CYBERCRIME
Digital Cops and Laws
in a Networked Environment

EDITED BY
Jack M. Balkin
James Grimmelmann
Eddan Katz
Nimrod Kozlovskii
Shlomit Wagman
Tal Zarsky
Cybercrime
Ex Machina: Law, Technology, and Society
General Editors: Jack M. Balkin and Beth Simone Noveck

The Digital Person: Technology and Privacy in the Information Age
Daniel J. Solove

The State of Play: Law, Games, and Virtual Worlds
Edited by Jack M. Balkin and Beth Simone Noveck

Cybercrime: Digital Cops in a Networked Environment
Edited by Jack M. Balkin, James Grimmelmann, Eddan Katz, Nimrod Kozlovski, Shlomit Wagman, and Tal Zarsky
Cybercrime

Digital Cops in a Networked Environment

Edited by
Jack M. Balkin, James Grimmelmann, Eddan Katz, Nimrod Kozlovski, Shlomit Wagman, and Tal Zarsky

The Information Society Project at Yale Law School

New York University Press
New York and London
Cybercrime: digital cops in a networked environment / edited by Jack M. Balkin .. [et al.]

p. cm.
Includes bibliographical references and index.

HV6773.2.C93 2006
364.16’80973—dc22 2006030943

New York University Press books are printed on acid-free paper, and their binding materials are chosen for strength and durability.

Manufactured in the United States of America
For our families
Contents

1. Introduction
 Jack M. Balkin and Nimrod Kozlovski

PART I The New Crime Scene:
 The Digital Networked Environment

2. The Physics of Digital Law:
 Searching for Counterintuitive Analogies
 Daniel E. Geer, Jr.

3. Architectural Regulation and the Evolution of Social Norms
 Lee Tien

 Helen Nissenbaum

PART II New Crimes:
 Virtual Crimes of the Information Age

5. Real-World Problems of Virtual Crime
 Beryl A. Howell

PART III New Cops:
 Rethinking Law Enforcement in a Digital Age

6. Designing Accountable Online Policing
 Nimrod Kozlovski

7. Counterstrike
 Curtis E. A. Karnow
PART IV New Tools for Law Enforcement: Design, Technology, Control, Data Mining, and Surveillance

8. Why Can’t We All Get Along? How Technology, Security, and Privacy Can Coexist in the Digital Age
 Kim A. Taipale
 151

9. CALEA: Does One Size Still Fit All?
 Emily Hancock
 184

PART V New Procedures:
 E-Prosecution, E-Jurisdiction, and E-Punishment

10. The Council of Europe’s Convention on Cybercrime
 Susan W. Brenner
 207

11. Digital Evidence and the New Criminal Procedure
 Orin S. Kerr
 221

About the Contributors
 247

Acknowledgments
 253

Index
 255
Introduction

Jack M. Balkin and Nimrod Kozlovski

As more aspects of our life move to digital networks, crime comes with them. Our lives increasingly depend on the Internet and digital networks, but these create new vulnerabilities and new ways for criminals to exploit the digital environment. Not only can many existing crimes be replicated in online environments, but novel crimes that exploit specific features of digital networks have emerged as well. With new crimes come new forms of policing and new forms of surveillance, and with these come new dangers for civil liberties. These issues are the subject of the present book.

The shift to digital environments alters our understanding of crime in five different ways. First, it alters the scene or location where crimes occur. Second, it facilitates the commission of new types of crimes. Third, it produces significant changes in law enforcement methods, for example, a shift to prevention and to new forms of cooperation between public and private actors. Fourth, it gives law enforcement new tools of digital surveillance and new methods of sorting data and managing online risks. Fifth, it presents new challenges to the existing legal process and spurs the development of new forms of proof and procedure. We have arranged the essays in this book to correspond to these five key phenomena: the new scenes of crime, the new forms of crime, the new methods of law enforcement, the new tools of digital surveillance and crime prevention, and the new procedures that courts and legislatures will have to adopt to deal with threats to Internet security.

