THIRD EDITION

Safety Professional's Reference and Study Guide

W. David Yates

Safety Professional's Reference and Study Guide

Safety Professional's Reference and Study Guide

Third Edition

W. David Yates

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business

CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2020 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-0-367-26363-8 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged, please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Yates, W. David, author. Title: Safety professional's reference and study guide, third edition / authored by W. David Yates. Description: Third edition. | Boca Raton : CRC Press, 2020. | Includes bibliographical references and index. Identifiers: LCCN 2019046928 (print) | LCCN 2019046929 (ebook) | ISBN 9780367263638 (hardback) | ISBN 9780429293054 (ebook) Subjects: LCSH: Industrial safety—Examinations—Study guides. Classification: LCC T55. Y38 2020 (print) | LCC T55 (ebook) | DDC 363.11076—dc23 LC record available at https://lccn.loc.gov/2019046928 LC ebook record available at https://lccn.loc.gov/2019046929

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

With enormous gratitude to my wonderful and supportive wife, Sharon,
who has been there during the late nights; to our children, Joseph, Jason,
Katie, Cody, and Jesse; and to our grandchildren, Jonathon Elisha,
Jordan Nicole, Jacob Michael, Bailey Addison, Mason Tanner, Madison
Olivia, Jagger, Hattie Grace, Aiden, and Riley. I dedicate this book.

Contents

Preface	xxxvii
Author	xxxix
1. The Safety Profession and Preparing for the ASP/CSP Exam	
Board of Certified Safety Professionals	
Definitions	2
Minimum Qualifications to Sit for the ASP Examination	
Academic Requirements	
Professional Safety Experience	
Minimum Qualifications to Sit for the CSP Examination	
Academic Requirements	
Professional Safety Experience Requirements	
ASP/CSP Process	
Examination Blueprint	
Associate Safety Professional Examination Blueprint	
Domain #1—Mathematics (18%)	
Domain #2—Safety Management Systems (23%)	
Domain #3—Ergonomics (13%)	
Domain #4—Fire Prevention and Protection (11%)	
Domain #5—Occupational Health (11%)	
Domain #6—Environmental Management (15%)	
Domain #7—Training, Education, and Communication (9%) .	
Certified Safety Professional (CSP) Examination Blueprint	
Domain #1—Advanced Sciences and Math (9.95%)	
Domain #2-Management Systems (13.34%)	
Domain #3—Risk Management (14.49%)	9
Domain #4—Advanced Application of Key Safety	
Concepts (14.69%)	
Domain #5—Emergency Preparedness, Fire Prevention, and	
Security (10.59%)	
Domain #6—Occupational Health and Ergonomics (12.05%).	
Domain #7—Environmental Management Systems (7.38%)	
Domain #8—Training and Education (10.18%)	
Domain #9—Law and Ethics (7.33%)	
Preparing for the ASP/CSP Examinations	
Knowing Your Strengths and Weaknesses	
Developing an Examination Preparation Plan	
References and Resources	14
Test-Taking Strategy	14

2.	Regulations	17
	Occupational Safety and Health Act	
	Who Is Covered under the Occupational Safety and Health Act?	
	Horizontal and Vertical Standards	
	General Duty Clause	18
	Employer Rights and Responsibilities	
	Employee Rights and Responsibilities	
	Communications and Correspondence with OSHA	
	OSHA Inspections and Process	
	OSHA Citations	
	OSHA Citation Penalties	21
	Adjustment of Penalties for Good Faith	
	Appeals	
	Employee Appeals	
	Employer Appeals	
	Petition for Modification of Abatement	24
	Notice of Contest	
	Review Procedure	
	Hazard Communication Standard (29 CFR 1910.1200)	
	Purpose	
	Scope and Application	
	Written Hazard Communication Standard	26
	Label and Other Forms of Warning	
	Safety Data Sheets	
	Employee Information and Training	
	Training	
	Blood-Borne Pathogens Standard (29 CFR 1910.1030)	
	Scope, Application, and Definitions	
	Exposure Control Plan	29
	Hepatitis B Vaccination and Postexposure Follow-Up	
	Communication of Hazards	
	Record Keeping	
	Control of Hazardous Energy Standard (29 CFR 1910.147)	31
	Scope, Application, and Purpose	31
	Definitions	31
	Energy Control Program	
	Periodic Inspection	
	Training and Communication	
	Confined Space Entry Standard (29 CFR 1910.146)	
	Scope and Application	
	Definitions	
	General Requirements	
	Confined Space Entry Program	
	Entry Permits	

Training	
Personal Protective Equipment (29 CFR 1910.132)	
Application	
Employee-Owned Equipment	
Hazard Assessment and Equipment Selection	
Training	
Respiratory Protection Standard (29 CFR 1910.134)	
Purpose	
Definitions	
Respiratory Protection Program	
Training and Information	
Fall Protection Standard (29 CFR 1926.500-503) (Subpart M)	
Scope and Application	
Definitions	
Duty to Have Fall Protection	
Training	
Record Keeping	
OSHA 300, 300-A, AND 301 FORMS (29 CFR 1904.29)	
How Quickly Must Each Injury or Illness Be Recorded?	
Annual Summary	
Providing Records to Government Representatives	
Reporting Serious Incidents or Fatalities (29 CFR 1904.39)	
Determining Recordable Injuries or Illnesses	
Calculating Total Recordable Incident Rates (TRIR)	
Calculating Days Away, Restricted, or Transfer Rates	
Calculating Severity Rates	
Key Information to Remember on Regulations	
Comparison of Hazard Communication Requirements	
OSHA Hazard Communication Standard 29 CFR 1910.1200	
(HCS) and Globally Harmonized System (GHS)	
Introduction	
Comparison of Health Hazards	114
General Comments	114
Comparison of Physical Hazards	134
Comparison of OSHA HCS and GHS Criteria	134
Comparison of Label Elements	153
General Comments	
GHS and Transport Pictograms	157
General Comments	
Physical and Environmental Hazard Symbols	158
Label Examples	159
Comparison of MSDS Elements	162
General Comments	162

3.	Math Review	. 177
	Order of Operations	
	PEMDAS: "Please Excuse My Dear Aunt Sally"	. 177
	Correct Method Example	
	Incorrect Method Example	
	Basic Rules of Positive and Negative Numbers	
	Understanding Exponents	
	Scientific Notation	
	Multiplication and Division Using Scientific Notation	
	Engineering Notation	
	Absolute Values	
	Logarithms	
	Formula or Equation Transpositions	
	Factorials	
	Euler's Number	
	Common Geometric Equations	
	Pythagorean Equation	
	Basic Trigonometric Functions	
	Sine	
	Cosine	
	Tangent	
	Arcsine, Arccosine, and Arctangent	
	Quadratic Equation	
	Calculator	
	Summary	
	,	
4.	Particulates and Gases	. 193
	Periodic Table of the Elements	. 193
	Atomic Number	. 193
	Atomic Mass	. 194
	Atoms	. 194
	Chemical Bonding	. 195
	Moles	. 196
	Molecules and Compounds	. 197
	Mixtures	. 197
	Chemical Formulas	. 197
	Atomic Weight of Compounds	
	Percentage of Element in a Compound (by Weight)	. 199
	Acids, Bases, and pH's	
	Gas Laws	
	Boyle's Law	.200
	Charles' Law	
	Ideal Gas Law	
	Conversion Factors for Converting Pressure Units to	
	Atmospheric Pressure Units	. 202

	Conversion Factors for Converting Units of Volume to Liters	202
	Converting Grams to Moles	202
	Universal Gas Constant	203
	Combined Gas Law	203
	Concentrations of Vapors, Gases, and Particulates	204
	Standard Temperature and Pressure	
	Standards and Regulations	205
	Time-Weighted Average	
	Calculating PELs/TLVs for Periods Greater than 8 h	206
	Gaseous Mixtures	207
	Liquid Mixtures	208
	Percentage of TLV Mixture	208
	Converting mg/m ³ to ppm	209
	Converting ppm to mg/m ³	209
	Lower Flammability Limit of Mixtures	210
	Referenced Equations	211
	Boyle's Law	211
	Charles' Law	
	Ideal Gas Law	211
	Combined Gas Law	211
	Time-Weighted Average	212
	Calculating PELs/TLVs for Periods Greater than 8 h	
	Gaseous Mixtures	
	Liquid Mixtures	212
	Percentage of TLV for Mixtures	
	Calculating PEL/TLV for Silica	
	Converting mg/m ³ to ppm	
	Converting ppm to mg/m ³	
	LFLs of Mixtures	
	Key Information to Remember on Particulates and Gases	
	Reference	
5	Toxicology	215
5.	Definitions	
	Routes of Entry	
	Inhalation	
	Ingestion	
	Absorption	
	Percutaneous and Intravenous Injections	
	Dose–Response Relationship	
	Exposures to Chemical Combinations	210 219
	Stages of Cancer	
	Initiation	
	Latency Period	
	Latency 1 en 100	∠∠0

	Promotion	220
	Progression	220
	Types of Poisons	
	Ames Testing	
	Cohort Study	
	Advantages	221
	Disadvantages	
	Case-Control Study	
	Cross-Sectional Study	
	Common Occupational Diseases and Disorders Caused by a	
	Contributing Agent or Substance	222
	Asbestosis and Asbestos-Related Illnesses	
	Brucellosis	
	Benzene-Related Illnesses	
	Byssinosis	
	Arsenic-Related Illnesses	
	Berylliosis and Beryllium-Related Illnesses	
	Copper-Related Illnesses	
	Cadmium-Related Illnesses	
	Chromium-Related Illnesses	
	Coal Dust-Related Illnesses	
	Cobalt-Related Illnesses	
	Acute Exposure	
	Chronic Exposure	
	Formaldehyde-Related Illnesses	
	Lead-Related Illnesses	
	Manganese-Related Illnesses	
	Mercury-Related Illnesses	
	Pneumoconiosis	
	Silica-Related Illnesses	231
	Zinc-Related Illnesses	231
	Aluminum-Related Illnesses	232
	Antimony-Related Illnesses	233
	Dust-Related Illnesses	233
	Common Environments for Contracting	
	Dust-Related Illnesses	.234
	Thallium-Related Illnesses	234
	Pesticide-Related Illnesses	235
	Key Information to Remember on Toxicology	235
	References	
6	Industrial Hygiene Air Sampling	220
0.	Anticipation of Hazards	
	Recognition of Hazards	
	Evaluation of Hazards	
		∠ 4 0

	Control of Hazards	240
	Definitions	240
	Air Sampling	241
	Sampling Methodology	242
	Equipment Selection	242
	Air Sampling Pumps	243
	Piston and Bellow Air Pumps	243
	Direct-Reading Instruments	243
	Cyclones	244
	Sampling Media	244
	Filters	245
	Sorbent Tubes	245
	Sample Collection Bags or Canisters	246
	Passive Samplers	246
	Sampling Pump Calibration	246
	Determining Minimum and Maximum Sample Volumes	
	Determining the Minimum Number of Samples to Collect	250
	The Sampling Process	
	Industrial Hygiene Sampling and Record-Keeping Procedures	252
	Spiramid	
	Medgate	
	Process MAP	255
	Key Information to Remember on Industrial Hygiene	
	Air Sampling	
	References	257
7	Ventilation	250
7.	Purpose for Using Ventilation	
	Types and Selection of Ventilation	
	General Ventilation	
	Dilution Ventilation	
	Local (Exhaust) Ventilation	
	General Concepts of Ventilation Notes	
	Principles of Air Movement	
	Calculating for Volumetric Air Flow	
	Calculating Static Pressure, Velocity Pressure, and Total Pressure.	201
	Calculating Velocity of Air	
	Contaminant Generation	
	Calculating Purge Rates	
	Steady-State Concentration	
	Calculating Rate of Generation for Liquid Solvents	
	Calculating Vapor or Gaseous Concentrations	
	Calculating Room Air Changes	
	Calculating Concentration of a Contaminant with Dilution	
	Ventilation	269

Local Exhaust Ventilation	
Canopy Hood	
Down Draft Hood	
Enclosure Hood	
Receiving Hood	
Openings	
Calculating Hood Entry Losses	
Calculating Air flow Velocity	
Calculating Capture Velocity for Plain Opening Hood	
Ducts	
Fans	
Calculating Static Pressure of the Fan (SP _b)	
Air-Cleaning Devices	
Ventilation Measurement Equipment	
Pitot Tubes	
Rotating Vane Anemometers	
Thermal Anemometers	
Key Information to Remember on Ventilation	
References	
8. Noise and OSHA's Hearing Conservation Program	
OSHA's Hearing Conservation Program	
Who Is Included in the Hearing Conservation Program?	
Monitoring	
Sound-Measuring Instruments	
Employee Notification	
Audiometric Testing	
Standard Threshold Shift	
Training Program	
Record Keeping	
Noise-Related Definitions	
Noise	
Continuous Noise	
Intermittent Noise	
Sound	
Frequency (<i>f</i>)	
Period	
Speed or Velocity of Sound (c)	
Wavelength (λ)	
Anatomy and Physiology of the Ear	
Types of Hearing Loss	
Major Causes of Hearing Loss	
OSHA Permissible Noise Exposures	
Entities of Noise	286
Sound Power (L _w)	

	Sound Pressure (L _p)	286
	Sound Intensity (L_{I})	
	Noise Calculations	287
	Calculating Permissible Noise Exposures	287
	Calculating Noise Dosage	
	Converting Noise Dosage into TWA	
	Combining Noise Levels	289
	Calculating Sound Levels at Various Distances	291
	Calculating Sound Power Level (L _w)	
	Calculating Sound Pressure (L _p) Levels (or SPL)	292
	Calculating Sound Intensity Levels (L _I)	
	Calculating Room Absorption	294
	Calculating Absorption along a Transmission Path	295
	Key Information to Remember on Noise and the Hearing	
	Conservation Program	295
	References	296
_		
9.	Biological Hazards	
	Bacterial Diseases	
	Anthrax	
	Brucellosis	
	Leptospirosis	
	Plague	
	Tetanus	
	Tuberculosis	
	Tularemia	
	Cat Scratch Fever (Cat Scratch Disease)	
	Viral Diseases	
	Hepatitis A	
	Hepatitis B	
	Orf (Sore Mouth Disease) Rabies	
	Rickettsial and Chlamydia Diseases	
	Psittacosis (Ornithosis)	
	Rocky Mountain Spotted Fever	
	Q Fever	
	Fungal Diseases	
	Aspergillus	
	Candidiasis	
	Coccidioidomycosis	
	Histoplasmosis	
	Biological Safety	
	Laboratory Practice and Technique	
	Safety Equipment	
	Facility Design and Construction	
	racine, peoign and conor action	

	Biosafety Levels	. 311
	Biosafety Level I	
	Biosafety Level II	
	Biosafety Level III	
	Biosafety Level IV	
	Key Information to Remember on Biological Hazards	
	References	
10	Fire Protection and Prevention	21 E
10.	Definitions	
	Transfer of Heat	
	Heat Transfer by Radiation	
	Heat Transfer by Convection	
	Heat Transfer by Conduction	
	Fire Tetrahedron	
	Classification of Fires	
	Class A Fires	
	Class B Fires	
	Class C Fires	
	Class D Fires	
	Class K Fires	
	Portable Fire Extinguishers	
	Hydrostatic Testing (Portable Fire Extinguishers)	
	Fire Extinguisher Inspections and Service Requirements Automatic Sprinkler Systems	
	Dry Pipe Systems	
	Wet Pipe Systems	
	Deluge Systems.	
	Pre-action Systems Water Spray Systems	
	Foam Water Sprinkler Systems Fire Hydrants	
	Fire Detection	
	Heat Detectors	
	Rate-of-Rise Heat Detectors	
	Rate-Compensation Detectors	
	Smoke Detectors	
	Fire Hydrants	
	Flammable and Combustible Liquids	
	Flash Point	
	Vapor Pressure	
	Fire Point	
	Flammable and Explosive Limit Ranges	
	Autoignition Temperature	
	Specific Gravity	
	opecine Glavity	. 529

