

The Ruby Programming Language

The Ruby Programming Language

David Flanagan and Yukihiro Matsumoto

Beijing • Cambridge • Farnham • Köln • Sebastopol • Taipei • Tokyo

The Ruby Programming Language
by David Flanagan and Yukihiro Matsumoto
with drawings by why the lucky stiff

Copyright © 2008 David Flanagan and Yukihiro Matsumoto. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Sarah Schneider
Proofreader: Sarah Schneider

Indexer: Joe Wizda
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Rob Romano and why the lucky stiff

Printing History:
January 2008: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. The Ruby Programming Language, the image of Horned Sungem hummingbirds,
and related trade dress are trademarks of O’Reilly Media, Inc.

Java™ and all Java-based trademarks are registered trademarks of Sun Microsystems, Inc., in the United
States and other countries. O’Reilly Media, Inc. is independent of Sun Microsystems.

Many of the designations uses by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein. The drawings on the chapter title pages were drawn by why the lucky stiff and are licensed
under the Creative Commons Attribution-ShareAlike 3.0 License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/legalcode or send a letter to Creative Commons, 171 2nd
Street, Suite 300, San Francisco, California, 94105, USA.

TM

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-13: 978-0-596-51617-8

[M] [12/08]

1264438633

http://safari.oreilly.com
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Table of Contents

Preface . ix

1. Introduction . 1
1.1 A Tour of Ruby 2
1.2 Try Ruby 11
1.3 About This Book 15
1.4 A Sudoku Solver in Ruby 17

2. The Structure and Execution of Ruby Programs . 25
2.1 Lexical Structure 26
2.2 Syntactic Structure 33
2.3 File Structure 35
2.4 Program Encoding 36
2.5 Program Execution 39

3. Datatypes and Objects . 41
3.1 Numbers 42
3.2 Text 46
3.3 Arrays 64
3.4 Hashes 67
3.5 Ranges 68
3.6 Symbols 70
3.7 True, False, and Nil 72
3.8 Objects 72

4. Expressions and Operators . 85
4.1 Literals and Keyword Literals 86
4.2 Variable References 87
4.3 Constant References 88
4.4 Method Invocations 89
4.5 Assignments 92
4.6 Operators 100

v

5. Statements and Control Structures . 117
5.1 Conditionals 118
5.2 Loops 127
5.3 Iterators and Enumerable Objects 130
5.4 Blocks 140
5.5 Altering Control Flow 146
5.6 Exceptions and Exception Handling 154
5.7 BEGIN and END 165
5.8 Threads, Fibers, and Continuations 166

6. Methods, Procs, Lambdas, and Closures . 175
6.1 Defining Simple Methods 177
6.2 Method Names 180
6.3 Methods and Parentheses 183
6.4 Method Arguments 185
6.5 Procs and Lambdas 192
6.6 Closures 200
6.7 Method Objects 203
6.8 Functional Programming 205

7. Classes and Modules . 213
7.1 Defining a Simple Class 214
7.2 Method Visibility: Public, Protected, Private 232
7.3 Subclassing and Inheritance 234
7.4 Object Creation and Initialization 241
7.5 Modules 247
7.6 Loading and Requiring Modules 252
7.7 Singleton Methods and the Eigenclass 257
7.8 Method Lookup 258
7.9 Constant Lookup 261

8. Reflection and Metaprogramming . 265
8.1 Types, Classes, and Modules 266
8.2 Evaluating Strings and Blocks 268
8.3 Variables and Constants 271
8.4 Methods 272
8.5 Hooks 277
8.6 Tracing 279
8.7 ObjectSpace and GC 281
8.8 Custom Control Structures 281
8.9 Missing Methods and Missing Constants 284

8.10 Dynamically Creating Methods 287
8.11 Alias Chaining 290

vi | Table of Contents

8.12 Domain-Specific Languages 296

9. The Ruby Platform . 303
9.1 Strings 304
9.2 Regular Expressions 310
9.3 Numbers and Math 321
9.4 Dates and Times 325
9.5 Collections 328
9.6 Files and Directories 350
9.7 Input/Output 356
9.8 Networking 366
9.9 Threads and Concurrency 373

10. The Ruby Environment . 389
10.1 Invoking the Ruby Interpreter 390
10.2 The Top-Level Environment 395
10.3 Practical Extraction and Reporting Shortcuts 403
10.4 Calling the OS 405
10.5 Security 409

Index . 415

Table of Contents | vii

Preface

This book is an updated and expanded version of Ruby in a Nutshell (O’Reilly) by
Yukihiro Matsumoto, who is better known as Matz. It is loosely modeled after the
classic The C Programming Language (Prentice Hall) by Brian Kernighan and Dennis
Ritchie, and aims to document the Ruby language comprehensively but without the
formality of a language specification. It is written for experienced programmers who
are new to Ruby, and for current Ruby programmers who want to take their under-
standing and mastery of the language to the next level.

You’ll find a guide to the structure and organization of this book in Chapter 1.

Acknowledgments

David Flanagan
Before anything else, I must thank Matz for the beautiful language he has designed, for
his help understanding that language, and for the Nutshell that this book grew out of.

Thanks also to:

• why the lucky stiff for the delightful drawings that grace these pages (you’ll find
them on the chapter title pages) and, of course, for his own book on Ruby, why’s
(poignant) guide to Ruby, which you can find online at http://poignantguide.net/
ruby/.

• My technical reviewers: David A. Black, director of Ruby Power and Light, LLC
(http://www.rubypal.com); Charles Oliver Nutter of the JRuby team (http://
www.jruby.org) at Sun Microsystems; Shyouhei Urabe, the maintainer of the Ruby
1.8.6 branch; and Ken Cooper. Their comments helped improve the quality and
clarity of the book. Any errors that remain are, of course, my own.

• My editor, Mike Loukides, for asking and persistently encouraging me to write this
book, and for his patience while I did so.

ix

http://poignantguide.net/ruby/
http://poignantguide.net/ruby/
http://www.rubypal.com
http://www.jruby.org
http://www.jruby.org

Finally, of course, my love and thanks to my family.

—David Flanagan

http://www.davidflanagan.com

January 2008

Yukihiro Matsumoto
In addition to the people listed by David (except myself), I appreciate the help from
community members all around the world, especially from Japan: Koichi Sasada,
Nobuyoshi Nakada, Akira Tanaka, Shugo Maeda, Usaku Nakamura, and Shyouhei
Urabe to name a few (not in any particular order).

And finally, I thank my family, who hopefully forgive their husband and father for
dedicating time to Ruby development.

—Yukihiro Matsumoto

January 2008

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, datatypes, environment variables, statements,
and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example

x | Preface

http://www.davidflanagan.com

code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “The Ruby Programming Language by David
Flanagan and Yukihiro Matsumoto. Copyright 2008 David Flanagan and Yukihiro
Matsumoto, 978-0-596-51617-8.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/9780596516178

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our web site at:

http://www.oreilly.com

Safari® Enabled
When you see a Safari® Enabled icon on the cover of your favorite tech-
nology book, that means the book is available online through the O’Reilly
Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

Preface | xi

http://www.oreilly.com/catalog/9780596516178
http://www.oreilly.com
http://safari.oreilly.com

CHAPTER 1

Introduction

1

Ruby is a dynamic programming language with a complex but expressive grammar and
a core class library with a rich and powerful API. Ruby draws inspiration from Lisp,
Smalltalk, and Perl, but uses a grammar that is easy for C and Java™ programmers to
learn. Ruby is a pure object-oriented language, but it is also suitable for procedural and
functional programming styles. It includes powerful metaprogramming capabilities
and can be used to create domain-specific languages or DSLs.

Matz on Ruby
Yukihiro Matsumoto, known as Matz to the English-speaking Ruby community, is the
creator of Ruby and the author of Ruby in a Nutshell (O’Reilly) (which has been updated
and expanded into the present book). He says:

I knew many languages before I created Ruby, but I was never fully satisfied with
them. They were uglier, tougher, more complex, or more simple than I expected. I
wanted to create my own language that satisfied me, as a programmer. I knew a lot
about the language’s target audience: myself. To my surprise, many programmers
all over the world feel very much like I do. They feel happy when they discover and
program in Ruby.