The essays in Part I describe the new crime scene—the digital networked environment. Online criminal behavior exploits the physical and social features of the Internet. Five key features of the online world create new security risks and shape the kinds of criminal behavior we find there.
The first is *digitization*—common standards for data transmission that enable manipulation and modification. The second is *anonymity*—the ability to act and spy on others without disclosing one’s identity. The third is *interconnectivity*—the fact that everyone on the network is connected to everyone else. The fourth is *decentralization*—the lack of centralized control over digital networks. The fifth is *interdependence*—the shared vulnerabilities that inevitably exist between and among all the people who use digital networks.

Digitization, anonymity, interconnectivity, decentralization, and interdependence structure the online world as we currently know it. Hence they structure the opportunities for crime and the ways that people commit crimes and breach network security. However, the task of cybercrime policy is not simply to create new laws banning new practices. It also requires us to redesign digital architectures to reduce the risk of criminal conduct and security breaches in the first place; this requires policy makers and technologists to decide how we should shape the digital networked environment.

Dan Geer’s essay, “The Physics of Digital Law,” introduces some of the basic problems of cybersecurity. When addressing the dangers and risks inherent in the digital environment, he argues, our everyday intuitions are likely to fail us. The physics of the digital environment is quite different from the physics of the offline world. In cyberspace, events occur almost instantaneously across large distances, network boundaries do not align with physical and political boundaries, and everyone on the network is your neighbor. In the digital environment copying is costless, the cost of data acquisition approaches zero, and it is easier to retain information than to delete it selectively. Digital environments are subject to attacks from a wide range of locations, including machines of unsuspecting users that have been commandeered by attackers; and successful attacks can have systemwide repercussions. Geer argues that the new physics of the virtual environment will reshape legal concepts like jurisdiction and ownership; it will require us to rethink doctrines of tort liability and duties of care, and it will revolutionize the way we think about privacy.

Lee Tien points out that the design of software and hardware in networked systems—their “architecture”—is a central device for regulating network activity, one that also has enormous influence on the practical liberty and privacy that ordinary people enjoy. Because architecture is such a powerful method for regulating activity on digital networks, governments will attempt to employ it for their own ends. Nevertheless, Tien
argues, government regulation of digital architecture—for example, by requiring a back door to facilitate government eavesdropping—poses serious problems of transparency, because most people will not be aware of the design or who required it. They will tend to accept the architectural constraints as normal and natural and thus fail to properly contest them as they would laws that restrict their freedom. “Architectural regulation,” Tien points out, “is less visible as law, not only because it can be surreptitiously embedded into settings or equipment but also because its enforcement is less public.”

Tien argues that architectural regulation creates an additional and even more worrisome problem of transparency, particularly where privacy is concerned. Our notions of reasonable expectations of privacy are determined by social norms, which in turn are shaped by our interactions with the technology we see around us. For example, our experience with doors and locks helps us determine when it is reasonable to believe that we will not and should not be disturbed or spied on. Tien worries that if government is given free rein to regulate software architectures in secret it will undermine our experience with the resources necessary to develop privacy norms for the digital age. Because people will not know when and under what conditions they lack privacy, they will not be able to develop the relevant social norms to protect themselves. This is doubly problematic because constitutional rights to privacy depend on these social norms and expectations.

Just as the technical design of security systems has political ramifications, political visions shape technical design, Helen Nissenbaum argues in her essay. She contrasts two current approaches to technological design that flow from two different visions of the problem of cybercrime. The technical community of computer designers and programmers gravitates toward what Nissenbaum calls a model of “technical computer security.” It focuses on protecting computer systems and their users from attacks (and threats of attacks) “that render systems, information, and networks unavailable to users,” “that threaten the integrity of information or of systems and networks by corrupting data, destroying files or disrupting code,” and “that threaten the confidentiality of information and communications.” For the technical community, computer security is about safeguarding systems and creating mechanisms of trust and assurance so that users can use the information they want more or less as they like.

The national security community, by contrast, has a very different vision, which Nissenbaum calls the model of “cybersecurity.” The goal
here is to meet imminent and existential threats to the social order. Officials see the world as rife with conditions that pose immediate and dire threats to the community’s very existence and that must be dealt with by whatever means necessary, a way of characterizing the world that Nis- senbaum calls “securitization.” Because the “cybersecurity” approach sees digital networks as creating potential conditions of catastrophe, it leads to far more extreme responses, and it tends to legitimate special and extraor-
dinary measures that bend the rules and restrictions of normal gover-
nance. As applied to computer security, the cybersecurity model calls for centralization of control, technical barricades that prevent access, a shift toward full identification of users, and greater monitoring of traffic. Nis-

senbaum argues that the choice between these two design visions will be crucial for the digital environment we inhabit in the future, and the rights and liberties we enjoy in that environment. She points out that while secu-
ritization might make digital networks marginally safer, the model might succeed at the expense of the Internet’s core purpose of providing a rela-
tively uninhibited realm of public discourse.

