8 (r — r)V,od) (23a)

= —p(r)Vu(r) (23b)

(where the usual summation convention over Greek indices applies) so
that (22) reduces to the usual stress—strain form [e.g., Henderson, 1986¢)]:

)7, = —f pePVPe +j pe*Veu (24)

The step from the right side of (23a) to (23b) follows directly from the
statistical mechanical definition of p(r) [eq. (26¢)]. The hierarchy of equa-
tions obtained from direct differentiation of the distribution functions is
usually referred to as the YBG hierarchy (Yvon, 1935). Equation (23b)
shows that formally the two terms on the right side of (24) cancel (i.e.,
the force exerted on the walls by the fluid balances the force exerted on
the fluid by the walls). Thus (23b) expresses mechanical equilibrium.
When applying the virial theorem to inhomogeneous fluids, one notes that
it is the first term on the right side of (24) that concerns the work done
on the fluid. For example, in planar symmetry it follows that [e.g., Hen-
derson and van Swol (1984)]

Q S

- = - dzpr 25a

== dpia) (250)
where pr denotes the transverse component of the pressure tensor:

pr(z) 0 0
p®@) =1 0 prz) O (25b)
0 0 pal2)

However, only the normal component is determined by (23) in planar
symmetry:

Py () = —p(2)v'(2) (25¢)
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More generally, (23) follows from consideration of the rate of change of
momentum density:

oy B
Jur) = -V, [Eﬁ'mL_'a(r = r,—)] ~ 3 8(r - r)(VE® + V,ov)  (26a)

i

=VPaB(r,f) — 3 8(r — 1) Vul(r) (26b)

and the conservation of linear momentum (i.e., (Ja) = 0) implies (23),
with

pP = ()  p)=(X 3@ - r) (26¢)

Equation (26) does not uniquely define the many-body contribution to the
pressure tensor:

VEptP(r) = (X 8(r — r)V, D) 27)

In particular, for pair potential fluids, Schofield and Henderson (1982)
have shown that (27) is consistent with an infinite class of pressure ten-
sors, with the nonuniqueness expressed in terms of an arbitrary path
integral representing lines of intermolecular stress. The result (25a) is
invariant with respect to such a choice of pressure tensor, but not higher-
order moments of p;(z). For computer simulation studies of pair potential
models of inhomogeneous fluids a convenient choice is to adopt the pres-
sure tensor of Irving and Kirkwood (1950):

¢'(riz) !
ri2 0

1
pi(x) = kTp(r)d*® — Efdl‘xzr?zf?z dl

X pP [r — Irpr + (1 — Drip] (28)

but one must beware of using this result to calculate expressions which,
in contrast to (25a), are ill defined by (27).

In general, it is notoriously difficult to transform explicitly between
complementary integral equations and sum rules generated by the com-
pressibility route and the virial route, respectively [see, e.g., eqgs. (14),
(18), and (23)]. Thus it is of some interest to note that a specific corre-
spondence between the two routes can be made (Henderson, 1983). The
link is via a sum rule for the configurational chemical potential (i.e., the
one-body direct correlation function), known as potential distribution the-
ory (Widom, 1963):

cr) = In <exp|: _CD];(;)]> (29a)
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where ®(r) denotes the potential field due to a hypothetical test molecule
fixed at position r:

ON'(r) = (1N 4+ Dens, = 1 — &(1--N) (29b)

The proof of (29) follows immediately from consideration of the partition
function E'(r) defined by a molecular system (7¢) in the presence of the
many-body external field defined by (29b):

B~ u(r)

='r) = exp[ T

:] Ap(n)= (30a)

That is, the configurational chemical potential at position r is given by
the work done, at constant (7,p), to insert a test molecule at that position
[see (17)]:

E'r)

= —kTc'"(r) (30b)
Direct differentiation of (29a) yields (Henderson, 1983)

<2 S(r - rf)v,-atb>

Q'(r,T,n) — UT,p) = kT In

a (1) - _
VeV (r) o) (31a)
or, using (17) together with Vo = 0,
1
Vep(r) = T [p(r)Veu(r) + <Z d(r — r)Ved)) (31b)