Throughout the development of the Ruby language, I've focused my energies on
making programming faster and easier. All features in Ruby, including object-
oriented features, are designed to work as ordinary programmers (e.g., me) expect
them to work. Most programmers feel it is elegant, easy to use, and a pleasure to
program.

Matz’s guiding philosophy for the design of Ruby is summarized in an oft-quoted
remark of his:

Ruby is designed to make programmers happy.

1.1 A Tour of Ruby
This section is a guided, but meandering, tour through some of the most interesting
features of Ruby. Everything discussed here will be documented in detail later in the
book, but this first look will give you the flavor of the language.

1.1.1 Ruby Is Object-Oriented
We’ll begin with the fact that Ruby is a completely object-oriented language. Every value
is an object, even simple numeric literals and the values true, false, and nil (nil is a
special value that indicates the absence of value; it is Ruby’s version of null). Here we
invoke a method named class on these values. Comments begin with # in Ruby, and
the => arrows in the comments indicate the value returned by the commented code (this
is a convention used throughout this book):

1.class # => Fixnum: the number 1 is a Fixnum
0.0.class # => Float: floating-point numbers have class Float

2 | Chapter 1: Introduction

true.class # => TrueClass: true is a the singleton instance of TrueClass
false.class # => FalseClass
nil.class # => NilClass

In many languages, function and method invocations require parentheses, but there
are no parentheses in any of the code above. In Ruby, parentheses are usually optional
and they are commonly omitted, especially when the method being invoked takes no
arguments. The fact that the parentheses are omitted in the method invocations here
makes them look like references to named fields or named variables of the object. This
is intentional, but the fact is, Ruby is very strict about encapsulation of its objects; there
is no access to the internal state of an object from outside the object. Any such access
must be mediated by an accessor method, such as the class method shown above.

1.1.2 Blocks and Iterators
The fact that we can invoke methods on integers isn’t just an esoteric aspect of Ruby.
It is actually something that Ruby programmers do with some frequency:

3.times { print "Ruby! " } # Prints "Ruby! Ruby! Ruby! "
1.upto(9) {|x| print x } # Prints "123456789"

times and upto are methods implemented by integer objects. They are a special kind of
method known as an iterator, and they behave like loops. The code within curly braces
—known as a block—is associated with the method invocation and serves as the body
of the loop. The use of iterators and blocks is another notable feature of Ruby; although
the language does support an ordinary while loop, it is more common to perform loops
with constructs that are actually method calls.

Integers are not the only values that have iterator methods. Arrays (and similar “enu-
merable” objects) define an iterator named each, which invokes the associated block
once for each element in the array. Each invocation of the block is passed a single
element from the array:

a = [3, 2, 1] # This is an array literal
a[3] = a[2] - 1 # Use square brackets to query and set array elements
a.each do |elt| # each is an iterator. The block has a parameter elt
 print elt+1 # Prints "4321"
end # This block was delimited with do/end instead of {}

Various other useful iterators are defined on top of each:

a = [1,2,3,4] # Start with an array
b = a.map {|x| x*x } # Square elements: b is [1,4,9,16]
c = a.select {|x| x%2==0 } # Select even elements: c is [2,4]
a.inject do |sum,x| # Compute the sum of the elements => 10
 sum + x
end

Hashes, like arrays, are a fundamental data structure in Ruby. As their name implies,
they are based on the hashtable data structure and serve to map arbitrary key objects
to value objects. (To put this another way, we can say that a hash associates arbitrary

1.1 A Tour of Ruby | 3

value objects with key objects.) Hashes use square brackets, like arrays do, to query
and set values in the hash. Instead of using an integer index, they expect key objects
within the square brackets. Like the Array class, the Hash class also defines an each
iterator method. This method invokes the associated block of code once for each key/
value pair in the hash, and (this is where it differs from Array) passes both the key and
the value as parameters to the block:

h = { # A hash that maps number names to digits
 :one => 1, # The "arrows" show mappings: key=>value
 :two => 2 # The colons indicate Symbol literals
}
h[:one] # => 1. Access a value by key
h[:three] = 3 # Add a new key/value pair to the hash
h.each do |key,value| # Iterate through the key/value pairs
 print "#{value}:#{key}; " # Note variables substituted into string
end # Prints "1:one; 2:two; 3:three; "

Ruby’s hashes can use any object as a key, but Symbol objects are the most commonly
used. Symbols are immutable, interned strings. They can be compared by identity
rather than by textual content (because two distinct Symbol objects will never have the
same content).

The ability to associate a block of code with a method invocation is a fundamental and
very powerful feature of Ruby. Although its most obvious use is for loop-like constructs,
it is also useful for methods that only invoke the block once. For example:

File.open("data.txt") do |f| # Open named file and pass stream to block
 line = f.readline # Use the stream to read from the file
end # Stream automatically closed at block end

t = Thread.new do # Run this block in a new thread
 File.read("data.txt") # Read a file in the background
end # File contents available as thread value

As an aside, notice that the Hash.each example previously included this interesting line
of code:

print "#{value}:#{key}; " # Note variables substituted into string

Double-quoted strings can include arbitrary Ruby expressions delimited by #{ and }.
The value of the expression within these delimiters is converted to a string (by calling
its to_s method, which is supported by all objects). The resulting string is then used to
replace the expression text and its delimiters in the string literal. This substitution of
expression values into strings is usually called string interpolation.

1.1.3 Expressions and Operators in Ruby
Ruby’s syntax is expression-oriented. Control structures such as if that would be called
statements in other languages are actually expressions in Ruby. They have values like
other simpler expressions do, and we can write code like this:

minimum = if x < y then x else y end

4 | Chapter 1: Introduction

Although all “statements” in Ruby are actually expressions, they do not all return
meaningful values. while loops and method definitions, for example, are expressions
that normally return the value nil.

As in most languages, expressions in Ruby are usually built out of values and operators.
For the most part, Ruby’s operators will be familiar to anyone who knows C, Java,
JavaScript, or any similar programming language. Here are examples of some
commonplace and some more unusual Ruby operators:

1 + 2 # => 3: addition
1 * 2 # => 2: multiplication
1 + 2 == 3 # => true: == tests equality
2 ** 1024 # 2 to the power 1024: Ruby has arbitrary size ints
"Ruby" + " rocks!" # => "Ruby rocks!": string concatenation
"Ruby! " * 3 # => "Ruby! Ruby! Ruby! ": string repetition
"%d %s" % [3, "rubies"] # => "3 rubies": Python-style, printf formatting
max = x > y ? x : y # The conditional operator

Many of Ruby’s operators are implemented as methods, and classes can define (or
redefine) these methods however they want. (They can’t define completely new oper-
ators, however; there is only a fixed set of recognized operators.) As examples, notice
that the + and * operators behave differently for integers and strings. And you can define
these operators any way you want in your own classes. The << operator is another good
example. The integer classes Fixnum and Bignum use this operator for the bitwise left-
shift operation, following the C programming language. At the same time (following
C++), other classes—such as strings, arrays, and streams—use this operator for an
append operation. If you create a new class that can have values appended to it in some
way, it is a very good idea to define <<.

One of the most powerful operators to override is []. The Array and Hash classes use
this operator to access array elements by index and hash values by key. But you can
define [] in your classes for any purpose you want. You can even define it as a method
that expects multiple arguments, comma-separated between the square brackets. (The
Array class accepts an index and a length between the square brackets to indicate a
subarray or “slice” of the array.) And if you want to allow square brackets to be used
on the lefthand side of an assignment expression, you can define the corresponding
[]= operator. The value on the righthand side of the assignment will be passed as the
final argument to the method that implements this operator.

1.1.4 Methods
Methods are defined with the def keyword. The return value of a method is the value
of the last expression evaluated in its body:

def square(x) # Define a method named square with one parameter x
 x*x # Return x squared
end # End of the method

1.1 A Tour of Ruby | 5

When a method, like the one above, is defined outside of a class or a module, it is
effectively a global function rather than a method to be invoked on an object. (Tech-
nically, however, a method like this becomes a private method of the Object class.)
Methods can also be defined on individual objects by prefixing the name of the method
with the object on which it is defined. Methods like these are known as single-
tonmethods, and they are how Ruby defines class methods:

def Math.square(x) # Define a class method of the Math module
 x*x
end

The Math module is part of the core Ruby library, and this code adds a new method to
it. This is a key feature of Ruby—classes and modules are “open” and can be modified
and extended at runtime.