Part II explores new crimes in the digital networked environment. Anonymity, interconnectedness, and accessibility to vast amounts of inform-
ation facilitate older crimes and set the stage for new ones, including pure information crimes. Among the activities that governments now seek to prevent are third-party misappropriation of trade secrets over the Inter-
et, economic espionage, unauthorized access to encrypted virtual spaces, computer fraud, and dissemination of circumvention programs. And because the Internet demands ever new forms of authentication to con-
duct business, new forms of identity theft have emerged. The central ques-
tions now are whether extending traditional criminal remedies to new crimes is the right solution; whether civil remedies or technological solu-
tions might be more effective; whether pure information crimes need to be dealt with differently than other kinds of crime; and whether legislative expansion of crimes and the growing criminalization of online activity will do more harm than good.

Beryl Howell describes some of the key legal problems through a series of case studies. Her stories show that the law is not always clear about whether specific conduct is a crime, or which tools investigators may legally employ to collect evidence. For example, in regulating computer hacking, the law faces the task of settling upon a definition that can differ-
entiate legitimate from illegitimate access to data. Developments like peer-
to-peer (P2P) technology have made it increasingly difficult to define
illegal possession of material such as child pornography. The new information crimes have proved to be a challenge for a criminal law that demands clear lines between the legal and the illegal. Howell contends that many current laws are written far too broadly, with the result that they hamper legitimate attempts at self-help to identify perpetrators of harmful online crimes. She argues that we need more specific prohibitions that clarify the boundaries of illegal conduct and guide law enforcement officials about how to conduct investigations with appropriate respect for civil liberties and privacy. “It would be ironic, indeed,” Howell concludes, “if the concern over harmful online activity results in over-regulation of the use of certain technologies with the effect of hamstringing victims and investigators from using those or similar tools to stop or prevent the harmful conduct.”

Part III describes new methods of law enforcement for the digital networked environment. The Internet puts into question long-established notions about how to investigate crime and enforce criminal law. It has led to an increasing emphasis on decentralization of intelligence gathering, privatization of enforcement, and delegation of powers to nongovernmental entities. To address the problems of cybersecurity, technologists, businesspeople, and government officials have experimented with public-private collaborations, self-help measures, automated enforcement, community vigilance, and collective sanctions, leading to what may well become a new system of law enforcement. But this new model is not without its own problems. How can we protect civil liberties and constitutional rights when intelligence gathering is decentralized, when prevention and self-help are strategies of first resort, and the criminal law is increasingly enforced by private parties? How will incentives change when sanctions are invisible, decentralized, and privatized? What is the proper role of the community in sanctioning bad behavior and how can we design technology to strengthen appropriate collective enforcement and discourage inappropriate methods? What are the long-term consequences of replacing human judgment and prosecutorial discretion with automated sanctions?

Nimrod Kozlovski believes that we are in the midst of a paradigm shift in law enforcement. The technological and social conditions of criminal activity have changed and the conventional law enforcement response to crime is ill-equipped to address these changing conditions. Law enforcement offline is mainly a reactive system, relatively centralized, publicly managed, and rooted in human discretion. The emerging system of online
law enforcement, by contrast, is largely preventive, strongly decentralized, involves a hybrid of public and private enforcement, and is highly automated. This new model, Kozlovski argues, is influenced by information security strategies. Far more pervasive than traditional offline law enforcement by state actors, it tries to achieve ubiquitous policing of online activities to monitor, control, deter, deflect, detect, prevent, or preempt risky and potentially malicious activities. Kozlovski warns, moreover, that this new system of policing is emerging without a clear legal structure and with few restraints other than the limits on the ingenuity of the persons involved.