Thus, for a pure field, Eqgs. (14), (18), and (23) are all equivalent expres-
sions of mechanical equilibrium (hydrostatic stability). One can also use
potential distribution theory to derive various statistical mechanical hier-
archies based on alternative formulations of configurational chemical po-
tential, such as Kirkwood-Hill scaling (Hill, 1959) and scaled particle
theory (Reiss et al., 1960). Namely, if A is any parameter that one chooses
to introduce into the test particle field @', then ac'"’/ax follows immediately
from (29a), or alternatively, from the functional derivative 8Q7/3®’ (Hen-
derson, 1983). Note that for pair potential fluids ®’ is a one-body field
and p’(r'), in the presence of a test molecule at r, is just p@(r,r')/p(r) in
the real system (defined by unfreezing the test molecule); in this case by
transforming to a frozen test-molecule system one can immediately make
use of the compressibility route hierarchy (10). Thus, for pair potential
fluids Kirkwood-Hill scaling and scaled particle theory are just specific
versions of the general sum rule (11).
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The test-molecule approach is easily generalized to encompass the en-
tire distribution function hierarchy; in particular, (30a) generalizes to

Ry

En'--ts(rl_‘_rs) — (ABe*u/kT)s exp I:Z vl({_rli)_il p(S)(l‘l"'rs)E (323.)

i=1
and (30b) generalizes to

5

Qo (eyer, Top) — UT,p) — X 1, T,0) — UT,p)]

i=1
= —kTIn [g¥(r) 1] (32b)

where g denotes the s-body correlation function p“(r;--r,)/
p(ry)--p(rs). The right side of (32b) is referred to as a potential of mean
force, that is, the work done to insert s test molecules at positions ry - r;
minus the work required to insert them singly at these same positions. In
homogeneous fluids a potential of mean force is just the work required
to bring test molecules together from infinity. Note that the partition func-
tion (32a) includes direct interactions between the test molecules; alter-
natively, one can leave this contribution out and then (32b) would yield
the s-body y-function. Note also that the left sides of (30b) and (32b) are
surface excess grand potentials, belonging to test-molecule systems. For
homogeneous pair potential fluids (32) implies that

d d
—kT — In [g(hz)] = T sz(rlz) (33)
or 0r2

Here the potential of mean force is a type of solvation force similar to
(3.

To conclude this survey of the grand ensemble applied to inhomoge-
neous fluids, let me indicate the nature of generalizations to mixtures and
to molecular fluids. If the fluid has v components, the partition function
(7b) is extended to include a sum over ., and in general, v,(r) (i.c., each
type of molecule is associated with a particular one-body field). Func-
tional derivatives of () with respect to these one-body fields generates
p,(1) and p{2(12), directly analogous to (10). Thus (11) to (15) are straight-
forwardly generalized to the case of mixtures. Similar remarks apply to
the density functional formalism [Eqgs. (16) to (20)] (i.e., one considers
functional derivatives with respect to dp,) (Lebowitz, 1964). The only
point that requires some care is to note that whereas the correlation func-
tions are defined by partial functional derivatives (all remaining variations
set to zero), results such as the generalizations of (14), (18), and (19a)
concern full variations and thus contain a sum over v (i.e., each p, is a
functional of all the external fields and each v, is a functional of all the



42 Henderson

density profiles). The virial route is generalized to mixtures by extending
(21) to include all the various classes of intermolecular potentials. The
pressure tensor gradient, defined as (26), now involves a sum over com-
ponents v; however, the YBG hierarchy splits into separate equations
(one for each component):

I
[P (M Ve, (r) + (X 3(r — 1 )Vid)] 34)

Vupv(r) = - ﬁ

From the obvious generalization of potential distribution theory [i.e., (29a)
with @,/(r)] it follows that for any given v, (34) is equivalent to V., = 0
(Henderson, 1983). Thus in mixtures the condition for diffusive equilib-
rium applies to each component separately, but not mechanical equilib-
rium [i.e., the latter requires all members of the set (34) to hold].