Method parameters may have default values specified, and methods may accept
arbitrary numbers of arguments.

1.1.5 Assignment
The (nonoverridable) = operator in Ruby assigns a value to a variable:

x = 1

Assignment can be combined with other operators such as + and -:

x += 1 # Increment x: note Ruby does not have ++.
y -= 1 # Decrement y: no -- operator, either.

Ruby supports parallel assignment, allowing more than one value and more than one
variable in assignment expressions:

x, y = 1, 2 # Same as x = 1; y = 2
a, b = b, a # Swap the value of two variables
x,y,z = [1,2,3] # Array elements automatically assigned to variables

Methods in Ruby are allowed to return more than one value, and parallel assignment
is helpful in conjunction with such methods. For example:

Define a method to convert Cartesian (x,y) coordinates to Polar
def polar(x,y)
 theta = Math.atan2(y,x) # Compute the angle
 r = Math.hypot(x,y) # Compute the distance
 [r, theta] # The last expression is the return value
end

Here's how we use this method with parallel assignment
distance, angle = polar(2,2)

Methods that end with an equals sign (=) are special because Ruby allows them to be
invoked using assignment syntax. If an object o has a method named x=, then the
following two lines of code do the very same thing:

6 | Chapter 1: Introduction

o.x=(1) # Normal method invocation syntax
o.x = 1 # Method invocation through assignment

1.1.6 Punctuation Suffixes and Prefixes
We saw previously that methods whose names end with = can be invoked by assignment
expressions. Ruby methods can also end with a question mark or an exclamation point.
A question mark is used to mark predicates—methods that return a Boolean value. For
example, the Array and Hash classes both define methods named empty? that test
whether the data structure has any elements. An exclamation mark at the end of a
method name is used to indicate that caution is required with the use of the method.
A number of core Ruby classes define pairs of methods with the same name, except
that one ends with an exclamation mark and one does not. Usually, the method without
the exclamation mark returns a modified copy of the object it is invoked on, and the
one with the exclamation mark is a mutator method that alters the object in place. The
Array class, for example, defines methods sort and sort!.

In addition to these punctuation characters at the end of method names, you’ll notice
punctuation characters at the start of Ruby variable names: global variables are prefixed
with $, instance variables are prefixed with @, and class variables are prefixed with @@.
These prefixes can take a little getting used to, but after a while you may come to
appreciate the fact that the prefix tells you the scope of the variable. The prefixes are
required in order to disambiguate Ruby’s very flexible grammar. One way to think of
variable prefixes is that they are one price we pay for being able to omit parentheses
around method invocations.

1.1.7 Regexp and Range
We mentioned arrays and hashes earlier as fundamental data structures in Ruby. We
demonstrated the use of numbers and strings as well. Two other datatypes are worth
mentioning here. A Regexp (regular expression) object describes a textual pattern and
has methods for determining whether a given string matches that pattern or not. And
a Range represents the values (usually integers) between two endpoints. Regular
expressions and ranges have a literal syntax in Ruby:

/[Rr]uby/ # Matches "Ruby" or "ruby"
/\d{5}/ # Matches 5 consecutive digits
1..3 # All x where 1 <= x <= 3
1...3 # All x where 1 <= x < 3

Regexp and Range objects define the normal == operator for testing equality. In addition,
they also define the === operator for testing matching and membership. Ruby’s case
statement (like the switch statement of C or Java) matches its expression against each
of the possible cases using ===, so this operator is often called the case equality opera-
tor. It leads to conditional tests like these:

1.1 A Tour of Ruby | 7

Determine US generation name based on birth year
Case expression tests ranges with ===
generation = case birthyear
 when 1946..1963: "Baby Boomer"
 when 1964..1976: "Generation X"
 when 1978..2000: "Generation Y"
 else nil
 end

A method to ask the user to confirm something
def are_you_sure? # Define a method. Note question mark!
 while true # Loop until we explicitly return
 print "Are you sure? [y/n]: " # Ask the user a question
 response = gets # Get her answer
 case response # Begin case conditional
 when /^[yY]/ # If response begins with y or Y
 return true # Return true from the method
 when /^[nN]/, /^$/ # If response begins with n,N or is empty
 return false # Return false
 end
 end
end

1.1.8 Classes and Modules
A class is a collection of related methods that operate on the state of an object. An
object’s state is held by its instance variables: variables whose names begin with @ and
whose values are specific to that particular object. The following code defines an ex-
ample class named Sequence and demonstrates how to write iterator methods and
define operators:

#
This class represents a sequence of numbers characterized by the three
parameters from, to, and by. The numbers x in the sequence obey the
following two constraints:
#
from <= x <= to
x = from + n*by, where n is an integer

class Sequence
 # This is an enumerable class; it defines an each iterator below.
 include Enumerable # Include the methods of this module in this class

 # The initialize method is special; it is automatically invoked to
 # initialize newly created instances of the class
 def initialize(from, to, by)
 # Just save our parameters into instance variables for later use
 @from, @to, @by = from, to, by # Note parallel assignment and @ prefix
 end

 # This is the iterator required by the Enumerable module
 def each
 x = @from # Start at the starting point
 while x <= @to # While we haven't reached the end

8 | Chapter 1: Introduction

 yield x # Pass x to the block associated with the iterator
 x += @by # Increment x
 end
 end

 # Define the length method (following arrays) to return the number of
 # values in the sequence
 def length
 return 0 if @from > @to # Note if used as a statement modifier
 Integer((@to-@from)/@by) + 1 # Compute and return length of sequence
 end

 # Define another name for the same method.
 # It is common for methods to have multiple names in Ruby
 alias size length # size is now a synonym for length

 # Override the array-access operator to give random access to the sequence
 def[](index)
 return nil if index < 0 # Return nil for negative indexes
 v = @from + index*@by # Compute the value
 if v <= @to # If it is part of the sequence
 v # Return it
 else # Otherwise...
 nil # Return nil
 end
 end

 # Override arithmetic operators to return new Sequence objects
 def *(factor)
 Sequence.new(@from*factor, @to*factor, @by*factor)
 end

 def +(offset)
 Sequence.new(@from+offset, @to+offset, @by)
 end
end

Here is some code that uses this Sequence class:

s = Sequence.new(1, 10, 2) # From 1 to 10 by 2's
s.each {|x| print x } # Prints "13579"
print s[s.size-1] # Prints 9
t = (s+1)*2 # From 4 to 22 by 4's

The key feature of our Sequence class is its each iterator. If we are only interested in the
iterator method, there is no need to define the whole class. Instead, we can simply write
an iterator method that accepts the from, to, and by parameters. Instead of making this
a global function, let’s define it in a module of its own:

module Sequences # Begin a new module
 def self.fromtoby(from, to, by) # A singleton method of the module
 x = from
 while x <= to
 yield x
 x += by
 end

1.1 A Tour of Ruby | 9

 end
end

With the iterator defined this way, we write code like this:

Sequences.fromtoby(1, 10, 2) {|x| print x } # Prints "13579"

An iterator like this makes it unnecessary to create a Sequence object to iterate a
sequence of numbers. But the name of the method is quite long, and its invocation
syntax is unsatisfying. What we really want is a way to iterate numeric Range objects
by steps other than 1. One of the amazing features of Ruby is that its classes, even the
built-in core classes, are open: any program can add methods to them. So we really can
define a new iterator method for ranges:

class Range # Open an existing class for additions
 def by(step) # Define an iterator named by
 x = self.begin # Start at one endpoint of the range
 if exclude_end? # For ... ranges that exclude the end
 while x < self.end # Test with the < operator
 yield x
 x += step
 end
 else # Otherwise, for .. ranges that include the end
 while x <= self.end # Test with <= operator
 yield x
 x += step
 end
 end
 end # End of method definition
end # End of class modification

Examples
(0..10).by(2) {|x| print x} # Prints "0246810"
(0...10).by(2) {|x| print x} # Prints "02468"

This by method is convenient but unnecessary; the Range class already defines an iterator
named step that serves the same purpose. The core Ruby API is a rich one, and it is
worth taking the time to study the platform (see Chapter 9) so you don’t end up
spending time writing methods that have already been implemented for you!