The legal, institutional, and technological settings of conventional law enforcement have been based on the conditions of physical crime scenes; they do not translate well to online law enforcement, and so are ill-suited to restrain overreaching and limit illegitimate uses. In a democratic society, Kozlovski insists, those invested with policing power—whether public or private—must be accountable for their activities. This means that they must have a legal responsibility to account for actions taken and actions not taken, and to explain or justify them; in short, there must be an obligation to expose one’s policing decisions to review and to the possibility of sanctions for improper behavior. In the online world, Kozlovski argues, civil liberties will best be protected by creating new accountability mechanisms that will deter public and private police from abusing their power, and at the same time promote efficiency and democratic dialogue about how power is exercised. The time to develop such accountability mechanisms is now, when the technology for the new policing model is still being developed.

One of the key features of the new model is self-help, and this is the subject of Curtis Karnow’s essay. Karnow argues that the traditional legal system is increasingly incapable of policing online illegal behavior or enforcing its laws. Given the growing threats posed by computer malware and the relative ineffectiveness of the legal and technological responses to them, it is no surprise that people have turned to defensive technologies; and when these have proved unavailing in an increasingly complex networked environment, they have turned to self-help.

Self-help mechanisms try to identify an attack on the network, trace back the source and shut down, or partially disable, the attacking machines. The goal is to minimize the attack and secure the environment. While promising in theory, Karnow argues that there are many practical difficulties. Using current Internet routing protocols, it is often quite diffi-
cult to pinpoint the perpetrator of an attack, causing the risk of disabling or damaging the wrong machine or the wrong piece of code. In addition, some counterstrikes turn out to be far too broad, creating a cure worse than the disease.

Even if these technical problems are surmounted, important legal concerns remain. Many cybercrime statutes make it illegal to attack or disable computers. Although Karnow notes that self-defense may be available in some cases, one would need to establish both good faith and reasonable belief that there were no adequate alternatives to a self-help counterstrike. This burden of proof is likely to deter self-help. A better approach, Karnow argues, is to invoke the common law right to abate nuisances. Internet-mediated attacks, such as viruses and worms, Karnow believes, fit comfortably within the definition of nuisance; moreover, the doctrine permits the defendant to impose a reasonable amount of collateral damage in order to abate the nuisance.

Part IV considers the new tools available to public and private actors to detect, investigate, and prevent criminal behavior. Law enforcement agencies now have at their disposal sophisticated means for surveillance and ever more powerful ways to analyze vast amounts of information. These technological tools can deter illegal activity, investigate crime, collate personal information, and track criminals with increasing efficiency. In addition, advanced analysis software and data mining tools can preempt crimes by identifying suspicious patterns of behavior, allowing private and public actors to neutralize threats before they are realized. At the same time, these new tools create threats to civil liberties, particularly personal privacy. Moreover, new technologies attempt to predict and prevent crime before it occurs. But these technologies raise the obvious question of whether it is wise to delegate social control to automated systems with little possibility of an appeal to human judgment. No computer model is perfect, and the cost of predictive systems may be constraints on individual liberty and sanctions against the innocent.

Kim Taipale argues that the trade-off between privacy and security is largely illusory; the real issue is how to design technologies so that we can enjoy both values. New information technologies hold the promise of analyzing vast amounts of information to identify potential terrorists and to preempt terrorist acts. Nevertheless, Taipale argues that the public anxiety about electronic privacy is out of proportion to the actual privacy risk; moreover, such fears obscure the very real threat posed by our failure to improve security. Privacy, Taipale contends, is less about preserving
secrecy than protecting autonomy, and he suggests how we might design identification systems and data collection techniques to achieve that goal. In particular, Taipale argues that we protect privacy by separating observation of behavior from knowledge of identity. Much data analysis, including list and pattern matching, can be accomplished with anonymized or pseudonymized data. This data can be collected and analyzed to improve security, but kept in a form that does not identify specific individuals and compromise their privacy interests. Legal rules, in turn, can provide procedures to determine when law enforcement officials are permitted to connect particular behavior to a particular person or persons.