A conceptually straightforward generalization to molecular fluids fol-
lows from decomposing all the forces into center-of-mass interactions
(involving r) and angular interactions (involving a set of angles w). Thus
the external field is now v(r,w). Note that this form applies even in simple
cases such as planar boundary, since the center of mass of, say, a rod-
shaped molecule can approach more closely to the wall when the molecule
is oriented along the wall than when it points perpendicular to the wall.
In this formalism all of the statistical mechanics above is immediately
applicable, with positions and gradients referring to center-of-mass co-
ordinates and integrations over angular variables included to remove de-
pendences on w. For example, since linear momentum is concerned with
center-of-mass motion, (26) carrys over essentially as before, apart from
the addition of a simple integral over angles; for example, (23b) now reads

VEP®(r) = “(2 d(r — r) Vg u(ri,w,))

[ do (30 -8 - @)V ure)  G5)

I

~f dow p(r,m)V, *u(r,w)

Integral equations such as (14) and (18), sum rules for free-energy deriv-
atives carried over from the atomic fluid case, sum rules for surface ten-
sion (Section 111.C), and explicit formulas for pressure tensors such as
(28) are similarly modified only by the inclusion of trivial integrals over
angular degrees of freedom [see, e.g., Walton and Gubbins (1985)]. This
is because up to now only center-of-mass coordinates have been directly
involved (i.e., no new physics associated with the extension to molecular
systems has so far been discussed). However, this situation changes as
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soon as one focuses on the angular degrees of freedom. In particular, the
hierarchy (10) is equally applicable to differentiation with respect to an-
gular field variables. It follows that (11) and (12) generate a set of sum
rules determining order parameters and interfacial compressibilities that
are directly concerned with orientational order, in addition to sum rules
concerned with positional order. Similarly, the presence of angular co-
ordinates means that applying rotational invariance to the hierarchies (10)
and (16¢), analogous to the derivation of (14) and (18), will lead to new
physics: namely, integral equations for (r x V, + V,)p(r,w). For explicit
derivations, see Percus (1980) and Tarazona and Evans (1983). In addi-
tion, one has a hierarchy of orientational YBG equations, involving an-
gular derivatives of the many-body potential: generated by direct differ-
entiation of the distribution functions and presumably also by potential
distribution theory analogous to the derivation of (31). To date, little ap-
plication has been made of this powerful statistical mechanical approach
to orientational phenomena at fluid interfaces.

E. Fluctuations and Instabilities of Fluid
Interfaces

Light-scattering experiments demonstrate that fluid—fluid interfaces are
constantly in motion, due to the thermal excitation of long-wavelength
capillary-wave (cw) modes [see, e.g., Katyl and Ingard (1967, 1968)]. In
addition, computer simulation studies have confirmed that this picture
remains down to microscopic wavelengths (Kalos et al., 1977). The longer
the wavelength of a collective mode, the longer is its oscillatory period.
Thus in the long-wavelength limit it should be correct to treat the capillary-
wave modes of a fluid interface as hydrodynamic fluctuations (e.g., con-
sidering distortions from planar symmetry) (Buff et al., 1965):

IRty =1 + D Loe®® 1= () (36a)
Q
ch = %2 mop (. éQ ‘2 + (1)Q2| CQ |2> Q — 0 (36b)
Q

where [ denotes the position of the midpoint of the fluctuating interface.
The probability P(/) that any point in the interface lies at height [ is de-
termined by the free-energy contribution to (36b):

7 _ch
Pl = Nexp< T ) Few =13 mowe®| Lo 2 (36¢)
Q

where N is a normalization factor. F.., is often referred to as an interface
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Hamiltonian. In general, the interface Hamiltonian takes the form
Few = vyAA + 8V(]) (37a)

where v is the interfacial tension and 8V(/) denotes the modification of
the capillary-wave contribution due to damping from external fields. It is
straightforward to show that up to order Q? the change in interfacial area
due to the distortions (36a) is

AA =34 Q%[ o) (37b)
Q

where A denotes the planar interfacial area. The leading-order contri-
bution from the damping term is

1, [Eve

BV(D) = 5 (30) [ - ]Hw (37¢)