Vapor Density	329
Evaporation Rate	329
Water Solubility	329
Boiling Point	
Storage Requirements for Flammable and Combustible Liquids	
Inside Storage Rooms for Flammable or Combustible Liquids	
Key Information to Remember on Fire Protections and	
Prevention	331
References	
11. Thermal Stressors	333
Heat Stress	
Sources of Heat Stress	
Human Body Reaction to Heat	
Safety-Related Issues of Heat	
Health-Related Issues of Heat	
Heat Rash	
Heat Cramps	
Heat Syncope	
Dehydration Heat Exhaustion	
Heat Exhaustion	
Control Methods	
Engineering Controls	
Administrative and Work Practice Controls	
Acclimation or Acclimatization	
Fluid Replacement	
Work/Rest Cycles	
Personal Protective Equipment	
Training	
Prevention of Heat Stress Injuries	
Cold Stress	
Safety Problems Related to Cold	
Cold-Related Injuries and Illnesses	
Chilblains	
Immersion Injuries (Trench Foot)	
Hypothermia	
Frostbite	
Wind Chill Factor	
Personal Protective Clothing	
Nutrition and Activity	
Fluid Replacement	
0 1	349
Susceptible Groups	349

	Treatment of Cold-Related Injuries	349
	Key Information to Remember on Thermal Stressors	350
	References	350
12.	Personal Protective Equipment	
	Hazard Assessment	
	Head Protection (29 CFR 1910.135)	
	Classification	
	Proper Fit and Wear of Head Protection	
	Inspection and Maintenance	
	Training	
	Eye and Face Protect (29 CFR 19101.133)	
	Fitting	
	Inspection and Maintenance	
	Hearing Protection (29 CFR 1910.95)	
	Hearing Protector Attenuation	
	Training	
	Respiratory Protection (29 CFR 1910.134)	
	Purpose	
	Definitions	
	Respiratory Protection Program	
	Training and Information	
	Torso Protection	
	Arm and Hand Protection (29 CFR 1910.138)	
	Glove Selection Chart	
	Foot and Leg Protection (29 CFR 1910.136)	
	Key Information to Remember on Personal Protective Equipment	
	References	369
10	Statistics for the Safety Professional	271
13.	Descriptive Statistics	
	Mean	
	Mode	
	Median	
	Variance	
	Normal Distribution	
	Calculating Correlation Coefficient	
	Spearman's Rank Coefficient of Correlation	
	Calculating the <i>t</i> Test for Comparing Means	
	Chi-Square (χ^2) Statistic	
	Degrees of Freedom	
	<i>p</i> Values	
	Permutations and Combinations	
		381
	Permutations without Repetition	

Combinations	
Z-Score	
Coefficient of Determination and Coefficient of Correlation	
Reliability	
Component Reliability	
Probability of Failure (Component)	
System Reliability	
Series Reliability	
Parallel Reliability	
Probability of Failure (System)	
Reference	
14. Electrical Safety	
Electricity Basis	
Voltage	
Current	
Resistance	
Series and Parallel Circuits	
Series Circuits	
Parallel Circuits	
Direct and Alternating Currents	
Direct Currents	
Alternating Currents	
Calculating Values of Voltage, Current, and Resistance	
(Ohm's Laws)	
Calculating Voltage in DC Circuits	
Calculating Voltage in AC Circuits	
Calculating Power in DC Circuits	
Calculating Power in AC Circuits	
Calculating Resistance in DC Circuits	
Calculating Resistance in AC Circuits	
Resistors	
Calculating the Resistance in a Series Circuit	
Calculating the Resistance in a Parallel Circuit	
Capacitors	
Calculating Capacitance in a Series Circuit	
Calculating Capacitance in a Parallel Circuit	
Inductors	
Calculating Inductance in a Series Circuit	
Calculating Inductance in a Parallel Circuit	
Electrical Shock Hazard	
Burns Caused by Electricity	
Arc Blasts	
Electrical Fires	
Controlling Electrical Hazards	400

	Exposed Electrical Parts	400
	Overhead Power Lines	
	Inadequate Wiring	400
	Defective or Damaged Cords and Wires	401
	Use of Flexible Cords	
	Improper Grounding	
	Ground Fault Circuit Interrupters	
	Assured Equipment Grounding Conductor Program	
	Overloaded Circuits	
	Safety-Related Work Practices	
	Planning	
	Training	
	Key Information to Remember on Electrical Safety	
	References	
15.	Mechanics	
	Energy	
	Kinetic Energy	
	Potential Energy	
	Elastic Potential Energy	
	Force	
	Contact Forces	410
	Action-at-a-Distance Forces	
	Defining Mass and Weight	
	Amount of Force	
	Frictional Force	
	Force and Distance	
	Momentum	
	Work	
	Modified Work	415
	Newton's Laws of Motion	
	Speed	
	Velocity	
	Calculating Final Velocity	
	Calculating Displacement	
	Key Information to Remember on Mechanics	
	Reference	
16.	Hydrostatics and Hydraulics	
	Water Properties	
	Hydrostatic Pressure	
	Torricelli's Law	
	Head Pressure	
	Velocity Head	
	Velocity Pressure at Constant Laminar Velocity	
	5	

	Flow Rates and Pressure Drops	
	Flow Rates and Pressures	
	Calculating Pressure Loss Due to Friction	
	Bernoulli's Principle	
	Key Information to Remember on Hydrostatics and Hydraulics.	
	References	
17.	Training	
	Principles of Adult Learning	
	Adult Learners Are Autonomous and Self-Directed	
	Adult Learners Have a Foundation of Life Experiences and	
	Knowledge	
	Adult Learners Are Goal Oriented	
	Adult Learners Are Relevancy Oriented	
	Adult Learners Are Practical	
	Adult Learners Need to Be Respected	
	Safety Training Program	
	Delivery Methods	
	Instructor-Led Training	
	Self-Paced Learning	
	Structured On-the-Job Training	
	Training Needs Analysis	
	Type of Needs Analysis	
	Techniques	
	Training Program Development	
	Written Performance Objectives	
	Developing Course Outline	443
	Selection of Training Delivery Method	444
	Development of Course Materials	
	Testing and Evaluation	444
	Pretests	445
	Review Tests	445
	Posttests	445
	Media Presentations	
	PowerPoint Presentations	445
	Charts and Graphs	
	Key Information to Remember on Training	446
	Reference	
18.	Engineering Economics	
	Simple Interest	
	Compound Interest	
	Future Value of Money	
	Loan Balance	
	Time Value of Money	

	Series Compound Amount Factor	
	Sinking Fund Factor	
	Capital Recovery Factor	
	Series Present Worth Factor	
	Summary	
	Reference	
19.	Management Theories	
	Management Theories	
	Maslow's Hierarchy of Needs	
	Physiological Needs	
	Safety Needs	
	Love and Belonging	
	Esteem	
	Self-Actualization	
	McGregor's Theory X and Theory Y	
	Theory X	
	Theory Y	
	Herzberg Motivational Theory	
	The Deming Cycle	
	Management by Objectives	
	Contingency Theory	
	Systems Theory	
	Chaos Theory	
	Management Styles	
	Directive Democrat	
	Directive Autocrat	
	Permissive Democrat	
	Permissive Autocrat	
	Key Information to Remember on Management Theories	
	References	
20.	Accident Causation and Investigation Techniques	
	Domino Theory	
	Heinrich's Axioms of Industrial Safety	
	Human Factors Theory	
	Accident and Incident Theory	
	Epidemiological Theory	
	Systems Theory	
	Energy Release Theory	
	Behavior Theory	
	Combination Theory	
	Modern Causation Model	
	Operating Errors	
	Systems Defects	

	Command Error	
	Safety Program Defect	
	Safety Management Errors	
	Seven Avenues	
	Safety Management Error Countermeasures	
	Safety Program Defect Countermeasures	
	Command Error Defect Countermeasures	
	System Defects Countermeasures	
	Operating Errors Countermeasures	
	Mishap Countermeasures	
	Result Countermeasures	
	Near-Miss Relationship	
	Accident Investigation Procedures	
	Purpose of the Investigation	
	Investigation Procedures	
	Fact Finding	
	Interviews	
	Problem-Solving Techniques (Accident Investigation	
	Techniques)	
	The Scientific Method	
	Gross Hazard Analysis	
	Job Safety Analysis	
	Failure Modes and Effects Analysis	
	Fault Tree Analysis	
	Multilinear Events Sequencing Method	
	Report of Investigation	
	Key Information to Remember on Accident Causation and	100
	Investigation Techniques	
	References	
• 1		401
21.	Workers' Compensation	
	History of Workers' Compensation in the United States	
	Current Workers' Compensation Laws	
	Coverage Exemptions	
	Workers' Compensation Premiums	
	Calculating Experience Modification Rates	
	Waiver of Subrogation Safety Professional's Role and Responsibilities in Workers'	
	Compensation	
	Reporting of Injuries and Claims	
	Case Management Prompt Reporting	
	Return-to-Work/Light Duty Program	
	Key Information to Remember on Workers' Compensation	
	Reference	

22.	Ergonomics	
	Definitions	
	NIOSH Lifting Index	
	Horizontal Component	
	Horizontal Multiplier	
	Vertical Component	
	Vertical Multiplier	
	Distance Component	
	Asymmetry Component	
	Frequency Component	
	Lifting Duration	
	Frequency Multiplier	
	Coupling Component	
	Coupling Multiplier	
	Lifting Index	
	Ergonomic Job Analysis Work sheet	511
	Key Information to Remember on Ergonomics	515
	References	516
23.	Construction Safety	
	Excavation	
	Soil Classifications	
	Protective Systems	
	Sloping	
	Shoring	
	Shields (Trench Boxes)	
	RPE-Designed Protective Systems	
	Safe Entry and Exit	
	Most Commonly Cited Trenching Violations	
	Electrical Safety in Construction	
	Electrical Definitions	
	Electrical Injuries	
	Electrical Shock	
	Burns	
	Falls	
	Controlling Electrical Hazards	
	Exposed Electrical Parts	
	Overhead Power Lines	
	Inadequate Wiring	
	Defective or Damaged Cords and Wires	
	Use of Flexible Cords	
	Grounding	
	Ground Fault Circuit Interrupters	
	Assured Equipment Grounding Conductor Program	
	Overloaded Circuits	

Safety-Related Work Practices	. 527
Planning	
Training	. 528
Summary	. 528
Static Electricity	. 529
Bonding and Grounding	
Humidification	
Static Controllers (Collectors)	530
Additives	530
Scaffolds	530
Fall Hazards	. 531
Falling Object (Struck by) Protection	. 531
Elements of Safe Scaffold Construction	
Scaffold Training Requirements	.533
Fall Protection and Prevention in Construction	.533
Physics of a Fall	.534
Fall Prevention and Protection	.534
Guardrails (29 CFR 1926.502)	
Positioning Device System (29 CFR 1926.502(e))	. 535
Warning Line Systems (29 CFR 1926.502(f))	. 536
Controlled Access Zone System (29 CFR 1926.502(g))	. 537
Safety Monitoring System (29 CFR 1926.502(h))	. 538
Personal Fall Arrest System (29 CFR 1926.502(d))	
Safety Net Systems (29 CFR 1926.502(c))	
Cranes and Derrick Safety (29 CFR 1926.550)	. 541
Welding, Cutting, and Brazing (29 CFR 1926.350-353)	
Oxygen-Fuel Gas Welding and Cutting	
Fuel Gas and Oxygen Manifolds (29 CFR 1926.350(e))	
Hoses (29 CFR 1926.350(f))	
Torches (29 CFR 1926.350(g))	
Regulators and Gauges (29 CFR 1926.350(h))	
Oil and Grease Hazards (29 CFR 1926.350(i))	
Arc Welding and Cutting	
Manual Electrode Holders (29 CFR 1926.351(a))	
Welding Cables and Connectors (29 CFR 1926.351(b))	
Ground Returns and Machine Grounding (29 CFR 1926.351(c))	
Resistance Welding	
Fire Prevention (29 CFR 1926.352)	
Ventilation and Protection in Welding, Cutting, and Heating	
(29 CFR 1926.353)	
Hand and Power Tool Safety (29 CFR 1910 Subpart P)	
Abrasive Grinders (29 CFR 1910.243)	
Wheel Testing	.550
The Ring Test	
The Vibration Test	

	Portable Circular Saws (29 CFR 1910.243)	
	Compressed Air Systems (29 CFR 1910.242)	
	Housekeeping (29 CFR 1926.25)	
	Key Information to Remember on Construction Safety	
	References	
24.	Risk Assessment and Management	
	Definitions	
	Risk Management Process	
	Hazard Identification	
	Hazard Assessment	
	Probability	
	Severity	
	Risk Assessment Scenario	
	Qualitative Analysis	
	Quantitative Analysis	
	Controls Development and Decision Making	
	Types of Controls	
	Criteria for Controls	
	Decision Making	
	Implement Controls	
	Supervise and Evaluate	
	Key Information to Remember on Risk Assessment and	
	Management	565
	Management Reference	
25.	Reference	566
25.		566 567
25.	Reference	566 567 567
25.	Reference Hazardous Materials Management Hazardous Materials	
25.	Reference	

	Corrosion	572
	Thermal Decomposition	572
	Water-Reactive Material Hazards	572
	Health Hazards Associated with Hazardous Materials	573
	Key Regulations Governing Hazardous Materials and	
	Hazardous Wastes	573
	Resource Conservation and Recovery Act (1976)	573
	Hazardous Waste Generators	
	Comprehensive Environmental Response, Compensation, and	
	Liability Act (1980)	574
	Superfund Amendment and Reauthorization Act of 1986	575
	Toxic Substances Control Act (1976)	
	Emergency Planning and Community Right-to-Know Act (1986)	
	Federal Insecticide, Fungicide, and Rodenticide Act (1972)	
	Asbestos Hazard Emergency Response Act (1986)	
	Hazard Communication Standard (29 CFR 1910.1200)	
	Classification of Hazardous Materials	
	Hazardous Waste Operations	580
	Planning and Organization	581
	Training	
	Medical Program	
	Site Characterization	
	Air Monitoring	582
	Personal Protective Equipment	
	Site Control	
	Decontamination	583
	Key Information to Remember on Hazardous	
	Materials Management	583
	References	
26.	Radiation Safety	587
	Ionizing Radiation	587
	Particle Radiation	588
	Alpha (α) Radiation	588
	Beta (β) Radiation	588
	Neutron (n) Radiation	588
	Electromagnetic Radiation	
	Gamma (γ) Radiation	589
	X-Rays	
	Radiation Basics	
	Biological Effects of Ionizing Radiation	
	General	
	Acute Somatic Effects	
	Delayed Somatic Effects	
	Critical Organs	591

	Description of Ionizing Radiation Units	591
	Types of Radioactive Decay	
	Calculating Radioactive Decay	
	Radioactive Half-Life	
	Radiation Control Methods	
	Time	
	Distance	
	Source Strength for Gamma (γ) Radiation	
	Shielding	
	Personal Protective Equipment	
	OSHA Exposure Standards	
	Nonionizing Radiation	
	UV Radiation	
	Visible Light Radiation	
	IR Radiation	
	MW Radiation	
	Calculating MW Radiation (Near Field)	
	Calculating MW Radiation (Far Field)	
	RF Radiation	
	Lasers	
	Laser Safety-Control Measures	
	Effective Irradiance	
	Speed of Light Equation	
	Key Information to Remember on Radiation Safety	606
		606
27.	Key Information to Remember on Radiation Safety References	606 607
27.	Key Information to Remember on Radiation Safety References	606 607 609
27.	Key Information to Remember on Radiation Safety References	606 607 609 609
27.	Key Information to Remember on Radiation Safety References	606 607 609 609 610
27.	Key Information to Remember on Radiation Safety References	606 607 609 609 610 610
27.	Key Information to Remember on Radiation Safety References	606 607 609 609 610 610 610
27.	Key Information to Remember on Radiation Safety References	606 607 609 609 610 610 610 610
27.	Key Information to Remember on Radiation Safety References	606 607 609 610 610 610 610 612
27.	Key Information to Remember on Radiation Safety References Walking and Working Surfaces Definitions General Requirements Ladders Types Step Ladders Extension Ladders Fixed Ladders	606 607 609 610 610 610 610 612 613
27.	Key Information to Remember on Radiation Safety References	606 607 609 609 610 610 610 610 613 613
27.	Key Information to Remember on Radiation Safety References	606 607 609 610 610 610 610 612 613 613 616
27.	Key Information to Remember on Radiation Safety References	606 607 609 610 610 610 610 613 613 613 616 616
27.	Key Information to Remember on Radiation Safety References	606 607 609 610 610 610 610 613 613 613 616 616 616
27.	Key Information to Remember on Radiation Safety References Walking and Working Surfaces Definitions General Requirements Ladders Types Step Ladders Extension Ladders Fixed Ladders Ladder Basics Common Causes of Ladder Accidents Prevention of Ladder Accidents Proper Ladder Usage	606 607 609 610 610 610 610 613 613 616 616 617
27.	Key Information to Remember on Radiation Safety References	606 607 609 610 610 610 610 613 613 616 616 617 618
27.	Key Information to Remember on Radiation Safety References	606 607 609 610 610 610 610 610 613 613 616 616 616 617 618 619
27.	Key Information to Remember on Radiation Safety References	606 607 609 610 610 610 610 610 613 613 616 616 616 616 617 618 619 621
27.	Key Information to Remember on Radiation Safety References	606 607 609 609 610 610 610 610 613 613 616 616 616 616 617 618 619 621 622
27.	Key Information to Remember on Radiation Safety References	606 607 609 610 610 610 610 613 613 613 616 616 616 617 618 619 621 622 622