Emily Hancock is concerned that the demand for new law enforcement tools can stifle innovation. Her specific focus is the Communications Assistance for Law Enforcement Act (CALEA), which requires telecommunications carriers (including telephone companies) to make it possible for law enforcement officials to intercept communications when they are legally authorized to do so. CALEA was directed at standard telephone service when it was originally passed in 1994. Since then telecommunications technologies have changed rapidly, and now include a wide panoply of services, including VoIP (Voice over Internet Protocol) technologies that use the Internet to make phone calls. Hancock warns that expanding CALEA’s reach to include these new technologies carries risks not only for individual privacy but also for innovation. She notes that all technological change affects law enforcement, sometimes rendering existing methods less effective or irrelevant. Nevertheless, she argues, dictating the design of new technologies to facilitate law enforcement has its own costs, and may even be self-defeating; for example, telecommunications innovation will simply move overseas.

Part V considers the new legal procedures and legal sanctions that digital networked environments require and make possible. Inevitably, rules of procedure and evidence will have to adjust to changes in the nature of crime and the nature of law enforcement. For example, cybercrime, like much Internet activity, respects no boundaries, leading to complicated problems of international law enforcement. Geographical rules of jurisdiction do not always follow the geography of information flows. Evidence introduced in court in digital form may lack the necessary authenticity because it is susceptible to manipulation. Conversely, new kinds of sanctions can be invisibly and automatically imposed without human discretion, bypassing the normal criminal procedural protections of the Bill of Rights. These and other changes in the nature of crime and
law enforcement will require governments to adapt—and in some cases reconstruct—criminal procedure to meet the challenges posed by digital networks.

Susan Brenner focuses on some of the international aspects of computer crime through an examination of the Council of Europe’s Convention on Cybercrime. The Cybercrime Convention arose to deal with recurring legal problems: Unlike real-world crime, which requires proximity between the perpetrator and the victim, cybercrime tends to operate remotely and to transcend national borders; hence, national laws have often proved inadequate to deal with it. Investigation and prosecution of cybercrime also requires much more robust mechanisms to facilitate cooperation between different countries with different laws and different rules of criminal procedure. Finally, cybercrime investigations are often based on digital evidence that tends to be fragile, volatile, and easily deleted or manipulated.

Although the Cybercrime Convention was drafted to address these challenges, Brenner argues that in many ways it does not go far enough. It continues the tradition of the localized, decentralized system of law enforcement we employ for real-world crime. The convention requires countries to outlaw certain behaviors and to help in international investigations, but it still employs antiquated structures of nationally based law enforcement that are unsuitable for nonterritorially based crime. Brenner concludes that global investigative and law enforcement authorities, or what she calls “a sort of super-Interpol,” may ultimately become necessary to deal with the problems of global crime.

Finally, Orin Kerr predicts the development of a special subfield of criminal procedure devoted to cybercrime. Existing rules of criminal procedure, he argues, were naturally tailored to investigations of traditional crimes using physical evidence and eyewitness testimony; they are poorly equipped to handle prosecutions involving primarily digital evidence. Collecting evidence for cybercrimes is so different, in fact, that the older rules of criminal procedure sometimes make little sense. Extraordinarily invasive exercises of governmental power are completely unregulated while comparatively minor privacy concerns can stifle legitimate investigations.

Courts have begun to take tentative steps to create special rules for computer crime cases, but their powers to make new rules are limited, often exercised too late to do much good, and, moreover, are still rooted in a Fourth Amendment jurisprudence designed for physical crimes. Legislatures and executive officials, Kerr believes, are best suited to design new
methods of handling digital evidence and new rules of criminal procedure for computer crimes.

The essays in this book show how the traditional concerns of criminal justice are merging with newer questions of cybersecurity. Many of the key questions of cyberlaw apply here as well: how government officials can regulate a medium that does not respect national borders, the extent to which law enforcement goals are best served by hardware and software solutions, and the unintended consequences of relying on hardware and software architectures rather than legal norms to structure and control social life.