Gl = A" f dRA -1 =S | Lo (37d)
Q

where l.q denotes the equilibrium position of the interface. Thus (37) is
of the form (36), with

2
Mowy? = AkT(W + %) (38a)
and
vl
W = (AKT) "' {-—5—)] (38b)
ol I=leq

Since we have ignored any contribution from the damping at order Q? it
follows that (38) is relevant to the weak damping regime. For a specific

example, consider a liquid-vapor interface in the presence of the earth’s
gravitational field:

V() = img Ap AI* + ¢ (39a)
mglp

= —— 9b

w T (39b)

where Ap is the number density difference between liquid and vapor.
Applying equipartition to (36) and (38),

— 2 2y Q_Z’X 2
kT = mowg® (| Lo ) = AKT (W + T (Ll (40a)

it follows that the capillary-wave correlation length for correlations per-
pendicular to the interface diverges as W tends to zero in dimensions d
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< 3 [see, e.g., Bedeaux and Weeks (1985)]:
1 0%\ '
2 2y _ - x I
§¢—%<|CQI> A§<W+kT>
W(d—3)/2 d < 3

~dIn(W™ ) d=3
finite d>3

(40b)

So in d = 3 capillary-wave wandering of a fluid interface will increase
progressively as the external damping is reduced. Note also that the three-
dimensional world is the borderline dimension for this singular, or critical,
capillary-wave phenomena.

Capillary-wave correlations will be strongest in the plane of the inter-
face: &) . For the interface Hamiltonian (36) we can define

G(z1,22,R12)ew = (3p(1)3p(2))
p(r,t) = —p'@Me,y -1 Q0—-0 (41a)

where the subscript cw reminds us that only capillary-wave correlations
are present in a system defined by an interface Hamiitonian. It therefore
follows that

G(z21,22;Q)ew = A<I Lo |2>P’(Zl)p’(22)
p'(z1)p'(22)
= —— — 0 41b
W + 0%7°) Q (“10)
where we have defined
g!lz = Ga(21,22)ew _ (41¢)

C Goz1,22)ew  KTW

Thus long-wavelength correlations in the plane of the interface are uni-
versally divergent in the zero damping limit. Furthermore, we see that
interface Hamiltonians lead to Ornstein—Zernike behavior [i.e., Eq.
(41b)]. This is a consequence of the fact that vy is defined in (37a) to be
a constant and thus cannot introduce additional singular behavior. Com-
bining (37) to (41), we can identify the form of the singular part of the

free energy as
Fsing gi ? 4
gy (42

Substituting (40b), it follows that below the upper critical dimension cap-
illary-wave phenomena obey a universal hyperscaling relation:

Fsireg, 4=1 — constant d<3 (42b)
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Mathematically rigorous versions of interface Hamiltonian theory may
be based on column models, as introduced by Weeks (1977). Here, one
divides the planar interface into columns and treats capillary-wave modes
as inducing correlations between different columns. The probability that
the instantaneous position of the interface lies at height [ within any col-
umn is P([) defined by (36¢). Evaluating the Fourier transform of (36¢)
[i.e., <exp(1’Qi)>] implies that P(l) is a Gaussian [see, e.g., Evans (1979)):

~

P(l) = 2m&.?) " exp <2§ 2) (43a)
where £, is defined by (40b). Similarly, the joint fluctuation probability
P(i(l), i), defining intercolumn correlations, follows from evaluating
the quantity {(expliQI(1) + iQ'l(2)]) given the normal mode probability
(36¢) [see, e.g., Rao et al. (1979)]. The long-wavelength expansion of this
“‘transform’’ is consistent with the following ‘‘inversion’” to order | {o |
(Rao et al., 1979; Percus, 1981):

P, 1)) = Py PQ)
+ PAMPAR) S (Lo Pe'Q®2 Q-0 (43b)
Q

From (43) we identify the long-wavelength contribution to the surface
structure factor as shown in (41b).