	Footing and Foundation	624
	Electrical Hazards	625
	Other Common Scaffolding Hazards	625
	Use of Scaffolds	626
	Rope Descent Systems	
	Duty to Have Fall Protection and Falling Object Protection	626
	Falling Object Protection	. 627
	Fall Protection Systems and Falling Object Protection—Criteria	
	and Practices	
	Calculating Velocity, Time, and Distance of a Fall	
	Fall Protection and Prevention	
	Fall Arrest Systems	
	Training Requirements	
	Key Information to Remember on Walking and Working Surfaces	
	Glossary	
	References	637
28.	Materials Handling and Storage	
	Issues and Hazards Related to Material Handling	
	Lifting Techniques	
	General Lifting Guidelines	
	Individual Lifting Procedures	
	Basic Lifting Technique (Also Known as the Diagonal Lift)	
	Team Lifting Procedure and Technique	
	Half-Kneeling Technique	
	Tripod Lift Technique	
	Power Lifting Technique	
	Golfer's Lift	
	Partial Squat Technique	645
	Overhead Lift	
	Straight Leg Lift	
	Material Handling Equipment	
	Hand Tools	
	Pry Bars	
	Pliers and Tongs	
	Shovels	
	Chain Hoists Nonpowered Materials Handling Equipment	
	Dolly or Hand Truck	
	Dolly or Hand Truck	
	Pallet Jacks Powered Industrial Trucks	
	Training Truck-Related Topics	.004
	Workplace-Related Topics	
	Types of Forklifts	000

	Electric Forklifts	656
	Propane, Gasoline, and Diesel Forklifts	
	Preoperational Check	
	Workplace-Related Topics	
	Surface Conditions	
	Loading Docks and Entering Semi-Trailers	
	Traveling Up and Down Ramps/Slopes	
	Conveyors	
	Storage Racks	
	Key Information to Remember on Materials Handling	
	References	
29.	Safety Management System	
	Safety Management System (SMS) Definition	
	Components of a Safety Management System (SMS)	
	Safety Policy	
	Policy Statement	
	Organizational Structure	
	Procedures	
	Safety Risk Management	
	Safety Assurance	
	Safety Promotion	
	Deming's 14 Points for Total Quality Management	
	PDCA Model	
	Plan	
	 Do	
	Check	
	Act	
	Review of Common Safety Management Systems	
	OSHAS 18001	
	Advantages	
	Disadvantages	
	ISO 45001	
	ILO-OSH 2001	
	ANSI Z10	
	Summary	
	References	
30.	Site Security	
	Site Security Plan	
	Site Information	
	Management Policies	
	Physical Security	
	Access Control	

	Employee Control	686
	Information Security	686
	Material Security	687
	Equipment and Facility Protection	687
	Emergency Responses	688
	Workplace Violence Prevention	692
	Key Information to Remember Regarding Physical Security and	
	Emergency Planning	693
	References	694
31.	Behavior-Based Safety	
	Additional Resources	
	Key Points to Remember on Behavior-Based Safety	
	References	698
32.	Measuring Health and Safety Performance	
	Major Problems with Injury/Illness Health Statistics in General	
	Why Measure Performance?	
	What to Measure?	
	Measuring the Hazard Burden	
	Measuring the Health and Safety Management System	
	Policy	
	Organizing	
	Planning and Implementation	
	Capability	
	Compliance	
	Deployment	
	When to Measure	
	Who Should Measure	
	How to Measure	
	Leading versus Lagging Indicators	
	Continuous Improvement	
	Near Misses	
	Number of Safety Observations	
	Number of Participants in the Safety Observation Program	
	Number of Inspections/Audits Performed	716
	Quantitative Measurements of Audit Programs	
	(Tracking of Scores)	716
	Percentage of Safety-Related Work Orders Completed	
	(Closure Rates)	716
	Employee Perceptions of the Safety Culture	717
	Key Points to Remember on Measuring Health and Safety	
	Performance	
	References	718

33.	Safety Program Auditing Techniques and Checklist	719
	Purpose of Auditing	719
	Methodology for Conducting Audits	720
	Documentation Software	720
	Employee Interviews	
	Site Conditions and Root Causes	
	Elements of an Effective Health and Safety Program	
	General Guidelines	
	Major Elements	
	Management Commitment	
	Employee Involvement	
	Worksite Analysis	
	Catching Hazards that Escape Controls	
	Health and Safety Training	731
	Assessing the Effectiveness of the Overall Health and	
	Safety Program.	733
	Assessing the Key Components of Leadership, Participation, and	
	Line Accountability	
	Worksite Policy on Safe and Healthful Working Conditions	
	Documentation	
	Interviews	
	Site Conditions and Root Causes of Hazards	
	Goal and Objectives for Worker Safety and Health Documentation	
	Interviews	
	Site Conditions and Root Causes of Hazards	734
	(Only Helpful in a General Sense.)	734
	Visible Top Management Leadership	
	Documentation	
	Interviews	
	Site Conditions and Root Causes of Hazards	
	Employee Participation	
	Documentation	
	Interviews	
	Site Conditions and Root Causes of Hazards (Not Applicable.).	
	Assignment of Responsibility	
	Documentation	
	Interviews	
	Site Conditions and Root Causes of Hazards	
	Adequate Authority and Resources	
	Documentation (Only Generally Applicable.)	
	Interviews	
	Site Conditions and Root Causes of Hazards	
	Accountability of Managers, Supervisors, and Hourly Employees.	
	Documentation	

Interviews	.736
Site Conditions and Root Causes of Hazards	.736
Evaluation of Contractor Programs	.736
Documentation	
Interviews	.736
Site Conditions and Root Causes of Hazards	.737
Assessing the Key Components of Worksite Analysis	.737
Comprehensive Surveys, Change Analysis, and Routine	
Hazard Analysis	.737
Documentation	. 737
Interviews	
Site Conditions and Root Causes of Hazards	
Regular Site Safety and Health Inspections	.738
Documentation	.738
Interviews	
Site Conditions and Root Causes of Hazards	
Employee Reports of Hazards	
Documentation	
Interviews	
Site Conditions and Root Causes of Hazards	
Accident and Near-Miss Investigations	
Documentation	
Interviews	
Site Conditions and Root Causes of Hazards	
Injury and Illness Pattern Analysis	
Documentation	
Interviews	. 740
Site Conditions and Root Causes of Hazards	- 10
(Not Generally Applicable.)	
Assessing the Key Components of Hazard Prevention and Control	.753
Appropriate Use of Engineering Controls, Work Practices,	==0
Personal Protective Equipment, and Administrative Controls	
Documentation	
Interviews	
Site Conditions and Root Causes of Hazards	
Facility and Equipment Preventive Maintenance Documentation	
Site Conditions and Root Causes of Hazards	
Establishing a Medical Program Documentation	
Interviews	
Site Conditions and Root Causes of Hazards	
Emergency Planning and Preparation	
Documentation	

	Interviews	.755
	Site Conditions and Root Causes of Hazards	.755
	Assessing the Key Components of Safety and Health Training	.756
	Ensuring that All Employees Understand Hazards	
	Documentation	
	Interviews	.756
	Site Conditions and Root Causes of Hazards	.756
	Ensuring that Supervisors Understand Their Responsibilities	.756
	Documentation	.756
	Interviews	. 757
	Site Conditions and Root Causes	. 757
	Ensuring that Managers Understand Their Safety and	
	Health Responsibilities	
	Documentation	
	Interviews	. 757
	Site Conditions and Root Causes of Hazards	
	Sample Checklist	
	Key Points to Remember on Health and Safety Program Auditing	. 757
	References	.758
34.	Environmental Management	
	History and Evolution of U.S. Environmental Policies	
	The National Environmental Policy Act (NEPA)(42 U.S.C. 4321)	
	NEPA Requirements	
	Oversight of NEPA	
	Implementation	
	The NEPA Process	
	EAs and EIS Components	
	Federal Agency Role	
	Environmental Protection Agency's Role	
	The Public's Role	
	Resource Conservation and Recovery Act	. 763
	Solid Waste and Hazardous Waste	
	Identification of Solid and Hazardous Wastes	
	Standards for Generators of Hazardous Waste	
	Land Disposal Restrictions	
	Tanks and Containers	
	Hazardous Waste and Agriculture	
	Universal Waste	. 767
	Universal Waste and Agriculture	
	Used Oil Management Standards	
	Used Oil and Agriculture	
	Underground Storage Tanks	
	USTs and Agriculture	.770

Toxic Substances Control Act (TSCA)(15U.S.C. §2601 et seq.(1976))	.770	
What Does It Mean for a Chemical to Be on the TSCA Inventory?		
How Are Chemicals Added to the TSCA Inventory?		
How to Get a Determination from EPA on Whether a Chemical		
Is on the Inventory	771	
Bona Fide Intent to Manufacture or Import Notice	772	
Letter of Support	772	
Branded Materials of Confidential Composition		
Federal Insecticide, Fungicide, and Rodenticide Act		
Tolerances and Exemptions		
Tolerances and Agriculture		
Registration of New Pesticides		
Data Requirements for Registration		
Registration Criteria		
Unreasonable Adverse Effects on the Environment		
Clean Air Act of 1970 (42 U.S.C. §7401 et seq. (1970))		
Clean Air Act of 1990		
Title I: Provisions for Attainment and Maintenance of NAAQS		
Title II: Provisions Relating to Mobile Sources		
Title III: Air Toxics		
Title IV: Acid Deposition Control		
Title V: Permits		
Title VI: Stratospheric Ozone and Global Climate Protection		
Title VII: Provisions Relating to Enforcement		
Other Titles		
Key Points to Remember on Environmental Management		
References	.784	
35. BCSP Code of Ethics	785	
BCSP Code of Ethics		
Standards		
Reference		
Reference	.700	
Appendix A: BCSP Supplied Equations	. 787	
Appendix B: Conversions and Standards	.799	
Appendix C: OSHA Regional and Area Offices		
Index		

Preface

During the course of my professional career, I have had the opportunity to read and utilize numerous technical resources. As a practicing safety professional in comprehensive practice, I have yet to find a single-source reference that includes the majority of information that I encounter on a daily basis. That is not to say that there are not useful references available. However, it has been my experience that to maintain a library suitable for comprehensive practice becomes very costly and requires a wide variety of topics to get the information that is needed.

The majority of useful references available focus primarily on the practicing industrial hygienist. It is for this reason that I set out to publish this book which is intended to serve several purposes as outlined below:

- To function as a "quick desk reference" for the experienced, practicing safety professional in comprehensive or specialized practice;
- To be utilized by university students at all levels as a useful reference tool to supplement more in-depth textbooks;
- To serve as a primary study resource for those individuals preparing to take the Associate Safety Professional (ASP), Certified Safety Professional (CSP), Occupational Health and Safety Technologist (OHST), and the Construction Health and Safety Technologist (CHST) examinations.

This book serves as a primary study guide for the examinations listed above. It includes such topics as History of the Safety Profession, Regulations, OSHA Record Keeping, Particulates and Gases, Toxicology, Industrial Hygiene, Ventilation, Noise, Biological Hazards, Thermal Stressors, Personal Protective Equipment, Math Review, Statistics for the Safety Professional, Fire Protection and Prevention, Mechanics, Hydrostatics and Hydraulics, Electrical Safety, Engineering Economy, Training, and Worker's Compensation Issues.

From a personal standpoint, I have a copy of the previous edition on my desk and utilize it frequently to assist me in solving day-to-day problems within my facilities. It is my belief that the reader of this book will determine it to be an "invaluable" resource at any level of their professional safety career.

Author

W. David Yates was born in Morton, Mississippi, and lived most of his childhood in Crystal Springs, Mississippi. He has earned a B.S. degree in Health Care Services from Southern Illinois University, Carbondale, Illinois; an M.S. degree in Hazardous Materials Management from Jackson State University, Jackson, Mississippi; a PhD in Environmental Science from Jackson State University, Jackson, Mississippi; and J.D. from Birmingham School of Law. He served ten years in the United States Navy as a preventive medicine technician. He retired from the United States Army Reserves as an environmental science and preventive medicine Officer, having attained the rank of Colonel. In his civilian career, Dr. Yates has operated his own professional consulting firm, served as the safety and mission assurance manager for Stennis Space Center, Mississippi; the corporate safety director for Bodine Services of the Midwest, Decatur, Illinois; and several safety and security manager positions in mining and manufacturing. Dr. Yates currently serves as the area safety manager for Carmeuse Lime & Stone, Saginaw, Alabama. He is a CSP with the Board of Certified Safety Professionals. Dr. Yates is also a full-time faculty for Columbia Southern University in Environmental Management.

Dr. Yates has extensive knowledge and experience in hazardous materials management, safety programs management, indoor air quality, ventilation, noise, and industrial hygiene sampling and analysis.

1

The Safety Profession and Preparing for the ASP/CSP Exam

The safety profession has a long and distinguished history tracing back to Hammurabi (ca. 1728–1686 BC), who was the sixth king of Babylon. Hammurabi is best known for his codification of laws, which included some, if not the first, set of worker's compensation laws known. The safety profession has greatly changed since the days of Hammurabi. On December 29, 1970, Public Law 91-596 (The Williams-Steiger Occupational Safety and Health Act of 1970) was signed into law. This legislation focused on controlling workplace hazards and ensuring safe and healthful working conditions for working men and women; by authorizing enforcement of the standards developed under the Act; by assisting and encouraging the States in their efforts to assure safe and healthful working conditions; by providing for research, information, education, and training in the field of occupational safety and health; and for other purposes. Under the Act, the Occupational Safety and Health Administration was created within the Department of Labor. The passage of this legislation highlighted the need for educated and knowledgeable professionals in the area of safety and health. Over the past 39 years, the safety profession has matured, as evidenced by universities offering undergraduate and advanced degrees in safety and health, placement of safety professionals at the highest levels of management, and certification of safety professionals. Today's safety profession requires a broad range of knowledge, including biology, chemistry, mathematics, business, and management. Your decision to become a candidate for the Certified Safety Professional (CSP) designation is an important step in your professional career. This book is written to assist you in achieving that ultimate designation as a safety professional.

Board of Certified Safety Professionals

Note: Information provided in this section is derived from the "Safety Fundamentals Examination Guide, Fifth Edition, April 2008." This information is derived from copyrighted materials that are owned by the Board of Certified Safety Professionals (BCSP).

The BCSP was organized in 1969 as a peer certification board. Its purpose is to certify practitioners in the safety profession. The specific functions of the Board are to

- Evaluate the academic and professional experience qualifications of safety professionals,
- Administer examinations,
- Issue certifications to those professionals who meet the Board's criteria and successfully pass required examinations.