1.1.9 Ruby Surprises
Every language has features that trip up programmers who are new to the language.
Here we describe two of Ruby’s surprising features.

Ruby’s strings are mutable, which may be surprising to Java programmers in particular.
The []= operator allows you to alter the characters of a string or to insert, delete, and
replace substrings. The << operator allows you to append to a string, and the String
class defines various other methods that alter strings in place. Because strings are mu-
table, string literals in a program are not unique objects. If you include a string literal
within a loop, it evaluates to a new object on each iteration of the loop. Call the

10 | Chapter 1: Introduction

freeze method on a string (or on any object) to prevent any future modifications to
that object.

Ruby’s conditionals and loops (such as if and while) evaluate conditional expressions
to determine which branch to evaluate or whether to continue looping. Conditional
expressions often evaluate to true or false, but this is not required. The value of nil is
treated the same as false, and any other value is the same as true. This is likely to
surprise C programmers who expect 0 to work like false, and JavaScript programmers
who expect the empty string "" to be the same as false.

1.2 Try Ruby
We hope our tour of Ruby’s key features has piqued your interest and you are eager to
try Ruby out. To do that, you’ll need a Ruby interpreter, and you’ll also want to know
how to use three tools—irb, ri, and gem—that are bundled with the interpreter. This
section explains how to get and use them.

1.2.1 The Ruby Interpreter
The official web site for Ruby is http://www.ruby-lang.org. If Ruby is not already
installed on your computer, you can follow the download link on the ruby-lang.org
(http://ruby-lang.org) home page for instructions on downloading and installing the
standard C-based reference implementation of Ruby.

Once you have Ruby installed, you can invoke the Ruby interpreter with the ruby
command:

% ruby -e 'puts "hello world!"'
hello world!

The -e command-line option causes the interpreter to execute a single specified line of
Ruby code. More commonly, you’d place your Ruby program in a file and tell the
interpreter to invoke it:

% ruby hello.rb
hello world!

Other Ruby Implementations
In the absence of a formal specification for the Ruby language, the Ruby interpreter
from ruby-lang.org (http://ruby-lang.org) is the reference implementation that defines
the language. It is sometimes known as MRI, or “Matz’s Ruby Implementation.” For
Ruby 1.9, the original MRI interpreter was merged with YARV (“Yet Another Ruby
Virtual machine”) to produce a new reference implementation that performs internal
compilation to bytecode and then executes that bytecode on a virtual machine.

The reference implementation is not the only one available, however. At the time of
this writing, there is one alternative implementation (JRuby) released and several other
implementations under development:

1.2 Try Ruby | 11

http://www.ruby-lang.org
http://ruby-lang.org
http://ruby-lang.org
http://ruby-lang.org
http://ruby-lang.org

JRuby
JRuby is a Java-based implementation of Ruby, available from http://jruby.org. At
the time of this writing, the current release is JRuby 1.1, which is compatible with
Ruby 1.8. A 1.9-compatible release of JRuby may be available by the time you read
this. JRuby is open source software, developed primarily at Sun Microsystems.

IronRuby
IronRuby is Microsoft’s implementation of Ruby for their .NET framework and
DLR (Dynamic Language Runtime). The source code for IronRuby is available
under the Microsoft Permissive License. At the time of this writing, IronRuby is
not yet at a 1.0 release level. The project home page is http://www.ironruby.net.

Rubinius
Rubinius is an open source project that describes itself as “an alternative Ruby
implementation written largely in Ruby. The Rubinius virtual machine, named
shotgun, is based loosely on the Smalltalk-80 VM architecture.” At the time of this
writing, Rubinius is not at version 1.0. The home page for the Rubinius project is
http://rubini.us.

Cardinal
Cardinal is a Ruby implementation intended to run on the Parrot VM (which aims
to power Perl 6 and a number of other dynamic languages). At the time of this
writing, neither Parrot nor Cardinal have released a 1.0 version. Cardinal does not
have its own home page; it is hosted as part of the open source Parrot project at
http://www.parrotcode.org.

1.2.2 Displaying Output
In order to try out Ruby features, you need a way to display output so that your test
programs can print their results. The puts function—used in the “hello world” code
earlier—is one way to do this. Loosely speaking, puts prints a string of text to the
console and appends a newline (unless the string already ends with one). If passed an
object that is not a string, puts calls the to_s method of that object and prints the string
returned by that method. print does more or less the same thing, but it does not append
a newline. For example, type the following two-line program in a text editor and save
it in a file named count.rb:

9.downto(1) {|n| print n } # No newline between numbers
puts " blastoff!" # End with a newline

Now run the program with your Ruby interpreter:

% ruby count.rb

It should produce the following output:

987654321 blastoff!

You may find the function p to be a useful alternative to puts. Not only is it shorter to
type, but it converts objects to strings with the inspect method, which sometimes

12 | Chapter 1: Introduction

http://jruby.org
http://www.ironruby.net
http://rubini.us
http://www.parrotcode.org

returns more programmer-friendly representations than to_s does. When printing an
array, for example, p outputs it using array literal notation, whereas puts simply prints
each element of the array on a line by itself.

1.2.3 Interactive Ruby with irb
irb (short for “interactive Ruby”) is a Ruby shell. Type any Ruby expression at its
prompt and it will evaluate it and display its value for you. This is often the easiest way
to try out the language features you read about in this book. Here is an example irb
session, with annotations:

$ irb --simple-prompt # Start irb from the terminal
>> 2**3 # Try exponentiation
=> 8 # This is the result
>> "Ruby! " * 3 # Try string repetition
=> "Ruby! Ruby! Ruby! " # The result
>> 1.upto(3){|x| puts x } # Try an iterator
1 # Three lines of output
2 # Because we called puts 3 times
3
=> 1 # The return value of 1.upto(3)
>> quit # Exit irb
$ # Back to the terminal prompt

This example session shows you all you need to know about irb to make productive
use of it while exploring Ruby. It does have a number of other important features,
however, including subshells (type “irb” at the prompt to start a subshell) and
configurability.

1.2.4 Viewing Ruby Documentation with ri
Another critical Ruby tool is the ri* documentation viewer. Invoke ri on the command
line followed by the name of a Ruby class, module, or method, and ri will display
documentation for you. You may specify a method name without a qualifying class or
module name, but this will just show you a list of all methods by that name (unless the
method is unique). Normally, you can separate a class or module name from a method
name with a period. If a class defines a class method and an instance method by the
same name, you must instead use :: to refer to the class method or # to refer to the
instance method. Here are some example invocations of ri:

ri Array
ri Array.sort
ri Hash#each
ri Math::sqrt

* Opinions differ as to what “ri” stands for. It has been called “Ruby Index,” “Ruby Information,” and “Ruby
Interactive.”

1.2 Try Ruby | 13

This documentation displayed by ri is extracted from specially formatted comments in
Ruby source code. See §2.1.1.2 for details.

1.2.5 Ruby Package Management with gem
Ruby’s package management system is known as RubyGems, and packages or modules
distributed using RubyGems are called “gems.” RubyGems makes it easy to install Ruby
software and can automatically manage complex dependencies between packages.

The frontend script for RubyGems is gem, and it’s distributed with Ruby 1.9 just as
irb and ri are. In Ruby 1.8, you must install it separately—see http://rubygems.org. Once
the gem program is installed, you might use it like this:

gem install rails
Successfully installed activesupport-1.4.4
Successfully installed activerecord-1.15.5
Successfully installed actionpack-1.13.5
Successfully installed actionmailer-1.3.5
Successfully installed actionwebservice-1.2.5
Successfully installed rails-1.2.5
6 gems installed
Installing ri documentation for activesupport-1.4.4...
Installing ri documentation for activerecord-1.15.5...
...etc...