Let us now consider the relationship of the capillary-wave theory above
to molecular models of inhomogeneous fluids. Following Weeks (1977),
it is natural to inquire if one may treat the fluctuating interface (the so-
called hare profile) as being qualitatively defined by including all corre-
lations up to a length of order of the bulk correlation length, &, (and hence
&, defines the column width). If so, the full profile is obtained by including
capillary waves of wavelengths larger than &,; in particular, from (43a)
we have

72
p'(z) = 2mE, 2)"“[ di po'(z = ) exp (2; ) (44)

where subscript 0 denotes the bare profile. The central portion of the full
interfacial profile gradient receives contributions from both the bare pro-
file gradient and the capillary-wave term, each of which is a strongly
peaked factor. However, in the tails (or asymptotic wings) of the density
profile the right side of (44) is dominated by only one of the factors ap-
pearing in the integrand, depending on the behavior of £, [i.e., (40b)
implies a crossover in the nature of the profile tails, at the upper critical
dimension (d- ) for interfacial fluctuations). For d > d-. the capillary-wave
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fluctuations do not broaden the tails of the profile because in comparison
with the rest of the integrand, the Gaussian factor on the right side of (44)
acts as a delta function:

p'(2)—=>po(z) |z|—= > d>d- (45)

This is precisely what is found in mean-field theories (i.e., from van der
Waals-like approximations to integral equation theories or density func-
tional theories, in any dimension), where &, is always a finite microscopic
length and the mean-field profile gradient decays no faster than an ex-
ponential. It follows that for the purpose of evaluating the asymptotic
behavior of the full profile it is appropriate to calculate the bare profile
from mean-field theory. For example, consider the case of strictly finite-
range interactions, or exponentially decaying interactions, for which the
mean-field liquid—vapor profile is readily shown to have the following
asymptotic behavior [see, e.g., Henderson (1987b)]:

pp(z) = ae N 4 e 4 N[z > (46)

where in general the liquid and vapor tails will have different values of
the temperature-dependent parameters A, a, and . Close to the mean-
field critical point, (46) becomes symmetric and 1/\ reduces to the bulk
correlation length (Fisk and Widom, 1969). Identifying (46) with pj (z),
as discussed above, we see that in d > 3 we obtain (45) because a Gaussian
decays faster than an exponential. However, for d < 3, one must take
into account the divergent behavior of £, . In particular, substituting (46)
into (44), as p) (z), we see that the behavior of the tails of p(z) is determined
by the integral

_ -z [ 4 Nz =Dy, — 12282 -
IN]z]) = 2mE.?) f dl e Pe 2= (472)

= @ng,?) " [ dr e he ke
(4]

This integral is readily evaluated in terms of a standard error function,
giving the following asymptotic behavior:

NEL 2 2
exp(—)\|z|+ 5 ) | z|>\E.%, large| z |
1()\7 Z])_) l ‘ =1 _ 2
[(2,”)1/2()\@—§%>] exp(zgf2> |z |<\EL2, larged,

(47b)

For large enough | z | and at nonzero damping, the value of (47) is dom-
inated by the [ = 0 contribution (i.e., the profile eventually decays ex-
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ponentially). However at | z | < A&, ? the leading-order part of (47) arises
from the region / = z. In the latter case, we must include the contribution
to (44) arising from [ < zli.e., nowitis the polz — [) factor in the integrand
of (44) that acts as a delta function}:

72
28,2
The physical interpretation of the origin of (48) is that it arises from cap-
illary-wave fluctuations that move the central portion of the bare profile
across the height z. Below the upper critical dimension, which for short-
range forces is clearly d = 3, such fluctuations will always arise in the
limit of infinitesimal damping (W — 0. ), regardless of the value of  [i.e.,
(48) dominates the asymptotic decay of p(z) as £, — =]. For this reason,
d = d. is known as the fluctuation regime. In the borderline case for
short-range interactions, d = 3, one should add a warning concerning the
extremely slow divergence of £, ; namely, note the logarithmic behavior
of (40b) in d = 3 and the fact that (40b) arises only if one is permitted to
include arbitrarily small values of Q [this involves the requirement that
one must be able to perform statistical averages over arbitrarily large
times (Henderson, 1987b)].