In 1968, the American Society of Safety Engineers studied the issue of certification for safety professionals and recommended the formation of a professional certification program. This recommendation led to establishing BCSP in July 1969. The BCSP governing Board consists of 13 directors who represent the breadth and depth of safety, health, and environmental practice, as well as the public. Six of the directors are nominated to a pool by professional membership organizations affiliated with BCSP. The professional membership organizations currently affiliated with BCSP are the following:

- American Industrial Hygiene Association,
- American Society of Safety Engineers,
- Institute of Industrial Engineers,
- National Fire Protection Association,
- National Safety Council,
- Society of Fire Protection Engineers,
- System Safety Society.

BCSP has issued the CSP credential to more than 20,000 people, and more than 11,000 currently maintain their certification.

The CSP credential meets or exceeds the highest national and international accreditation and personnel certification standards for certification bodies. International accreditation is ISO/IEC 17024, and national accreditation is the National Commission for Certifying Agencies.

Definitions

Note: The information throughout this chapter is derived from the "A Complete Guide to Safety Certification," May 2019, or from the "Safety Fundamentals Examination Guide, Fifth Edition, April 2008." This information is derived from copyrighted materials that are owned and copyrighted

by the BCSP. Updates to the policies are current as of December 10, 2019, based on the requirements provided at the Board of Certified Safety Professional's website (www.bcsp.org).

BCSP's certifications are accredited by the American National Standard Institute (ANSI), an independent third-party organization that evaluates certification program and organization requirements on a regular basis.

A *safety professional* is one who applies the expertise gained from a study of safety science, principles, practices, and other subjects from professional safety experience to create or develop procedures, processes, standards, specifications, and systems to achieve optimal control or reduction of the hazards and exposures that may harm people, property, or the environment.

Professional safety experience, as interpreted by BCSP, must be the primary function of a position and account for at least 50% of the position's responsibility. Professional safety experience involves analysis, synthesis, investigation, evaluation, research, planning, design, administration, and consultation to the satisfaction of peers, employers, and clients in the prevention of harm to people, property, and the environment. Professional safety experience differs from nonprofessional experience in the degree of responsible charge and the ability to defend analytical approaches and recommendations for engineering or administrative controls.

A *Certified Safety Professional or CSP* is a safety professional who has met and continues to meet all requirements established by BCSP and is authorized by BCSP to use the CSP title and the CSP credential. Certificants who hold the CSP mostly work in private industry, which could include being a government contractor. A CSP who works in the government sector may work in the military, federal, state, or local agencies. Safety at this level is virtually in every industry, including petroleum exploration, production and refining, manufacturing, construction, health care, and insurance. A CSP's professional time is spent on safety management systems, occupational health and ergonomics, emergency response and preparedness, fire prevention and protection, and security responsibilities. A CSP may also have environmental management system responsibilities, including managing safety, health, and environmental programs that can cover up to 1,000 or more employees.

An Associate Safety Professional or ASP is now a full certification offered by the BCSP. It was previously only a temporary credential before becoming a CSP awarded by BCSP. This designation describes an individual who has met the academic requirements for the ASP certification and has passed the Safety Fundamentals Examination, the first of two examinations leading to the CSP credential. ASPs are persons who perform at least 50% of professional-level safety duties, including making worksite assessments to determine risks, potential hazards, and controls; evaluating risks and hazard control measures; investigating incidents; maintaining and evaluating incident and loss records; and preparing emergency response plans. Other duties could include hazard recognition, fire protection, regulatory compliance, health hazard control, ergonomics, hazardous materials management, environmental protection, training, accident and incident, investigations, advising management, record keeping, emergency response, managing safety programs, product safety, and/or security.

A *Graduate Safety Practitioner or GSP* is a temporary designation awarded by BCSP. This designation describes an individual who has graduated from an independently accredited academic program meeting BCSP's standards. GSPs must sit for and pass the CSP examination within six years of the date the GSP is awarded.

Minimum Qualifications to Sit for the ASP Examination

As already mentioned above, the ASP is now a fully recognized certification/ credential offered by the BCSP. The minimum qualifications to sit for the APS examination include academic requirements, professional safety experience requirements, successfully passing the ASP (or obtain a waiver), and ASP examinations. BCSP requires a minimum of a bachelor's degree in any field or an associate in safety, health, or the environment, one year of safety experience, passing the ASP examination, and retaining the certification.

Academic Requirements

Academic requirements to obtain the ASP credential include a bachelor's degree in any field or an associate in safety, health, or the environment. The associate degree must include at least four courses with at least 12 semester hours/18 quarter hours of study in the safety, health, or environmental domains covered in the ASP examination blueprint. The degree(s) must have been awarded from an accredited university or institution. Unaccredited degrees will not be accepted to satisfy the academic requirements.

Professional Safety Experience

The candidate must have a minimum of one year of safety experience where safety is at least 50%, preventative, professional level with breadth and depth of safety duties.

Minimum Qualifications to Sit for the CSP Examination

The minimum qualifications to sit for the CSP examination include academic requirements, professional safety experience requirements, successfully passing the ASP (or obtaining a waiver), and CSP examinations. BCSP requires a minimum of a bachelor's degree, four years of safety experience, passing the CSP examination, and retaining the certification. To qualify for the CSP examination, a candidate must have already attained one of the following BCSP Qualified Credentials:

- ASP*,
- GSP,
- Transitional Safety Practitioner (TSP)*,
- Certified Industrial Hygienist[®] (CIH[®]),
- Chartered Member of the Institution of Occupational Safety and Health (CMIOSH)*,
- Canadian Registered Safety Professional (CRSP)*,
- CP-12 Professional Certificate in Safety and Occupational Health, U.S. Army Combat Readiness Center (ACRC)*,
- Certified Safety Engineer (CSE), as administered by the State Administration of Work Safety (SAWS), People's Republic of China (PRC)*,
- Master in Occupational Safety and Health, International Training Centre of the International Labour Organization (ITC-ILO)*,
- Member in the Institute of Safety Professionals of Nigeria (MISPN)*,
- NEBOSH National or International Diploma in Occupational Health and Safety*,
- Professional Member of the Singapore Institution of Safety Officers (SISO)*,
- Diploma/Certificate in Industrial Safety, as issued by the State Government Departments Boards of Technical Education, Government of India^{*},

*Note that all education requirements must be met when pursuing the CSP.

Academic Requirements

Academic requirements to obtain the CSP credential include a bachelor's degree or higher in any field. The degree(s) must have been awarded from an accredited university or institution. Unaccredited degrees will not be accepted to satisfy the academic requirements.

Professional Safety Experience Requirements

The candidate must have a minimum of four years of safety experience where safety is at least 50%, preventative, professional level with breadth and depth of safety duties.

ASP/CSP Process

The process for both of the ASP and CSP certifications is very similar. Specific details can be found by visiting the BCSP website, which is located at www. bcsp.org/Portals/0/Assets/DocumentLibrary/BCSP-Complete-Guide.pdf. In general, however, the process is as follows:

- Pick a certification;
- Determine eligibility;
- Submit the appropriate application, along with the fees;
- Purchase the examination;
- Schedule the examination;
- Sit for the examination;
- Maintain certification.

Examination Blueprint

In order to prepare for an examination, one must have a plan. In order to have a plan, the candidate will need to know the materials that are to be tested. The examination blueprints listed below indicate the main topics to be tested for each certification. *Of special note is that CSP10 Examination Blueprint will be effective in the fourth quarter (Q4) of 2019, and as such, is included here.*

Associate Safety Professional Examination Blueprint

The details of this blueprint can be found by visiting the following website: http://bcsp.org/Portals/0/Assets/DocumentLibrary/ASP-Blueprint.pdf

Domain #1—Mathematics (18%)

Topic 1 Chemistry and Industrial Hygiene Calculations Topic 2 Electrical Calculations Topic 3 Radiation Calculations Topic 4 Structural and Mechanical Calculations Topic 5 Physics Calculations Topic 6 Financial Principles Topic 7 Statistics Topic 8 Performance Metrics and Indicators

Domain #2—Safety Management Systems (23%)

Topic 1 Risk Management and Hazard Control Process Topic 2 Management Processes Topic 3 Project Management Topic 4 System Safety Topic 5 Fleet Safety Topic 6 Safety Programs

Domain #3—Ergonomics (13%)

Topic 1 Human Factors Topic 2 Measurement and Monitoring Topic 3 Controls

Domain #4—Fire Prevention and Protection (11%)

Topic 1 Fire and Explosion Hazards Topic 2 Fire Controls Topic 3 Fire and Emergency Management

Domain #5—Occupational Health (11%)

Topic 1 Biological Hazards and Controls Topic 2 Chemical Hazards and Controls Topic 3 Physical Hazards and Controls

Domain #6—Environmental Management (15%)

Topic 1 Environmental Hazards Topic 2 Engineering Controls Topic 3 Administrative Controls and Practices Topic 4 Hazardous Waste Storage and Disposal

Domain #7—Training, Education, and Communication (9%)

Topic 1 Training and Education Methods Topic 2 Communication and Group Dynamics

Certified Safety Professional (CSP) Examination Blueprint

The details of this blueprint can be found by visiting the following website: http://bcsp.org/Portals/0/Assets/DocumentLibrary/CSP10-Blueprint.pdf

Domain #1—Advanced Sciences and Math (9.95%)

Knowledge of

- 1. Core concepts in anatomy and physiology,
- 2. Core concepts in chemistry (e.g., organic chemistry, general chemistry, and biochemistry),
- 3. Core concepts in physics (e.g., forms of energy, weights, forces, and stresses),
- 4. Mathematics (e.g., geometry, algebra, trigonometry, finance and accounting, engineering, and economics),
- 5. Statistics for interpreting data (e.g., mean, median, mode, confidence intervals, probabilities, and Pareto analysis),
- 6. Core research methodology,
- 7. Microbiology (e.g., nanotechnology, waterborne pathogens, and blood-borne pathogens).

Domain #2—Management Systems (13.34%)

- 1. Benchmarks and performance standards/metrics;
- 2. How to measure, analyze, and improve organizational culture;
- 3. Incident investigation techniques and analysis (e.g., causal factors);
- 4. Management of change techniques (prior, during, and after);
- 5. System safety analysis techniques (e.g., fault tree analysis, failure modes and effect analysis [FMEA], safety case approach, and risk summation);
- 6. The elements of business continuity and contingency plans;
- 7. Types of leading and lagging safety, health, environmental, and security performance indicators;
- 8. Safety, health, and environmental management and audit systems (e.g., ISO 14000, 45001, 19011, ANSI Z10);
- 9. Applicable requirements for plans, systems, and policies (e.g., safety, health, environmental, fire, and emergency action);
- 10. Document retention or management principles (e.g., incident investigation, training records, exposure records, maintenance records, environmental management system, and audit results);

- Budgeting, finance, and economic analysis techniques and principles (e.g., timelines, budget development, milestones, resourcing, financing risk management options, return on investment, cost/ benefit analysis, and role in procurement process);
- Management leadership techniques (e.g., management theories, leadership theories, motivation, discipline, and communication styles);
- 13. Project management concepts and techniques (e.g., RACI charts (responsible, accountable, consulted and informed), project timelines, and budgets).

Domain #3-Risk Management (14.49%)

Knowledge of

- 1. Hazard identification and analysis methods (e.g., job safety analysis, hazard analysis, human performance analysis, and audit and causal analysis),
- 2. Risk analysis,
- 3. Risk evaluation (decision making),
- 4. The risk management process,
- 5. The costs and benefits of risk assessment process,
- 6. Insurance/risk transfer principles.

Domain #4—Advanced Application of Key Safety Concepts (14.69%)

- 1. Principles of safety through design and inherently safer designs (e.g., designing out hazards during design phase, avoidance, elimination, and substitution);
- 2. Engineering controls (e.g., ventilation, guarding, isolation, and active vs. passive);
- 3. Administrative controls (e.g., job rotation, training, procedures, and safety policies and practices);
- 4. Personal protective equipment;
- Chemical process safety management (e.g., pressure relief systems, chemical compatibility, management of change, materials of construction, and process flow diagrams);
- 6. Redundancy systems (e.g., energy isolation and ventilation);
- 7. Common workplace hazards (e.g., electrical, falls, same-level falls, confined spaces, lockout/tagout, working around water, caught in,

struck by, excavation, welding, hot work, cold and heat stress, combustibles, laser, and others);

- Facility life safety features (e.g., public space safety, floor loading, and occupancy loads);
- 9. Fleet safety principles (e.g., driver and equipment safety, maintenance, surveillance equipment, global positioning system monitoring, telematics, hybrid vehicles, fuel systems, driving under the influence, and fatigue);
- 10. Transportation safety principles (e.g., air, rail, and marine);
- 11. Materials handling (e.g., forklifts, cranes, hand trucks, person lifts, hoists, rigging, manual, and drones);
- 12. Foreign material exclusion (FME) and foreign object damage (FOD);
- 13. Hazardous materials management (e.g., Globally Harmonized System [GHS] labels, storage and handling, policy, and security);
- 14. Multi-employee worksite issues (e.g., contractors and temporary or seasonal employees);
- 15. Sources of information on hazards and risk management options (e.g., subject matter experts, relevant best practices, published literature, and Safety Data Sheets [SDS]);
- 16. The safety design criteria for workplace facilities, machines, and practices (e.g., Underwriter's Laboratories [UL], National Fire Protection Association [NFPA], National Institute of Occupational Safety and Health [NIOSH], Factory Mutual [FM], and Internal ISO);
- 17. Tools, machines, practices, and equipment safety (e.g., hand tools, ladders, grinders, hydraulics, and robotics);
- 18. Workplace hazards (e.g., nanoparticles, combustible dust, heat systems, high pressure, radiation, silica dust, powder and spray applications, blasting, and molten metals);
- 19. Human performance.

Domain #5—Emergency Preparedness, Fire Prevention, and Security (10.59%)

- 1. Emergency/crisis/disaster response planning/business continuity (e.g., nuclear incidents, natural disasters, terrorist attacks, chemical spills, fires, active violent attacks, and public utilities);
- 2. Fire prevention, protection, and suppression systems;

- 3. The transportation and security of hazardous materials;
- 4. Workplace violence and prevention techniques (violence on employees).

Domain #6—Occupational Health and Ergonomics (12.05%)

Knowledge of

- 1. Advanced toxicology principles (e.g., symptoms of an exposure, LD50, mutagens, teratogens, and ototoxins);
- 2. Carcinogens;
- 3. Ergonomics and human factors principles (e.g., visual acuity, body mechanics, lifting, vibration, anthropometrics, and fatigue management);
- 4. How to recognize occupational exposures (e.g., hazardous chemicals, radiation, noise, biological agents, heat/cold, infectious diseases, nanoparticles, and indoor air quality);
- 5. How to evaluate occupational exposures (e.g., hazardous chemicals, radiation, noise, biological agents, heat/cold, infectious diseases, ventilation, nanoparticles, and indoor air quality), including techniques for measurement, sampling, and analysis;
- 6. How to control occupational exposures (e.g., hazardous chemicals, radiation, noise, biological agents, heat/cold, ventilation, nanoparticles, infectious diseases, and indoor air quality);
- 7. Employee substance abuse;
- 8. The fundamentals of epidemiology;
- 9. Occupational exposure limits (e.g., hazardous chemicals, radiation, noise, biological agents, and heat).

Domain #7—Environmental Management Systems (7.38%)

- 1. Environmental protection and pollution prevention methods (e.g., air, water, soil, containment, soil vapor intrusion, and waste streams);
- 2. How released hazardous materials migrate/interact through the air, surface water, soil, and water table;
- 3. Sustainability principles;
- 4. Wastewater treatment plants, onsite wastewater treatment plants, and public water systems;
- 5. Registration, evaluation, authorization, and restriction of chemicals (REACH) and restriction of hazardous substances (RoHS).

Domain #8—Training and Education (10.18%)

Knowledge of

- 1. Education and training methods and techniques (e.g., classroom, online, computer based, artificial intelligence (AI), and on-the-job training);
- 2. Training, qualification, and competency requirements;
- 3. Methods for determining the effectiveness of training programs (e.g., determine if trainees are applying training on the job);
- 4. Effective presentation techniques.

Domain #9-Law and Ethics (7.33%)

Knowledge of

- 1. Legal issues (e.g., tort, negligence, civil, criminal, contracts, and disability terminology),
- 2. Protection of confidential information (e.g., privacy, trade secrets, personally identifiable information, and General Data Protection Regulation [GDPR]),
- 3. Standards development processes,
- 4. The ethics related to conducting professional practice (e.g., audits, record keeping, sampling, and standard writing),
- 5. The relationship between labor and management,
- 6. BCSP Code of Ethics,
- 7. Workers' compensation (e.g., injured worker's compensation).