As you can see, the gem install command installs the most recent version of the gem
you request and also installs any gems that the requested gem requires. gem has other
useful subcommands as well. Some examples:

gem list # List installed gems
gem enviroment # Display RubyGems configuration information
gem update rails # Update a named gem
gem update # Update all installed gems
gem update --system # Update RubyGems itself
gem uninstall rails # Remove an installed gem

In Ruby 1.8, the gems you install cannot be automatically loaded by Ruby’s require
method. (See §7.6 for more about loading modules of Ruby code with the require
method.) If you’re writing a program that will be using modules installed as gems, you
must first require the rubygems module. Some Ruby 1.8 distributions are preconfigured
with the RubyGems library, but you may need to download and install this manually.
Loading this rubygems module alters the require method itself so that it searches the
set of installed gems before it searches the standard library. You can also automatically
enable RubyGems support by running Ruby with the -rubygems command-line option.
And if you add -rubygems to the RUBYOPT environment variable, then the RubyGems
library will be loaded on every invocation of Ruby.

The rubygems module is part of the standard library in Ruby 1.9, but it is no longer
required to load gems. Ruby 1.9 knows how to find installed gems on its own, and you
do not have to put require 'rubygems' in your programs that use gems.

14 | Chapter 1: Introduction

http://rubygems.org

When you load a gem with require (in either 1.8 or 1.9), it loads the most recent
installed version of the gem you specify. If you have more specific version requirements,
you can use the gem method before calling require. This finds a version of the gem
matching the version constraints you specify and “activates” it, so that a subsequent
require will load that version:

require 'rubygems' # Not necessary in Ruby 1.9
gem 'RedCloth', '> 2.0', '< 4.0' # Activate RedCloth version 2.x or 3.x
require 'RedCloth' # And now load it

You’ll find more about require and gems in §7.6.1. Complete coverage of RubyGems,
the gem program, and the rubygems module are beyond the scope of this book. The
gem command is self-documenting—start by running gem help. For details on the gem
method, try ri gem. And for complete details, see the documentation at http://ruby
gems.org.

1.2.6 More Ruby Tutorials
This chapter began with a tutorial introduction to the Ruby language. You can try out
the code snippets of that tutorial using irb. If you want more tutorials before diving
into the language more formally, there are two good ones available by following links
on the http://www.ruby-lang.org home page. One irb-based tutorial is called “Ruby in
Twenty Minutes.”* Another tutorial, called “Try Ruby!”, is interesting because it works
in your web browser and does not require you to have Ruby or irb installed on your
system.†

1.2.7 Ruby Resources
The Ruby web site (http://www.ruby-lang.org) is the place to find links to other Ruby
resources, such as online documentation, libraries, mailing lists, blogs, IRC channels,
user groups, and conferences. Try the “Documentation,” “Libraries,” and
“Community” links on the home page.

1.3 About This Book
As its title implies, this book covers the Ruby programming language and aspires to do
so comprehensively and accessibly. This edition of the book covers language versions
1.8 and 1.9. Ruby blurs the distinction between language and platform, and so our
coverage of the language includes a detailed overview of the core Ruby API. But this
book is not an API reference and does not cover the core classes comprehensively. Also,

* At the time of this writing, the direct URL for this tutorial is http://www.ruby-lang.org/en/documentation/
quickstart/.

† If you can’t find the “Try Ruby!” link on the Ruby home page, try this URL: http://tryruby.hobix.com.

1.3 About This Book | 15

http://rubygems.org
http://rubygems.org
http://www.ruby-lang.org
http://www.ruby-lang.org
http://www.ruby-lang.org/en/documentation/quickstart/
http://www.ruby-lang.org/en/documentation/quickstart/
http://tryruby.hobix.com

this is not a book about Ruby frameworks (like Rails), nor a book about Ruby tools
(like rake and gem).

This chapter concludes with a heavily commented extended example demonstrating a
nontrivial Ruby program. The chapters that follow cover Ruby from the bottom up:

• Chapter 2 covers the lexical and syntactic structure of Ruby, including basic issues
like character set, case sensitivity, and reserved words.

• Chapter 3 explains the kinds of data—numbers, strings, ranges, arrays, and so on
—that Ruby programs can manipulate, and it covers the basic features of all Ruby
objects.

• Chapter 4 covers primary expressions in Ruby—literals, variable references, meth-
od invocations, and assignments—and it explains the operators used to combine
primary expressions into compound expressions.

• Chapter 5 explains conditionals, loops (including blocks and iterator methods),
exceptions, and the other Ruby expressions that would be called statements or
control structures in other languages.

• Chapter 6 formally documents Ruby’s method definition and invocation syntax,
and it also covers the invocable objects known as procs and lambdas. This chapter
includes an explanation of closures and an exploration of functional programming
techniques in Ruby.

• Chapter 7 explains how to define classes and modules in Ruby. Classes are fun-
damental to object-oriented programming, and this chapter also covers topics such
as inheritance, method visibility, mixin modules, and the method name resolution
algorithm.

• Chapter 8 covers Ruby’s APIs that allow a program to inspect and manipulate itself,
and then demonstrates metaprogramming techniques that use those APIs to make
programming easier. The chapter includes an example of domain-specific
language.

• Chapter 9 demonstrates the most important classes and methods of the core Ruby
platform with simple code fragments. This is not a reference but a detailed overview
of the core classes. Topics include text processing, numeric computation, collec-
tions (such as arrays and hashes), input/output, networking, and threads. After
reading this chapter, you’ll understand the breadth of the Ruby platform, and you’ll
be able to use the ri tool or an online reference to explore the platform in depth.

• Chapter 10 covers the top-level Ruby programming environment, including global
variables and global functions, command-line arguments supported by the Ruby
interpreter, and Ruby’s security mechanism.

16 | Chapter 1: Introduction

1.3.1 How to Read This Book
It is easy to program in Ruby, but Ruby is not a simple language. Because this book
documents Ruby comprehensively, it is not a simple book (though we hope that you
find it easy to read and understand). It is intended for experienced programmers who
want to master Ruby and are willing to read carefully and thoughtfully to achieve that
goal.

Like all similar programming books, this book contains forward and backward refer-
ences throughout. Programming languages are not linear systems, and it is impossible
to document them linearly. As you can see from the chapter outline, this book takes a
bottom-up approach to Ruby: it starts with the simplest elements of Ruby’s grammar
and moves on to document successively higher-level syntactic structures—from tokens
to values to expressions and control structures to methods and classes. This is a classic
approach to documenting programming languages, but it does not avoid the problem
of forward references.

The book is intended to be read in the order it is written, but some advanced topics are
best skimmed or skipped on the first reading; they will make much more sense when
you come back to them after having read the chapters that follow. On the other hand,
don’t let every forward reference scare you off. Many of them are simply informative,
letting you know that more details will be presented later. The reference does not nec-
essarily imply that those future details are required to understand the current material.

1.4 A Sudoku Solver in Ruby
This chapter concludes with a nontrivial Ruby application to give you a better idea of
what Ruby programs actually look like. We’ve chosen a Sudoku* solver as a good short
to medium-length program that demonstrates a number of features of Ruby. Don’t
expect to understand every detail of Example 1-1, but do read through the code; it is
very thoroughly commented, and you should have little difficulty following along.

Example 1-1. A Sudoku solver in Ruby
#
This module defines a Sudoku::Puzzle class to represent a 9x9
Sudoku puzzle and also defines exception classes raised for
invalid input and over-constrained puzzles. This module also defines
the method Sudoku.solve to solve a puzzle. The solve method uses
the Sudoku.scan method, which is also defined here.

Use this module to solve Sudoku puzzles with code like this:

* Sudoku is a logic puzzle that takes the form of a 9 × 9 grid of numbers and blank squares. The task is to fill
each blank with a digit 1 to 9 so that no row or column or 3 × 3 subgrid includes the same digit twice. Sudoku
has been popular in Japan for some time, but it gained sudden popularity in the English-speaking world in
2004 and 2005. If you are unfamiliar with Sudoku, try reading the Wikipedia entry (http://en.wikipedia.org/
wiki/Sudoku) and try an online puzzle (http://websudoku.com/).