This book presents a snapshot of a rapidly growing and changing field in the first decade of the twenty-first century. Our working assumptions in preparing this volume—that we must recognize new scenes of crime, new kinds of crimes, new methods and goals for law enforcement, and new tools of surveillance and crime prevention—will surely be tested in the years ahead. We can only wonder at how similar the issues will appear a generation hence, and whether the trends we have identified will have become even more pronounced or will have been displaced by still newer and more pressing concerns.
The New Crime Scene

The Digital Networked Environment
“Digital law” is and must be counterintuitive—an intuitive understanding of sticks and stones does not translate to digital worlds. Because our intuition about the digital sphere can so easily be wrong we need to substitute solid facts for faulty intuition. It is said that the practice of law is a search for analogies, so law is most susceptible to mistakes when the digital reality differs from our commonsense intuitions about the physical world. In this chapter, I use the neologism—“digital physics”—to describe the important features of digital spaces and the parameters they set on computer security. Some of the principles of digital physics are directly related to concepts of physics like space and time. Others have no physical world analogy, but rather describe a fundamental truth about the digital world in the same way that the laws of physics describe fundamental truths about the physical world. Just as these laws of physics dictate what is and is not possible in the physical world, the laws of digital physics dictate what is and is not possible in the digital world, which will prove crucial for making policy choices.

In this chapter, I offer a guided tour of some of the important problems of computer security, including risk management and the interaction between trust and identity. These examples not only show how our intuitions about the physical world can be misleading in the digital world, but they also provide a good model for approaching the other issues addressed in this book.
I. Risk and Risk Management

Risk is not an enemy of good policy per se, but unmanaged risk can be. Sometimes, risk is easy to recognize—for example, climbing a high-tension transmission tower in a thunderstorm. When it comes to computer security, however, risk is harder to understand, harder to apportion, harder to manage, and harder to clean up after. One reason why digital risk is hard to manage is the lack of warning time before an attack. In the physical world, the bigger the attack the longer the warning time—for example, you can see an invading army coming from a long way off. Our intuition about time in the physical world might lead us to believe that we will be able to see a cyberattack coming and have time to defend against it. But a principle of digital physics challenges this intuition: information travels faster over the network than humans can react to. Thus, in the digital world the warning interval between detection and attack decreases toward zero. And after that brief interval between detection and attack, further attacks often materialize with no warning at all.

Not surprisingly, infections become more effective over time. For example, the infection rate of the infamous Slammer worm doubled every 8.5 seconds.1 The Witty attack on various ISS firewall-related products offered only two days’ warning between announcement of the vulnerability and the appearance of an exploit of it in the wild. Any further contraction of warning interval is operationally irrelevant.2,3 As this was written, the Sober.P virus has gone from first detection to 77 percent of all inbound virus payloads in email—in a matter of sixty hours. It is delusional to believe that we will have sufficient reaction time to prevent cyberattacks.

These are examples of “cascade failures”—security failures where the infection converts prey to new predators. The only way to control them is to limit the rate at which the failure spreads. Much like a dangerous crown fire moving quickly upward on steep terrain, spread rates for digital infections are too fast for reaction on a human time scale. As a result, the only way to protect the Internet commons is, as with forest fires, to block further spread by precut “firebreaks.”4

In the network world, preventing the outbound spread of toxic digital traffic is called “egress filtering,” while preventing toxic digital traffic from flowing inbound is called “ingress filtering.” Should the law require egress filtering as a sort of digital firebreak, or should it instead try to block...
incoming toxic content? Many enterprises, like universities, which have strong free speech traditions, have policies against blocking suspect inbound communications, while other enterprises are simply too poorly managed for effective ingress filtering. Thus, egress filtering may be the Internet’s last line of defense. It is helpful to make an analogy with public health law: While it is not criminal to get a disease, it may be criminal to break quarantine and pass the disease on.

Thus the law might make enterprises pick from a menu of options, including ingress filtering, egress filtering, and immunizing its computers with regular security patches. To be effective, enterprises will be forced to choose at least two. But of these options, egress filtering may be the most important. A bank will certainly want to protect its internal systems from incoming attacks but it may be even more important for the law to require that the bank’s computers not be the source of an attack on others.

A machine that has already been penetrated by a successful attack (hacker slang is “owned”) may exhibit no outward symptoms. This defies our physical world intuition that as long as a machine is doing what it is supposed to do, it is probably not broken. Digital physics teaches us, however, that the outward appearance of a “working” machine will not tell us whether the machine is doing more than what it is supposed to do. Hence the user might never have any reason to detect that the machine is under an attacker’s remote control; in this way the culprit can stockpile owned machines.