Preparing for the ASP/CSP Examinations

Now that you understand the process of qualifying for the examination and the information that you will be tested on; you will need to develop a plan of action to prepare to take the examinations. The methods and techniques used for preparing for the examination(s) is an individual decision. The methods listed in this chapter have been developed over the years and have been determined to be highly successful. There are no shortcuts to preparing for these examinations. Preparation for this examination started in elementary and high school, by taking the required courses in math, science, economics, and business. With this being said, this chapter will guide you through some time-proven methods and techniques that will assist you in successfully passing the examinations and obtaining the professional designations.

Knowing Your Strengths and Weaknesses

One of your first steps in preparing for the ASP/CSP examinations is to determine where your strengths and weaknesses are. This can be achieved in a number of fashions. One way is to do a self-evaluation, by rating yourself on how well you know each subject area listed in the domains. Simply look at the domains and individual topics or tasks and rate yourself on how well you are familiar with the topic or task. A second method of determining how well you know the topic is to take a self-assessment examination. These self-assessment examinations can be purchased from BSCP for approximately \$95.00 each. They are useful in determining your initial status and for studying for the examination. A rating form to assist you in rating yourself is available on the BCSP website by downloading the examination guides. There is no cost for this document.

Developing an Examination Preparation Plan

Based on the results of your self-evaluation, the next step is to develop a plan to prepare for the examination. There is no set period to prepare for the examination. The time required to prepare is strictly a personal decision. Personal experience has shown that the average person with a solid background in mathematics (trigonometry and algebra), basic physics, chemistry, and business will require an average of 6 months to prepare. As stated in "Knowing Your Strengths and Weaknesses" section, the first step is to determine your strengths and weaknesses. One of the easiest things to do, and probably one of the worst mistakes made when preparing for an examination, is to spend a lot of time studying those topics that you are strongest in. Let's face it. It's the easy thing to do. However, it will not serve you well to spend most of your time doing this. Preparing for the examination is hard work. Focus on those areas that you are weakest in.

Use the self-assessment and evaluation to develop your study plan. Determine how much time you will need to study each topic, and develop a schedule to help you meet these goals. Stick to the schedule, as best as you can. Cramming a lot of information at the last minute may work for a few individuals, but for the majority of people, this method does not work. When studying a particular topic, don't just rely on remembering details of the subject. Try to gain a solid understanding of each topic. The examination questions will not be questions directly from the recommended resources. They are designed to test your overall knowledge and understanding.

References and Resources

This book is designed to cover the majority of topics listed on the examination, focusing primarily on the examination reference sheet and the equations. A list of other references is available on the BCSP website, should you need more in-depth knowledge of a particular subject. A number of professional organizations and private companies offer ASP/CSP review courses and materials. These courses can be helpful but should not be considered to be all-inclusive or to provide you with a complete set of knowledge of the requirements of the ASP/CSP skill set in a week's time. If you are going to spend the time and money to attend one of these courses, it is my recommendation that you do it early on in your preparation. This allows you to review and modify your preparation plans. There are study materials offered by the American Society of Safety Engineers, SPAN International, and DataChem Software, Inc., in the form of study books and compact disks with example tests. These materials average approximately \$400-\$650 each. As you can see, a person preparing for the examinations has a lot of options. All of these are viable options. You must determine what works best for you, as an individual, before proceeding.

Test-Taking Strategy

Both the Safety Fundamental Examination and the Comprehensive Practice Examination contain 200 questions each. Each question is multiplechoice, with four possible answers. Only one answer is correct. Each item is independent and does not rely on the correct answer to any other item. Data necessary to answer items are included in the item or in a scenario shared by several items. Your score is based on the number of scored items you correctly answer. There are no penalties assigned for wrong answers. Therefore, it is to your advantage to answer all of the questions, even if you are guessing on some. However, only correct answers count toward reaching the passing score.

In order for you to improve your chances of passing the examination, develop a strategy for actually taking the examination. It is helpful to understand an item (question) construction. A four-choice, objectively scored examination item contains an item stem and four possible answers. The premise, or lead-in statement or question, is called the stem. One of the choices is correct, and three are not. As mentioned previously, there are no penalties for incorrect answers, so for some items, you may have to guess. If you do not know the answer to an item or are not sure about it, you should guess intelligently. Look for choices that you know are incorrect or do not

appear as plausible as others. Choose your answer from among the remaining choices. This increases your chance of selecting a correct answer. Above all else, read the items carefully. Consider the item from the viewpoint of an examination item writer. Look for the item focus. Each item evaluates some subject or area of knowledge. Try to identify what knowledge the item is trying to test. Avoid reading things into an item. The item can only test on the information actually included. Recognize that the stems for some items may include information that is not needed for correctly answering them. Next, consider the context of the item. Often an item is framed around a particular industry or situation. Even if you do not work in that industry or have not experienced a particular situation, the item may be testing knowledge that you have. Avoid dismissing an item because of the context or the industry in which it is framed.

Use your examination time wisely. When taking your examination, complete those items first that you know or can answer quickly. Then, go back to items that were difficult for you or required considerable time to read, analyze, or compute. This approach allows you to build your score as quickly as possible. You may want to go back over skipped or marked items several times. Complete the skipped items. After you have gone through the examination once, or if you are running out of time, look for items that you have not answered. Select an answer for any skipped or incomplete item. By chance alone, you can get one of every four correct. Many times, a later item may contain the answer or at least a trigger to allow you to answer some previous questions.

Go back to troublesome items. It is a good idea to mark items that you are not sure about or items that are difficult for you. After you have worked through the entire examination, go back to marked items. Reread the items, and study the choices again. You may recall some knowledge or information that you had not considered earlier and be able to answer the item correctly. You may also be able to eliminate a choice that is not correct and increase your chance of guessing the answer.

One of the single most important items allowed in the examination room is a calculator. It is recommended that you bring two in case the battery in one is used up. In the latest version of the BCSP guidelines, you are authorized to bring any of the following types of calculators:

- Casio models (FX-115, FX-250, FX-260, FX-300),
- Hewlett-Packard models (HP 9, HP10, HP12, HP30),
- Texas Instruments models (TI30, TI-34, TI-35, TI36).

Spend time practicing with the calculator before the examination. Practicing helps with time management and allows you to become familiar with the specific functions, capabilities, and shortcuts of the calculator.

2

Regulations

Occupational Safety and Health Act

The Occupational Safety and Health Act (Public Law 91-596) was passed into law on December 29, 1970. It may also be referred to as the Williams–Steiger Occupational Safety and Health Act of 1970. The purpose of the law is "to assure safe and healthful working conditions for working men and women; by authorizing enforcement of the standards developed under the Act; by assisting and encouraging the states in their efforts to assure safe and healthful working condition; by providing for research, information, education, and training in the field of occupational safety and health; and for other purposes." The Occupational Safety and Health Administration (OSHA) was created within the Department of Labor. The primary responsibilities assigned to OSHA under the Act are as follows:

- Encourage employers and employees to reduce workplace hazards and to implement new or improve existing safety and health standards;
- Provide for research in occupational safety and health, and develop innovative ways of dealing with occupational safety and health problems;
- Establish "separate but dependent responsibilities and rights" for employers and employees for the achievement of better safety and health conditions;
- Maintain a reporting and record-keeping system to monitor jobrelated injuries and illnesses; establish training programs to increase the number of competent occupational safety and health personnel;
- Develop mandatory job safety and health standards, and enforce them effectively.

Who Is Covered under the Occupational Safety and Health Act?

Basically, all private sector employers with one or more workers in all 50 states and U.S. territories are governed under the OSH Act. OSHA regulations do not apply to all employers in the public sector (municipal, county, state, or federal government agencies), self-employed individuals, family members operating a farm, or domestic household workers.

Horizontal and Vertical Standards

Standards are referred to as either horizontal or vertical. *Horizontal standards* are those standards that apply to all industries and employers. For example, fire prevention and protection standards are horizontal standards. *Vertical standards* are those standards that apply only to particular industries and employers. Standards that apply only to the construction industry are an example of vertical standards.

General Duty Clause

Each standard promulgated by OSHA cannot cover every specific detail. Therefore, OSHA has implemented a "general duty clause" into the regulations. The General Duty Clause states that an employer shall furnish "a place of employment which is free from recognized hazards that are causing or are likely to cause death or serious physical harm to its employees." Where there is no specific standard, OSHA will use the general duty clause for the issuance of citations and fines.

The general duty clause can be found in Section 5 (a)(1) of the Occupational Safety and Health Act of 1970.

Employer Rights and Responsibilities

Besides meeting the intent of the general duty clause, the employer must

 Examine workplace conditions to make sure they comply with applicable standards;

- Minimize or reduce hazards;
- Use color codes, poster, labels, or signs when needed to warn employees of potential hazards;
- Provide training required by applicable OSHA standards;
- Keep OSHA-required records;
- Provide access to employee medical records and exposure records to employees or their authorized representatives.

Employee Rights and Responsibilities

OSHA requires workers to comply with all safety and health standards that apply to their actions on the job. Employees should

- Read the OSHA poster;
- Follow the employer's safety and health rules, and wear or use all required gear and equipment;
- Follow safe work practices for your job, as directed by your employer;
- Report hazardous conditions to a supervisor or safety committee;
- Report hazardous conditions to OSHA, if employers do not fix them;
- Expect safety and health on the job without fear of reprisal.

Communications and Correspondence with OSHA

There are two trains of thought among safety professionals when communicating and dealing with OSHA. The first train of thought is the belief that OSHA is the enemy and any communication or correspondence with them will result in a negative way for the company. The second thought is that OSHA has a purpose to protect the health and safety of employees and also serve as a valuable resource and partner for American businesses. The large majority of OSHA personnel are experienced and knowledgeable professionals and can serve as a useful resource in making decisions and often have ideas that you may not have thought of when trying to solve a particular problem within your facility or operation. With this being said, I would urge caution in providing information on an official basis. The safety professional must remember that a large portion of OSHA's responsibility lies in enforcing the regulations. Therefore, information provided to them can be used to levy penalties against your organization. When confronted on an official basis with a potential citation or penalty, it is best to provide only those specific documents that are requested. This, of course, is only a personal opinion, based on my experiences.

OSHA Inspections and Process

Whenever an OSHA inspection occurs, the employer must

- Be advised by the compliance officer of the reason for the inspection,
- Require identification of the OSHA compliance officer,
- Accompany the compliance officer on the inspection,
- Be assured of the confidentiality of any trade secrets observed by an OSHA compliance officer during an inspection.

Under the OSH Act, OSHA is authorized to conduct workplace inspections during normal operating hours. Inspections are based on the following priorities:

- Imminent danger situations,
- Catastrophes and fatal accidents,
- Employee complaints,
- Programmed high-hazard inspections,
- Follow-up inspections.

The inspection process starts even before the compliance officer visits your site. The compliance officer will prepare himself or herself by becoming familiar with your particular industry and business through research. He or she will be familiar with the potential hazards and processes involved with your particular business. Once on site, the compliance officer begins by presenting his or her credentials. *Note: The compliance officer has the right, under the law, for timely admission to the facility. Any unnecessary delay or refusal of admittance may prompt the compliance officer to obtain a warrant for inspection purposes.* Once the authorized credentials have been presented, the compliance officer will hold an opening conference. In the opening conference, the compliance officer will explain the purpose of the visit, how your particular facility was selected for inspection, the scope of the inspection, and the standards that will apply. The compliance officer will ask the employer to select an employer representative to accompany him or her on the inspection. The compliance officer also gives an authorized employee representative the

opportunity to attend the opening conference and accompany the compliance officer during the inspection. The Act does not require an employee representative to accompany the compliance officer. After the opening conference, the compliance officer conducts a walkthrough inspection of the facility. During the walkthrough inspection, the compliance officer determines which route to take and to which employees he or she will talk with. The compliance officer may review records, collect air samples, measure noise readings, or photograph and videotape certain areas. Once the compliance officer has completed the walkthrough inspection, he or she will hold a closing conference. During the closing conference, the compliance officer gives the employer and all other interested parties a copy of the Employer Rights and Responsibilities Following an OSHA Inspection (OSHA 3000) for their review and discussion. The compliance officer discusses with the employer all unsafe or unhealthful conditions observed during the inspection and indicates the violations for which he or she may recommend a citation and a proposed penalty. At this time, the compliance officer will also inform the employer of the appeal process.

OSHA Citations

After the compliance officer files his or her report with the Area Director, it is the Area Director who determines whether he or she will issue a citation or propose penalties. The Area Director will send all citations via certified mail. Once the employer has received the citation, they must post the citation *for 3* days or until the violation has been abated, *whichever is longer*.

OSHA Citation Penalties

The categories of violations that are cited and the penalties that may be proposed are as follows:

Other-than-serious violation: A violation that has a direct relationship to job safety and health but probably would not cause death or serious physical harm. OSHA may assess a penalty from \$0 to \$13,206 for each violation. The agency may adjust a penalty for an other-thanserious violation downward by as much as 95%, depending on the employer's good faith, history of previous violations, and size of business.

- *Serious violation:* A violation where there is a substantial probability that death or serious physical harm could result. OSHA assesses the penalty for a serious violation from \$947 to \$13,206 for each violation. OSHA may adjust a penalty for a serious violation downward on the basis of the employer's good faith, history of previous violations, and size of business.
- Willful violation: A violation that the employer intentionally and knowingly commits. The employer is aware that a hazardous condition exists, knows that the condition violates a standard or other obligation of the Act, and makes no reasonable effort to eliminate it. OSHA may propose penalties from \$9,472 to \$132,598 for each willful violation.
- *Repeated violation:* A violation of any standard, regulation, rule, or order where, upon reinspection, a substantially similar violation is found and the original citation has become a final order. Violations can bring a fine from \$9,472 to \$132,598 for each repeated violation.
- *Failure to abate violation:* Failure to correct a prior violation may bring a civil penalty of \$13,260 for each day that the violation continues beyond the prescribed abatement date.
- *Potential other penalties:* Additional violations for which OSHA may issue citations and proposed penalties are as follows:
 - Falsifying records, reports, or applications can, upon conviction, bring a criminal fine of \$10,000 or up to 6 months in jail, or both;
 - Violating posting requirements may bring a civil penalty of \$7,000;
 - Assaulting a compliance officer or otherwise resisting, opposing, intimidating, or interfering with a compliance officer in the performance of his or her duties is a criminal offense and is subject to a fine of not more than \$5,000 and imprisonment for not more than 3 years.

Note 1: Citations and penalty procedures may differ slightly in states with their own occupational safety and health programs.

Note 2: In the future, the Department of Labor is required to adjust minimum OSHA penalties for inflation by January 15 of each New Year.

Adjustment of Penalties for Good Faith

OSHA has a policy of reducing penalties for small employers and those acting in good faith. For serious violations, OSHA may also reduce the proposed penalty based on the gravity of the alleged violation. No good faith adjustment will be made for alleged willful violations. (www.osha.gov/ OshDoc/data_General_Facts/factsheet-inspections.pdf)

Appeals

Once a citation or non-citation is issued, an employee or an employer may appeal the decision by the Area Director. The appeals process is different for the employer than it is for the employee.

Employee Appeals

If an employee complaint initiates an inspection, the employee or authorized employee representative may request an informal review of any decision not to issue a citation. Employees may not contest citations, amendments to citations, proposed penalties, or lack of penalties. They may, however, contest the time allowed for abatement of a hazardous condition. They also may request an employer's "Petition for Modification of Abatement," which requests an extension of the proposed abatement period. Employees must contest the petition within 10 working days of its posting or within 10 working days after an authorized employee receives a copy. Employees may request an informal conference with OSHA to discuss any issues raised by an inspection, citation, notice of proposed penalty, or employer's notice of intention to contest.