1.4 A Sudoku Solver in Ruby | 17

http://en.wikipedia.org/wiki/Sudoku
http://en.wikipedia.org/wiki/Sudoku
http://websudoku.com/

#
require 'sudoku'
puts Sudoku.solve(Sudoku::Puzzle.new(ARGF.readlines))
#
module Sudoku

 #
 # The Sudoku::Puzzle class represents the state of a 9x9 Sudoku puzzle.
 #
 # Some definitions and terminology used in this implementation:
 #
 # - Each element of a puzzle is called a "cell".
 # - Rows and columns are numbered from 0 to 8, and the coordinates [0,0]
 # refer to the cell in the upper-left corner of the puzzle.
 # - The nine 3x3 subgrids are known as "boxes" and are also numbered from
 # 0 to 8, ordered from left to right and top to bottom. The box in
 # the upper-left is box 0. The box in the upper-right is box 2. The
 # box in the middle is box 4. The box in the lower-right is box 8.
 #
 # Create a new puzzle with Sudoku::Puzzle.new, specifying the initial
 # state as a string or as an array of strings. The string(s) should use
 # the characters 1 through 9 for the given values, and '.' for cells
 # whose value is unspecified. Whitespace in the input is ignored.
 #
 # Read and write access to individual cells of the puzzle is through the
 # [] and []= operators, which expect two-dimensional [row,column] indexing.
 # These methods use numbers (not characters) 0 to 9 for cell contents.
 # 0 represents an unknown value.
 #
 # The has_duplicates? predicate returns true if the puzzle is invalid
 # because any row, column, or box includes the same digit twice.
 #
 # The each_unknown method is an iterator that loops through the cells of
 # the puzzle and invokes the associated block once for each cell whose
 # value is unknown.
 #
 # The possible method returns an array of integers in the range 1..9.
 # The elements of the array are the only values allowed in the specified
 # cell. If this array is empty, then the puzzle is over-specified and
 # cannot be solved. If the array has only one element, then that element
 # must be the value for that cell of the puzzle.
 #
 class Puzzle

 # These constants are used for translating between the external
 # string representation of a puzzle and the internal representation.
 ASCII = ".123456789"
 BIN = "\000\001\002\003\004\005\006\007\010\011"

 # This is the initialization method for the class. It is automatically
 # invoked on new Puzzle instances created with Puzzle.new. Pass the input
 # puzzle as an array of lines or as a single string. Use ASCII digits 1
 # to 9 and use the '.' character for unknown cells. Whitespace,
 # including newlines, will be stripped.
 def initialize(lines)

18 | Chapter 1: Introduction

 if (lines.respond_to? :join) # If argument looks like an array of lines
 s = lines.join # Then join them into a single string
 else # Otherwise, assume we have a string
 s = lines.dup # And make a private copy of it
 end

 # Remove whitespace (including newlines) from the data
 # The '!' in gsub! indicates that this is a mutator method that
 # alters the string directly rather than making a copy.
 s.gsub!(/\s/, "") # /\s/ is a Regexp that matches any whitespace

 # Raise an exception if the input is the wrong size.
 # Note that we use unless instead of if, and use it in modifier form.
 raise Invalid, "Grid is the wrong size" unless s.size == 81

 # Check for invalid characters, and save the location of the first.
 # Note that we assign and test the value assigned at the same time.
 if i = s.index(/[^123456789\.]/)
 # Include the invalid character in the error message.
 # Note the Ruby expression inside #{} in string literal.
 raise Invalid, "Illegal character #{s[i,1]} in puzzle"
 end

 # The following two lines convert our string of ASCII characters
 # to an array of integers, using two powerful String methods.
 # The resulting array is stored in the instance variable @grid
 # The number 0 is used to represent an unknown value.
 s.tr!(ASCII, BIN) # Translate ASCII characters into bytes
 @grid = s.unpack('c*') # Now unpack the bytes into an array of numbers

 # Make sure that the rows, columns, and boxes have no duplicates.
 raise Invalid, "Initial puzzle has duplicates" if has_duplicates?
 end

 # Return the state of the puzzle as a string of 9 lines with 9
 # characters (plus newline) each.
 def to_s
 # This method is implemented with a single line of Ruby magic that
 # reverses the steps in the initialize() method. Writing dense code
 # like this is probably not good coding style, but it demonstrates
 # the power and expressiveness of the language.
 #
 # Broken down, the line below works like this:
 # (0..8).collect invokes the code in curly braces 9 times--once
 # for each row--and collects the return value of that code into an
 # array. The code in curly braces takes a subarray of the grid
 # representing a single row and packs its numbers into a string.
 # The join() method joins the elements of the array into a single
 # string with newlines between them. Finally, the tr() method
 # translates the binary string representation into ASCII digits.
 (0..8).collect{|r| @grid[r*9,9].pack('c9')}.join("\n").tr(BIN,ASCII)
 end

 # Return a duplicate of this Puzzle object.
 # This method overrides Object.dup to copy the @grid array.

1.4 A Sudoku Solver in Ruby | 19

 def dup
 copy = super # Make a shallow copy by calling Object.dup
 @grid = @grid.dup # Make a new copy of the internal data
 copy # Return the copied object
 end

 # We override the array access operator to allow access to the
 # individual cells of a puzzle. Puzzles are two-dimensional,
 # and must be indexed with row and column coordinates.
 def [](row, col)
 # Convert two-dimensional (row,col) coordinates into a one-dimensional
 # array index and get and return the cell value at that index
 @grid[row*9 + col]
 end

 # This method allows the array access operator to be used on the
 # lefthand side of an assignment operation. It sets the value of
 # the cell at (row, col) to newvalue.
 def []=(row, col, newvalue)
 # Raise an exception unless the new value is in the range 0 to 9.
 unless (0..9).include? newvalue
 raise Invalid, "illegal cell value"
 end
 # Set the appropriate element of the internal array to the value.
 @grid[row*9 + col] = newvalue
 end

 # This array maps from one-dimensional grid index to box number.
 # It is used in the method below. The name BoxOfIndex begins with a
 # capital letter, so this is a constant. Also, the array has been
 # frozen, so it cannot be modified.
 BoxOfIndex = [
 0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2,2,2,0,0,0,1,1,1,2,2,2,
 3,3,3,4,4,4,5,5,5,3,3,3,4,4,4,5,5,5,3,3,3,4,4,4,5,5,5,
 6,6,6,7,7,7,8,8,8,6,6,6,7,7,7,8,8,8,6,6,6,7,7,7,8,8,8
].freeze

 # This method defines a custom looping construct (an "iterator") for
 # Sudoku puzzles. For each cell whose value is unknown, this method
 # passes ("yields") the row number, column number, and box number to the
 # block associated with this iterator.
 def each_unknown
 0.upto 8 do |row| # For each row
 0.upto 8 do |col| # For each column
 index = row*9+col # Cell index for (row,col)
 next if @grid[index] != 0 # Move on if we know the cell's value
 box = BoxOfIndex[index] # Figure out the box for this cell
 yield row, col, box # Invoke the associated block
 end
 end
 end

 # Returns true if any row, column, or box has duplicates.
 # Otherwise returns false. Duplicates in rows, columns, or boxes are not
 # allowed in Sudoku, so a return value of true means an invalid puzzle.

20 | Chapter 1: Introduction

 def has_duplicates?
 # uniq! returns nil if all the elements in an array are unique.
 # So if uniq! returns something then the board has duplicates.
 0.upto(8) {|row| return true if rowdigits(row).uniq! }
 0.upto(8) {|col| return true if coldigits(col).uniq! }
 0.upto(8) {|box| return true if boxdigits(box).uniq! }

 false # If all the tests have passed, then the board has no duplicates
 end

 # This array holds a set of all Sudoku digits. Used below.
 AllDigits = [1, 2, 3, 4, 5, 6, 7, 8, 9].freeze

 # Return an array of all values that could be placed in the cell
 # at (row,col) without creating a duplicate in the row, column, or box.
 # Note that the + operator on arrays does concatenation but that the -
 # operator performs a set difference operation.
 def possible(row, col, box)
 AllDigits - (rowdigits(row) + coldigits(col) + boxdigits(box))
 end

 private # All methods after this line are private to the class

 # Return an array of all known values in the specified row.
 def rowdigits(row)
 # Extract the subarray that represents the row and remove all zeros.
 # Array subtraction is set difference, with duplicate removal.
 @grid[row*9,9] - [0]
 end

 # Return an array of all known values in the specified column.
 def coldigits(col)
 result = [] # Start with an empty array
 col.step(80, 9) {|i| # Loop from col by nines up to 80
 v = @grid[i] # Get value of cell at that index
 result << v if (v != 0) # Add it to the array if non-zero
 }
 result # Return the array
 end