With regard to capillary-wave correlations in the plane of the interface,
the link between interface Hamiltonians and molecular-based theories is
described in a seminal paper by Wertheim (1976). In particular, Wertheim
(1976) noted that in the weak damping limit the single eigenfunction result
(41) for Gy(z1,22) is more or less implied by the integral equation (14),
giving (Rao et al., 1979):

p/(Z) — iAp(Z’nglz)l”z exp ( > 1 < )\ . 2 ' = )\Zglz (48)

W = ~éf dz p'(z)v'(2) W— 0 (49)

and note, for example, that (49) rederives (39b) in the case v(z) = mgz.
Furthermore, substituting Go(z1,22)ew = p'(21)p'(z2)/W into (20d) and
using sum rule (77b) implies that

Galzrz2) =~z p'@)p'(z) W0 (50)
This result explains the mysterious surface tension sum rule (77a), given
(49). Thus in a few short lines the statistical mechanical theory of inho-
mogeneous fluids is able to confirm the general significance of the Orn-
stein—Zernike behavior of interfacial fluctuations in the weak damping
regime [Eq. (41b)]. Some workers have attempted to cast doubt on this
conclusion in the special but physically relevant case of d = 3. In par-
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ticular, Robert (1985), Ciach (1987), and Requardt and Wagner (1989) have
suggested that capillary-wave correlations might be so divergent as to make
the right sides of sum rules (77a) and (77b) ill defined, thus invalidating
(50); room for such doubt is provided by the nonscaling nature of capillary-
wave correlations in the borderline dimension d = 3. However, all such
arguments to date have relied on explicit results concerning the strict W
= 0 limit (i.e., the thermodynamic limit). Here, one does not have a well-
defined interface (y = 0), so one should not anticipate any link with the
W — 0, limit of a nondiffuse interface [see the remark following (20e)].
Weeks et al. (1989) have provided the strongest rebuff to date of doubts
concerning the validity of Ornstein—-Zernike interfacial behavior in d =
3; if such arguments are ultimately proved to be incorrect, interface Ham-
iltonians of the class (36) would not be applicable to d = 3 and none of
the critical wetting phenomena that have been derived from such theories
would be relevant to molecular Hamiltonians (Section 1V).

To conclude this section, let me highlight the significance of soft in-
terfacial modes to fluid interfacial phenomena such as wetting. As dis-
cussed above, all fluid interfaces are inherently unstable to capillary-wave
contributions to &), and in d < 3 this further involves a divergent £, . For
example, consider the growth of a liquid film at a substrate~vapor inter-
face. At finite film thickness the capillary-wave modes are damped by
the wall-fluid potential (e.g., capillary waves cannot penetrate the sub-
strate). However, the thicker the film, the smaller the damping, and thus
we see that the continuous growth of a liquid film is an example of the
W — 0, limit discussed above. Similar remarks apply to continuous melt-
ing of a solid-gas interface (i.e., surface melting) (Lipowsky, 1986). Soft
modes also play significant roles in first-order interfacial transitions. For
example, consider the growth of liquid films at the walls of a planar slit
pore of width L. As soon as the film thicknesses are large enough to
support capillary-wave modes, the size of £, will determine the likelihood
of collisions between interfacial fluctuations spanning the gap L, thereby
nucleating capillary condensation.

F. Intermolecular Forces and
Nonuniversality in Interfacial Systems

The conclusions of the preceding section imply that below the upper crit-
ical dimension for interfacial fluctuations (d < d-.) the details of inter-
molecular forces are irrelevant to the qualitative nature of fluid interfacial
phenomena in the weak damping regime. That is, in this situation capil-
lary-wave fluctuations will dominate the properties of fluid interfaces and
interfacial critical phenomena will belong to universal scaling regimes
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described by (40b), (41¢), and (42b). However, this universality cannot
be expected to be generally applicable to the physical world because d-.
=< 3. Thus it is necessary to inquire whether or not the details of inter-
molecular forces play a qualitative role in interfacial critical phenomena.
In particular, the ubiquitous presence of dispersion forces in molecular
systems means that the asymptotic decay of intermolecular interactions
is invariably a power law:

q;(2)(,.) —~ r7(34 m) (513)

where m = 3 at intermediate range (i.e., until retardation effects take
over and enforce the macroscopic limit m = 4). Thus in planar symmetry
the wall-fluid potential arising from a semi-infinite solid will decay as

T’E“(Z) —~ Z*(”I*}*d) + 627(171*47(1) 7> (Slb)

where (as usual) d denotes the overall dimensionality.