There are technical measures to detect owned machines. Even so, we must decide who will be responsible for the scanning required to detect infection. Should the responsibility fall on the owner of the machine, or should it fall on the owner of the transmission capacity—for example, the Internet Service Provider (ISP)—that an infected machine uses when it tries to attack other sites? Should we require ISPs to scan their customers’ computers? ISPs are certainly capable of doing so, but scanning a host machine for vulnerabilities will itself trigger warnings on the scanned host. If the ISP learns that Machine 12345 is infected, should the ISP then be obligated to notify, to terminate service, to report to other authorities, or to put that host under increased surveillance?

These questions might focus on the wrong level of concern. Perhaps the proper analogy is public health: It was public hygiene and not individual medical treatment that solved London’s cholera epidemics in the nineteenth century. Today, in the United States, the Centers for Disease Control play a global role, which has become ever more essential as the world
has grown smaller. The CDC regulations include mandatory reporting, forced treatment and/or quarantine of the ill, publication of an authoritative Morbidity and Mortality Weekly Report, formal predictive work to aid officials who seek to anticipate epidemics, and public identification of locales with an excess of incidence or prevalence of any particular pathogen.

In a 2002 paper, Stuart Staniford and his collaborators proposed a CDC for the Internet and in the fall of 2004 the NSF funded this as the Center for Internet Epidemiology. How closely should the CIE parallel the CDC? A close parallel would require extraordinary things—mandatory reporting of security incidents, forced quarantine of sources of electronic infection, publication of definitive analysis of infection sources and vectors, and the kind of longitudinal expertise that identifies countermeasures before crises occur. No corporate counsel will happily accept mandatory reporting. Suppose such reporting requires entities to turn over logs from their Internet-facing networks. These logs may contain evidence of an attack the entity failed to notice, and as such, the logs may provide evidence of the entity’s negligence. On the other hand, if an entity does not share its network logs, it is impossible to determine if it is a specific target of attack, or if it was just opportunistically attacked along with many other random targets. Despite the long-term benefits of sharing logs, most corporate counsel, who are paid to be risk adverse, will resist both voluntary sharing and regulatory measures that mandate sharing.

The few attempts at voluntary sharing of information have had very limited success. The Information Sharing and Analysis Centers (ISACs), created by President Clinton in 1998, are “sector-specific,” meaning that information gathered by entities in the financial services industry are not necessarily shared with information gathered by the telecommunications or information technology industries. In an attempt to assuage the fears of corporate counsel the data collected by the ISACs is exempt from the Freedom of Information Act and from antitrust laws. These exemptions, however, have not yet been tested in the courts, and because those exemptions are untested, information sharing has been modest at best. All this may change, however, if the Department of Homeland Security’s Infrastructure Analysis and Protection Authority succeeds in its bid to take over the ISACs.

A central issue is whether and how the private sector of the U.S. economy, which owns over 90 percent of the nation’s critical infrastructure, can ensure that infrastructure’s protection from shared risks. The govern-
ment’s interests and industry’s interests align when stated abstractly but less so at the levels where details matter. In some cases federal regulation may be necessary while at other times self-regulation works just as well. Generally, lawyers are paid to be risk averse and to act in the particular interests of their clients. In the digital world, however, private tragedy can produce a public debacle. Self-regulatory solutions require incentives for private parties to share information, and this may require immunizing companies from liability. Government regulation, on the other hand, must balance protection against privacy. Neither solution is an easy task.

Thus far we have been discussing the risk of cascade failure, which begins with a single computer or a small number of computers. There are, however, many risks on a national scale: the collapse of an essential component of the public Internet, the discovery of infiltration across many firms, the leak of an attack method against which there is no current defense, and a loss of public confidence in the banking system as a whole after a security failure.

How do we assess the risk of one of these failures occurring? If there has been no overt catastrophe to date, can we conclude that the risk is low? Once again our intuitions about the physical world fail us. It does not follow that the absence of a history of loss means that the risk is low. The key question is whether the events that produce loss arrive more or less independently, or whether they tend to come in bunches. If the risks are small and spread out at random you would expect to see some events over any sustained period of observation; if you do not, then that means that the risk is quite low. If, however, the small events come in bunches, then it may merely be that their time has not yet come.10 If attacks in the digital world are mostly independent of each other, then recent history does have some (limited) predictive power; but if the attacks are calculated, rather than opportunistic, then a history free from a large-scale attack is not particularly meaningful.