 # Map box number to the index of the upper-left corner of the box.
 BoxToIndex = [0, 3, 6, 27, 30, 33, 54, 57, 60].freeze

 # Return an array of all the known values in the specified box.
 def boxdigits(b)
 # Convert box number to index of upper-left corner of the box.
 i = BoxToIndex[b]
 # Return an array of values, with 0 elements removed.
 [
 @grid[i], @grid[i+1], @grid[i+2],
 @grid[i+9], @grid[i+10], @grid[i+11],
 @grid[i+18], @grid[i+19], @grid[i+20]
] - [0]
 end
 end # This is the end of the Puzzle class

1.4 A Sudoku Solver in Ruby | 21

 # An exception of this class indicates invalid input,
 class Invalid < StandardError
 end

 # An exception of this class indicates that a puzzle is over-constrained
 # and that no solution is possible.
 class Impossible < StandardError
 end

 #
 # This method scans a Puzzle, looking for unknown cells that have only
 # a single possible value. If it finds any, it sets their value. Since
 # setting a cell alters the possible values for other cells, it
 # continues scanning until it has scanned the entire puzzle without
 # finding any cells whose value it can set.
 #
 # This method returns three values. If it solves the puzzle, all three
 # values are nil. Otherwise, the first two values returned are the row and
 # column of a cell whose value is still unknown. The third value is the
 # set of values possible at that row and column. This is a minimal set of
 # possible values: there is no unknown cell in the puzzle that has fewer
 # possible values. This complex return value enables a useful heuristic
 # in the solve() method: that method can guess at values for cells where
 # the guess is most likely to be correct.
 #
 # This method raises Impossible if it finds a cell for which there are
 # no possible values. This can happen if the puzzle is over-constrained,
 # or if the solve() method below has made an incorrect guess.
 #
 # This method mutates the specified Puzzle object in place.
 # If has_duplicates? is false on entry, then it will be false on exit.
 #
 def Sudoku.scan(puzzle)
 unchanged = false # This is our loop variable

 # Loop until we've scanned the whole board without making a change.
 until unchanged
 unchanged = true # Assume no cells will be changed this time
 rmin,cmin,pmin = nil # Track cell with minimal possible set
 min = 10 # More than the maximal number of possibilities

 # Loop through cells whose value is unknown.
 puzzle.each_unknown do |row, col, box|
 # Find the set of values that could go in this cell
 p = puzzle.possible(row, col, box)

 # Branch based on the size of the set p.
 # We care about 3 cases: p.size==0, p.size==1, and p.size > 1.
 case p.size
 when 0 # No possible values means the puzzle is over-constrained
 raise Impossible
 when 1 # We've found a unique value, so set it in the grid
 puzzle[row,col] = p[0] # Set that position on the grid to the value
 unchanged = false # Note that we've made a change

22 | Chapter 1: Introduction

 else # For any other number of possibilities
 # Keep track of the smallest set of possibilities.
 # But don't bother if we're going to repeat this loop.
 if unchanged && p.size < min
 min = p.size # Current smallest size
 rmin, cmin, pmin = row, col, p # Note parallel assignment
 end
 end
 end
 end

 # Return the cell with the minimal set of possibilities.
 # Note multiple return values.
 return rmin, cmin, pmin
 end

 # Solve a Sudoku puzzle using simple logic, if possible, but fall back
 # on brute-force when necessary. This is a recursive method. It either
 # returns a solution or raises an exception. The solution is returned
 # as a new Puzzle object with no unknown cells. This method does not
 # modify the Puzzle it is passed. Note that this method cannot detect
 # an under-constrained puzzle.
 def Sudoku.solve(puzzle)
 # Make a private copy of the puzzle that we can modify.
 puzzle = puzzle.dup

 # Use logic to fill in as much of the puzzle as we can.
 # This method mutates the puzzle we give it, but always leaves it valid.
 # It returns a row, a column, and set of possible values at that cell.
 # Note parallel assignment of these return values to three variables.
 r,c,p = scan(puzzle)

 # If we solved it with logic, return the solved puzzle.
 return puzzle if r == nil

 # Otherwise, try each of the values in p for cell [r,c].
 # Since we're picking from a set of possible values, the guess leaves
 # the puzzle in a valid state. The guess will either lead to a solution
 # or to an impossible puzzle. We'll know we have an impossible
 # puzzle if a recursive call to scan throws an exception. If this happens
 # we need to try another guess, or re-raise an exception if we've tried
 # all the options we've got.
 p.each do |guess| # For each value in the set of possible values
 puzzle[r,c] = guess # Guess the value

 begin
 # Now try (recursively) to solve the modified puzzle.
 # This recursive invocation will call scan() again to apply logic
 # to the modified board, and will then guess another cell if needed.
 # Remember that solve() will either return a valid solution or
 # raise an exception.
 return solve(puzzle) # If it returns, we just return the solution
 rescue Impossible
 next # If it raises an exception, try the next guess
 end

1.4 A Sudoku Solver in Ruby | 23

 end

 # If we get here, then none of our guesses worked out
 # so we must have guessed wrong sometime earlier.
 raise Impossible
 end
end

Example 1-1 is 345 lines long. Because the example was written for this introductory
chapter, it has particularly verbose comments. Strip away the comments and the blank
lines and you’re left with just 129 lines of code, which is pretty good for an object-
oriented Sudoku solver that does not rely on a simple brute-force algorithm. We hope
that this example demonstrates the power and expressiveness of Ruby.

24 | Chapter 1: Introduction

CHAPTER 2

The Structure and Execution of Ruby
Programs

25

This chapter explains the structure of Ruby programs. It starts with the lexical structure,
covering tokens and the characters that comprise them. Next, it covers the syntactic
structure of a Ruby program, explaining how expressions, control structures, methods,
classes, and so on are written as a series of tokens. Finally, the chapter describes files
of Ruby code, explaining how Ruby programs can be split across multiple files and how
the Ruby interpreter executes a file of Ruby code.

2.1 Lexical Structure
The Ruby interpreter parses a program as a sequence of tokens. Tokens include com-
ments, literals, punctuation, identifiers, and keywords. This section introduces these
types of tokens and also includes important information about the characters that
comprise the tokens and the whitespace that separates the tokens.

2.1.1 Comments
Comments in Ruby begin with a # character and continue to the end of the line. The
Ruby interpreter ignores the # character and any text that follows it (but does not ignore
the newline character, which is meaningful whitespace and may serve as a statement
terminator). If a # character appears within a string or regular expression literal (see
Chapter 3), then it is simply part of the string or regular expression and does not
introduce a comment:

This entire line is a comment
x = "#This is a string" # And this is a comment
y = /#This is a regular expression/ # Here's another comment

Multiline comments are usually written simply by beginning each line with a separate
character:

#
This class represents a Complex number
Despite its name, it is not complex at all.
#

Note that Ruby has no equivalent of the C-style /*...*/ comment. There is no way to
embed a comment in the middle of a line of code.

2.1.1.1 Embedded documents

Ruby supports another style of multiline comment known as an embedded document.
These start on a line that begins =begin and continue until (and include) a line that
begins =end. Any text that appears after =begin or =end is part of the comment and is
also ignored, but that extra text must be separated from the =begin and =end by at least
one space.

Embedded documents are a convenient way to comment out long blocks of code with-
out prefixing each line with a # character:

26 | Chapter 2: The Structure and Execution of Ruby Programs

=begin Someone needs to fix the broken code below!
 Any code here is commented out
=end

Note that embedded documents only work if the = signs are the first characters of each
line:

=begin This used to begin a comment. Now it is itself commented out!
 The code that goes here is no longer commented out
=end

As their name implies, embedded documents can be used to include long blocks of
documentation within a program, or to embed source code of another language (such
as HTML or SQL) within a Ruby program. Embedded documents are usually intended
to be used by some kind of postprocessing tool that is run over the Ruby source code,
and it is typical to follow =begin with an identifier that indicates which tool the
comment is intended for.