Employer Appeals

Within 15 working days of receiving a citation, an employer who wishes to contest must submit a written objection to OSHA. The OSHA Area Director forwards the objection to the Occupational Safety and Health Review Commission (OSHRC), which operates independently of OSHA. The OSHRC is a commission of three member administrative law judges appointed by the President of the United States, with the consent of congress. Each judge appointed serves a term of 6 years. Initial appointments were 2 years for the first judge, 4 years for the second judge, and 6 years for the third judge. Each succeeding judge is appointed for a term of 6 years. This provides some administrative consistency within the commission.

When issued a citation and notice of proposed penalty, an employer may request an informal meeting with OSHA's Area Director to discuss the case. OSHA encourages employers to have informal conferences with the Area Director if the employer has issues arising from the inspection that he or she wishes to discuss or provide additional information. The Area Director is authorized to enter into settlement agreements that revise citations and penalties to avoid prolonged legal disputes and result in speedier hazard abatement. (Alleged violation contested before OSHRC does not need to be corrected until the contest is ruled upon by OSHRC.)

Petition for Modification of Abatement

After receiving a citation, the employer must correct the cited hazard by the abatement date unless he or she contests the citation or abatement date. Factors beyond the employer's control, however, may prevent the completion of corrections by that date. In such a situation, the employer who has made a good-faith effort to comply may file a petition to modify the abatement date.

The written petition must specify the steps taken to achieve compliance, the additional time needed to comply, the reasons additional time is needed, and interim steps taken to safeguard employees against the cited hazard during the intervening period. The employer must certify that he or she posted a copy of the petition in a conspicuous place at or near each place where a violation occurred and that the employee representative received a copy of the petition.

Notice of Contest

If the employer decides to contest either the citation, the abatement period, or the proposed penalty, he or she has *15 working days* from the time the citation and proposed penalty are received to notify the OSHA Area Director in writing. Failure to do so results in the citation and proposed penalty becoming a final order of the OSHRC without further appeal. An orally expressed disagreement will not suffice. This written notification is called a "Notice of Contest."

Although there is no specific format for the Notice of Contest, it must clearly identify the employer's basis for filing—the citation, notice of proposed penalty, abatement period, or notification of failure to correct violations.

The employer must give a copy of the Notice of Contest to the employees' authorized representative. If any affected employees are not represented by a recognized bargaining agent, the employer must post a copy of the notice in a prominent location in the workplace or give it personally to each unrepresented employee.

Review Procedure

If the employer files a written Notice of Contest within the required 15 working days, the OSHA Area Director forwards the case to OSHRC. The commission is an independent agency not associated with OSHA or the Department of Labor. The commission assigns the case to an administrative law judge.

OSHRC may schedule a hearing at a public place near the employer's workplace. The employer and the employee have the right to participate in the hearing; the OSHRC does not require them to be represented by attorneys. Once the administrative law judge has ruled, any party to the case may request a further review by OSHRC. Any of the three OSHRC commissioners may also, at his or her own motion, bring a case before the commission for review. Employers and other parties may appeal commission ruling to the appropriate U.S. Court of Appeals.

Note: The sections included above from OSHA Inspection Process through Review Procedure were taken from an OSHA web pamphlet (OSHA 2098 Rev. 2002) that requires no copyright permissions because it is in the public domain. However, it is the author's preference to give credit for work that is not his own.

States with their own occupational safety and health programs have a state system for review and appeal of citations, penalties, and abatement periods. The procedures are generally similar to federal OSHAs, but a state review board or equivalent authority hears cases.

Hazard Communication Standard (29 CFR 1910.1200)

Note: This standard has undergone tremendous changes since the initial publication of this book. Therefore, at the end of this chapter, I have elected to republish OSHA's Comparison of Hazard Communication Requirements between OSHA Hazard Communication Standard 29 CFR 1910.1200 (HCS) and Globally Harmonized System (GHS).

Purpose

This standard is still known as the HCS, but is unofficially known as GHS. However, it has undergone significant changes in the last few years. The purpose of this section is to ensure that the hazards of all chemicals produced or imported are classified and that information concerning the classified hazards is transmitted to employers and employees. The requirements of this section are intended to be consistent with the provisions of the *United Nations Globally Harmonized System of Classification and Labeling of Chemicals (GHS), Revision* 3. The transmittal of information is to be accomplished by means of comprehensive hazard communication programs, which are to include container labeling and other forms of warning, safety data sheets (SDSs), and employee training.

Scope and Application

This standard requires chemical manufacturers or importers to classify the hazards of chemicals that they produce or import and all employers to provide information to their employees about the hazardous chemicals to which they are exposed, by means of a hazard communication program, labels and other forms of warning, SDSs, and information and training. In addition, this standard requires distributors to transmit the required information to employers. (Employers who do not produce or import chemicals need only focus on those parts of the rule that deal with establishing a workplace program and communicating information to their workers.)

This standard applies to any chemical that is known to be present in the workplace in such a manner that employees may be exposed under normal conditions of use or in a foreseeable emergency.

Written Hazard Communication Standard

Employers are required to develop, implement, and maintain at each workplace a written hazard communication program that at least describes how the program will be managed and operated, including the requirements for labeling and other forms of warning, SDSs, and employee information and training, and how these requirements will be met, which also includes the following:

- A list of the hazardous chemicals known to be present using a product identifier that is referenced on the appropriate SDS (the list may be compiled for the workplace as a whole or for individual work areas);
- The methods the employer will use to inform employees of the hazards of nonroutine tasks (e.g., the cleaning of reactor vessels) and the hazards associated with chemicals contained in unlabeled pipes in their work areas;
- *Multiemployer workplaces*. Employers who produce, use, or store hazardous chemicals at a workplace in such a way that the employees of

other employers may be exposed shall additionally ensure that the hazard communication programs developed and implemented are transmitted to those employees and employers.

Label and Other Forms of Warning

The chemical manufacturer, importer, or distributor shall ensure that each container of hazardous chemicals leaving the workplace is labeled, tagged, or marked. Hazards not otherwise classified do not have to be addressed on the container. Where the chemical manufacturer or importer is required to label, tag, or mark, the following shall be provided:

- Product identifier;
- Signal word;
- Hazard statement(s);
- Pictogram(s);
- Precautionary statement(s);
- Name, address, and telephone number of the chemical manufacturer or other responsible party.

Safety Data Sheets

Chemical manufacturers and importers shall obtain or develop an SDS for each hazardous chemical they produce or import. Employers shall have an SDS in the workplace for each hazardous chemical that they use. The chemical manufacturer or importer preparing the SDS shall ensure that it is in English (although the employer may maintain copies in other languages as well) and includes at least the following section numbers and headings, and associated information under each heading, in the order listed below: (See Appendix D to 29 CFR 1910.1200—Safety Data Sheets, for the specific content of each section of the SDS.)

- Section 1: Identification,
- Section 2: Hazard identification,
- Section 3: Composition/information on ingredients,
- Section 4: First-aid measures,

- Section 5: Fire-fighting measures,
- Section 6: Accidental release measures,
- Section 7: Handling and storage,
- Section 8: Exposure controls/personal protection,
- Section 9: Physical and chemical properties,
- Section 10: Stability and reactivity information,
- Section 11: Toxicological information.

Note 1: Tobe consistent with the GHS, an SDS must also include the following headings in this order:

- Section 12: Ecological information,
- Section 13: Disposal considerations,
- Section 14: Transport information,
- Section 15: Regulatory information.

Employee Information and Training

Employee training and information is at the core of this standard. Employers shall provide employees with effective information and training on hazardous chemicals in their work area at the time of their initial assignment and whenever a new physical or health hazard the employees have not previously been trained about is introduced into their work area. Information and training may be designed to cover categories of hazards or specific chemicals. Chemical-specific information must always be available through labels and material SDSs (MSDSs).

Training

Employee training shall include at least the following information:

- Methods and observations that may be used to detect the presence or release of hazardous chemicals in the work area;
- The physical and health hazards of the chemicals in the work area;
- The measure employees can take to protect themselves from these hazards, including specific procedures the employer has implemented to protect employees from exposure to hazardous chemicals;

• The details of the hazard communication program developed by the employer, including the explanation of the labeling system and the MSDS, and how employees can obtain and use the appropriate hazard information.

Blood-Borne Pathogens Standard (29 CFR 1910.1030)

Scope, Application, and Definitions

The information provided in this standard applies to all occupation exposure to blood or other potentially infectious materials present in the workplace. Definitions within this standard are as follows:

- *Blood* means human blood, human blood components, and products made from human blood.
- *Blood-borne pathogens* means pathogenic microorganisms that are present in human blood and cause disease in humans. These pathogens include, but are not limited to, hepatitis B virus (HBV) and human immunodeficiency virus (HIV).
- Other potentially infectious materials means the following human body fluids: semen, vaginal secretions, cerebrospinal fluid, synovial fluid, pleural fluid, pericardial fluid, peritoneal fluid, amniotic fluid, saliva in dental procedures, any body fluid that is visibly contaminated with blood, and all body fluids in situations where it is difficult or impossible to differentiate between body fluids or any unfixed tissue or organ from a human.

Exposure Control Plan

Each employer having an employee (or employees) with occupational exposure or potential exposure to blood-borne pathogens shall establish a written Exposure Control Plan designed to eliminate or minimize employee exposure. The Exposure Control Plan shall contain at least the following information:

- The exposure determination;
- The schedule and method of implementation for methods of compliance, HIV and HBV research laboratories and production facilities, hepatitis B vaccination and postexposure evaluation and follow-up, communication of hazards to employees, and record keeping.

The Exposure Control Plan shall be reviewed and updated at least annually and whenever necessary to reflect new or modified tasks and procedures that affect occupational exposure and to reflect new or revised employee positions with occupational exposure.

Hepatitis B Vaccination and Postexposure Follow-Up

The employer shall make available the hepatitis B vaccine and vaccination series to all employees who have occupational exposure and postexposure evaluation and follow-up to all employees who have had an exposure incident. Should an employee refuse to take the hepatitis B vaccine, the employer is required to obtain a written statement of his or her refusal.

Communication of Hazards

Labels and signs shall be affixed to containers of regulated waste; refrigerators and freezers containing blood or other potentially infectious materials; and other containers used to store, transport, or ship blood or other potentially infectious materials.

Record Keeping

Medical Records

The employer shall establish and maintain an accurate record for each employee with occupational exposure. This record shall include the following:

- The name and social security number of the employee;
- A copy of the employee's hepatitis B vaccination status, including the dates of all the hepatitis B vaccinations and any medical records relative to the employee's ability to receive vaccination;
- A copy of all results of examinations, medical testing, and follow-up procedures;
- The employer's copy of the health care professional's written opinion;
- A copy of the information provided to the health care professional.

The employer shall ensure that employee medical records and information are maintained in the strictest of confidence. The information contained in the medical records may not be disclosed or reported without the employee's express written consent, except as required by this standard. The employer shall maintain the records required under this standard for at least the duration of employment plus 30 years.

Training Records

Training records shall include the following information:

- The dates of the training sessions,
- The contents or a summary of the training sessions,
- The names and qualification of persons conducting the training,
- The names and job titles of all persons attending the training sessions.

Training records shall be maintained for 3 years from the date on which the training occurred.

Control of Hazardous Energy Standard (29 CFR 1910.147)

Scope, Application, and Purpose

This standard covers the servicing and maintenance of machines and equipment in which the unexpected energization or start-up of the machines or equipment or the release of stored energy could cause injury to employees. This standard establishes minimum performance requirements for the control of such hazardous energy. This standard applies to the control of energy during servicing or maintenance of machines and equipment.

Definitions

- *Affected employee.* An employee whose job requires him or her to operate or use a machine or equipment on which servicing or maintenance is being performed under lockout or tagout, or whose job requires him or her to work in an area in which such servicing or maintenance is being performed.
- *Authorized employee.* A person who locks or tags out machines or equipment in order to perform servicing or maintenance on a machine or equipment. An affected employee becomes an authorized employee when that employee's duties include performing servicing or maintenance covered by this standard.
- *Capable of being locked out.* An energy-isolating device capable of being locked out if it has a hasp or other means of attachment to which a lock can be affixed or it has a locking mechanism built into it. Other energy-isolating devices are capable of being locked out, if lockout

can be achieved without the need to dismantle, rebuild, or replace the energy-isolating device or permanently alter its energy control capability.

- *Energized.* Connected to an energy source or containing a residual or stored energy.
- *Energy-isolating device*. A mechanical device that physically prevents the transmission or release of energy, including but not limited to the following: a manually operated electrical circuit breaker; a disconnect switch; a manually operated switch by which the conductors of a circuit can be disconnected for all ungrounded supply conductors, and, in addition, no pole can be operated independently; a line valve; a block; and any similar device used to block or isolate energy. Push buttons, selector switches, and other control circuit-type devices are not energy-isolating devices.
- *Energy source.* Any source of electrical, mechanical, hydraulic, pneumatic, chemical, thermal, or other energy.
- *Hot tap.* A procedure used in the repair, maintenance, and services activities that involves welding on a piece of equipment under pressure, in order to install connections or appurtenances.
- *Lockout.* The placement of a lockout device on an energy-isolating device, in accordance with the established procedure, ensuring that the energy-isolating device and the equipment being controlled cannot be operated until the lockout device is removed.
- *Lockout device.* A device that utilizes a positive means, such as a lock, either key or combination type, to hold an energy-isolating device in a safe position and prevent the energizing of a machine or equipment.
- *Normal production operations.* The utilization of a machine or equipment to perform its intended production function.
- *Servicing or maintenance.* Workplace activities such as constructing, installing, setting up, adjusting, inspecting, modifying, and maintaining or servicing machines or equipment.
- *Setting up.* Any work performed to prepare a machine or equipment to perform its normal production operation.
- *Tagout.* The placement of a tagout device on an energy-isolating device, in accordance with the established procedure, to indicate that the energy-isolating device and the equipment being controlled may not be operated until the tagout device is removed.
- *Tagout device.* A prominent warning device, such as a tag and a means of attachment, which can be securely fastened to an energy-isolating device in accordance with established procedure, to indicate that the energy-isolating device and the equipment being controlled may not be operated until the tagout device is removed.

Energy Control Program

The employer shall establish a program consisting of energy control procedures, employee training, and periodic inspections to ensure that before any employee performs any servicing or maintenance on a machine or equipment where the unexpected energizing, start-up, or release of stored energy could occur and cause injury, the machine or equipment shall be isolated from the energy source and rendered inoperative.

Periodic Inspection

The employer shall conduct a periodic inspection of the energy control procedure at least annually to ensure that the procedure and the requirements of this standard are being followed. The periodic inspection shall be performed by an authorized employee other than the one(s) utilizing the energy control procedure being inspected. The periodic inspection shall be conducted to correct any deviations or inadequacies identified. The employer shall certify that the periodic inspections have been performed. The certification shall identify the machine or equipment on which the energy control procedure was being utilized, the date of the inspection, the employees included in the inspection, and the person performing the inspection.

Training and Communication

The employer shall provide training to ensure that the purpose and function of the energy control program are understood by employees and that the knowledge and skills required for the safe application, usage, and removal of the energy controls are acquired by employees. The training shall include the following:

- Recognition of applicable hazardous energy sources, the type and magnitude of the energy available in the workplace, and the methods and means necessary for energy isolation and control;
- Purpose and use of the energy control procedure;
- Prohibition relating to attempts to restart or reenergize machines or pieces of equipment that are locked or tagged out.

Retraining shall be provided for all authorized and affected employees whenever there is a change in their job assignments, a change in machines, equipment, or processes that present a new hazard, or when there is a change in the energy control procedures. Additional retraining shall also be conducted whenever a periodic inspection reveals inadequacies in the program or procedures. The employer shall certify that employee training has been accomplished and is being kept up to date. The certification shall contain each employee's name and dates of training.

Confined Space Entry Standard (29 CFR 1910.146)

Scope and Application

This standard contains requirements for practices and procedures to protect employees in general industry from the hazards of entry into permit-required confined spaces. This standard does not apply to agriculture, construction, or shipyard employment.