For an example of the significance of (51), consider a wall-gas interface
with ©(z) defined by (51b). From (15) and (17) it follows that in the low-
density limit of the bulk gas, the density profile falls off as

p(z) — p»(l - M) pp— 0, z—>= (52)

kT
That is, a power-law decay of v(z) induces a power-law decay of p(z) and
so in molecular systems one cannot treat a wall-fluid interface as being
of finite range. The crucial significance of this fact to fluid adsorption and
wetting phenomena has long been apparent to the Soviet school [see, e.g.,
Derjaguin (1940)] but has only been generally appreciated in the West
since the early 1980s (de Gennes, 1981).

The asymptotic wings of a liquid—vapor or a fluid-fluid profile are
similarly affected by the presence of power-law interactions. Naively,
one can construct an analogy with (52) by treating the liquid phase as the
wall, and then on the liquid side of the interface it follows that the same
effect must arise from the absence of intermolecular interactions; for an
explicit theory, see Barker and Henderson (1982). Thus, in molecular
systems we should replace (46) with

pl:vlF(Z)——) a’ A\Z l’(m+4fd) + bl AZ l’(rn+5*d) 4+ e (53)

Here, the relevant integral replacing (47) is
(2,n,§42)—1/2 fx dX x*(nl+47(1)€*(X7\::J2/2E43 (54)

where o is a microscopic length of order 1/x or perhaps 10/X. The mean-
field region of the profile is now given by the condition | z |[In(] z |[/o)] "2
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> &,, and comparing with (47b) we see that at a fixed value of the
capillary-wave damping, power-law interactions are much more dominant
over the fluctuation contribution than are short-range interactions. For
the case of a liquid-vapor interface in a gravitational field, these remarks
are of little significance, except to experiments that specially probe the
asymptotic region, because the amplitude of these profile tails is so in-
significant in comparison with Ap (Barker and Henderson, 1982). In con-
trast, the study of continuous wetting phenomena is concerned directly
with the behavior of the profile wings, which are the means by which a
liquid—vapor surface interacts with the short-range field of a distant sub-
strate. In particular, Lipowsky (1984) noted that power-law interactions
imply a lowering of the upper-critical dimension for interfacial critical
phenomena; 2 < d-. < 3. So in the absence of bulk critical phenomena,
mean-field theory is qualitatively correctin d = 3 (but not d = 2), except
for models restricted to finite-range or exponentially decaying interac-
tions.

It follows from the above that interfacial critical phenomena is non-
universal in d = 3, with free-energy scaling functions and associated
exponents that depend explicitly on the power-law interaction parameter
m (Dietrich and Schick, 1985; Ebner et al., 1985). In fact, even exponential
forces cannot always be treated as short ranged, since an exponential wall
field can compete with the exponential decay of a mean-field profile de-
termined by strictly finite-ranged fluid—fluid interactions or by exponen-
tial interactions [i.e., Eq. (46)]. Furthermore, because d = 3 is the upper-
critical dimension for capillary-wave fluctuations in the absence of power-
law forces, these competing exponential effects can in turn compete with
capillary-wave broadening (Hauge and Olaussen, 1985). It follows that
models of inhomogeneous fluids without power-law forces possess par-
ticularly complex nonuniversal behavior in the special case of d = 3.
Physically, one must get used to the fact that distant surfaces will always
interact via the tails of their density profiles, even if the only effect present
is exponential decay; for example, exponential decay is associated with
logarithmic film growth. For inhomogeneous fluids the qualitative details
of molecular models have qualitative consequences and one cannot get
away with pretending that intermolecular forces are strictly short ranged.

. SUM RULES
A. Compressibility Route

For the sake of definitiveness I restrict this discussion of explicit examples
to the models defined by external fields (8) and (9). These two models