The question for the law is what we should require of the owners of digital assets, especially those assets that are part of the critical information infrastructure. Do we require that these owners plan for disaster in order to mitigate it when it comes? Do we require them to share their plans with coordinating agencies? If not, how do we ensure their preparedness?

The problem is that each attack always requires two responses: First, we must regain operational recovery; second, we must preserve evidence of the crime. Without an effective plan for handling incidents, these goals
tend to diverge—you can have prompt operational recovery at the cost of losing forensic evidence, or you can cleanly recover forensic evidence but at the cost of delaying operational recovery. Should we impose reliability standards for digital assets in the way we already do for electricity generation and clearance of banking transactions? Or would it be better to require incident reports whenever intentional damage cannot be ruled out? Either way, we must alter our physical world intuitions about the relationship between private and public risk. The idea that “It’s my computer and I’ll protect it if I want to” makes no sense in a digital world; every important cyberattack has involved the recruitment—or, more correctly, the hijacking—of the computers of unsuspecting users. Digital physics teaches that your failure to protect yourself is not just a risk to you; it is also a risk to me.

We assume that the government’s job is to protect us from those things that we cannot protect ourselves from. But if private tragedies in the digital world threaten public security, we cannot separate purely private risks from national ones. If so, is there a risk management strategy at the national level that can protect against national tragedies? Digital physics can assist us by delimiting the possible classes of security failure. Only two classes of failures qualify as threats on a national scale: (1) inherently single points of failure; and (2) cascade failure.

A “single point of failure” is a part of a system which, if it fails, interrupts the entire system. Inherently single points of failure are those which by necessity or design must be so. An example is the fabled Red Telephone that the President uses to communicate with key foreign leaders; nine Red Telephones in the President’s office would be worse than one.

In the digital world, the assignment of network addresses is a single point of failure because without a unique authoritative source of network information there would be chaos. If instead of a single Domain Name Service (DNS) there were multiple sources of network information, different users could receive different answers to their requests to be directed to a particular URL. However, the Domain Name Service must not only be a single authoritative source; it must also be reliable. In reality, responses to queries may come from any of thirteen primary service providers which provide identical answers. Disabling them all simultaneously is hard; we know that because it has been tried before. This sort of redundancy is essential for an inherently single point of failure, and it is yet another example of where our physical world intuitions do not work well in the digital world. In the physical world we do not expect that a single author-
ity—say, the King of England—is a position that could be held simultaneously by thirteen different individuals each of whom is guaranteed to make the same decision regardless of which one is asked—and you won’t be able to tell which one is answering anyhow.

The classic method for protecting a single point of failure is “defense in depth”—that is, using rings of protection, where each ring of protection exists to catch the failure of the ring outside it. No single ring of defense need be a technical masterpiece nor is any particular ring—considered in isolation—difficult to get through. Rather, it is the sum of the rings that secures the protected object. Medieval castles relied on defense in depth, as do modern prisons (though in this case the rings serve to keep the prisoners in).

Defense in depth works in the digital world as well. For example, the root servers that operate the Domain Name System are protected by (1) redundancy (so that an attack on any of the thirteen servers does not affect the other twelve), (2) caching (creating a short-term memory on individual computers which makes them less dependent on the root servers), and (3) diversity in design (none of the root servers are designed the same way, so that a successful attack on one server does not increase the risk of a successful attack on the other twelve).

If we wanted to, we could add more root servers or require ISPs to put upper bounds on how many nameservice requests they could forward per second. In other words, we could add more levels of defense. In this sense, defense in depth is not a technical problem, but rather a matter of how much money we want to put into the project.

Our real attention, then, should be on the second class of failure at the national scale: cascade failure. In a cascade each part that fails increases the probability that the next part will fail too. A row of dominoes or a multicar pileup are familiar examples. Infectious diseases are also cascade failures. Because of international air travel, a breakout of the flu in Hong Kong increases your chance of getting the flu in New York; any place where people congregate in large numbers, such as airports, increases the transmission rate.

Digital viruses are cascade failures, and the main contributor to the problem they pose is digital monoculture—the fact that most people use the same operating system or other key software components. The term “monoculture” reminds us that all healthy ecosystems are diverse. Unlike the defense of singular points of failure, there are no easy solutions to protecting against cascade failures. Defending a singular point of failure