Definitions

- Acceptable entry conditions means the conditions that must exist in a permit space to allow entry and to ensure that employees involved with a permit-required confined space entry can safely enter into and work within the space.
- Attendant means an individual stationed outside one or more permit spaces who monitors the authorized entrants and who performs all attendant's duties assigned in the employer's permit space program.
- *Authorized entrant* means an employee who is authorized by the employer to enter a permit space.
- *Confined space* means a space that (1) is large enough and so configured that an employee can bodily enter and perform assigned work,(2) has limited or restricted means for entry or exit, and (3) is not designed for continuous employee occupancy.
- *Engulfment* means the surrounding and effective capture of a person by a liquid or finely divided (flowable) solid substance that can be aspirated to cause death by filling or plugging the respiratory system or that can exert enough force on the body to cause death by strangulation, constriction, or crushing.
- *Entry* means the action by which a person passes through an opening into a permit-required confined space.
- *Entry permit* means the written or printed document that is provided by the employer to allow and control entry into a permit space and that contains the information required in the standard.
- *Entry supervisor* means the person responsible for determining if acceptable entry conditions are present at a permit space where entry is planned, for authorizing entry and overseeing entry operations, and for terminating entry as required in the standard.
- *Hazardous atmosphere* means an atmosphere that may expose employees to the risk of death, incapacitation, impairment of ability to selfrescue, injury, or acute illness.

- *Immediately dangerous to life or health* means any condition that poses an immediate or delayed threat to life or that would cause irreversible adverse health effects or that would interfere with an individual's ability to escape unaided from a permit space.
- *Isolation* means the process by which a permit space is removed from service and completely protected against the release of energy and material into the space.
- *Oxygen-deficient atmosphere* means an atmosphere containing less than 19.5% oxygen by volume.
- *Oxygen-enriched atmosphere* means an atmosphere containing more than 23.5% oxygen by volume.
- *Permit-required confined space* means a confined space that has one or more of the following characteristics: (1) contains or has a potential to contain a hazardous atmosphere, (2) contains a material that has the potential for engulfing an entrant, (3) has an internal configuration such that an entrant could be trapped or asphyxiated by inwardly converging walls or by a floor that slopes downward and tapers to a smaller cross section, or (4) contains any other recognized serious safety or health hazard.
- *Rescue service* means the personnel designated to rescue employees from permit spaces.

General Requirements

The employer shall evaluate the workplace to determine if any spaces are permit-required confined spaces. If the workplace contains permit spaces, the employer shall inform exposed employees by posting danger signs, or by any other equally effective means, of the existence and location of and the danger posed by the permit spaces.

Confined Space Entry Program

If the employer decides that its employees will enter permit spaces, the employer shall develop and implement a written permit space program that complies with this standard. The written program shall be available for inspection by employees and their authorized representatives.

Under the confined space entry program, the employer shall

- Implement the measures necessary to prevent unauthorized entry;
- Identify and evaluate the hazards of permit spaces before the employee enters them;
- Develop and implement the means, procedures, and practices necessary for safe permit space entry operations.

Entry Permits

The entry permit that documents compliance with this standard and authorizes entry to a permit space shall include the following:

- The permit space to be entered,
- Purpose of the entry,
- Date and the authorized duration of the entry permit,
- Authorized entrants by name,
- Attendant name,
- Entry supervisor (by name),
- Measures to isolate the permit space and to eliminate or control permit space hazards before entry.

Employees must have the opportunity to observe the monitoring under this standard.

Training

The employer shall provide training so that all employees whose work is regulated by this standard acquire the understanding, knowledge, and skills necessary for the safe performance of their duties. Training shall be provided to each affected employee before the employee is first assigned duties under this standard. Whenever there is a change in assigned duties, the employer determines that there is a discrepancy in the program, or there is a change in permit space operations that present a hazard about which an employee has not previously been trained, and thus, additional training is required. The employer shall certify that the training required has been accomplished. The certification shall contain each employee's name, the signatures or initial of the trainers, and the dates of training. The certification shall be available for inspection by employees and their authorized representatives.

Personal Protective Equipment (29 CFR 1910.132)

Application

Protective equipment covered in this standard includes personal protective equipment (PPE) for eyes, face, head, and extremities; protective clothing; respiratory devices; and protective shield and barriers, which shall be provided, used, and maintained in a sanitary and reliable condition wherever it is necessary by reason of hazards of processes or environment, chemical hazards, radiological hazards, or mechanical irritants encountered in a *Note:* OSHA's Final PPE Rule, which was effective on February 13, 2008, requires employers to provide PPE, at no cost to the employees. The Final Rule does not require an employer to provide normal safety boots or shoes, but does require the employer to provide specialty boots.

Employee-Owned Equipment

Where employees provide their own protective equipment (of their own choice), the employer shall be responsible to assure its adequacy, including proper maintenance and sanitation of such equipment.

Hazard Assessment and Equipment Selection

The employer shall assess the workplace to determine if hazards are present, or are likely to be present, which necessitate the use of PPE. If such hazards are present, or likely to be present, the employer shall (1) select and have each affected employee use the types of PPE that will protect the affected employee from the hazards identified in the hazard assessment, (2) communicate selection decisions to each affected employee, and (3) select PPE that properly fits each affected employee. The employer shall verify that the required workplace hazard assessment has been performed through a written certification that identifies the workplace evaluated; the person certifying that the evaluation has been performed; the date(s) of the hazard assessment; and which determines the document as a certification of the hazard assessment.

Training

The employer shall provide training to each employee who is required under this standard to use PPE. Each employee shall be trained to know at least the following:

- When PPE is necessary;
- What PPE is necessary;
- How to properly don, doff, adjust, and wear PPE;
- Limitations of the PPE;
- Proper care, maintenance and useful life, and disposal of the PPE.

Each affected employee shall demonstrate an understanding of the training and the ability to use PPE properly, before being allowed to perform work requiring the use of PPE. When the employer has reason to believe that any affected employee who has already been trained does not have the understanding and skill required, the employer shall retrain each such employee.

Respiratory Protection Standard (29 CFR 1910.134)

Purpose

The purpose of the Respiratory Protection Standard is to control those occupational diseases caused by breathing air contaminated with harmful dusts, fogs, fumes, mists, gases, smokes, sprays, or vapors. This shall be accomplished as far as feasible by accepted engineering control measures. When effective engineering control measures are not feasible, or while they are being instituted, appropriate respirators shall be used.

Respirators shall be provided by the employer when such equipment is necessary to protect the health of the employee. The employer shall provide the respirators that are applicable and suitable for the purpose intended. The employer shall be responsible for the establishment and maintenance of a respiratory protection program, which shall include the requirements of this standard.

Definitions

- *Air-purifying respirator* means a respirator with an air-purifying filter, cartridge, or canister that removes specific air contaminants by passing ambient air through the air-purifying element.
- Assigned protection factor means the protection factor assigned to the respirator type.
- Atmosphere-supplying respirator means a respirator that supplies the respirator user with breathing air from a source independent of the ambient atmosphere and includes supplied-air respirators and self-contained breathing apparatus units.
- *Fit test* means the use of a protocol to qualitatively or quantitatively evaluate the fit of a respirator on an individual.
- *Powered air-purifying respirator* means an air-purifying respirator that uses a blower to force the ambient air through air-purifying elements to the inlet covering.
- *Qualitative fit test* means a pass/fail test to assess the adequacy of respirator fit that relies on the individual's response to the test agent.
- *Quantitative fit test* means an assessment of the adequacy of respirator fit by numerically measuring the amount of leakage into the respirator.
- *Self-contained breathing apparatus* means an atmosphere-supplying respirator for which the breathing air source is designed to be carried by the user.

Supplied-air respirator or airline respirator means an atmospheresupplying respirator for which the source of breathing air is not designed to be carried by the user.

Respiratory Protection Program

This standard requires the employer to develop and implement a written respiratory protection program with required worksite-specific procedures and elements for required respirator use. The program must be administered by a suitably trained program administrator. In addition, certain program elements may be required for voluntary use to prevent the potential hazards associated with the use of the respirator. The employer shall include in the written program the following information:

- Procedures for selecting respirators for use in the workplace;
- Medical evaluations of employees required to use respirators;
- Fit testing procedures;
- Procedures for proper use of respirators;
- Procedures and schedules for cleaning, disinfecting, storing, inspecting, repairing, discarding, and otherwise maintaining respirators;
- Procedures to ensure adequate air quality, quantity, and flow of breathing air for atmosphere-supplying respirators;
- Training required for respirator usage;
- Procedures for evaluating the effectiveness of the program.

Training and Information

This standard requires the employer to provide effective training to employees who are required to use respirators. The training must be comprehensive, must be understandable, and must recur annually, and more often, if necessary. Training must ensure that each employee can demonstrate knowledge and understanding of the topic, and include the following:

- Why respirator protection is necessary and how improper wearing or use can compromise the protection received;
- Limitations and capabilities of the respirator and cartridge (filter);
- Inspection and maintenance procedures;
- Cleaning, disinfecting, and storage procedures;
- Proper wear of the respirator.

Retraining shall be administered annually, or when a new process or procedure is implemented that the employee has not been previously trained.

Fall Protection Standard (29 CFR 1926.500–503) (Subpart M)

Scope and Application

This standard sets forth the requirements and criteria for fall protection in construction work areas covered by this standard. Exception: The provisions of this standard do not apply when employees are making inspection, investigation, or assessment of workplace conditions prior to the actual start of construction work or after all construction work has been completed.

Definitions

- *Anchorage* means a secure point of attachment for lifelines, lanyards, or deceleration devices. Anchorage points must be rated to 5,000 lb per person attached.
- *Body harness* means straps that may be secured about the employee in a manner that will distribute the fall arrest forces over at least the thighs, pelvis, waist, chest, and shoulders with means for attaching it to other components of a personal fall arrest system.
- *Connector* means a device that is used to couple parts of the personal fall arrest system and positioning device systems together.
- *Controlled access zone* means an area in which certain work may take place without the use of guardrail systems, personal fall arrest systems, or safety net systems and access to the zone is controlled.
- Deceleration device means any mechanism, such as a rope grab, rip-stitch lanyard, specially woven lanyard, tearing or deforming lanyards, and automatic self-retracting lifelines/lanyards, that serves to dissipate a substantial amount of energy during a fall arrest, or otherwise limit the energy imposed on an employee during a fall arrest.
- *Deceleration distance* means the additional vertical distance a falling employee travels, excluding lifeline elongation and free fall distance, before stopping, from the point at which the deceleration device begins to operate.
- *Free fall* means the act of falling before a personal fall arrest system begins to apply force to arrest the fall.
- *Guardrail system* means a barrier erected to prevent employees from falling to lower levels.
- *Lanyard* means a flexible line of rope, wire rope, or strap that generally has a connector at each end for connecting the body harness to a deceleration device, lifeline, or anchorage.
- *Leading edge* means the edge of a floor, roof, or formwork for a floor or other walking/working surface that changes location as additional floor,

roof, decking, or formwork sections are placed, formed, or constructed. A leading edge is considered to be an "unprotected side and edge" during periods when it is not actively and continuously under construction.

- *Lifeline* means a component consisting of a flexible line for connection to an anchorage at one end to hang vertically (vertical lifeline), or for connection to anchorages at both ends to stretch horizontally (horizontal lifeline), and which serves as a means for connecting other components of a personal fall arrest system to the anchorage.
- *Personal fall arrest system* means a system used to arrest an employee in a fall from a working level. It consists of an anchorage, connectors, and body harness and may include a lanyard, deceleration device, lifeline, or suitable combinations of these.
- *Walking/working surface* means any surface, whether horizontal or vertical, on which an employee walks or works, including, but not limited to, floors, roofs, ramps, bridges, runways, formwork, and concrete reinforcing steel, but not including ladders, vehicles, or trailers, on which employees must be located in order to perform their duties.

Duty to Have Fall Protection

The employer shall determine if the walking/working surfaces on which its employees are to work have the strength and structural integrity to support employees safely. Employees shall be allowed to work on those surfaces only when the surfaces have the requisite strength and structural integrity.

Each employee on a walking/working surface (horizontal and vertical surface) with an unprotected side or edge which is 6 ft or more above a lower level shall be protected from falling by the use of guardrail systems, safety net systems, or personal fall arrest system.

Training

The employer shall provide a training program for each employee who might be exposed to fall hazards. The program shall enable each employee to recognize the hazards of falling and shall train each employee in the procedures to be followed in order to minimize these hazards. The employer shall assure that each employee has been trained, as necessary, by a competent person qualified to teach the following information:

- Nature of fall hazards in the work area;
- Correct procedures for erecting, maintaining, disassembling, and inspecting fall protection systems to be used;
- Use and operation of guardrail systems, personal fall arrest systems, safety net systems, warning line systems, safety monitoring systems, controlled access zones, and other protection to be used;

- The role of each employee in the safety monitoring system in which this system is used;
- The limitations on the use of mechanical equipment during the performance of roofing work on low-sloped roofs;
- Correct procedures for the handling and storage of equipment and materials and the erection of overhead protection;
- The role of employers in fall protection plans;
- The specific requirements of the standard.

The employer shall verify compliance with the standard by preparing a written certification record. The written certification record shall contain the name or other identity of the employee trained, the date(s) of the training, and the signature of the person who conducted the training or the signature of the employer. The latest training certificate shall be maintained. When the employer has reason to believe that any affected employee who has already been trained does not have the understanding and skill required to work safely, the employer shall retrain each such employee or whenever new equipment or systems are installed.

Record Keeping

OSHA 300, 300-A, AND 301 FORMS (29 CFR 1904.29)

Employers must use OSHA 300, 300-A, and 301 forms, or equivalent forms, for recordable injuries and illnesses. The OSHA 300 form is called the Log of Work-Related Injuries and Illnesses, the OSHA 300-A form is the Summary of Work-Related Injuries and Illnesses, and the OSHA 301 form is called the Injury and Illness Incident Report.

How Quickly Must Each Injury or Illness Be Recorded?

An employer must enter each recordable injury or illness on the 300 and 301 incident report with *seven calendar days* of receiving information that a recordable injury or illness has occurred.

How are "privacy cases" listed on the forms?

The following cases are considered to be privacy cases, and therefore, the employee's name is not entered on the OSHA 300 form. Instead, enter "PRIVACY CASE" in place of the employee's name.

- An injury or illness to an intimate body part or the reproductive system;
- An injury or illness resulting from a sexual assault;
- Mental illnesses;

- HIV infection, hepatitis, or tuberculosis;
- Needlestick injuries and cuts from sharp objects that are contaminated with another person's blood or other potentially infectious materials;
- Other illnesses if the employee voluntarily requests that his or her name not be entered on the log.

Annual Summary

An annual summary is created on the OSHA 300 log and is certified by a company owner or designated representative. The OSHA 300-A form is signed by a company owner or designated representative and posted in a conspicuous location no later than February 1 of the year following the year covered by the records. The OSHA 300-A form shall remain posted until April 30th of the year following the year covered by the records. OSHA 300 logs (and separate privacy case files, if required) shall be maintained for a period of 5 years following the end of the calendar year that these records cover.

Providing Records to Government Representatives

When an authorized government representative asks for the records you keep under 1904, you must provide copies of the records within four business hours. Authorized government representatives under this standard include

- A representative of the Secretary of Labor,
- A representative of the Secretary of Health and Human Services,
- A representative of a state agency responsible for administering a state plan approved under the Act.

Reporting Serious Incidents or Fatalities (29 CFR 1904.39)

OSHA requires an employer to notify them within eight h after the death of any employee from a work-related incident. OSHA also requires that employer report hospitalizations, amputations or loss of an eye of employees with 24 h. This reporting must be orally by telephone or in person to the Area Office of the OSHA nearest the location of the incident. The toll free number to report this is 1-800-321-6742. The incident may also report any of these via electronic submissions at www.osha.gov. One exception to this is a fatality or hospitalizations resulting from a motor vehicle accident occurring on a public road. These do not have to be reported. However, if the fatality, in-patient hospitalization, amputation, or loss of eye occurred in a construction work zone, you must report the incident to OSHA.

Determining Recordable Injuries or Illnesses

In general, an employer must consider an injury or illness to be recordable, if it results in any of the following:

- Death,
- Days away from work,
- Restricted work or transfer to another job,
- Medical treatment beyond first aid,
- Loss of consciousness,
- Injury or illness diagnosed by a physician or other licensed health care professional.

Note: Determining whether an injury or illness is work related may appear simple on the surface. However, this is not always the case. In the case where an employer believes that the injury or illness is personal and not work related, he or she must record the injury or illness on the OSHA 300 and 300 forms, until such time as it is definitively determined to be nonwork related.