2.1.1.2 Documentation comments

Ruby programs can include embedded API documentation as specially formatted com-
ments that precede method, class, and module definitions. You can browse this
documentation using the ri tool described earlier in §1.2.4. The rdoc tool extracts doc-
umentation comments from Ruby source and formats them as HTML or prepares them
for display by ri. Documentation of the rdoc tool is beyond the scope of this book; see
the file lib/rdoc/README in the Ruby source code for details.

Documentation comments must come immediately before the module, class, or
method whose API they document. They are usually written as multiline comments
where each line begins with #, but they can also be written as embedded documents
that start =begin rdoc. (The rdoc tool will not process these comments if you leave out
the “rdoc”.)

The following example comment demonstrates the most important formatting ele-
ments of the markup grammar used in Ruby’s documentation comments; a detailed
description of the grammar is available in the README file mentioned previously:

#
Rdoc comments use a simple markup grammar like those used in wikis.

Separate paragraphs with a blank line.

= Headings

Headings begin with an equals sign

== Sub-Headings
The line above produces a subheading.
=== Sub-Sub-Heading
And so on.

= Examples

2.1 Lexical Structure | 27

Indented lines are displayed verbatim in code font.
Be careful not to indent your headings and lists, though.

= Lists and Fonts

List items begin with * or -. Indicate fonts with punctuation or HTML:
* _italic_ or <i>multi-word italic</i>
* *bold* or multi-word bold
* +code+ or <tt>multi-word code</tt>

1. Numbered lists begin with numbers.
99. Any number will do; they don't have to be sequential.
1. There is no way to do nested lists.

The terms of a description list are bracketed:
[item 1] This is a description of item 1
[item 2] This is a description of item 2

2.1.2 Literals
Literals are values that appear directly in Ruby source code. They include numbers,
strings of text, and regular expressions. (Other literals, such as array and hash values,
are not individual tokens but are more complex expressions.) Ruby number and string
literal syntax is actually quite complicated, and is covered in detail in Chapter 3. For
now, an example suffices to illustrate what Ruby literals look like:

1 # An integer literal
1.0 # A floating-point literal
'one' # A string literal
"two" # Another string literal
/three/ # A regular expression literal

2.1.3 Punctuation
Ruby uses punctuation characters for a number of purposes. Most Ruby operators are
written using punctuation characters, such as + for addition, * for multiplication, and
|| for the Boolean OR operation. See §4.6 for a complete list of Ruby operators. Punc-
tuation characters also serve to delimit string, regular expression, array, and hash
literals, and to group and separate expressions, method arguments, and array indexes.
We’ll see miscellaneous other uses of punctuation scattered throughout Ruby syntax.

2.1.4 Identifiers
An identifier is simply a name. Ruby uses identifiers to name variables, methods, classes,
and so forth. Ruby identifiers consist of letters, numbers, and underscore characters,
but they may not begin with a number. Identifiers may not include whitespace or

28 | Chapter 2: The Structure and Execution of Ruby Programs

nonprinting characters, and they may not include punctuation characters except as
described here.

Identifiers that begin with a capital letter A–Z are constants, and the Ruby interpreter
will issue a warning (but not an error) if you alter the value of such an identifier. Class
and module names must begin with initial capital letters. The following are identifiers:

i
x2
old_value
_internal # Identifiers may begin with underscores
PI # Constant

By convention, multiword identifiers that are not constants are written with under-
scores like_this, whereas multiword constants are written LikeThis or LIKE_THIS.

2.1.4.1 Case sensitivity

Ruby is a case-sensitive language. Lowercase letters and uppercase letters are distinct.
The keyword end, for example, is completely different from the keyword END.

2.1.4.2 Unicode characters in identifiers

Ruby’s rules for forming identifiers are defined in terms of ASCII characters that are
not allowed. In general, all characters outside of the ASCII character set are valid in
identifiers, including characters that appear to be punctuation. In a UTF-8 encoded
file, for example, the following Ruby code is valid:

def ×(x,y) # The name of this method is the Unicode multiplication sign
 x*y # The body of this method multiplies its arguments
end

Similarly, a Japanese programmer writing a program encoded in SJIS or EUC can
include Kanji characters in her identifiers. See §2.4.1 for more about writing Ruby
programs using encodings other than ASCII.

The special rules about forming identifiers are based on ASCII characters and are not
enforced for characters outside of that set. An identifier may not begin with an ASCII
digit, for example, but it may begin with a digit from a non-Latin alphabet. Similarly,
an identifier must begin with an ASCII capital letter in order to be considered a constant.
The identifier Å, for example, is not a constant.

Two identifiers are the same only if they are represented by the same sequence of bytes.
Some character sets, such as Unicode, have more than one codepoint that represents
the same character. No Unicode normalization is performed in Ruby, and two distinct
codepoints are treated as distinct characters, even if they have the same meaning or are
represented by the same font glyph.

2.1 Lexical Structure | 29

2.1.4.3 Punctuation in identifiers

Punctuation characters may appear at the start and end of Ruby identifiers. They have
the following meanings:

$ Global variables are prefixed with a dollar sign. Following Perl’s example, Ruby defines a number of global variables that
include other punctuation characters, such as $_ and $-K. See Chapter 10 for a list of these special globals.

@ Instance variables are prefixed with a single at sign, and class variables are prefixed with two at signs. Instance variables
and class variables are explained in Chapter 7.

? As a helpful convention, methods that return Boolean values often have names that end with a question mark.

! Method names may end with an exclamation point to indicate that they should be used cautiously. This naming convention
is often to distinguish mutator methods that alter the object on which they are invoked from variants that return a modified
copy of the original object.

= Methods whose names end with an equals sign can be invoked by placing the method name, without the equals sign, on
the left side of an assignment operator. (You can read more about this in §4.5.3 and §7.1.5.)

Here are some example identifiers that contain leading or trailing punctuation
characters:

$files # A global variable
@data # An instance variable
@@counter # A class variable
empty? # A Boolean-valued method or predicate
sort! # An in-place alternative to the regular sort method
timeout= # A method invoked by assignment

A number of Ruby’s operators are implemented as methods, so that classes can redefine
them for their own purposes. It is therefore possible to use certain operators as method
names as well. In this context, the punctuation character or characters of the operator
are treated as identifiers rather than operators. See §4.6 for more about Ruby’s
operators.

2.1.5 Keywords
The following keywords have special meaning in Ruby and are treated specially by the
Ruby parser:

__LINE__ case ensure not then
__ENCODING__ class false or true
__FILE__ def for redo undef
BEGIN defined? if rescue unless
END do in retry until
alias else module return when
and elsif next self while
begin end nil super yield
break

30 | Chapter 2: The Structure and Execution of Ruby Programs

In addition to those keywords, there are three keyword-like tokens that are treated
specially by the Ruby parser when they appear at the beginning of a line:

=begin =end __END__

As we’ve seen, =begin and =end at the beginning of a line delimit multiline comments.
And the token __END__ marks the end of the program (and the beginning of a data
section) if it appears on a line by itself with no leading or trailing whitespace.

In most languages, these words would be called “reserved words” and they would be
never allowed as identifiers. The Ruby parser is flexible and does not complain if you
prefix these keywords with @, @@, or $ prefixes and use them as instance, class, or global
variable names. Also, you can use these keywords as method names, with the caveat
that the method must always be explicitly invoked through an object. Note, however,
that using these keywords in identifiers will result in confusing code. The best practice
is to treat these keywords as reserved.

Many important features of the Ruby language are actually implemented as methods
of the Kernel, Module, Class, and Object classes. It is good practice, therefore, to treat
the following identifiers as reserved words as well:

These are methods that appear to be statements or keywords
at_exit catch private require
attr include proc throw
attr_accessor lambda protected
attr_reader load public
attr_writer loop raise

These are commonly used global functions
Array chomp! gsub! select
Float chop iterator? sleep
Integer chop! load split
String eval open sprintf
URI exec p srand
abort exit print sub
autoload exit! printf sub!
autoload? fail putc syscall
binding fork puts system
block_given? format rand test
callcc getc readline trap
caller gets readlines warn
chomp gsub scan

These are commonly used object methods
allocate freeze kind_of? superclass
clone frozen? method taint
display hash methods tainted?
dup id new to_a
enum_for inherited nil? to_enum
eql? inspect object_id to_s
equal? instance_of? respond_to? untaint
extend is_a? send

2.1 Lexical Structure | 31