Calculating Total Recordable Incident Rates (TRIR)

To calculate a company's total recordable incident rate (TRIR), use the following equation:

 $TRIR = \frac{No. of injury or illness cases \times 200,000}{Total number of hours worked}.$

Example

A company has two recordable injury cases and 1 day away or restricted case for a total of three cases. The company has worked a total of 278,942 h for the year. Calculate the TRIR for this company.

 $TRIR = \frac{3 \times 200,000}{278,942 \text{ h}}$ $TRIR = \frac{600,000}{278,942}$ TRIR = 2.15

The company's TRIR for the year is 2.15. This rate can be compared to the Bureau of Labor and Statistics average rating for your particular Standard Industry Code category. The constant of 200,000 is based on 100 employees working 2,000 h/year. Therefore, this rate is stating that for every 100 employees, 2.15 of them have sustained an injury or illness as a result of a work-related accident.

Calculating Days Away, Restricted, or Transfer Rates

To calculate the days away, restricted, or transfer (DART) rate, use only those injury cases (included in the TRIR) that resulted in days away, restricted, or transfer from job. The equation is as follows:

$$DART = \frac{No. of DART cases \times 200,000}{Total number of hours worked}$$

Example

As in the previous example, use 1 DART case and 278,942 total hours work to calculate the DART rate.

 $DART = \frac{1 \operatorname{case} \times 200,000}{278,942}$ $DART = \frac{200,000}{278,942}$ DART = 0.72

Calculating Severity Rates

To calculate the severity rates, use the following equation:

Severity rate = $\frac{\text{No. of lost work days} \times 200,000}{\text{Total number of hours worked}}$

Example

Company XYZ had two recordable injuries with one of them resulting in 52 days of lost time. The total number of hours worked was 278,942 h.

Severity rate = $\frac{52 \times 200,000}{278,942}$

Severity rate = $\frac{10,400,000}{278,942}$

Severity rate = 37.28

Key Information to Remember on Regulations

- 1. The Occupational Safety and Health Act (Public Law 91-596) was passed into law on December 29, 1970.
- 2. OSHA regulations do not apply to all employers in the public sector (municipal, county, state, or federal), self-employed individuals, family members operating a farm, or domestic household workers.
- 3. Horizontal standards are those standards that apply to all industries and employers.
- 4. Vertical standards are those standards that apply only to particular industries and employers.
- 5. Section 5(a)(1) of the OSH Act of 1970 is the General Duty Clause.
- 6. Once an employer receives a citation, he or she must post the citation in a conspicuous location for a period of 3 days or until the violation has been abated, whichever is longer.
- 7. If an employer decides to contest a citation or abatement period, or the proposed penalty, he or she has 15 working days from the time the citation or proposed penalty is received to notify the OSHA Area Director in writing.
- 8. If an employee who has received an exposure to blood-borne pathogens refuses to take the hepatitis B vaccination, he or she must sign a refusal statement, which is maintained on file with the employer.
- 9. Employee medical records, under the Blood-borne Pathogen Standard, must be maintained on file for the duration of employment plus 30 years.
- A work-related recordable injury must be recorded on the OSHA 300 and 301 forms within 7 working days of receiving notification of the injury or illness.
- 11. When an authorized government representative asks for records required in 29 CFR 1904, an employer must provide copies within 4 h.
- 12. A work-related fatality must be reported to OSHA within 8 h.
- 13. A worked-related injury resulting in in-patient hospitalization, amputation, or loss of an eye must be reported to OSHA within 24 h.

Comparison of Hazard Communication Requirements

OSHA Hazard Communication Standard 29 CFR 1910.1200 (HCS) and Globally Harmonized System (GHS)

Introduction

The GHS is not in itself a regulation or a model regulation. It is a framework from which competent authorities may select the appropriate harmonized classification and communication elements. Competent authorities will decide how to apply the various elements of the GHS within their systems based on their needs and the target audience.

The GHS includes the following elements:

- a. Harmonized criteria for classifying substances and mixtures according to their health, environmental, and physical hazards;
- b. Harmonized hazard communication elements, including requirements for labeling and MSDSs.

The harmonized elements of the GHS may be seen as a collection of building blocks from which to form a regulatory approach. While the full range is available to everyone, and should be used if a country or organization chooses to cover a certain effect when it adopts the GHS, the full range does not have to be adopted. This constitutes the GHS building block approach.

Competent authorities, such as OSHA, will determine how to implement the elements of the GHS within their systems. This document compares the GHS elements to the OSHA HCS elements. The competent authority allowances/decision points and the selection of building blocks are addressed in Section VI.

This Comparison of Hazard Communication Requirements document includes the following segments:

- General provisions comparison;
- Health hazard comparison;
- Physical hazard comparison;
- Label comparison
 - GHS and transport pictograms,
 - Label examples;
- MSDS comparison;
- GHS competent authority allowances and building block discussion.

Purpose

Comparison

The purpose of the HCS and that of the GHS are consistent. The HCS is one of the major existing systems that was to be harmonized by the GHS.

OSHA HCS 29 CFR 1910.1200

29 CFR 1910.1200 (a)(1) Purpose

The purpose of this section is to ensure that the hazards of all chemicals produced or imported are evaluated and that information concerning their hazards is transmitted to employers and employees. This transmittal of information is to be accomplished by means of comprehensive hazard communication programs, which are to include container labeling and other forms of warning, MSDSs, and employee training.

(a)(2)

employees and downstream employers; and development This occupational safety and health standard is intended to to employees, may include, for example, but is not limited including lists of hazardous chemicals present; labeling of concerning hazards and appropriate protective measures legal requirements of a state, or political subdivision of a state, pertaining to this subject. Evaluating the potential to, provisions for developing and maintaining a written hazards of chemicals, and communicating information protective measures to employees and to preempt any containers of chemicals in the workplace, as well as of workplaces; preparation and distribution of MSDSs to address comprehensively the issue of evaluating the and implementation of employee training programs hazard communication program for the workplace, potential hazards of chemicals and communicating information concerning hazards and appropriate containers of chemicals being shipped to other

1.1.1 Purpose

GHS

experts who can follow the changes in these laws and regulations and prepare different product in different countries. Through variations in definitions of hazards, a chemical regulation of all of them is simply not possible for any entity. Provision of information comprehensive system for classifying and labeling chemicals, many countries have no require information to be prepared and transmitted to those using chemicals, through gives those using chemicals the identities and hazards of these chemicals and allows labels and SDSs. In addition, given the complexity of developing and maintaining a considered to cause cancer in one country, but not in another. Decisions on when or potential for adverse effects to people or the environment. As a result, a number of labels or SDSs. Given the large number of chemical products available, individual differences are significant enough to result in different labels or SDSs for the same countries or organizations have developed laws or regulations over the years that companies wishing to be involved in international trade must have large staffs of practice worldwide. But alongside the benefits of these products, there is also the 1.1.1.3 Given the reality of the extensive global trade in chemicals, and the need to 1.1.1.2 While these existing laws or regulations are similar in many respects, their how to communicate hazards on a label or SDS thus vary around the world, and 1.1.1.1 The use of chemical products to enhance and improve life is a widespread the appropriate protective measures to be implemented in the local use settings. may be considered flammable in one country, but not in another. Or it may be system at all.

1.1.3 Given the reality of the extensive global trade in chemicals, and the need to develop national programs to ensure their safe use, transport, and disposal, it was recognized that an internationally harmonized approach to classification and labeling would provide the foundation for such programs. Once countries have consistent and appropriate information on the chemical sthey import or produce in their own countries, the infrastructure to control chemical exposures and protect people and the environment can be established in a comprehensive manner.

Comnaricon	Purpose
Comparison The purpose of the HCS and that of the GHS are consistent.	comparison The purpose of the HCS and that of the GHS are consistent. The HCS is one of the major existing systems that was to be harmonized by the GHS.
OSHA HCS 29 CFR 1910.1200	GHS
regarding hazards of chemicals and protective measures. Under Section 18 of the Act, no state or political	1.1.1.4 Thus, the reasons for setting the objective of harmonization were many. It is anticipated that, when implemented, the GHS will
subdivision of a state may adopt or enforce, through any court or agency, any requirement relating to the issue addressed by this federal standard, except pursuant to a federally approved state plan.	 a. Enhance the protection of human health and the environment by providing an internationally comprehensible system for hazard communication, b. Provide a recognized framework for those countries without an existing system, c. Reduce the need for testing and evaluation of chemicals, d. Facilitate international trade in chemicals whose hazards have been properly assessed and identified on an international basis.
	1.1.1.5 The work began with the examination of existing systems and the determination of the scope of the work. While many countries had some requirements, the following systems were deemed to be the "major" existing systems and were used as the primary basis for the elaboration of the GHS:
	 a. Requirements of systems in the United States for the workplace, consumers, and pesticides; b. Requirements of Canada for the workplace, consumers, and pesticides; c. European Union directives for classification and labeling of substances and preparations; d. The United Nations Recommendations on the Transport of Dangerous Goods.
	1.1.1.6 The requirements of other countries were also examined as the work developed, but the primary task was to find ways to adopt the best aspects of these existing systems and develop a harmonized approach. This work was done based on agreed principles of harmonization that were adopted early in the process:
	a. The level of protection offered to workers, consumers, the general public, and the environment should not be reduced as a result of harmonizing the classification and labeling systems;

Regulations

(Continued)

e
ū
õ
×
- 14
- H
=
Ó.

Comparison

The purpose of the HCS and that of the GHS are consistent. The HCS is one of the major existing systems that was to be harmonized by the GHS.

OSHA HCS 29 CFR 1910.1200	GHS
	b. The hazard classification process refers principally to the hazards arising from the
	intrinsic properties of chemical elements and compounds and mixtures thereof,
	whether natural or synthetic;
	c. Harmonization means establishing a common and coherent basis for chemical
	hazard classification and communication, from which the appropriate elements
	relevant to means of transport, consumer, worker, and environment protection can
	be selected;
	d. The scope of harmonization includes both hazard classification criteria and hazard
	communication tools, for example, labeling and chemical SDSs, taking into account
	especially the four existing systems identified in the International Labour
	Organization (ILO) report;
	e. Changes in all these systems will be required to achieve a single GHS; transitional
	measures should be included in the process of moving to the new system;
	f. The involvement of concerned international organizations of employers, workers,
	consumers, and other relevant organizations in the process of harmonization should
	be ensured;
	g. The comprehension of chemical hazard information, by the target audience, for
	example, workers, consumers, and the general public, should be addressed;
	h. Validated data already generated for the classification of chemicals under the
	existing systems should be accepted when reclassifying these chemicals under the
	harmonized system;
	i. A new harmonized classification system may require adaptation of existing methods
	for testing of chemicals;
	j. In relation to chemical hazard communication, the safety and health of workers,
	consumers, and the public in general, as well as the protection of the environment,
	should be ensured while protecting confidential business information (CBI), as
	prescribed by the competent authorities.

Sc	Scope
Comparison The GHS scope clarification is consistent with the HCS exemptions and labeling exceptions. Consumer products and pharmaceuticals are specifically addressed in the GHS scope. The HCS includes laboratories, sealed containers, and distributors, while as a framework for systems, the GHS does no	Omparison The GHS scope clarification is consistent with the HCS exemptions and labeling exceptions. Consumer products and pharmaceuticals are specifically addressed in the GHS scope. The HCS includes laboratories, sealed containers, and distributors, while as a framework for systems, the GHS does not
include these specific issues. The GHS addresses testing under hazard determination. The GHS and HCS do not require testing for	under hazard determination. The GHS and HCS do not require testing for
health hazards. All the physical hazards in the HCS are not linked to speci is not required.	health hazards. All the physical hazards in the HCS are not linked to specific test methods (as is the case in the GHS), and testing for physical hazards is not required.
OSHA HCS 29 CFR 1910.1200	GHS
29 CFR 1910.1200 (b) Scope and Application	1.1.2 Scope
(p)(1)	1.1.2.1 The GHS includes the following elements:
This section requires chemical manufacturers or importers to assess the	
hazards of chemicals that they produce or import, and all employers to	a. Harmonized criteria for classifying substances and mixtures according
provide information to their employees about the hazardous chemicals	to their health, environmental, and physical hazards;
to which they are exposed, by means of a hazard communication	b. Harmonized hazard communication elements, including requirements
program, labels and other forms of warning, MSDSs, and information	for labeling and SDSs.
and training. In addition, this section requires distributors to transmit	
the required information to employers. (Employers who do not produce	1.1.2.2 This document describes the classification criteria and the hazard
or import chemicals need only focus on those parts of this rule that deal	communication elements by the type of hazard (e.g., acute toxicity,
with establishing a workplace program and communicating information	flammability). In addition, decision logics for each hazard have been
to their workers. Appendix E of this section is a general guide for such	developed. Some examples of classification of chemicals in the text, as
employers to help them determine their compliance obligations under	Well as in Annex 7, illustrate how to apply the criteria. There is also some discussion shout issues that wow relead during the development of the
	uscussion about issues that were taised during the development of the system where additional guidance was thought to be necessary to
(b)(2) This costion analise to any chemical that is known to be meant in the	implement the system.
Itus section applies to any chemical that is known to be present in the workplace in such a manner that employees may be exposed under	1.1.2.3 The scope of the GHS is based on the mandate from the 1992
normal conditions of use or in a foreseeable emergency.	United Nations Conference on Environment and Development (UNCEU) for development of such a system as stated in paragraphs 26 and 27 of
(p)(3)	Agenda 21, Chapter 19, Program Area B, reproduced below:
This section applies to laboratories only as follows:	
	(Continued)

51

Comparison

addressed in the GHS scope. The HCS includes laboratories, sealed containers, and distributors, while as a framework for systems, the GHS does not The GHS scope clarification is consistent with the HCS exemptions and labeling exceptions. Consumer products and pharmacenticals are specifically include these specific issues

Scope

health hazards. All the physical hazards in the HCS are not linked to specific test methods (as is the case in the GHS), and testing for physical hazards The GHS addresses testing in the scope section. The HCS addresses testing under hazard determination. The GHS and HCS do not require testing for is not required.

0
0
12
0
-
6
-
\sim
Ξ
5
$\overline{\mathbf{U}}$
9
3
S
ើ
¥
Ξ
-
1 A
Ξ
5
õ
\circ

(b)(3)(i)

Employers shall ensure that labels on incoming containers of hazardous chemicals are not removed or defaced.

(b)(3)(ii)

Employers shall maintain any MSDSs that are received with incoming shipments of hazardous chemicals and ensure that they are readily accessible during each work shift to laboratory employees when they are in their work areas.

(b)(3)(iii)

Employers shall ensure that laboratory employees are provided information and training in accordance with paragraph (h) of this section, except for the location and availability of the written hazard communication program under paragraph(h)(2)(iii) of this section.

(b)(3)(iv)

Laboratory employers that ship hazardous chemicals are reconsidered to be either a chemical manufacturer or a distributor under this rule, and thus must ensure that any containers of hazardous chemicals leaving the laboratory are labeled in accordance with paragraph (f)(1) of this section and that a MSDS is provided to distributors and other employers in accordance with paragraphs (g)(6) and (g)(7) of this section.

GHS

"26. Globally harmonized hazard classification and labeling systems are not yet available to promote the safe use of chemicals, inter alia, at the workplace or in the home. Classification of chemicals can be made for different purposes and is a particularly important tool in establishing labeling systems. There is a need to develop harmonized hazard classification and labeling systems, building on ongoing work; 27. A globally harmonized hazard classification and compatible labeling system, including material safety data sheets and easily understandable symbols, should be available, if feasible, by the year 2000." This mandate was later analyzed and refined in the harmonization process to identify the parameters of the GHS. As a result, the following clarification was adopted by the Interorganization Program for the Sound Management of Chemicals (IOMC) Coordinating Group to ensure that participants were aware of the scope of the effort: "The work on harmonization of hazard classification and labeling focuses on a harmonized system for all chemicals, and mixtures of chemicals. The application of the components of the system may vary by the type of product or stage of the life cycle. Once a chemical is classified, the likelihood of adverse effects may be considered in deciding what informational or other steps should be taken for a given product or use setting. Pharmaceuticals, food additives, cosmetics, and pesticide

(Continued)